WorldWideScience

Sample records for physiologically anaerobic microorganisms

  1. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  2. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  3. Physiologically anaerobic microorganisms of the deep subsurface. Progress report, June 1, 1990--May 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  4. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  5. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    Science.gov (United States)

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  6. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  7. Identification of anaerobic microorganisms for converting kitchen waste to biogas

    International Nuclear Information System (INIS)

    Amirhossein Malakahmad; Shahrom Mohd Zain; Noor Ezlin Ahmad Basri; Shamsul Rahman Mohamed Kutty; Mohd Hasnain Isa

    2010-01-01

    Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system. (Author)

  8. [Long-term storage of obligate anaerobic microorganisms in glycerol].

    Science.gov (United States)

    Briukhanov, A I; Netrusov, A I

    2006-01-01

    We evaluated the possibility of storing the cultures of obligate anaerobic microorganisms (clostridia. acetogenic and sulfate-reducing bacteria, and methanogenic archaea) in 25% glycerol at -70 degrees C for a long time (up to 3 years). This method of storage is adequate to preserve cell viability in most obligate anaerobes.

  9. Physiologically anaerobic microorganisms of the deep subsurface. Progress report, June 1, 1991--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  10. High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-TCA in groundwater.

    Science.gov (United States)

    Wang, Wenbing; Wu, Yanqing; Zhang, Chi

    2017-03-01

    Anaerobic microorganisms were applied to degrade organic contaminants in groundwater with permeable reactive barriers (PRBs). However, anaerobic microorganisms need to select optimal immobilizing material as carrier. The potential of high-density natural luffa sponge (HDLS) (a new variety of luffa) for the immobilization and protection of anaerobic microorganisms was investigated. The HDLS has a dense structure composed of a complicated interwoven fibrous network. Therefore, the abrasion rate of HDLS (0.0068 g s -1 ) was the smallest among the four carriers [HDLS, ordinary natural luffa sponge (OLS), polyurethane sponge (PS), and gel carrier AQUAPOROUSGEL (APG)]. The results suggest that it also had the greatest water retention (10.26 H 2 O-g dry carrier-g -1 ) and SS retention (0.21 g dry carrier-g -1 ). In comparison to well-established commercialized gel carrier APG, HDLS was of much better mechanical strength, hydrophilicity and stability. Microbial-immobilized HDLS also had the best performance for the remediation of 1,1,1-TCA simulated groundwater. Analysis of the clone libraries from microorganism-immobilized HDLS showed the HDLS could protect microorganisms from the toxicity of 1,1,1-TCA and maintain the stability of microbial community diversity. The mechanism of HDLS immobilizing and protecting microorganisms was proposed as follows. The HDLS had a micron-scale honeycomb structure (30-40 μm) and an irregular ravine structure (4-20 μm), which facilitate the immobilization of anaerobic microorganisms and protect the anaerobic microorganisms.

  11. Physiological ecology of microorganisms in Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Trista J Vick-Majors

    2016-10-01

    Full Text Available Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep, oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1 obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8% indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms

  12. [Anaerobiosis beyond anaerobic bacteria: its role in the recovery of aerobic microorganisms from purulent samples].

    Science.gov (United States)

    Litterio Bürki, M R; Lopardo, H

    2010-01-01

    The main objective of incubation in anaerobiosis is the recovery of obligate anaerobic bacteria, not excluding other microorganisms. In 2003, we conducted a comparative and prospective study from consecutive clinical samples on the recovery of aerobic microorganisms from primary cultures both in anaerobiosis and aerobiosis of the same sample. The aims were to evaluate the methodology used in anaerobiosis in the recovery of aerobic microorganisms not diagnosed in primary aerobic cultures, and to establish a relationship between them and the origin of the sample. From 2003 to 2004, 2776 bacteriological samples were analyzed and 1884 aerobic microorganisms were cultured altogether. The result was that 69.4% of the samples showed growth both in aerobic and anaerobic incubation from primary cultures of the sample, whereas 30.6% only in one of the mentioned incubation atmosphere: 49.2% in aerobiosis and 50.8% in anaerobiosis. According to these results, the methodology used in anaerobiosis (anaerobic incubation, culture media, stereoscopic microscope or hand lens to examine the primary plates), allowed an extra yield of aerobic organisms, especially gram positive facultative and microaerophilic cocci, which was particularly evident in polimicrobial cultures, and especially when gram negative accompanying flora was present, independently of the type of sample.

  13. Physiology and application of sulfur-reducing microorganisms from acidic environments

    NARCIS (Netherlands)

    Florentino, Anna Patrícya

    2017-01-01

    Sulfur cycle is one of the main geochemical cycles on Earth. Oxidation and reduction reactions of sulfur are mostly biotic and performed by microorganisms. In anaerobic conditions – marine and some freshwater systems, dissimilatory sulfur- and sulfate-reducing bacteria and archaea are key players

  14. Report on a survey in fiscal 1999. Survey on industrial utilization of microorganism reaction mechanisms under anaerobic condition; 1999 nendo kenki jokenka ni okeru biseibutsu hanno kiko no kogyoteki riyo ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Industrial utilization of reaction mechanisms of microorganisms under anaerobic condition permits structuring energy saving type production processes. The present survey has investigated features of new microorganisms under anaerobic condition and the status of researches thereon inside and outside the country, and discussed their future applications. Chapter 1 compares anaerobic microorganisms and functions of microorganism under anaerobic condition with those aerobic to describe their general features, and describes the purpose of this survey and the summary of the investigations. Chapter 2 surveys the current status of technologies to utilize microorganisms under anaerobic condition. Chapter 3 outlines metabolic characteristics of the anaerobic microorganisms, and extracts functions effective for material production by different anaerobic microorganisms to describe their applicability. Chapter 4 evaluates the system classification for the anaerobic microorganisms utilizing the basic arrangement of 16S rRNA genes, and extracts technical problems therein. Chapter 5 proposes structuring a total methane fermentation system including a raw material collecting process, and enhancing alcohol productivity of Zymomonas bacteria. (NEDO)

  15. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen

    2016-06-03

    Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply

  16. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses.

    Directory of Open Access Journals (Sweden)

    Kristina Beblo-Vranesevic

    Full Text Available The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.

  17. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    Science.gov (United States)

    Bohmeier, Maria; Perras, Alexandra K.; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S.; Pukall, Rüdiger; Vannier, Pauline; Marteinsson, Viggo T.; Monaghan, Euan P.; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2017-01-01

    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today. PMID:29069099

  18. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Yoshida, Takahiro

    2011-01-01

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 o C. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  19. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    Science.gov (United States)

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-04-25

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  20. A six-well plate method: less laborious and effective method for cultivation of obligate anaerobic microorganisms.

    Science.gov (United States)

    Nakamura, Kohei; Tamaki, Hideyuki; Kang, Myung Suk; Mochimaru, Hanako; Lee, Sung-Taik; Nakamura, Kazunori; Kamagata, Yoichi

    2011-01-01

    We developed a simple, less laborious method to cultivate and isolate obligate anaerobic microorganisms using a six-well plate together with the AnaeroPack System, designated as the six-well plate method. The cultivation efficiency of this method, based on colony-forming units, colony formation time, and colony size, was evaluated with four authentic obligate anaerobes (two methanogenic archaea and two sulfate-reducing bacteria). The method was found to be comparable to or even better than the roll tube method, a technique that is commonly used at present for the cultivation of obligate anaerobes. Further experiments using 21 representative obligate anaerobes demonstrated that all examined anaerobes (11 methanogens, 5 sulfate- or thiosulfate-reducing bacteria, and 5 syntrophs) could form visible colonies on the six-well plate and that these colonies could be successfully subcultured in fresh liquid media. Using this method, an unidentified sulfate-reducing bacterium was successfully isolated from an environmental sample.

  1. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jinming [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Zhang, Ruihong; Sun, Huawei [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); El-Mashad, Hamed M. [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Department of Agricultural Engineering, Mansoura University, El-Mansoura (Egypt); Ying, Yibin [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-12-15

    The effect of different food to microorganism ratios (F/M) (1-10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 {+-} 2 C and 50 {+-} 2 C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H{sub 2}/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H{sub 2}/g VS at the F/M of 6. A modified Gompertz equation adequately (R{sup 2} > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation. (author)

  2. Overcoming the anaerobic hurdle in phenotypic microarrays: Generation andvisualization of growth curve data for Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, Sharon E; Joyner, Dominique; Jacobsen, Janet; Mukhopadhyay, Aindrila; Hazen, Terry C.

    2008-10-04

    Growing anaerobic microorganisms in phenotypic microarrays (PM) and 96-well microtiter plates is an emerging technology that allows high throughput survey of the growth and physiology and/or phenotype of cultivable microorganisms. For non-model bacteria, a method for phenotypic analysis is invaluable, not only to serve as a starting point for further evaluation, but also to provide a broad understanding of the physiology of an uncharacterized wild-type organism or the physiology/phenotype of a newly created mutant of that organism. Given recent advances in genetic characterization and targeted mutations to elucidate genetic networks and metabolic pathways, high-throughput methods for determining phenotypic differences are essential. Here we outline challenges presented in studying the physiology and phenotype of a sulfate reducing anaerobic delta proteobacterium, Desulfovibrio vulgaris Hildenborough. Modifications of the commercially available OmniLog(TM) system (Hayward, CA) for experimental setup, and configuration, as well as considerations in PM data analysis are presented. Also highlighted here is data viewing software that enables users to view and compare multiple PM data sets. The PM method promises to be a valuable strategy in our systems biology approach to D. vulgaris studies and is readily applicable to other anaerobic and aerobic bacteria.

  3. The impact of anaerobic microorganisms activities in ruminant waste and coal

    Science.gov (United States)

    Harlia, Ellin; Hamdani, H.; Winantris, Kurnani, Tb. B. A.; Hidayati, Y. A.; Marlina, E. T.; Rahmah, K. N.; Arief, H.; Ridwan, R.; Joni, I. M.

    2018-02-01

    Ruminant (dairy cattle, beef cattle and buffalo) waste from intensive farming concentrated in highly populated areas when stacked and accumulated in certain heights and in anaerobic condition, may produce Green House Gases (GHGs) which lead to global warming. This condition is generated through fermentation by microorganism contained in livestock waste and biogenic activities on coal. The GHGs include CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide). The GHG emission should be early monitored to minimize greater problems. In the other hand, methane can be utilized as an environmental friendly energy after stored as biogas on digester. The aim of this research is to detect how much GHGs formed from ruminant waste and biogenic activities on coal, which can be utilized as an alternative energy. This research conducted as an explorative study utilizing dairy cattle feces, beef cattle feces, buffalo feces and three types of coal: lignite, bituminous and sub-bituminous, which is separately added into medium 98-5 made from mixture of agar medium and chemical components in powder and crystal form diluted with distilled water and rumen liquid, with six repetitions. Each sample was stored into 250 mL anaerobic digester, observed weekly for period of 4 weeks, analyzed by Gas Chromatography (GC-A14). The result showed that GHGs: CH4, CO2 and N2O were found in all samples. Anticipation of GHGs formation to avoid air pollution is by utilizing livestock waste and coal in aerobic condition or in anaerobic condition through digester.

  4. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Hui [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Chengshuai [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Li, Fangbai, E-mail: cefbli@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Luo, Chunling [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Manjia; Hu, Min [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2015-11-15

    Highlights: • SIP suggested that Dechloromonas can mineralize PCP in soil. • Methanosaeta and Methanocella acquired PCP-derived carbon. • Lactate enhanced microbial degradation of PCP in soil. - Abstract: Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of {sup 13}CH{sub 4} and {sup 13}CO{sub 2} indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil.

  5. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing

    International Nuclear Information System (INIS)

    Tong, Hui; Liu, Chengshuai; Li, Fangbai; Luo, Chunling; Chen, Manjia; Hu, Min

    2015-01-01

    Highlights: • SIP suggested that Dechloromonas can mineralize PCP in soil. • Methanosaeta and Methanocella acquired PCP-derived carbon. • Lactate enhanced microbial degradation of PCP in soil. - Abstract: Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of 13 CH 4 and 13 CO 2 indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil

  6. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    Science.gov (United States)

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Organic Waste Anaerobic degradation with bio-activator-5 Effective Microorganism (EM-5) to Produce Biogas

    OpenAIRE

    Metri Dian Insani

    2014-01-01

    Degradasi Anaerob Sampah Organik dengan Bioaktivator Effective Microorganism-5 (EM-5) untuk Menghasilkan Biogas Abstract: The purpose of this study was to: (1) analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow manure to biogas pressure, (2) analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow dung for a long time flame biogas produced, and (3) analyze the different uses corn cobs,...

  8. Dechlorination of Aromatic Xenobiotic Compounds by Anaerobic Microorganisms

    Science.gov (United States)

    1988-07-01

    dechlorination of 3 6C1- 2,3,7,8-TCDD have been initiated but are incomplete at this time. The sources of anaerobic dechlorinating bacteria were the...SETHUNATHAN, 1983). Active anaerobic habitatsa DDT Soil, rumen fluid, sewage sludge, sediments, microbial cultures Lindane Soil, sediments, microbial... anaerobic bacteria (Reference 24). Sediments containing relatively high levels of PCBs (> 50 ppm) all showed losses of up to one-third of the chlorine

  9. Complete Reductive Dehalogenation of Brominated Biphenyls by Anaerobic Microorganisms in Sediment

    Science.gov (United States)

    Bedard, Donna L.; Van Dort, Heidi M.

    1998-01-01

    We sought to determine whether microorganisms from the polychlorinated biphenyl (PCB)-contaminated sediment in Woods Pond (Lenox, Mass.) could dehalogenate brominated biphenyls. The PCB dechlorination specificities for the microorganisms in this sediment have been well characterized. This allowed us to compare the dehalogenation specificities for brominated biphenyls and chlorinated biphenyls within a single sediment. Anaerobic sediment microcosms were incubated separately at 25°C with 16 different mono- to tetrabrominated biphenyls (350 μM) and disodium malate (10 mM). Samples were extracted and analyzed by gas chromatography with an electron capture detector and a mass spectrometer detector at various times for up to 54 weeks. All of the tested brominated biphenyls were dehalogenated. For most congeners, including 2,6-dibromobiphenyl (26-BB) and 24-25-BB, the dehalogenation began within 1 to 2 weeks. However, for 246-BB and 2-2-BB, debromination was first observed at 7 and 14 weeks, respectively. Most intermediate products did not persist, but when 2-2-BB was produced as a dehalogenation product, it persisted for at least 15 weeks before it was dehalogenated to 2-BB and then to biphenyl. The dehalogenation specificities for brominated and chlorinated biphenyls were similar: meta and para substituents were generally removed first, and ortho substituents were more recalcitrant. However, the brominated biphenyls were better dehalogenation substrates than the chlorinated biphenyls. All of the tested bromobiphenyls, including those with ortho and unflanked meta and para substituents, were ultimately dehalogenated to biphenyl, whereas their chlorinated counterparts either were not dehalogenation substrates or were only partially dehalogenated. Our data suggest that PCB-dechlorinating microorganisms may be able to dehalogenate brominated biphenyls and may exhibit a relaxed specificity for these substrates. PMID:16349530

  10. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  11. Physiological testing of basketball players: toward a standard evaluation of anaerobic fitness.

    Science.gov (United States)

    Delextrat, Anne; Cohen, Daniel

    2008-07-01

    The aim of this study was to examine whether the changes in the rules of the game instituted in 2000 have modified the physiological factors of success in basketball. The performances of 8 elite male players and 8 average-level players were compared in order to identify which components of fitness among agility, speed, anaerobic power, anaerobic capacity, and upper body strength were key determinants of performance in modern basketball. Each subject performed 7 tests, including vertical jump (VJ), 20-m sprint, agility T test, suicide sprint, 30-second Wingate anaerobic test (WAnT), isokinetic testing of the knee extensors, and 1 repetition maximum (1RM) bench press test. The statistical difference in the anaerobic performances was assessed by Student's t test. The main results showed that, compared to average-level players, elite-level players achieved significantly better performances in the agility T test (+6.2%), VJ test (+8.8%), peak torques developed by knee extensors (+20.2%), and 1RM bench press (+18.6%, p 0.05). These results emphasized the importance of anaerobic power in modern basketball, whereas anaerobic capacity does not seem to be a key aspect to consider. In this context, coaches are advised to avoid using exercises lasting >/=30 seconds in their physical fitness programs, but instead to focus on short and intense tests such as VJ, agility T test, and sprints over very short distances (5 or 10 m).

  12. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  13. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    International Nuclear Information System (INIS)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn; Arnold, Thuro; Scheinost, Andreas C.

    2017-01-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  14. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    Science.gov (United States)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  15. Isolation and Cultivation of Anaerobes

    DEFF Research Database (Denmark)

    Aragao Börner, Rosa

    2016-01-01

    Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts.In view of that, the isolation and cultivation of anaerobic...

  16. Some unique features of alkaliphilic anaerobes

    Science.gov (United States)

    Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

    2013-09-01

    This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

  17. My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

    Science.gov (United States)

    Thauer, Rudolf Kurt

    2015-01-01

    Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.

  18. The effect of anaerobic digestion and storage on indicator microorganisms in swine and dairy manure.

    Science.gov (United States)

    Costa, Annamaria; Gusmara, Claudia; Gardoni, Davide; Zaninelli, Mauro; Tambone, Fulvia; Sala, Vittorio; Guarino, Marcella

    2017-11-01

    The aim of this experimental study was to evaluate the influence of anaerobic digestion and storage on indicator microorganisms in swine and dairy excreta. Samples were collected every 90 days for 15 months at eight farms, four pig, and four dairy farms, four of them having a biogas plant. Moreover, to evaluate storage effects on samples, 20 l of manure and slurry taken at each farm (digested manure only in farms with a biogas plant) were stored in a controlled climatic chamber at 18 °C, for 6 months. The bacterial load and the chemical-physical characteristics of excreta were evaluated at each sampling time, stored slurry, and manure were sampled and analyzed every 2 months. A high variability of the concentration of bacteria in the different excreta types was observed during the experiment, mainly depending on the type and time of treatment. No sample revealed either the presence of Escherichia coli O157:H7 or of Salmonella, usually linked to the temporary rearing of infected animals in facilities. Anaerobic digestion and storage affected in a significant way the reduction of indicator bacteria like lactobacilli, coliforms, and streptococci. Anaerobic digestion lowered coliforms in pig slurry (- 2.80 log, P manure (- 2.44 log, P < 0.001) and in pig slurry (- 1.43 log, P < 0.05), and lactobacilli in pig slurry (- 3.03 log, P < 0.05). Storage lowered coliforms and the other indicators counts, in particular in fresh wastes, while clostridia did not show a reduction in concentration.

  19. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    Science.gov (United States)

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  20. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  1. Microbiology and physiology of anaerobic fermentation of cellulose. Annual report for 1990, 1992, 1993 and final report

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, L.G.; Wiegel, J.; Peck, H.D. Jr.; Mortenson, L.E.

    1993-08-31

    This report focuses on the bioconversion of cellulose to methane by various anaerobes. The structure and enzymatic activity of cellulosome and polycellulosome was studied in Clostridium thermocellum. The extracellular enzymes involved in the degradation of plant material and the physiology of fermentation was investigated in anaerobic fungi. Enzymes dealing with CO, CO{sub 2}, H{sub 2}, CH{sub 3}OH, as well as electron transport and energy generation coupled to the acetyl-CoA autotrophic pathway was studied in acetogenic clostridia.

  2. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    Science.gov (United States)

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  3. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  4. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    Science.gov (United States)

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  6. The effect of the source of microorganisms on adaptation of hydrolytic consortia dedicated to anaerobic digestion of maize silage.

    Science.gov (United States)

    Poszytek, Krzysztof; Pyzik, Adam; Sobczak, Adam; Lipinski, Leszek; Sklodowska, Aleksandra; Drewniak, Lukasz

    2017-08-01

    The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A new combination of substrates: biogas production and diversity of the methanogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Kushkevych Ivan

    2018-04-01

    Full Text Available Agriculture, food industry, and manufacturing are just some of the areas where anaerobic technology can be used. Currently, anaerobic technologies are mainly used for wastewater treatment, solid waste treatment, or for the production of electrical and thermal energy from energy crops processing. However, a clear trend is towards more intensive use of this technology in biomass and biodegradable waste processing and hydrogen or biomethane production. An enormous number of anaerobic digesters are operating worldwide but there is very little information about the effect of different substrate combinations on the methanogens community. This is due to the fact that each of the anaerobic digesters has its own unique microbial community. For the most effective management of anaerobic processes it would be important to know the composition of a consortium of anaerobic microorganisms present in anaerobic digesters processing different input combinations of raw material. This paper characterizes the effect of the input raw materials on the diversity of the methanogen community. Two predominant microorganisms in anaerobic digesters were found to be 99% identity by the sequences of the 16S rRNA gene to the Methanoculleus and Thermogymnomonas genera deposited in GenBank.

  8. Periodontopathic microorganisms in peripheric blood after scaling and root planing.

    Science.gov (United States)

    Lafaurie, Gloria Inés; Mayorga-Fayad, Isabel; Torres, María Fernanda; Castillo, Diana Marcela; Aya, Maria Rosario; Barón, Alexandra; Hurtado, Paola Andrea

    2007-10-01

    The objective of this study was to evaluate the frequency of periodontopathic and other subgingival anaerobic and facultative bacteria in the bloodstream following scaling and root planing (SRP). Forty-two patients with severe generalized chronic periodontitis (GChP) and generalized aggressive periodontitis (GAgP) were included in the study. Four samples of peripheric blood were drawn from the cubital vein at different times: Pre-treatment: immediately before the SRP procedure (T1), immediately after treatment (T2), 15 min. post-treatment (T3) and 30 min. post-treatment (T4). In order to identify the presence of microorganisms in blood, subcultures were conducted under anaerobic conditions. 80.9% of the patients presented positive cultures after SRP and it occurred more frequently immediately after treatment; however, 19% of the patients still had microorganisms in the bloodstream 30 min. after the procedure. The periodontopathic microorganisms more frequently identified were Porphyromonas gingivalis and Micromonas micros. Campylobacter spp., Eikenella corrodens, Tannerella forsythensis, Fusobacterium spp. and Prevotella intermedia were isolated less often. Actinomyces spp. were also found frequently during bacteraemia after SRP. SRP induced bacteraemia associated with anaerobic bacteria, especially in patients with periodontal disease.

  9. Microbiology of anaerobic digestion; Microbiologia da digestao anaerobica

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Rosana Filomena Vazoller [CETESB, Sao Paulo, SP (Brazil)

    1988-12-31

    Considerations was made about the microorganisms involved in the anaerobic digestion of wastes. Are also presented, the main results on this subject obtained, until now, in the studies carried on the group of anaerobic microbiology researchers from the Sanitary Company of Sao Paulo State, Brazil. (author) 23 refs., 8 figs., 3 tabs.

  10. Effect of anaerobiosis on indigenous microorganisms in blackwater with fish offal as co-substrate

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Heiske, Stefan; Jensen, Pernille Erland

    2014-01-01

    resistant bacteria were reduced in the anaerobic samples in the beginning of the study but increased towards the end of it. The opposite pattern was observed in the aerobic samples, with a growth in the beginning followed by a reduction. During the anaerobic digestion tetracycline resistant bacteria showed......The aim of this study was to compare the effect of mesophilic anaerobic digestion with aerobic storage on the survival of selected indigenous microorganisms and microbial groups in blackwater, including the effect of addition of Greenlandic Halibut and shrimp offal. The methane yield...... of the different substrate mixtures was determined in batch experiments to study possible correlation between methanogenic activity in the anaerobic digesters and reduction of indigenous microorganisms in the blackwater. By the end of the experiments a recovery study was conducted to determine possible injury...

  11. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core

    Science.gov (United States)

    Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.

    2004-01-01

    We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.

  12. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  13. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  14. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Probian, Christina; Wilkes, Heinz

    2010-01-01

    The identity of the microorganisms capable of anaerobic p-xylene degradation under denitrifying conditions is hitherto unknown. Here, we report highly enriched cultures of freshwater denitrifying bacteria that grow anaerobically with p-xylene as the sole organic carbon source and electron donor. ...

  15. Anaerobic microbial processes for energy conservation and biotransformation of pollutants

    NARCIS (Netherlands)

    Luz Ferreira Martins Paulo, da Lara

    2017-01-01

    Anaerobic microbial processes are commonly applied in the treatment of domestic and industrial wastewaters. Anaerobic digestion (AD) of wastewater has received a great deal of attention, but many aspects related to the complex interactions between microorganism, and how that is affected by the

  16. [Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oilfield (China)].

    Science.gov (United States)

    Nazina, T N; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Turova, T P; Poltaraus, A B; Feng, C; Ni, F; Beliaev, S S

    2006-01-01

    The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.

  17. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    Science.gov (United States)

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  18. Organic Waste Anaerobic degradation with bio-activator-5 Effective Microorganism (EM-5 to Produce Biogas

    Directory of Open Access Journals (Sweden)

    Metri Dian Insani

    2014-06-01

    Full Text Available Degradasi Anaerob Sampah Organik dengan Bioaktivator Effective Microorganism-5 (EM-5 untuk Menghasilkan Biogas Abstract: The purpose of this study was to: (1 analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow manure to biogas pressure, (2 analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow dung for a long time flame biogas produced, and (3 analyze the different uses corn cobs, kelaras bananas and banana peel with the addition of cow manure to the C / N ratio end. Experimental study was designed using a completely randomized design (CRD, with three treatments each in 3 repetitions. The research proves that: (1 there is a difference corncobs, kelaras bananas and banana peel with the addition of cow manure to biogas pressure, (2 there is a difference corncobs, kelaras bananas and banana peel with the addition of cow manure to the length of time the flame and (3 there is a difference corncobs, kelaras bananas and banana peel with the addition of cow manure to the C / N ratio end. Key Words: anaerobic degradation, organic waste, EM-5, biogas Abstrak: Tujuan penelitian ini adalah untuk: (1 menganalisis perbedaan penggunaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penambahan kotoran sapi terhadap tekanan biogas, (2 menganalisis perbedaan penggunaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penam-bahan kotoran sapi terhadap lama waktu nyala api biogas yang dihasilkan, dan (3 menganalisis per-bedaan penggunaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penambahan kotoran sapi terhadap rasio C/N akhir. Penelitian eksperimen didesain menggunakan rancangan acak lengkap (RAL, dengan tiga perlakuan masing-masing dalam 3 kali ulangan. Hasil penelitian membuktikan bahwa: (1 terdapat perbedaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penambahan kotoran sapi terhadap tekanan biogas, (2 terdapat

  19. Microbial ecology of anaerobic digesters: the key players of anaerobiosis.

    Science.gov (United States)

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  20. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Science.gov (United States)

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  1. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  2. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; He, Q.; Hemme, C.L.; Mukhopadhyay, A.; Hillesland, K.; Zhou, A.; He, Z.; Nostrand, J.D. Van; Hazen, T.C.; Stahl, D.A.; Wall, J.D.; Arkin, A.P.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

  3. Isolation and characterization of acetate-utilizing anaerobes from a freshwater sediment

    NARCIS (Netherlands)

    Scholten, J.C.M.; Stams, A.J.M.

    2000-01-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was

  4. Parameters of anaerobic physiological profile of elite athletes

    Directory of Open Access Journals (Sweden)

    Karaba-Jakovljević Dea

    2015-01-01

    Full Text Available Introduction. Anaerobic capacity is much less evaluated in literature compared to aerobic component. Anaerobic performance of athletes can be measured using different motoric tests, lasting 20 to 30 seconds, one of them being the Wingate anaerobic test (WAnT. Objective. The aim of this study was to determine the work performed and power generated by athletes and non-athletes during a 30-second high intensity exercise, as well as to compare explosive characteristics of subjects using a new parameter of WAnT, named explosive power, or slope of power. Methods. All parameters of anaerobic power were investigated in 152 subjects classed into different groups depending on their physical fitness and sport specialties as follows: non-athletes (n=31, rowers (n=26, volleyball players (n=37, handball players (n=34 and judo players (n=24. The WAnT, as well as basic anthropometric measurements, was administrated to all participants. Results. Values of anaerobic parameters were higher in the group of athletes compared to physically inactive subjects. The highest values of the WAnT parameters were registered in the group of volleyball players (AP=1006 W; relative AP=11.4 W/ kg, AC=19.8 kJ, compared to athletes of other sport disciplines (volleyball, rowing and judo. The new parameter of the WAnT, explosive power, also showed highest values in volleyball players (EP=154 W/s; relative EP=1.74 W/s/kg. These differences were statistically significant (p<0.05. Conclusion. The results of laboratory tests can provide useful information on improvements in training processes. The new parameter of the WAnT could be implemented in further analyses of explosive characteristics of muscle contraction.

  5. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida.

    Science.gov (United States)

    Brück, Wolfram M; Brück, Thomas B; Self, William T; Reed, John K; Nitecki, Sonja S; McCarthy, Peter J

    2010-05-01

    Marine sediments and sponges may show steep variations in redox potential, providing niches for both aerobic and anaerobic microorganisms. Geodia spp. and sediment specimens from the Straits of Florida were fixed using paraformaldehyde and 95% ethanol (v/v) for fluorescence in situ hybridization (FISH). In addition, homogenates of sponge and sediment samples were incubated anaerobically on various cysteine supplemented agars. FISH analysis showed a prominent similarity of microbiota in sediments and Geodia spp. samples. Furthermore, the presence of sulfate-reducing and annamox bacteria as well as other obligate anaerobic microorganisms in both Geodia spp. and sediment samples were also confirmed. Anaerobic cultures obtained from the homogenates allowed the isolation of a variety of facultative anaerobes, primarily Bacillus spp. and Vibrio spp. Obligate anaerobes such as Desulfovibrio spp. and Clostridium spp. were also found. We also provide the first evidence for a culturable marine member of the Chloroflexi, which may enter into symbiotic relationships with deep-water sponges such as Geodia spp. Resuspended sediment particles, may provide a source of microorganisms able to associate or form a symbiotic relationship with sponges.

  6. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    Science.gov (United States)

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  7. Treatment of industrial wastewaters by anaerobic membrane bioreactors : Implications of substrate characteristics

    NARCIS (Netherlands)

    Dereli, R.K.

    2015-01-01

    The success of anaerobic digestion relies on the presence of highly active methanogenic biomass, requiring effective retention of slow growing anaerobic microorganisms inside bioreactor by decoupling the hydraulic retention time (HRT) from solids residence time (SRT) or the employment of long SRTs

  8. Anaerobic oxidation of methane and ammonium.

    NARCIS (Netherlands)

    Strous, M.; Jetten, M.S.M.

    2004-01-01

    Anaerobic oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. First, both of them were once deemed biochemically impossible and nonexistent in nature, but have now been

  9. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  10. Reductive debromination of decabromodiphenyl ether (BDE 209) by anaerobic sediment microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, J.; Zegers, B.; Skoczynska, E.; Voogt, P. de [IBED-Environmental Chemistry, Univ. of Amsterdam (Netherlands)

    2004-09-15

    The environmental fate and effects of brominated flame retardants have been receiving increasing interest. Because of their high hydrophobicity, polybrominated diphenyl ether (PBDE) flame retardants in the aquatic environment are mainly present in sediments and biota. The long-term fate of these compounds will to a large extent depend on the potential for microbial degradation in sediments. Dehalogenation in anaerobic sediments has been found for many chlorinated aromatic compounds such as PCBs and PCDDs. Although there is little information available on the microbial degradation of PBDEs, there are reports showing that polybrominated biphenyls are readily debrominated in anaerobic sediments. Complete debromination of PBDEs in marine sediments may be an important route by which these compounds are removed from the marine environment. On the other hand, incomplete debromination may lead to the accumulation of PBDE congeners that are more bioavailable and more readily taken up by marine organisms. Recent reports indicate that BDE 209 is debrominated in the gut of carp. In this study we investigated the potential for reductive debromination of BDE 209 in anaerobic sediment suspensions.

  11. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  12. Enhancement of carbon dioxide reduction and methane production by an obligate anaerobe and gas dissolution device.

    Science.gov (United States)

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2016-01-25

    The use of gas dissolution devices to improve the efficiency of H2 dissolution has enhanced CO2 reduction and CH4 production. In addition, the nutrients that initially existed in anaerobic sludge were exhausted over time, and the activities of anaerobic microorganisms declined. When nutrients were artificially injected, CO2 reduction and CH4 production rates climbed. Thus, assuming that the activity of the obligatory anaerobic microorganisms is maintained, a gas dissolution device will further enhance the efficiency of CO2 reduction and CH4 production. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterisation of microorganisms responsible for EBPR in a ...

    African Journals Online (AJOL)

    The results indicated that micro-organisms were selected by the repeated anaerobic-aerobic process and some non-phosphorus accumulating organisms were eliminated. The cultured strains obtained from acclimated sludges were purified and their DNA was amplified using F27 and R1522 to 1.5 kb; the gene sequences ...

  14. Respiration-to-DNA ratio reflects physiological state of microorganisms in root-free and rhizosphere soil

    Science.gov (United States)

    Blagodatskaya, E.; Blagodatsky, S.; Kuzyakov, Y.

    2009-04-01

    The double-stranded DNA (dsDNA) content in soil can serve as a measure of microbial biomass under near steady-state conditions and quantitatively reflect the exponential microbial growth initiated by substrate addition. The yield of respired CO2 per microbial biomass unit (expressed as DNA content) could be a valuable physiological indicator reflecting state of soil microbial community. Therefore, investigations combining both analyses of DNA content and respiration of soil microorganisms under steady-state and during periods of rapid growth are needed. We studied the relationship between CO2 evolution and microbial dsDNA content in native and glucose-amended samples of root-free and rhizosphere soil under Beta vulgaris (Cambisol, loamy sand from the field experiment of the Institute of Agroecology FAL, Braunschweig, Germany). Quantity of dsDNA was determined by direct DNA isolation from soil with mechanic and enzymatic disruption of microbial cell walls with following spectrofluorimetric detection with PicoGreen (Blagodatskaya et al., 2003). Microbial biomass and the kinetic parameters of microbial growth were estimated by dynamics of the CO2 emission from soil amended with glucose and nutrients (Blagodatsky et al., 2000). The CO2 production rate was measured hourly at 22оС using an automated infrared-gas analyzer system. The overall increase in microbial biomass, DNA content, maximal specific growth rate and therefore, in the fraction of microorganisms with r-strategy were observed in rhizosphere as compared to bulk soil. The rhizosphere effect for microbial respiration, biomass and specific growth rate was more pronounced for plots with half-rate of N fertilizer compared to full N addition. The DNA content was significantly lower in bulk compared to rhizosphere soil both before and during microbial growth initiated by glucose amendment. Addition of glucose to the soil strongly increased the amount of CO2 respired per DNA unit. Without substrate addition the

  15. Anaerobes in Industrial- and Environmental Biotechnology.

    Science.gov (United States)

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  16. Degradation of Parathion by Microorganisms from Cranberry Bogs

    International Nuclear Information System (INIS)

    Gorder, G.W.; Lichtenstein, E.P.

    1981-01-01

    Full text: Oxygen concentration and different carbon sources drastically altered parathion degradation in culture media inoculated with microorganisms from Wisconsin cranberry (Vaccinium macrocarpon Ait.) growing soils. These microorganisms also grew in basal salts media utilizing parathion as a sole carbon source. 14 CO 2 was produced only from phenyl-labelled parathion while 14 C-(ethyl)-parathion derived radiocarbon remained in the stale media of the soil-free cultures. Addition of 0.05% glucose to basal salts medium inhibited 14 C-(phenyl)-parathion degradation while the addition of 0.05% yeast extract to basal salts medium also inhibited microbiological degradation of the insecticide to 14 CO 2 , but to a lesser extent. Aminoparathion and aminoparaoxon were formed only in basal salts medium with 0.05% yeast extract. Aerobic cultures produced more 14 CO 2 from 14 C-(phenyl)-parathion and less aminoparathion than anaerobic cultures. Aminoparathion was more abundant in cultures with inocula obtained from the 18- to 23-cm layer than with culture inocula obtained from the 0- to 5-cm soil layer under both aerobic and anaerobic conditions. (author)

  17. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Aivasidis, A.

    1994-01-01

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.) [de

  18. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    Science.gov (United States)

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  20. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

    Science.gov (United States)

    Gambelli, Lavinia; Guerrero-Cruz, Simon; Mesman, Rob J; Cremers, Geert; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran; Lueke, Claudia; van Niftrik, Laura

    2018-02-01

    Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbe-mediated processes, thus decreasing methane emissions in the atmosphere. Using a complementary array of methods, including phylogenetic analysis, physiological experiments, and light and electron microscopy techniques (including electron tomography), we investigated the community composition and ultrastructure of a continuous bioreactor enrichment culture, in which anaerobic oxidation of methane (AOM) was coupled to nitrate reduction. A membrane bioreactor was seeded with AOM biomass and continuously fed with excess methane. After 150 days, the bioreactor reached a daily consumption of 10 mmol nitrate · liter -1 · day -1 The biomass consisted of aggregates that were dominated by nitrate-dependent anaerobic methane-oxidizing " Candidatus Methanoperedens"-like archaea (40%) and nitrite-dependent anaerobic methane-oxidizing " Candidatus Methylomirabilis"-like bacteria (50%). The " Ca Methanoperedens" spp. were identified by fluorescence in situ hybridization and immunogold localization of the methyl-coenzyme M reductase (Mcr) enzyme, which was located in the cytoplasm. The " Ca Methanoperedens" sp. aggregates consisted of slightly irregular coccoid cells (∼1.5-μm diameter) which produced extruding tubular structures and putative cell-to-cell contacts among each other. " Ca Methylomirabilis" sp. bacteria exhibited the polygonal cell shape typical of this genus. In AOM archaea and bacteria, cytochrome c proteins were localized in the cytoplasm and periplasm, respectively, by cytochrome staining. Our results indicate that AOM bacteria and archaea might work closely together in the process of anaerobic methane oxidation, as the bacteria depend on the archaea for nitrite. Future studies will be aimed at elucidating the function of the cell-to-cell interactions in nitrate-dependent AOM. IMPORTANCE Microorganisms performing nitrate- and nitrite-dependent anaerobic

  1. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    Directory of Open Access Journals (Sweden)

    Linda Jabari

    2016-03-01

    Full Text Available Abstract Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens, and msbl6 (candidate division were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published.

  2. Functional microorganisms for functional food quality.

    Science.gov (United States)

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  3. [Role of anaerobic blood culture in the simultaneous blood culture taking for the diagnosis of bacteremia].

    Science.gov (United States)

    Guajardo-Lara, Claudia Elena; Saldaña-Ramírez, Martha Idalia; Ayala-Gaytán, Juan Jacobo; Valdovinos-Chávez, Salvador Bruno

    2016-01-01

    Harboring a high mortality, the incidence of sepsis is increasing; thus detection, identification and susceptibility tests of the involved microorganisms become urgent. We reviewed the records from January 2013 until July 2014 of a total of 4110 blood culture bottles taken from adult patients in a private tertiary hospital. Growth of microorganisms was observed in 559 bottles (12.6%). We emphasize that 2648 blood cultures (60%) were taken in two paired aerobic and anaerobic bottles drawn at the same time (1324 pairs); from these, growth was observed in 182 inoculated bottles drawn from two different sites at the same time from 135 patients (13.7%). In 86 pairs of bottles with samples from 54 patients (40%), growth occurred only in the aerobic blood culture bottles. Also, growth of microorganisms was observed only in anaerobic bottles in 24 pairs (13.19%), corresponding to 21 patients (15.5%, panaerobic bottle. The usefulness of blood cultures for anaerobes for the identification of obligate anaerobic bacteremia which rarely occur is low (2.2% of patients with bacteremia); however, in 15.55% of the patients the risk of completely overlook bacteremia was present, and in 53% of patients with positive cultures, bacteremia was established earlier, and thus permitted earlier and accurate decision making.

  4. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    International Nuclear Information System (INIS)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-01-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  5. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  6. Pathways and bioenergetics of anaerobic carbon monoxide fermentation

    NARCIS (Netherlands)

    Diender, Martijn; Stams, Fons; Machado de Sousa, Diana

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the

  7. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  8. Método de número mais provável para avaliação de grupos fisiológicos de microrganismos em digestão anaeróbia de água residuária de mandioca / Most probable number method for microorganism physiologic group's evaluation in anaerobic digestion of cassava wastewater

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-12-01

    ênico foi encontrado 103 microrganismos/mL no MC e 1015 microrganismos/mL no MM e uma contagem máxima de 1010 em MC. No efluente do reator metanogênico, foi encontrado 109 em MM microrganismos/mL e 1010 em MC. Para o MD, os valores foram intermediários para MC e MM em todas as amostras. Para testar a técnica de avaliação da atividade microbiana, uma dose única de choque de 750 mg/L de cianeto (CN- foi adicionada ao afluente do reator acidogênico. Depois de 48 horas, foi detectada redução na produção de gás e queda equivalente (104 no número de todos os grupos de microrganismos pela entrada do cianeto. A alimentação do reator foi retornada à concentração inicial de água residuária de processamento de mandioca e, depois de quinze dias o reator voltou a apresentar estabilidade. Em decorrência, observou-se aumento de todos os grupos de microrganismos. Portanto, as contagens microbianas obtidas foram condizentes com as condições de funcionamento dos reatores anaeróbios no período avaliado, validando a metodologia proposta.AbstractAbstractAnaerobic microbiology evaluation is an expensive and very difficult method. Simple techniques are available for the assessment of microorganism in several uses, such as medical, food, environment and anaerobic systems for wastewater treatment. A methodology was developed to assess the activity of microorganisms groups in anaerobic digestion with possible application to specific substrata. The technique applies oxygen-free gases in serum bottles closed with a rubber cover and an aluminum seal with the addition of a reducing indicator, nutrient complements and reducing agents after sterilization. The metabolism of the microorganisms was observed in these closed serum bottles after an incubation period of fourteen days, and regarding turbidness variation, pH variation measured by Arrhenius’s indicator and gas captured in Duran tubes. The Most Probable Number (MPN technique was used for microorganism counting in

  9. Pesticides in Soil: Effects on Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2007-01-01

    Full Text Available Since their discovery to the present day, pesticides have been an inevitable segment of agricultural production and efforts have been made to synthesize compounds that would share a required efficacy along with selectivity, sufficient persistence on the object of protection and favourable toxicological and ecotoxicological characteristics so as to minimize their effect on the environment.When a pesticide gets into soil after application, it takes part in a number of physical, chemical and biological processes that depend not only on the compound itself, but a number of other factors as well, such as: physical, chemical and biological characteristics of soil; climatic factors, equipment used, method of application, method of storage, handling and disposal of waste, site characteristics (proximity of ground and underground waters, biodiversity and sensitivity of the environment. Microorganisms play an important role in pesticide degradation as they are able to utilize the biogenic elements from those compounds, as well as energy for their physiological processes. On the other hand, pesticides are more or less toxic substances that can have adverse effect on populations of microorganisms and prevent their development, reduce their abundance, deplete their taxonomic complexity and create communities with a lower level of diversity and reduced physiological activity.The article discusses complex interactions between pesticides and microorganisms in soil immediately after application and over the ensuing period. Data on changes in the abundance of some systematic and physiological groups of microorganisms, their microbial biomass and enzymatic activity caused under pesticide activity are discussed as indicators of these processes.

  10. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  11. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  12. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  13. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as 14 CO 2 , 14 CH 4 , HT, and CH 3 T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables

  14. The cultivation of the mushroom Agaricus bisporus (Champignon): micro-organisms and preservability.

    Science.gov (United States)

    Zicari, Giuseppe; Rivetti, Daniela; Soardo, Vincenzo; Cerrato, Elena; Panata, Marisa

    2011-01-01

    Cultivation of Agaricus bisporus mushrooms requires the use of substrates that are potentially dangerous from the microbiological point of view, such as chicken and horse manure. Microorganisms can pose risks to consumers and workers, and generate lower profits. Packaging of fresh mushrooms with impermeable films is used to extend their shelf life but creates anaerobic and humidity conditions that could favour the growth of microorganisms such as Listeria monocytogenes and Clostridium botulinum. This paper examines some alternatives for packaging fresh mushrooms and the resulting potential microbiological hazards.

  15. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    Speece, R.E.

    1990-01-01

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH 4 and CO 2 . Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  16. Azo dye reduction by mesophilic and thermophilic anaerobic consortia

    NARCIS (Netherlands)

    Santos, dos A.B.; Madrid, de M.P.; Stams, A.J.M.; Lier, van J.B.; Cervantes, F.J.

    2005-01-01

    The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 C) and thermophilic (55 C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the

  17. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    Science.gov (United States)

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    Science.gov (United States)

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  19. New micro-organism

    Energy Technology Data Exchange (ETDEWEB)

    Takakuwa, Masayoshi; Hashimoto, Gotaro

    1987-09-12

    Invention relates with a new organism for the coal liquefying desulfurization. This micro-organism conducts a good sporulation on a culture medium which contains a coal as an only carbon source. It belongs to Penicillium and named Penicillium MT-6001 registered at Fermentation Research Institute No. 8463. Coal powder is thrown into a reaction vessel which accommodated a culture solution of this bacteria, and the surface of the solution is covered with liquid paraffin; coal powder is treated of liquefaction for about 5 hours while maintaining the anaerobic condition and slowly agitating to form a transparent solution layer on the surface of the reactor together with liquid paraffin. Liquefied product shows an analysis pattern similar to naphthenic petroleum containing a lipid with polar radical. (2 figs)

  20. European surveillance study on antimicrobial susceptibility of Gram-positive anaerobic cocci

    DEFF Research Database (Denmark)

    Brazier, J; Chmelar, D; Dubreuil, L

    2008-01-01

    Gram-positive anaerobic cocci (GPAC) are a heterogeneous group of microorganisms frequently isolated from local and systemic infections. In this study, the antimicrobial susceptibilities of clinical strains isolated in 10 European countries were investigated. After identification of 299 GPAC...

  1. Scale-up of bioreactors: The concept of bioreactor number and its relation to the physiology of industrial microorganisms at different scales

    Energy Technology Data Exchange (ETDEWEB)

    De Ford, D

    1988-01-01

    The objective of this research is to provide a novel approach to the problem of scale-up of fermentations. The work subscribes the idea that two regions appear in bioreactors as the volume increases. The first is where high oxygen transfer occurs and the second is where low oxygen transfer occurs. It is assumed that organisms grown in a stirred tank fermenter travel in a cyclical manner through these two regions. A dimensionless factor is developed, the bioreactor number. Using this number the performance of any stirred tank fermenter can be described as a function of its geometry, operating conditions and physical properties of media. A mathematical model for the prediction of the physiological response of aerobic micro-organisms (specific growth rate, final cell concentration and product synthesis) as a function of the bioreactor number is also developed. It was adjusted by using the results of fermentations performed in a specially designed experimental rig allowing the simulation of fermenters with various bioreactor numbers. If the bioreactor and physiological models are linked it is possible to predict how micro-organisms respond when geometry, operating conditions or media properties are changed in a bioreactor. This approach is a tool for decision making in the design and operation of fermenters.

  2. Identifying the abundant and active microorganisms common to full scale anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Kristensen, Jannie Munk

    2017-01-01

    Anaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. To this end, we investigated the microbial community composition of thirty ...

  3. Anaerobic prosthetic joint infection.

    Science.gov (United States)

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  4. Key Issues Concerning Biolog Use for Aerobic and Anaerobic Freshwater Bacterial Community-Level Physiological Profiling

    Science.gov (United States)

    Christian, Bradley W.; Lind, Owen T.

    2006-06-01

    Bacterial heterotrophy in aquatic ecosystems is important in the overall carbon cycle. Biolog MicroPlates provide information into the metabolic potential of bacteria involved in carbon cycling. Specifically, Biolog EcoPlatesTM were developed with ecologically relevant carbon substrates to allow investigators to measure carbon substrate utilization patterns and develop community-level physiological profiles from natural bacterial assemblages. However, understanding of the functionality of these plates in freshwater research is limited. We explored several issues of EcoPlate use for freshwater bacterial assemblages including inoculum density, incubation temperature, non-bacterial color development, and substrate selectivity. Each of these has various effects on plate interpretation. We offer suggestions and techniques to resolve these interpretation issues. Lastly we propose a technique to allow EcoPlate use in anaerobic freshwater bacterial studies.

  5. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).

    Science.gov (United States)

    Finneran, K T; Lovley, D R

    2001-05-01

    The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.

  6. Anaerobic digestion for sustainable development: a natural approach.

    Science.gov (United States)

    Gljzen, H J

    2002-01-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These 'natural reactors' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic posttreatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.

  7. Methods of ammonia removal in anaerobic digestion: a review.

    Science.gov (United States)

    Krakat, Niclas; Demirel, Burak; Anjum, Reshma; Dietz, Donna

    2017-10-01

    The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.

  8. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    Science.gov (United States)

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ

    2000-01-01

    microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria(5-7). Here we provide microscopic...... cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.......A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...

  10. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    Hans Karl Carlson

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  11. Alternative method for determining anaerobic threshold in rowers

    Directory of Open Access Journals (Sweden)

    Giovani Dos Santos Cunha

    2008-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n4p367 In rowing, the standard breathing that athletes are trained to use makes it difficult, or even impossible, to detect ventilatory limits, due to the coupling of the breath with the technical movement. For this reason, some authors have proposed determining the anaerobic threshold from the respiratory exchange ratio (RER, but there is not yet consensus on what value of RER should be used. The objective of this study was to test what value of RER corresponds to the anaerobic threshold and whether this value can be used as an independent parameter for determining the anaerobic threshold of rowers. The sample comprised 23 male rowers. They were submitted to a maximal cardiorespiratory test on a rowing ergometer with concurrent ergospirometry in order to determine VO2máx and the physiological variables corresponding to their anaerobic threshold. The anaerobic threshold was determined using the Dmax (maximal distance method. The physiological variables were classified into maximum values and anaerobic threshold values. The maximal state of these rowers reached VO2 (58.2±4.4 ml.kg-1.min-1, lactate (8.2±2.1 mmol.L-1, power (384±54.3 W and RER (1.26±0.1. At the anaerobic threshold they reached VO2 (46.9±7.5 ml.kg-1.min-1, lactate (4.6±1.3 mmol.L-1, power (300± 37.8 W and RER (0.99±0.1. Conclusions - the RER can be used as an independent method for determining the anaerobic threshold of rowers, adopting a value of 0.99, however, RER should exhibit a non-linear increase above this figure.

  12. Reductive dehalogenation of polychlorinated biphenyls by anaerobic microorganisms enriched from Dutch sediments

    NARCIS (Netherlands)

    HartkampCommandeur, LCM; Gerritse, J; Govers, HAJ; Parsons, [No Value

    The dehalogenation of PCBs by anaerobic microbial cultures enriched from Dutch sediments was investigated. One mixed culture originating from estuarine sediments of the River Rhine (the Chemie Harbour), dehalogenated 2,2',3,3',4,4'- and 2,2,',3,3',6,6'-hexachlorobiphenyls (HCB) to yield penta- and

  13. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    Science.gov (United States)

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-04

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  14. Alternative method for determining anaerobic threshold in rowers

    Directory of Open Access Journals (Sweden)

    Giovani dos Santos Cunha

    2008-12-01

    Full Text Available In rowing, the standard breathing that athletes are trained to use makes it difficult, or even impossible, to detectventilatory limits, due to the coupling of the breath with the technical movement. For this reason, some authors have proposeddetermining the anaerobic threshold from the respiratory exchange ratio (RER, but there is not yet consensus on what valueof RER should be used. The objective of this study was to test what value of RER corresponds to the anaerobic thresholdand whether this value can be used as an independent parameter for determining the anaerobic threshold of rowers. Thesample comprised 23 male rowers. They were submitted to a maximal cardiorespiratory test on a rowing ergometer withconcurrent ergospirometry in order to determine VO2máx and the physiological variables corresponding to their anaerobicthreshold. The anaerobic threshold was determined using the Dmax (maximal distance method. The physiological variableswere classified into maximum values and anaerobic threshold values. The maximal state of these rowers reached VO2(58.2±4.4 ml.kg-1.min-1, lactate (8.2±2.1 mmol.L-1, power (384±54.3 W and RER (1.26±0.1. At the anaerobic thresholdthey reached VO2 (46.9±7.5 ml.kg-1.min-1, lactate (4.6±1.3 mmol.L-1, power (300± 37.8 W and RER (0.99±0.1. Conclusions- the RER can be used as an independent method for determining the anaerobic threshold of rowers, adopting a value of0.99, however, RER should exhibit a non-linear increase above this figure.

  15. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    Science.gov (United States)

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  16. A method to analyze, sort, and retain viability of obligate anaerobic microorganisms from complex microbial communities.

    Science.gov (United States)

    Thompson, Anne W; Crow, Matthew J; Wadey, Brian; Arens, Christina; Turkarslan, Serdar; Stolyar, Sergey; Elliott, Nicholas; Petersen, Timothy W; van den Engh, Ger; Stahl, David A; Baliga, Nitin S

    2015-10-01

    A high speed flow cytometric cell sorter was modified to maintain a controlled anaerobic environment. This technology enabled coupling of the precise high-throughput analytical and cell separation capabilities of flow cytometry to the assessment of cell viability of evolved lineages of obligate anaerobic organisms from cocultures. Copyright © 2015. Published by Elsevier B.V.

  17. Anaerobic digestion for sustainable development: a natural approach

    Energy Technology Data Exchange (ETDEWEB)

    Gijzen, H.J.

    2002-07-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These ''natural reactors'' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery. (author)

  18. EFFECT OF FOOD-MICROORGANISMS ON GAMMA-AMINOBUTYRIC ACID PRODUCTION BY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Jozef Hudec

    2012-02-01

    Full Text Available Lactic acid bacteria (LAB are nice targets in order to study γ-aminobutyric acid (GABA production that has been reported to be effective in order to reduce blood pressure in experimental animals and human beings. In this study, we aimed to γ-aminobutyric acid (GABA production in aerobical and anaerobical conditions, using different sources of microorganisms. The highest selectivity of GABA from precursor L-monosodium glutamate (82.22% has been reported using of microorganisms from banana, and with addition of pyridoxal-5-phosphate (P-5-P. For augmentation of selectivity the application of the further stimulating factors of GABA biosynthesis is needed.

  19. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    Science.gov (United States)

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  20. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste.

    Science.gov (United States)

    Ji, Chao; Kong, Chui-Xue; Mei, Zi-Li; Li, Jiang

    2017-11-01

    Fruit and vegetable waste is an ever-growing global question. Anaerobic digestion techniques have been developed that facilitate turning such waste into possible sources for energy and fertilizer, simultaneously helping to reduce environmental pollution. However, various problems are encountered in applying these techniques. The purpose of this study is to review local and overseas studies, which focus on the use of anaerobic digestion to dispose fruit and vegetable wastes, discuss the acidification problems and solutions in applying anaerobic digestion for fruit and vegetable wastes and investigate the reactor design (comparing single phase with two phase) and the thermal pre-treatment for processing raw wastes. Furthermore, it analyses the dominant microorganisms involved at different stages of digestion and suggests a focus for future studies.

  1. Influence of the support on the kinetics of anaerobic purification of slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Borja, R.; Duran, M.M. (Instituto de la Grasa y sus Derivados, Seville (Spain)); Martin, A. (Cordoba Univ. (Spain). Dept. de Ingenieria Quimica)

    1993-01-01

    Three materials of different composition, sepiolite, saponite and bentonite, assayed as supports for the micro-organisms effecting anaerobic fermentation, were found to behave differently towards slaughterhouse wastewater from a kinetic point of view. Assuming the overall anaerobic digestion process to conform to first-order kinetics, the apparent kinetic constant for the digester including bentonite as support was 1.28 per day, while that of the digesters using the sepiolite and saponite were 0.83 and 0.56 per day, respectively. Thus, the support used to immobilize the micro-organisms that mediate the process had a marked influence on the constant. This was found to be significant at 95% confidence level. The yield coefficient, Y[sub p], was 343, 334 and 349 ml CH[sub 4] STP per g chemical oxygen demand added for the sepiolite, saponite and bentonite, respectively. (Author)

  2. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.

  3. Biochemistry and physiology of halorespiration by Desulfitobacterium dehalogenans

    NARCIS (Netherlands)

    Pas, van de B.A.

    2000-01-01

    Halorespiration is a novel respiratory pathway, which has been discovered as a result of the search for microorganisms that can be used in bioremediation of chlorinated compounds. Halorespiring bacteria are able to use these compounds as terminal electron acceptor for growth in anaerobic

  4. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  5. Design and Fabrication of an Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    M. S. Abubakar

    2017-02-01

    Full Text Available Anaerobic digester is a physical structure that provides a conducive environment for the multiplication of micro-organisms that degrades organic matter to generate biogas energy. Energy is required in agriculture for crop production, processing and storage, poultry production and electricity for farmstead and farm settlements. It is energy that propels agricultural mechanization, which minimizes the use of human and animal muscles and its inherent drudgery in agriculture. The energy demand required to meet up with the agricultural growth in Nigeria is high and growing every year. In this study the design and fabrication of an anaerobic digester was reported which is an attempt to boost energy requirement for small and medium dryland farmers in Nigeria. The design of the digester includes the following concept; the basic principles of anaerobic digestion processes, socio-economic status of the dryland farmers, amount of biogas to be produced. Finally, the digester was fabricated using locally available raw materials within the dryland area of Nigeria. At the end, preliminary flammability test was conducted and the biogas produced was found to be flammable.

  6. Performance of a sisal fibre fixed-bed anaerobic digester for biogas ...

    African Journals Online (AJOL)

    A single stage anaerobic digester employing a sisal fibre waste fixed bed was studied for biogas production from sisal pulp waste. The fibre was colonized by microorganisms involved in biogas production. The sisal pulp waste to be digested was fed from the top and was sprinkled intermittently with recirculating leachate ...

  7. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhongtang [The Ohio State Univ., Columbus, OH (United States); Hitzhusen, Fredrick [The Ohio State Univ., Columbus, OH (United States)

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  8. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  9. [Modification of the Hungate vessel for cultivation of facultative and obligate anaerobic bacteria].

    Science.gov (United States)

    Chernyshenko, D V

    2000-01-01

    Modified Hungate vessel made of native penicillinum bottles and chemical vessels has been created and experimentally studied. The vessels can be used for cultivation of facultative and obligate anaerobe microorganisms on liquid and solid nutrient media. Locking devices of the vessel are described.

  10. Evolution of microorganisms in thermophilic-dry anaerobic digestion.

    Science.gov (United States)

    Montero, B; Garcia-Morales, J L; Sales, D; Solera, R

    2008-05-01

    Microbial population dynamics were studied during the start-up and stabilization periods in thermophilic-dry anaerobic digestion at lab-scale. The experimental protocol was defined to quantify Eubacteria and Archaea using Fluorescent in situ hybridization (FISH) in a continuously stirred tank reactor (CSTR), without recycling solids. The reactor was subjected to a programme of steady-state operation over a range of the retention times from 40 to 25 days, with an organic loading rate between 4.42 and 7.50 kg volatile solid/m3/day. Changes in microbial concentrations were linked to traditional performance parameters such as biogas production and VS removal. The relations of Eubacteria:Archaea and H2-utilising methanogens:acetate-utilising methanogens were 88:12 and 11:1, respectively, during start-up stage. Hydrogenotrophic methanogens, although important in the initial phase of the reactor start-up, were displaced by acetoclastic methanogens at steady-state, thus their relation were 7:32, respectively. The methane yield coefficient, the methane content in the biogas and VS removal were stabilized around 0.30 LCH4/gCOD, 50% and 80%, respectively. Methanogenic population correlated well with performance measurements.

  11. Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens.

    Science.gov (United States)

    Hattori, S; Luo, H; Shoun, H; Kamagata, Y

    2001-01-01

    To determine whether formate is involved in interspecies electron transfer between substrate-oxidizing bacteria and hydrogenotrophic microorganisms under anaerobic conditions, a syntrophic acetate-oxidizing bacterium Thermacetogenium phaeum strain PB was cocultured either with a formate /H2-utilizing methanogen strain TM (designated as PB/TM coculture), or an H2-utilizing methanogen strain deltaH (designated as PB/deltaH coculture). Acetate oxidation and subsequent methanogenesis in PB/TM coculture were found to be significantly faster than in PB/deltaH coculture. Formate dehydrogenase and hydrogenase were both detected in strains PB and TM. H2 partial pressures in the PB/TM coculture were kept lower (20 to 40 Pa) than those of the PB/deltaH coculture (40 to 60 Pa) during the exponential growth phase. Formate was also detected in both PB/TM and PB/deltaH cocultures, and the concentration of formate was maintained at a lower level in the PB/TM coculture (5 to 9 microM) than in the PB/deltaH coculture. Thermodynamic calculations revealed that the concentrations of both H2 and formate severely affect the syntrophic oxidation of acetate. These results strongly indicate that not only H2 but also formate may be involved in interspecies electron transfer.

  12. Effects of microbial inhibitors on anaerobic degradation of DDT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.S.; Chiu, T.C.; Yen, J.H. [National Taiwan Univ., Taipei (Taiwan)

    2004-09-15

    Chlorinated insecticide DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] was extensively used for controlling pests in the agricultural field and human-being living environments in the past several decades. Due to the chemical stability, DDT was extremely persistent and recalcitrant in soils and sediments and it was banned by nations. Microorganisms usually play important roles in reducing organochlorine compounds in the environments. Under low-oxygen conditions, microbial dechlorination is thought as the onset of highly chlorinated compounds. Methanogenic and sulfate-reducing bacteria participate in microbial dechlorination under anaerobic condition has been reported. In this study, a mixed anaerobic culture enabling to dechlorinate DDT was obtained from river sediment in Taiwan. In order to understand the effect of these microorganisms on DDT dechlorination, microbial inhibitors BESA (2-bromoethanesulfonate) and molybdate, for inhibiting methanogenic and sulfate-reducing bacteria, respectively, were chosen to investigate the interaction between specific microbial communities and their degradation activities. Besides, a molecular technique, denaturing gradient gel electrophoresis (DGGE), based on analyzing the 16S rDNA of bacteria, was used for monitoring the bacterial community structure in this study.

  13. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    Science.gov (United States)

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  14. Modeling flow inside an anaerobic digester by CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Alexandra Martinez; Jimenez, P. Amparo Lopez [Departmento do Ingenieria Hidralica y Medio Ambiente, Universitat Politecnica de Valencia, Camino de Vera S/N 46022 (Spain); Martinez, Tatiana Montoya; Monanana, Vincente Fajardo [Grupo Aquas de Valencia. Avenida Marques del Turia 19 46005 Valencia (Spain)

    2011-07-01

    Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its important role in performance, hydraulics of flow inside digesters has not been quantified or adequately characterized. In this contribution a three-dimensional steady-state computational fluid dynamics (CFD) simulation has been performed for a particular anaerobic digester, in order to visualize the flow patterns. Flow and velocities profiles have been represented inside the digester to identify possible dead zones or stratifications. The geometry of a real digester installed in Valencia Waste Water Treatment Plant (located in Quart-Benager, Valencia, Spain) has been used in order to consider the proposed methodology.

  15. Inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi, E-mail: sdzlab@126.com

    2015-09-15

    Highlights: • High NH{sub 4}{sup +}–N concentrations inhibit anaerobic treatment of leachate. • Inhibitory effect of NH{sub 4}{sup +}–N concentrations on anaerobic granular sludge is reversible. • High NH{sub 4}{sup +}–N concentrations inhibit bioactivities of microorganisms instead of survival. - Abstract: Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH{sub 4}{sup +}–N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH{sub 4}{sup +}–N concentration increasing to 1000 mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH{sub 4}{sup +}–N concentration rising to 1000 mg/L, without any rebounding during 30 days of operation. Decreasing NH{sub 4}{sup +}–N concentration to 500 mg/L in influent, the COD removal efficiency recovered to about 85% after 26 days. 1000 mg/L of NH{sub 4}{sup +}–N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH{sub 4}{sup +}–N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.

  16. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  17. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  18. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  20. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    OpenAIRE

    Martijn eDiender; Alfons J.M. Stams; Alfons J.M. Stams; Diana Z. Sousa

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, ...

  1. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Tülin Atan

    2013-01-01

    Full Text Available For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST under 3 conditions on separate days: while listening to “slow rhythm music”, “fast rhythm music” or “no music”. 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p>0.05. On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise.

  2. Adaptation and Antibiotic Tolerance of Anaerobic Burkholderia pseudomallei ▿ †

    Science.gov (United States)

    Hamad, Mohamad A.; Austin, Chad R.; Stewart, Amanda L.; Higgins, Mike; Vázquez-Torres, Andrés; Voskuil, Martin I.

    2011-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the etiological agent of melioidosis and is remarkably resistant to most classes of antibacterials. Even after months of treatment with antibacterials that are relatively effective in vitro, there is a high rate of treatment failure, indicating that this pathogen alters its patterns of antibacterial susceptibility in response to cues encountered in the host. The pathology of melioidosis indicates that B. pseudomallei encounters host microenvironments that limit aerobic respiration, including the lack of oxygen found in abscesses and in the presence of nitric oxide produced by macrophages. We investigated whether B. pseudomallei could survive in a nonreplicating, oxygen-deprived state and determined if this physiological state was tolerant of conventional antibacterials. B. pseudomallei survived initial anaerobiosis, especially under moderately acidic conditions similar to those found in abscesses. Microarray expression profiling indicated a major shift in the physiological state of hypoxic B. pseudomallei, including induction of a variety of typical anaerobic-environment-responsive genes and genes that appear specific to anaerobic B. pseudomallei. Interestingly, anaerobic B. pseudomallei was unaffected by antibacterials typically used in therapy. However, it was exquisitely sensitive to drugs used against anaerobic pathogens. After several weeks of anaerobic culture, a significant loss of viability was observed. However, a stable subpopulation that maintained complete viability for at least 1 year was established. Thus, during the course of human infection, if a minor subpopulation of bacteria inhabited an oxygen-restricted environment, it might be indifferent to traditional therapy but susceptible to antibiotics frequently used to treat anaerobic infections. PMID:21537012

  3. [Isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity].

    Science.gov (United States)

    Lu, Wenxin; Wu, Fanzi; Zhou, Xinxuan; Wu, Lan; Li, Mingyun; Ren, Biao; Guo, Qiang; Huang, Ruijie; Li, Jiyao; Xiao, Liying; Li, Yan

    2015-12-01

    To establish a systematic method for isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity. Samples of the saliva, dental plaque and periapical granulation tissue were collected from 20 subjects with healthy oral condition and from 8 patients with different oral diseases. The bacteria in the samples were identified by morphological identification, VITEK automatic microorganism identification and 16s rRNA gene sequencing. VITEK automatic microorganism identification and 16s rRNA gene sequencing showed an agreement rate of 22.39% in identifying the bacteria in the samples. We identified altogether 63 bacterial genus (175 species), among which Streptococcus, Actinomyces and Staphylococcus were the most common bacterial genus, and Streptococcus anginosus, Actinomyces oris, Streptococcus mutans and Streptococcus mitis were the most common species. Streptococcus anginosus was commonly found in patients with chronic periapical periodontitis. Streptococcus intermedius and Staphylococcus aureus were common in patients with radiation caries, and in patients with rampant caries, Streptococcus mutans was found at considerably higher rate than other species. Aerobic and facultative anaerobic bacteria are commonly found in the oral cavity, and most of them are gram-positive. 16s rRNA gene sequencing is more accurate than VITEK automatic microorganism identification in identifying the bacteria.

  4. Early Microbial Evolution: The Age of Anaerobes.

    Science.gov (United States)

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    Science.gov (United States)

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  6. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  7. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    Science.gov (United States)

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  8. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  9. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Eduardo J. Gudiña

    2016-02-01

    Full Text Available Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens, and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  10. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    Science.gov (United States)

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Microbial Anaerobic Digestion (Bio-Digesters as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Golden Makaka

    2013-09-01

    Full Text Available With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  12. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    Science.gov (United States)

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2013-01-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  13. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.

    Science.gov (United States)

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2013-09-17

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  14. PHYSIOLOGICAL RESPONSES DURING MATCHES AND PROFILE OF ELITE PENCAK SILAT EXPONENTS

    Directory of Open Access Journals (Sweden)

    Benedict Tan

    2002-12-01

    Full Text Available This is a descriptive, cross-sectional study describing the physiological responses during competitive matches and profile of elite exponents of an emerging martial art sport, pencak silat. Thirty exponents (21 males and 9 females were involved in the study. Match responses (i.e. heart rate (HR throughout match and capillary blood lactate concentration, [La], at pre-match and at the end of every round were obtained during actual competitive duels. Elite silat exponents' physiological attributes were assessed via anthropometry, vertical jump, isometric grip strength, maximal oxygen uptake, and the Wingate 30 s anaerobic test of the upper and lower body, in the laboratory. The match response data showed that silat competitors' mean HR was > 84% of estimated HR maximum and levels of [La] ranged from 6.7 - 18.7 mMol-1 during matches. This suggests that competitive silat matches are characterised by high aerobic and anaerobic responses. In comparison to elite taekwondo and judo athletes' physiological characteristics, elite silat exponents have lower aerobic fitness and grip strength, but greater explosive leg power (vertical jump. Generally, they also possessed a similar anaerobic capability in the lower but markedly inferior anaerobic capability in the upper body

  15. Aged refuse enhances anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  17. Are anaerobes a major, underappreciated cause of necrotizing infections?

    Science.gov (United States)

    Zhao-Fleming, Hannah; Dissanaike, Sharmila; Rumbaugh, Kendra

    2017-06-01

    Necrotizing soft tissue infections (NSTIs) are the most severe and rapidly progressing class of skin and soft tissue infections (SSTIs). They are a surgical emergency and are associated with high mortality and morbidity. While NSTIs remain relatively rare, their incidence is steadily rising. Earlier diagnosis and more focused antibiotic treatments can potentially improve patient outcome, but both of these solutions require a more accurate understanding of the microbial component of these infections. While molecular detection methods, namely 16S sequencing, have not been traditionally used to identify the causative microorganisms in NSTIs, they are becoming more commonplace for other types of SSTIs, especially for chronic wound infections. In chronic wound infections, 16S sequencing has revealed a higher than previously detected prevalence of obligate anaerobes. Therefore, it is possible that 16S sequencing may also detect a higher than expected proportion of obligate anaerobes in NSTIs. In this review, we discuss the current state of knowledge concerning the diagnosis and treatment of NSTIs and present reasons why the role of anaerobes may be significantly underestimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  19. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    International Nuclear Information System (INIS)

    Sumantri, Indro; Purwanto,; Budiyono

    2015-01-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration

  20. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  1. Anaerobic transformation of chlorinated dioxins by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Adrian, L. [Fachgebiet Technische Biochemie, Technische Univ. Berlin (Germany); Lechner, U. [Inst. fuer Mikrobiologie, Martin-Luther-Univ. Halle-Wittenberg (Germany)

    2004-09-15

    Mixed bacterial cultures catalyze diverse chlorodioxin-dehalogenation pathways. Some of these pathways lead to relatively harmless end products, which can undergo further biological degradation e.g. by aerobic bacteria. However, the possible formation of highly toxic products is a critical problem for a bioremediation approach but also for untreated sites where such dechlorination reactions can occur. Bioaugmentation with suitable pure or mixed cultures is promising. This has recently been demonstrated in a tetrachloroethene-contaminated groundwater using a Dehalococcoidescontaining inoculum that almost completely converted tetrachloroethene to ethene without accumulation of the toxic intermediate vinyl chloride. With Dehalococcoides sp. strain CBDB1 the first bacterium is now known, that grows by dehalorespiration with dioxins. Learning from the physiology and biochemistry of this bacterium will help us to understand the role of these bacteria in the environment and to predict the fate of dioxin pollution.

  2. [Ants as carriers of microorganisms in hospital environments].

    Science.gov (United States)

    Pereira, Rogério Dos Santos; Ueno, Mariko

    2008-01-01

    Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35 degrees C for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci 23.1%, filamentous fungi 6.7% and yeast 0.5%. Thus, it can be inferred that ants may be one of the agents responsible for disseminating microorganisms in hospital environments.

  3. Optimisation of 16S rDNA amplicon sequencing protocols for microbial community profiling of anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Larsen, Poul

    A reliable and reproducible method for identification and quantification of the microorganisms involved in biogas production is important for the study and understanding of the microbial communities responsible for the function of anaerobic digester systems. DNA based identification using 16S rRN...

  4. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    Science.gov (United States)

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  5. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    Science.gov (United States)

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The

  6. Anaerobic biodegradation of hexazinone in four sediments

    International Nuclear Information System (INIS)

    Wang Huili; Xu Shuxia; Tan Chengxia; Wang Xuedong

    2009-01-01

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  7. Moroccan rock phosphate solubilization during a thermo-anaerobic ...

    African Journals Online (AJOL)

    SWEET

    2013-12-04

    Dec 4, 2013 ... photosynthesis, respiration chain reactions and physiologi- cal chemical ... functional biofertilizer at the high temperatures that occur for decomposing complex organic wastes (Yang, 2003). Since cellulose is mostly present in plant cell walls, .... culture on TSA medium in aerobic and anaerobic conditions.

  8. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)

    Energy Technology Data Exchange (ETDEWEB)

    Angelidaki, I.; Toraeng, L.; Waul, C.M.; Schmidt, J.E.

    2003-07-01

    Anaerobic degradation of sludge amended with linear alkylbenzene sulfonates (LAS) was tested in one stage continuous stirred tank reactor (CSTR) and a two stages reactor system consisting by a CSTR as first step and upflow anaerobic sludge bed (UASB) reactor in the second step. Anaerobic removal of LAS was only observed at the second step but not at the first step. Removal of LAS in the UASB reactors was approx. 80% where half was due to absorption and the other half was apparently due to biological removal as shown from the LAS mass balance. At the end of the experiment the reactors were spiked with {sup 14}C-LAS which resulted in 5.6% {sup 14}CO{sub 2} in the produced gas. Total mass balance of the radioactivity was however not achieved. In batch experiments it was found that LAS at concentrations higher than 50 mg/l is inhibitory for the most microbial groups of the anaerobic process. Therefore, low initial LAS concentration is a prerequisite for successful LAS degradation. The results from the present study suggest that anaerobic degradation of LAS is possible in UASB reactors when the concentration of LAS is low enough to avoid inhibition of microorganisms active in the anaerobic process. (author)

  9. Integrated Analysis of Protein Complexes and Regulatory Networks Involved in Anaerobic Energy Metabolism of Shewanella Oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Tiedje, James M.

    2005-06-01

    Anaerobic Nitrate Reduction. Nitrate is an extensive co-contaminant at some DOE sites making metal and radionuclide reduction problematic. Hence, we sought to better understand the nitrate reduction pathway and its control in S. oneidensis MR-1. It is not known whether the nitrate reduction is by denitrification or dissimilatory nitrate reduction into ammonium (DNRA). By both physiological and genetic evidence, we proved that DNRA is the nitrate reduction pathway in this organism. Using the complete genome sequence of S. oneidensis MR-1, we identified a gene encoding a periplasmic nitrate reductase based on its 72% sequence identity with the napA gene in E. coli. Anaerobic growth of MR-1 on nitrate was abolished in a site directed napA mutant, indicating that NapA is the only nitrate reductase present. The anaerobic expression of napA and nrfA, a homolog of the cytochrome b552 nitrite reductase in E. coli, increased with increasing nitrate concentration until a plateau was reached at 3 mM KNO3. This indicates that these genes are not repressed by increasing concentrations of nitrate. The reduction of nitrate can generate intermediates that can be toxic to the microorganism. To determine the genetic response of MR-1 to high concentrations of nitrate, DNA microarrays were used to obtain a complete gene expression profile of MR-1 at low (1 mM) versus high (40 mM) nitrate concentrations. Genes encoding transporters and efflux pumps were up-regulated, perhaps as a mechanism to export toxic compounds. In addition, the gene expression profile of MR-1, grown anaerobically with nitrate as the only electron acceptor, suggested that this dissimilatory pathway contributes to N assimilation. Hence the nitrate reduction pathway could serve a dual purpose. The role of EtrA, a homolog of Fnr (global anaerobic regulator in E. coli) was examined using an etrA deletion mutant we constructed, S. oneidensis EtrA7-1.

  10. Endocarditis caused by anaerobic bacteria.

    Science.gov (United States)

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    Science.gov (United States)

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Mr. Chandrashekhar

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  13. Special properties of polycentric anaerobic fungus Anaeromyces mucronatus

    Czech Academy of Sciences Publication Activity Database

    Fliegerová, Kateřina; Pažoutová, Sylvie; Mrázek, Jakub; Kopečný, Jan

    2002-01-01

    Roč. 71, - (2002), s. 441-444 ISSN 0001-7213 R&D Projects: GA AV ČR KSK5020115; GA ČR GA523/96/0103; GA AV ČR KSK5052113 Keywords : rumen * fungi * anaerobic Subject RIV: ED - Physiology Impact factor: 0.370, year: 2002

  14. Aerobic and anaerobic bacteria in tonsils of children with recurrent tonsillitis.

    Science.gov (United States)

    Brook, I; Yocum, P; Friedman, E M

    1981-01-01

    Tonsils were obtained from 50 children suffering from recurrent tonsillitis. Patients' ages ranged from 2.5 to 17 years (mean 6 years); 29 were males and 21 females. The tonsils were sectioned in half after heat searing of the surface and the core material was cultured for aerobic and anaerobic microorganisms. Mixed aerobic and anaerobic flora was obtained in all patients, yielding an average of 7.8 isolates (4.1 anaerobes and 3.7 aerobes) per specimen. There were 207 anaerobes isolated. The predominant isolates were 101 Bacteroides sp (including 10 B fragilis group, and 47 B melaninogenicus group), 29 Fusobacterium sp, 34 Gram-positive anaerobic cocci (25 Peptococcus sp and 9 Peptostreptococcus sp) and 16 Veillonella sp. There were 185 aerobic isolates. The predominant isolates were 41 alpha-hemolytic streptococci, 24 Staphylococcus aureus, 19 beta-hemolytic streptococci (11 group A, 4 group B, and 2 each group C and F), 14 Haemophilus sp (including 12 H influenzae type B) and 5 H parainfluenzae. Beta-lactamase production was noted in 56 isolates recovered from 37 tonsils. These were all isolates of S aureus (24) and B fragilis (10), 15 of 47 B melaninogenicus (32%), 5 of the 12 B oralis (42%), and 2 of 12 H influenzae type B (17%). Our findings indicate the polymicrobial aerobic and anaerobic nature of deep tonsillar flora in children with recurrent tonsillitis, and demonstrate the presence of many beta-lactamase-producing organisms in 74% of the patients.

  15. Obtaining representative community profiles of anaerobic digesters through optimisation of 16S rRNA amplicon sequencing protocols

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Karst, Søren Michael

    A reliable and reproducible method for identification and quantification of the microorganisms involved in biogas production is important for the study and understanding of the microbial communities responsible for the function of anaerobic digester systems. DNA based identification using 16S r...

  16. THE EFFECT OF CEFTRIAXONE ON THE ANAEROBIC BACTERIAL-FLORA AND THE BACTERIAL ENZYMATIC-ACTIVITY IN THE INTESTINAL-TRACT

    NARCIS (Netherlands)

    WELLING, GW; MEIJERSEVERS, GJ; HELMUS, G; VANSANTEN, E; TONK, RHJ; DEVRIESHOSPERS, HG; VANDERWAAIJ, D

    1991-01-01

    The normal flora of the intestinal tract, mainly consisting of anaerobic bacteria, protects the host against colonization by pathogenic microorganisms. Antimicrobial treatment with ceftriaxone may influence the colonic microflora and as a consequence, the protective effect. Ten healthy volunteers

  17. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  18. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    International Nuclear Information System (INIS)

    Pereira, N.S.; Zaiat, M.

    2009-01-01

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m 3 day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 ± 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms

  19. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    Science.gov (United States)

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  20. Cefoperazone and cefoperazone-sulbactam susceptibility tests with anaerobic bacteria by the thioglycolate disk elution method.

    OpenAIRE

    Barry, A L; Packer, R R; Jones, R N

    1985-01-01

    Tests were performed with 104 anaerobic microorganisms to evaluate the thioglycolate disk elution technique for the detection of resistance to cefoperazone and cefoperazone-sulbactam. An unacceptably high false-resistance rate and a poor reproducibility record make the disk elution procedure unsatisfactory for routine testing of this drug or combination of drugs.

  1. How well do 46 full-scale Danish anaerobic digesters at wastewater treatment plants perform?

    DEFF Research Database (Denmark)

    Andersen, Martin Hjorth; Kirkegaard, Rasmus Hansen; Nielsen, Per Halkjær

    (2016): Identifying the abundant and active microorganisms common to full-scale anaerobic digesters. bioRxiv.doi.org/10.1101/104620. 2. McIlroy, S.J., R.H. Kirkegaard, B. McIlroy, M. Nierychlo, J.M. Kristensen, S.M. Karst, M. Albertsen and P.H. Nielsen (2017): MiDAS 2.0: An ecosystem-specific taxonomy...

  2. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater.

    Science.gov (United States)

    Huang, Xiao; Dong, Wenyi; Wang, Hongjie; Jiang, Shilong

    2017-10-01

    This study aimed to present an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. The average COD, NH 4 + -N, TN, and TP removal efficiency were 91.81%, 96.26%, 83.73% and 94.49%, respectively. Temperature plunge and C/N decrease have a certain impact on the modified process. Characteristics of microbial community, function microorganism, and correlation of microbial community with environmental variables in five compartments were carried out by Illumina Miseq high-throughput sequencing. The differences of microbial community were observed and Blastocatella, Flavobacterium and Pseudomonas were the dominant genus. Nitrosomonas and Nitrospira occupied a dominant position in AOB and NOB, respectively. Rhodospirillaceae and Rhodocyclaceae owned a considerable proportion in phosphorus removal bacteria. DO and COD played significant roles on affecting the microbial components. The A-MAO process in this study demonstrated a high potential for nutrient removal from municipal wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    Science.gov (United States)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  4. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance.

    Science.gov (United States)

    Rojas-Sossa, Juan Pablo; Murillo-Roos, Mariana; Uribe, Lidieth; Uribe-Lorio, Lorena; Marsh, Terence; Larsen, Niels; Chen, Rui; Miranda, Alberto; Solís, Kattia; Rodriguez, Werner; Kirk, Dana; Liao, Wei

    2017-12-01

    The objective of this study was to delineate the effects of different coffee processing residues on the anaerobic microbes and corresponding digestion performance. The results elucidated that mucilage-rich feed enhanced the accumulation of methanogens, which consequently led to better digestion performance of biogas production. Fifty percent more methane and up to 3 times more net energy (heat and electricity) output were achieved by the digestion of the mucilage-rich feed (M3). The microbial community and statistical analyses further elucidated that different residues in the feed had significant impact on microbial distribution and correspondingly influenced the digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Degradation of azo dyes by environmental microorganisms and helminths

    Energy Technology Data Exchange (ETDEWEB)

    Kingthom Chung; Stevens, S.E. Jr. (Memphis State Univ., TN (United States). Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  6. Genomic and Transcriptomic Evidence for Carbohydrate Consumption Among Microorganisms in a Cold Seep Brine Pool

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    2016-11-01

    Full Text Available The detailed lifestyle of microorganisms in deep-sea brine environments remains largely unexplored. Using a carefully calibrated genome binning approach, we reconstructed partial to nearly-complete genomes of 51 microorganisms in biofilms from the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota and Thaumarchaeota. By comparison with close relatives of these microorganisms, we identified a number of unique genes associated with organic carbon metabolism and energy generation. These genes included various glycoside hydrolases, nitrate and sulfate reductases, putative bacterial microcompartment biosynthetic clusters (BMC, and F420H2 dehydrogenases. Phylogenetic analysis suggested that the acquisition of these genes probably occurred through horizontal gene transfer (HGT. Metatranscriptomics illustrated that glycoside hydrolases are among the most highly expressed genes. Our results suggest that the microbial inhabitants are well adapted to this brine environment, and anaerobic carbohydrate consumption mediated by glycoside hydrolases and electron transport systems (ETSs is a dominant process performed by microorganisms from various phyla within this ecosystem.

  7. Genomic and Transcriptomic Evidence for Carbohydrate Consumption among Microorganisms in a Cold Seep Brine Pool

    KAUST Repository

    Zhang, Weipeng

    2016-11-15

    The detailed lifestyle of microorganisms in deep-sea brine environments remains largely unexplored. Using a carefully calibrated genome binning approach, we reconstructed partial to nearly-complete genomes of 51 microorganisms in biofilms from the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs) belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota, and Thaumarchaeota. By comparison with close relatives of these microorganisms, we identified a number of unique genes associated with organic carbon metabolism and energy generation. These genes included various glycoside hydrolases, nitrate and sulfate reductases, putative bacterial microcompartment biosynthetic clusters (BMC), and F420H2 dehydrogenases. Phylogenetic analysis suggested that the acquisition of these genes probably occurred through horizontal gene transfer (HGT). Metatranscriptomics illustrated that glycoside hydrolases are among the most highly expressed genes. Our results suggest that the microbial inhabitants are well adapted to this brine environment, and anaerobic carbohydrate consumption mediated by glycoside hydrolases and electron transport systems (ETSs) is a dominant process performed by microorganisms from various phyla within this ecosystem.

  8. Activation of inoculum microorganism from dairy cattle feces

    Science.gov (United States)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  9. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    Directory of Open Access Journals (Sweden)

    Alejandra eAlvarado

    2014-11-01

    Full Text Available Anaerobic digestion (AD is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of anaerobic digestion technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for anaerobic digestion, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

  10. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-11-07

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.

  11. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems

    International Nuclear Information System (INIS)

    Schmidt, Thomas; Pröter, Jürgen; Scholwin, Frank; Nelles, Michael

    2013-01-01

    In this study the anaerobic digestion of grain stillage in three different reactor systems (continuous stirred tank reactor, anaerobic sequencing batch reactor, fixed bed reactor) with and without immobilization of microorganisms was investigated to evaluate the performance during increase of the organic loading rate (OLR) from 1 to 10 g of volatile solids (VS) per liter reactor volume and day and decrease of the hydraulic retention time (HRT) from 40 to 6 days. No significant differences have been observed between the performances of the three examined reactor systems. The changes in OLR and HRT caused a reduction of the specific biogas production (SBP) of about 25% from about 650 to 550 L kg −1 of VS but would also diminish the necessary digester volume and investment costs of about 75% compared to the state of the art. -- Highlights: ► It was shown that without immobilization of microorganisms low HRT's are possible. ► No significant differences have been observed between different digester designs. ► Trace element supplementation is obligatory with grain stillage as substrate

  12. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  13. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    Ben Dhia Thabet, Olfa; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-01-01

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO 4 2- ) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO 4 2- ) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO 4 2- ) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  14. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.

    Science.gov (United States)

    Cui, Jinli; Du, Jingjing; Tian, Haixia; Chan, Tingshan; Jing, Chuanyong

    2018-04-01

    Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO 2 and subsequent spent TiO 2 anaerobic landfill. X-ray absorption near edge structure spectroscopy analysis showed As(III) oxidation (46% in 10 days) in the presence of nitrate in the simulated anaerobic landfills. Meanwhile, iron (Fe) species on the spent TiO 2 were dominated by amorphous ferric arsenate, ferrihydrite and goethite. The Fe phase showed no change during the anaerobic landfill incubation. Batch incubation experiments implied that the indigenous bacteria completely oxidized As(III) to arsenate (As(V)) in 10 days using nitrate as the terminal electron acceptor under anaerobic conditions. The bacterial community analysis indicated that various kinds of microbial species exist in groundwater matrix. Phylogenetic tree analysis revealed that Proteobacteria was the dominant phylum, with Hydrogenophaga (34%), Limnohabitans (16%), and Simplicispira (7%) as the major bacterial genera. The nitrate respirers especially from the Hydrogenophaga genus anaerobically oxidized As(III) using nitrate as an electron acceptor instead of oxygen. Our study implied that microbes can facilitate the groundwater As oxidation using nitrate on the adsorptive media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates : Transcriptome analysis of anaerobic retentostat cultures

    NARCIS (Netherlands)

    Boender, L.G.M.; Van Maris, A.J.A.; De Hulster, E.A.F.; Almering, M.J.H.; Van der Klei, I.J.; Veenhuis, M.; De Winde, J.H.; Pronk, J.T.; Daran-Lapujade, P.A.S.

    2011-01-01

    Extremely low specific growth rates (below 0.01 h?1) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at

  16. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    Science.gov (United States)

    Čater, Maša; Fanedl, Lijana; Malovrh, Špela; Marinšek Logar, Romana

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  18. Relating Anaerobic Digestion Microbial Community and Process Function.

    Science.gov (United States)

    Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel

    2015-01-01

    Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.

  19. Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms.

    Science.gov (United States)

    Fujii, Katsuhiko; Ikeda, Kana; Yoshida, Seo

    2012-09-01

    The ability of earthworms to decompose lignocellulose involves the assistance of microorganisms in their digestive system. While many studies have revealed a diverse microbiota in the earthworm gut, including aerobic and anaerobic microorganisms, it remains unclear which of these species contribute to lignocellulose digestion. In this study, aerobic microorganisms with cellulolytic activity isolated from the gut of two endogeic earthworms, Amynthas heteropoda (Megascolecidae) and Eisenia fetida (Lumbricidae) were isolated by solid culture of gut homogenates using filter paper as a carbon source. A total of 48 strains, including four bacterial and four fungal genera, were isolated from two earthworm species. Characterization of these strains using enzyme assays showed that the most representative ones had exocellulase and xylanase activities, while some had weak laccase activity. These findings suggest that earthworms digest lignocellulose by exploiting microbial exocellulase and xylanase besides their own endocellulase. Phylogenetic analysis showed that among the cellulolytic isolates in both earthworm species Burkholderia and Chaetomium were the dominant bacterial and fungal members.

  20. Role of rhizosphere microorganisms in phytoremediation of biphenyl in a contaminated groundwater plume

    International Nuclear Information System (INIS)

    Sun, B.; Ramsay, J.

    2007-01-01

    This presentation discussed a pump and treat technology used in combination with a phytoremediation technology to remediate a biphenyl contaminated groundwater plume. Biphenyl is used in industrial applications as fungicide and heat transfer agent. It is highly toxic, has poor water solubility and sorbs strongly to soils. Costs for the project were estimated at $860,000 over a period of 20 years, while it was estimated that the addition of phytoremediation would cost only $125,000 over a period of 20 years. The phytoremediation containment area was added to the site which was comprised of a pump and treat system and landfill lagoons. In situ biodegradation of biphenyl was evaluated using microorganisms in poplar and willow rhizospheres. Basal salts were used as a culture medium. Methods to enhance biphenyl degradation were also investigated. Aerobic growth on biphenyl at temperatures of 8 degrees C were measured, and microbial populations were identified. The consortium with the highest biphenyl degradation was then analyzed. Major members were identified as Burkholderia xenovorans LB400 and a strain of Burkholderia xenovorans. Nitrate reduction, sulphate reduction, and methanogens were measured. Enrichment of anaerobic biphenyl degraders. Anaerobic biphenyl degradation was measured after 90 days. Details of anaerobic mineralization experiments were also provided. It was concluded that anaerobic biphenyl degradation was enhanced by TEA and fertilizer addition, as well as by poplar root exudate. tabs., figs

  1. Evaluation of microorganisms with sulfidogenic metabolic potential under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Isabel Kimiko Sakamoto

    2012-10-01

    Full Text Available The aim of this work was to identify groups of microorganisms that are capable of degrading organic matter utilizing sulfate as an electron acceptor. The assay applied for this purpose consisted of running batch reactors and monitoring lactate consumption, sulfate reduction and sulfide production. A portion of the lactate added to the batch reactors was consumed, and the remainder was converted into acetic, propionic and butyric acid after 111 hours of operation These results indicate the presence of sulfate-reducing bacteria (SRB catalyzing both complete and incomplete oxidation of organic substrates. The sulfate removal efficiency was 49.5% after 1335 hours of operation under an initial sulfate concentration of 1123 mg/L. The SRB concentrations determined by the most probable number (MPN method were 9.0x10(7 cells/mL at the beginning of the assay and 8.0x10(5 cells/mL after 738 hours of operation.

  2. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    Science.gov (United States)

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  3. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-01-01

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria. PMID:29112122

  4. Bioremediation of trinitrotolulene by a ruminal microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin; Williamson, K.J.; Craig, A.M. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    2,4,6-trinitrotoluene (TNT) has been widely used for the production of explosives because of its low boiling point, high stability, low impact sensitivity, and safe manufacture. More than 1,100 military facilities, each potentially contaminated with munitions waste, are expected to require treatment of more than one million cubic yards of contaminated soils. The cost associated with remediation of these sites has been estimated to be in excess of $1.5 billion. Recently, researchers have studied ruminal microorganisms in relation to their ability to degrade xenobiotic compounds. Many of these organisms are strict anaerobes with optimal redox potentials as low as -420 mV. Ruminal organisms have been shown capable of destroying some pesticides, such as parathion, p-nitrophenol, and biphenyl-type compounds; thiono isomers, and nitrogen-containing heterocyclic plant toxins such as the pyrrolizidine alkaloids. Many of these compounds have structures similar to TNT. A TNT-degrading ruminal microorganism has been isolated from goat rumen fluid with successive enrichments on triaminotoluene (TAT) and TNT. The isolate, designated G.8, utilizes nitrate and lactate as the primary energy source. G.8 was able to tolerate and metabolite levels of TNT up to the saturation point of 125 mg/l.

  5. Effect of enhanced UV-B radiation on motile microorganisms

    International Nuclear Information System (INIS)

    Haeder, D.P.

    1985-02-01

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.) [de

  6. Factors controlling pathogen destruction during anaerobic digestion of biowastes

    International Nuclear Information System (INIS)

    Smith, S.R.; Lang, N.L.; Cheung, K.H.M.; Spanoudaki, K.

    2005-01-01

    Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log 10 reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms

  7. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in upper Mississippi river sediment

    Directory of Open Access Journals (Sweden)

    Ellen M. Black

    2017-07-01

    .001 decreased with mussels. Co-occurrence of 2-fold increases in Candidatus Brocadia and Nitrospira in shallow sediments suggests that mussels may enhance microbial niches at the interface of oxic–anoxic conditions, presumably through biodeposition and burrowing. Furthermore, it is likely that the niches of Candidatus Nitrososphaera and nitrite- and nitrate-dependent anaerobic methane oxidizers were suppressed by mussel biodeposition and sediment aeration, as these phylotypes require low ammonium concentrations and anoxic conditions, respectively. As far as we know, this is the first study to characterize freshwater mussel impacts on microbial diversity and the vertical distribution of N-cycle microorganisms in upper Mississippi river sediment. These findings advance our understanding of ecosystem services provided by mussels and their impact on aquatic biogeochemical N-cycling.

  8. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria

    Science.gov (United States)

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E.; Reading, Nicola C.; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H.; Kasper, Dennis L.

    2015-01-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but our understanding of host–commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click-chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis following acute peritonitis, and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. The distribution and colonization of labeled B. fragilis along the intestine can be assessed, as well as niche competition following coadministration of multiple species of the microbiota. Nine additional anaerobic commensals (both gram-negative and gram-positive) from three phyla common in the gut—Bacteroidetes, Firmicutes, and Proteobacteria—and five families and one aerobic pathogen (Staphylococcus aureus) were also fluorescently labeled. This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and an approach to study microbial colonization and host–microbe interactions in real-time. PMID:26280120

  9. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers.

    Science.gov (United States)

    Kleinsteuber, Sabine; Schleinitz, Kathleen M; Vogt, Carsten

    2012-05-01

    Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.

  10. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  11. Anaerobic biodegradation of pentachlorophenol in a fixed-film reactor inoculated with polluted sediment from Santos-Sao Vicente Estuary, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Saia, F.T.; Damianovic, M.H.R.Z.; Cattony, E.B.M.; Brucha, G.; Foresti, E. [Sao Paulo Univ., Sao Carlos (Brazil). Lab. of Biological Processes; Vazoller, R.F. [Sao Paulo Univ., Sao Paulo (Brazil). Lab. of Environmental Microbiology

    2007-06-15

    This paper discusses the results of pentachlorophenol (PCP) anaerobic biodegradation in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor operated under methanogenic and halophylic conditions. The system was inoculated with autochthonous microorganisms taken from a site in the Santos-Sao Vicente Estuary (state of Sao Paulo, Brazil) severely contaminated with PCP, phenolic compounds, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy metals. The inoculum was previously enriched for methanogenesis activity by changing glucose concentrations and under halophylic condition. PCP was added to the HAIB reactor as sodium salt (NaPCP) at an initial concentration of 5 mg l{sup -1} and increased to 13, 15, and 21 mg l{sup -1}. Organic matter removal efficiency ranged from 77 to 100%. PCP removal efficiency was 100%. Denaturing gradient gel electrophoresis profile showed changes in the structure of Bacteria domain, which was associated with NaPCP and glucose amendments. The diversity of Archaea remained unaltered during the different phases. Scanning electron microscope examinations showed that cells morphologically resembling Methanosarcina and Methanosaeta predominated in the biofilm. These cells were detected by fluorescence in situ hybridization with the Methanosarcinales (MSMX860) specific probe. The results are of great importance in planning the estuary's restoration by using anaerobic technology and autochthonous microorganisms for bioremediation. (orig.)

  12. Selection and application of microorganisms to improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P.F.; Moreira, R.S.; Almeida, R.C.C.; Guimaraes, A.K.; Carvalho, A.S. [Laboratorio de Biotecnologia e Ecologia de Microrganismos da Universidade Federal da Bahia, Avenida Reitor Miguel Calmon, s/n, Vale do Canela, CEP 41.160-100 Salvador BA (Brazil); Quintella, C.; Esperidia, M.C.A. [Instituto de Quimica da Universidade Federal da Bahia, Rua Barao de Geremoabo, s/n, Campus Universitario de Ondina, CEP 40.170-290, Salvador BA (Brazil); Taft, C.A. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 150, Urca, 22290-180, Rio de Janeiro (Brazil)

    2004-08-01

    Microbial enhanced oil recovery (Meor) is an incontestably efficient alternative to improve oil recovery, especially in mature fields and in oil reservoirs with high paraffinic content. This is the case for most oil fields in the Reconcavo basin of Bahia, Brazil. Given the diverse conditions of most oil fields, an approach to apply Meor technology should consider primarily: (i) microbiological studies to select the appropriate microorganisms and (ii) mobilization of oil in laboratory experiments before oil field application. A total of 163 bacterial strains, selectively isolated from various sources, were studied to determine their potential to be used in Meor. A laboratory microbial screening based on physiological and metabolic profiles and growth rates under conditions representative for oil fields and reservoirs revealed that 10 bacterial strains identified as Pseudomonas aeruginosa (2), Bacillus licheniformis (2), Bacillus brevis (1), Bacillus polymyxa (1), Micrococcus varians (1), Micrococcus sp. (1), and two Vibrio species demonstrated potential to be used in oil recovery. Strains of B. licheniformis and B. polymyxa produced the most active surfactants and proved to be the most anaerobic and thermotolerant among the selected bacteria. Micrococcus and B. brevis were the most salt-tolerant and polymer producing bacteria, respectively, whereas Vibrio sp. and B. polymyxa strains were the most gas-producing bacteria. Three bacterial consortia were prepared with a mixture of bacteria that showed metabolic and technological complementarity and the ability to grow at a wide range of temperatures and salinity characteristics for the oil fields in Bahia, Brazil. Oil mobilization rates in laboratory column experiments using the three consortia of bacteria varied from 11.2 to 18.3 % [v/v] of the total oil under static conditions. Consortia of B. brevis, B. icheniformis and B. polymyxa exhibited the best oil mobilization rates. Using these consortia under anaerobic

  13. The vaginal microbiota, host defence and reproductive physiology.

    Science.gov (United States)

    Smith, Steven B; Ravel, Jacques

    2017-01-15

    The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture-independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive-aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic-acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non-Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine-tuned interaction is key to maintaining women's reproductive health. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. Fate of neptunium in an anaerobic, methanogenic microcosm

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Webb, S.M.; Rittmann, B.E.; Gaillard, J.F.; Reed, D.T.

    1999-01-01

    Neptunium is found predominantly as Np(IV) in reducing environments, but as Np(V) in aerobic environments. Currently, it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. To evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosm inoculated with anaerobic sediments from a metal-contaminated freshwater lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10 -5 M Np did not inhibit methane production. Total Np solubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbially produced Mn(II/III) and Fe(II) may serve as electron donors for Np reduction

  15. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    Science.gov (United States)

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system

    KAUST Repository

    Kim, Youngjin

    2016-02-09

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulphate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulphate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR.

  17. Physiology, anaerobes, and the origin of mitosing cells 50 years on.

    Science.gov (United States)

    Martin, William F

    2017-12-07

    Endosymbiotic theory posits that some organelles or structures of eukaryotic cells stem from free-living prokaryotes that became endosymbionts within a host cell. Endosymbiosis has a long and turbulent history of controversy and debate going back over 100 years. The 1967 paper by Lynn Sagan (later Lynn Margulis) forced a reluctant field to take endosymbiotic theory seriously and to incorporate it into the fabric of evolutionary thinking. Margulis envisaged three cellular partners associating in series at eukaryotic origin: the host (an engulfing bacterium), the mitochondrion (a respiring bacterium), and the flagellum (a spirochaete), with lineages descended from that flagellated eukaryote subsequently acquiring plastids from cyanobacteria, but on multiple different occasions in her 1967 account. Today, the endosymbiotic origin of mitochondria and plastids (each single events, the data now say) is uncontested textbook knowledge. The host has been more elusive, recent findings identifying it as a member of the archaea, not as a sister group of the archaea. Margulis's proposal for a spirochaete origin of flagellae was abandoned by everyone except her, because no data ever came around to support the idea. Her 1967 proposal that mitochondria and plastids arose from different endosymbionts was novel. The paper presented an appealing narrative that linked the origin of mitochondria with oxygen in Earth history: cyanobacteria make oxygen, oxygen starts accumulating in the atmosphere about 2.4 billion years ago, oxygen begets oxygen-respiring bacteria that become mitochondria via symbiosis, followed by later (numerous) multiple, independent symbioses involving cyanobacteria that brought photosynthesis to eukaryotes. With the focus on oxygen, Margulis's account of eukaryote origin was however unprepared to accommodate the discovery of mitochondria in eukaryotic anaerobes. Today's oxygen narrative has it that the oceans were anoxic up until about 580 million years ago, while

  18. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  19. Microorganism immobilization

    Science.gov (United States)

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  20. Characterization of Microorganisms Isolated from Petroleum Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    Adriana Criste

    2016-02-01

    Full Text Available Bioremediation has received a great deal of attention, and bacteria isolated from polluted soil can be usedin that process. In this study, we performed an evaluation of the physiological groups of microorganisms fromsoil contaminated with petroleum. Bacterial strains were isolated from contaminated soil using the selectiveenrichment technique. Minimal Salt Media was used for serial dilutions to determine viable cell count. Thenumber of total viable cells and different types of microorganisms in the original sample was determined by serialdilution, agar plating procedure using selective media. The plates were incubated at 300C for 24-72 hours. Distinctcolonies growing on each plate were selected, and stored at freezing temperatures. The bacterial colonies werethen identified by Gram staining and biochemical tests. Following our research, it was observed that although thetotal microbial load of soil is relatively close in value, there are differences regarding the physiological group ofmicroorganisms. In the oil contaminated soil sample the largest group of microorganisms was the nitrous nitrifyingbacteria followed by nitrate bacteria. All bacterial strains that were isolated from soil samples contaminated withhydrocarbons but also the Pseudomonas putida and Bacillus subtillis strains can use diesel fuel as a food source.With the increase of diesel fuel concentration from culture medium, the majority of the bacterial strains that wereused in our experiments showed an increased value of absorbance. This fact suggests that these strains can be usedin bioremediation processes.

  1. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Rai, D.; Xun, L.

    2005-01-01

    The complexation of radionuclides (e.g., plutonium (Pu) and 60 Co) by codisposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Our previous NABIR research investigated the aerobic biodegradation and biogeochemistry of Pu(IV)-EDTA. Plutonium(IV) forms stable complexes with EDTA under aerobic conditions and an aerobic EDTA degrading bacterium can degrade EDTA in the presence of Pu and decrease Pu mobility. However, our recent studies indicate that while Pu(IV)-EDTA is stable in simple aqueous systems, it is not stable in the presence of relatively soluble Fe(III) compounds (i.e., Fe(OH) 3 (s)--2-line ferrihydrite). Since most DOE sites have Fe(III) containing sediments, Pu(IV) in likely not the mobile form of Pu-EDTA in groundwater. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed in this brand new project to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV) as PuO2(am) by metal reducing bacteria, the redox conditions required for this reduction, the strength of the Pu(III)-EDTA complex, how the Pu(III)-EDTA complex competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, the formation of a stable soluble Pu(III)-EDTA complex under anaerobic conditions would require degradation of the EDTA complex to limit Pu(III) transport in geologic environments. Anaerobic EDTA degrading microorganisms have not been isolated. These knowledge gaps preclude the development of a mechanistic understanding of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop Pu

  2. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    Science.gov (United States)

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  4. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Boopathy, R.; Kulpa, C.F.

    1994-01-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO 2 . Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  5. Marine microorganisms. Umi no biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, U. (Hiroshima University, Hiroshima (Japan). Faculty of Applied Biological Science)

    1992-11-10

    This paper explains properties, interactions, and activities of marine microorganisms. Marine bacteria include bacteria of vibrio family of arteromonas genus, luminous bacteria, and aerobic photosynthetic bacteria. Majority of marine bacteria is halophilic, and many proliferate at 5[degree]C or lower. Some of them can proliferate at 20[degree]C to 30[degree]C, or as high temperature as 80[degree]C and higher. Spongiaria and tumicata have many symbiotic microorganisms, and genes equivalent to luminous bacteria genes were discovered in DNA of light emitting organs in luminous fishes. It was verified that animal groups in upwelling zones are supported by bacteria that assimilate inorganics supplied from ocean bottoms. Marine bacteria decompose almost all of organics brought in from land to sea, and those produced in sea. Marine bacteria engage in complex interrelations with other organisms for competition, antagonism, parasitism, and symbiosis. The bacteria make antibacterial substances, anti-algae bacteria, enzyme inhibitors, toxins, pharmacologically active substances, and such physiologically active substances as deposition promoting substances to undersea structures including shells and barnacles, and deposition blocking substances. 53 refs., 3 figs.

  6. MICROORGANISMS IN SELECTED CONFECTIONARY PRODUCTS DURING THE MANUFACTURING PROCESS

    Directory of Open Access Journals (Sweden)

    Jana Petrová

    2015-02-01

    Full Text Available The aim of our study was to evaluate the microbiological quality confectionery products during production. A total of 135 samples were analyzed: 45 samples of the punch balls, 45 Venček samples and 45 samples French cubes from home, school and private production. For microorganism cultivation VRBL agar for the isolation of coliform bacteria, DRBC and DG18 for microscopic fungi and yeasts, Plate Count Agar for total viable count, Meat peptone agar for mesophilic aerobic bacteria, XLD agar for Salmonella sp. and Baird Parker agar for Staphylococcus aureus were used. Following microbiological parameters were tested: total viable count, mesophilic anaerobic microorganisms, coliform bacteria, yeast and microscopic filamentous fungi, Salmonella spp. and Staphylococcus aureus. Products are assessed according to the limit values of the number of microorganisms contained in the Codex Alimentary of the Slovak Republic. The overall assessment of the microbiological quality of the punch balls, we found that two samples from school factory and one sample from private producer did not meet CA SR for the total viable count. Comparing the microbiological quality of Venček with CA SR, we found that one sample of home production did not meet the requirements for this type of product. All the tested samples were Staphylococcus aureus and Salmonella spp. negative. Comparing the results of the samples with French cubes CA SR, we found that all the samples satisfy requirements.

  7. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced......) and Thermoanaerobacterium thermosaccharolyticum with a relative abundance of 36%, 27%, and 10% of total microorganisms, respectively. This study shows that hydrogen production could be efficiently facilitated by using anaerobic granules as a carrier, where microbes from mixed culture enriched in the DM batch cultivation....... The enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g...

  8. Influence of environmental pollution with creosote oil or its vapors on biomass and selected physiological groups of microorganisms

    Science.gov (United States)

    Krzyśko-Łupicka, Teresa; Cybulska, Krystyna; Kołosowski, Paweł; Telesiński, Arkadiusz; Sudoł, Adam

    2017-11-01

    Survival of microorganisms in soils from treatment facility and landfill of wooden railway sleepers contaminated with creosote oil as well as in two types of soils with different content of organic carbon, treated with creosote oil vapors, was assessed. Microbiological assays including determination of: the biomass of living microorganisms method and the number of proteolytic, lipolytic and amylolytic microorganisms were carried out under laboratory conditions. Chromatography analysis of the soil extract from railway sleepers treatment facility was performed using GC/MS. The highest biomass and the number of tested microorganisms were determined in soils from wooden railway sleepers landfill, while the lowest in soil from the railway sleepers treatment facility. Vapors of creosote oil, regardless of the soil type, significantly increased only the number of lipolytic bacteria.

  9. Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions.

    Science.gov (United States)

    Lu, Qin; Yi, Jing; Yang, Dianhai

    2016-01-01

    High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

  10. A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications.

    Science.gov (United States)

    Leng, Ling; Yang, Peixian; Singh, Shubham; Zhuang, Huichuan; Xu, Linji; Chen, Wen-Hsing; Dolfing, Jan; Li, Dong; Zhang, Yan; Zeng, Huiping; Chu, Wei; Lee, Po-Heng

    2018-01-01

    The exploration of the energetics of anaerobic digestion systems can reveal how microorganisms cooperate efficiently for cell growth and methane production, especially under low-substrate conditions. The establishment of a thermodynamically interdependent partnership, called anaerobic syntrophy, allows unfavorable reactions to proceed. Interspecies electron transfer and the concentrations of electron carriers are crucial for maintaining this mutualistic activity. This critical review summarizes the functional microorganisms and syntroph partners, particularly in the metabolic pathways and energy conservation of syntrophs. The kinetics and thermodynamics of propionate degradation to methane, reversibility of the acetate oxidation process, and estimation of microbial growth are summarized. The various routes of interspecies electron transfer, reverse electron transfer, and Poly-β-hydroxyalkanoate formation in the syntrophic community are also reviewed. Finally, promising and critical directions of future research are proposed. Fundamental insight in the activities and interactions involved in AD systems could serve as a guidance for engineered systems optimization and upgrade. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  12. Nutritional optimization for anaerobic growth of Bacillus steaothermophilus LLD-16

    Directory of Open Access Journals (Sweden)

    Muhammad Javed

    2016-04-01

    Full Text Available In this study, a range of nutritional supplements including twenty amino acids, major vitamins and four nucleic acid bases were exploited as added-value supplements for the growth of a lactate-minus (ldh mutant Bacillus stearothermophilus LLD-16 under anaerobic environment. The chemostat studies revealed that five amino acids that includes aspartate, glutamate, isoleucine, methionine, and serine were essential for persuaded growth of B. stearothermophilus LLD-16. The anaerobic batch studies showed that a number of nutritional supplements, such as, p-aminobenzoic acid (PABA, folic acid, pantothenic acid, adenine, glycine, leucine, tryptophan, proline, alanine and α-ketoglutarate, when added individually, improved the biomass levels. In contrast, the higher concentrations of cyanocobalamine or biotin, guanine, uracil and isoleucine were found inhibitory. Furthermore, the study explains why the highest biomass formation cannot necessarily be achieved on the richest mixture of amino acids, and the inadequacy of the biosynthetic machinery is very much dependent on the growth conditions of the microorganism.

  13. Biohydrogenesis in the Thermotogales

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Robert M. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemical and Biomolecular Engineering; Blum, Paul H. [Univ. of Nebraska, Lincoln, NE (United States). Beadle Center for Genetics; Noll, Kenneth M. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Molecular and Cellular Biology

    2014-12-13

    The production and consumption of molecular hydrogen drives the physiology and bioenergetics of many microorganisms in hydrothermal environments. As such, the potential of these microorganisms as model systems to probe fundamental issues related to biohydrogen production merits consideration. It is important to understand how carbon/energy sources relate to the disposition of reducing power and, ultimately, the formation of molecular hydrogen by high temperature microorganisms. This project focused on bacteria in the thermophilic order Thermotogales, fermentative anaerobes that produce H2 from simple and complex carbohydrates.

  14. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  15. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  16. Response of selected microorganisms to experimental planetary environments

    Science.gov (United States)

    Foster, T. L.; Winans, L., Jr.

    1976-01-01

    Results are presented on the anaerobic conversion of phosphite to phosphate. It is demonstrated that in the presence of both phosphite and hypophosphite, the phosphite is the preferred phosphorous source. An investigation in which P-32 labeled hypophosphite was added to the basal medium demonstrates that the labeled hypophosphite was incorporated into the metabolic reactions of the cell. Other data show that as cell growth occurs, the phosphite and/or hypophosphite levels decrease. The Bacillus sp. capable of anaerobic utilization of phosphite was isolated from Cape Canaveral soil samples, and it is partially characterized. Also included are continued investigations of omnitherms. The data presented show that some of these possess significant resistance to the Viking dry-heat cycle, and that they retain their omnithermic characteristic after recovery from the heat cycle. Other physiological characteristics of these isolates are also presented. It is demonstrated that omnitherms can be isolated from Cape Canaveral soil.

  17. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    Directory of Open Access Journals (Sweden)

    Martijn eDiender

    2015-11-01

    Full Text Available Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  18. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    Science.gov (United States)

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  19. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.

    Science.gov (United States)

    Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L

    2017-09-01

    Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca; Scoma, Alberto; Michoud, Gregoire; Aulenta, Federico; Boon, Nico; Borin, Sara; Kalogerakis, Nicolas; Daffonchio, Daniele

    2017-01-01

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  1. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca

    2017-05-13

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  2. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria : The Medinaut Shipboard Scientific Party

    NARCIS (Netherlands)

    Pancost, Richard D.; Sinninghe Damsté, Jaap S.; de Lint, Saskia; van der Maarel, Marc J.E.C.; Gottschal, JC

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear, In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the

  3. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  4. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter

    International Nuclear Information System (INIS)

    Gannoun, H.; Bouallagui, H.; Okbi, A.; Sayadi, S.; Hamdi, M.

    2009-01-01

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 deg. C) and thermophilic (55 deg. C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6 g COD/L d in mesophilic conditions and at OLRs from 0.9 to 9 g COD/L d in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/L d in mesophilic conditions, while the highest OLRs i.e. 9 g COD/L d led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/L d. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  5. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    Science.gov (United States)

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.

    Science.gov (United States)

    Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe

    2009-06-01

    The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.

  7. Decomposition of Alternative Chirality Amino Acids by Alkaliphilic Anaerobe from Owens Lake, California

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Hoover, Richard B.

    2009-01-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California led to the isolation of a bacterial strain capable of metabolizing amino acids with alternative chirality. According to the phylogenetic analysis, the anaerobic strain BK1 belongs to the genus Tindallia; however, despite the characteristics of other described species of this genus, the strain BK1 was able to grow on D-arginine and Dlysine. Cell morphology of this strain showed straight, motile, non-spore-forming rods with sizes 0.45 x 1.2-3 microns. Physiological characteristics of the strain showed that it is catalase negative, obligately anaerobic, mesophilic, and obligately alkaliphilic. This isolate is unable to grow at pH 7 and requires CO3 (2-) ions for growth. The strain has chemo-heterotrophic metabolism and is able to ferment various proteolysis products and some sugars. It plays the role of a primary anaerobe within the trophic chain of an anaerobic microbial community by the degradation of complex protein molecules to smaller and less energetic molecules. The new isolate requires NaCl for growth, and can grow within the range of 0.5-13 %, with the optimum at 1 % NaCl (w/v). The temperature range for the growth of the new isolate is 12-40 C with optimum at 35 C. The pH range for the growth of strain BK1 occurs between 7.8 and 11.0 with optimum at 9.5. This paper presents detailed physiological characteristics of the novel isolate from Owens Lake, a unique relic ecosystem of Astrobiological significance, and makes an accent on the ability of this strain to utilize L-amino acids.

  8. Total Protein of Whole Saliva as a Biomarker of Anaerobic Threshold

    Science.gov (United States)

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B.; Espindola, Foued Salmen

    2009-01-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a…

  9. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    Science.gov (United States)

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  10. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  11. Community composition and ultrastructure of a nitrate-dependent anaerobic methane-oxidizing enrichment culture

    NARCIS (Netherlands)

    Gambelli, L.; Guerrero-Cruz, Simon; Mesman, R.; Cremers, G.; Jetten, M.S.M.; Camp, H.J.M. op den; Lueke, Claudia; Niftrik, L.A.M.P. van

    2017-01-01

    Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbial-mediated processes, thus decreasing methane emissions to the atmosphere. Using a complementary array of methods including phylogenetic analysis, physiological experiments, and light and

  12. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques...... in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were...

  14. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    International Nuclear Information System (INIS)

    Brook, Itzhak; Walker, R.I.; MacVittie, T.J.

    1986-01-01

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9 or 10 Gy 60 Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to enteric aerobic and anaerobic bacteria

  16. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    Energy Technology Data Exchange (ETDEWEB)

    Brook, I.; Walker, R.I.; MacVittie, T.J.

    1986-01-01

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy /sup 60/Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to entire aerobic and anaerobic bacteria. Reprints.

  17. Chiling slows anaerobic metabolism to improve anoxia tolerance of insects

    Czech Academy of Sciences Publication Activity Database

    Boardman, L.; Sorensen, J. G.; Košťál, Vladimír; Šimek, Petr; Terblanche, J. S.

    2016-01-01

    Roč. 12, č. 12 (2016), č. článku 176. ISSN 1573-3882 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : anoxia * anaerobism * cold tolerance Subject RIV: ED - Physiology Impact factor: 3.692, year: 2016 http://link.springer.com/article/10.1007/s11306-016-1119-1

  18. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium. Final report

    International Nuclear Information System (INIS)

    Maue, G.; Stroetmann, I.; Dott, W.; Taute, T.; Winkler, A.; Pekdeger, A.

    1996-01-01

    Within this research project the influence of autochthonous mirco-organisms on immobilization and remobilization of Technetium and Selenium was investigated. Both redoxsensitive radionuclides are part of the waste of nuclear fuel (Tc app. 6%). Former investigations have shown, that immobilization behaviour of both elements could be influenced by micro-organisms. It has not been known, if the autochthonous (or in situ) organisms from greater depth do also have an influence on radionuclide mobility. The autochthonous populations of micro-organisms in deep sediments and their influence on the migration of Tc and Se were investigated in this study. For this reason recirculation column experiments were carried out. Absolutely sterile and anaerobic handling was necessary for the sampling and the further treatment of the sediments and waters used in the experiments. Therefore special methods for sampling, storage and handling had been developed. The results of recirculation column test with autochthonous micro-organisms were compared with sterile parallel tests and were verified with the results of an elaborated version of the hydrogeochemical equilibration code PHREEQE. It was shown that the autochthonous micro-organisms had only very little influence on the migration behaviour. The reason is the very low population (less than 10 E+6 CFU). Nevertheless it has to be taken into consideration, that conventional laboratory experiments for the estimation of the retention capacities of sediments for hazardous waste lead to an overestimation, if the sediments are contaminated with allochthonous micro-organisms (CFU=colony forming units). (orig.) [de

  19. Classification of root canal microorganisms using electronic-nose and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Özbilge Hatice

    2010-11-01

    Full Text Available Abstract Background Root canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. In this study, we aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument. Method Our microorganism odor data set consisted of 5 repeated samples from 7 different classes at 4 concentration levels. For each concentration, 35 samples were classified using 3 different discriminant analysis methods. In order to determine an optimal setting for using electronic-nose in such an application, we have tried 3 different approaches in evaluating sensor responses. Moreover, we have used 3 different sensor baseline values in normalizing sensor responses. Since the number of sensors is relatively large compared to sample size, we have also investigated the influence of two different dimension reduction methods on classification performance. Results We have found that quadratic type dicriminant analysis outperforms other varieties of this method. We have also observed that classification performance decreases as the concentration decreases. Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance. Corresponding to this optimal choice of baseline value, we have noted that among different sensor response model and

  20. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    Science.gov (United States)

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  1. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  2. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    Science.gov (United States)

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  3. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates.

    Science.gov (United States)

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2015-01-01

    In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology

  4. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    International Nuclear Information System (INIS)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R.

    2016-01-01

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  5. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  6. Anaerobic and aerobic transformation of TNT

    Energy Technology Data Exchange (ETDEWEB)

    Kulpa, C.F. [Univ. of Notre Dame, IN (United States). Dept. of Biological Sciences; Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  7. In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in the thermophilic anaerobic digestion process.

    Science.gov (United States)

    Gagliano, Maria Cristina; Braguglia, Camilla Maria; Rossetti, Simona

    2014-09-01

    Thermophilic bacteria have recently attracted great attention because of their potential application in improving different biochemical processes such as anaerobic digestion of various substrates, wastewater treatment or hydrogen production. In this study we report on the design of a specific 16S rRNA-targeted oligonucleotide probe for detecting members of Coprothermobacter genus characterized by a strong protease activity to degrade proteins and peptides. The newly designed CTH485 probe and helper probes hCTH429 and hCTH439 were optimized for use in fluorescence in situ hybridization (FISH) on thermophilic anaerobic sludge samples. In situ probing revealed that thermo-adaptive mechanisms shaping the 16S rRNA gene may affect the identification of thermophilic microorganisms. The novel developed FISH probe extends the possibility to study the widespread thermophilic syntrophic interaction of Coprothermobacter spp. with hydrogenotrophic methanogenic archaea, whose establishment is a great benefit for the whole anaerobic system. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate

    Science.gov (United States)

    Loftin, Keith A.; Henny, Cynthia; Adams, Craig D.; Surampali, Rao; Mormile, Melanie R.

    2005-01-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  9. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.

    Science.gov (United States)

    Edwards, Joan E; Kingston-Smith, Alison H; Jimenez, Hugo R; Huws, Sharon A; Skøt, Kirsten P; Griffith, Gareth W; McEwan, Neil R; Theodorou, Michael K

    2008-12-01

    Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.

  10. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate.

    Science.gov (United States)

    Loftin, Keith A; Henny, Cynthia; Adams, Craig D; Surampali, Rao; Mormile, Melanie R

    2005-04-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  11. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Heterogeneity in isogenic populations of microorganisms

    DEFF Research Database (Denmark)

    Pedersen, Anne Egholm

    heterogeneity was detected when the culture had been propagated according to the guidelines of the Copenhagen School of Bacterial Growth Physiology. The L. lactis GFP reporter strain was more challenging to analyze. The population profile for this reporter strain was shown to be dependent on the type of medium...... values for quantifiable variables are used. The reproducibility of an experiment could thus be affected by the presence of subpopulations or high levels of phenotypic variations. Ole Maaløe and colleagues did in the late 1950’ties observe that the growth rate, RNA, DNA and protein synthesis and cell...... factor per unit of time. The use of a balanced growing culture is a cornerstone in the Copenhagen School of Bacterial Growth Physiology headed by Ole Maaløe. Due to the size of the microorganism it is challenging to measure a quantifiable variable in a single cell. However, fluorescence, whether being...

  13. Low-temperature anaerobic treatment of hog manure and transformation of biogas into green energy

    Energy Technology Data Exchange (ETDEWEB)

    Van-Anh Truong, L.; Royer, R.

    2004-08-01

    A new environmental solution for hog manure management has been developed by Bio-Terre Systems Inc. in collaboration with Agriculture and Agri-Food Canada. The technical approach combines low-temperature anaerobic digestion, concentration of solids and production of biogas, a renewable energy source. Both small and large agricultural producers can benefit from this approach which helps transform organic matter into value-added by-products. They can fertilize their land with the liquid fraction, supply energy for their buildings with the biogas produced, and export surplus nutrients with the solid fraction. The technology also solves odour problems and destroys pathogenic microorganisms. No pretreatment is needed for this technology which makes use of robust anaerobic microorganisms that are low temperature tolerant. It is a stable process that provides continuous production of biogas with high energy potential. The automated system does not require much monitoring or maintenance. The environmental advantages include the production of biogas rich in methane, which can be used for electrical energy on the farm or sent to the electric power grids; production of high-value, odorless liquid fertilizer; a 50 per cent reduction of the amount of phosphorous in the liquid fraction; and, a 90 per cent reduction in greenhouse gas emissions from hog manure. The profitability of capital investment is assured by both the energy-savings and the agricultural benefits. 1 tab., 1 fig.

  14. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  15. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko; Zhang, Lei; Kimura, Zen-ichiro; Ali, Muhammad; Fujii, Takao; Okabe, Satoshi

    2017-01-01

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  16. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  17. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  18. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    Science.gov (United States)

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  19. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Directory of Open Access Journals (Sweden)

    Palumbo Anthony V

    2009-01-01

    Full Text Available Abstract Background Zymomonas mobilis ZM4 (ZM4 produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. Results In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC, gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED pathway genes (glk, zwf, pgl, pgk, and eno and gene pdc, encoding a key enzyme leading to ethanol

  20. Do physiological measures predict selected CrossFit® benchmark performance?

    Directory of Open Access Journals (Sweden)

    Butcher SJ

    2015-07-01

    Full Text Available Scotty J Butcher,1,2 Tyler J Neyedly,3 Karla J Horvey,1 Chad R Benko2,41Physical Therapy, University of Saskatchewan, 2BOSS Strength Institute, 3Physiology, University of Saskatchewan, 4Synergy Strength and Conditioning, Saskatoon, SK, CanadaPurpose: CrossFit® is a new but extremely popular method of exercise training and competition that involves constantly varied functional movements performed at high intensity. Despite the popularity of this training method, the physiological determinants of CrossFit performance have not yet been reported. The purpose of this study was to determine whether physiological and/or muscle strength measures could predict performance on three common CrossFit "Workouts of the Day" (WODs.Materials and methods: Fourteen CrossFit Open or Regional athletes completed, on separate days, the WODs "Grace" (30 clean and jerks for time, "Fran" (three rounds of thrusters and pull-ups for 21, 15, and nine repetitions, and "Cindy" (20 minutes of rounds of five pull-ups, ten push-ups, and 15 bodyweight squats, as well as the "CrossFit Total" (1 repetition max [1RM] back squat, overhead press, and deadlift, maximal oxygen consumption (VO2max, and Wingate anaerobic power/capacity testing.Results: Performance of Grace and Fran was related to whole-body strength (CrossFit Total (r=-0.88 and -0.65, respectively and anaerobic threshold (r=-0.61 and -0.53, respectively; however, whole-body strength was the only variable to survive the prediction regression for both of these WODs (R2=0.77 and 0.42, respectively. There were no significant associations or predictors for Cindy.Conclusion: CrossFit benchmark WOD performance cannot be predicted by VO2max, Wingate power/capacity, or either respiratory compensation or anaerobic thresholds. Of the data measured, only whole-body strength can partially explain performance on Grace and Fran, although anaerobic threshold also exhibited association with performance. Along with their typical training

  1. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Ultrastructure and viral metagenome of bacteriophages from an anaerobic methane oxidizing methylomirabilis bioreactor enrichment culture

    NARCIS (Netherlands)

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S M; den Camp, Huub J M Op; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale

  3. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    NARCIS (Netherlands)

    Gambelli, L.; Cremers, G.; Mesman, R.; Guerrero, S.; Dutilh, B.E.; Jetten, M.S.; Camp, H.J. Op den; Niftrik, L. van

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale

  4. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  5. Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo.

    Science.gov (United States)

    Durnaś, Bonita; Piktel, Ewelina; Wątek, Marzena; Wollny, Tomasz; Góźdź, Stanisław; Smok-Kalwat, Jolanta; Niemirowicz, Katarzyna; Savage, Paul B; Bucki, Robert

    2017-07-26

    Cationic antibacterial peptides (CAPs) and synthetic molecules mimicking the amphiphilic structure of CAPs, such as ceragenins, are promising compounds for the development of new antimicrobials. We tested the in vitro activity of ceragenins CSA-13 and CSA-131 against several anaerobic bacteria including Bacteroides spp. and Clostridium difficile. We compared results to the activity of cathelicidin LL-37, metronidazole and nanosystems developed by attachment of CSA-13 and CSA-131 to magnetic nanoparticles (MNPs). The antibacterial effect was tested using killing assay and modified CLSI broth microdilution assay. Ceragenins CSA-13 and CSA-131 displayed stronger bactericidal activity than LL-37 or metronidazole against all of the tested bacterial strains. Additionally CSA-131 revealed an enhanced ability to prevent the formation of Bacteroides fragilis and Propionibacterium acnes biofilms. These data confirmed that ceragenins display antimicrobial activity against a broad range of microorganisms including anaerobic bacteria and deserve further investigations as compounds serving to develop new treatment against anaerobic and mixed infections.

  6. Radiosensitivity of microorganisms isolated from radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, Lajos

    2001-01-01

    Bacteria are much more diverse in comparison with plants and animals. Among the huge diversity of bacteria there are microorganisms capable to grow at or adapt to extreme conditions. Some bacteria grow at temperature above 100 deg. C, other thrive in high salinity such as 20-30% NaCl, still others can live at pH lower than 2 or pH higher than 10 or exhibit high radioresistance. Due to accelerated disarmament and nuclear energy activities, large quantities of radioactive waste and nuclear fuel are being placed in storage areas. The awareness the microbial activity could potentially effect the performance of a system for geological disposal of radioactive waste gained acceptance in the early to middle 1980s, and as a result many countries considering developing programmes to study and quantify microbial effects in terms of their own particular disposal concept. A new research programme was launched in 1995, sponsored by the NATO Scientific Affairs Division, for studying microbiologically influenced corrosion (MIC) in radioactive waste repositories and spent fuel storage area. Our programme concerns several major items that may have an influence on the mobility of radionuclides in direct and indirect ways thereby being important for the safety analysis. They are uptake and transport of radionuclides by microorganisms, diversity and distribution of subterranean bacteria in typical repository environments, environmental limitation and bacterial activity, effect of bacterial activity on the mobility of radionuclides, microbial gas production and consumption, bacterial recombination of hydrogen and oxygen from radiolysis, and microbially induced corrosion of waste canister. The Permian Boda Claystone Formation in the Mecsek Hill area is being considered for high level waste disposal. Groundwater, technical water, rock and surface samples were collected aseptically from different depths. The quantitative and qualitative analysis of aerobic and anaerobe isolates were

  7. Physiological pattern changes in response to a simulated competition in elite women artistic gymnasts.

    Science.gov (United States)

    Isacco, Laurie; Ennequin, Gaël; Cassirame, Johan; Tordi, Nicolas

    2017-08-04

    The outstanding progress in women's artistic gymnastics in recent decades has led to increased technical and physiological demands. The aim of this study was to investigate i) the physiological demands of elite French gymnasts and ii) the impact of a competitive routine on physiological pattern changes. Fourteen French elite female gymnasts performed anthropometric measurements, physical fitness tests and a simulated four event competition. Heart rate (HR) was continuously recorded throughout the duration of the simulated competition. Blood lactate concentrations were assessed at rest, before the beginning and at 2, 4 and 10 min after completion of the routine on each apparatus. Isometric handgrip strength and anaerobic endurance and power were assessed during the simulated competition. The highest values of HR and blood lactate concentrations were reached during the floor and uneven bar exercises. Blood lactate concentrations and HR kinetics were apparatus dependent and values remained significantly increased at 10 min of recovery compared with resting data. Anaerobic endurance and power decreased significantly as the competition progressed (P <0.001). The present results show specifically cardiorespiratory and anaerobic apparatus- dependent responses throughout a simulated competition. Recovery approaches appear relevant to prevent and/or minimize fatigue and optimize performance in these athletes.

  8. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.

    Science.gov (United States)

    Bhattarai, Susma; Cassarini, Chiara; Gonzalez-Gil, Graciela; Egger, Matthias; Slomp, Caroline P; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2017-10-01

    The microbial community inhabiting the shallow sulfate-methane transition zone in coastal sediments from marine Lake Grevelingen (The Netherlands) was characterized, and the ability of the microorganisms to carry out anaerobic oxidation of methane coupled to sulfate reduction was assessed in activity tests. In vitro activity tests of the sediment with methane and sulfate demonstrated sulfide production coupled to the simultaneous consumption of sulfate and methane at approximately equimolar ratios over a period of 150 days. The maximum sulfate reduction rate was 5 μmol sulfate per gram dry weight per day during the incubation period. Diverse archaeal and bacterial clades were retrieved from the sediment with the majority of them clustered with Euryarchaeota, Thaumarcheota, Bacteroidetes, and Proteobacteria. The 16S rRNA gene sequence analysis showed that the sediment from marine Lake Grevelingen contained anaerobic methanotrophic Archaea (ANME) and methanogens as archaeal clades with a role in the methane cycling. ANME at the studied site mainly belong to the ANME-3 clade. This study provides one of the few reports for the presence of ANME-3 in a shallow coastal sediment. Sulfate-reducing bacteria from Desulfobulbus clades were found among the sulfate reducers, however, with very low relative abundance. Desulfobulbus has previously been commonly found associated with ANME, whereas in our study, ANME-3 and Desulfobulbus were not observed simultaneously in clusters, suggesting the possibility of independent AOM by ANME-3.

  9. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    OpenAIRE

    Farida Crisnaningtyas; Hanny Vistanty

    2016-01-01

    Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr) pada kisaran OLR (Organic Loading Rate) 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih ...

  10. Anaerobes in pleuropulmonary infections

    Directory of Open Access Journals (Sweden)

    De A

    2002-01-01

    Full Text Available A total of 76 anaerobes and 122 aerobes were isolated from 100 patients with pleuropulmonary infections, e.g. empyema (64, pleural effusion (19 and lung abscess (13. In 14% of the patients, only anaerobes were recovered, while a mixture of aerobes and anaerobes was encountered in 58%. From all cases of lung abscess, anaerobic bacteria were isolated, alone (04 or along with aerobic bacteria (13. From empyema and pleural effusion cases, 65.6% and 68.4% anaerobes were recovered respectively. Amongst anaerobes, gram negative anaerobic bacilli predominated (Prevotella melaninogenicus 16, Fusobacterium spp. 10, Bacteroides spp. 9, followed by gram positive anaerobic cocci (Peptostreptococcus spp. 31. Coliform bacteria (45 and Pseudomonas aeruginosa (42 were the predominant aerobic isolates.

  11. Potential of Rhodobacter capsulatus Grown in Anaerobic-Light or Aerobic-Dark Conditions as Bioremediation Agent for Biological Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Stefania Costa

    2017-02-01

    Full Text Available The use of microorganisms to clean up wastewater provides a cheaper alternative to the conventional treatment plant. The efficiency of this method can be improved by the choice of microorganism with the potential of removing contaminants. One such group is photosynthetic bacteria. Rhodobacter capsulatus is a purple non-sulfur bacterium (PNSB found to be capable of different metabolic activities depending on the environmental conditions. Cell growth in different media and conditions was tested, obtaining a concentration of about 108 CFU/mL under aerobic-dark and 109 CFU/mL under anaerobic-light conditions. The biomass was then used as a bioremediation agent for denitrification and nitrification of municipal wastewater to evaluate the potential to be employed as an additive in biological wastewater treatment. Inoculating a sample of mixed liquor withdrawn from the municipal wastewater treatment plant with R. capsulatus grown in aerobic-dark and anaerobic-light conditions caused a significant decrease of N-NO3 (>95%, N-NH3 (70% and SCOD (soluble chemical oxygen demand (>69%, independent of the growth conditions. A preliminary evaluation of costs indicated that R. capsulatus grown in aerobic-dark conditions could be more convenient for industrial application.

  12. The effect of extensive interval training at altitude on the physiological, aerobic, anaerobic and various blood parameters of athletes

    Directory of Open Access Journals (Sweden)

    Kaya Ismail

    2016-01-01

    Full Text Available In this research, it was aimed to compare the physiological performances of athletes at sea level, at high altitude and 8 days after returning back to sea level on the basis of certain blood parameters, pulse and blood pressure. 12 male athletes between the ages of 19 and 23 voluntarily participated in the research. The subjects were exposed to endurance training at high altitude and at sea level between 09.00 and 11.00 in the morning. The subjects’ erythrocyte (RBC, leucocyte (WBC, haemoglobin (Hb, haematocrit (HCT, systolic blood pressure at rest (SBPR and diastolic blood pressure at rest (DBPR, heart rate at rest (HRR, aerobic (20m shuttle run test and anaerobic capacity (vertical jump levels were tested at sea level, on the 15th day at high altitude (3120m and 8 days after returning back to sea level. Statistical analysis comprised of t-test and the significance level of the results was accepted at (P<0.05. As a result of the research the following were determined: It can be said that high altitude trainings for fifteen days included in the annual training program of athletes can improve their performance.

  13. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium in different aquifer materials. Final report

    International Nuclear Information System (INIS)

    Rueden, H.; Maue, G.; Stroetmann, I.; Hornemann, C.; Seichter, M.; Pekdeger, A.; Taute, T.; Winkler, A.; Lange, D.; Majerczyk, D.; Meyer, T.

    1998-01-01

    In this research project the influence of autochthonous micro-organisms on immobilisation and remobilization of Technetium and Selenium was investigated. Both radionuclides are part of the nuclear fuel waste (Tc app. 6%). Former investigations have shown, that immobilisation behaviour of both elements can be influenced by micro-organisms. The autochthonous population of micro-organisms in deep sediments and their influence on immobilisation of Tc and Se was investigated in this study. For this reason recirculation column tests were carried out. Absolutely sterile and anaerobic handling is necessary handling the sediments and waters used for the experiments. Special methods for sampling, storage and handling were developed. More than 30 sediments have been investigated. The number of colony forming units (CFU) has always been relatively low (less than E+06 CFU). The results of recirculation column tests with autochthonous micro-organisms were compared with sterilized (Co-60) parallel tests and were verified with the results of hydrochemical equilibration code PHREEQUE. Instead of the allochthonous micro-orgamisms the autochthonous organisms showed no significant fixation of the radionuclides due to microbial activity. This is true for various temperatures of 10 C (aquifer temperature) and 20 C (normal laboratory temperature). An addition of an inoculum of the autochthonous micro-organisms developed at breeding temperature of 10 and 20 C had no influence on the radionuclide mobility. Performing conventional laboratory experiments you have to consider an overestimated retardation capacity because of an inevitable contamination with allochthonous micro-organisms. (orig.) [de

  14. Anaerobic methanotrophic communities thrive in deep submarine permafrost.

    Science.gov (United States)

    Winkel, Matthias; Mitzscherling, Julia; Overduin, Pier P; Horn, Fabian; Winterfeld, Maria; Rijkers, Ruud; Grigoriev, Mikhail N; Knoblauch, Christian; Mangelsdorf, Kai; Wagner, Dirk; Liebner, Susanne

    2018-01-22

    Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and δ 13 C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2 Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.

  15. Problems Caused by Microbes and Treatment Strategies Anaerobic Hydrocarbon Biodegradation and Biocorrosion: A Case Study

    Science.gov (United States)

    Suflita, Joseph M.; Duncan, Kathleen E.

    The anaerobic biodegradation of petroleum hydrocarbons is important for the intrinsic remediation of spilt fuels (Gieg and Suflita, 2005), for the conversion of hydrocarbons to clean burning natural gas (Gieg et al., 2008; Jones et al., 2008) and for the fundamental cycling of carbon on the planet (Caldwell et al., 2008). However, the same process has also been implicated in a host of difficult problems including reservoir souring (Jack and Westlake, 1995), oil viscosity alteration (Head et al., 2003), compromised equipment performance and microbiologically influenced corrosion (Duncan et al., 2009). Herein, we will focus on the role of anaerobic microbial communities in catalysing biocorrosion activities in oilfield facilities. Biocorrosion is a costly problem that remains relatively poorly understood. Understanding of the underlying mechanisms requires reliable information on the carbon and energy sources supporting biofilm microorganisms capable of catalysing such activities.

  16. Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology

    Directory of Open Access Journals (Sweden)

    Kaushik Venkiteshwaran

    2015-01-01

    Full Text Available Anaerobic digestion (AD involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1 hydrolysis rate, (2 direct interspecies electron transfer to methanogens, (3 community structure–function relationships of methanogens, (4 methanogenesis via acetate oxidation, and (5 bioaugmentation to study community–activity relationships or improve engineered bioprocesses.

  17. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    Science.gov (United States)

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  18. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    Science.gov (United States)

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  19. The past, present and future of fluorescent protein tags in anaerobic protozoan parasites.

    Science.gov (United States)

    Morin-Adeline, Victoria; Šlapeta, Jan

    2016-03-01

    The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.

  20. The utility of anaerobic blood culture in detecting facultative anaerobic bacteremia in children.

    Science.gov (United States)

    Shoji, Kensuke; Komuro, Hisako; Watanabe, Yasushi; Miyairi, Isao

    2013-08-01

    Routine anaerobic blood culture is not recommended in children because obligate anaerobic bacteremia is rare in the pediatric population. However, a number of facultative anaerobic bacteria can cause community and hospital acquired infections in children and the utility of anaerobic blood culture for detection of these organisms is still unclear. We conducted a retrospective analysis of all blood culture samples (n = 24,356) at a children's hospital in Japan from October 2009 to June 2012. Among the samples that had paired aerobic and anaerobic blood cultures, 717 samples were considered clinically significant with 418 (58%) organisms detected from both aerobic and anaerobic cultures, 167 (23%) detected only from aerobic culture and 132 (18%) detected only from anaerobic culture. While most facultative anaerobes were detectable by aerobic culture, over 25% of Enterobacteriaceae and 15% of Staphylococcus sp. were detected from anaerobic cultures bottles only, suggesting its potential role in selected settings. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    and xylose and to tolerate the inhibitory compounds present in lignocellulosic hydrolysates is therefore apparent. Several thermophilic anaerobic xylan degrading bacteria from our culture collection (EMB group at BioCentrum-DTU) have been screened for a potential ethanol producer from hemicellulose...... hydrolysates, and out of the screening test, one particular strain (A10) was selected for the best performance. The strain was morphologically and physiologically characterized as Thermoanaerobacter mathranii strain A10. Unlike other thermophilic anaerobic bacteria, the wild-type strain Thermoanaerobacter...... Thermoanaerobacter BG1L1 was further studied. The experiments were carried out in a continuous immobilized reactor system (a fluidized bed reactor), which is likely to be the process design configuration for xylose fermentation in a Danish biorefinery concept for production of fuel ethanol. The immobilization...

  2. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    OpenAIRE

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned meta...

  3. Morphology and physiology of the dimorphic fungus Mucor circinelloides (syn. M. racemosus) during anaerobic growth

    DEFF Research Database (Denmark)

    Lübbehüsen, Tina Louise; Nielsen, Jens; Mcintyre, Mhairi

    2003-01-01

    The dimorphic Mucor circinelloides requires an anaerobic atmosphere and the presence of 30% CO2 to grow as a multipolar budding yeast, otherwise hyphal growth predominates. Establishing other means to control the morphology would be a distinct advantage in the development of a fermentation process...

  4. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    Science.gov (United States)

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  5. Identification of periodontopathogen microorganisms by PCR technique

    Directory of Open Access Journals (Sweden)

    Milićević Radovan

    2008-01-01

    Full Text Available INTRODUCTION Periodontitis is an inflammatory disease of the supporting tissues of teeth and is a major cause of tooth loss in adults. The onset and progression of periodontal disease is attributed to the presence of elevated levels of a consortium of pathogenic bacteria. Gram negative bacteria, mainly strict anaerobes, play the major role. OBJECTIVE The present study aimed to assess the presence of the main types of microorganisms involved in the aetiopathogenesis of periodontal disease: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Treponema denticola, Tanerella forsythia and Prevotella intermedia in different samples collected from the oral cavity of 90 patients diagnosed with periodontitis. METHOD Bacterial DNA detection was performed in diverse biological materials, namely in dental plaque, gingival tissue and saliva, by means of multiplex PCR, a technique that allows simultaneous identification of two different bacterial genomes. RESULTS In the dental plaque of the periodontitis patients, Treponema denticola dominated. In the gingival tissue, Tannerella forsythia and Treponema denticola were the microbiota most frequently detected, whilst in saliva Treponema denticola and Eikenella corrodens were found with the highest percentage. CONCLUSION The identification of microorganisms by multiplex PCR is specific and sensitive. Rapid and precise assessment of different types of periodontopathogens is extremely important for early detection of the infection and consequently for the prevention and treatment of periodontal disease. In everyday clinical practice, for routine bacterial evaluation in patients with periodontal disease, the dental plaque is the most suitable biological material, because it is the richest in periodontal bacteria.

  6. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    Science.gov (United States)

    Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  7. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    International Nuclear Information System (INIS)

    Martinez-Garcia, Gregorio; Johnson, Anbu Clemensis; Bachmann, Robert T.; Williams, Ceri J.; Burgoyne, Andrea; Edyvean, Robert G.J.

    2009-01-01

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m -3 day -1 during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L biogas L reactor -1 day -1 , respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  8. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, Gregorio [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom); Johnson, Anbu Clemensis, E-mail: acj265@yahoo.com [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Bachmann, Robert T. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 1988 Vendor City, 7800 Taboh Naning, Alor Gajah, Melaka (Malaysia); Williams, Ceri J. [Yorkshire-Forward, Victoria House, Victoria Place, LS11 5AE Leeds (United Kingdom); Burgoyne, Andrea; Edyvean, Robert G.J. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m{sup -3} day{sup -1} during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L{sub biogas}L{sub reactor}{sup -1}day{sup -1}, respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  9. [Physiological differences between cycling and running].

    Science.gov (United States)

    Millet, Grégoire

    2009-08-05

    This review compares the differences in systemic responses (VO2max, anaerobic threshold, heart rate and economy) and in underlying mechanisms of adaptation (ventilatory and hemodynamic and neuromuscular responses) between cycling and running. VO2max is specific to the exercise modality. Overall, there is more physiological training transfer from running to cycling than vice-versa. Several other physiological differences between cycling and running are discussed: HR is different between the two activities both for maximal and sub-maximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than running due to mechanical constraints. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

  10. Micro-Organ Device

    Science.gov (United States)

    Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  11. The vaginal microbiota, host defence and reproductive physiology

    Science.gov (United States)

    Smith, Steven B

    2016-01-01

    Abstract The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture‐independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive‐aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic‐acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non‐Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine‐tuned interaction is key to maintaining women's reproductive health. PMID:27373840

  12. Physiological characteristics of bacteria isolated from water brines within permafrost

    Science.gov (United States)

    Shcherbakova, V.; Rivkina, E.; Laurinavichuis, K.; Pecheritsina, S.; Gilichinsky, D.

    2004-01-01

    In the Arctic there are lenses of overcooled water brines (cryopegs) sandwiched within permafrost marine sediments 100 120 thousand years old. We have investigated the physiological properties of the pure cultures of anaerobic Clostridium sp. strain 14D1 and two strains of aerobic bacteria Psychrobacter sp. isolated from these cryopegs. The structural and physiological characteristics of new bacteria from water brines have shown their ability to survive and develop under harsh conditions, such as subzero temperatures and high salinity.

  13. Study of Transport Characteristics of Motile Microorganisms Using Micro-Scale Devices

    Science.gov (United States)

    Parashar, R.; Scheibe, T. D.; Plymale, A.; Hu, D.; Kelly, R.; Frederick, J. M.; Yang, X.; Sund, N. L.

    2016-12-01

    Accurate numerical models of microbial transport are needed to support design and evaluation of bioremediation implementations. A sequence of micro-scale experiments using advanced microfluidics and imaging techniques was conducted to quantify the movement patterns of individual microbes and their interactions with solid surfaces in unobstructed medium and simple pore geometries. The set of bacteria studied encompasses strictly anaerobic, facultatively anaerobic, fermentative, and facultatively autotrophic species, with capacities to reduce a range of metals and radionuclides, as well as nitrate, using a variety of electron donors, including acetate, lactate, carbohydrates, and molecular hydrogen. Motion of motile microorganisms recorded over time provides results that can be analyzed to determine the character and several statistical attributes of microbial motion. Individual tracks on the order of several seconds to a few minutes in duration are characterized to provide information on 1) the length (distance in microns) of microbial runs, 2) velocity distributions along individual trajectories, and 3) the angle between the directions of sequential runs. Analysis of the microbial trajectories elucidates parameters related to dynamics of their motion. Comparison of these parameters with those of a classical Brownian motion yields crucial information on selection of appropriate model to account for microbial motility in relevant applications.

  14. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    Directory of Open Access Journals (Sweden)

    Farida Crisnaningtyas

    2016-05-01

    Full Text Available Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr pada kisaran OLR (Organic Loading Rate 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih lanjut dengan menggunakan dua opsi proses: (1 fisika-kimia, dan (2 aerob. Koagulan alumunium sulfat dan flokulan kationik memberikan efisiensi penurunan COD tertinggi (73% pada kecepatan putaran masing-masing 100 rpm dan 40 rpm. Uji coba aerob dilakukan pada kisaran MLSS antara 4000-5000 mg/L dan mampu memberikan efisiensi penurunan COD hingga 97%. Hasil uji coba menunjukkan bahwa efisiensi penurunan COD total yang dapat dicapai dengan menggunakan teknologi anaerob-aerob adalah 97%, sedangkan kombinasi anaerob-koagulasi-flokulasi hanya mampu menurunkan COD total sebesar 72,53%. Berdasarkan hasil tersebut, kombinasi proses anaerob-aerob merupakan teknologi yang potensial untuk diaplikasikan dalam sistem pengolahan limbah cair industri farmasi. 

  15. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  16. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  17. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  18. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  19. Final Technical Report. Origins of subsurface microorganisms: Relating laboratory microcosm studies to a geologic time scale; FINAL

    International Nuclear Information System (INIS)

    Kieft, Thomas; Amy, Penny S.; Phillips, Fred M.

    1998-01-01

    This project was conducted as part of the Department of Energy's Deep Subsurface Science Program. It was part of a larger effort to determine the origins of subsurface microorganisms. Two hypotheses have been suggested for the origins of subsurface microorganisms: (1) microorganisms were deposited at the time of (or shortly after) geologic deposition of rocks and sediments (the in situ survival hypothesis), and (2) microorganisms have been transported from surface environments to subsurface rocks and sediments since the time of geologic deposition (transport hypothesis). These two hypotheses are not mutually exclusive. Depending on the geological setting, either one or both of these hypotheses may best explain microbial origins. Our project focused on the in situ survival hypothesis. We tested the hypothesis that microorganisms (individuals populations and communities) can survive long-term sequestration within subsurface sediments. Other objectives were to identify geologic conditions that favor long-term survival, identify physiological traits of microorganisms that favor long-term survival, and determine which groups of microorganisms are most likely to survive long-term sequestration in subsurface sediments. We tested this hypothesis using a combination of pure culture techniques in laboratory microcosms under controlled conditions and field experiments with buried subsurface sediments

  20. A Simple Method for the Detection of Long-Chain Fatty Acids in an Anaerobic Digestate Using a Quartz Crystal Sensor

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2016-12-01

    Full Text Available In anaerobic digestion (AD, long-chain fatty acids (LCFAs produced by hydrolysis of lipids, exhibit toxicity against microorganisms when their concentration exceeds several millimolar. An absorption detection system using a quartz crystal microbalance (QCM was developed to monitor the LCFA concentration during an anaerobic digester’s operation treating oily organic waste. The dissociation of the LCFAs considerably improved the sensor response and, moreover, enabled it to specifically detect LCFA from the mixture of LCFA and triglyceride. Under alkaline conditions, the frequency-shift rates of the QCM sensor linearly increased in accordance with palmitic acid concentration in the range of 0–100 mg/L. Frequency changes caused by anaerobic digestate samples were successfully measured after removing suspended solids and adjusting the pH to 10.7. Finally, the QCM measurements for digestate samples demonstrated that frequency-shift rates are highly correlated with LCFA concentrations, which confirmed that the newly developed QCM sensor is helpful for LCFA monitoring in terms of rapidness and usability.

  1. Anaerobic biodegradation of halogenated and nonhalogenated N-, s-, and o-heterocyclic compounds in aquifer slurries

    Science.gov (United States)

    Adrian, Neal R.; Suflita, Joseph M.

    1994-01-01

    The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay

  2. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    Science.gov (United States)

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable. © 2014 John Wiley & Sons Ltd.

  3. Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage

    OpenAIRE

    Lima,Cláudio Antonio Andrade; Ribeiro,Rogers; Foresti,Eugenio; Zaiat,Marcelo

    2005-01-01

    This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the p...

  4. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  5. Developing an optimized treatment strategy for anaerobic waste water cleaning; Entwicklung einer optimierten Behandlungstrategie fuer die anaerobe Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, W.; Manz, W.; Szewzyk, U.; Kozariszczuk, M.; Kraume, M. [Technische Univ. Berlin (Germany)

    1999-07-01

    The paper looks into the opportunities for and limitations of using oligonucleotide probes for in-situ hybridisation in anaerobic systems. As is demonstrated, a large part of the populations can be detected using this method and different physiological groups like sulfate reducers and methanogens can be verified with a high resolution. The technique permits assessing the physiological activity of these groups so that inferences to reactor performance can be drawn. Various physiological groups such as fermenters and homoacetogenous bacteria so far can be detected with inadequate resolution only. Ongoing work with a view to amending this is described. (orig.) [German] Dieser Beitrag beschaeftigt sich mit den Moeglichkeiten und Limitierungen des Einsatzes von Oligonukleotidsonden zur in situ Hybridisierung in anaeroben Systemen. Es wird gezeigt, dass ein grosser Teil der Population mit Hilfe dieser Methode erfasst werden kann und verschiedene physiologische Gruppen wie die Sulfatreduzierer und die Methanogenen mit hoher Aufloesung nachgewiesen werden koennen. Die physiologische Aktivitaet dieser Gruppen kann abgeschaetzt werden und damit sind Rueckschluesse auf die Reaktorleistung moeglich. Verschiedene physiologische Gruppen wie die Gaerer und die homoacetogenen Bakterien werden bisher nur in unzureichender Aufloesung erfasst. Die derzeit laufenden Arbeiten zur Loesung dieser Probleme werden beschrieben. (orig.)

  6. Enhancement options for the utilisation of nitrogen rich animal by-products in anaerobic digestion.

    Science.gov (United States)

    Resch, Christoph; Wörl, Alexander; Waltenberger, Reinhold; Braun, Rudolf; Kirchmayr, Roland

    2011-02-01

    This study focuses on the enhancement of an Austrian anaerobic digestion plant at a slaughterhouse site which exclusively uses animal by-products as substrate. High ammonia concentrations from protein degradation cause severe inhibitions of anaerobic microorganisms. For improving the current situation the COD:TKN ratio is widened by (a) ammonia stripping directly out of the process and (b) addition of a C source to the substrate. Different OLR and HRT were tested in continuous experiments to simulate new operating conditions. The results show that the addition of carbon cannot improve fermentation capacity. The reduction of ammonia boosts the degradation: After reduction of TKN from 7.5 to 4.0 g kg(-1) the initially high VFA concentration decreased and the COD degradation was improved by 55.5%. Hence, the implementation of the new N reduction process facilitates either the increase of the OLR by 61% or the reduction of the HRT by 25%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Effects of mini trampoline exercise on male gymnasts' physiological parameters: a pilot study.

    Science.gov (United States)

    Karakollukçu, M; Aslan, C S; Paoli, A; Bianco, A; Sahin, F N

    2015-01-01

    There are limited studies that indicate the effects of trampoline exercise on strength and other physiological parameters. This study aims to determine whether twelve weeks of trampoline exercise would have any effects on the physical and physiological parameters of male gymnasts. A number of 20 intercollegiate competitive male gymnasts (as experimental group) and 20 non-athlete male (as control group) participated voluntarily. Their anthropometric characteristics and the anaerobic power were measured and their back strength, vertical jump, standing long jump and 20 meter sprint performances were measured. As a result; whereas 12 weeks of trampoline exercise improved standing long jump (before 242.35±3.40 cm; after 251.70±2.95 cm) and also vertical jump, 20 meter sprint speed and anaerobic power of subjects. We did not observe significant changes on back strength performances (before 148.32±5.73 kg; after 148.10±5.71). The trampoline exercise protocol improved significantly speed, jump and anaerobic performances of the experimental group, while did not induced any changes on back strength performances. More studies are necessary to confirm the interesting results coming from this pilot intervention.

  8. Biochemistry of Catabolic Reductive Dehalogenation.

    Science.gov (United States)

    Fincker, Maeva; Spormann, Alfred M

    2017-06-20

    A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.

  9. Production of γ-aminobutyric acid by microorganisms from different food sources.

    Science.gov (United States)

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  10. Proteolysis in hyperthermophilic microorganisms

    Directory of Open Access Journals (Sweden)

    Donald E. Ward

    2002-01-01

    Full Text Available Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.

  11. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  12. Prediction of Rowing Ergometer Performance from Functional Anaerobic Power, Strength and Anthropometric Components

    Directory of Open Access Journals (Sweden)

    Akça Firat

    2014-07-01

    Full Text Available The aim of this research was to develop different regression models to predict 2000 m rowing ergometer performance with the use of anthropometric, anaerobic and strength variables and to determine how precisely the prediction models constituted by different variables predict performance, when conducted together in the same equation or individually. 38 male collegiate rowers (20.17 ± 1.22 years participated in this study. Anthropometric, strength, 2000 m maximal rowing ergometer and rowing anaerobic power tests were applied. Multiple linear regression procedures were employed in SPSS 16 to constitute five different regression formulas using a different group of variables. The reliability of the regression models was expressed by R2 and the standard error of estimate (SEE. Relationships of all parameters with performance were investigated through Pearson correlation coefficients. The prediction model using a combination of anaerobic, strength and anthropometric variables was found to be the most reliable equation to predict 2000 m rowing ergometer performance (R2 = 0.92, SEE= 3.11 s. Besides, the equation that used rowing anaerobic and strength test results also provided a reliable prediction (R2 = 0.85, SEE= 4.27 s. As a conclusion, it seems clear that physiological determinants which are affected by anaerobic energy pathways should also get involved in the processes and models used for performance prediction and talent identification in rowing.

  13. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics.

    Science.gov (United States)

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata; Pietrzak, Anna

    2016-01-01

    Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles.

  14. THE PHYSIOLOGICAL DEMANDS OF TABLE TENNIS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Miran Kondric

    2013-09-01

    Full Text Available Although table tennis has a tradition lasting more than 100 years, relatively little is known about players' physiological requirements - especially during competition. In this review we discuss research studies that have led to our current understanding of how the body functions during table tennis training and competition and how this is altered by training. Match and practice analysis of the table tennis game indicates that during intense practice and competition it is predominantly the anaerobic alactic system that is called into play, while the endurance system is relied on to recovery the anaerobic stores used during such effort. It is thus important for coaches to keep in mind that, while the anaerobic alactic system is the most energetic system used during periods of exertion in a table tennis game, a strong capacity for endurance is what helps a player recover quicker for the following match and the next day of competition. This paper provides a review of specific studies that relate to competitive table tennis, and highlights the need for training and research programs tailored to table tennis

  15. Effects of psychological priming, video, and music on anaerobic exercise performance.

    Science.gov (United States)

    Loizou, G; Karageorghis, C I

    2015-12-01

    Peak performance videos accompanied by music can help athletes to optimize their pre-competition mindset and are often used. Priming techniques can be incorporated into such videos to influence athletes' motivational state. There has been limited empirical work investigating the combined effects of such stimuli on anaerobic performance. The present study examined the psychological and psychophysiological effects of video, music, and priming when used as a pre-performance intervention for an anaerobic endurance task. Psychological measures included the main axes of the circumplex model of affect and liking scores taken pre-task, and the Exercise-induced Feeling Inventory, which was administered post-task. Physiological measures comprised heart rate variability and heart rate recorded pre-task. Fifteen males (age = 26.3 ± 2.8 years) were exposed to four conditions prior to performing the Wingate Anaerobic Test: music-only, video and music, video with music and motivational primes, and a no-video/no-music control. Results indicate that the combined video, music, and primes condition was the most effective in terms of influencing participants' pre-task affect and subsequent anaerobic performance; this was followed by the music-only condition. The findings indicate the utility of such stimuli as a pre-performance technique to enhance athletes' or exercisers' psychological states. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Anaerobic granular sludge for simultaneous biomethanation of synthetic wastewater and CO with focus on the identification of CO-converting microorganisms

    DEFF Research Database (Denmark)

    Jing, Yuhang; Campanaro, Stefano; Kougias, Panagiotis

    2017-01-01

    to suspended sludge (less than 0.25 atm) as previously reported. Continuous experiments in upflow anaerobic sludge blanket (UASB) reactors showed AGS could efficiently convert synthetic wastewater and CO into methane by applying gas-recirculation. The addition of CO to UASB reactor enhanced...

  17. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2014-01-01

    Full Text Available Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC assay and the minimum bactericidal concentration (MBC assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra. Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents.

  18. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  19. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste.

    Science.gov (United States)

    He, Ruo; Yao, Xing-Zhi; Chen, Min; Ma, Ruo-Chan; Li, Hua-Jun; Wang, Chen; Ding, Shen-Hua

    2018-04-07

    Volatile sulfur compounds (VSCs) are not only the main source of malodor in anaerobic treatment of organic waste, but also pose a threat to human health. In this study, VSCs production and microbial community was investigated during the anaerobic degradation of fish and pork waste. The results showed that after the operation of 245 days, 94.5% and 76.2% of sulfur compounds in the fish and pork waste was converted into VSCs. Among the detected VSCs including H 2 S, carbon disulfide, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide, methanethiol was the major component with the maximum concentration of 4.54% and 3.28% in the fish and pork waste, respectively. The conversion of sulfur compounds including total sulfur, SO 4 2- -S, S 2- , methionine and cysteine followed the first-order kinetics. Miseq sequencing analysis showed that Acinetobacter, Clostridium, Proteus, Thiobacillus, Hyphomicrobium and Pseudomonas were the main known sulfur-metabolizing microorganisms in the fish and pork waste. The C/N value had most significant influence on the microbial community in the fish and pork waste. A main conversion of sulfur compounds with CH 3 SH as the key intermediate was firstly hypothesized during the anaerobic degradation of fish and pork waste. These findings are helpful to understand the conversion of sulfur compounds and to develop techniques to control ordor pollution in the anaerobic treatment of organic waste. Copyright © 2018. Published by Elsevier Ltd.

  20. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor

    NARCIS (Netherlands)

    Roest, de K.; Altinbas, M.; Paulo, P.L.; Heilig, H.G.H.J.; Akkermans, A.D.L.; Smidt, H.; Vos, de W.M.; Stams, A.J.M.

    2005-01-01

    To gain insight into the microorganisms involved in direct and indirect methane formation from methanol in a laboratory-scale thermophilic (55°C) methanogenic bioreactor, reactor sludge was disrupted and serial dilutions were incubated in specific growth media containing methanol and possible

  1. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    Science.gov (United States)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  2. Mineralization of 14C-Pirimiphos-Methyl in Soil Under Aerobic and Anaerobic Conditions

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Farghly, M.; El-Maghrby, S.

    2006-01-01

    The mineralization of 14 C-ring labelled pirimiphos-methyl in clay loam soil was determined in a three months laboratory incubation period under anaerobic and aerobic conditions. Evolution of 14 CO2 increased with time and reached 9.2% and 12 %, of the initial 14 C-concentration , within 90 days in case of anaerobic and aerobic conditions, respectively, at that time, soil contained about 61.5% of the applied dose as extractable residues under anaerobic conditions and 59% under aerobic conditions. the unextractable pesticide residues gradually increased with time and the highest binding capacity of about 11%-13% was observed after 90 days of incubation. the total 14 C-activity recovered from soil was generally between 82% and 92% of the applied radiocarbon. the nature of methanolic 14 C-residues was determined by chromatographic analysis and the results revealed the presence of pirimiphos- methyl as a main product together with its phenol. the principle of radio-respirometry has been used for evaluating the effect of different application rates of pirimiphos-methyl on soil microbial activity using U- 14 C-glucose as a substrate. At two concentrations used, pirimiphos-methyl showed an inhibition in the rate of 14 Co2 evolution over 14 days of incubation as a result of oxidation of 14 C-glucose by microorganisms especially in case of high concentration

  3. Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose.

    Science.gov (United States)

    Panagiotou, Gianni; Christakopoulos, Paul; Grotkjaer, Thomas; Olsson, Lisbeth

    2006-09-01

    Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking advantage of the regeneration of the cofactor NAD(+) during the denitrification process. In batch cultivations, nitrate sustained growth under anaerobic conditions (1.21 g L(-1) biomass) and simultaneously a maximum yield of 0.55 moles of ethanol per mole of xylose was achieved, whereas substitution of nitrate with ammonium limited the growth significantly (0.15 g L(-1) biomass). Using nitrate, the maximum acetate yield was 0.21 moles per mole of xylose and no xylitol excretion was observed. Furthermore, the network structure in the central carbon metabolism of F. oxysporum was characterized in steady state. F. oxysporum grew anaerobically on [1-(13)C] labelled glucose and unlabelled xylose in chemostat cultivation with nitrate as nitrogen source. The use of labelled substrate allowed the precise determination of the glucose and xylose contribution to the carbon fluxes in the central metabolism of this poorly described microorganism. It was demonstrated that dissimilatory nitrate reduction allows F. oxysporum to exhibit typical respiratory metabolic behaviour with a highly active TCA cycle and a large demand for NADPH.

  4. Xylanase and cellulase activities during anaerobic decomposition of three aquatic macrophytes.

    Science.gov (United States)

    Nunes, Maíra F; da Cunha-Santino, Marcela B; Bianchini, Irineu

    2011-01-01

    Enzymatic activity during decomposition is extremely important to hydrolyze molecules that are assimilated by microorganisms. During aquatic macrophytes decomposition, enzymes act mainly in the breakdown of lignocellulolytic matrix fibers (i.e. cellulose, hemicellulose and lignin) that encompass the refractory fraction from organic matter. Considering the importance of enzymatic activities role in decomposition processes, this study aimed to describe the temporal changes of xylanase and cellulose activities during anaerobic decomposition of Ricciocarpus natans (freely-floating), Oxycaryum cubense (emergent) and Cabomba furcata (submersed). The aquatic macrophytes were collected in Óleo Lagoon, Luiz Antonio, São Paulo, Brazil and bioassays were accomplished.  Decomposition chambers from each species (n = 10) were set up with dried macrophyte fragments and filtered Óleo Lagoon water. The chambers were incubated at 22.5°C, in the dark and under anaerobic conditions. Enzymatic activities and remaining organic matter were measured periodically during 90 days. The temporal variation of enzymes showed that C. furcata presented the highest decay and the highest maximum enzyme production. Xylanase production was higher than cellulase production for the decomposition of the three aquatic macrophytes species.

  5. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  6. Efficacy of an anaerobic swab transport system to maintain aerobic and anaerobic microorganism viability after storage at -80 degrees C.

    Science.gov (United States)

    Musser, Jeffrey M B; Gonzalez, Rosa

    2011-01-01

    An Amies agar gel swab transport system was evaluated for its ability to maintain bacterial viability and relative quantity after freezing at -80°C. Nine American Type Culture Collection (ATCC) bacterial strains were used: 3 anaerobic strains (Propionibacterium acnes, Peptostreptococcus anaerobius, and Clostridium sporogenes) and 6 facultative or strict aerobic bacterial strains (Stenotrophomonas maltophilia, Escherichia coli ([ATCC 25922 and ATCC 11775], Salmonella enterica subsp. enterica serovar Typhimurium, Staphylococcus saprophyticus, and Lactobacillus casei). The bacterial species were chosen because they corresponded to bacteria identified in psittacine feces and cloacal samples. There were no significant differences between growth scores at baseline and after storage at -80°C for 40 days for any of the bacteria examined after 48 and 72 hr of incubation, with the exception of P. anaerobius. For P. anaerobius, there was a significant reduction (P < 0.001) in the growth score after storage at -80°C for 40 days from that of the baseline; however, the bacteria were still viable. The tested swab transport system may be useful when lengthy storage and transport times necessitate freezing samples prior to culture.

  7. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-10-15

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.

  8. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  9. Nuclear techniques in plant pathology 1. Plant disease control and physiology of parasitism

    International Nuclear Information System (INIS)

    Menten, J.O.M.; Ando, A.; Tulmann Neto, A.

    1986-01-01

    Nuclear techniques are advantageously used in several areas of plant pathology. Among them are: induction of mutation for disease resistance, studies with pesticides, disease control through pathogen inactivation, induction of variability and stimulation in pathogens and natural enemies, studies of microorganism physiology and diseased plant physiology, effect of gamma radiation on pesticides, technology of pesticides application, etc. (Author) [pt

  10. Do physiological measures predict selected CrossFit(®) benchmark performance?

    Science.gov (United States)

    Butcher, Scotty J; Neyedly, Tyler J; Horvey, Karla J; Benko, Chad R

    2015-01-01

    CrossFit(®) is a new but extremely popular method of exercise training and competition that involves constantly varied functional movements performed at high intensity. Despite the popularity of this training method, the physiological determinants of CrossFit performance have not yet been reported. The purpose of this study was to determine whether physiological and/or muscle strength measures could predict performance on three common CrossFit "Workouts of the Day" (WODs). Fourteen CrossFit Open or Regional athletes completed, on separate days, the WODs "Grace" (30 clean and jerks for time), "Fran" (three rounds of thrusters and pull-ups for 21, 15, and nine repetitions), and "Cindy" (20 minutes of rounds of five pull-ups, ten push-ups, and 15 bodyweight squats), as well as the "CrossFit Total" (1 repetition max [1RM] back squat, overhead press, and deadlift), maximal oxygen consumption (VO2max), and Wingate anaerobic power/capacity testing. Performance of Grace and Fran was related to whole-body strength (CrossFit Total) (r=-0.88 and -0.65, respectively) and anaerobic threshold (r=-0.61 and -0.53, respectively); however, whole-body strength was the only variable to survive the prediction regression for both of these WODs (R (2)=0.77 and 0.42, respectively). There were no significant associations or predictors for Cindy. CrossFit benchmark WOD performance cannot be predicted by VO2max, Wingate power/capacity, or either respiratory compensation or anaerobic thresholds. Of the data measured, only whole-body strength can partially explain performance on Grace and Fran, although anaerobic threshold also exhibited association with performance. Along with their typical training, CrossFit athletes should likely ensure an adequate level of strength and aerobic endurance to optimize performance on at least some benchmark WODs.

  11. Do physiological measures predict selected CrossFit® benchmark performance?

    Science.gov (United States)

    Butcher, Scotty J; Neyedly, Tyler J; Horvey, Karla J; Benko, Chad R

    2015-01-01

    Purpose CrossFit® is a new but extremely popular method of exercise training and competition that involves constantly varied functional movements performed at high intensity. Despite the popularity of this training method, the physiological determinants of CrossFit performance have not yet been reported. The purpose of this study was to determine whether physiological and/or muscle strength measures could predict performance on three common CrossFit “Workouts of the Day” (WODs). Materials and methods Fourteen CrossFit Open or Regional athletes completed, on separate days, the WODs “Grace” (30 clean and jerks for time), “Fran” (three rounds of thrusters and pull-ups for 21, 15, and nine repetitions), and “Cindy” (20 minutes of rounds of five pull-ups, ten push-ups, and 15 bodyweight squats), as well as the “CrossFit Total” (1 repetition max [1RM] back squat, overhead press, and deadlift), maximal oxygen consumption (VO2max), and Wingate anaerobic power/capacity testing. Results Performance of Grace and Fran was related to whole-body strength (CrossFit Total) (r=−0.88 and −0.65, respectively) and anaerobic threshold (r=−0.61 and −0.53, respectively); however, whole-body strength was the only variable to survive the prediction regression for both of these WODs (R2=0.77 and 0.42, respectively). There were no significant associations or predictors for Cindy. Conclusion CrossFit benchmark WOD performance cannot be predicted by VO2max, Wingate power/capacity, or either respiratory compensation or anaerobic thresholds. Of the data measured, only whole-body strength can partially explain performance on Grace and Fran, although anaerobic threshold also exhibited association with performance. Along with their typical training, CrossFit athletes should likely ensure an adequate level of strength and aerobic endurance to optimize performance on at least some benchmark WODs. PMID:26261428

  12. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  13. Physiological and anthropometric characteristics of top-level youth cross-country cyclists.

    Science.gov (United States)

    Fornasiero, Alessandro; Savoldelli, Aldo; Modena, Roberto; Boccia, Gennaro; Pellegrini, Barbara; Schena, Federico

    2018-04-01

    In the literature there is a lack of data about the development of top level athletes in cross-country mountain biking (XCO). The purpose of this study was to analyze anthropometric and physiological characteristics of some of the best XCO bikers aged between 13 and 16. The study involved 45 bikers (26 males and 19 females) belonging to a youth national team. The evaluations, consisting of anthropometric measures, incremental cycling tests (VO 2max , PPO, P@RCP), and 30 s Wingate Tests (PMax, PMean), were conducted over a lapse of 4 years. Our findings showed in bikers, already at young age, a specific athletic profile advantageous for XCO performance. At the age of 16, just before entering the junior category and competing at international level, male and female bikers showed physiological values normalized to the body mass comparable to those reported in literature for high level athletes (VO 2max >70 and >60 ml/kg/min, PPO >6.5 and >5.5 W/kg, respectively in males and females). The production of high power-to-weight ratios and high peaks of anaerobic power attests the presence of highly developed aerobic and anaerobic systems in young XCO cyclists reflecting the high physiological demand of this sport.

  14. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    Science.gov (United States)

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Alzate-Gaviria, Liliana M. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico); Perez-Hernandez, Antonino [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico); Eapen, D. [Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    Two laboratory scale anaerobic digestion systems for hydrogen production from organic fraction of municipal solid waste (OFMSW) and synthetic wastewater were compared in this study. One of them was formed by a coupled packed bed reactor (PBR) containing 19.4 L of OFMSW and the other an upflow anaerobic sludge bed (UASB) of 3.85 L. The reactors were inoculated with a mixture of non-anaerobic inocula. In the UASB the percentage of hydrogen yield reached 51% v/v and 127NmLH{sub 2}/gvs removed with a hydraulic retention time (HRT) of 24 h. The concentration of synthetic wastewater in the affluent was 7 g COD/L. For the PBR the percentage yield was 47% v/v and 99NmLH{sub 2}/gvs removed with a mass retention time (MRT) of 50 days and the organic load rate of 16 gvs (Grams Volatile Solids)/(kg-day). The UASB and PBR systems presented maximum hydrogen yields of 30% and 23%, respectively, which correspond to 4molH{sub 2}/mol glucose. These values are similar to those reported in the literature for the hydrogen yield (37%) in mesophilic range. The acetic and butyric acids were present in the effluent as by-products in watery phase. In this work we used non-anaerobic inocula made up of microorganism consortium unlike other works where pure inocula or that from anaerobic sludge was used. (author)

  16. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I.

    Science.gov (United States)

    Sekiguchi, Y; Takahashi, H; Kamagata, Y; Ohashi, A; Harada, H

    2001-12-01

    We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280-1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non-sulfur bacteria (GNSB) subdivision I, which contains a number of 16S rDNA clone sequences from various environmental samples but no cultured representatives. To investigate their function in the community and physiological traits, we attempted to isolate the yet-to-be-cultured microbes from the original granular sludge. The first attempt at isolation from the granules was, however, not successful. In the other thermophilic reactor that had been treating fried soybean curd-manufacturing wastewater, we found filamentous microorganisms to outgrow, resulting in the formation of projection-like structures on the surface of granules, making the granules look like sea urchins. 16S rDNA-cloning analysis combined with fluorescent in situ hybridization revealed that the projections were comprised of the uncultured filamentous cells affiliated with the GNSB subdivision I and Methanothermobacter-like cells and the very ends of the projections were comprised solely of the filamentous cells. By using the tip of the projection as the inoculum for primary enrichment, a thermophilic, strictly anaerobic, filamentous bacterium, designated strain UNI-1, was successfully isolated with a medium supplemented with sucrose and yeast extract. The strain was a very slow growing bacterium which is capable of utilizing only a limited range of carbohydrates in the presence of yeast extract and produced hydrogen from these substrates. The growth was found to be significantly stimulated when the strain was

  17. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on

  18. The effect of microorganisms on asphaltopropylene concrete in a radioactive waste repository. Part 2

    International Nuclear Information System (INIS)

    Hlavackova, I.; Hlavacek, I.; Mara, M.; Wasserbauer, R.

    1993-11-01

    The permeability of asphaltopropylene concrete (APC) was examined after the action of aerobic bacteria and molds, and the changes in its volume, weight and swelling capacity were recorded. APC has been used as a sealing material in low level radioactive waste pits at the Dukovany NPP repository. Results of check-up sampling of microorganisms in the repository are evaluated. Sulphate reducing bacteria, which have been detected in soil near the reactor site, were isolated and their action upon asphaltopropylene (AP) was investigated. The resistance of bitumen layers containing model waste, against the action of aerobic bacteria and molds and against water was also examined. Bitumen samples containing model waste were found to absorb water at low temperatures considerably faster than unfilled bitumen. At elevated temperatures the absorption of water is appreciable, causing high weight losses of the bituminized waste layer due to degradation. The time dependences of the bitumen sample weight at 20 degC and 60 degC in distilled and cement water are given in the Appendix. The results included in the final reports ''Investigation of the effect of microorganisms on asphaltopropylene-based insulating materials employed as sealing in the secondary radioactive waste repository at the Dukovany NPP in relation to the microbial flora present. Bacteria'' and ''Investigation of the impact of biodegradation effects of aerobic and anaerobic microorganisms including molds on asphalt and asphaltopropylene in conditions of the ground repository at the Dukovany NPP'' are also given. (J.B.). 8 tabs., 33 figs

  19. [Current clinical significance of anaerobic bacteremia].

    Science.gov (United States)

    Jirsa, Roman; Marešová, Veronika; Brož, Zdeněk

    2010-10-01

    to estimate tje current clinical significance of anaerobic bacteremia in a group of Czech hospitals. this retrospective analysis comprised 8 444 anaerobic blood cultures in patients admitted to four Czech hospitals between 2004 and 2007. in 16 patients, blood cultures yielded significant anaerobic bacteria. Thus, anaerobic bacteremia accounted for less than 2 % of clinically significant bacteremia. Four patients (18 %) died but none of the deaths could be clearly attributable to anaerobic bacteria in the bloodstream. The most common comorbidities predisposing to anaerobic bacteremia and the most frequent sources of infection were similar to those reported by other authors. The majority of anaerobic bacteremia cases were due to gram-negative bacteria, followed by Clostridium perfringens and, surprisingly, Eubacterium spp. (particularly Eubacterium lentum). anaerobic bacteremia remains rare. The comparison of our data with those by other authors suggests that (despite the reported high mortality) the actual clinical significance of anaerobic bacteremia is rather controversial and that the anaerobic bacteremia might not correspond to more serious pathogenic role of the anaerobic bacteria as the source of infection.

  20. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment.

    Science.gov (United States)

    Ambuchi, John J; Zhang, Zhaohan; Shan, Lili; Liang, Dandan; Zhang, Peng; Feng, Yujie

    2017-06-15

    The accelerated use of iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs) in the consumer and industrial sectors has triggered the need to understand their potential environmental impact. The response of anaerobic granular sludge (AGS) to IONPs and MWCNTs during the anaerobic digestion of beet sugar industrial wastewater (BSIW) was investigated in this study. The IONPs increased the biogas and subsequent CH 4 production rates in comparison with MWCNTs and the control samples. This might be due to the utilization of IONPs and MWCNTs as conduits for electron transfer toward methanogens. The MWCNTs majorly enriched the bacterial growth, while IONP enrichment mostly benefitted the archaea population. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed that AGS produced extracellular polymeric substances, which interacted with the IONPs and MWCNTs. This provided cell protection and prevented the nanoparticles from piercing through the membranes and thus cytotoxicity. The results provide useful information and insights on the adjustment of anaerobic microorganisms to the natural complex environment based on nanoparticles infiltration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    Science.gov (United States)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  2. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  3. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  4. Anaerobic treatment techniques

    International Nuclear Information System (INIS)

    Boehnke, B.; Bischofsberger, W.; Seyfried, C.F.

    1993-01-01

    This practical and theoretical guide presents the current state of knowledge in anaerobic treatment of industrial effluents with a high organic pollutant load and sewage sludges resulting from the treatment of municipal and industrial waste water. Starting from the microbiological bases of anaerobic degradation processes including a description and critical evaluation of executed plants, the book evolves the process-technical bases of anaerobic treatment techniques, derives relative applications, and discusses these with reference to excuted examples. (orig./UWA). 232 figs [de

  5. The quality of microorganism on coal bed methane processing with various livestock waste in laboratory scale

    Science.gov (United States)

    Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.

    2018-02-01

    Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa

  6. Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba

    Science.gov (United States)

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.

    2003-01-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  7. Evolution from a respiratory ancestor to fill syntrophic and fermentative niches: comparative fenomics of six Geobacteraceae species

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2009-03-01

    Full Text Available Abstract Background The anaerobic degradation of organic matter in natural environments, and the biotechnical use of anaerobes in energy production and remediation of subsurface environments, both require the cooperative activity of a diversity of microorganisms in different metabolic niches. The Geobacteraceae family contains members with three important anaerobic metabolisms: fermentation, syntrophic degradation of fermentation intermediates, and anaerobic respiration. Results In order to learn more about the evolution of anaerobic microbial communities, the genome sequences of six Geobacteraceae species were analyzed. The results indicate that the last common Geobacteraceae ancestor contained sufficient genes for anaerobic respiration, completely oxidizing organic compounds with the reduction of external electron acceptors, features that are still retained in modern Geobacter and Desulfuromonas species. Evolution of specialization for fermentative growth arose twice, via distinct lateral gene transfer events, in Pelobacter carbinolicus and Pelobacter propionicus. Furthermore, P. carbinolicus gained hydrogenase genes and genes for ferredoxin reduction that appear to permit syntrophic growth via hydrogen production. The gain of new physiological capabilities in the Pelobacter species were accompanied by the loss of several key genes necessary for the complete oxidation of organic compounds and the genes for the c-type cytochromes required for extracellular electron transfer. Conclusion The results suggest that Pelobacter species evolved parallel strategies to enhance their ability to compete in environments in which electron acceptors for anaerobic respiration were limiting. More generally, these results demonstrate how relatively few gene changes can dramatically transform metabolic capabilities and expand the range of environments in which microorganisms can compete.

  8. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    Science.gov (United States)

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  9. PHYSIOLOGICAL LOAD OF REFEREES DURING BASKETBALL GAMES

    OpenAIRE

    Matković, Andro; Rupčić, Tomislav; Knjaz, Damir

    2014-01-01

    The objective of this study was to establish physiological loads elite basketball referees sustain during competitive games. Thirty-one referees (age: 33.35±5.17 years, body mass: 88.04±7.47 kg, height: 186.37±5.40 cm), all classified as A-list referees of the 1st Croatian Basketball League, were subjected to progressive spiroergometric testing on the treadmill in order to determine the anaerobic threshold (V-slope method). The referees were monitored electrocardiographically for the estab...

  10. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†

    Science.gov (United States)

    Jarling, René; Kühner, Simon; Basílio Janke, Eline; Gruner, Andrea; Drozdowska, Marta; Golding, Bernard T.; Rabus, Ralf; Wilkes, Heinz

    2015-01-01

    Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments. PMID:26441848

  11. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  12. Anaerobic reductive dehalogenation of polychlorinated dioxins

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, Michael [Aarhus Univ. (DK). Dept. of Biological Sciences, Microbiology, and Interdisciplinary Nanoscience Centre (iNANO); Lechner, Ute [Halle-Wittenberg Univ., Halle (Germany). Inst. of Biology/Microbiology

    2009-09-15

    Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are among the most harmful environmental contaminants. Their widespread distribution due to unintentional or unknown release coincides with environmental persistence, acute and chronic toxicity to living organisms, and long-term effects due to the compounds' tendency for bioaccumulation and biomagnification. While microbial aerobic degradation of PCDD/Fs is mainly reported for the turnover of low chlorinated congeners, this review focuses on anaerobic reductive dehalogenation, which may constitute a potential remediation strategy for polychlorinated compounds in soils and sediments. Microorganisms in sediments and in microcosms or enrichment cultures have been shown to be involved in the reductive dechlorination of dioxins. Bacteria related to the genus Dehalococcoides are capable of the reductive transformation of dioxins leading to lower chlorinated dioxins including di- and monochlorinated congeners. Thus, reductive dehalogenation might be one of the very few mechanisms able to mediate the turnover of polychlorinated dioxins by reducing their toxicity and paving the way for a subsequent breakdown of the carbon skeleton. (orig.)

  13. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. Copyright © 2017 American Society for Microbiology.

  14. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater

    Directory of Open Access Journals (Sweden)

    Raphael Corrêa Medeiros

    2015-05-01

    Full Text Available Sewage disinfection has the primary objective of inactivating pathogenic organisms to prevent the dissemination of waterborne diseases. This study analyzed individual disinfection, with chlorine and ultraviolet radiation, and sequential disinfection (chlorine-UV radiation. The tests were conducted with anaerobic effluent in batch, in laboratory scale, with two dosages of chlorine (10 and 20 mg L-1 and UV (2.5 and 6.1 Wh m-3. In addition, to guarantee the presence of cysts in the tests, 104 cysts per liter of Giardia spp. were inoculated. The resistance order was as follows: E. coli = Total Coliforms < Clostridium perfringens < Giardia spp.. Furthermore, synergistic effects reached 0.06 to 1.42 log of inactivation in sequential disinfection for both the most resistant microorganisms.

  15. Clinical features of anaerobic orthopaedic infections.

    Science.gov (United States)

    Lebowitz, Dan; Kressmann, Benjamin; Gjoni, Shpresa; Zenelaj, Besa; Grosgurin, Olivier; Marti, Christophe; Zingg, Matthieu; Uçkay, Ilker

    2017-02-01

    Some patient populations and types of orthopaedic surgery could be at particular risk for anaerobic infections. In this retrospective cohort study of operated adult patients with infections from 2004 to 2014, we assessed obligate anaerobes and considered first clinical infection episodes. Anaerobes, isolated from intra-operative samples, were identified in 2.4% of 2740 surgical procedures, of which half (33/65; 51%) were anaerobic monomicrobial infections. Propionibacterium acnes, a penicillin and vancomycin susceptible pathogen, was the predominantly isolated anaerobe. By multivariate analysis, the presence of fracture fixation plates was the variable most strongly associated with anaerobic infection (odds ratio: 2.1, 95% CI: 1.3-3.5). Anaerobes were also associated with spondylodesis and polymicrobial infections. In contrast, it revealed less likely in native bone or prosthetic joint infections and was not related to prior antibiotic use. In conclusion, obligate anaerobes in our case series of orthopaedic infections were rare, and mostly encountered in infections related to trauma with open-fracture fixation devices rather than clean surgical site infection. Anaerobes were often co-pathogens, and cultures most frequently recovered P. acnes. These observations thus do not support changes in current practices such as broader anaerobe coverage for perioperative prophylaxis.

  16. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  17. Functional Basis of Microorganism Classification.

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with

  18. Microbiological analysis of infected root canals from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria.

    Science.gov (United States)

    Jacinto, R C; Gomes, B P F A; Ferraz, C C R; Zaia, A A; Filho, F J Souza

    2003-10-01

    The purpose of the present study was to investigate the correlation between the composition of the bacterial flora isolated from infected root canals of teeth with apical periodontitis with the presence of clinical signs and symptoms, and to test the antibiotic susceptibility of five anaerobic bacteria mostly commonly found in the root canals of symptomatic teeth against various substances using the E-test. Microbial samples were taken from 48 root canals, 29 symptomatic and 19 asymptomatic, using adequate techniques. A total of 218 cultivable isolates were recovered from 48 different microbial species and 19 different genera. Root canals from symptomatic teeth harbored more obligate anaerobes and a bigger number of bacterial species than the asymptomatic teeth. More than 70% of the bacterial isolates were strict anaerobes. Statistical analysis used a Pearson Chi-squared test or a one-sided Fisher's Exact test as appropriate. Suggested relationships were found between specific microorganisms, especially gram-negative anaerobes, and the presence of spontaneous or previous pain, tenderness to percussion, pain on palpation and swelling amoxicillin, amoxicillin + clavulanate and cephaclor were effective against all the strains tested. The lowest susceptibility rate was presented by Prevotella intermedia/nigrescens against Penicillin G. Our results suggested that specific bacteria are associated with endodontic symptoms of infected teeth with periapical periodontitis and the majority of the anaerobic bacterial species tested were susceptible to all antibiotics studied.

  19. Biodegradation of 2,3,7,8 TCDD by anaerobic and aerobic microcosms collected from bioremediation treatments for cleaning up dioxin contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dang Thi; Tuan, Mai Anh; Viet, Nguyen Quoc; Sanh, Nguyen Thi [Vietnamese Academy of Science and Technology (VAST) (Viet Nam). Inst. of Biotechnology; Sau, Trinh Khac [Vietnam-Russian Tropical Center (Viet Nam); Papke, O. [ERGO Forschungsgesellschaft, Hamburg (Germany)

    2004-09-15

    There are many microbes that can degrade polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurants (PCDFs) and polychlorinated biphenyls (PCBs) have been isolated including purified bacteria, actinomycetes, white rods, filamentous fungi, anaerobes and also anaerobic and aerobic consortia. Bioremediation one of biological remediation has been studied as hopeful alternative to physical and chemical treatments that using for cleaning up PCDDs, PCDFs. In Vietnam for cleaning up ''hot spot'' of some former military air bases, bioremediation has been studying in different scales of Danang site. After 18 to 24 month treatments, the reduction of toxicity was significally detected. In order to study biodegradability by different groups and one of dominated strain that are existing microorganisms in our treatments, the investigation of 2,3,7,8 TCDD anaerobic and aerobic degradations was carried out in the laboratory condition. Anaerobic microbial consortium containing three different bacteria such as two Gram- negative vibrio and rod and one gram positive cocoides bacteria. This consortium could degrade 118 pg TEQ/ml 2,3,7,8 TCDD after 133 days under sulfate reduction. Concentration of 2,3,7,8 TCDD in the soil extract that adding to medium at starting point of cultivation was 144.6 pg TEQ/ml. About 81% toxicity was removed. Aerobic consortium containing all three Gram-negative bacteria and one fungal strain. After 9 day shaking at 180 rpm/min and 30 C, 85.6 % of 164.45 pg TEQ/ml 2,3,7,8 TCDD was removed. Other preliminary results of study of 2,3,7,8 TCDD biodegradation as sole carbon and energy by show that this strain FDN30 could remove 43,45 pg TEQ/ml (59%) of 73,1 pgTEQ/ml adding dioxin after two weeks. These findings explain why high concentration of contaminants in treated soil was decreased after two year treatment. Indigenous microorganisms play leading role in the detoxification of 2,3,7,8 TCDD in contaminated soils.

  20. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production.

    Science.gov (United States)

    Haitjema, Charles H; Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2014-08-01

    Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications. © 2014 Wiley Periodicals, Inc.

  1. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    International Nuclear Information System (INIS)

    Jiang, Guangming; Yuan, Zhiguo

    2013-01-01

    Highlights: ► H 2 O 2 greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H 2 O 2 . ► FNA + H 2 O 2 reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO 2 -N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H 2 O 2 ) on anaerobic wastewater biofilm are investigated in this study. H 2 O 2 greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H 2 O 2 at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H 2 O 2 enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H 2 O 2 dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H 2 O 2 , like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H 2 O 2 . The combination of FNA and H 2 O 2 could potentially provide an effective solution to sewer biofilm control

  2. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guangming, E-mail: gjiang@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia); Yuan, Zhiguo, E-mail: zhiguo@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2013-04-15

    Highlights: ► H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H{sub 2}O{sub 2}. ► FNA + H{sub 2}O{sub 2} reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO{sub 2}-N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H{sub 2}O{sub 2}) on anaerobic wastewater biofilm are investigated in this study. H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H{sub 2}O{sub 2} at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H{sub 2}O{sub 2} enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H{sub 2}O{sub 2} dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H{sub 2}O{sub 2}, like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H{sub 2}O{sub 2}. The combination of FNA and H{sub 2}O{sub 2} could potentially provide an effective solution to sewer biofilm control.

  3. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report, September 1, 1979-May 15, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peck, H.D. Jr.; Ljungdahl, L.G.

    1980-01-01

    Reseach progress is reported for the period September, 1979 to May, 1980. Studies on the mesophilic and thermophilic microorganisms fermenting cellulose to various products (ethanol, acetate, CO/sub 2/, H/sub 2/, and methane) are summarized. (ACR)

  4. The physiology of mountain biking.

    Science.gov (United States)

    Impellizzeri, Franco M; Marcora, Samuele M

    2007-01-01

    Mountain biking is a popular outdoor recreational activity and an Olympic sport. Cross-country circuit races have a winning time of approximately equal 120 minutes and are performed at an average heart rate close to 90% of the maximum, corresponding to 84% of maximum oxygen uptake (VO2max). More than 80% of race time is spent above the lactate threshold. This very high exercise intensity is related to the fast starting phase of the race; the several climbs, forcing off-road cyclists to expend most of their effort going against gravity; greater rolling resistance; and the isometric contractions of arm and leg muscles necessary for bike handling and stabilisation. Because of the high power output (up to 500W) required during steep climbing and at the start of the race, anaerobic energy metabolism is also likely to be a factor of off-road cycling and deserves further investigation. Mountain bikers' physiological characteristics indicate that aerobic power (VO2max >70 mL/kg/min) and the ability to sustain high work rates for prolonged periods of time are prerequisites for competing at a high level in off-road cycling events. The anthropometric characteristics of mountain bikers are similar to climbers and all-terrain road cyclists. Various parameters of aerobic fitness are correlated to cross-country performance, suggesting that these tests are valid for the physiological assessment of competitive mountain bikers, especially when normalised to body mass. Factors other than aerobic power and capacity might influence off-road cycling performance and require further investigation. These include off-road cycling economy, anaerobic power and capacity, technical ability and pre-exercise nutritional strategies.

  5. Fate and persistence of a pathogenic NDM-1-positive Escherichia coli strain in anaerobic and aerobic sludge microcosms

    KAUST Repository

    Mantilla-Calderon, David

    2017-04-15

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly slower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable but no further decay was observed. Instead, 1 in every 10000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 were detected to have transferred to other native microorganisms in the sludge, or are released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24 h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater.IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study points at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic

  6. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    Science.gov (United States)

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the

  7. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Gahyun Baek

    2018-01-01

    Full Text Available Anaerobic digestion (AD is an effective biological treatment for stabilizing organic compounds in waste/wastewater and in simultaneously producing biogas. However, it is often limited by the slow reaction rates of different microorganisms’ syntrophic biological metabolisms. Stable and fast interspecies electron transfer (IET between volatile fatty acid-oxidizing bacteria and hydrogenotrophic methanogens is crucial for efficient methanogenesis. In this syntrophic interaction, electrons are exchanged via redox mediators such as hydrogen and formate. Recently, direct IET (DIET has been revealed as an important IET route for AD. Microorganisms undergoing DIET form interspecies electrical connections via membrane-associated cytochromes and conductive pili; thus, redox mediators are not required for electron exchange. This indicates that DIET is more thermodynamically favorable than indirect IET. Recent studies have shown that conductive materials (e.g., iron oxides, activated carbon, biochar, and carbon fibers can mediate direct electrical connections for DIET. Microorganisms attach to conductive materials’ surfaces or vice versa according to particle size, and form conductive biofilms or aggregates. Different conductive materials promote DIET and improve AD performance in digesters treating different feedstocks, potentially suggesting a new approach to enhancing AD performance. This review discusses the role and potential of DIET in methanogenic systems, especially with conductive materials for promoting DIET.

  8. Effects of Atrazine on Soil Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2006-01-01

    Full Text Available Effects of the herbicide atrazine on soil microorganisms was investigated. Trials were set up in laboratory, on a clay loam soil. Atrazine was applied at 8.0, 40.0 and 80.0 mg/kg soil rates. The abundance of total microorganisms, fungi, actinomycetes, cellulolytic microorganisms and amino-heterotrophs was recorded. Soil samples were collected 1, 7, 14, 21, 30 and 60 days after atrazine treatment for microbiological analyses.The results showed that the intensity of atrazine effect on soil microorganisms depended on treatment rate, exposure time and group of microorganisms. Atrazine had an inhibiting effect on cellulolytic microorganisms and amino-heterotrophs. Initially, it inhibited fungiand actinomycetes but its effect turned into a stimulating one once a population recovered. Atrazine had a stimulating effect on total abundance of microorganisms.

  9. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    Science.gov (United States)

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  10. Selected Topics in Anaerobic Bacteriology.

    Science.gov (United States)

    Church, Deirdre L

    2016-08-01

    Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.

  11. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  12. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    Science.gov (United States)

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  13. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  14. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  15. Livestock Anaerobic Digester Database

    Science.gov (United States)

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  16. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  17. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  18. Functional Basis of Microorganism Classification

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned

  19. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph

    2002-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  20. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  1. Quantitative Microbiological Study of Human Carious Dentine by Culture and Real-Time PCR: Association of Anaerobes with Histopathological Changes in Chronic Pulpitis

    Science.gov (United States)

    Martin, F. Elizabeth; Nadkarni, Mangala A.; Jacques, Nicholas A.; Hunter, Neil

    2002-01-01

    The bacteria found in carious dentine were correlated with the tissue response of the dental pulps of 65 teeth extracted from patients with advanced caries and pulpitis. Standardized homogenates of carious dentine were plated onto selective and nonselective media under anaerobic and microaerophilic conditions. In addition, real-time PCR was used to quantify the recovery of anaerobic bacteria. Primers and fluorogenic probes were designed to detect the total anaerobic microbial load, the genera Prevotella and Fusobacterium, and the species Prevotella melaninogenica, Porphyromonas endodontalis, Porphyromonas gingivalis, and Micromonas (formerly Peptostreptococcus) micros. The pulpal pathology was categorized according to the cellular response and degenerative changes. Analysis of cultured bacteria showed a predominance of gram-positive microorganisms, particularly lactobacilli. Gram-negative bacteria were also present in significant numbers with Prevotella spp., the most numerous anaerobic group cultured. Real-time PCR analysis indicated a greater microbial load than that determined by colony counting. The total number of anaerobes detected was 41-fold greater by real-time PCR than by colony counting, while the numbers of Prevotella and Fusobacterium spp. detected were 82- and 2.4-fold greater by real-time PCR than by colony counting, respectively. Real-time PCR also identified M. micros, P. endodontalis, and P. gingivalis in 71, 60, and 52% of carious samples, respectively. Correlation matrices of the real-time PCR data revealed significant positive associations between M. micros and P. endodontalis detection and inflammatory degeneration of pulpal tissues. These anaerobes have been strongly implicated in endodontic infections that occur as sequelae to carious pulpitis. Accordingly, the data suggest that the presence of high levels of these bacteria in carious lesions may be indicative of irreversible pulpal pathology. PMID:11980945

  2. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    Science.gov (United States)

    Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna

    2018-01-01

    Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate

  3. Microorganisms in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A H

    1981-11-01

    Man has been using microorganisms for thousands of years to make bread, cheese, beer, wine, etc. Today, microorganisms can be specially grown or genetically manipulated so as to synthesize high-quality proteins even from low-grade basic materials.

  4. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2013-06-01

    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  5. Fossil Microorganisms in Archaean

    Science.gov (United States)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  6. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  7. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  8. potentially pathogenic gastrointestinal microorganisms (ID 2972), improved lactose digestion (ID 2972) and increasing IL-10 production (ID 2973) (further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    of Lactobacillus paracasei CNCM I-1688 and Lactobacillus salivarius CNCM I-1794 and reduction of gastro-intestinal discomfort, decreasing potentially pathogenic gastro-intestinal microorganisms, improved lactose digestion and increasing IL-10 production. The food constituent that is the subject of the health......-intestinal discomfort, is a beneficial physiological effect for the general population. The claimed effect, decreasing potentially pathogenic gastro-intestinal microorganisms, might be a beneficial physiological effect for the general population. The claimed effect, improved lactose digestion, is a beneficial...... physiological effect for individuals with lactose maldigestion. No human intervention studies were provided from which conclusions could be drawn for the scientific substantiation of the above-mentioned claims. On the basis of the data provided, the Panel concludes that a cause and effect relationship has...

  9. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline.

    Science.gov (United States)

    Turker, Gokhan; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2018-01-01

    The way that antibiotic residues in manure follow is one of the greatest concerns due to its potential negative impacts on microbial communities, the release of metabolites and antibiotic resistant genes (ARGs) into the nature and the loss of energy recovery in anaerobic digestion (AD) systems. This study evaluated the link between different operating conditions, the biodegradation of oxytetracycline (OTC) and the formation of its metabolites and ARGs in anaerobic digesters treating cow manure. Microbial communities and ARGs were determined through the use of quantitative real-time PCR. The biodegradation of OTC and occurrence of metabolites were determined using UV-HPLC and LC/MS/MS respectively. The maximum quantity of resistance genes was also examined at the beginning of AD tests and concentration was in the order of: tetM >tetO. The numbers of ARGs were always higher at high volatile solids (VS) content and high mixing rate. The results of the investigation revealed that relationship between mixing rate and VS content plays a crucial role for elimination of ARGs, OTC and metabolites. This can be attributed to high abundance of microorganisms due to high VS content and their increased contact with elevated mixing rate. An increased interaction between microorganisms triggers the promotion of ARGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates.

    Science.gov (United States)

    Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile

    2017-12-01

    The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Production of hemicellulose-degrading enzymes by Bacillus macerans in anaerobic culture

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.G.; Withers, S.E.

    1985-09-01

    The cell-associated and exocellular hemicellulolytic polysaccharide depolymerase and glycoside hydrolase activity of Bacillus macerans NCDO 1764 was monitored over a range of anaerobic growth conditions in batch and continuous culture. The enzymes were detectable throughout the complete growth cycle in batch culture reaching and maintaining maximum levels in the stationary phase. In continuous culture enzyme activity was largely independent of growth rate (D=0.025-0.1 h/sup -1/) although the activity was reduced at higher dilution rates (0.125-0.15 h/sup -1/). Although activity was detectable over a wide pH range (pH 5.5-7.5) it was pH dependent, and maximum activities of both the cell-associated and exocellular enzymes were measured in cultures maintained at pH 6.5-7.0 +- 0.1. The principal metabolites formed anaerobically from xylose by B. macerans in batch and continuous culture were acetic acid, formic acid and ethanol which represented 95-99% of the products formed. Smaller amounts of acetone, D,L-lactic acid and succinic acid were formed together with traces of butyric acid (<5 nmol/ml) and isovaleric acid (<25 nmol/ml). The proportions of the metabolites produced varied with growth conditions and were influenced by the pH of the culture and the rate and stage of growth of the microorganism.

  12. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.; Wilkins, Michael J.; McMahon, Katherine

    2017-07-05

    ABSTRACT

    Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics.

    IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our

  13. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  14. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    Science.gov (United States)

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  15. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  16. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  17. Use of artificial neuronal networks for prediction of the control parameters in the process of anaerobic digestion with thermal pretreatment.

    Science.gov (United States)

    Flores-Asis, Rita; Méndez-Contreras, Juan M; Juárez-Martínez, Ulises; Alvarado-Lassman, Alejandro; Villanueva-Vásquez, Daniel; Aguilar-Lasserre, Alberto A

    2018-04-19

    This article focuses on the analysis of the behavior patterns of the variables involved in the anaerobic digestion process. The objective is to predict the impact factor and the behavior pattern of the variables, i.e., temperature, pH, volatile solids (VS), total solids, volumetric load, and hydraulic residence time, considering that these are the control variables for the conservation of the different groups of anaerobic microorganisms. To conduct the research, samples of physicochemical sludge were taken from a water treatment plant in a poultry processing factory, and, then, the substrate was characterized, and a thermal pretreatment was used to accelerate the hydrolysis process. The anaerobic digestion process was analyzed in order to obtain experimental data of the control variables and observe their impact on the production of biogas. The results showed that the thermal pre-hydrolysis applied at 90°C for 90 min accelerated the hydrolysis phase, allowing a significant 52% increase in the volume of methane produced. An artificial neural network was developed, and it was trained with the database obtained by monitoring the anaerobic digestion process. The results obtained from the artificial neural network showed that there is an adjustment between the real values and the prediction of validation based on 60 samples with a 96.4% coefficient of determination, and it was observed that the variables with the major impact on the process were the loading rate and VS, with impact factors of 36% and 23%, respectively.

  18. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics.

    Science.gov (United States)

    Phomsoupha, Michael; Laffaye, Guillaume

    2015-04-01

    Badminton is a racket sport for two or four people, with a temporal structure characterized by actions of short duration and high intensity. This sport has five events: men's and women's singles, men's and women's doubles, and mixed doubles, each requiring specific preparation in terms of technique, control and physical fitness. Badminton is one of the most popular sports in the world, with 200 million adherents. The decision to include badminton in the 1992 Olympics Game increased participation in the game. This review focuses on the game characteristics, anthropometry, physiology, visual attributes and biomechanics of badminton. Players are generally tall and lean, with an ectomesomorphic body type suited to the high physiological demands of a match. Indeed, a typical match characteristic is a rally time of 7 s and a resting time of 15 s, with an effective playing time of 31%. This sport is highly demanding, with an average heart rate (HR) of over 90% of the player's maximal HR. The intermittent actions during a game are demanding on both the aerobic and anaerobic systems: 60-70% on the aerobic system and approximately 30% on the anaerobic system, with greater demand on the alactic metabolism with respect to the lactic anaerobic metabolism. The shuttlecock has an atypical trajectory, and the players perform specific movements such as lunging and jumping, and powerful strokes using a specific pattern of movement. Lastly, badminton players are visually fit, picking up accurate visual information in a short time. Knowledge of badminton can help to improve coaching and badminton skills.

  19. Resistance development of cystic fibrosis respiratory pathogens when exposed to fosfomycin and tobramycin alone and in combination under aerobic and anaerobic conditions.

    Science.gov (United States)

    McCaughey, Gerard; Diamond, Paul; Elborn, J Stuart; McKevitt, Matt; Tunney, Michael M

    2013-01-01

    Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P

  20. Study on anaerobic treatment of wastewater containing hexavalent chromium.

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-06-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  1. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347

  2. Bioconversion of corncob to hydrogen using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chunmei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China); Biotechnology Department, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011 (China); Zhang, Shufang; Fan, Yaoting; Hou, Hongwei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China)

    2010-04-15

    Biohydrogen production from corncob using natural anaerobic microflora was reported for the first time. The optimum pretreatment condition for the corncob was determined to be 100 C, 30 min, and 1% HCl (w/w). The maximum hydrogen yield of 107.9 ml/g-TVS and hydrogen production rate of 4.20 ml/g-TVS h{sup -1} was obtained under the condition of 10 g/l substrate concentration and initial pH 8.0. Butyrate and acetate were the dominant metabolic by-products of hydrogen fermentation. Chemical composition analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to study the mechanism of degrading corncob for hydrogen production. The amorphous domains of cellulose and hemicellulose were hydrolyzed into fermentable saccharides through acid pretreatment and the microorganisms had a devastating effect on the crystallinity of the cellulose. The hydrogen yield from pretreated corncob was much higher than from raw corncob. Therefore, the acid pretreatment played a crucial role on hydrogen production from corncob. (author)

  3. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  4. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  5. Mechanisms, Chemistry, and Kinetics of Anaerobic Biodegradation of cis-Dichloroethene and Vinyl Chloride

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, P.L.; Spormann, A.M.

    2000-12-01

    Anaerobic biological processes can result in PCE and TCE destruction through conversion to cis-dichloroethene (cDCE) then to vinyl chloride (VC), and finally to ethene. Here, the chlorinated aliphatic hydrocarbons (CAHs) serve as electron acceptors in energy metabolism, requiring electron donors such as hydrogen from an external source. The purpose of this study was to learn more about the biochemistry of cDCE and VC conversion to ethene, to better understand the requirements for electron donors, and to determine factors affecting the rates of CAH degradation and organism growth. The biochemistry of reductive dehalogenation of VC was studied with an anaerobic mixed culture enriched on VC. In other studies on electron donor needs for dehalogenation of cDCE and VC, competition for hydrogen was found to occur between the dehalogenators and other microorganisms such as methanogens and homoacetogens in a benzoate-acclimated dehalogenating methanogenic mixed culture. Factors affecting the relative rates of destruction of the solvents and their intermediate products were evaluated. Studies using a mixed PCE-dehalogenating culture as well as the VC enrichment for biochemical studies suggested that the same species was involved in both cDCE and VC dechlorination, and that cDCE and VC competitively inhibited each other's dechlorination rate.

  6. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Integral urban wastewater treatment process with a combined anaerobic and aerobic system; Tratamiento integral de aguas residuales urbanas mediante procesos combinados anaerobios y aerobios. Aplicacion de sistema Bioredox a escala piloto

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Carmona, A; Angulo Sanchez, R.

    1997-04-01

    A pilot study was carried out of an integral urban sewage treatment process involving a combined anaerobic and aerobic system. the anaerobic digester has a fixed bed on a ceramic support and a 10m``3 upward flow. It operates at ambient temperature (12-15 degree centigree) with hydraulic retention to,es (HRTs) of 24-12 hours and a load of 4-2.6 kg DQO/m``3/day. Anaerobic digestion reduced SSt by over 90% for HRT of 16 and 12 hours. The 20 m``3 prolonged oxidation reactor operates with a load of 0.17-0.45 kg DQO/m``3/day. the plant`s DQO and SST reduction varied between 81% and 89% for the 16 and 12 hour tests and 85-92% (HRT=16 hours and 12 hours respectively). the overall proportions of pathogenic microorganisms eliminated in the experimental plant was greater than 97%. (Author) 23 refs.

  8. Live Faecalibacterium prausnitzii induces greater TLR2 and TLR2/6 activation than the dead bacterium in an apical anaerobic co-culture system.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Altermann, Eric; Roy, Nicole C

    2018-02-01

    Inappropriate activation of intestinal innate immune receptors, such as toll-like receptors (TLRs), by pathogenic bacteria is linked to chronic inflammation. In contrast, a "tonic" level of TLR activation by commensal bacteria is required for intestinal homeostasis. A technical challenge when studying this activation in vitro is the co-culturing of oxygen-requiring mammalian cells with obligate anaerobic commensal bacteria. To overcome this, we used a novel apical anaerobic co-culture system to successfully adapt a TLR activation assay to be conducted in conditions optimised for both cell types. Live Faecalibacterium prausnitzii, an abundant obligate anaerobe of the colonic microbiota, induced higher TLR2 and TLR2/6 activation than the dead bacterium. This enhanced TLR induction by live F. prausnitzii, which until now has not previously been described, may contribute to maintenance of gastrointestinal homeostasis. This highlights the importance of using physiologically relevant co-culture systems to decipher the mechanisms of action of live obligate anaerobes. © 2017 John Wiley & Sons Ltd.

  9. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  10. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge.

    Science.gov (United States)

    Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A

    2012-01-01

    Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.

  11. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Lack of Effect of Typical Rapid-Weight-Loss Practices on Balance and Anaerobic Performance in Apprentice Jockeys.

    Science.gov (United States)

    Cullen, SarahJane; Dolan, Eimear; O Brien, Kate; McGoldrick, Adrian; Warrington, Giles

    2015-11-01

    Balance and anaerobic performance are key attributes related to horse-racing performance, but research on the impact of making weight for racing on these parameters remains unknown. The purpose of this study was to investigate the effects of rapid weight loss in preparation for racing on balance and anaerobic performance in a group of jockeys. Twelve apprentice male jockeys and 12 age- and gender-matched controls completed 2 trials separated by 48 h. In both trials, body mass, hydration status, balance, and anaerobic performance were assessed. Between the trials, the jockeys reduced body mass by 4% using weight-loss methods typically adopted in preparation for racing, while controls maintained body mass through typical daily dietary and physical activity habits. Apprentice jockeys decreased mean body mass by 4.2% ± 0.3% (P balance, on the left or right side, or in peak power, mean power, or fatigue index were reported between the trials in either group. Results from this study indicate that a 4% reduction in body mass in 48 h through the typical methods employed for racing, in association with an increase in dehydration, resulted in no impairments in balance or anaerobic performance. Further research is required to evaluate performance in a sport-specific setting and to investigate the specific physiological mechanisms involved.

  13. Radioresistant microorganisms and food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1976-01-01

    This paper deals with Micrococcus radiodurans, Arthrobacter radiotolerance, etc., which were isolated and discovered as radioresistant microorganisms. As for the explanation of the mechanism of radioresistance of these microorganisms, the consideration that these organisms have marked repair power of the damaged DNA and have many opportunity to repair the damaged DNA because of their long fission term were cited. The relationship between the radioresistance of microorganisms and food irradiation was also mentioned.

  14. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  15. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  17. Anaerobic treatment in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, M; Solisio, C; Ferrailo, G

    1984-02-01

    In Italy, environmental protection and energy conservation have become very important since the increase in oil prices. The law requires that all waste waters have a B.O.D. of 40 mg/l by 1986 so there has been an expansion of purification plants since 1976, using anaerobic digestion. The report deals with the current state of anaerobic treatment in Italy with particular reference to (1) animal wastes. In intensive holdings, anaerobic digestion leads to a decrease in pollution and an increase in biogas generation which can be used to cover the energy demand of the process. The factors which influence the builders of digestors for farms are considered. (2) Non toxic industrial wastes. These are the waste waters emanating from the meat packing, brewing, pharmaceutical and chemical industries. Particular reference is made to the distillery plants using anaerobic treatment prior to aerobic digestion. (3) Urban wastes. The advantages and the disadvantages are considered and further research and development is recommended. 20 references.

  18. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  19. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  20. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.

    Science.gov (United States)

    Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2014-11-01

    Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).

  1. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment

    Directory of Open Access Journals (Sweden)

    Guangming Jiang

    2017-04-01

    Full Text Available Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.

  2. 40 CFR 725.85 - Microorganism identity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  3. STUDY OF PHYSIOLOGICAL PROFILE OF INDIAN BOXERS

    Directory of Open Access Journals (Sweden)

    Gulshan Lal Khanna

    2006-07-01

    Full Text Available The present study was conducted to study the morphological, physiological and biochemical characteristics of Indian National boxers as well as to assess the cardiovascular adaptation to graded exercise and actual boxing round. Two different studies were conducted. In the first study [N = 60, (junior boxers below-19 yrs, n = 30, (senior boxers-20-25 yrs, n = 30] different morphological, physiological and biochemical parameters were measured. In the second study (N = 21, Light Weight category- <54 kg, n = 7; Medium weight category <64 kg, n = 7 and Medium heavy weight category <75 kg, n = 7 cardiovascular responses were studied during graded exercise protocol and actual boxing bouts. Results showed a significantly higher (p < 0.05 stature, body mass, LBM, body fat and strength of back and grip in senior boxers compared to juniors. Moreover, the senior boxers possessed mesomorphic body conformation where as the juniors' possessed ectomorphic body conformation. Significantly lower (p < 0.05 aerobic capacity and anaerobic power were noted in junior boxers compared to seniors. Further, significantly higher (p < 0.05 maximal heart rates and recovery heart rates were observed in the seniors as compared to the juniors. Significantly higher maximum heart rates were noted during actual boxing compared to graded exercise. Blood lactate concentration was found to increase with the increase of workload during both graded exercise and actual boxing round. The senior boxers showed a significantly elevated (p < 0.05 levels of hemoblobin, blood urea, uric acid and peak lactate as compared to junior boxers. In the senior boxers significantly lower levels of total cholesterol, triglyceride and LDLC were observed as compared to junior boxers. No significant change has been noted in HDLC between the groups. The age and level of training in boxing has significant effect on Aerobic, anaerobic component. The study of physiological responses during graded exercise

  4. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    International Nuclear Information System (INIS)

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-01-01

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O 2 /L R -d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied

  5. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jun Wei [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, Jing-Yuan, E-mail: jywang@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-04-15

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was

  6. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    Science.gov (United States)

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    this isolate exhibited Sb(V)-dependent heterotrophic growth. These results suggest that the endogenous microbial community from this Sb-contaminated site includes anaerobic microorganisms capable of obtaining energy for growth by oxidizing heterotrophic electron donors using Sb(V) as the terminal electron acceptor. Ongoing work includes identification of the isolated organism using 16S rDNA phylogenetic markers as well as an inventory of known functional genes (e.g., arrA) within this isolate that may more typically encode for As(V)-reduction. These results elucidate the potentially significant role of microbiological transformations in controlling the speciation of Sb in the environment, and may help to identify potential bioremediation strategies for Sb contaminated waters.

  7. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    Science.gov (United States)

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.

  8. Physiological responses and energy cost during a simulation of a Muay Thai boxing match.

    Science.gov (United States)

    Crisafulli, Antonio; Vitelli, Stefano; Cappai, Ivo; Milia, Raffaele; Tocco, Filippo; Melis, Franco; Concu, Alberto

    2009-04-01

    Muay Thai is a martial art that requires complex skills and tactical excellence for success. However, the energy demand during a Muay Thai competition has never been studied. This study was devised to obtain an understanding of the physiological capacities underlying Muay Thai performance. To that end, the aerobic energy expenditure and the recruitment of anaerobic metabolism were assessed in 10 male athletes during a simulation match of Muay Thai. Subjects were studied while wearing a portable gas analyzer, which was able to provide data on oxygen uptake, carbon dioxide production, and heart rate (HR). The excess of CO2 production (CO2 excess) was also measured to obtain an index of anaerobic glycolysis. During the match, group energy expenditure was, on average (mean +/- standard error of the mean), 10.75 +/- 1.58 kcal.min-1, corresponding to 9.39 +/- 1.38 metabolic equivalents. Oxygen uptake and HRs were always above the level of the anaerobic threshold assessed in a preliminary incremental test. CO2 excess showed an abrupt increase in the first round, and reached a value of 636 +/- 66.5 mL.min-1. This parameter then gradually decreased throughout the simulation match. These data suggest that Muay Thai is a physically demanding activity with great involvement of both the aerobic metabolism and anaerobic glycolysis. In particular, it appears that, after an initial burst of anaerobic glycolysis, there was a progressive increase in the aerobic energy supply. Thus, training protocols should include exercises that train both aerobic and anaerobic energetic pathways.

  9. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.

    Science.gov (United States)

    Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J

    2009-01-01

    Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.

  10. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity.

    Science.gov (United States)

    Feng, Leiyu; Chen, Yunzhi; Chen, Xutao; Duan, Xu; Xie, Jing; Chen, Yinguang

    2018-02-01

    Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Simple and convenient method for culturing anaerobic bacteria.

    OpenAIRE

    Behbehani, M J; Jordan, H V; Santoro, D L

    1982-01-01

    A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars.

  12. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    International Nuclear Information System (INIS)

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  13. The Effect of Sedimentation Conditions of Frozen Deposits at the Kolyma Lowland on the Distribution of Methane and Microorganisms Activity

    Science.gov (United States)

    Oshurkova, V.; Kholodov, A. L.; Spektor, V.; Sherbakova, V.; Rivkina, E.

    2014-12-01

    Biogeochemical and microbiological investigations of methane distribution and origin in Northeastern Arctic permafrost sediments indicated that microbial methane production was observed in situ in thawed and permanently frozen deposits (Rivkina et al., 2007). To check the hypothesis about the correlation between permafrost ground type and quantity of methane, produced by microorganisms, the samples from deposits of thermokarst depression (alas), Yedoma and fluvial deposits of Kolyma floodplain for gas measurements and microbiological study were collected and the experiment with anaerobic incubation was conducted. Gas analysis indicated that alas and floodplain samples were characterized by high methane concentrations whereas Yedoma samples had only traces of methane. Two media with different substrates were prepared anaerobically for incubation. First medium contained sucrose as a substrate for hydrolytic microflora and the second one contained acetate as a substrate for methanogens. Two samples from alas, one sample from Yedoma and one from floodplain were placed in anaerobic bottles and media under gas mixture (N2, CO2 and H2) were added. The bottles were incubated for 2 weeks at room temperature. The results of the experiment showed that there was the increase of methane concentrations in the bottles with Yedoma and Floodplain samples to 52-60 and 67-90 %, respectively, from initial concentrations in contrast with Alas sample inoculated bottles. At the same time the concentration of methane in control bottles, which did not include substrates, increased to 15-19%. Current research is a part of NSF funded project "The Polaris".

  14. Inhibition of Anaerobic Biological Treatment: A Review

    Science.gov (United States)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  15. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    Science.gov (United States)

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  16. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    Science.gov (United States)

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  17. Analysis of anaerobic blood cultures in burned patients.

    Science.gov (United States)

    Regules, Jason A; Carlson, Misty D; Wolf, Steven E; Murray, Clinton K

    2007-08-01

    The utility of anaerobic blood culturing is often debated in the general population, but there is limited data on the modern incidence, microbiology, and utility of obtaining routine anaerobic blood cultures for burned patients. We performed a retrospective review of the burned patients electronic medical records database for all blood cultures drawn between January 1997 and September 2005. We assessed blood cultures for positivity, organisms identified, and growth in aerobic or anaerobic media. 85,103 blood culture sets were drawn, with 4059 sets from burned patients. Three hundred and forty-five single species events (619 total blood culture isolates) were noted in 240 burned patients. For burned patients, four isolates were obligate anaerobic bacteria (all Propionibacterium acnes). Anaerobic versus aerobic culture growth was recorded in 310 of 619 (50.1%) burned patient blood culture sets. 46 (13.5%) of the identified organisms, most of which were not obligate anaerobic bacteria, were identified from solely anaerobic media. The results of our study suggest that the detection of significant anaerobic bacteremia in burned patients is very rare and that anaerobic bottles are not needed in this population for that indication. However anaerobic blood cultures systems are also able to detect facultative and obligate aerobic bacteria; therefore, the deletion of the anaerobic culture medium may have deleterious clinical impact.

  18. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  19. Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: a column study.

    Science.gov (United States)

    Pitoi, M M; Patterson, B M; Furness, A J; Bastow, T P; McKinley, A J

    2011-04-01

    The fate of N-nitrosomorpholine (NMOR) was evaluated at microgram and nanogram per litre concentrations. Experiments were undertaken to simulate the passage of groundwater contaminants through a deep anaerobic pyritic aquifer system, as part of a managed aquifer recharge (MAR) strategy. Sorption studies demonstrated the high mobility of NMOR in the Leederville aquifer system, with retardation coefficients between 1.2 and 1.6. Degradation studies from a 351 day column experiment and a 506 day stop-flow column experiment showed an anaerobic biologically induced reductive degradation process which followed first order kinetics. A biological lag-time of less than 3 months and a transient accumulation of morpholine (MOR) were also noted during the degradation. Comparable half-life degradation rates of 40-45 days were observed over three orders of magnitude in concentration (200 ng L(-1) to 650 μg L(-1)). An inhibitory effect on microorganism responsible to the biodegradation of NMOR at 650 μg L(-1) or a threshold effect at 200 ng L(-1) was not observed during these experiments. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Zhen, Guangyin; Lu, Xueqin; Li, Yu-You; Zhao, Youcai

    2014-01-01

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DD SCOD ), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (k hyd ), but had no, or very slight enhancement on WAS ultimate

  1. The effect of effective microorganisms (EM on EBPR in modified contact stabilization system

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2015-12-01

    Full Text Available Excessive phosphorus can cause eutrophication in water bodies and needs to be reduced in most wastewaters before discharge to receiving waters. The enhanced biological phosphorus removal (EBPR process has been shown to be an economical and environmentally compatible method for reducing phosphorus from wastewaters. The experiment has been performed in order to investigate the effect of using effective microorganisms (EM as an application of Enhanced Biological Phosphorous Removal (EBPR in modified contact stabilization activated sludge system by using contact tank as a phosphorus uptake zone and using thickener tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in the Quhafa Wastewater Treatment Plant (WWTP, Al Fayoum, Egypt. Then the uptake and release of total phosphorus were determined through two batch tests using sludge samples from thickener and stabilization tanks. Results showed the removal efficiencies of Chemical Oxygen Demand (COD, Biological Oxygen Demand (BOD5 and total phosphorus (TP of this pilot plant were 93%, 93% and 90%, respectively. On the other hand the results of batch tests showed that the reason for high ability of phosphorus removal by this pilot plant is related to the high performance of microorganisms for phosphorus accumulation. Finally providing activated EM to the anaerobic zone was to improve fermentation by achieving the enhancement of the performance of phosphorus accumulating organisms (PAOs and then increase phosphorous release resulting in the decrease of the average effluent phosphorus concentration.

  2. Evidence and identification of microorganisms in argillite from Tournemire (France)

    International Nuclear Information System (INIS)

    Urios, L.; Magot, M.; Marsal, F.; Pellegrini, D.

    2010-01-01

    faulted area also harbours a strictly anaerobic bacteria, possibly thiosulfate-reducing, Clostridium species and a Gram positive sulfate-reducing Desulfotomaculum species. These are two important bacterial groups frequently involved in microbial corrosion processes. Although the presence of Firmicutes, Actinobacteria and Proteobacteria was identified, the biodiversity of the gallery wall is also largely dominated by the Firmicutes, representing 14 of the 18 identified species. Surprisingly, a single proteobacterial species was identified from the wall sample although this environment is submitted to colonization by bacteria from ambient atmosphere. Even if some similarities can be found at the genus level between the gallery wall and the core samples, species diversities exhibited a very low overlap between the different investigated zones. These differences could be partly explained by the various conditions depending on the initial location of the samples. The analysis of the cultivable bacterial diversity of the Toarcian argillite of Tournemire has shown that the taxonomic diversity could be larger than previously suspected. Globally, the observed bacterial diversity tends to depend on the different oxygen and humidity conditions. The wall and EDZ samples have provided information about the bacterial communities able to develop on disturbed argillite and possibly to colonize the EDZ. These observations led to conclude that even if the argillite probably acts as a natural selective substratum for bacterial colonization, exogenous microorganisms may colonize both areas

  3. Evidence and identification of microorganisms in argillite from Tournemire (France)

    Energy Technology Data Exchange (ETDEWEB)

    Urios, L.; Magot, M. [Universite de Pau et des Pays de l' Adour, IPREM UMR 5254, Equipe Environnement et Microbiologie, IBEAS, F-64013 PAU (France); Marsal, F.; Pellegrini, D. [IRSN, DSU/SSIAD/BERIS, BP 17, 92262 Fontenay aux Roses Cedex (France)

    2010-07-01

    faulted area also harbours a strictly anaerobic bacteria, possibly thiosulfate-reducing, Clostridium species and a Gram positive sulfate-reducing Desulfotomaculum species. These are two important bacterial groups frequently involved in microbial corrosion processes. Although the presence of Firmicutes, Actinobacteria and Proteobacteria was identified, the biodiversity of the gallery wall is also largely dominated by the Firmicutes, representing 14 of the 18 identified species. Surprisingly, a single proteobacterial species was identified from the wall sample although this environment is submitted to colonization by bacteria from ambient atmosphere. Even if some similarities can be found at the genus level between the gallery wall and the core samples, species diversities exhibited a very low overlap between the different investigated zones. These differences could be partly explained by the various conditions depending on the initial location of the samples. The analysis of the cultivable bacterial diversity of the Toarcian argillite of Tournemire has shown that the taxonomic diversity could be larger than previously suspected. Globally, the observed bacterial diversity tends to depend on the different oxygen and humidity conditions. The wall and EDZ samples have provided information about the bacterial communities able to develop on disturbed argillite and possibly to colonize the EDZ. These observations led to conclude that even if the argillite probably acts as a natural selective substratum for bacterial colonization, exogenous microorganisms may colonize both areas.

  4. Anaerobic degradation of anionic surfactants by indigenous microorganisms from sediments of a tropical polluted river in Brazil

    Directory of Open Access Journals (Sweden)

    Iolanda Cristina Silveira Duarte

    2015-03-01

    Full Text Available Linear alkylbenzene sulfonate (LAS is widely used in the formulation of domestic and industrial cleaning products, the most synthetic surfactants used worldwide. These products can reach water bodies through the discharge of untreated sewage or non-effective treatments. This study evaluates the ability of the microorganisms found in the Tietê river sediment to degrade this synthetic surfactant. The experiment was conducted in a bioreactor, operated in batch sequences under denitrifying conditions, with cycles of 24 hours and stirring at 150rpm, using 430mL of sediments and 1 070mL of a synthetic substrate consisting of yeast extract, soluble starch, sodium bicarbonate and sucrose. LAS was added at different concentrations of 15mg/L and 30mg/L. The reactor operation was divided into the biomass adaptation to the synthetic substrate without LAS and three experimental conditions: a addition of 15mg/L of LAS; b 50% reduction the co-substrate concentration and 15mg/L of LAS, and c addition of 30mg/L of LAS and 100% co-substrate concentration. The results showed that the degradation efficiency of LAS was directly related to the addition of co-substrates and the population of denitrifying bacteria. The removal of LAS and nitrate can be achieved simultaneously in wastewater with low organic loads. The reduction in the co-substrates concentration was directly influenced by the number of denitrifying bacteria (2.2x10(13 to 1.0x10(8MPN/gTVS, and consequently, LAS degradation (60.1 to 55.4%. The sediment microorganisms in the Tietê river can be used as an alternative inoculum in the treatment of wastewater with nitrate and LAS contamination.

  5. [Isolation and identification of seven thermophilic and anaerobic bacteria from hot springs in Tengchong Rehai].

    Science.gov (United States)

    Lu, Yueqing; Chen, Bo; Liu, Xiaoli; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing

    2009-09-01

    In order to study the taxonomic characteristic and physiological, biochemical properties of anaerobic bacteria from hot springs in Tengchong Rehai, Yunnan Province, China. Using Hungate anaerobic technique We isolated seven strains from hot springs in Tengchong Rehai, Yunnan province, and analyzed their 16S rRNA gene sequences. The seven isolates were rod-shaped, Gram-negative, obligate anaerobe, and spores formation was not observed. All strains could grow well at 70 degrees C. Growth of strain RH0802 occurred between 60 and 80 degrees C, optimally around 70 degrees C. The pH range for its growth was between 5.5 and 8.5, with an optimum around 7.0. Strain RH0802 grew on a wide range of carbon sources, including glucose, starch, mannitol, mannose, ribose, maltose, cellobiose, xylose, fructose, galactose, xylan and glycerol, but it could not utilize sucrose or pyruvate. 16S rRNA gene phylogenetic analysis showed that the maximum similarity between the five strains and the strains of genus Caldanaerobacter was up to 98%, except RH0804 and RH0806, which reached to 96% and 93%, respectively. The two isolates were presumed to be potential novel species. The GenBank accession numbers of RH0802 to RH0808 were FJ748766, FJ748762, FJ748761, FJ748763, FJ748765, FJ748764 and FJ748767. The results showed that the seven thermophilic anaerobes belonged to the genus Caldanaerobacter.

  6. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  7. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions.

    Science.gov (United States)

    Kodama, Yumiko; Watanabe, Kazuya

    2003-01-01

    Molecular approaches have shown that a group of bacteria (called cluster 1 bacteria) affiliated with the epsilon subclass of the class Proteobacteria constituted major populations in underground crude-oil storage cavities. In order to unveil their physiology and ecological niche, this study isolated bacterial strains (exemplified by strain YK-1) affiliated with the cluster 1 bacteria from an oil storage cavity at Kuji in Iwate, Japan. 16S rRNA gene sequence analysis indicated that its closest relative was Thiomicrospira denitrificans (90% identity). Growth experiments under anaerobic conditions showed that strain YK-1 was a sulfur-oxidizing obligate chemolithotroph utilizing sulfide, elemental sulfur, thiosulfate, and hydrogen as electron donors and nitrate as an electron acceptor. Oxygen also supported its growth only under microaerobic conditions. Strain YK-1 could not grow on nitrite, and nitrite was the final product of nitrate reduction. Neither sugars, organic acids (including acetate), nor hydrocarbons could serve as carbon and energy sources. A typical stoichiometry of its energy metabolism followed an equation: S(2-) + 4NO(3)(-) --> SO(4)(2-) + 4NO(2)(-) (Delta G(0) = -534 kJ mol(-1)). In a difference from other anaerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 1% NaCl was negligible. When YK-1 was grown anaerobically in a sulfur-depleted inorganic medium overlaid with crude oil, sulfate was produced, corresponding to its growth. On the contrary, YK-1 could not utilize crude oil as a carbon source. These results suggest that the cluster 1 bacteria yielded energy for growth in oil storage cavities by oxidizing petroleum sulfur compounds. Based on its physiology, ecological interactions with other members of the groundwater community are discussed.

  8. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luis Busi; Chiaranda, Helen Simone; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2013-06-01

    Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m(2) that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

  9. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  10. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model.

    Science.gov (United States)

    Chang, Robert; Nam, Jae; Sun, Wei

    2008-06-01

    A novel targeted application of tissue engineering is the development of an in vitro pharmacokinetic model for drug screening and toxicology. An in vitro pharmacokinetic model is needed to realistically and reliably predict in vivo human response to drug administrations and potential toxic exposures. This paper details the fabrication process development and adaptation of microfluidic devices for the creation of such a physiologically relevant pharmacokinetic model. First, an automated syringe-based, layered direct cell writing (DCW) bioprinting process creates a 3D microorgan that biomimics the cell's natural microenvironment with enhanced functionality. Next, soft lithographic micropatterning techniques are used to fabricate a microscale in vitro device to house the 3D microorgan. This paper demonstrates the feasibility of the DCW process for freeform biofabrication of 3D cell-encapsulated hydrogel-based tissue constructs with defined reproducible patterns, direct integration of 3D constructs onto a microfluidic device for continuous perfusion drug flow, and characterization of 3D tissue constructs with predictable cell viability/proliferation outcomes and enhanced functionality over traditional culture methods.

  11. THE EFFECT OF F/M RATIO TO THE ANAEROBIC DECOMPOSITION OF BIOGAS PRODUCTION FROM FISH OFFAL WASTE

    Directory of Open Access Journals (Sweden)

    Agus Hadiyarto

    2016-01-01

    Full Text Available Biogas is a gas produced from the anaerobic decomposition of organic compounds. In the production of biogas from anaerobic digestion, value of F/M ratio shows a ratio between the mass of food available in the waste substrate with a mass of microorganisms that act as decomposers. F/M ratio is too small causing microbes could not metabolize perfectly and vice versa on the value of the ratio F / M overload resulting metabolic imbalance. The purpose of this study was to assess the effect of F/M ratio to optimal production of biogas from fish offal waste. The process of anaerobic digestion is conducted in the biodigester with four-liter volume and batch system operated at ambient temperature for 38 days. As a raw material, fish offal and microbial sludge obtained from the curing of fish and river mud discharges in the region of Bandarharjo, Semarang, Central Java. F/M ratio is set at 0.2, 0.4, and 0.6 are derived from sewage sludge VSS weight ratio of fish offal with sludge containing microbes. The addition of micronutrients supplied with a concentration of 0.4 mg/liter. Yield maximum methane gas obtained was 164,7 l/kg CODMn when the ratio F/M was 0.2. Based on the results of the study, found that the ratio F/M affect the amount of biogas produced. Meanwhile, the retention time (HRT is only influenced by the ratio F/M.

  12. Age-Related Patterns of Physical and Physiological Characteristics in Adolescent Wrestlers

    Directory of Open Access Journals (Sweden)

    Erkan Demirkan

    2015-03-01

    Full Text Available The aim of the study was to examine the physical and physiological differences as dependent on age of young wrestlers. One hundred and twenty-six 15 – 17 year old wrestlers volunteered as subjects in the present study. The physical and physiological profiles included body weight, height, body mass index, flexibility, anaerobic power, aerobic endurance, strength, speed, and body composition. The statistically significant (p<0.05 results are as follows: Age group 17 (AG 17 had significantly higher leg and arm anaerobic power and capacity (leg power: 952±216 Watt (W; arm power: 684±194 W and leg capacity: 489±101 W; arm capacity: 354±88 respectively as compared to the AG15 with (leg power: 718±279 Watt (W; arm power: 458±149 W and leg capacity: 376±132 W; arm capacity: 247±86 W respectively. AG17 wrestlers were significantly faster than AG 15 (4.29±.25 second - 4.53±.30 second respectively. AG 15 wrestlers had significantly lower right and left hand grip strength (right: 36.4±10.7 kg, left: 34.9±10 kg than AG 16 (right: 43.9±8.4kg, left: 42.5±7.8 kg and AG17 wrestlers (right: 46.6±8.7kg, left: 46.4±8.3 kg. In conclusion The results of this study suggest that height, body weight, fat free mass, arms – legs anaerobic power and capacity, speeds and hand grip strengths were increased both in one age range and in two ages range together with age progression, but it was clearly seen statistical differences in two ages range.

  13. Concept of Compound Retention Time for Organic Micro Pollutants in Anaerobic Membrane Bioreactor with Nanofiltration

    KAUST Repository

    Pan, Jiangjiang

    2011-12-01

    Organic micropollutants (OMPs) have received more and more attention in recent years due to their potential harmful effects on public health and aquatic ecosystems, and eliminating OMPs in wastewater treatment systems is an important solution to control OMPs wastage. An innovative hybrid process, anaerobic membrane bioreactor with nanofiltration (AnMBR-NF), in which enhanced OMPs removal is possible based on the concept of compound retention time (CRT) through coupling anaerobic biodegradation and NF rejection, is proposed and examined in terms of preliminary feasibility in this study. First, NF membrane screening through sludge water dead-end filtration tests demonstrated that KOCH NF200 (molecular weight cut-off (MWCO) 200 Da, acid/base stable) performed best in organic matter rejection. Then, selected OMPs (ketobrofen and naproxen) in MQ water and a biologically treated wastewater matrix were filtered through NF200 under constant-pressure dead-end mode, with and without stirring, and several methods (contact angle, scanning electronic microscopy, Zeta potential, Fourier transform infra-red spectroscopy) were used to characterize membranes. Results show selected OMPs in MQ could be rejected (about 40%) by a clean NF200 membrane. The main rejection mechanism was initial absorption by the membrane followed by size exclusion (electric charge interaction plays a less important role). The wastewater matrix could enhance the rejection significantly (up to 90%) because effluent organic matter (EfOM) enhanced size exclusion and electric charge interaction through blocking membrane pores and forming a gel layer as well as binding some OMPs through partitioning followed by retention by NF. Third, an anaerobic bioreactor was set up to evaluate the anaerobic biodegradability of selected OMPs. Results showed selected OMPs could be absorbed by sludge and reached equilibrium within one day, and then were consumed by anaerobic microorganism with a half life 9.4 days for

  14. Hypoxia increases the behavioural activity of schooling herring: a response to physiological stress or respiratory distress?

    DEFF Research Database (Denmark)

    Herbert, Neill A.; Steffensen, John F.

    2006-01-01

    a deviation in physiological homeostasis is associated with any change in behavioural activity, we exposed C. harengus in a school to a progressive stepwise decline in water oxygen pressure  and measured fish swimming speed and valid indicators of primary and secondary stress (i.e. blood cortisol, lactate......Atlantic herring, Clupea harengus, increase their swimming speed during low O2 (hypoxia) and it has been hypothesised that the behavioural response is modulated by the degree of "respiratory distress" (i.e. a rise in anaerobic metabolism and severe physiological stress). To test directly whether...

  15. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  16. Microorganisms applying for artificial soil regeneration technology in space greenhouses

    Science.gov (United States)

    Krivobok, A. S.

    2012-04-01

    The space greenhouse and technology for growing plants are being designed in frame of bio-technical life support systems development. During long-term space missions such greenhouse could provide the crew with vitamins and rough plant fiber. One of the important elements of the plant cultivation technology in the absence of earth gravity is organization and support the optimum root area. The capillary-porous substrate composed of anionites (FIBAN -1) and cationites (FIBAN -22-1) synthetic salt-saturated fibers is developed for plant cultivation in space and named "BIONA-V3". The BIONA main features are high productivity and usability. But the pointed features are not constant: the substrate productivity will be decreasing gradually from vegetation to vegetation course of plant residues and root secretions accumulation. Also, the basic hydro-physical characteristic of root zone will be shifted. Furthermore, saprotrophic microflora will develop and lead to increasing the level of microbial contamination of whole inhabit isolated module. Due to these changes the substrate useful life is limited and store mass is increased in long-term missions. For overhaul-period renewal it' necessary to remove the roots residues and other organic accumulation providing safety of the substrate capillary-porous structure. The basic components of 24-days old plant roots (Brassica chinensis, L) are cellulose (35 %) hemicellulose (11 %) and lignin (10 %). We see that one of the possible ways for roots residues removal from fibrous BIONA is microorganisms applying with strong cellulolytic and ligninolytic activities. The fungi Trichoderma sp., cellulolytic bacteria associations, and some genus of anaerobic thermophilic cellulolitic bacteria have been used for roots residues biodegradation. In case of applying cellulolytic fungi Trichoderma sp. considerable decrease of microcrystalline cellulose has been noted in both liquid and solid state fermentation. Cellulolytic fungi weight has been

  17. The phenomenon of granulation of anaerobic sludge

    NARCIS (Netherlands)

    Hulshoff Pol, L.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials

  18. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    Science.gov (United States)

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  19. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing...... an aerotolerant Clostridium perfringens strain. A zone diameter above 27 mm was indicative of acceptable anaerobic conditions....

  20. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2015-07-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  1. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    International Nuclear Information System (INIS)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T.

    2015-01-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  2. Anaerobic digestion in combination with 2nd generation ethanol production for maximizing biofuels yield from lignocellulosic biomass – testing in an integrated pilot-scale biorefinery plant

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    An integrated biorefinery concept for 2nd generation bioethanol production together with biogas production from the fermentation effluent was tested in pilot-scale. The pilot plant comprised pretreatment, enzymatic hydrolysis, hexose and pentose fermentation into ethanol and anaerobic digestion......-VS/(m3•d) a methane yield of 340 L/kg-VS was achieved for thermophilic operation while 270 L/kg-VS was obtained under mesophilic conditions. Thermophilic operation was, however, less robust towards further increase of the loading rate and for loading rates higher than 5 kg-VS/(m3•d) the yield was higher...... for mesophilic than for thermophilic operation. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher biofuels yield in the biorefinery compared to a system...

  3. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    2004-01-01

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  4. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  5. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs.

    Science.gov (United States)

    Varjani, Sunita J; Gnansounou, Edgard

    2017-12-01

    Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.

    Science.gov (United States)

    Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2016-04-01

    Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Isolation of anaerobes from bubo associated with chancroid.

    Science.gov (United States)

    Kumar, B; Sharma, V K; Bakaya, V; Ayyagiri, A

    1991-01-01

    Ten men with bubo associated with chancroid were studied for bacterial flora especially anaerobes. Anaerobes were isolated from all 10 buboes and eight out of 10 ulcers of chancroid. Anaerobic cocci, B melaninogenicus and B fragilis were the most common isolates. anaerobes probably play a role in the pathogenesis of bubo in chancroid. PMID:1680792

  8. Bioplastics from microorganisms.

    Science.gov (United States)

    Luengo, José M; García, Belén; Sandoval, Angel; Naharro, Germán; Olivera, Elías R

    2003-06-01

    The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.

  9. Comparative evaluation of anoxomat and conventional anaerobic GasPak jar systems for the isolation of anaerobic bacteria.

    Science.gov (United States)

    Shahin, May; Jamal, Wafaa; Verghese, Tina; Rotimi, V O

    2003-01-01

    To evaluate the performance of the Anoxomat, in comparison with the conventional anaerobic GasPak jar system, for the isolation of obligate anaerobes. Anoxomat, model WS800, and anaerobic GasPak jar system (Oxoid) were evaluated. Anoxomat system utilized a gas mixture of 80% N(2), 10% CO(2) and 10% H(2), while the GasPak used a gas mixture of 90% H(2) and 10% CO(2). An anaerobic indicator within the jars monitored anaerobiosis. A total of 227 obligate anaerobic bacteria comprising 116 stock strains, 5 ATCC reference strains and 106 fresh strains, representing different genera, were investigated for growth on anaerobic agar plates and scored for density, colony sizes, susceptibility zones of antibiotic inhibition and the speed of anaerobiosis (reducing the indicator). The results demonstrate that the growth of anaerobic bacteria is faster inside the Anoxomat jar than in the anaerobic GasPak jar system. Of the 227 strains tested, the colonies of 152 (67%) were larger (by size range of 0.2-2.4 mm) in the Anoxomat at 48 h than in the GasPak jar compared with only 21% (range 0.1-0.3 mm) that were larger in the GasPak than in the Anoxomat. The remaining 12% were equal in their sizes. There was no measurable difference in the colony sizes of the reference strains. The Porphyromonas asaccharolytica strains failed to grow within the GasPak system but grew inside the Anoxomat. With the Anoxomat, anaerobiosis was achieved about 35 min faster than in the GasPak system. The density of growth recorded for 177 (78%) strains was heavier in the Anoxomat than in the GasPak jar. The zones of inhibition of the antibiotics tested were not different in the two systems. The Anoxomat system provided superior growth, in terms of density and colony size, and achieved anaerobiosis more rapidly. Evidently, the Anoxomat method is more reliable and appears to support the growth of strict anaerobes better. Copyright 2003 S. Karger AG, Basel

  10. Anaerobic bacteraemia revisited: species and susceptibilities.

    Science.gov (United States)

    Ng, Lily S Y; Kwang, Lee Ling; Rao, Suma; Tan, Thean Yen

    2015-01-01

    This retrospective study was performed to evaluate the frequency of anaerobic bacteraemia over a 10-year period, and to provide updated antibiotic susceptibilities for the more clinically relevant anaerobes causing blood stream infection. Data were retrieved from the laboratory information system for the period 2003 to 2012. During this time, blood cultures were inoculated in Bactec™ Plus vials (BD, USA) and continuously monitored in the Bactec™ 9000 blood culture system (BD, USA). Anaerobic organisms were identified using commercial identification kits, predominantly API 20 A (bioMérieux, France) supplemented with Vitek ANC cards (bioMérieux, France) and AN-Ident discs (Oxoid, United Kingdom). A representative subset of isolates were retrieved from 2009 to 2011 and antimicrobial susceptibilities to penicillin, amoxicillin-clavulanate, clindamycin, imipenem, moxifloxacin, piperacillin-tazobactam and metronidazole were determined using the Etest method. Anaerobes comprised 4.1% of all positive blood culture with 727 obligate anaerobes recovered over the 10-year period, representing a positivity rate of 0.35%. The only significant change in anaerobe positivity rates occurred between 2003 and 2004, with an increase of 0.2%. The Bacteroides fragilis group (45%) were the predominant anaerobic pathogens, followed by Clostridium species (12%), Propioniobacterium species (11%) and Fusobacterium species (6%). The most active in vitro antibiotics were imipenem, piperacillin-tazobactam, amoxicillin-clavulanate and metronidazole, with susceptibilities of 95.0%, 93.3%, 90.8% and 90.8% respectively. Resistance was high to penicillin, clindamycin and moxifl oxacin. However, there were apparent differences for antibiotic susceptibilities between species. This study indicates that the anaerobes comprise a small but constant proportion of bloodstream isolates. Antibiotic resistance was high to some antibiotics, but metronidazole, the beta-lactam/beta-lactamase inhibitors and

  11. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption

    Science.gov (United States)

    Summit, Melanie; Baross, John A.

    1998-12-01

    High-temperature microbes were present in two hydrothermal event plumes (EP96A and B) resulting from the February-March 1996 eruptions along the North Gorda Ridge. Anaerobic thermophiles were cultured from 17 of 22 plume samples at levels exceeding 200 organisms per liter; no thermophiles were cultured from any of 12 samples of background seawater. As these microorganisms grow at temperatures of 50-90°C, they could not have grown in the event plume and instead most probably derived from a subseafloor environment tapped by the event plume source fluids. Event plumes are thought to derive from a pre-existing subseafloor fluid reservoir, which implies that these thermophiles are members of a native subseafloor community that was present before the eruptive event. Thermophiles also were cultured from continuous chronic-style hydrothermal plumes in April 1996; these plumes may have formed from cooling lava piles. To better understand the nutritional, chemical, and physical constraints of pre-eruptive crustal environments, seven coccoidal isolates from the two event plumes were partially characterized. Results from nutritional and phylogenetic studies indicate that these thermophiles are heterotrophic archaea that represent new species, and probably a new genus, within the Thermococcales.

  12. Physiological demands of a swimming-based video game: Influence of gender, swimming background, and exergame experience.

    Science.gov (United States)

    Soltani, Pooya; Figueiredo, Pedro; Ribeiro, João; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2017-07-12

    Active video games (exergames) may provide short-term increase in energy expenditure. We explored the effects of gender and prior experience on aerobic and anaerobic energy systems contributions, and the activity profiles of 40 participants playing with a swimming exergame. We recorded oxygen consumption and assessed blood lactate after each swimming technique. We also filmed participants' gameplays, divided them into different phases and tagged them as active or inactive. Anaerobic pathway accounted for 8.9 ± 5.6% of total energy expenditure and although experienced players were less active compared to novice counterparts (η² increase in physiological measures might happen in the beginning of gameplay because of unfamiliarity with the game mechanics. Despite low levels of activity compared to real sport, both aerobic and anaerobic energy systems should be considered in the evaluation of exergames. Game mechanics (involving the whole body) and strategies to minimize pragmatic play might be used for effective and meaningful game experience.

  13. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain pine species

    International Nuclear Information System (INIS)

    Topa, M.A.

    1984-01-01

    Seedlings of pond (Pinus serotina (Michx.)), sand (P. clausa (Engelm.) Sarg.), and loblolly pines (P. taeda L., drought-hardy and wet site seed sources) were grown in a non-circulating, continuously-flowing solution culture under anaerobic or aerobic conditions to determine the effects of anaerobics on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond pines was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with specific morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root in anaerobically-grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation experiments. Tissue elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term 32 p uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass, since H 2 PO 4 - influx in the anaerobically-grown seedlings was more than twice that of their aerobic counterparts. Sand pine possessed the physiological but not morphological capacity to increase P uptake under anaerobic growth conditions. Pond and wet-site loblolly pine seedlings maintained root growth, perhaps through enhanced internal root aeration - an advantage in field conditions where the phosphorus supply may be limited or highly localized

  14. A study of the process of two staged anaerobic fermentation as a possible method for purifying sewage

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Kouama, K; Matsuo, T

    1983-01-01

    Great attention has recently been given to the study of the processes of anaerobic fermentation, which may become alternatives to the existing methods for purifying waste waters which use aerobic microorganisms. A series of experimentswere conducted with the use of an artificially prepared liquid (fermented milk and starch) which imitates the waste to be purified, in order to explain the capabilities of the process of two staged anaerobic fermentation (DAS) as a method for purifying waste waters. The industrial system of the process includes: a fermentation vat for acetic fermentation with recirculation of the sediment, a primary settler, a fermentation tank for methane fermentation and a secondary settler. The process was conducted at a loading speed (based on Carbon) from 0.15 to 0.4 kilograms per cubic meter per day at a temperature of 38C. The degree of conversion of the fermented organic substances into volatile organic acids was not a function of the loading speed and was 54 to 57 percent in the acetic fermentation tank, where 95 to 97 percent of the organic material was broken down with the production of methane and carbon dioxide.

  15. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  16. Effect of mineral fertilizers on microbiological and biochemical characteristics of agrochernozem.

    Science.gov (United States)

    Tkhakakhova, Azida; Vasilenko, Elena; Kutovaya, Olga

    2013-04-01

    . Content of humic substances in the soil affects all groups of microorganisms, except actinomycetes and cellulolytices. These microorganisms have an active system of hydrolytic enzymes that taking action on hard organic materials. Movable carbon largely affects the anaerobic microorganisms nitrogen cycle and inverse relationship takes place during with the developing of actinomycetes. Correlation between the aqueous extract carbon with cellulolitic bacteria, aerobic nitrogen-fixing bacteria and amylolytic microorganisms using mineral nitrogen is the highest. Organic material of the soil solution in the growing season associated with NO3-. The content of total nitrogen and nitrate associated with anaerobic denitrifying bacteria, nitrogen-fixing bacteria and amylolytic microorganisms. The content of ammonia nitrogen N-NH4+ renders very strong influence on soil microorganisms. A positive correlation is observed with ammonifiers, nitrogen-fixing bacteria, denitrifying bacteria. There is inverse relationship with actinomycetes (R = - 0,96) and anaerobic cellulolitic bacteria (R = - 0,80). Representatives of these microorganisms are active participants in the carbon cycle; their development in the presence of the ammonium form of nitrogen is possibly suspended. There is a complicated relationship of biochemical indicators of the development of soil microorganisms in the black earth. The problem preserving stable humus and physiologically active mobile forms that affect plant growth can only be achieved while maintaining the living organisms in it.

  17. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H.

    1989-01-01

    Anaerobic treatment of cheese whey using a 17.5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4.5 to 38.1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38.1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.

  18. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    production. As an initial step in the search for a better biosurfactant-producing microorganism, 157 bacterial strains were screened for biosurfactant production under both aerobic and anaerobic conditions. A hundred and forty seven strains produced either equal or higher amounts of biosurfactant compared to B. mojavensis JF-2 and the 10 best strains were chosen for further study. In an attempt to increase biosurfactant production, a genetic recombination experiment was conducted by mixing germinating spores of four of the best strains with B. mojavensis JF-2. Biosurfactant production was higher with the mixed spore culture than in the cocultures containing B. mojavensis JF-2 and each of the other 4 strains or in a mixed culture containing all five strains that had not undergone genetic exchange. Four isolates were obtained from the mixed spores culture that gave higher biosurfactant production than any of the original strains. Repetitive sequence-based polymerase chain reaction analysis showed differences in the band pattern for these strains compared to the parent strains, suggesting the occurrence of genetic recombination. We have a large collection of biosurfactant-producing microorganisms and a natural mechanism to improve biosurfactant production in these organisms.

  19. Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Xinbo Tian

    2017-07-01

    Full Text Available Sludge production in wastewater treatment plants is increasing worldwide due to the increasing population. This work investigated the effects of ultrasonic (ULS, ultrasonic-ozone (ULS-Ozone and ultrasonic + alkaline (ULS+ALK post-treatments on the anaerobic digestion of sewage sludge in semi-continuous anaerobic reactors. Three conditions were tested with different hydraulic retention times (HRT, 10 or 20 days and sludge recycle ratios (R = QR/Qin (%: 50 or 100%. Biogas yield increased by 17.8% when ULS+ALK post-treatment was applied to the effluent of a reactor operating at 20 days HRT and at a 100% recycle ratio. Operation at 10 days HRT also improved the biogas yield (277 mL CH4/g VSadded (VS: volatile solids versus 249 mL CH4/g VSadded in the control. The tested post-treatment methods showed 4–7% decrease in effluent VS. The post-treatment resulted in a decrease in the cellular ATP (Adenosine tri-phosphate concentration indicating stress imposed on microorganisms in the reactor. Nevertheless, this did not prevent higher biogas production. Based on the results, the post-treatment of digested sludge or treating the sludge between two digesters is an interesting alternative to pre-treatments.

  20. Determination of Methane and Carbon Dioxide Formation Rate Constants for Semi-Continuously Fed Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Jan Moestedt

    2015-01-01

    Full Text Available To optimize commercial-scale biogas production, it is important to evaluate the performance of each microbial step in the anaerobic process. Hydrolysis and methanogenesis are usually the rate-limiting steps during digestion of organic waste and by-products. By measuring biogas production and methane concentrations on-line in a semi-continuously fed reactor, gas kinetics can be evaluated. In this study, the rate constants of the fermentative hydrolysis step (kc and the methanogenesis step (km were determined and evaluated in a continuously stirred tank laboratory-scale reactor treating food and slaughterhouse waste and glycerin. A process additive containing Fe2+, Co2+ and Ni2+ was supplied until day 89, after which Ni2+ was omitted. The omission resulted in a rapid decline in the methanogenesis rate constant (km to 70% of the level observed when Ni2+ was present, while kc remained unaffected. This suggests that Ni2+ mainly affects the methanogenic rather than the hydrolytic microorganisms in the system. However, no effect was initially observed when using conventional process monitoring parameters such as biogas yield and volatile fatty acid concentration. Hence, formation rate constants can reveal additional information on process performance and km can be used as a complement to conventional process monitoring tools for semi-continuously fed anaerobic digesters.