WorldWideScience

Sample records for physiological sexing system

  1. Sex differences in the physiology of eating

    Science.gov (United States)

    Asarian, Lori

    2013-01-01

    Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating. PMID:23904103

  2. Aging obviates sex-specific physiological responses to exercise.

    Science.gov (United States)

    Deschenes, Michael R; Taylor, Jessica L; Mangis, Katherine A

    2013-01-01

    Both sex and aging have been shown to affect physiological responses to exercise. The aim of the present investigation was to determine whether aging impacted the sex-specific nature of physiological responses to exercise commonly noted among young adults. Ten aged men (69.0 ± 1.7 years; mean ± SE) and 10 aged women (71.6 ± 1.3 years) reporting similar levels of habitual physical activity performed a 30-min exercise session at 60-65% of their predetermined peak oxygen uptake. Cardiovascular, thermoregulatory, and metabolic variables were assessed before exercise, at the 15th and 30th min of exercise, and at 5 and 15 min into a passive postexercise recovery period. Variables of interest were statistically analyzed via two-way analysis of variance with repeated measures; significance was set at P physiological variable of interest were identified, but not once was a significant effect of group (i.e., sex) detected. Exercise-induced physiological responses to prolonged, moderate intensity exercise were similar among aged men and aged women. This evidence that the sexually dimorphic nature of physiological responses to exercise is obviated with age should be taken into account when prescribing health-related exercise training programs for older individuals. Copyright © 2013 Wiley Periodicals, Inc.

  3. Why are sex and gender important to basic physiology and translational and individualized medicine?

    OpenAIRE

    Miller, Virginia M.

    2014-01-01

    Sex refers to biological differences between men and women. Although sex is a fundamental aspect of human physiology that splits the population in two approximately equal halves, this essential biological variable is rarely considered in the design of basic physiological studies, in translating findings from basic science to clinical research, or in developing personalized medical strategies. Contrary to sex, gender refers to social and cultural factors related to being a man or a woman in a ...

  4. The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes

    Directory of Open Access Journals (Sweden)

    Fumihiko eMaekawa

    2014-08-01

    Full Text Available From a classical viewpoint, sex-specific behavior and physiological functions as well as the brain structures of mammals such as rats and mice, have been thought to be influenced by perinatal sex steroids secreted by the gonads. Sex steroids have also been thought to affect the differentiation of the sex-typical behavior of a few members of the avian order Galliformes, including the Japanese quail and chickens, during their development in ovo. However, recent mammalian studies that focused on the artificial shuffling or knockout of the sex-determining gene, Sry, have revealed that sex chromosomal effects may be associated with particular types of sex-linked differences such as aggression levels, social interaction, and autoimmune diseases, independently of sex steroid-mediated effects. In addition, studies on naturally occurring, rare phenomena such as gynandromorphic birds and experimentally constructed chimeras in which the composition of sex chromosomes in the brain differs from that in the other parts of the body, indicated that sex chromosomes play certain direct roles in the sex-specific differentiation of the gonads and the brain. In this article, we review the relative contributions of sex steroids and sex chromosomes in the determination of brain functions related to sexual behavior and reproductive physiology in mammals and birds.

  5. Sickness-induced changes in physiology do not affect fecundity or same-sex behavior.

    Science.gov (United States)

    Sylvia, Kristyn E; Báez Ramos, Patricia; Demas, Gregory E

    2018-02-01

    Previous work in our lab has shown that early-life infection affects female reproductive physiology and function (i.e., smaller ovaries, abnormal estrous cycles) and alters investigation and aggression towards male conspecifics in a reproductive context. Although many studies have investigated the effects of postnatal immune challenge on physiological and behavioral development, fewer studies have examined whether these changes have ultimate effects on reproduction. In the current study, we paired Siberian hamsters (Phodopus sungorus) and simulated a bacterial infection in early life by administering lipopolysaccharide (LPS) to male and female pups on pnd3 and pnd5. In adulthood, hamsters were paired with novel individuals of the same sex, and we scored an array of social behaviors (e.g., investigation, aggression). We then paired animals with individuals of the opposite sex for 5 consecutive nights, providing them with the opportunity to mate. We found that females exhibited impaired reproductive physiology and function in adulthood (i.e., smaller ovaries and abnormal estrous cycles), similar to our previous work. However, both LPS-treated males and females exhibited similar same-sex social behavior when compared with saline-treated controls, they successfully mated, and there were no significant changes in fecundity. These data suggest that the physiological changes in response to neonatal immune challenge may not have long-term effects on reproductive success in a controlled environment. Collectively, the results of this study are particularly important when investigating the relationships between physiology and behavior within an ultimate context. Animals exposed to early-life stress may in fact be capable of compensating for changes in physiology in order to survive and reproduce in some contexts. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Why are sex and gender important to basic physiology and translational and individualized medicine?

    Science.gov (United States)

    Miller, Virginia M

    2014-03-01

    Sex refers to biological differences between men and women. Although sex is a fundamental aspect of human physiology that splits the population in two approximately equal halves, this essential biological variable is rarely considered in the design of basic physiological studies, in translating findings from basic science to clinical research, or in developing personalized medical strategies. Contrary to sex, gender refers to social and cultural factors related to being a man or a woman in a particular historical and cultural context. Unfortunately, gender is often used incorrectly by scientists and clinical investigators as synonymous with sex. This article clarifies the definition of sex and gender and reviews evidence showing how sex and gender interact with each other to influence etiology, presentation of disease, and treatment outcomes. In addition, strategies to improve the inclusion of female and male human beings in preclinical and clinical studies will be presented, and the importance of embedding concepts of sex and gender into postgraduate and medical curricula will be discussed. Also, provided is a list of resources for educators. In the history of medical concepts, physiologists have provided pivotal contributions to understanding health and disease processes. In the future, physiologists should provide the evidence for advancing personalized medicine and for reducing sex and gender disparities in health care.

  7. Incubation temperature and gonadal sex affect growth and physiology in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination.

    Science.gov (United States)

    Tousignant, A; Crews, D

    1995-05-01

    Temperature-dependent sex determination (TSD), in which the temperature at which an egg incubates determines the sex of the individual, occurs in egg-laying reptiles of three separate orders. Previous studies have shown that the embryonic environment can have effects lasting beyond the period of sex determination. We investigated the relative roles of incubation temperature, exogenous estradiol, and gonadal sex (testis vs. ovary) in the differentiation of adult morphological and physiological traits of the leopard gecko, Eublepharis macularius. The results indicate that incubation temperature, steroid hormones, and gonads interact in the development of morphological and physiological characters with incubation temperature resulting in the greatest differences in adult phenotype. Incubation temperature did not affect reproductive success directly, but may influence offspring survival in natural situations through effects on adult female body size. Postnatal hormones seem to be more influential in the formation of adult phenotypes than prenatal hormones. These results demonstrate that TSD species can be used to investigate the effects of the physical environment on development in individuals without a predetermined genetic sex and thus provide further insight into the roles of gonadal sex and the embryonic environment in sexual differentiation.

  8. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context.

    Science.gov (United States)

    Juvany, Marta; Munné-Bosch, Sergi

    2015-10-01

    Sex-related differences in reproductive effort can lead to differences in vegetative growth and stress tolerance. However, do all dioecious plants show sex-related differences in stress tolerance? To what extent can the environmental context and modularity mask sex-related differences in stress tolerance? Finally, to what extent can physiological measurements help us understand secondary sexual dimorphism? This opinion paper aims to answer these three basic questions with special emphasis on developments in research in this area over the last decade. Compelling evidence indicates that dimorphic species do not always show differences in stress tolerance between sexes; and when sex-related differences do occur, they seem to be highly species-specific, with greater stress tolerance in females than males in some species, and the opposite in others. The causes of such sex-related species-specific differences are still poorly understood, and more physiological studies and diversity of plant species that allow comparative analyses are needed. Furthermore, studies performed thus far demonstrate that the expression of dioecy can lead to sex-related differences in physiological traits-from leaf gas exchange to gene expression-but the biological significance of modularity and sectoriality governing such differences has been poorly investigated. Future studies that consider the importance of modularity and sectoriality are essential for unravelling the mechanisms underlying stress adaptation in male and female plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Size-dependent sex allocation in Aconitum gymnandrum (Ranunculaceae): physiological basis and effects of maternal family and environment.

    Science.gov (United States)

    Zhao, Z-G; Meng, J-L; Fan, B-L; Du, G-Z

    2008-11-01

    Theory predicts size-dependent sex allocation (SDS): flowers on plants with a high-resource status should have larger investment in females than plants with a low-resource status. Through a pot experiment with Aconitum gymnandrum (Ranunculaceae) in the field, we examined the relationship between sex allocation of individual flowers and plant size for different maternal families under different environmental conditions. We also determined the physiological base of variations in plant size. Our results support the prediction of SDS, and show that female-biased allocation with plant size is consistent under different environmental conditions. Negative correlations within families showed a plastic response of sex allocation to plant size. Negative genetic correlations between sex allocation and plant size at the family level indicate a genetic cause of the SDS pattern, although genetic correlation was influenced by environmental factors. Hence, the size-dependency of sex allocation in this species had both plastic and genetic causes. Furthermore, genotypes that grew large also had higher assimilation ability, thus showing a physiological basis for SDS.

  10. Evaluation of the Physiological Challenges in Extreme Environments: Implications for Enhanced Training, Operational Performance and Sex-Specific Responses

    Science.gov (United States)

    2017-10-01

    Operational Performance and Sex -Specific Responses PRINCIPAL INVESTIGATOR: Brent C. Ruby CONTRACTING ORGANIZATION: The University of Montana Missoula...Implications for Enhanced Training, Operational Performance and Sex -Specific Responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Evaluation of the physiological challenges in extreme environments: Implications for enhanced training, operational performance and sex -specific

  11. Altering the sex determination pathway in Drosophila fat body modifies sex-specific stress responses.

    Science.gov (United States)

    Argue, Kathryn J; Neckameyer, Wendi S

    2014-07-01

    The stress response in Drosophila melanogaster reveals sex differences in behavior, similar to what has been observed in mammals. However, unlike mammals, the sex determination pathway in Drosophila is well established, making this an ideal system to identify factors involved in the modulation of sex-specific responses to stress. In this study, we show that the Drosophila fat body, which has been shown to be important for energy homeostasis and sex determination, is a dynamic tissue that is altered in response to stress in a sex and time-dependent manner. We manipulated the sex determination pathway in the fat body via targeted expression of transformer and transformer-2 and analyzed these animals for changes in their response to stress. In the majority of cases, manipulation of transformer or transformer-2 was able to change the physiological output in response to starvation and oxidative stress to that of the opposite sex. Our data also uncover the possibility of additional downstream targets for transformer and transformer-2 that are separate from the sex determination pathway and can influence behavioral and physiological responses. Copyright © 2014 the American Physiological Society.

  12. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  13. Sex differences in intracranial arterial bifurcations

    DEFF Research Database (Denmark)

    Lindekleiv, Haakon M; Valen-Sendstad, Kristian; Morgan, Michael K

    2010-01-01

    . The female preponderance is usually explained by systemic factors (hormonal influences and intrinsic wall weakness); however, the uneven sex distribution of intracranial aneurysms suggests a possible physiologic factor-a local sex difference in the intracranial arteries....

  14. The evolution of sex ratios and sex-determining systems

    NARCIS (Netherlands)

    Uller, Tobias; Pen, Ido; Wapstra, Erik; Beukeboom, Leo W.; Komdeur, Jan

    Sex determination is a fundamental process governed by diverse mechanisms. Sex ratio selection is commonly implicated in the evolution of sex-determining systems, although formal models are rare. Here, we argue that, although sex ratio selection can induce shifts in sex determination, genomic

  15. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Wen C Aw

    Full Text Available Here we determine the sex-specific influence of mtDNA type (mitotype and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number and four physiological traits (fecundity, longevity, lipid content, and starvation resistance. Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.

  16. Effect of age, sex and physiological stages on hematological indices of Banni buffalo (Bubalus bubalis).

    Science.gov (United States)

    Patel, Mehul D; Lateef, Abdul; Das, Hemen; Patel, Ajay S; Patel, Ajay G; Joshi, Axay B

    2016-01-01

    To determine the physiological baseline values for hematological indices of Banni buffalo (Bubalus bubalis) as well as to assess their alteration due to age, sex and physiological stages. A total of 42 clinically healthy Banni buffaloes were categorized into seven groups (n=6): Group I (male calves ≤1 year), Group II (bulls >1 year), Group III (female calves ≤1 year), Group IV (pregnant lactating buffaloes), Group V (non-pregnant lactating buffaloes), Group VI (pregnant dry buffaloes), and Group VII (non-pregnant dry buffaloes). Blood samples collected aseptically from all the experimental groups were analyzed employing automated hematology analyzer. The data obtained were statistically analyzed; the mean and standard deviations were calculated and set as the reference values. The erythrocytic indices viz. total erythrocytes count (TEC), hemoglobin, and packed cell volume (PCV) were significantly higher in bulls as compared to that of male calves unlike mean corpuscular volume, mean corpuscular hemoglobin (MCH), and MCH concentration. The female calves had higher TEC and PCV than the adult buffaloes irrespective of sex. The total leukocyte count (TLC) and neutrophil counts in male calves were significantly lower than the bulls unlike the eosinophil, while monocyte and basophil remained unchanged with age. The TLC, differential leukocyte count and platelet count varied non-significantly among the adult female groups at different physiological stages. However, neutrophils were found to be apparently higher in lactating buffaloes. The present study would be helpful for physiological characterization of this unique buffalo breed of Gujarat. Further, data generated may be a tool for monitoring the health and prognosis as well as diagnosis of diseases.

  17. Habitat and sex differences in physiological condition of breeding Southwestern Willow Flycatchers (Empidonax traillii extimus)

    Science.gov (United States)

    Owen, J.C.; Sogge, M.K.; Kern, M.D.

    2005-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus; here- after “flycatcher”) is a federally listed endangered species that breeds in densely vegetated riparian habitats dominated by native and exotic plants, including introduced monotypic saltcedar (Tamarix ramosissima). Some workers have theorized that saltcedar is unsuitable habitat for the flycatcher, primarily because it generally supports a smaller and less diverse invertebrate community (the flycatcher's food base) than native habitats (e.g. Salix spp.). However, differences in insect communities between native and saltcedar habitats are not proof that saltcedar habitats are inferior. The only way to evaluate whether the habitats differ in dietary or energetic quality is to document actual food limitation or its manifestations. Measurements of an individual's body condition and metabolic state can serve as indicators of environmental stressors, such as food limitation and environmental extremes. We captured 130 flycatchers breeding in native and saltcedar habitats in Arizona and New Mexico and measured 12 variables of physiological condition. These variables included body mass, fat level, body condition index, hematocrit, plasma triglycerides, plasma free fatty acids and glycerol, plasma glucose and beta-hydroxybutyrate, plasma uric acid, total leukocyte count, and heterophil-to-lymphocyte ratio. We found substantial sex-based differences in the condition of male and female flycatchers. Ten of the 12 measures of physiological condition differed significantly between the sexes. In all cases where male and female condition differed (except mass), the differences suggest that males were in poorer condition than females. We found few habitat-based differences in flycatcher condition. Only 3 of the 12 physiological condition indices differed significantly between habitats. Our data show that, at least in some parts of the flycatcher's range, there is no evidence that flycatchers breeding in

  18. Haematological and physiological parameters of West African dwarf ...

    African Journals Online (AJOL)

    Twenty four West African Dwarf (WAD) goats of both sexes (12 bucks and 12 does) raised under intensive system and weighing between 5 and 11 kg with different coat colours (Black, Brown, Tan and White) were used for this study to evaluate the effects of sex and coat colour on their haematological and physiological ...

  19. Network Physiology: How Organ Systems Dynamically Interact

    Science.gov (United States)

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  20. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  1. Influences of sex and activity level on physiological changes in individual adult sockeye salmon during rapid senescence.

    Science.gov (United States)

    Hruska, Kimberly A; Hinch, Scott G; Healey, Michael C; Patterson, David A; Larsson, Stefan; Farrell, Anthony P

    2010-01-01

    A noninvasive biopsy protocol was used to sample plasma and gill tissue in individual sockeye salmon (Oncorhynchus nerka) during the critical life stage associated with spawning-arrival at a spawning channel through senescence to death several days later. Our main objective was to characterize the physiological changes associated with rapid senescence in terms of the physiological stress/cortisol hypersecretion model and the energy exhaustion model. Salmon lived an average of 5 d in the spawning channel, during which time there were three major physiological trends that were independent of sexual status: a large increase in plasma indicators of stress and exercise (i.e., lactate and cortisol), a decrease in the major plasma ions (i.e., Cl(-) and Na(+)) and osmolality, and a decrease in gross somatic energy reserves. Contrary to a generalized stress response, plasma glucose decreased in approximately 2/3 of the fish after arrival, as opposed to increasing. Furthermore, plasma cortisol levels at spawning-ground arrival were not correlated with the degree of ionoregulatory changes during rapid senescence. One mechanism of mortality in some fish may involve the exhaustion of energy reserves, resulting in the inability to mobilize plasma glucose. Sex had a significant modulating effect on the degree of physiological change. Females exhibited a greater magnitude of change for gross somatic energy, osmolality, and plasma concentrations of Cl(-), Na(+), cortisol, testosterone, 11-ketotestosterone, 17,20beta-progesterone, and estradiol. The activity level of an individual on the spawning grounds appeared to influence the degree of some physiological changes during senescence. For example, males that received a greater frequency of attacks exhibited larger net decreases in plasma 11-ketotestosterone while on the spawning grounds. These results suggest that rapid senescence on spawning grounds is influenced by multiple physiological processes and perhaps behavior. This study

  2. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis

    Directory of Open Access Journals (Sweden)

    Ben J.G. Sutherland

    2017-08-01

    Full Text Available Whole-genome duplication (WGD can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy, which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera. Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic

  3. Sex differences in physiological response to the combination of stress and smoking.

    Science.gov (United States)

    Kotlyar, Michael; Thuras, Paul; Hatsukami, Dorothy K; al'Absi, Mustafa

    2017-08-01

    Stressful situations are among the most commonly cited smoking triggers. Smoking and stress exposure each individually increase cardiovascular and hypothalamic-pituitary-adrenal measures with larger increases occurring when stress and smoking are combined. In this analysis, sex differences in the physiological response to the combination of stress and smoking are examined. Smokers (36 males; 34 females) completed a laboratory session in which systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), plasma epinephrine (Epi), norepinephrine and cortisol concentrations were measured at rest, while smoking a cigarette, during a speech task occurring immediately after smoking and at several time-points following the stressor. Significant period by sex effects were observed for HR, SBP, DBP and Epi but not for cortisol or norepinephrine concentrations. For SBP (p=0.002), the increase between resting and speech were larger in men than in women, primarily due to a larger increase between smoking and speech occurring in men. A similar pattern was observed for DBP and Epi with a significantly larger Epi increase from smoking to speech observed in men than in women (p=0.016). A different pattern emerged for HR - the total increase was larger in women (psex difference in smoking cessation success rates and in the cardiovascular risks of smoking. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sex differences in intracranial arterial bifurcations

    DEFF Research Database (Denmark)

    Lindekleiv, Haakon M; Valen-Sendstad, Kristian; Morgan, Michael K

    2010-01-01

    Subarachnoid hemorrhage (SAH) is a serious condition, occurring more frequently in females than in males. SAH is mainly caused by rupture of an intracranial aneurysm, which is formed by localized dilation of the intracranial arterial vessel wall, usually at the apex of the arterial bifurcation. T....... The female preponderance is usually explained by systemic factors (hormonal influences and intrinsic wall weakness); however, the uneven sex distribution of intracranial aneurysms suggests a possible physiologic factor-a local sex difference in the intracranial arteries....

  5. A female sex offender with multiple paraphilias: a psychologic, physiologic (laboratory sexual arousal) and endocrine case study.

    Science.gov (United States)

    Cooper, A J; Swaminath, S; Baxter, D; Poulin, C

    1990-05-01

    A 20 year old female pedophile exhibiting multiple paraphilias and who had been both a victim of incest and an active participant, undertook extensive clinical, psychometric, endocrine and laboratory sexual arousal studies. Her psychiatric, psychometric and physiologic arousal profiles showed similarities to those of a sizable proportion of male child molesters, especially incestors. It is suggested that laboratory arousal tests (using the vaginal photoplethysmograph) may have a role in the assessment of some female sex offenders.

  6. Anatomy and physiology of genital organs - women.

    Science.gov (United States)

    Graziottin, Alessandra; Gambini, Dania

    2015-01-01

    "Anatomy is destiny": Sigmund Freud viewed human anatomy as a necessary, although not a sufficient, condition for understanding the complexity of human sexual function with a solid biologic basis. The aim of the chapter is to describe women's genital anatomy and physiology, focusing on women's sexual function with a clinically oriented vision. Key points include: embryology, stressing that the "female" is the anatomic "default" program, differentiated into "male" only in the presence of androgens at physiologic levels for the gestational age; sex determination and sex differentiation, describing the interplay between anatomic and endocrine factors; the "clitoral-urethral-vaginal" complex, the most recent anatomy reading of the corpora cavernosa pattern in women; the controversial G spot; the role of the pelvic floor muscles in modulating vaginal receptivity and intercourse feelings, with hyperactivity leading to introital dyspareunia and contributing to provoked vestibulodynia and recurrent postcoital cystitis, whilst lesions during delivery reduce vaginal sensations, genital arousability, and orgasm; innervation, vessels, bones, ligaments; and the physiology of women's sexual response. Attention to physiologic aging focuses on "low-grade inflammation," genital and systemic, with its impact on women sexual function, especially after the menopause, if the woman does not or cannot use hormone replacement therapy. © 2015 Elsevier B.V. All rights reserved.

  7. Using RAD-seq to recognize sex-specific markers and sex chromosome systems.

    Science.gov (United States)

    Gamble, Tony

    2016-05-01

    Next-generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. ). Among the most impressive of these sequencing innovations is restriction site-associated DNA sequencing or RAD-seq (Baird et al. ; Andrews et al. ). RAD-seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD-seq data has been to identify sex-specific genetic markers, markers found in one sex but not the other (Baxter et al. ; Gamble & Zarkower ). Sex-specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon ; Mossman & Waser ), the management and breeding of endangered species (Taberlet et al. ; Griffiths & Tiwari ; Robertson et al. ) and sexing embryonic material (Hacker et al. ; Smith et al. ). Furthermore, sex-specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank ; Gamble & Zarkower ). Thus, species with male-specific markers have male heterogamety (XY) while species with female-specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi () illustrate the ease by which RAD-seq data can generate sex-specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD-seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig. ), Fowler & Buonaccorsi () uncover shared sex-specific markers and a conserved sex chromosome system. © 2016 John Wiley & Sons Ltd.

  8. The behavioural consequences of sex reversal in dragons

    Science.gov (United States)

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  9. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior.

    Science.gov (United States)

    Dumais, Kelly M; Veenema, Alexa H

    2016-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species-specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior

    Science.gov (United States)

    Dumais, Kelly M.; Veenema, Alexa H.

    2015-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species- specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. PMID:25951955

  11. Human Performance: Psychological and Physiological Sex Differences (A Selected Bibliography)

    Science.gov (United States)

    1980-02-01

    Sons, 1977. 6 15. Horn, J, L. Human abilities: A review of research and theory in the early 1970’s. Annual Review of Psychology. 1976, 27^, 437...Mother-Infant Interaction, Howard A. Moss. 149. Sex of Parent X Sex of Child: Socioemotional Development, Micheal Lewis and Marsha Weinraub. 165...C. Thomas, 1971. Contents: Biology of Sex Differences. 3. Psychological Sex Differences. 12. Freudian Theory of Feminine Development. 43. The

  12. Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system.

    Directory of Open Access Journals (Sweden)

    Ronny Kellner

    2011-12-01

    Full Text Available The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR-triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities.

  13. Neuroprotection of Sex Steroids

    Science.gov (United States)

    Liu, Mingyue; Kelley, Melissa H.; Herson, Paco S.; Hurn, Patricia D.

    2011-01-01

    Sex steroids are essential for reproduction and development in animals and humans, and sex steroids also play an important role in neuroprotection following brain injury. New data indicate that sex-specific responses to brain injury occur at the cellular and molecular levels. This review summarizes the current understanding of neuroprotection by sex steroids, particularly estrogen, androgen, and progesterone, based on both in vitro and in vivo studies. Better understanding of the role of sex steroids under physiological and pathological conditions will help us to develop novel effective therapeutic strategies for brain injury. PMID:20595940

  14. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  15. The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers

    Directory of Open Access Journals (Sweden)

    Thangesweran Ayakannu

    2013-01-01

    Full Text Available The “endocannabinoid system (ECS” comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypical cannabinoid receptors (CB1 and CB2, some noncannabinoid receptors, and an, as yet, uncharacterised transport system. Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies. Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis. Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed.

  16. Adult sex ratio variation: implications for breeding system evolution.

    Science.gov (United States)

    Székely, T; Weissing, F J; Komdeur, J

    2014-08-01

    Adult sex ratio (ASR) exhibits immense variation in nature, although neither the causes nor the implications of this variation are fully understood. According to theory, the ASR is expected to influence sex roles and breeding systems, as the rarer sex in the population has more potential partners to mate with than the more common sex. Changes in mate choice, mating systems and parental care suggest that the ASR does influence breeding behaviour, although there is a need for more tests, especially experimental ones. In the context of breeding system evolution, the focus is currently on operational sex ratios (OSRs). We argue that the ASR plays a role of similar importance and urge researchers to study the ASR and the OSR side by side. Finally, we plead for a dynamic view of breeding system evolution with feedbacks between mating, parenting, OSR and ASR on both ecological and evolutionary time scales. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Sex differences in cough reflex.

    Science.gov (United States)

    Plevkova, J; Buday, T; Kavalcikova-Bogdanova, N; Ioan, I; Demoulin-Alexikova, S

    2017-11-01

    Majority of patients visiting cough clinics are postmenopausal women, who are affected by intractable cough for years. Why the cough reflex becomes exaggerated in women is not known. Basic research excludes females from the studies contributing to the sex bias which may be responsible for lack of understanding of "hypersensitive" cough in women. Biological and behavioural differences between women and men are the factors affecting cough physiology. Gender also shapes the patterns of behaviour and determines the character of environmental exposures which differs between sexes. The article offers an insight into the physiology of the cough, differences in the maturation of it and biological, social and behavioural factors contributing to the sex differences in cough. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Maternal corticosterone exposure in the mouse programs sex-specific renal adaptations in the renin-angiotensin-aldosterone system in 6-month offspring.

    Science.gov (United States)

    Cuffe, James S M; Burgess, Danielle J; O'Sullivan, Lee; Singh, Reetu R; Moritz, Karen M

    2016-04-01

    Short-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex-specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. HUMTRN and EFFECTS: Age and sex specific dosimetric and physiological human population dynamics models for dose assessment

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Wenzel, W.J.

    1989-01-01

    A human simulation model called HUMTRN and a population risk assessment model called EFFECTS were developed at Los Alamos National Laboratory as a major component of the BIOTRAN environmental risk assessment model. HUMTRN simulates growth using dietary and physiological characteristics and kinetics of radionuclides to predict radiation doses to selected organs of both sexes in different age groups. The model called EFFECTS was interfaced with output from HUMTRN to predict cancer risks in a dynamic human population. EFFECTS is based on the National Research Council Committee on the Biological Effects of Ionizing Radiation (BEIR)-III radiation cancer mortality estimates from the U.S. population mortality and natality estimates for both sexes between the ages of 1 and 70. These models track radiation intake from air, water, and food, calculate uptake in major growing organs, and estimate cancer mortality risks. This report documents the use of an IBM Personal Computer AT to run HUMTRN and EFFECTS. Air, water, and food contaminant concentrations are provided as input to HUMTRN, which then provides input for EFFECTS. The limitations of this approach are also discussed

  20. Sex differences in the brain-an interplay of sex steroid hormones and sex chromosomes.

    Science.gov (United States)

    Grgurevic, Neza; Majdic, Gregor

    2016-09-01

    Although considerable progress has been made in our understanding of brain function, many questions remain unanswered. The ultimate goal of studying the brain is to understand the connection between brain structure and function and behavioural outcomes. Since sex differences in brain morphology were first observed, subsequent studies suggest different functional organization of the male and female brains in humans. Sex and gender have been identified as being a significant factor in understanding human physiology, health and disease, and the biological differences between the sexes is not limited to the gonads and secondary sexual characteristics, but also affects the structure and, more crucially, the function of the brain and other organs. Significant variability in brain structures between individuals, in addition to between the sexes, is factor that complicates the study of sex differences in the brain. In this review, we explore the current understanding of sex differences in the brain, mostly focusing on preclinical animal studies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    Science.gov (United States)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  2. Systems physiology in dairy cattle: nutritional genomics and beyond.

    Science.gov (United States)

    Loor, Juan J; Bionaz, Massimo; Drackley, James K

    2013-01-01

    Microarray development changed the way biologists approach the holistic study of cells and tissues. In dairy cattle biosciences, the application of omics technology, from spotted microarrays to next-generation sequencing and proteomics, has grown steadily during the past 10 years. Omics has found application in fields such as dairy cattle nutritional physiology, reproduction, and immunology. Generating biologically meaningful data from omics studies relies on bioinformatics tools. Both are key components of the systems physiology toolbox, which allows study of the interactions between a condition (e.g., nutrition, physiological state) with tissue gene/protein expression and the associated changes in biological functions. The nature of physiologic and metabolic adaptations in dairy cattle at any stage of the life cycle is multifaceted, involves multiple tissues, and is dynamic, e.g., the transition from late-pregnancy to lactation. Application of integrative systems physiology in periparturient dairy cattle has already advanced knowledge of the simultaneous functional adaptations in liver, adipose, and mammary tissue.

  3. System Theory and Physiological Processes.

    Science.gov (United States)

    Jones, R W

    1963-05-03

    Engineers and physiologists working together in experimental and theoretical studies predict that the application of system analysis to biological processes will increase understanding of these processes and broaden the base of system theory. Richard W. Jones, professor of electrical engineering at Northwestern University, Evanston, Illinois, and John S. Gray, professor of physiology at Northwestern's Medical School, discuss these developments. Their articles are adapted from addresses delivered in Chicago in November 1962 at the 15th Annual Conference on Engineering in Medicine and Biology.

  4. Adult sex ratio variation : Implications for breeding system evolution

    NARCIS (Netherlands)

    Szekely, T.; Weissing, F. J.; Komdeur, J.

    Adult sex ratio (ASR) exhibits immense variation in nature, although neither the causes nor the implications of this variation are fully understood. According to theory, the ASR is expected to influence sex roles and breeding systems, as the rarer sex in the population has more potential partners to

  5. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  6. The stress response and exploratory behaviour in Yucatan minipigs (Sus scrofa): Relations to sex and social rank.

    Science.gov (United States)

    Adcock, Sarah J J; Martin, Gerard M; Walsh, Carolyn J

    2015-12-01

    According to the coping styles hypothesis, an individual demonstrates an integrated behavioural and physiological response to environmental challenge that is consistent over time and across situations. Individual consistency in behavioural responses to challenge has been documented across the animal kingdom. Comparatively few studies, however, have examined inter-individual variation in the physiological response, namely glucocorticoid and catecholamine levels, the stress hormones secreted by the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, respectively. Variation in coping styles between individuals may be explained in part by differences in social rank and sex. Using 20 Yucatan minipigs (Sus scrofa) we: (1) investigated the existence of consistent inter-individual variation in exploratory behaviour and the hormonal stress response, and tested for correlations as predicted by the coping styles hypothesis; and (2) evaluated whether inter-individual behavioural and hormonal variation is related to social rank and sex. Salivary stress biomarkers (cortisol, alpha-amylase, chromogranin A) were assessed in the presence and absence of a stressor consisting of social isolation in a crate for 10 min. Principal components analysis on a set of behavioural variables revealed two traits, which we labelled exploratory tendency and neophobia. Neither exploratory tendency nor neophobia predicted the physiological stress response. Subordinate pigs exhibited higher catecholamine levels compared to dominant conspecifics. We observed sex differences in the repeatability of salivary stress markers and reactivity of the stress systems. The results do not provide support for the existence of behavioural-physiological coping styles in pigs. Sex is an important determinant of the physiological stress response and warrants consideration in research addressing behavioural and hormonal variation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Density-dependent sex ratio and sex-specific preference for host traits in parasitic bat flies.

    Science.gov (United States)

    Szentiványi, Tamara; Vincze, Orsolya; Estók, Péter

    2017-08-29

    Deviation of sex ratios from unity in wild animal populations has recently been demonstrated to be far more prevalent than previously thought. Ectoparasites are prominent examples of this bias, given that their sex ratios vary from strongly female- to strongly male-biased both among hosts and at the metapopulation level. To date our knowledge is very limited on how and why these biased sex ratios develop. It was suggested that sex ratio and sex-specific aggregation of ectoparasites might be shaped by the ecology, behaviour and physiology of both hosts and their parasites. Here we investigate a highly specialised, hematophagous bat fly species with strong potential to move between hosts, arguably limited inbreeding effects, off-host developmental stages and extended parental care. We collected a total of 796 Nycteribia kolenatii bat flies from 147 individual bats using fumigation and subsequently determined their sex. We report a balanced sex ratio at the metapopulation level and a highly variable sex ratio among infrapopulations ranging from 100% male to 100% female. We show that infrapopulation sex ratio is not random and is highly correlated with infrapopulation size. Sex ratio is highly male biased in small and highly female biased in large infrapopulations. We show that this pattern is most probably the result of sex-specific preference in bat flies for host traits, most likely combined with a higher mobility of males. We demonstrate that female bat flies exert a strong preference for high host body condition and female hosts, while the distribution of males is more even. Our results suggest that locally biased sex ratios can develop due to sex-specific habitat preference of parasites. Moreover, it is apparent that the sex of both hosts and parasites need to be accounted for when a better understanding of host-parasite systems is targeted.

  8. Does the mechanism of sex determination constrain the potential for sex manipulation? A test in geckos with contrasting sex-determining systems

    Science.gov (United States)

    Kratochvíl, Lukáš; Kubička, Lukáš; Landová, Eva

    2008-03-01

    The concentration of yolk steroids was suggested to influence offspring gender in oviparous animals subject to both temperature-dependent sex determination (TSD) and genotypic sex determination (GSD). However, the proposed mechanisms of steroid effects are thought to differ between TSD and GSD: a direct effect of oestrogens on gonad feminisation in TSD species vs a differential induction of male-producing or female-producing gametes in GSD species. Geckos offer an ideal opportunity for testing these suggested mechanisms. Closely related gecko species differ in their modes of sex determination. They lay clutches of two synchronously formed eggs; both eggs share equal steroid levels. If identical hormonal composition and environment during vitellogenesis, gravidity and incubation determine the sex of the progeny, siblings should share the same gender in both TSD and GSD geckos. We found strong support for this prediction in a TSD gecko species. Among clutches that were incubated at the temperature that produced both sexes, there were no clutches with siblings of the opposite sex. On the other hand, about half of the clutches yielded siblings of the opposite sex in four GSD species. These results suggest that sex-determining systems constrain the ability of the female to produce single-sex siblings and, hence, it seems that the GSD mechanism constrains the opportunities for sex ratio manipulation in geckos via yolk steroid manipulation.

  9. The anatomy and physiology of the avian endocrine system.

    Science.gov (United States)

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  10. MODERN TEENAGER (HIGHLANDER AND SEX

    Directory of Open Access Journals (Sweden)

    Oksana Fedyk

    2015-04-01

    Full Text Available The age at which you can start or be sexually active - a very interesting question, which concerned not only parents, but also psychologists. Usually, you can not answer the question of when and to whom to start having sex. However, there are certain statistics that the average age of sexual debut in adolescents - is 15 years for girls and 14 for boys. Now we are talking about European society, about what is happening in Ukraine, particularly in mountainous areas. The fact that the willingness in principle to sexual intercourse is associated with physiological aspects. There is a notion in sexology - sexual constitution. There are several factors play a role, of course, one of which is constitutional, but not always, psychological maturity and sexual constitution, rather, because of the need for sexual constitution in holding intercourse can match. That is, some teens may be physiologically ready for sexual intercourse at 12-13 years, but the question arises: Are they psychologically? And probably we can not give a definite answer to this question, because curiosity taboo in society, which in the majority rejects teen sex, pushing them into early sexual relations. Nevertheless, probably still age readiness and psychological and physiological - is 18-19 years if we are talking about teen sex.

  11. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    Directory of Open Access Journals (Sweden)

    Claudia eBarth

    2015-02-01

    Full Text Available Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.

  12. Sex Differences in Psychiatric Disease: A Focus on the Glutamate System

    Directory of Open Access Journals (Sweden)

    Megan M. Wickens

    2018-06-01

    Full Text Available Alterations in glutamate, the primary excitatory neurotransmitter in the brain, are implicated in several psychiatric diseases. Many of these psychiatric diseases display epidemiological sex differences, with either males or females exhibiting different symptoms or disease prevalence. However, little work has considered the interaction of disrupted glutamatergic transmission and sex on disease states. This review describes the clinical and preclinical evidence for these sex differences with a focus on two conditions that are more prevalent in women: Alzheimer's disease and major depressive disorder, and three conditions that are more prevalent in men: schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. These studies reveal sex differences at multiple levels in the glutamate system including metabolic markers, receptor levels, genetic interactions, and therapeutic responses to glutamatergic drugs. Our survey of the current literature revealed a considerable need for more evaluations of sex differences in future studies examining the role of the glutamate system in psychiatric disease. Gaining a more thorough understanding of how sex differences in the glutamate system contribute to psychiatric disease could provide novel avenues for the development of sex-specific pharmacotherapies.

  13. Sex-Specific Effects of Combined Exposure to Chemical and Non-chemical Stressors on Neuroendocrine Development: a Review of Recent Findings and Putative Mechanisms.

    Science.gov (United States)

    Cowell, Whitney J; Wright, Rosalind J

    2017-12-01

    Environmental toxicants and psychosocial stressors share many biological substrates and influence overlapping physiological pathways. Increasing evidence indicates stress-induced changes to the maternal milieu may prime rapidly developing physiological systems for disruption by concurrent or subsequent exposure to environmental chemicals. In this review, we highlight putative mechanisms underlying sex-specific susceptibility of the developing neuroendocrine system to the joint effects of stress or stress correlates and environmental toxicants (bisphenol A, alcohol, phthalates, lead, chlorpyrifos, and traffic-related air pollution). We provide evidence indicating that concurrent or tandem exposure to chemical and non-chemical stressors during windows of rapid development is associated with sex-specific synergistic, potentiated and reversed effects on several neuroendocrine endpoints related to hypothalamic-pituitary-adrenal axis function, sex steroid levels, neurotransmitter circuits, and innate immune function. We additionally identify gaps, such as the role that the endocrine-active placenta plays, in our understanding of these complex interactions. Finally, we discuss future research needs, including the investigation of non-hormonal biomarkers of stress. We demonstrate multiple physiologic systems are impacted by joint exposure to chemical and non-chemical stressors differentially among males and females. Collectively, the results highlight the importance of evaluating sex-specific endpoints when investigating the neuroendocrine system and underscore the need to examine exposure to chemical toxicants within the context of the social environment.

  14. Why we should consider sex (and study sex differences) in addiction research.

    Science.gov (United States)

    Sanchis-Segura, Carla; Becker, Jill B

    2016-09-01

    Among mammals, every cell has a biological sex, and the sex of an individual pervades its body and brain. In this review, we describe the processes through which mammals become phenotypically male or female by organizational and activational influences of genes and hormones throughout development. We emphasized that the molecular and cellular changes triggered by sex chromosomes and steroid hormones may generate sex differences in overt physiological functions and behavior, but they may alternatively promote end-point convergences between males and females. Clinical and pre-clinical evidences suggest that sex and gender differences modulate drug consumption as well as of the transition towards drug-promoted pathological states such as dependence and addiction. Additionally, sex differences in drug pharmacokinetics and pharmacodynamics will also influence dependence and addiction as well as side effects of drugs. These effects will further interact with socially gendered factors to result in sex differences in the access to, engagement in and efficacy of any therapeutic attempt. Finally, we maintain that 'sex sameness' is as important as 'sex differences' when building a complete understanding of biology for both males and females and provide a framework with which to classify and guide investigation into the mechanisms mediating sex differences and sex sameness. © 2016 Society for the Study of Addiction.

  15. Differences in male and female subjective experience and physiological reactions to emotional stimuli.

    Science.gov (United States)

    Poláčková Šolcová, Iva; Lačev, Alek

    2017-07-01

    Research based on self-reported data often indicates that women are the more emotional sex. The present study examined differences in emotion between the sexes across two components of the emotional process: subjective experience and physiological reactions to emotional stimuli. During the experimental study, participants (N=124; 22.5±2.88; 51 males) subjectively rated their emotional experience (valence and intensity) towards presented positive and negative affective stimuli, while physiological reactions (facial electromyography, heart rate, skin conductance, and finger skin temperature) were measured during expositions. Results from self-reports suggest that women declared more intensive emotional experiences for positive and negative stimuli and rated negative stimuli as more negative in comparison to men. Physiological measurements showed differences between the sexes in the physiological baseline measurements (facial electromyography, skin conductance and finger skin temperature). However, physiological responses towards positive or negative emotional stimuli did not prove to be different between men and women, except for finger skin temperature. Relations between self-reported subjective experiences and physiological changes were weak and insignificant. Collectively, our findings suggest certain emotional differences experienced between men and women. These differences can be found specifically in self-reported subjective experiences, while significant differences were not predominantly present in recorded physiological reactions. Copyright © 2017. Published by Elsevier B.V.

  16. Only two sex forms but multiple gender variants: How to explain?

    Science.gov (United States)

    De Loof, Arnold

    2018-01-01

    ABSTRACT Are sex and gender interchangeable terms? In classical biology, both are sometimes but not always used on an equal basis for some groups of animals. However, for our own species the Homo sapiens, they are not. A major question is why are there only two types of gametes (sperm- and egg cells), two types of sex steroids, (androgens and estrogens in vertebrates, and two types of ecdysteroids in insects), while the reproduction-related behaviour of the gamete producers displays a much greater variability than just two prominent forms, namely heterosexual males and heterosexual females? It indicates that in addition to a few sex-determining genes ( = the first pillar), other factors play a role. A second possible pillar is the still poorly understood cognitive memory system in which electrical phenomena and its association with the plasma membrane membrane-cytoskeletal complex of cells play a major role (learning, imitation and imprinting). This paper advances a third pillar, that hitherto has been almost completely ignored, namely the cellular Ca2+-homeostasis system, more specifically its sex-specific differences. Differential male-female genetics- and hormone-based Ca2+-homeostasis with effects on gender-related processes has been named Calcigender before. It will be argued that it follows from the principles of Ca2+- physiology and homeostasis that all individuals of a sexually reproducing animal population have a personalized gender behaviour. Thus, subdividing gender-behaviours in hetero-, homo-, bi-, trans- etc. which all result from a differential use of the very same basic physiological principles, is too primitive a system that may yield false sociological interpretations. PMID:29497472

  17. A physiologically informed virtual reality based social communication system for individuals with autism.

    Science.gov (United States)

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-04-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.

  18. The Comparative Research on Sex Education for Adolescents of China and the US

    Science.gov (United States)

    Yu-feng, Zhou

    2012-01-01

    Sex education refers to people's comprehension about sex, which involves not only sexual structure (anatomy, physiology, birth control, pregnancy, etc.), but also sexual relationships concerning human and moral problems. It includes at least sexual physiology, sexual psychology, sexual ethic, sexual law, etc., which aims to help people form the…

  19. Environmental stressors influencing hormones and systems physiology in cattle

    Science.gov (United States)

    2014-01-01

    Environmental stressors undoubtedly influence organismal biology, specifically the endocrine system that, in turn, impact cattle at the systems physiology level. Despite the significant advances in understanding the genetic determinants of the ideal dairy or beef cow, there is a grave lack of understanding of the systems physiology and effects of the environmental stressors that interfere with the endocrine system. This is a major problem because the lack of such knowledge is preventing advances in understanding gene-environment interactions and developing science-based solutions to these challenges. In this review, we synthesize the current knowledge on the nature of the major environmental stressors, such as climate (heat, cold, wind, and humidity), nutrition (feeds, feeding systems, and endocrine disruptors) and management (housing density and conditions, transportation, weaning practices). We summarize the impact of each one of these factors on cattle at the systems level, and provide solutions for the challenges. PMID:24996419

  20. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    Science.gov (United States)

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has

  1. Sex differences in the neurobiology of drug addiction.

    Science.gov (United States)

    Bobzean, Samara A M; DeNobrega, Aliza K; Perrotti, Linda I

    2014-09-01

    Epidemiological data demonstrate that while women report lower rates of drug use than men, the number of current drug users and abusers who are women continues to increase. In addition women progress through the phases of addiction differently than men; women transition from casual drug use to addiction faster, are more reactive to stimuli that trigger relapse, and have higher rates of relapse then men. Sex differences in physiological and psychological responses to drugs of abuse are well documented and it is well established that estrogen effects on dopamine (DA) systems are largely responsible for these sex differences. However, the downstream mechanisms that result from interactions between estrogen and the effects of drugs of abuse on the DA system are just beginning to be explored. Here we review the basic neurocircuitry which underlies reward and addiction; highlighting the neuroadaptive changes that occur in the mesolimbic dopamine reward and anti-reward/stress pathways. We propose that sex differences in addiction are due to sex differences in the neural systems which mediate positive and negative reinforcement and that these differences are modulated by ovarian hormones. This forms a neurobehavioral basis for the search for the molecular and cellular underpinnings that uniquely guide motivational behaviors and make women more vulnerable to developing and sustaining addiction than men. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Lacrimal system physiology: radioisotope study

    International Nuclear Information System (INIS)

    De Rossi, G.; Salvatori, M.; Focosi, F.; Dickmann, A.

    1982-01-01

    Lacrimal scintigraphy was used to illustrate the physiology of the lacrimal drainage system in 37 normal patients. Sup(99m)Tc-pertechnetate was dropped on to the conjunctive near the lateral chantus and serial images were displayed dynamically on a video display. It was concluded that this technique provides a very sensitive and reproducible test of the functional status of nasolacrimal drainage along with a graphic documentation at any given time and thus could be extremely useful in the diagnosis of lacrimal pathology. (U.K.)

  3. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems

    Science.gov (United States)

    Furman, Benjamin L S; Evans, Ben J

    2018-01-01

    Abstract There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions. PMID:29608717

  4. Cardiovascular biomarkers and sex: the case for women.

    Science.gov (United States)

    Daniels, Lori B; Maisel, Alan S

    2015-10-01

    Measurement of biomarkers is a critical component of cardiovascular care. Women and men differ in their cardiac physiology and manifestations of cardiovascular disease. Although most cardiovascular biomarkers are used by clinicians without taking sex into account, sex-specific differences in biomarkers clearly exist. Baseline concentrations of many biomarkers (including cardiac troponin, natriuretic peptides, galectin-3, and soluble ST2) differ in men versus women, but these sex-specific differences do not generally translate into a need for differential sex-based cut-off points. Furthermore, most biomarkers are similarly diagnostic and prognostic, regardless of sex. Two potential exceptions are cardiac troponins measured by high-sensitivity assay, and proneurotensin. Troponin levels are lower in women than in men and, with the use of high-sensitivity assays, sex-specific cut-off points might improve the diagnosis of myocardial infarction. Proneurotensin is a novel biomarker that was found to be predictive of incident cardiovascular disease in women, but not men, and was also predictive of incident breast cancer. If confirmed, proneurotensin might be a unique biomarker of disease risk in women. With any biomarker, an understanding of sex-specific differences might improve its use and might also lead to an enhanced understanding of the physiological differences between the hearts of men and women.

  5. Sex differences in the psychopharmacological treatment of depression.

    Science.gov (United States)

    Sramek, John J; Murphy, Michael F; Cutler, Neal R

    2016-12-01

    Although a number of studies have observed that females respond better to serotonergic antidepressants than males and that postmenopausal females have a diminished response to antidepressants compared with younger females, there are also studies that conflict with both of these findings, making any generalizations regarding sex differences difficult to make. Sex variance in antidepressant efficacy and pharmacokinetics profiles have been attributed to sex-based physiological differences, behavioral differences, related disorders, and sex-specific conditions, including pregnancy and menopause. This paper will review the history and current research on sex effects of antidepressant treatment.

  6. Oscillation and chaos in physiological control systems.

    Science.gov (United States)

    Mackey, M C; Glass, L

    1977-07-15

    First-order nonlinear differential-delay equations describing physiological control systems are studied. The equations display a broad diversity of dynamical behavior including limit cycle oscillations, with a variety of wave forms, and apparently aperiodic or "chaotic" solutions. These results are discussed in relation to dynamical respiratory and hematopoietic diseases.

  7. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    Science.gov (United States)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  8. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status, and mosquito age

    Directory of Open Access Journals (Sweden)

    Nazaire Aïzoun

    2014-04-01

    Conclusions: The resistance is a hereditary and dynamic phenomenon which can be due to metabolic mechanisms like overproduction of detoxifying enzymes activity. Many factors influence vector susceptibility to insecticide. Among these factors, there are mosquito sex, mosquito age, its physiological status. Therefore, it is useful to respect the World Health Organization criteria in the assessment of insecticide susceptibility tests in malaria vectors. Otherwise, susceptibility testing is conducted using unfed female mosquitoes aged 3-5 days old. Tests should also be carried out at (25±2 °C and (80±10% relative humidity.

  9. The physiology analysis system: an integrated approach for warehousing, management and analysis of time-series physiology data.

    Science.gov (United States)

    McKenna, Thomas M; Bawa, Gagandeep; Kumar, Kamal; Reifman, Jaques

    2007-04-01

    The physiology analysis system (PAS) was developed as a resource to support the efficient warehousing, management, and analysis of physiology data, particularly, continuous time-series data that may be extensive, of variable quality, and distributed across many files. The PAS incorporates time-series data collected by many types of data-acquisition devices, and it is designed to free users from data management burdens. This Web-based system allows both discrete (attribute) and time-series (ordered) data to be manipulated, visualized, and analyzed via a client's Web browser. All processes occur on a server, so that the client does not have to download data or any application programs, and the PAS is independent of the client's computer operating system. The PAS contains a library of functions, written in different computer languages that the client can add to and use to perform specific data operations. Functions from the library are sequentially inserted into a function chain-based logical structure to construct sophisticated data operators from simple function building blocks, affording ad hoc query and analysis of time-series data. These features support advanced mining of physiology data.

  10. Sex differences in chemosensation: sensory or cognitive?

    Directory of Open Access Journals (Sweden)

    Kathrin eOhla

    2013-09-01

    Full Text Available Although the first sex-dependent differences for chemosensory processing were reported in the scientific literature over 60 years ago, the underlying mechanisms are still unknown. Generally, more pronounced sex-dependent differences are noted with increased task difficulty or with increased levels of intranasal irritation produced by the stimulus. Whether differences between the sexes arise from differences in chemosensory sensitivity of the two intranasal sensory systems involved or from differences in cognitive processing associated with emotional evaluation of the stimulants is still not known. We used simultaneous and complementary measures of electrophysiological (EEG, psychophysiological, and psychological responses to stimuli varying in intranasal irritation and oldorousness to investigate whether sex differences in the processing of intranasal irritation are mediated by varying sensitivity of the involved sensory systems or by differences in cognitive and/or emotional evaluation of the irritants. Women perceived all stimulants more irritating and they exhibited larger amplitudes of the late positive deflection of the event-related potential than men. No significant differences in sensory sensitivity, anxiety and arousal responses could be detected. Our findings suggest that men and women process intranasal irritation differently. Importantly, the differences cannot be explained by variation in sensory sensitivity to irritants, differences in anxiety or differences in physiological arousal. We propose that women allocate attention stronger to potentially noxious stimuli, which eventually causes differences in cognitive appraisal and subjective perception.

  11. Monoamines stimulate sex reversal in the saddleback wrasse.

    Science.gov (United States)

    Larson, Earl T; Norris, David O; Gordon Grau, E; Summers, Cliff H

    2003-02-15

    Monoamine neurotransmitters (norepinephrine, dopamine, and serotonin) play an important role in reproduction and sexual behavior throughout the vertebrates. They are the first endogenous chemical signals in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. In teleosts with behavioral sex determination, much is known about behavioral cues that induce sex reversal. The cues are social, processed via the visual system and depend on the ratio of females to males in the population. The mechanisms by which these external behavioral cues are converted to an internal chemical regulatory process are largely unknown. The protogynous Hawaiian saddleback wrasse, Thalassoma duperrey, was used to investigate the biological pathway mediating the conversion of a social cue into neuroendocrine events regulating sex reversal. Because monoamines play an important role in the regulation of the HPG axis, they were selected as likely candidates for such a conversion. To determine if monoamines could affect sex reversal, drugs affecting monoamines were used in an attempt to either induce sex reversal under non-permissive conditions, or prevent sex reversal under permissive conditions. Increasing norepinephrine or blocking dopamine or serotonin lead to sex reversal in experimental animals under non-permissive conditions. Increasing serotonin blocked sex reversal under permissive conditions, while blocking dopamine or norepinephrine retarded the process. The results presented here demonstrate that monoamines contribute significantly to the control sex reversal. Norepinephrine stimulates initiation and completion of gonadal sex of reversal as well as color change perhaps directly via its effects on the HPG axis. Dopamine exercises inhibitory action on the initiation of sex reversal while 5-HT inhibits both initiation and completion of sex reversal. The serotonergic system appears to be an integral part of the pathway mediating the conversion of a social cue into a

  12. Status of sex reassignment surgery for gender identity disorder in Japan.

    Science.gov (United States)

    Masumori, Naoya

    2012-05-01

    An incongruence between one's physiological sex and the gender identity that is one's basic sense of self as a man or a woman is known as gender identity disorder. In general, the conditions of physiological men having female gender identity and physiological women having male gender identity are called male-to-female and female-to-male gender identity disorder, respectively. Although the precise pathogenesis of gender identity disorder remains unclear, the prevalence of gender identity disorder is quite high, with the rates calculated for male-to-female to be 1:25,000 and female-to-male to be 1:12,000 in Hokkaido, Japan. The diagnosis and treatment of gender identity disorder in Japan are based on the Diagnostic and Therapeutic Guidelines for Patients with Gender Identity Disorder, 4th edition. Although gender identity disorder was previously thought to be a psychiatric condition, it is extremely difficult to assign gender identity to physiological sex by psychiatric and psychological treatments. To adapt the figure of the body to the native gender identity, physical treatments such as administration of cross-sex steroids and sex reassignment surgery are considered. However, there are very few institutions that routinely carry out sex reassignment surgery in Japan, even though it is mandatory for changing sex on the census register at the present time. Sex reassignment surgery for male-to-female and female-to-male patients includes orchiectomy, penectomy, clitoroplasty, vaginoplasty and vulvoplasty, and hysterectomy, ovariectomy, metoidioplasty and phalloplasty, respectively. To provide accurate information about physical treatment for patients with gender identity disorder, even urologists who are not actively involved in the diagnosis and treatment of gender identity disorder should understand the fundamental aspects and contemporary problems of gender identity disorder. © 2012 The Japanese Urological Association.

  13. Chronic stress and neural function: accounting for sex and age.

    Science.gov (United States)

    Luine, V N; Beck, K D; Bowman, R E; Frankfurt, M; Maclusky, N J

    2007-10-01

    Cognitive responses to stress follow the temporally dependent pattern originally established by Selye (1) wherein short-term stressors elicit adaptive responses whereas continued stress (chronic) results in maladaptive changes--deleterious effects on physiological systems and impaired cognition. However, this pattern for cognitive effects appears to apply to only half the population (males) and, more specifically, to young, adult males. Females show different cognitive responses to stress. In contrast to impaired cognition in males after chronic stress, female rodents show enhanced performance on the same memory tasks after the same stress. Not only cognition, but anxiety, shows sex-dependent changes following chronic stress--stress is anxiolytic in males and anxiogenic in females. Moreover, behavioral responses to chronic stress are different in developing as well as aging subjects (both sexes) as compared to adults. In aged rats, chronic stress enhances recognition memory in both sexes, does not alter spatial memory, and anxiety effects are opposite to young adults. When pregnant dams are exposed to chronic stress, at adulthood the offspring display yet different consequences of stress on anxiety and cognition, and, in contrast to adulthood when the behavioral effects of stress are reversible, prenatal stress effects appear enduring. Changing levels of estradiol in the sexes over the lifespan appear to contribute to the differences in response to stress. Thus, theories of stress dependent modulations in CNS function--developed solely in male models, focused on peripheral physiological processes and tested in adults--may require revision when applied to a more diverse population (age- and sex-wise) at least in relation to the neural functions of cognition and anxiety. Moreover, these results suggest that other stressors and neural functions should be investigated to determine whether age, sex and gonadal hormones also have an impact.

  14. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides.

    Science.gov (United States)

    Miao, Ling-Feng; Yang, Fan; Han, Chun-Yu; Pu, Yu-Jin; Ding, Yang; Zhang, Li-Jia

    2017-05-31

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of physiological traits in trees subjected to medium and severe winter flooding stresses, suggesting that males and females of P. deltoides were winter flooding tolerant, and insensitive to winter flooding duration. Males were more tolerant to winter flooding stress in terms of photosynthesis and chlorophyll fluorescence than females. Females displayed greater oxidative damage due to flooding stress than males. Males developed more efficient antioxidant enzymatic systems to control reactive oxygen species. Both sexes had similarly strong post-flooding recovery capabilities in terms of plant growth, and physiological and ultrastructural parameters. However, Males had better recovery capabilities in terms of pigment content. These results increase the understanding of poplars's adaptation to winter flooding stress. They also elucidate sex-specific differences in response to flooding stress during the dormant season, and during post-flooding recovery periods.

  15. What Does Sex Have to Do with It? The Role of Sex as a Biological Variable in the Development of Posttraumatic Stress Disorder.

    Science.gov (United States)

    Kornfield, Sara L; Hantsoo, Liisa; Epperson, C Neill

    2018-05-18

    This review highlights the neurobiological aspects of sex differences in posttraumatic stress disorder (PTSD), specifically focusing on the physiological responses to trauma and presents evidence supporting hormone and neurosteroid/peptide differences from both preclinical and clinical research. While others have suggested that trauma type or acute emotional reaction are responsible for women's disproportionate risk to PTSD, neither of these explanations fully accounts for the sex differences in PTSD. Sex differences in brain neurocircuitry, anatomy, and neurobiological processes, such as those involved in learning and memory, are discussed as they have been implicated in risk and resilience for the development of PTSD. Gonadal and stress hormones have been found to modulate sex differences in the neurocircuitry and neurochemistry underlying fear learning and extinction. Preclinical research has not consistently controlled for hormonal and reproductive status of rodents nor have clinical studies consistently examined these factors as potential moderators of risk for PTSD. Sex as a biological variable (SABV) should be considered, in addition to the endocrine and reproductive status of participants, in all stress physiology and PTSD research.

  16. Dysregulated physiological stress systems and accelerated cellular aging

    NARCIS (Netherlands)

    Révész, D.; Verhoeven, J.; Milaneschi, Y.; de Geus, E.J.C.; Wolkowitz, O.M.; Penninx, B.W.J.H.

    2014-01-01

    Exposure to chronic stressors is associated with accelerated biological aging as indicated by reduced leukocyte telomere length (LTL). This impact could be because of chronic overactivation of the body's physiological stress systems. This study examined the associations between LTL and the immune

  17. Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex.

    Science.gov (United States)

    Toyota, Kenji; Miyakawa, Hitoshi; Hiruta, Chizue; Furuta, Kenjiro; Ogino, Yukiko; Shinoda, Tetsuro; Tatarazako, Norihisa; Miyagawa, Shinichi; Shaw, Joseph R; Iguchi, Taisen

    2015-09-01

    Sex-determination systems can be divided into two groups: genotypic sex determination (GSD) and environmental sex determination (ESD). ESD is an adaptive life-history strategy that allows control of sex in response to environmental cues in order to optimize fitness. However, the molecular basis of ESD remains largely unknown. The micro crustacean Daphnia pulex exhibits ESD in response to various external stimuli. Although methyl farnesoate (MF: putative juvenile hormone, JH, in daphnids) has been reported to induce male production in daphnids, the role of MF as a sex-determining factor remains elusive due to the lack of a suitable model system for its study. Here, we establish such a system for ESD studies in D. pulex. The WTN6 strain switches from producing females to producing males in response to the shortened day condition, while the MFP strain only produces females, irrespective of day-length. To clarify whether MF has a novel physiological role as a sex-determining factor in D. pulex, we demonstrate that a MF/JH biosynthesis inhibitor suppressed male production in WTN6 strain reared under the male-inducible condition, shortened day-length. Moreover, we show that juvenile hormone acid O-methyltransferase (JHAMT), a critical enzyme of MF/JH biosynthesis, displays MF-generating activity by catalyzing farnesoic acid. Expression of the JHAMT gene increased significantly just before the MF-sensitive period for male production in the WTN6 strain, but not in the MFP strain, when maintained under male-inducible conditions. These results suggest that MF synthesis regulated by JHAMT is necessary for male offspring production in D. pulex. Our findings provide novel insights into the genetic underpinnings of ESD and they begin to shed light on the physiological function of MF as a male-fate determiner in D. pulex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Testosterone levels and the genetic variation of sex hormone ...

    Indian Academy of Sciences (India)

    Lillian

    1Physiology and Hormones Department, Animal Health Research Institute, ... hormone-binging globulin (SHBG) that is the major transporter protein of sex ... genotypes, one of which is likely to be associated with low testosterone ..... sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium.

  19. Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis

    Science.gov (United States)

    Mabry, Karen E.; Shelley, Erin L.; Davis, Katie E.; Blumstein, Daniel T.; Van Vuren, Dirk H.

    2013-01-01

    The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa. PMID:23483957

  20. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    Science.gov (United States)

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  1. ‘Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis

    Science.gov (United States)

    Kuster, Diederik W D; Merkus, Daphne; van der Velden, Jolanda; Verhoeven, Adrie J M; Duncker, Dirk J

    2011-01-01

    Since the completion of the Human Genome Project and the advent of the large scaled unbiased ‘-omics’ techniques, the field of systems biology has emerged. Systems biology aims to move away from the traditional reductionist molecular approach, which focused on understanding the role of single genes or proteins, towards a more holistic approach by studying networks and interactions between individual components of networks. From a conceptual standpoint, systems biology elicits a ‘back to the future’ experience for any integrative physiologist. However, many of the new techniques and modalities employed by systems biologists yield tremendous potential for integrative physiologists to expand their tool arsenal to (quantitatively) study complex biological processes, such as cardiac remodelling and heart failure, in a truly holistic fashion. We therefore advocate that systems biology should not become/stay a separate discipline with ‘-omics’ as its playing field, but should be integrated into physiology to create ‘Integrative Physiology 2.0’. PMID:21224228

  2. Sex-specific ecophysiological responses to environmental fluctuations of free-ranging Hermann's tortoises: implication for conservation.

    Science.gov (United States)

    Sibeaux, Adélaïde; Michel, Catherine Louise; Bonnet, Xavier; Caron, Sébastien; Fournière, Kévin; Gagno, Stephane; Ballouard, Jean-Marie

    2016-01-01

    Physiological parameters provide indicators to evaluate how organisms respond to conservation actions. For example, individuals translocated during reinforcement programmes may not adapt to their novel host environment and may exhibit elevated chronic levels of stress hormones and/or decreasing body condition. Conversely, successful conservation actions should be associated with a lack of detrimental physiological perturbation. However, physiological references fluctuate over time and are influenced by various factors (e.g. sex, age, reproductive status). It is therefore necessary to determine the range of natural variations of the selected physiological metrics to establish useful baselines. This study focuses on endangered free-ranging Hermann's tortoises ( Testudo hermanni hermanni ), where conservation actions have been preconized to prevent extinction of French mainland populations. The influence of sex and of environmental factors (site, year and season) on eight physiological parameters (e.g. body condition, corticosterone concentrations) was assessed in 82 individuals from two populations living in different habitats. Daily displacements were monitored by radio-tracking. Most parameters varied between years and seasons and exhibited contrasting sex patterns but with no or limited effect of site. By combining behavioural and physiological traits, this study provides sex-specific seasonal baselines that can be used to monitor the health status of Hermann's tortoises facing environmental threats (e.g. habitat changes) or during conservation actions (e.g. translocation). These results might also assist in selection of the appropriate season for translocation.

  3. Oxidative Stress in Early Life: Associations with Sex, Rearing Conditions, and Parental Physiological Traits in Nestling Pied Flycatchers.

    Science.gov (United States)

    López-Arrabé, Jimena; Cantarero, Alejandro; Pérez-Rodríguez, Lorenzo; Palma, Antonio; Moreno, Juan

    2016-01-01

    Conditions experienced during juvenile development can affect the fitness of an organism. During early life, oxidative stress levels can be particularly high as a result of the increased metabolism and the relatively immature antioxidant system of the individual, and this may have medium- and long-term fitness consequences. Here we explore variation in levels of oxidative stress measured during early life in relation to sex, rearing conditions (hatching date and brood size), and parental condition and levels of oxidative markers in a wild population of the pied flycatcher (Ficedula hypoleuca) followed for 2 yr. A marker of total antioxidant status (TAS) in plasma and total levels of glutathione (GSH) in red blood cells, as well as a marker of oxidative damage in plasma lipids (malondialdehyde [MDA]), were assessed simultaneously. Our results show that nestling total GSH levels were associated with parental oxidative status, correlating negatively with maternal MDA and positively with total GSH levels of both parents, with a high estimated heritability. This suggests that parental physiology and genes could be determinants for endogenous components of the antioxidant system of the offspring. Moreover, we found that total GSH levels were higher in female than in male nestlings and that hatching date was positively associated with antioxidant defenses (higher TAS and total GSH levels). These results suggest that different components of oxidative balance are related to a variety of environmental and intrinsic--including parental--influencing factors. Future experimental studies must disentangle the relative contribution of each of these on nestling oxidative status and how the resulting oxidative stress at early phases shape adult phenotype and fitness.

  4. Perinatal broiler physiology between hatching and chick collection in 2 hatching systems

    NARCIS (Netherlands)

    Ven, van de L.J.F.; Wagenberg, van A.V.; Decuypere, E.; Kemp, B.; Brand, van den H.

    2013-01-01

    Little is known about physiological responses of early- versus late-hatching chicks to early posthatch conditions in broiler practice. We investigated effects of hatching time on perinatal broiler physiology in 2 hatching systems, differing in conditions: a conventional hatcher, where chicks are

  5. Some progress in sexual reproduction and sex determination of ...

    African Journals Online (AJOL)

    As a result of this, elucidating the basic physiological mechanisms of algae becomes even more urgent. Of all the fields, sexual reproduction and sex determination are basic and essential aspects. In this review, we summarized the advances of sex in several typical algae which are of great economic importance and often ...

  6. No evidence for selective follicle abortion underlying primary sex ratio adjustment in pigeons

    NARCIS (Netherlands)

    Goerlich, Vivian C.; Dijkstra, Cornelis; Groothuis, Antonius

    Primary sex ratio adjustment in birds has been extensively studied, yet the underlying physiological mechanisms are far from understood. Avian females are the heterogametic sex (ZW), and the future sex of the offspring is determined at chromosome segregation during meiosis I, shortly before the

  7. Variation in the gonadotrophin-releasing hormone-1 and the song control system in the tropical breeding rufous-collared sparrow (Zonotrichia capensis) is dependent on sex and reproductive state.

    Science.gov (United States)

    Stevenson, Tyler J; Small, Thomas W; Ball, Gregory F; Moore, Ignacio T

    2012-08-01

    Seasonal breeding in temperate zone vertebrates is characterised by pronounced variation in both central and peripheral reproductive physiology as well as behaviour. In contrast, many tropical species have a comparatively longer and less of a seasonal pattern of breeding than their temperate zone counterparts. These extended, more "flexible" reproductive periods may be associate with a lesser degree of annual variation in reproductive physiology. Here we investigated variation in the neuroendocrine control of reproduction in relation to the changes in the neural song control system in a tropical breeding songbird the rufous-collared sparrows (Zonotrichia capensis). Using in situ hybridization, we show that the optical density of GnRH1 mRNA expression is relatively constant across pre-breeding and breeding states. However, males were found to have significantly greater expression compared to females regardless of breeding state. Both males and females showed marked variation in measures of peripheral reproductive physiology with greater gonadal volumes and concentrations of sex steroids in the blood (i.e. testosterone in males; estrogen in females) during the breeding season as compared to the pre-breeding season. These findings suggest that the environmental cues regulating breeding in a tropical breeding bird ultimately exert their effects on physiology at the level of the median eminence and regulate the release of GnRH1. In addition, histological analysis of the song control system HVC, RA and Area X revealed that breeding males had significantly larger volumes of these brain nuclei as compared to non-breeding males, breeding females, and non-breeding females. Females did not exhibit a significant difference in the size of song control regions across breeding states. Together, these data show a marked sex difference in the extent to which there is breeding-associated variation in reproductive physiology and brain plasticity that is dependent on the reproductive

  8. Flowering and sex expression in Acer L. : a biosystematic study

    NARCIS (Netherlands)

    Jong, de P.C.

    1976-01-01

    A review and an analysis is given of flowering and sex expression in Acer. The process of sex differentiation was studied in physiological experiments and could be influenced by accelerated flowering and by removal of female.gif flower buds just after bud break. The

  9. A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy.

    Science.gov (United States)

    Harrington, Josephine; Fillmore, Natasha; Gao, Shouguo; Yang, Yanqin; Zhang, Xue; Liu, Poching; Stoehr, Andrea; Chen, Ye; Springer, Danielle; Zhu, Jun; Wang, Xujing; Murphy, Elizabeth

    2017-08-19

    Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood. This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy. The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. The influence of physiological and surgical menopause on coronary heart disease risk markers

    NARCIS (Netherlands)

    Verhoeven, Marieke O.; van der Mooren, Marius J.; Teerlink, Tom; Verheijen, Rene H. M.; Scheffer, Peter G.; Kenemans, Peter

    2009-01-01

    Objective: To investigate the influence of physiological and surgical menopause oil Serum concentrations of corollary heart disease (CHD) risk markers and sex hormones. Design: Physiological menopausal transition was investigated in two studies. In a longitudinal Study, 16 women were followed from 2

  11. Teleology and Defining Sex.

    Science.gov (United States)

    Gamble, Nathan K; Pruski, Michal

    2018-07-01

    Disorders of sexual differentiation lead to what is often referred to as an intersex state. This state has medical, as well as some legal, recognition. Nevertheless, the question remains whether intersex persons occupy a state in between maleness and femaleness or whether they are truly men or women. To answer this question, another important conundrum needs to be first solved: what defines sex? The answer seems rather simple to most people, yet when morphology does not coincide with haplotypes, and genetics might not correlate with physiology the issue becomes more complex. This paper tackles both issues by establishing where the essence of sex is located and by superimposing that framework onto the issue of the intersex. This is achieved through giving due consideration to the biology of sexual development, as well as through the use of a teleological framework of the meaning of sex. Using a range of examples, the paper establishes that sex cannot be pinpointed to one biological variable but is rather determined by how the totality of one's biology is oriented towards biological reproduction. A brief consideration is also given to the way this situation could be comprehended from a Christian understanding of sex and suffering.

  12. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress.

    Directory of Open Access Journals (Sweden)

    Erin Z Aprison

    2015-12-01

    Full Text Available Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay.

  13. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress

    Science.gov (United States)

    Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. PMID:26645097

  14. Moth sex pheromone receptors and deceitful parapheromones.

    Directory of Open Access Journals (Sweden)

    Pingxi Xu

    Full Text Available The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this "lock-and-key" tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs. Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z-hexadecadienal (Z11Z13-16Ald, and its formate analog, (9Z,11Z-tetradecen-1-yl formate (Z9Z11-14OFor. We cloned an odorant receptor co-receptor (Orco and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1 was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13 showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.

  15. Sex modulates approach systems and impulsivity in substance dependence.

    Science.gov (United States)

    Perry, Robert I; Krmpotich, Theodore; Thompson, Laetitia L; Mikulich-Gilbertson, Susan K; Banich, Marie T; Tanabe, Jody

    2013-11-01

    Personality traits such as pathological engagement in approach behaviors, high levels of impulsivity and heightened negative affect are consistently observed in substance dependent individuals (SDI). The clinical course of addiction has been shown to differ between sexes. For example, women increase their rates of consumption of some drugs of abuse more quickly than men. Despite the potential influence of personality and sex on features of addiction, few studies have investigated the interaction of these factors in substance dependence. Fifty-one SDI (26 males, 25 females) and 66 controls (41 males, 25 females) completed the Behavioral Inhibition/Behavioral Activation System (BIS/BAS) Scales, the Barratt Impulsiveness Scale, and the Positive and Negative Affect Schedule (PANAS-X). Data were analyzed with 2×2 ANCOVAs testing for main effects of group, sex and group by sex interactions, adjusting for education level. Significant group by sex interactions were observed for BAS scores [F(1,116)=7.03, pImpulsiveness [F(1,116)=6.11, pimpulsivity followed by male SDI, male controls, and finally female controls. SDI scored higher on negative affect [F(1,116)=25.23, pwomen than men [F(1,116)=14.03, pimpulsivity in SDI women relative to SDI men and control women suggest that personality traits that have been previously associated with drug use may be modulated by sex. These factors may contribute to differences in the disease course observed in male compared to female drug users. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Factors influencing physiological FDG uptake in the intestine

    International Nuclear Information System (INIS)

    Yasuda, Seiei; Takahashi, Wakoh; Takagi, Shigeharu; Fujii, Hirofumi; Ide, Michiru; Shohtsu, Akira

    1998-01-01

    The intestine is a well-known site of physiological 18 F-fluorodeoxyglucose (FDG) accumulation in positron emission tomography (PET). To identify factors influencing physiological FDG uptake in the intestine, the intensity of FDG uptake was evaluated in a total of 1,068 healthy adults. Non-attenuation-corrected whole-body PET images were obtained for all subjects and visually evaluated. Subjects were then classified into two groups according to the intensity of intestinal FDG uptake. Sex, age, presence or absence of constipation, and serum glucose, hemoglobin A 1 c, and free fatty acid levels were compared between the two groups. High intestinal FDG uptake was observed at an overall rate of 11.0%. Sex (female), age, and bowel condition (constipation) were found to affect intestinal FDG uptake. The factors we identified lead to further questions the relationship between intestinal motility and glucose uptake that warrant further study. (author)

  17. System and method for leveraging human physiological traits to control microprocessor frequency

    Energy Technology Data Exchange (ETDEWEB)

    Shye, Alex; Pan, Yan; Scholbrock, Benjamin; Miller, J. Scott; Memik, Gokhan; Dinda, Peter A; Dick, Robert P

    2014-03-25

    A system and method for leveraging physiological traits to control microprocessor frequency are disclosed. In some embodiments, the system and method may optimize, for example, a particular processor-based architecture based on, for example, end user satisfaction. In some embodiments, the system and method may determine, for example, whether their users are satisfied to provide higher efficiency, improved reliability, reduced power consumption, increased security, and a better user experience. The system and method may use, for example, biometric input devices to provide information about a user's physiological traits to a computer system. Biometric input devices may include, for example, one or more of the following: an eye tracker, a galvanic skin response sensor, and/or a force sensor.

  18. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress.

    Science.gov (United States)

    Bangasser, Debra A; Wiersielis, Kimberly R; Khantsis, Sabina

    2016-06-15

    Women are more likely than men to suffer from post-traumatic stress disorder (PTSD) and major depression. In addition to their sex bias, these disorders share stress as an etiological factor and hyperarousal as a symptom. Thus, sex differences in brain arousal systems and their regulation by stress could help explain increased vulnerability to these disorders in women. Here we review preclinical studies that have identified sex differences in the locus coeruleus (LC)-norepinephrine (NE) arousal system. First, we detail how structural sex differences in the LC can bias females towards increased arousal in response to emotional events. Second, we highlight studies demonstrating that estrogen can increase NE in LC target regions by enhancing the capacity for NE synthesis, while reducing NE degradation, potentially increasing arousal in females. Third, we review data revealing how sex differences in the stress receptor, corticotropin releasing factor 1 (CRF1), can increase LC neuronal sensitivity to CRF in females compared to males. This effect could translate into hyperarousal in women under conditions of CRF hypersecretion that occur in PTSD and depression. The implications of these sex differences for the treatment of stress-related psychiatric disorders are discussed. Moreover, the value of using information regarding biological sex differences to aid in the development of novel pharmacotherapies to better treat men and women with PTSD and depression is also highlighted. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. CRISPR/Cas systems: new players in gene regulation and bacterial physiology

    Directory of Open Access Journals (Sweden)

    David eWeiss

    2014-04-01

    Full Text Available CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP. Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2, CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes.

  20. No evidence for sex-specific effects of the maternal social environment on offspring development in Japanese quail (Coturnix japonica).

    Science.gov (United States)

    Langen, Esther M A; von Engelhardt, Nikolaus; Goerlich-Jansson, Vivian C

    2018-07-01

    The social environment of reproducing females can cause physiological changes, with consequences for reproductive investment and offspring development. These prenatal maternal effects are often found to be sex-specific and may have evolved as adaptations, maximizing fitness of male and female offspring for their future environment. Female hormone levels during reproduction are considered a potential mechanism regulating sex allocation in vertebrates: high maternal androgens have repeatedly been linked to increased investment in sons, whereas high glucocorticoid levels are usually related to increased investment in daughters. However, results are not consistent across studies and therefore still inconclusive. In Japanese quail (Coturnix japonica), we previously found that pair-housed females had higher plasma androgen levels and tended to have higher plasma corticosterone levels than group-housed females. In the current study we investigate whether these differences in maternal social environment and physiology affect offspring sex allocation and physiology. Counter to our expectations, we find no effects of the maternal social environment on offspring sex ratio, sex-specific mortality, growth, circulating androgen or corticosterone levels. Also, maternal corticosterone or androgen levels do not correlate with offspring sex ratio or mortality. The social environment during reproduction therefore does not necessarily modify sex allocation and offspring physiology, even if it causes differences in maternal physiology. We propose that maternal effects of the social environment strongly depend upon the type of social stimuli and the timing of changes in the social environment and hormones with respect to the reproductive cycle and meiosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Inducing sex reversal of the urogenital system of marsupials.

    Science.gov (United States)

    Renfree, Marilyn B; Chew, Keng Yih; Shaw, Geoff

    2014-01-01

    Marsupials differ from eutherian mammals in their reproductive strategy of delivering a highly altricial young after a short gestation. The young, with its undeveloped organ systems completes its development post-natally, usually within a pouch. The young is dependent on milk with a composition that varies through lactation to support its growth and changing needs as it matures over a lengthy period. Gonadal differentiation occurs after birth, providing a unique opportunity to examine the effects of hormonal manipulations on its sexual differentiation of the highly accessible young. In marsupials a difference in the migration of the urinary ducts around the genital ducts from eutherian mammals results in the unique tammar reproductive tract which has three vaginae and two cervices, and two distinctly separate uteri. In the tammar wallaby, a small member of the kangaroo family, we showed that virilisation of the Wolffian duct, prostate and phallus depends on an alternate androgen pathway, which has now been shown to be important for virilisation in humans. Through hormonal manipulations over differing time periods we have achieved sex reversal of both ovaries and testes, germ cells, genital ducts, prostate and phallus. Whilst we understand many of the mechanisms behind sexual differentiation there are still many lessons to be learned from understanding how sex reversal is achieved by using a model such as the tammar wallaby. This will help guide investigations into the major questions of how and why sex determination is achieved in other species. This review discusses the control and development of the marsupial urogenital system, largely drawn from our studies in the tammar wallaby and our ability to manipulate this system to induce sex reversal. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  2. Annual sex steroid and other physiological profiles of Pacific lampreys (Entosphenus tridentatus)

    Science.gov (United States)

    Mesa, Matthew G.; Bayer, Jennifer M.; Bryan, Mara B.; Sower, Stacia A.

    2010-01-01

    We documented changes in plasma levels of estradiol 17-β (E2), progesterone (P), 15α-hydroxytestosterone (15α-T), thyroxine (T4), triiodothyronine (T3), protein, triglycerides (TGs), and glucose in adult Pacific lampreys (Entosphenus tridentatus) held in the laboratory in two different years. Levels of E2 in both sexes ranged from 0.5 to 2 ng/mL from September to March, peaked in late April (2–4 ng/mL), and decreased in May, with levels higher in males than in females. Levels of P were low from September through April, but then increased substantially during May (2–4 ng/mL), with levels again highest in males. Levels of 15α-T in males were around 0.75 ng/mL through the winter before exceeding 1 ng/mL in April and decreasing thereafter, whereas females showed a gradual increase from 0.25 ng/mL in November to 0.5 ng/mL in April before decreasing. Thyroxine concentrations differed between fish in each year, with most having levels ranging from 0.75 to 2.5 ng/mL in the fall and winter, and only fish in 2003 showing distinct peaks (3–4 ng/mL) in early April or May. Plasma T3 was undetectable from November through mid-March before surging dramatically in April (ca. 150 ng/mL) and decreasing thereafter. Levels of protein, TGs, and glucose decreased or were stable during the fall and winter with TGs and glucose surging in late April to early May for some fish. Our study is the first to document long-term physiological changes in Pacific lampreys during overwintering and sexual maturation and increases our understanding of the life history of this unique fish.

  3. A modular, programmable measurement system for physiological and spaceflight applications

    Science.gov (United States)

    Hines, John W.; Ricks, Robert D.; Miles, Christopher J.

    1993-02-01

    The NASA-Ames Sensors 2000] Program has developed a small, compact, modular, programmable, sensor signal conditioning and measurement system, initially targeted for Life Sciences Spaceflight Programs. The system consists of a twelve-slot, multi-layer, distributed function backplane, a digital microcontroller/memory subsystem, conditioned and isolated power supplies, and six application-specific, physiological signal conditioners. Each signal condition is capable of being programmed for gains, offsets, calibration and operate modes, and, in some cases, selectable outputs and functional modes. Presently, the system has the capability for measuring ECG, EMG, EEG, Temperature, Respiration, Pressure, Force, and Acceleration parameters, in physiological ranges. The measurement system makes heavy use of surface-mount packaging technology, resulting in plug in modules sized 125x55 mm. The complete 12-slot system is contained within a volume of 220x150x70mm. The system's capabilities extend well beyond the specific objectives of NASA programs. Indeed, the potential commercial uses of the technology are virtually limitless. In addition to applications in medical and biomedical sensing, the system might also be used in process control situations, in clinical or research environments, in general instrumentation systems, factory processing, or any other applications where high quality measurements are required.

  4. Anatomy and Physiology. Module Set II: Major Body Systems. Teacher Edition [and] Student Edition. Surgical Technology.

    Science.gov (United States)

    Hilley, Robert

    This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…

  5. Sex peptides and MIPs can activate the same G protein-coupled receptor.

    Science.gov (United States)

    Vandersmissen, Hans Peter; Nachman, Ronald J; Vanden Broeck, Jozef

    2013-07-01

    In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized and recently, its activation by Drosophila myoinhibiting peptides (MIPs)-in addition to SP-has been demonstrated. The myoinhibiting peptides are members of a conserved peptide family, also known as B-type allatostatins, which generally feature the C-terminal motif -WX6Wamide. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Personalized physiological medicine.

    Science.gov (United States)

    Ince, Can

    2017-12-28

    This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.

  7. Sport Physiology Research and Governing Gender in Sport--A Power-Knowledge Relation?

    Science.gov (United States)

    Larsson, Hakan

    2013-01-01

    This article sets out to show how physiological knowledge about sex/gender relates to power issues within sport. The sport physiology research at the Swedish School of Sport and Health Sciences (Swedish acronym: GIH) during the twentieth century is analysed in relation to the political rationality concerning gender at GIH and within the Swedish…

  8. Sex Differences in Human and Animal Toxicology.

    Science.gov (United States)

    Gochfeld, Michael

    2017-01-01

    Sex, the states of being female or male, potentially interacts with all xenobiotic exposures, both inadvertent and deliberate, and influences their toxicokinetics (TK), toxicodynamics, and outcomes. Sex differences occur in behavior, exposure, anatomy, physiology, biochemistry, and genetics, accounting for female-male differences in responses to environmental chemicals, diet, and pharmaceuticals, including adverse drug reactions (ADRs). Often viewed as an annoying confounder, researchers have studied only one sex, adjusted for sex, or ignored it. Occupational epidemiology, the basis for understanding many toxic effects in humans, usually excluded women. Likewise, Food and Drug Administration rules excluded women of childbearing age from drug studies for many years. Aside from sex-specific organs, sex differences and sex × age interactions occur for a wide range of disease states as well as hormone-influenced conditions and drug distribution. Women have more ADRs than men; the classic sex hormone paradigm (gonadectomy and replacement) reveals significant interaction of sex and TK including absorption, distribution, metabolisms, and elimination. Studies should be designed to detect sex differences, describe the mechanisms, and interpret these in a broad social, clinical, and evolutionary context with phenomena that do not differ. Sex matters, but how much of a difference is needed to matter remains challenging.

  9. Association of sex work with reduced activation of the mucosal immune system.

    Science.gov (United States)

    Lajoie, Julie; Kimani, Makubo; Plummer, Francis A; Nyamiobo, Francis; Kaul, Rupert; Kimani, Joshua; Fowke, Keith R

    2014-07-15

    Unprotected intercourse and seminal discharge are powerful activators of the mucosal immune system and are important risk factors for transmission of human immunodeficiency virus (HIV). This study was designed to determine if female sex work is associated with changes in the mucosal immunity. Cervicovaginal lavage and plasma from 122 HIV-uninfected female sex workers (FSW) and 44 HIV-uninfected low-risk non-FSW from the same socioeconomic district of Nairobi were analyzed for evidence of immune activation (IA). The cervico-mononuclear cells (CMC) were analyzed for cellular activation by flow cytometry. Lower IA was observed in FSW compared to the low-risk women as demonstrated by the lower level of MIP-3α (P sex work and increased with duration of sex work. This study showed that sex work is associated with important changes in the mucosal immune system. By analyzing chemokine/cytokine levels and CMC activation, we observed a lower mucosal IA in HIV-uninfected FSW compared to low-risk women. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The Effects of Sex Steroids on Spatial Performance: A Review and an Experimental Clinical Investigation.

    Science.gov (United States)

    Liben, Lynn S.; Susman, Elizabeth J.; Finkelstein, Jordan W.; Chinchilli, Vernon M.; Kunselman, Susan; Schwab, Jacqueline; Dubas, Judith Semon; Demers, Laurence M.; Lookingbill, Georgia; D'Arcangelo, M. Rose; Krogh, Holleen R.; Kulin, Howard E.

    2002-01-01

    Investigated the relationship between sex hormones and spatial performance among adolescents treated with sex steroids for delayed puberty. Found that spatial performance varied according to gender but did not vary with levels of actively circulating sex steroids. Reviewed physiological mechanisms, developmental periods, and past empirical work…

  11. Hatching system and time effects on broiler physiology and posthatch growth

    NARCIS (Netherlands)

    Ven, van de L.J.F.; Wagenberg, van A.V.; Debonne, M.; Decuypere, E.; Kemp, B.; Brand, van den H.

    2011-01-01

    A multilevel housing system for broilers was developed, named Patio (Vencomatic BV, Eersel, the Netherlands), in which the hatching and brooding phase are combined. In a Patio system, climate conditions differ from those provided in the hatchers currently in use. We compared the physiology of

  12. Evaluation of Chest Ultrasound Integrated Teaching of Respiratory System Physiology to Medical Students

    Science.gov (United States)

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-01-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term…

  13. Conflict over condition-dependent sex allocation can lead to mixed sex-determination systems

    NARCIS (Netherlands)

    Kuijper, Bram; Pen, Ido

    Theory suggests that genetic conflicts drive turnovers between sex-determining mechanisms, yet these studies only apply to cases where sex allocation is independent of environment or condition. Here, we model parent-offspring conflict in the presence of condition-dependent sex allocation, where the

  14. Conflict over condition-dependent sex allocation can lead to mixed sex-determination systems

    NARCIS (Netherlands)

    Kuijper, Bram; Pen, Ido

    2014-01-01

    Theory suggests that genetic conflicts drive turnovers between sex-determining mechanisms, yet these studies only apply to cases where sex allocation is independent of environment or condition. Here, we model parent-offspring conflict in the presence of condition-dependent sex allocation, where the

  15. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

    Science.gov (United States)

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-05-17

    Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. An open-loop, physiologic model-based decision support system can provide appropriate ventilator settings

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Spadaro, Savino; Dey, Nilanjan

    2018-01-01

    OBJECTIVES: To evaluate the physiologic effects of applying advice on mechanical ventilation by an open-loop, physiologic model-based clinical decision support system. DESIGN: Prospective, observational study. SETTING: University and Regional Hospitals' ICUs. PATIENTS: Varied adult ICU population...

  17. Methods and systems for the processing of physiological signals

    International Nuclear Information System (INIS)

    Cosnac, B. de; Gariod, R.; Max, J.; Monge, V.

    1975-01-01

    This note is a general survey of the processing of physiological signals. After an introduction about electrodes and their limitations, the physiological nature of the main signals are shortly recalled. Different methods (signal averaging, spectral analysis, shape morphological analysis) are described as applications to the fields of magnetocardiography, electro-encephalography, cardiography, electronystagmography. As for processing means (single portable instruments and programmable), they are described through the example of application to rheography and to the Plurimat'S general system. As a conclusion the methods of signal processing are dominated by the morphological analysis of curves and by the necessity of a more important introduction of the statistical classification. As for the instruments, microprocessors will appear but specific operators linked to computer will certainly grow [fr

  18. MPK-1 ERK Controls Membrane Organization in C. elegans Oogenesis via a Sex-Determination Module

    OpenAIRE

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-01-01

    Tissues that generate specialized cell-types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the C. elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis/organization during oogenesis. We discovered repeated utilization of a self-c...

  19. Sex steroids and neurogenesis.

    Science.gov (United States)

    Heberden, Christine

    2017-10-01

    The brain has long been known as a dimorphic organ and as a target of sex steroids. It is also a site for their synthesis. Sex steroids in numerous ways can modify cerebral physiology, and along with many processes adult neurogenesis is also modulated by sex steroids. This review will focus on the effects of the main steroids, estrogens, androgens and progestogens, and unveil some aspects of their partly disclosed mechanisms of actions. Gonadal steroids act on different steps of neurogenesis: cell proliferation seems to be increased by estrogens only, while androgens and progestogens favor neuronal renewal by increasing cell survival; differentiation is a common target. Aging is characterized by a cognitive deficiency, paralleled by a decrease in the rate of neuronal renewal and in the levels of circulating gonadal hormones. Therefore, the effects of gonadal hormones on the aging brain are important to consider. The review will also be expanded to related molecules which are agonists to the nuclear receptors. Sex steroids can modify adult neuronal renewal and the extensive knowledge of their actions on neurogenesis is essential, as it can be a leading pathway to therapeutic perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sex Reversal and Analyses of Possible Involvement of Sex Steroids in Scallop Gonadal Development in Newly Established Organ-Culture Systems.

    Science.gov (United States)

    Otani, Ayano; Nakajima, Tadaaki; Okumura, Tomomi; Fujii, Shiro; Tomooka, Yasuhiro

    2017-04-01

    Many molluscs perform sex reversal, and sex hormones may be involved in the process. In adult scallops, Patinopecten yessoensis, gonadotropin releasing hormone and 17β-estradiol (E 2 ) are involved in male sexual maturation, however, little is known about the effects of E 2 and testosterone (T) on the gonadal differentiation in young scallops. In the present study, scallop gonadal development was analyzed to determine the sex reversal stage in Funka bay, and effects of E 2 and T were examined. In Funka bay, almost all scallops were male at month 12. Scallops equipped with ambiguous gonads were 61.1% at month 16 and disappeared at month 18. Therefore, sex reversal in Funka bay occurs at around month 16. For establishment of organ culture systems for bivalves, Manila clam gonads were cultured in 15% L-15 medium diluted with HBSS containing 10% KSR on agarose gel at 10°C, and the gonads survived for 14 days. Scallop gonads were also able to be cultured in 30% L15 medium diluted with ASW containing 10% KSR on agarose gel for seven days. At mature stage, Foxl2 and Tesk were predominantly expressed in ovary and testis, respectively. When scallop gonads at sex reversal stage were organ-cultured, sex steroid treatment decreased Tesk expression in the majority of scallop gonads at sex reversal stage. However, no obvious change in Foxl2 and Tesk expression was detected in mature gonads in response to either E 2 or T in culture, suggesting sex steroid treatment might affect gonadal development at sex reversal stage.

  1. Detection of physiological changes after exercise via a remote optophysiological imaging system

    Science.gov (United States)

    Sun, Yu; Hu, Sijung; Azorin-Peris, Vicente; Zheng, Jia; Greenwald, Stephen; Chambers, Jonathon; Zhu, Yisheng

    2011-03-01

    A study of blood perfusion mapping was performed with a remote opto-physiological imaging (OPI) system coupling a sensitive CMOS camera and a custom-built resonant cavity light emitting diode (RCLED) ringlight. The setup is suitable for the remote assessment of blood perfusion in tissue over a wide range of anatomical locations. The purpose of this study is to evaluate the reliability and stability of the OPI system when measuring a cardiovascular variable of clinical interest, in this case, heart rate. To this end, the non-contact and contact photoplethysmographic (PPG) signals obtained from the OPI system and conventional PPG sensor were recorded simultaneously from each of 12 subjects before and after 5-min of cycling exercise. The time-frequency representation (TFR) method was used to visualize the time-dependent behavior of the signal frequency. The physiological parameters derived from the images captured by the OPI system exhibit comparable functional characteristics to those taken from conventional contact PPG pulse waveform measurements in both the time and frequency domains. Finally and more importantly, a previously developed opto-physiological model was employed to provide a 3-D representation of blood perfusion in human tissue which could provide a new insight into clinical assessment and diagnosis of circulatory pathology in various tissue segments.

  2. Assessing interactions among multiple physiological systems during walking outside a laboratory: An Android based gait monitor

    Science.gov (United States)

    Sejdić, E.; Millecamps, A.; Teoli, J.; Rothfuss, M. A.; Franconi, N. G.; Perera, S.; Jones, A. K.; Brach, J. S.; Mickle, M. H.

    2015-01-01

    Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal distractions. In patients with subclinical physiological abnormalities, these conditions may not provide enough stress on their ability to adapt to walking. The introduction of challenging walking conditions in gait can induce responses in physiological systems in addition to the locomotor system. There is a need for a device that is capable of monitoring multiple physiological systems in various walking conditions. To address this need, an Android-based gait-monitoring device was developed that enabled the recording of a patient's physiological systems during walking. The gait-monitoring device was tested during self-regulated overground walking sessions of fifteen healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and respiratory rate. The data is stored on an Android phone and is analyzed offline through the extraction of features in the time, frequency and time-frequency domains. The analysis of the data depicted multisystem physiological interactions during overground walking in healthy subjects. These interactions included locomotion-electrodermal, locomotion-respiratory and cardiolocomotion couplings. The current results depicting strong interactions between the locomotion system and the other considered systems (i.e., electrodermal, respiratory and cardivascular systems) warrant further investigation into multisystem interactions during walking, particularly in challenging walking conditions with older adults. PMID:26390946

  3. Sex determination

    Indian Academy of Sciences (India)

    The sex-determining system differs considerably among organisms. Even among insect species, the genetic system for sex-determination is highly diversified. In Drosophila melanogaster, somatic sexual differentiation is regulated by a well characterized genetic hierarchy X : A > Sxl > tra/tra2 > dsx and fru. This cascade ...

  4. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    Science.gov (United States)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  5. Apple biological and physiological disorders in the orchard and in postharvest according to production system

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Martins

    2013-03-01

    Full Text Available The study aimed to evaluate the incidence of biological and physiological disorders in the field and postharvested apples cvs. Gala, Fuji and Catarina grown in four production systems: conventional, organic transition, integrated and organic. Apples were evaluated for damages related to biological and physiological disorders in the orchard and after harvest. The greatest damages were attributed to pests, especially Anastrepha fraterculus in the organic system and Grapholita molesta in the organic transition. Apples produced in organic orchards had higher damage levels caused by postharvest physiological disorders than those grown in other production systems. For apples becoming from organic orchards most of the damage was due to lenticels breakdown and degeneration ('Gala', and bitter pit ('Fuji' and 'Catarina'. The incidence of postharvest rot was not influenced by apple production system.

  6. Applications of Magnetic Resonance in Model Systems: Tumor Biology and Physiology

    Directory of Open Access Journals (Sweden)

    Robert J. Gillies

    2000-01-01

    Full Text Available A solid tumor presents a unique challenge as a system in which the dynamics of the relationship between vascularization, the physiological environment and metabolism are continually changing with growth and following treatment. Magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS studies have demonstrated quantifiable linkages between the physiological environment, angiogenesis, vascularization and metabolism of tumors. The dynamics between these parameters continually change with tumor aggressiveness, tumor growth and during therapy and each of these can be monitored longitudinally, quantitatively and non-invasively with MRI and MRS. An important aspect of MRI and MRS studies is that techniques and findings are easily translated between systems. Hence, pre-clinical studies using cultured cells or experimental animals have a high connectivity to potential clinical utility. In the following review, leaders in the field of MR studies of basic tumor physiology using pre-clinical models have contributed individual sections according to their expertise and outlook. The following review is a cogent and timely overview of the current capabilities and state-of-the-art of MRI and MRS as applied to experimental cancers. A companion review deals with the application of MR methods to anticancer therapy.

  7. Sex differences in chronic stress effects on cognition in rodents.

    Science.gov (United States)

    Luine, Victoria; Gomez, Juan; Beck, Kevin; Bowman, Rachel

    2017-01-01

    Chronic stress causes deleterious changes in physiological function in systems ranging from neural cells in culture to laboratory rodents, sub-human primates and humans. It is notable, however, that the vast majority of research in this area has been conducted in males. In this review, we provide information about chronic stress effects on cognition in female rodents and contrast it with responses in male rodents. In general, females show cognitive resilience to chronic stressors which impair male cognitive function using spatial tasks including the radial arm maze, radial arm water maze, Morris water maze, Y-maze and object placement. Moreover, stress often enhances female performance in some of these cognitive tasks. Memory in females is not affected by stress in non-spatial memory tasks like recognition memory and temporal order recognition memory while males show impaired memory following stress. We discuss possible bases for these sex-dependent differences including the use of different strategies by the sexes to solve cognitive tasks. Whether the sex differences result from changes in non-mnemonic factors is also considered. Sex-dependent differences in alcohol and drug influences on stress responses are also described. Finally, the role of neurally derived estradiol in driving sex differences and providing resilience to stress in females is shown. The importance of determining the nature and extent of sex differences in stress responses is that such differences may provide vital information for understanding why some stress related diseases have different incidence rates between the sexes and for developing novel therapeutic treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Baseline Physiologic and Psychosocial Characteristics of Transgender Youth Seeking Care for Gender Dysphoria.

    Science.gov (United States)

    Olson, Johanna; Schrager, Sheree M; Belzer, Marvin; Simons, Lisa K; Clark, Leslie F

    2015-10-01

    The purpose of this study was to describe baseline characteristics of participants in a prospective observational study of transgender youth (aged 12-24 years) seeking care for gender dysphoria at a large, urban transgender youth clinic. Eligible participants presented consecutively for care at between February 2011 and June 2013 and completed a computer-assisted survey at their initial study visit. Physiologic data were abstracted from medical charts. Data were analyzed by descriptive statistics, with limited comparisons between transmasculine and transfeminine participants. A total of 101 youth were evaluated for physiologic parameters, 96 completed surveys assessing psychosocial parameters. About half (50.5%) of the youth were assigned a male sex at birth. Baseline physiologic values were within normal ranges for assigned sex at birth. Youth recognized gender incongruence at a mean age of 8.3 years (standard deviation = 4.5), yet disclosed to their family much later (mean = 17.1; standard deviation = 4.2). Gender dysphoria was high among all participants. Thirty-five percent of the participants reported depression symptoms in the clinical range. More than half of the youth reported having thought about suicide at least once in their lifetime, and nearly a third had made at least one attempt. Baseline physiologic parameters were within normal ranges for assigned sex at birth. Transgender youth are aware of the incongruence between their internal gender identity and their assigned sex at early ages. Prevalence of depression and suicidality demonstrates that youth may benefit from timely and appropriate intervention. Evaluation of these youth over time will help determine the impact of medical intervention and mental health therapy. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  9. Sex-determination systems and their evolution: Mammals

    International Nuclear Information System (INIS)

    Colorado Garzon, Fredy A; Matta Camacho, Nubia E; Sanchez, Antonio

    2012-01-01

    Sex-determination methods are very diverse as they have become an enduring research field, understanding the causes of gonadal development and elucidating the main factors involved in sex-determination of offspring required relating information from far-ranging areas such as cytology, embryology, morphology, molecular biology and even ecology and evolution. This article presents an overview of sex-determination in placental mammals, encompassing several levels of biological organization. The importance of the underlying molecular tools in the context of sex-determination assays and their implications in conservation genetics is also discussed.

  10. Helmet-based physiological signal monitoring system.

    Science.gov (United States)

    Kim, Youn Sung; Baek, Hyun Jae; Kim, Jung Soo; Lee, Haet Bit; Choi, Jong Min; Park, Kwang Suk

    2009-02-01

    A helmet-based system that was able to monitor the drowsiness of a soldier was developed. The helmet system monitored the electrocardiogram, electrooculogram and electroencephalogram (alpha waves) without constraints. Six dry electrodes were mounted at five locations on the helmet: both temporal sides, forehead region and upper and lower jaw strips. The electrodes were connected to an amplifier that transferred signals to a laptop computer via Bluetooth wireless communication. The system was validated by comparing the signal quality with conventional recording methods. Data were acquired from three healthy male volunteers for 12 min twice a day whilst they were sitting in a chair wearing the sensor-installed helmet. Experimental results showed that physiological signals for the helmet user were measured with acceptable quality without any intrusions on physical activities. The helmet system discriminated between the alert and drowsiness states by detecting blinking and heart rate variability (HRV) parameters extracted from ECG. Blinking duration and eye reopening time were increased during the sleepiness state compared to the alert state. Also, positive peak values of the sleepiness state were much higher, and the negative peaks were much lower than that of the alert state. The LF/HF ratio also decreased during drowsiness. This study shows the feasibility for using this helmet system: the subjects' health status and mental states could be monitored without constraints whilst they were working.

  11. Sex differences in drug-related stress-system changes: implications for treatment in substance-abusing women.

    Science.gov (United States)

    Fox, Helen C; Sinha, Rajita

    2009-01-01

    Extensive research indicates that chronic substance abuse disrupts stress and reward systems of the brain. Gender variation within these stress-system alterations, including the impact of sex hormones on these changes, may influence sex-specific differences in both the development of, and recovery from, dependency. As such, gender variations in stress-system function may also provide a viable explanation for why women are markedly more vulnerable than men to the negative consequences of drug use. This article therefore initially reviews studies that have examined gender differences in emotional and biophysiological changes to the stress and reward system following the acute administration of drugs, including cocaine, alcohol, and nicotine. The article then reviews studies that have examined gender differences in response to various types of stress in both healthy and drug-abusing populations. Studies examining the impact of sex hormones on these gender-related responses are also reported. The implications of these sex-specific variations in stress and reward system function are discussed in terms of both comorbid psychopathology and treatment outcome.

  12. Human Performance: More Psychological and Physiological Sex Differences (A Selected Bibliography),

    Science.gov (United States)

    1982-07-01

    Schulman, J. L., Buist, C., Kaspar , J. C., Child, D., & Fackler, E. An objective test of speed of fine motor function. Perceptual and Motor Skills, 1969...htdirarchies in groups of early adolescents. Child Development, 1979, 50, 923-935. 91. Sewell, W. H., Hauser , R. M., & Wolf, W. C. Sex, schooling, and

  13. Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures

    International Nuclear Information System (INIS)

    Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey; Posukh, Vitaly

    2011-01-01

    Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)-the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.

  14. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    Science.gov (United States)

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  15. Sex chromosomes and speciation in birds and other ZW systems.

    Science.gov (United States)

    Irwin, Darren E

    2018-02-14

    Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome. © 2018 John Wiley & Sons Ltd.

  16. Comparative study of hematopoietic stem and progenitor cells between sexes in mice under physiological conditions along time.

    Science.gov (United States)

    Gasco, Samanta; Rando, Amaya; Zaragoza, Pilar; García-Redondo, Alberto; Calvo, Ana Cristina; Osta, Rosario

    2017-12-01

    Hematopoietic stem and progenitor cells (HSPCs) are attractive targets in regenerative medicine, although the differences in their homeostatic maintenance between sexes along time are still under debate. We accurately monitored hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs) frequencies by flow cytometry, by performing serial peripheral blood extractions from male and female B6SJL wild-type mice and found no significant differences. Only modest differences were found in the gene expression profile of Slamf1 and Gata2. Our findings suggest that both sexes could be used indistinctly to perform descriptive studies in the murine hematopoietic system, especially for flow cytometry studies in peripheral blood. This would allow diminishing the number of animals needed for the experimental procedures. In addition, the use of serial extractions in the same animals drastically decreases the number of animals needed. © 2017 International Federation for Cell Biology.

  17. Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats.

    Science.gov (United States)

    Balfour, Margaret E; Yu, Lei; Coolen, Lique M

    2004-04-01

    The mesolimbic system plays an important role in the regulation of both pathological behaviors such as drug addiction and normal motivated behaviors such as sexual behavior. The present study investigated the mechanism by which this system is endogenously activated during sexual behavior. Specifically, the effects of sexual experience and sex-related environmental cues on the activation of several components of the mesolimbic system were studied. The mesolimbic system consists of a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). Previous studies suggest that these neurons are under tonic inhibition by local GABA interneurons, which are in turn modulated by mu opioid receptor (MOR) ligands. To test the hypothesis that opioids are acting in the VTA during sexual behavior, visualization of MOR internalization in VTA was used as a marker for ligand-induced activation of the receptor. Significant increases in MOR internalization were observed following copulation or exposure to sex-related environmental cues. The next goal was to determine if sexual behavior activates dopamine neurons in the VTA, using tyrosine hydroxylase as a marker for dopaminergic neurons and Fos-immunoreactivity as a marker for neuronal activation. Significant increases in the percentage of activated dopaminergic neurons were observed following copulation or exposure to sex-related environmental cues. In addition, mating and sex-related cues activated a large population of nondopaminergic neurons in VTA as well as neurons in both the NAc Core and Shell. Taken together, our results provide functional neuroanatomical evidence that the mesolimbic system is activated by both sexual behavior and exposure to sex-related environmental cues.

  18. The effects of sex and neonatal stress on pituitary adenylate cyclase-activating peptide expression.

    Science.gov (United States)

    Mosca, E V; Rousseau, J P; Gulemetova, R; Kinkead, R; Wilson, R J A

    2015-02-01

    What is the central question of this study? Does sex or neonatal stress affect the expression of pituitary adenylate cyclase-activating peptide or its receptors? What is the main finding and its importance? Neonatal-maternal separation stress has little long-lasting effect on the expression of pituitary adenylate cyclase-activating peptide or its receptors, but sex differences exist in these genes between males and females at baseline. Sex differences in classic stress hormones have been studied in depth, but pituitary adenylate cyclase-activating peptide (PACAP), recently identified as playing a critical role in the stress axes, has not. Here we studied whether baseline levels of PACAP differ between sexes in various stress-related tissues and whether neonatal-maternal separation stress has a sex-dependent effect on PACAP gene expression in stress pathways. Using quantitative RT-PCR, we found sex differences in PACAP and PACAP receptor gene expression in several respiratory and/or stress-related tissues, while neonatal-maternal separation stress did little to affect PACAP signalling in adult animals. We propose that sex differences in PACAP expression are likely to contribute to differences between males and females in responses to stress. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  19. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix).

    Science.gov (United States)

    Liu, Haiyang; Pang, Meixia; Yu, Xiaomu; Zhou, Ying; Tong, Jingou; Fu, Beide

    2018-01-05

    Sex-specific markers are powerful tools for identifying sex-determination system in various animals. Bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) are two of the most important edible fish in Asia, which have a long juvenility period that can lasts for 4-5 years. In this study, we found one sex-specific marker by next-generation sequencing together with bioinformatics analysis in bighead carp. The male-specific markers were used to perform molecular sexing in the progenies of artificial gynogenetic diploids and found all progenies (n = 160) were females. Meanwhile, around 1 : 1 sex ratio was observed in a total of 579 juvenile offspring from three other families. To further extend the male-specific region, we performed genome walking and got a male-specific sequence of 8,661 bp. Five pairs of primers were designed and could be used to efficiently distinguish males from females in bighead carp and silver carp. The development of these male-specific markers and results of their molecular sexing in different populations provide strong evidence for a sex determination system of female homogametry or male heterogametry (XX/XY) in bighead carp and silver carp. To the best of our knowledge, this is the first report of effective sex-specific markers in these two large carp species. © The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.

    Science.gov (United States)

    Blackmon, Heath; Ross, Laura; Bachtrog, Doris

    2017-01-01

    Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  2. Maternal gestational cortisol and testosterone are associated with trade-offs in offspring sex and number in a free-living rodent (Urocitellus richardsonii.

    Directory of Open Access Journals (Sweden)

    Calen P Ryan

    Full Text Available The adaptive manipulation of offspring sex and number has been of considerable interest to ecologists and evolutionary biologists. The physiological mechanisms that translate maternal condition and environmental cues into adaptive responses in offspring sex and number, however, remain obscure. In mammals, research into the mechanisms responsible for adaptive sex allocation has focused on two major endocrine axes: the hypothalamic pituitary adrenal (HPA axis and glucocorticoids, and the hypothalamic pituitary gonadal (HPG axis and sex steroids, particularly testosterone. While stress-induced activation of the HPA axis provides an intuitive model for sex ratio and litter size adjustment, plasma glucocorticoids exist in both bound and free fractions, and may be acting indirectly, for example by affecting plasma glucose levels. Furthermore, in female mammals, activation of the HPA axis stimulates the secretion of adrenal testosterone in addition to glucocorticoids (GCs. To begin to untangle these physiological mechanisms influencing offspring sex and number, we simultaneously examined fecal glucocorticoid metabolites, free and bound plasma cortisol, free testosterone, and plasma glucose concentration during both gestation and lactation in a free-living rodent (Urocitellus richardsonii. We also collected data on offspring sex and litter size from focal females and from a larger study population. Consistent with previous work in this population, we found evidence for a trade-off between offspring sex and number, as well as positive and negative correlations between glucocorticoids and sex ratio and litter size, respectively, during gestation (but not lactation. We also observed a negative relationship between testosterone and litter size during gestation (but not lactation, but no effect of glucose on either sex ratio or litter size. Our findings highlight the importance of binding proteins, cross-talk between endocrine systems, and temporal windows

  3. Selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children

    Science.gov (United States)

    Landowska, A.; Karpienko, K.; Wróbel, M.; Jedrzejewska-Szczerska, M.

    2014-11-01

    In this article the procedure of selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children is proposed. Authors designed and conducted an experiment in which a group of 30 health volunteers (16 females and 14 males) were examined. Under controlled conditions people were exposed to a stressful situation caused by the picture or sound (1kHz constant sound, which was gradually silenced and finished with a shot sound). For each of volunteers, a set of physiological parameters were recorded, including: skin conductance, heart rate, peripheral temperature, respiration rate and electromyography. The selected characteristics were measured in different locations in order to choose the most suitable one for the designed therapy supporting system. The bio-statistical analysis allowed us to discern the proper physiological parameters that are most associated to changes due to emotional state of a patient, such as: skin conductance, temperatures and respiration rate. This allowed us to design optoelectronic sensors network for supporting behavioral therapy of children with autism.

  4. Stress-related disorders, pituitary adenylate cyclase-activating peptide (PACAP)ergic system, and sex differences.

    Science.gov (United States)

    Ramikie, Teniel S; Ressler, Kerry J

    2016-12-01

    Trauma-related disorders, such as posttraumatic stress disorder (PTSD) are remarkably common and debilitating, and are often characterized by dysregulated threat responses. Across numerous epidemiological studies, females have been found to have an approximately twofold increased risk for PTSD and other stress-related disorders. Understanding the biological mechanisms of this differential risk is of critical importance. Recent data suggest that the pituitary adenylate cyclase-activating polypeptide (PACAP) pathway is a critical regulator of the stress response across species. Moreover, increasing evidence suggests that this pathway is regulated by both stress and estrogen modulation and may provide an important window into understanding mechanisms of sex differences in the stress response. We have recently shown that PACAP and its receptor (PAC1R) are critical mediators of abnormal processes after psychological trauma. Notably, in heavily traumatized human subjects, there appears to be a robust sex-specific association of PACAP blood levels and PAC1R gene variants with fear physiology, PTSD diagnosis, and symptoms, specifically in females. The sex-specific association occurs within a single-nucleotide polymorphism (rs2267735) that resides in a putative estrogen response element involved in PAC1R gene regulation. Complementing these human data, the PAC1R messenger RNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1R pathway are regulated by estrogen and are involved in abnormal fear responses underlying PTSD.

  5. The physiology of a local renin-angiotensin system in the pancreas.

    Science.gov (United States)

    Leung, Po Sing

    2007-04-01

    The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.

  6. The physiology of a local renin–angiotensin system in the pancreas

    Science.gov (United States)

    Leung, Po Sing

    2007-01-01

    The systemic renin–angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested. PMID:17218353

  7. Physiological Activity of Spinal Cord in Children: An 18F-FDG PET-CT Study.

    Science.gov (United States)

    Taralli, Silvia; Leccisotti, Lucia; Mattoli, Maria Vittoria; Castaldi, Paola; de Waure, Chiara; Mancuso, Agostino; Rufini, Vittoria

    2015-06-01

    Retrospective study. To evaluate, in a pediatric population, F-Fluoro-deoxy-glucose (F-FDG) metabolic activity of normal spinal cord and to assess the correlation with demographic, clinical, and environmental variables. F-FDG uptake of normal spinal cord is variable in children. The knowledge of physiological metabolism of spinal cord is essential to distinguish normal from pathological findings by positron emission tomography-computed tomography (PET-CT). We retrospectively evaluated F-FDG positron emission tomography-computed tomography scans from a total of 167 pediatric patients (97 males; 3.9-18.9 yr) divided into 4 age groups (0-4.9 yr, 5-9.9 yr, 10-14.9 yr, and 15-18.9 yr), excluding those submitted to previous or recent therapeutic procedures influencing spinal cord metabolism or with central nervous system diseases. Spinal cord was divided into 3 levels (C1-C7; D1-D6; and D7-L1), and maximum standardized uptake value (SUVmax) of each cord level was measured. Correlations between SUVmax and spinal cord level, age, body weight, sex, type of disease, and season were statistically assessed. Median SUVmax was similar and significantly (P spinal cord levels. A positive and significant association between SUVmax and body weight, female sex, and Hodgkin lymphoma was found. No significant association with season was observed. By multivariate analysis, only weight and female sex remained significant. Knowledge of physiological F-FDG spinal cord activity in children is essential for a correct interpretation of positron emission tomography-computed tomography, especially in oncologic pediatric patients to avoid potential pitfalls. N/A.

  8. Vigor-S, a new system for evaluating the physiological potential of maize seeds

    OpenAIRE

    Castan, Danielle Otte Carrara; Gomes-Junior, Francisco Guilhien; Marcos-Filho, Julio

    2018-01-01

    ABSTRACT: The refinement of vigor tests and the possibility of utilizing computer resources for the effective evaluation of the seed physiological potential have attracted considerable interest from research and seed technologists. The aim of this study was to evaluate the physiological potential of maize seeds using the newly-created Automated Analysis of Seed Vigor System (Vigor-S) compared with other recommended seed vigor tests; two maize hybrids were used, each represented by seven seed ...

  9. The influence of adrenergic stimulation on sex differences in left ventricular twist mechanics.

    Science.gov (United States)

    Williams, Alexandra M; Shave, Rob E; Cheyne, William S; Eves, Neil D

    2017-06-15

    Sex differences in left ventricular (LV) mechanics occur during acute physiological challenges; however, it is unknown whether sex differences in LV mechanics are fundamentally regulated by differences in adrenergic control. Using two-dimensional echocardiography and speckle tracking analysis, this study compared LV mechanics in males and females matched for LV length during post-exercise ischaemia (PEI) and β 1 -adrenergic receptor blockade. Our data demonstrate that while basal rotation was increased in males, LV twist was not significantly different between the sexes during PEI. In contrast, during β 1 -adrenergic receptor blockade, LV apical rotation, twist and untwisting velocity were reduced in males compared to females. Significant relationships were observed between LV twist and LV internal diameter and sphericity index in females, but not males. These findings suggest that LV twist mechanics may be more sensitive to alterations in adrenergic stimulation in males, but more highly influenced by ventricular structure and geometry in females. Sex differences in left ventricular (LV) mechanics exist at rest and during acute physiological stress. Differences in cardiac autonomic and adrenergic control may contribute to sex differences in LV mechanics and LV haemodynamics. Accordingly, this study aimed to investigate sex differences in LV mechanics with altered adrenergic stimulation achieved through post-handgrip-exercise ischaemia (PEI) and β 1 -adrenergic receptor (AR) blockade. Twenty males (23 ± 5 years) and 20 females (22 ± 3 years) were specifically matched for LV length (males: 8.5 ± 0.5 cm, females: 8.2 ± 0.6 cm, P = 0.163), and two-dimensional speckle-tracking echocardiography was used to assess LV structure and function at baseline, during PEI and following administration of 5 mg bisoprolol (β 1 -AR antagonist). During PEI, LV end-diastolic volume and stroke volume were increased in both groups (P adrenergic stimulation

  10. Relationship between systemic hemodynamics and ambulatory blood pressure level are sex dependent.

    Science.gov (United States)

    Alfie, J; Waisman, G D; Galarza, C R; Magi, M I; Vasvari, F; Mayorga, L M; Cámera, M I

    1995-12-01

    Sex-related differences in systemic hemodynamics were analyzed by means of cardiac index and systemic vascular resistance according to the level of daytime ambulatory blood pressure. In addition, we assessed the relations between ambulatory blood pressure measurements and systemic hemodynamics in male and female patients. We prospectively included 52 women and 53 men referred to our unit for evaluation of arterial hypertension. Women and men were grouped according to the level of daytime mean arterial pressure: or = 110 mm Hg. Patients underwent noninvasive evaluation of resting hemodynamics (impedance cardiography) and 24-hour ambulatory blood pressure monitoring. Compared with women men with lower daytime blood pressure had a 12% higher systemic vascular resistance index (P = NS) and a 14% lower cardiac index (P < .02), whereas men with higher daytime blood pressure had a 25% higher vascular resistance (P < .003) and a 21% lower cardiac index (P < .0004). Furthermore, in men systemic vascular resistance correlated positively with both daytime and nighttime systolic and diastolic blood pressures, whereas cardiac index correlated negatively only with daytime diastolic blood pressure. In contrast, women did not exhibit any significant correlation between hemodynamic parameters and ambulatory blood pressure measurements. In conclusion, sex-related differences in systemic hemodynamics were more pronounced in the group with higher daytime hypertension. The relations between systemic hemodynamics and ambulatory blood pressure level depended on the sex of the patient. In men a progressive circulatory impairment underlies the increasing level of ambulatory blood pressure, but this was not observed in women.

  11. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  12. Sex differences of gray matter morphology in cortico-limbic-striatal neural system in major depressive disorder.

    Science.gov (United States)

    Kong, Lingtao; Chen, Kaiyuan; Womer, Fay; Jiang, Wenyan; Luo, Xingguang; Driesen, Naomi; Liu, Jie; Blumberg, Hilary; Tang, Yanqing; Xu, Ke; Wang, Fei

    2013-06-01

    Sex differences are observed in both epidemiological and clinical aspects of major depressive disorder (MDD). The cortico-limbic-striatal neural system, including the prefrontal cortex, amygdala, hippocampus, and striatum, have shown sexually dimorphic morphological features and have been implicated in the dysfunctional regulation of mood and emotion in MDD. In this study, we utilized a whole-brain, voxel-based approach to examine sex differences in the regional distribution of gray matter (GM) morphological abnormalities in medication-naïve participants with MDD. Participants included 29 medication-naïve individuals with MDD (16 females and 13 males) and 33 healthy controls (HC) (17 females and 16 males). Gray matter morphology of the cortico-limbic-striatal neural system was examined using voxel-based morphometry analyzes of high-resolution structural magnetic resonance imaging scans. The main effect of diagnosis and interaction effect of diagnosis by sex on GM morphology were statistically significant (p sex-related patterns of abnormalities within the cortico-limbic-strial neural system, such as predominant prefrontal-limbic abnormalities in MDD females vs. predominant prefrontal-striatal abnormalities in MDD males, suggest differences in neural circuitry that may mediate sex differences in the clinical presentation of MDD and potential targets for sex-differentiated treatment of the disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The Size Advantage Model of Sex Allocation in the Protandrous Sex-Changer Crepidula fornicata: Role of the Mating System, Sperm Storage, and Male Mobility.

    Science.gov (United States)

    Broquet, Thomas; Barranger, Audrey; Billard, Emmanuelle; Bestin, Anastasia; Berger, Rémy; Honnaert, Gaelle; Viard, Frédérique

    2015-09-01

    Sequential hermaphroditism is adaptive when the reproductive value of an individual varies with size or age, and this relationship differs between males and females. In this case, theory shows that the lifetime reproductive output of an individual is increased by changing sex (a hypothesis referred to as the size-advantage model). Sex-linked differences in size-fitness curves can stem from differential costs of reproduction, the mating system, and differences in growth and mortality between sexes. Detailed empirical data is required to disentangle the relative roles of each of these factors within the theory. Quantitative data are also needed to explore the role of sperm storage, which has not yet been considered with sequential hermaphrodites. Using experimental rearing and paternity assignment, we report relationships between size and reproductive success of Crepidula fornicata, a protandrous (male-first) gastropod. Male reproductive success increased with size due to the polygamous system and stacking behavior of the species, but females nonetheless had greater reproductive success than males of the same size, in agreement with the size-advantage theory. Sperm storage appeared to be a critical determinant of success for both sexes, and modeling the effect of sperm storage showed that it could potentially accelerate sex change in protandrous species.

  14. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process - The Integrative Governor theory.

    Science.gov (United States)

    St Clair Gibson, A; Swart, J; Tucker, R

    2018-02-01

    Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.

  15. Nest predation, clutch size, and physiological costs of egg production in the song sparrow (Melospiza melodia)

    OpenAIRE

    Travers, Marc Simon

    2009-01-01

    We examined the effects of nest predation on both clutch size and the physiological cost of egg production using a clutch removal experiment in free-living song sparrows (Melospiza melodia), inducing “high nest predation” (HNP) females to produce many replacement clutches compared to “low nest predation” (LNP) females. In a preliminary analysis we investigated the utility of multiple measures to assess “physiological condition”, including inter-correlations between physiological traits, sex d...

  16. Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes

    Science.gov (United States)

    Rollings, Nicky; Uhrig, Emily J.; Krohmer, Randolph W.; Waye, Heather L.; Mason, Robert T.; Olsson, Mats; Whittington, Camilla M.

    2017-01-01

    Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis. We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species. PMID:28381620

  17. Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes.

    Science.gov (United States)

    Rollings, Nicky; Uhrig, Emily J; Krohmer, Randolph W; Waye, Heather L; Mason, Robert T; Olsson, Mats; Whittington, Camilla M; Friesen, Christopher R

    2017-04-12

    Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species. © 2017 The Author(s).

  18. Physiological antioxidant system and oxidative stress in stomach cancer patients with normal renal and hepatic function

    Directory of Open Access Journals (Sweden)

    E Prabhakar Reddy

    2010-04-01

    Full Text Available Role of free radicals has been proposed in the pathogenesis of many diseases. Gastric cancer is a common disease worldwide, and leading cause of cancer death in India. Severe oxidative stress produces reactive oxygen species (ROS and induces uncontrolled lipid peroxidation. Albumin, uric acid (UA and Bilirubin are important physiological antioxidants. We aimed to evaluate and assess the role of oxidative stress (OS and physiological antioxidant system in stomach cancer patients. Lipid peroxidation measured as plasma Thio Barbituric Acid Reactive substances (TBARS, was found to be elevated significantly (p=0.001 in stomach cancer compared to controls along with a decrease in plasma physiological antioxidant system. The documented results were due to increased lipid peroxidation and involvement of physiological antioxidants in scavenging free radicals but not because of impaired hepatic and renal functions.

  19. Endocrinology of sex steroid hormones and cell dynamics in the periodontium.

    Science.gov (United States)

    Mariotti, Angelo; Mawhinney, Michael

    2013-02-01

    Numerous scientific studies assert the existence of hormone-sensitive periodontal tissues. Tissue specificity of hormone localization, identification of hormone receptors and the metabolism of hormones are evidence that periodontal tissues are targets for sex steroid hormones. Although the etiologies of periodontal endocrinopathies are diverse, periodontal pathologies are primarily the consequence of the actions and interactions of sex steroid hormones on specific cells found in the periodontium. This review provides a broad overview of steroid hormone physiology, evidence for the periodontium being a target tissue for sex steroid hormones and theories regarding the roles of sex steroid hormones in periodontal pathogenesis. Using this information, a teleological argument for the actions of steroid hormones in the periodontium is assessed.

  20. Sex differences in vascular endothelial function and health in humans: impacts of exercise.

    Science.gov (United States)

    Green, Daniel J; Hopkins, Nicola D; Jones, Helen; Thijssen, Dick H J; Eijsvogels, Thijs M H; Yeap, Bu B

    2016-02-01

    What is the topic of this review? This brief review discusses potential sex differences in arterial function across the age span, with special emphasis on the effects of oestrogen and testosterone on the vascular endothelium. What advances does it highlight? We discuss the relationship between the impacts of sex hormones on arterial function and health in the context of epidemiological evidence pertaining to the menopause and ageing. Studies performed in humans are emphasized, alongside insights from animal studies. Findings suggest that the combination of exercise and hormone administration should be potentially synergistic or additive in humans. This brief review presents historical evidence for the purported impacts of male and female sex hormones on the vasculature in humans, including effects on macro- and microvascular function and health. Impacts of ageing on hormonal changes and arterial function are considered in the context of the menopause. Physiological data are presented alongside clinical outcomes from large trials, in an attempt to rationalize disparate findings along the bench-to-bedside continuum. Finally, the theoretical likelihood that exercise and hormone treatment may induce synergistic and/or additive vascular adaptations is developed in the context of recent laboratory studies that have compared male and female responses to training. Differences between men and women in terms of the impact of age and cardiorespiratory fitness on endothelial function are addressed. Ultimately, this review highlights the paucity of high-quality and compelling evidence regarding the fundamental impact, in humans, of sex differences on arterial function and the moderating impacts of exercise on arterial function, adaptation and health at different ages in either sex. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  1. Physiology of Women's Sexual Function: Basic Knowledge and New Findings

    DEFF Research Database (Denmark)

    Salonia, Andrea; Giraldi, Annamaria; Chivers, Meredith L

    2010-01-01

    Introduction.  Data concerning the physiology of female sexual functioning are still obtained from animal studies, but an increasing amount of novel evidence comes from human studies. Aim.  To gain knowledge of psychological and biologic physiology of women's sexual functioning, mainly addressing...... and responses is of paramount importance. A biopsychological paradigm was considered when reviewing currently available data, thus considering aspects of: (i) sexual differentiation of the brain, which is critical for sex differentiation in behavior; (ii) central neurobiology of sexual function, highlighting...... arousal in women in both procreation/reproduction and recreation/pleasure. The interaction between physiological and psychological states of women's sexual response, nonspecific sexual response, interoceptive awareness, and flexibility of sexual interests have also been addressed. Conclusion.  Further...

  2. Family Life and Human Development (Sex Education): The Prince George's County Public Schools Experience.

    Science.gov (United States)

    Schaffer, Michael J.

    1981-01-01

    The Prince George's County schools' sex education program for grades K-12 was developed and implemented in the late 1960s and has three focus areas: family life and interpersonal relationships; the physiological and personality changes during puberty; and advanced physiology and psychology of human sexual behavior. The program augments what the…

  3. XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Jack E Green

    Full Text Available We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.

  4. The evolution of sex chromosomes in organisms with separate haploid sexes.

    Science.gov (United States)

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  5. The integumentary system: anatomy, physiology and function of skin.

    Science.gov (United States)

    McLafferty, Ella; Hendry, Charles; Alistair, Farley

    This article, which forms part of the life sciences series, examines the anatomy and physiology of skin, also termed the integumentary system. Skin is composed of two main layers, the epidermis and dermis. The structure of the epidermis and dermis are described and their functions are discussed. Accessory structures, such as nails and hair are also considered. Although many diseases of the skin exist, two common conditions--psoriasis and decubitus ulcers--are described in this article.

  6. Serum metabolomic profiles suggest influence of sex and oral contraceptive use

    OpenAIRE

    Ruoppolo, Margherita; Campesi, Ilaria; Scolamiero, Emanuela; Pecce, Rita; Caterino, Marianna; Cherchi, Sara; Mercuro, Giuseppe; Tonolo, Giancarlo; Franconi, Flavia

    2014-01-01

    Aim: Considering that the effects of sex and oral contraceptives (OCs) on blood metabolites have been scarcely studied and the fact that protocol designs for clinical trials emphasise the use of contraception for women of childbearing potential, we examined if OCs and sex affect the serum levels of the physiologically relevant amino acids, carnitine and acylcarnitines, using metabolomics approaches. Methods: Healthy adult men and women were enrolled. They were drug free with the exception of ...

  7. The Conservative Physiology of the Immune System. A Non-Metaphoric Approach to Immunological Activity

    Directory of Open Access Journals (Sweden)

    Nelson M. Vaz

    2006-01-01

    Full Text Available Historically, immunology emerged as a biomedical science, concerned with host defense and production of anti-infectious vaccines. In the late 50s, selective theories were proposed and from then on, immunology has been based in a close association with the neo-Darwinian principles, such as random generation of variants (lymphocyte clones, selection by extrinsic factors (antigens—and, more generally, on genetic determinism and functionalism. This association has had major consequences: (1 immunological jargon is full of “cognitive” metaphors, founded in the idea of “foreignness”; (2 the immune system is described with a random clonal origin, coupled to selection by random encounters; and (3 physiological events are virtually absent from immunological descriptions. In the present manuscript, we apply systemic notions to bring forth an explanation including systemic mechanisms able to generate immunological phenomena. We replace “randomness plus selection” and the notion of foreignness by a history of structural changes which are determined by the coherences of the system internal architecture at any given moment. The importance of this systemic way of seeing is that it explicitly attends to the organization that defines the immune system, within which it is possible to describe the conservative physiology of the immune system. Understanding immune physiology in a systemic way of seeing also suggests mechanisms underlying the origin of immunopathogeny and therefore suggests new insights to therapeutic approaches. However, if seriously acknowledged, this systemic/historic approach to immunology goes along with a global conceptual change which modifies virtually everything in the domain of biology, as suggested by Maturana.

  8. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    Science.gov (United States)

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  9. A Physiologically Informed Virtual Reality Based Social Communication System for Individuals with Autism

    Science.gov (United States)

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-01-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…

  10. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    Science.gov (United States)

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  11. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  12. Avian sex, sex chromosomes, and dosage compensation in the age of genomics.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2014-04-01

    Comparisons of the sex chromosome systems in birds and mammals are widening our view and deepening our understanding of vertebrate sex chromosome organization, function, and evolution. Birds have a very conserved ZW system of sex determination in which males have two copies of a large, gene-rich Z chromosome, and females have a single Z and a female-specific W chromosome. The avian ZW system is quite the reverse of the well-studied mammalian XY chromosome system, and evolved independently from different autosomal blocs. Despite the different gene content of mammal and bird sex chromosomes, there are many parallels. Genes on the bird Z and the mammal X have both undergone selection for male-advantage functions, and there has been amplification of male-advantage genes and accumulation of LINEs. The bird W and mammal Y have both undergone extensive degradation, but some birds retain early stages and some mammals terminal stages of the process, suggesting that the process is more advanced in mammals. Different sex-determining genes, DMRT1 and SRY, define the ZW and XY systems, but DMRT1 is involved in downstream events in mammals. Birds show strong cell autonomous specification of somatic sex differences in ZZ and ZW tissue, but there is growing evidence for direct X chromosome effects on sexual phenotype in mammals. Dosage compensation in birds appears to be phenotypically and molecularly quite different from X inactivation, being partial and gene-specific, but both systems use tools from the same molecular toolbox and there are some signs that galliform birds represent an early stage in the evolution of a coordinated system.

  13. More than maths and mindreading: sex differences in empathizing/systemizing covariance.

    Science.gov (United States)

    Valla, Jeffrey M; Ganzel, Barbara L; Yoder, Keith J; Chen, Grace M; Lyman, Laura T; Sidari, Anthony P; Keller, Alex E; Maendel, Jeffrey W; Perlman, Jordan E; Wong, Stephanie K L; Belmonte, Matthew K

    2010-08-01

    Empathizing-Systemizing theory posits a continuum of cognitive traits extending from autism into normal cognitive variation. Covariance data on empathizing and systemizing traits have alternately suggested inversely dependent, independent, and sex-dependent (one sex dependent, the other independent) structures. A total of 144 normal undergraduates (65 men, 79 women) completed the Reading the Mind in the Eyes, Embedded Figures, and Benton face recognition tests, the Autism Spectrum Quotient, and measures of digit length ratio and field of study; some also completed tests of motion coherence threshold (64) and go/no-go motor inhibition (128). Empathizing and systemizing traits were independent in women, but largely dependent in men. In men, level of systemizing skill required by field of study was directly related to social interactive and mindreading deficits; men's social impairments correlated with prolonged go/no-go response times, and men tended to apply systemizing strategies to solve problems of empathizing or global processing: rapid perceptual disembedding predicted heightened sensitivity to facial emotion. In women, level of systemizing in field was related to male-typical digit ratios and autistic superiorities in detail orientation, but not to autistic social and communicative impairments; and perceptual disembedding was related to social interactive skills but independent of facial emotion and visual motion perception.

  14. Sex differences in the impact of the Mediterranean diet on systemic inflammation.

    Science.gov (United States)

    Bédard, Alexandra; Lamarche, Benoît; Corneau, Louise; Dodin, Sylvie; Lemieux, Simone

    2015-05-12

    Some intervention trials have reported a reduction in systemic inflammation with the Mediterranean diet (MedDiet) while others have observed no effect. Despite the fact that sex differences have been highlighted in the inflammatory regulation, it is still not known whether MedDiet exerts similar effects on systemic inflammation in men and women. The aim of this study was therefore to investigate sex differences in the effects of the MedDiet on high-sensitivity C-reactive protein (hs-CRP). Participants were 35 men and 27 premenopausal women (24-53 years) presenting a slightly deteriorated lipid profile. All foods were provided to participants during a 4-week isocaloric MedDiet. At baseline, women had higher hs-CRP concentrations than men (P = 0.03). No sex difference was observed in hs-CRP response to the MedDiet (P for sex-by-time interaction = 0.36), with both men and women experiencing no change (respectively P = 0.62 and P > 0.99). When subgroups were formed according to hs-CRP concentration before the MedDiet phase, men with elevated baseline values (≥2 mg/l) experienced a reduction in hs-CRP over time with the MedDiet (-26.5 %) while an increase was observed in men with lower baseline values (+96.6 %; P for group-by-time interaction = 0.02). This pattern of change was not observed in women. Results from this controlled feeding study suggest that men and women have similar effects from the MedDiet on systemic inflammation. The individual's overall inflammatory status seems to influence these effects, but only in men. This clinical trial was registered at www.clinicaltrials.gov as NCT01293344 .

  15. The evolution of sex roles in birds is related to adult sex ratio.

    Science.gov (United States)

    Liker, András; Freckleton, Robert P; Székely, Tamás

    2013-01-01

    Sex-role reversal represents a formidable challenge for evolutionary biologists, since it is not clear which ecological, life-history or social factors facilitated conventional sex roles (female care and male-male competition for mates) to be reversed (male care and female-female competition). Classic theories suggested ecological or life-history predictors of role reversal, but most studies failed to support these hypotheses. Recent theory however predicts that sex-role reversal should be driven by male-biased adult sex ratio (ASR). Here we test this prediction for the first time using phylogenetic comparative analyses. Consistent with theory, both mating system and parental care are strongly related to ASR in shorebirds: conventional sex roles are exhibited by species with female-biased ASR, whereas sex-role reversal is associated with male-biased ASR. These results suggest that social environment has a strong influence on breeding systems and therefore revealing the causes of ASR variation in wild populations is essential for understanding sex role evolution.

  16. Sex and Management of Rheumatoid Arthritis.

    Science.gov (United States)

    Favalli, Ennio Giulio; Biggioggero, Martina; Crotti, Chiara; Becciolini, Andrea; Raimondo, Maria Gabriella; Meroni, Pier Luigi

    2018-01-26

    Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease more common in women than men (3:1). Although sex-based differences may play a complex role in promoting an autoimmune dysfunction, to date the comprehensive knowledge of the link between sex and RA is still partially lacking. Furthermore, males and females have been demonstrated to differently deal with their chronic pathologies, modifying the perceived sex-based burden of disease. Gender medicine is a newly approach focusing on the impact of gender differences on human physiology, pathophysiology, and clinical features of diseases, analyzing the complex interrelation and integration of sex and psychological and cultural behavior. A better comprehension of possible factors influencing sexual dimorphism in RA susceptibility, pattern of presentation, disease activity, and outcome could contribute to a tailored approach, in order to limit the morbidity of the disease. RA disease activity seems to be higher in women, whereas the response rate to synthetic and biologic disease-modifying therapies appears to be better in males. Moreover, the common strategies for RA management may be affected by concomitant pregnancy or childbearing desire, with particular regard to treatments with potential teratogenic effects or impact on fertility. Finally, comorbidities, such as fibromyalgia, major depression, and osteoporosis, are more frequent in females, while the impact of sex on cardiovascular risk is still controversial. Moving from the role of sex in influencing RA pathogenesis, epidemiology, and disease characteristics, this review explores the evidence on how sex can have an impact on strategies for managing patients with RA.

  17. Parasites and steroid hormones: corticosteroid and sex steroid synthesis, their role in the parasite physiology and development.

    Directory of Open Access Journals (Sweden)

    Marta C. Romano

    2015-06-01

    Full Text Available In many cases parasites display highly complex life cycles that include establishment of the larva or adults within host organs, but even in those that have only one host reciprocal intricate interactions occur. A bulk of evidence indicates that steroid hormones influence the development and course of parasitic infections, the host gender susceptibility to the infection and the associate differences in immunological response are good examples of the host-parasite interplay. However, the capacity of these organisms to synthesize their own steroidogenic hormones still has more questions than answers. It is now well known that many parasites synthesize ecdysteroids, but limited information is available on sex steroid and corticosteroid synthesis. This review intends to summarize some of the existing information in the field. In many but not all parasitosis the host hormonal environment determines the susceptibility, the course and severity of parasite infections. In most cases the infection disturbs the host environment, and activate immune responses that finally affect the endocrine system. Furthermore, sex steroids and corticosteroids may also directly modify the parasite reproduction and molting. Available information indicates that parasites synthesize some steroid hormones like ecdysteroids and sex steroids and the presence and activity of related enzymes have been demonstrated. More recently, the synthesis of corticosteroid like compounds has been shown in Taenia solium and tapeworms and in Taenia crassiceps WFU cysticerci. Deeper knowledge of the endocrine properties of parasites will contribute to understand their reproduction and reciprocal interactions with the host, and also may contribute to design tools to combat the infection in some clinical situations.

  18. Implications of Schwann Cells Biomechanics and Mechanosensitivity for Peripheral Nervous System Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-10-01

    Full Text Available The presence of bones around the central nervous system (CNS provides it with highly effective physiologically crucial mechanical protection. The peripheral nervous system (PNS, in contrast, lacks this barrier. Consequently, the long held belief is that the PNS is mechanically vulnerable. On the other hand, the PNS is exposed to a variety of physiological mechanical stresses during regular daily activities. This fact prompts us to question the dogma of PNS mechanical vulnerability. As a matter of fact, impaired mechanics of PNS nerves is associated with neuropathies with the liability to mechanical stresses paralleled by significant impairment of PNS physiological functions. Our recent biomechanical integrity investigations on nerve fibers from wild-type and neuropathic mice lend strong support in favor of natural mechanical protection of the PNS and demonstrate a key role of Schwann cells (SCs therein. Moreover, recent works point out that SCs can sense mechanical properties of their microenvironment and the evidence is growing that SCs mechanosensitivity is important for PNS development and myelination. Hence, SCs exhibit mechanical strength necessary for PNS mechanoprotection as well as mechanosensitivity necessary for PNS development and myelination. This mini review reflects on the intriguing dual ability of SCs and implications for PNS physiology and pathophysiology.

  19. Exploring the envelope. Systematic alteration in the sex-determination system of the nematode caenorhabditis elegans.

    OpenAIRE

    Hodgkin, Jonathan

    2002-01-01

    The natural sexes of the nematode Caenorhabditis elegans are the self-fertilizing hermaphrodite (XX) and the male (XO). The underlying genetic pathway controlling sexual phenotype has been extensively investigated. Mutations in key regulatory genes have been used to create a series of stable populations in which sex is determined not by X chromosome dosage, but in a variety of other ways, many of which mimic the diverse sex-determination systems found in different animal species. Most of thes...

  20. Physiological indices of seawater readiness in postspawning steelhead kelts

    Science.gov (United States)

    Buelow, Jessica; Moffitt, Christine M.

    2015-01-01

    Management goals to improve the recovery of steelhead (Oncorhynchus mykiss) stocks at risk of extinction include increasing the proportion of postspawning fish that survive and spawn again. To be successful, postspawning steelhead (kelts) migrating downstream to the ocean must prepare physiologically and physically for a seawater transition. We sampled blood, gill filaments, and evaluated the external condition of migrating kelts from an ESA-listed population in the Snake/Columbia River system over two consecutive years to evaluate their physiological readiness for transition to seawater. We chose attributes often considered as measures of preparation for seawater in juveniles, including gill Na+,K+ ATPase activity, plasma electrolytes and hormones to consider factors related to external condition, size and sex. We found kelts in good external condition had plasma profiles similar to downstream-migrating smolts. In addition, we found more than 80% of kelts ranked in good external condition had smolt-like body silvering. We compared measures from migrating kelts with samples obtained from hatchery fish at the time of spawning to confirm that Na+, K+ ATPase activity in kelts was significantly elevated over spawning fish. We found significant differences in gill Na+, K+ ATPase activity in migrating kelts between the years of sampling, but little indication of influence of fish condition. We conclude that the postspawning steelhead sampled exhibited a suite of behaviours, condition and physiology characteristic of fish prepared for successful transition to a seawater environment.

  1. Sex-chromosome anaphase movements in crane-fly spermatocytes are coordinated: ultraviolet microbeam irradiation of one kinetochore of one sex chromosome blocks the movements of both sex chromosomes

    International Nuclear Information System (INIS)

    Swedak, J.A.M.; Forer, A.

    1987-01-01

    Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a 'signal' system. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. However, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. Thus for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole. (author)

  2. Factors affecting sex education in the school system.

    Science.gov (United States)

    Woo, G W; Soon, R; Thomas, J M; Kaneshiro, B

    2011-06-01

    To describe the current status of school based sex education and to determine predictors of providing a comprehensive sex education curriculum. Cross-sectional mailed survey Hawaii Seventh and eighth grade health teachers Participants were surveyed regarding the content, quality, and influences on sex education for the 2007 to 2008 academic year. Measures of association (chi-square, ANOVA) and multiple logistic regression were used to determine predictors for teaching comprehensive sex education topics including sexually transmitted infections and pregnancy prevention. Approximately 80% of teachers incorporated some form of sex education into their curriculum and 54.4% of teachers incorporated a comprehensive education. Teachers indicated that personal values and the availability of curriculum had the greatest influence on the content of the curriculum. Specific factors which were associated with an increased likelihood of providing a comprehensive curriculum included teaching in a public school (public 66.7% versus private 34.6%, P = 0.01), receiving formal training in sex education (received training 77.8% versus did not receive training 50.0%, P = 0.03) and having contact with a student who became pregnant (contact 72.7% versus no contact 46.7%, P = 0.04). Although most teachers incorporate some form of sex education, only half incorporate a comprehensive curriculum. Personal values as well as teacher resources play an important role in the content of the curriculum. Copyright © 2011 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  3. Steroid receptor expression in the fish inner earvaries with sex, social status, and reproductive state

    Directory of Open Access Journals (Sweden)

    Fernald Russell D

    2010-04-01

    Full Text Available Abstract Background Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR and aromatase in the main hearing organ of the inner ear (saccule in the highly social African cichlid fish Astatotilapia burtoni, and tested whether these receptor levels were correlated with circulating steroid concentrations. Results We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes. Conclusions This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral

  4. The Erasure of Sex and Gender Minorities in the Healthcare System

    Directory of Open Access Journals (Sweden)

    Marianne LeBreton

    2013-09-01

    Full Text Available Socio-cultural notions of gender and sex influence the structuring of healthcare systems. This case study exemplifies how the Western gender binary, and cisnormativity in particular, can create barriers to accessing healthcare services for transgender populations and lead to erasure.

  5. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    Science.gov (United States)

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  6. PATHO-PHYSIOLOGICAL MECHANISMS OF TOBACCO SMOKING EFFECT ON THE CARDIOVASCULAR SYSTEM

    Directory of Open Access Journals (Sweden)

    V.F. Kirichuk

    2007-09-01

    Full Text Available Modern patho-physiological mechanisms with the help of which tobacco smoking contributes to the development of cardiovascular pathology are represented in the review. The most significant of them are endothelial dysfunction, progressing of atherosclerotic processes, alteration of rheologic properties of blood, increase of carboxyhemoglobin levels, activation of sympathetic nervous system of the heart.

  7. Where have the organizers gone? - The growth control system as a foundation of physiology.

    Science.gov (United States)

    Li, Zhimin; Shang, Charles

    2017-01-01

    A model of growth control system suggests that the organizers in embryogenesis continue to exist and partially retain their function after embryogenesis. The organizers are the macroscopic singular points of the morphogen gradient and bioelectric fields. They have higher metabolic rate, higher density of gap junctions and stem cells than the surrounding tissue. The growth control model predicts that the organizers are likely to exist at the extreme points of surface or interface curvature of the body. Changes in bioelectric field at organizers precede the morphological and anatomical changes in morphogenesis and pathogenesis. Subtle perturbations at organizers can cause long lasting systemic effects. These features of organizers can be used for diagnostic and therapeutic purposes such as regenerative medicine. There is increasing evidence that acupuncture points are likely to have originated from organizers in embryogenesis. Many corollaries and predictions of the growth control model have been independently confirmed in developmental biology, physiology, as well as basic and clinical acupuncture research. This model set the first example of a truly integrative biological basis of acupuncture and conventional biomedical sciences which has met the gold standard of science with multiple confirmed predictions in both fields. The growth control system is embedded in various physiological systems and is part of the foundation of physiology and pathophysiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A longitudinal study of growth, sex steroids and IGF-1 in boys with physiological gynaecomastia

    DEFF Research Database (Denmark)

    Mieritz, Mikkel G.; Raket, Lars Lau; Hagen, Casper P.

    2015-01-01

    Context: Physiological gynaecomastia is common and affects a large proportion of otherwise healthy adolescent boys. It is thought to be caused by an imbalance between estrogen and testosterone, though this is rarely evident in analyses of serum. Objective: This study aimed to describe the frequency...... of physiological gynaecomastia, and to determine possible etiological factors (e.g. auxology and serum hormone levels) in a longitudinal set-up. Design, Settings and Participants: A prospective cohort study of 106 healthy Danish boys (5.8–16.4 years) participated in the longitudinal part of “the COPENHAGEN Puberty......, pubertal development and the presence of gynaecomastia were evaluated at each visit. Results: 52 of 106 boys (49 developed gynaecomastia of which 10 (19 presented with intermittent gynaecomastia. Boys with physiological gynaecomastia reached peak height velocity at a significantly younger age than boys who...

  9. Effect of Housing System, Slaughter Age and Sex on Slaughter and Carcass Parameters of Broiler Ducks

    Directory of Open Access Journals (Sweden)

    Cyril Hrnčár

    2014-11-01

    Full Text Available The aim of this study was to determine the effects of housing system slaughterage and sex on performance and carcass parameters of broiler ducks. Theexperiment was carried out in half-operation conditions experimental base ofDepartment of Poultry Science and Small Animal Husbandry of Slovak Universityof Agriculture in Nitra. A total of 60 one day old ducklings (type Peking DuckWhite were randomly divided to 2 housing groups: three-floor cage system anddeep litter system, both under uniform microclimate conditions. The housingsystem, slaughter age and sex significantly affected the slaughter weights ofbroiler ducks in 49 and 56 day of fattening. The results of this study showed the influenceof housing system, sex and slaughter age on slaughter and carcass parameters.The slaughter and carcass parameters were statistically higher (P0.05. The some slaughterand carcass parameters of male ducks were statistically higher (P<0.05 comparedwith female ducks.

  10. Examining the intersection of sex and stress in modelling neuropsychiatric disorders.

    Science.gov (United States)

    Goel, N; Bale, T L

    2009-03-01

    Sex-biased neuropsychiatric disorders, including major depressive disorder and schizophrenia, are the major cause of disability in the developed world. Elevated stress sensitivity has been proposed as a key underlying factor in disease onset. Sex differences in stress sensitivity are associated with corticotrophin-releasing factor (CRF) and serotonin neurotransmission, which are important central regulators of mood and coping responses. To elucidate the underlying neurobiology of stress-related disease predisposition, it is critical to develop appropriate animal models of stress pathway dysregulation. Furthermore, the inclusion of sex difference comparisons in stress responsive behaviours, physiology and central stress pathway maturation in these models is essential. Recent studies by our laboratory and others have begun to investigate the intersection of stress and sex where the development of mouse models of stress pathway dysregulation via prenatal stress experience or early-life manipulations has provided insight into points of developmental vulnerability. In addition, examination of the maturation of these pathways, including the functional importance of the organisational and activational effects of gonadal hormones on stress responsivity, is essential for determination of when sex differences in stress sensitivity may begin. In such studies, we have detected distinct sex differences in stress coping strategies where activational effects of testosterone produced females that displayed male-like strategies in tests of passive coping, but were similar to females in tests of active coping. In a second model of elevated stress sensitivity, male mice experiencing prenatal stress early in gestation showed feminised physiological and behavioural stress responses, and were highly sensitive to a low dose of selective serotonin reuptake inhibitors. Analyses of expression and epigenetic patterns revealed changes in CRF and glucocorticoid receptor genes in these mice

  11. Examining the intersection of sex and stress in modeling neuropsychiatric disorders

    Science.gov (United States)

    Goel, Nirupa; Bale, Tracy L.

    2009-01-01

    Sex-biased neuropsychiatric disorders, including major depressive disorder and schizophrenia, are the major cause of disability in the developed world. Elevated stress sensitivity has been proposed as a key underlying factor in disease onset. Sex differences in stress sensitivity are associated with CRF and serotonin neurotransmission, important central regulators of mood and coping responses. To elucidate the underlying neurobiology of stress-related disease predisposition, it is critical to develop appropriate animal models of stress pathway dysregulation. Further, the inclusion of sex difference comparisons in stress responsive behaviors, physiology, and central stress pathway maturation in these models is essential. Recent studies by our lab and others have begun to investigate the intersection of stress and sex where the development of mouse models of stress pathway dysregulation via prenatal stress experience or early life manipulations has provided insight into points of developmental vulnerability. In addition, examination of the maturation of these pathways including the functional importance of the organizational and activational effects of gonadal hormones on stress responsivity is essential for determination of when sex differences in stress sensitivity may begin. In such studies, we have detected distinct sex differences in stress coping strategies where activational effects of testosterone produced females that displayed male-like strategies in tests of passive coping, but were similar to females in tests of active coping. In a second model of elevated stress sensitivity, male mice experiencing prenatal stress early in gestation showed feminized physiological and behavioral stress responses, and were highly sensitive to a low dose of SSRI. Analyses of expression and epigenetic patterns revealed changes in CRF and glucocorticoid receptor genes in these mice. Mechanistically, stress early in pregnancy produced a significant sex-dependent effect on

  12. Sex and Gender Differences in Central Nervous System-Related Disorders

    Directory of Open Access Journals (Sweden)

    Emanuela Zagni

    2016-01-01

    Full Text Available There are important sex differences in the brain that seem to arise from biology as well as psychosocial influences. Sex differences in several aspects of human behavior and cognition have been reported. Gonadal sex steroids or genes found on sex chromosomes influence sex differences in neuroanatomy, neurochemistry and neuronal structure, and connectivity. There has been some resistance to accept that sex differences in the human brain exist and have biological relevance; however, a few years ago, it has been recommended by the USA National Institute of Mental Health to incorporate sex as a variable in experimental and clinical neurological and psychiatric studies. We here review the clinical literature on sex differences in pain and neurological and psychiatric diseases, with the aim to further stimulate interest in sexual dimorphisms in the brain and brain diseases, possibly encouraging more research in the field of the implications of sex differences for treating these conditions.

  13. Do male and female cowbirds see their world differently? Implications for sex differences in the sensory system of an avian brood parasite.

    Directory of Open Access Journals (Sweden)

    Esteban Fernández-Juricic

    Full Text Available BACKGROUND: Male and female avian brood parasites are subject to different selection pressures: males compete for mates but do not provide parental care or territories and only females locate hosts to lay eggs. This sex difference may affect brain architecture in some avian brood parasites, but relatively little is known about their sensory systems and behaviors used to obtain sensory information. Our goal was to study the visual resolution and visual information gathering behavior (i.e., scanning of brown-headed cowbirds. METHODOLOGY/PRINCIPAL FINDINGS: We measured the density of single cone photoreceptors, associated with chromatic vision, and double cone photoreceptors, associated with motion detection and achromatic vision. We also measured head movement rates, as indicators of visual information gathering behavior, when exposed to an object. We found that females had significantly lower density of single and double cones than males around the fovea and in the periphery of the retina. Additionally, females had significantly higher head-movement rates than males. CONCLUSIONS: Overall, we suggest that female cowbirds have lower chromatic and achromatic visual resolution than males (without sex differences in visual contrast perception. Females might compensate for the lower visual resolution by gazing alternatively with both foveae in quicker succession than males, increasing their head movement rates. However, other physiological factors may have influenced the behavioral differences observed. Our results bring up relevant questions about the sensory basis of sex differences in behavior. One possibility is that female and male cowbirds differentially allocate costly sensory resources, as a recent study found that females actually have greater auditory resolution than males.

  14. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    Directory of Open Access Journals (Sweden)

    Tessa K Solomon-Lane

    2013-11-01

    Full Text Available Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis. Through actions of both corticotropin-releasing factor and glucocorticoids (GCs, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli, a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  15. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change.

    Science.gov (United States)

    Solomon-Lane, Tessa K; Crespi, Erica J; Grober, Matthew S

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  16. A system to analyze the complex physiological states of coal solubilizing fungi

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Moenkemann, H.; Hoefer, M. [Universitaet Bonn, Bonn (Germany). Botanisches Institut

    1997-11-01

    The mechanism by which some microorganisms solubilize brown coal is still unknown. The paper discusses the deuteromycetes Fusarium oxysporum and Trichoderma atroviride as a suitable test system to analyse the complex fungal physiology relating to coal solubilization. The two fungi can occur in two different growth substrate-controlled physiological states: a coal-solubilizing one, when cells are grown on glutamate or gluconate as substrate and a non-solubilizing one, when grown on carbohydrates. When grown on carbohydrates, F.oxysporum produces the pigment bikaverein. Purified bikaverein inhibits also coal solubilization by T. atroviride. The ability to solubilize coal is constitutive in F. oxysporum, while in T. atroviride, it has to be induced. 10 refs., 3 figs., 3 tabs.

  17. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas.

    Science.gov (United States)

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-03-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates.

  18. Transitions between sex-determining systems in reptiles and amphibians.

    Science.gov (United States)

    Sarre, Stephen D; Ezaz, Tariq; Georges, Arthur

    2011-01-01

    Important technological advances in genomics are driving a new understanding of the evolution of sex determination in vertebrates. In particular, comparative chromosome mapping in reptiles has shown an intriguing distribution of homology in sex chromosomes across reptile groups. When this new understanding is combined with the widespread distribution of genetic and temperature-dependent sex-determination mechanisms among reptiles, it is apparent that transitions between modes have occurred many times, as they have for amphibians (particularly between male and female heterogamety). It is also likely that thermosensitivity in sex determination is a key factor in those transitions in reptiles, and possibly in amphibians too. New models of sex determination involving temperature thresholds are providing the framework for the investigation of transitions and making possible key predictions about the homologies and sex-determination patterns expected among taxa in these groups. Molecular cytogenetics and other genomic approaches are essential to providing the fundamental material necessary to make advances in this field.

  19. Darwinian sex roles confirmed across the animal kingdom.

    Science.gov (United States)

    Janicke, Tim; Häderer, Ines K; Lajeunesse, Marc J; Anthes, Nils

    2016-02-01

    Since Darwin's conception of sexual selection theory, scientists have struggled to identify the evolutionary forces underlying the pervasive differences between male and female behavior, morphology, and physiology. The Darwin-Bateman paradigm predicts that anisogamy imposes stronger sexual selection on males, which, in turn, drives the evolution of conventional sex roles in terms of female-biased parental care and male-biased sexual dimorphism. Although this paradigm forms the cornerstone of modern sexual selection theory, it still remains untested across the animal tree of life. This lack of evidence has promoted the rise of alternative hypotheses arguing that sex differences are entirely driven by environmental factors or chance. We demonstrate that, across the animal kingdom, sexual selection, as captured by standard Bateman metrics, is indeed stronger in males than in females and that it is evolutionarily tied to sex biases in parental care and sexual dimorphism. Our findings provide the first comprehensive evidence that Darwin's concept of conventional sex roles is accurate and refute recent criticism of sexual selection theory.

  20. Sexual patterns and protogynous sex reversal in the rusty parrotfish, Scarus ferrugineus (Scaridae): histological and physiological studies.

    Science.gov (United States)

    Abdel-Aziz, El-Sayedah H; Bawazeer, Fayzah A; El-Sayed Ali, Tamer; Al-Otaibi, Mashael

    2012-08-01

    Gonadal histology confirmed that Scarus ferrugineus is a diandric protogynous fish. The process of protogynous sex reversal was investigated through histological observations on the gonads of females changing sex to male. This process was divided into three stages on the basis of changes in the structure of the germinal and somatic elements. Ovaries of functional females (stages IV-V) were filled with vitellogenic oocytes during the breeding season but contained no trace of spermatogenic tissue. During post-spawning period, the remaining vitellogenic oocytes began to degenerate and accompanied by a drop in plasma levels of estradiol-17β. At the commencement of sex change, previtellogenic oocytes began to degenerate and stromal cell aggregation was observed in the central region of the lamellae. At mid-reversal stage, steroid-producing cells (Leydig cells) developed at the border of the stromal aggregate and spermatogonial cysts appear at the periphery of lamellae. Finally, sex change to secondary males was considered complete, with the beginning of active spermatogenesis and spermiation. Plasma levels of testosterone remained low throughout the sex change, but II-KT increased rapidly parallel to the increased number of Leydig cells while the level of estradiol-17β decreased. The results indicate also that the sex-changed males had higher level of II-KT than primary males, while primary males had higher level of testosterone. Histological examination revealed that testes of primary and secondary males are almost identical in organization of the spermatogenic cysts, association of sertoli cells, and developing germ cells but differ in clustering and development of Leydig cells.

  1. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain.

    Science.gov (United States)

    Khalifa, Abdel Rahman M; Abdel-Rahman, Engy A; Mahmoud, Ali M; Ali, Mohamed H; Noureldin, Maha; Saber, Saber H; Mohsen, Mahmoud; Ali, Sameh S

    2017-03-01

    Sex-specific differences in mitochondrial function and free radical homeostasis are reported in the context of aging but not well-established in pathogeneses occurring early in life. Here, we examine if sex disparity in mitochondria function, morphology, and redox status starts early and hence can be implicated in sexual dimorphism in cardiac as well as neurological disorders prevalent at young age. Although mitochondrial activity in the heart did not significantly vary between sexes, female brain exhibited enhanced respiration and higher reserve capacity. This was associated with lower H 2 O 2 production in female cardiac and brain tissues. Using transmission electron microscopy, we found that the number of female cardiac mitochondria is moderately greater (117 ± 3%, P  = 0.049, N  = 4) than male's, which increased significantly for cortical mitochondria (134 ± 4%, P  = 0.001, N  = 4). However, male's cardiac mitochondria exhibited fragmented, circular, and smaller mitochondria relative to female's mitochondria, while no morphologic sex-dependent differences were observed in cortical mitochondria. No sex differences were detected in Nox2 and Nox4 proteins or O 2 -consuming/H 2 O 2 -producing activities in brain homogenate or synaptosomes. However, a strong trend of increased EPR-detected NOX superoxide in male synaptosomes hinted at higher superoxide dismutase activity in female brains, which was confirmed by two independent protocols. We also provide direct evidence that respiring mitochondria generally produce an order-of-magnitude lower reactive oxygen species (ROS) proportions than currently estimated. Our results indicate that sex differences in mitochondrial biogenesis, bioenergetics, and morphology may start at young age and that sex-dependent SOD capacity may be responsible for differences in ROS homeostasis in heart and brain. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological

  2. Use of radioimmunoassay procedures for the determination of sex hormones in animal tissues

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1983-01-01

    Radioimmunoassay methods for the determination of sex steroids and other compounds with sex hormone-like activities in various edible animal tissues and endocrine glands have been developed. Reliability of these methods, allowing quantification in a range of 10 -11 M, has been adequately demonstrated. When applied to monitoring residues of anabolic sex hormones in edible tissues of veal calves, physiological baseline levels of some endogenous ''anabolic'' steroids (like testosterone, oestrogens) were established; in the case of xenobiotics residues at the scheduled time of slaughter could be quantified (trenbolone) and a regulatory method to implement the ban of diethylstilbestrol was introduced. (author)

  3. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  4. Transgender women and the sex work industry: roots in systemic, institutional, and interpersonal discrimination.

    Science.gov (United States)

    Nadal, Kevin L; Davidoff, Kristin C; Fujii-Doe, Whitney

    2014-01-01

    Because transgender people face discrimination on systemic, institutional, and interpersonal levels, the previous literature has supported that many transgender women view the sex work industry as their only viable career option. The current article reviews the literature on discrimination against transgender people, explores how discrimination influences their participation in sex work, and discusses how institutional discrimination against transgender women manifests within the criminal justice system. Furthermore, recommendations are provided for advocating for the rights of transgender people while promoting healthy behaviors and higher quality of life. Throughout the article, quotes from previous qualitative research are used to illustrate the experiences of transgender women through their own voices and perspectives.

  5. Phun Week: Understanding Physiology

    Science.gov (United States)

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…

  6. When Gender Identity Doesn't Equal Sex Recorded at Birth: The Role of the Laboratory in Providing Effective Healthcare to the Transgender Community.

    Science.gov (United States)

    Goldstein, Zil; Corneil, Trevor A; Greene, Dina N

    2017-08-01

    Transgender is an umbrella term used to describe individuals who identify with a gender incongruent to or variant from their sex recorded at birth. Affirming gender identity through a variety of social, medical, and surgical interventions is critical to the mental health of transgender individuals. In recent years, awareness surrounding transgender identities has increased, which has highlighted the health disparities that parallel this demographic. These disparities are reflected in the experience of transgender patients and their providers when seeking clinical laboratory services. Little is known about the effect of gender-affirming hormone therapy and surgery on optimal laboratory test interpretation. Efforts to diminish health disparities encountered by transgender individuals and their providers can be accomplished by increasing social and clinical awareness regarding sex/gender incongruence and gaining insight into the physiological manifestations and laboratory interpretations of gender-affirming strategies. This review summarizes knowledge required to understand transgender healthcare including current clinical interventions for gender dysphoria. Particular attention is paid to the subsequent impact of these interventions on laboratory test utilization and interpretation. Common nomenclature and system barriers are also discussed. Understanding gender incongruence, the clinical changes associated with gender transition, and systemic barriers that maintain a gender/sex binary are key to providing adequate healthcare to transgender community. Transgender appropriate reference interval studies are virtually absent within the medical literature and should be explored. The laboratory has an important role in improving the physiological understanding, electronic medical system recognition, and overall social awareness of the transgender community. © 2017 American Association for Clinical Chemistry.

  7. Climate-driven population divergence in sex-determining systems

    NARCIS (Netherlands)

    Pen, Ido; Uller, Tobias; Feldmeyer, Barbara; Harts, Anna; While, Geoffrey M.; Wapstra, Erik

    2010-01-01

    Sex determination is a fundamental biological process, yet its mechanisms are remarkably diverse(1,2). In vertebrates, sex can be determined by inherited genetic factors or by the temperature experienced during embryonic development(2,3). However, the evolutionary causes of this diversity remain

  8. Sex and life expectancy.

    Science.gov (United States)

    Seifarth, Joshua E; McGowan, Cheri L; Milne, Kevin J

    2012-12-01

    A sexual dimorphism in human life expectancy has existed in almost every country for as long as records have been kept. Although human life expectancy has increased each year, females still live longer, on average, than males. Undoubtedly, the reasons for the sex gap in life expectancy are multifaceted, and it has been discussed from both sociological and biological perspectives. However, even if biological factors make up only a small percentage of the determinants of the sex difference in this phenomenon, parity in average life expectancy should not be anticipated. The aim of this review is to highlight biological mechanisms that may underlie the sexual dimorphism in life expectancy. Using PubMed, ISI Web of Knowledge, and Google Scholar, as well as cited and citing reference histories of articles through August 2012, English-language articles were identified, read, and synthesized into categories that could account for biological sex differences in human life expectancy. The examination of biological mechanisms accounting for the female-based advantage in human life expectancy has been an active area of inquiry; however, it is still difficult to prove the relative importance of any 1 factor. Nonetheless, biological differences between the sexes do exist and include differences in genetic and physiological factors such as progressive skewing of X chromosome inactivation, telomere attrition, mitochondrial inheritance, hormonal and cellular responses to stress, immune function, and metabolic substrate handling among others. These factors may account for at least a part of the female advantage in human life expectancy. Despite noted gaps in sex equality, higher body fat percentages and lower physical activity levels globally at all ages, a sex-based gap in life expectancy exists in nearly every country for which data exist. There are several biological mechanisms that may contribute to explaining why females live longer than men on average, but the complexity of the

  9. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenghai; Wu, Hongmin; Wu, Ying; Shi, Hongyan; Feng, Xun; Jiang, Shang; Chen, Jian; Song, Wenbo, E-mail: wbsong@jlu.edu.cn

    2014-08-01

    Hemi-ordered nanoporous carbon (HONC) was obtained from a mesoporous silica template through a nano-replication method using furfuryl alcohol as the carbon source. The structure and morphology of HONC were characterized and analyzed in detail by X-ray diffraction, N{sub 2}-sorption, Raman spectroscopy and transmission electron microscopy. HONC was then demonstrated as active electrode material for selective determination of nitrite in either physiological or environmental system. Well separated oxidation peaks of ascorbic acid, dopamine, uric acid and nitrite were observed in physiological system, and simultaneous discrimination of catechol, hydroquinone, resorcinol and nitrite in environmental system was also accomplished. Distinctly improved performances for selective determination of nitrite (such as significantly fast and sensitive current response with especially high selectivity) coexisted with ascorbic acid, dopamine and uric acid in the physiological system, as well as with catechol, hydroquinone and resorcinol in the environmental system were achieved at HONC electrode material. The excellent discriminating ability and high selectivity for NO{sub 2}{sup −} determination were ascribed to the good electronic conductivity, unique hemi-ordered porous structure, large surface area and large number of edge plane defect sites contained on the surface of nanopore walls of HONC. Results in this work demonstrated that HONC is one of the promising catalytic electrode materials for nitrite sensor fabrication. - Highlights: • Hemi-ordered nanoporous carbon as an active electrode material • Good discriminating ability towards NO{sub 2}{sup −} from physiological or environmental system • Highly selective determination of nitrite with fast and sensitive current response.

  10. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

    Science.gov (United States)

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel AB

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  11. Physiology of man and animals in the Tenth Five-Year Plan: Proceedings of the Thirteenth Congress of the I. P. Pavlov All-Union Physiological Society

    Science.gov (United States)

    Lange, K. A.

    1980-01-01

    Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.

  12. Development and application of genetic sexing systems for the Mediterranean fruit fly based on a temperature sensitive lethal mutation

    International Nuclear Information System (INIS)

    Franz, G.; Willhoeft, U.; Kerremans, P.; Hendrichs, J.; Rendon, P.

    1997-01-01

    The present status in genetic sexing for the Mediterranean fruit fly is discussed. This includes the selection of the appropriate sexing gene (which determines the feasibility and practical applicability of the sexing system) as well as the selection of the appropriate Y-autosome translocation (which determines the stability of the sexing system). A temperature sensitive lethal mutation is used to eliminate females during the egg stage. This mutation in combination with new Y-autosome translocations allowed the construction of a genetic sexing strain, named VIENNA-42, that is stable enough for large scale mass rearing. Also described are the analysis of this strain under field cage and field conditions and, in preparation for large scale tests in Guatemala, the outcrossing of VIENNA-42 with genetic material from the target area. (author)

  13. Sex effect on polychlorinated biphenyl concentrations in fish: a synthesis

    Science.gov (United States)

    Madenjian, C.P.

    2011-01-01

    Polychlorinated biphenyls (PCBs) accumulate in fish primarily via food intake, and therefore, PCBs serve as a chemical tracer for food consumption. Sex differences in PCB concentrations of fish have been attributed to the following three mechanisms: (i) females losing a substantial portion of their PCB body burden during spawning and consequently their PCB concentration is considerably reduced immediately after spawning; (ii) sex differences in habitat utilization leading to sex differences in the PCB concentrations of the prey; and (iii) sex differences in gross growth efficiency, which is defined as growth divided by the amount of food consumption needed to achieve that growth. Based on my analyses and synthesis, mechanisms (i) and (ii) operate in relatively few fish populations, but can lead to mature males having PCB concentrations two to three times higher than mature female PCB concentrations. In contrast, mechanism (iii) operates in all fish populations, but typically, mechanism (iii) results in relatively modest sex differences, with mature males only between 15 and 35% higher in PCB concentration than mature females. In summary, the study of sex differences in PCB concentrations of fish has led to insights into fish behaviour and fish physiology.

  14. [Physiology in Relation to Anesthesia Practice: Preface and Comments].

    Science.gov (United States)

    Yamada, Yoshitsugu

    2016-05-01

    It has been long recognized that anesthesia practice is profoundly based in physiology. With the advance of the technology of imaging, measurement and information, a serious gap has emerged between anesthesia mainly handling gross systemic parameters and molecular physiology. One of the main reasons is the lack of establishment of integration approach. This special series of reviews deals with systems physiology covering respiratory, cardiovascular, and nervous systems. It also includes metabolism, and fluid, acid-base, and electrolyte balance. Each review focuses on several physiological concepts in each area, explaining current understanding and limits of the concepts based on the new findings. They reaffirm the importance of applying physiological inference in anesthesia practice and underscore the needs of advancement of systems physiology.

  15. Mathematical modeling and validation in physiology applications to the cardiovascular and respiratory systems

    CERN Document Server

    Bachar, Mostafa; Kappel, Franz

    2013-01-01

    This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally.  Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling  examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.

  16. Sex Ratio Bias Leads to the Evolution of Sex Role Reversal in Honey Locust Beetles.

    Science.gov (United States)

    Fritzsche, Karoline; Booksmythe, Isobel; Arnqvist, Göran

    2016-09-26

    The reversal of conventional sex roles was enigmatic to Darwin, who suggested that it may evolve when sex ratios are female biased [1]. Here we present direct evidence confirming Darwin's hypothesis. We investigated mating system evolution in a sex-role-reversed beetle (Megabruchidius dorsalis) using experimental evolution under manipulated sex ratios and food regimes. In female-biased populations, where reproductive competition among females was intensified, females evolved to be more attractive and the sex roles became more reversed. Interestingly, female-specific mating behavior evolved more rapidly than male-specific mating behavior. We show that sexual selection due to reproductive competition can be strong in females and can target much the same traits as in males of species with conventional mating systems. Our study highlights two central points: the role of ecology in directing sexual selection and the role that females play in mating system evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Chronic effects of cesium-137 ingestion on physiological systems in rat

    International Nuclear Information System (INIS)

    Voisin, Philippe; Grignard, Elise; Souidi, Maamar; Gueguen, Yann; Lestaevel, Philippe; Grandcolas, Line; Grison, Stephane; Dublineau, Isabelle; Gourmelon, Patrick

    2008-01-01

    Full text: The post-Chernobyl contamination by cesium-137 is of particular concern for public health. Several diseases have been reported in populations living in contaminated territories, such as behavior disorders, anxiety symptoms, cardiovascular diseases, perturbations of endocrine and reproductive status, immunity disturbances. The objective of this study was to determine in a rat model the effects of 137 Cs contamination by ingestion of post-accidental dose (6500 Bq/L) on several physiological systems, central nervous system, cardiovascular system, steroidogenesis, intestinal functions, and metabolism of cholesterol and of vitamin D. The animals were chronically and sub chronically contaminated via drinking water (∼150Bq per day). These experiments demonstrated that chronic ingestion of 137 Cs induced modifications of these physiological systems. A decrease in blood pressure was observed in contaminated animals. At the same time, changes in cardiac function were evidenced via increased plasma levels of CK and CK-MB and variations in gene expression of proteins involved in vascular tonus and of K + channels in cardiac left ventricle. Vitamin D metabolism was also modified by 137 Cs with a diminution of plasma level of Vitamin D (1,25(OH)D3), and changes in mRNA levels of cytochrome P450 CYP27B1 and CYP2R1 in brain and liver. Concerning cholesterol metabolism, no changes in plasma lipid levels were noted, although increased gene expression of liver X receptor α (LXRα), low-density lipoprotein receptor (LDLr) and apolipoprotein B (ApoB). In addition, steroidogenesis seemed to be modified, since decreased plasma level of 17β-estradiol and increased corticosterone plasma level were observed following chronic 137 Cs ingestion. These changes were associated with modification of mRNA levels of nuclear receptors in testis and of cytochrome P450 CYP11a1 in adrenal. Evaluation of intestine function demonstrated few effects of 137 Cs after chronic ingestion, except

  18. A multiparameter wearable physiologic monitoring system for space and terrestrial applications

    Science.gov (United States)

    Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.; hide

    2005-01-01

    A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.

  19. Physiological effects of weightlessness: countermeasure system development for a long-term Chinese manned spaceflight.

    Science.gov (United States)

    Wang, Linjie; Li, Zhili; Tan, Cheng; Liu, Shujuan; Zhang, Jianfeng; He, Siyang; Zou, Peng; Liu, Weibo; Li, Yinghui

    2018-04-25

    The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.

  20. Volumetric parcellation methodology of the human hypothalamus in neuroimaging: normative data and sex differences

    NARCIS (Netherlands)

    Makris, Nikos; Swaab, Dick F.; van der Kouwe, Andre; Abbs, Brandon; Boriel, Denise; Handa, Robert J.; Tobet, Stuart; Goldstein, Jill M.

    2013-01-01

    There is increasing evidence regarding the importance of the hypothalamus for understanding sex differences in relation to neurological, psychiatric, endocrine and sleep disorders. Although different in histology, physiology, connections and function, multiple hypothalamic nuclei subserve

  1. Physiological pseudomyopia.

    Science.gov (United States)

    Jones, R

    1990-08-01

    Objective refraction through plus fogging lenses and base-in prisms revealed that normally accommodation is not completely relaxed when the stimulus to accommodation is zero. The myopic shift in the refractive error due to this focus error of accommodation was defined as physiological pseudomyopia. Two previously established features of accommodation are responsible for this behavior: (1) accommodation acts as a proportional control system for steady-state responses; and (2) the rest focus of accommodation is nonzero. It is proposed that the hyperopic shift in refraction observed in cycloplegia is the result of elimination of physiological pseudomyopia.

  2. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus.

    OpenAIRE

    Vogt, R G; Riddiford, L M; Prestwich, G D

    1985-01-01

    Behavioral and electrophysiological evidence has suggested that sex pheromone is rapidly inactivated within the sensory hairs soon after initiation of the action-potential spike. We report the isolation and characterization of a sex-pheromone-degrading enzyme from the sensory hairs of the silkmoth Antheraea polyphemus. In the presence of this enzyme at physiological concentration, the pheromone [(6E,11Z)-hexadecadienyl acetate] has an estimated half-life of 15 msec. Our findings suggest a mol...

  3. Use of radioimmunoassay procedures for the determination of sex hormones in animal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, B. (Institut fuer Veterinaermedizin des Bundesgesundheitsamtes (Robert von Ostertag-Institut), Berlin (Germany, F.R.))

    1983-07-01

    Radioimmunoassay methods for the determination of sex steroids and other compounds with sex hormone-like activities in various edible animal tissues and endocrine glands have been developed. Reliability of these methods, allowing quantification in a range of 10/sup -11/ M, has been adequately demonstrated. When applied to monitoring residues of anabolic sex hormones in edible tissues of veal calves, physiological baseline levels of some endogenous ''anabolic'' steroids (like testosterone, oestrogens) were established; in the case of xenobiotics residues at the scheduled time of slaughter could be quantified (trenbolone) and a regulatory method to implement the ban of diethylstilbestrol was introduced.

  4. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    Science.gov (United States)

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  5. Physiological responses induced by pleasant stimuli.

    Science.gov (United States)

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  6. Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition

    Science.gov (United States)

    Dumais, Kelly M.; Alonso, Andrea G.; Immormino, Marisa A.; Bredewold, Remco; Veenema, Alexa H.

    2015-01-01

    Sex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats. We recently showed that, compared to female rats, male rats have a three-fold higher OTR binding density in the pBNST, a sexually dimorphic area implicated in the regulation of social behaviors. We now demonstrate that OTR antagonist (5 ng/0.5 μl/side) administration into the pBNST impairs social recognition in both sexes, while OT (100 pg/0.5 μl/side) administration into the pBNST prolongs the duration of social recognition in males only. These effects seem specific to social recognition, as neither treatment altered total social investigation time in either sex. Moreover, baseline OT release in the pBNST, as measured with in vivo microdialysis, did not differ between the sexes. However, males showed higher OT release in the pBNST during social recognition compared to females. These findings suggest a sex-specific role of the OT system in the pBNST in the regulation of social recognition. PMID:26630388

  7. Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition.

    Science.gov (United States)

    Dumais, Kelly M; Alonso, Andrea G; Immormino, Marisa A; Bredewold, Remco; Veenema, Alexa H

    2016-02-01

    Sex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats. We recently showed that, compared to female rats, male rats have a three-fold higher OTR binding density in the pBNST, a sexually dimorphic area implicated in the regulation of social behaviors. We now demonstrate that OTR antagonist (5 ng/0.5 μl/side) administration into the pBNST impairs social recognition in both sexes, while OT (100 pg/0.5 μl/side) administration into the pBNST prolongs the duration of social recognition in males only. These effects seem specific to social recognition, as neither treatment altered total social investigation time in either sex. Moreover, baseline OT release in the pBNST, as measured with in vivo microdialysis, did not differ between the sexes. However, males showed higher OT release in the pBNST during social recognition compared to females. These findings suggest a sex-specific role of the OT system in the pBNST in the regulation of social recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Darwinian sex roles confirmed across the animal kingdom

    OpenAIRE

    Janicke Tim; Häderer Ines; Lajeunesse Marc J; Anthes Nils

    2016-01-01

    Since Darwin?s conception of sexual selection theory, scientists have struggled to identify the evolutionary forces underlying the pervasive differences between male and female behavior, morphology, and physiology. The Darwin-Bateman paradigm predicts that anisogamy imposes stronger sexual selection on males, which, in turn, drives the evolution of conventional sex roles in terms of female-biased parental care and male-biased sexual dimorphism. Although this paradigm forms the cornerstone of ...

  9. "Dangerous Presumptions": How Single-Sex Schooling Reifies False Notions of Sex, Gender, and Sexuality

    Science.gov (United States)

    Jackson, Janna

    2010-01-01

    Due to the recent changes in federal regulations about gender equity in education in the USA, some policy makers have resurrected single-sex public education. Because single-sex schooling ignores the complexity of sex, gender, and sexuality, it sets up a "separate but equal" system that is anything but. Discounting the ways in which gender is…

  10. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  11. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...... set of growth dependent genes by using a multi-factorial experimental design. Moreover, new insights into the metabolic response and transcriptional regulation of these genes have been provided by using systems biology tools (Chapter 3). One of the prerequisite of systems biology should...

  12. Sex reversal in vertebrates

    OpenAIRE

    2016-01-01

    This special topic issue of Sexual Development gives an overview of sex reversal in vertebrates, from fishes naturally changing their sex, to rodents escaping the mammalian SRY-determining system. It offers eight up-to-date reviews on specific subjects in sex reversal, considering fishes, amphibians, reptiles, birds, marsupials, and placental mammals, including humans. The broad scope of represented animals makes this ideal for students and researchers, especially those interested in the...

  13. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  14. Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination

    Science.gov (United States)

    Burridge, Christopher P; Ezaz, Tariq; Wapstra, Erik

    2018-01-01

    Abstract Sex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here, we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whereas in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater differentiation of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems can be facilitated by subtle genetic differences. PMID:29659810

  15. The conservative physiology of the immune system

    Directory of Open Access Journals (Sweden)

    N.M. Vaz

    2003-01-01

    Full Text Available Current immunological opinion disdains the necessity to define global interconnections between lymphocytes and regards natural autoantibodies and autoreactive T cells as intrinsically pathogenic. Immunological theories address the recognition of foreignness by independent clones of lymphocytes, not the relations among lymphocytes or between lymphocytes and the organism. However, although extremely variable in cellular/molecular composition, the immune system preserves as invariant a set of essential relations among its components and constantly enacts contacts with the organism of which it is a component. These invariant relations are reflected, for example, in the life-long stability of profiles of reactivity of immunoglobulins formed by normal organisms (natural antibodies. Oral contacts with dietary proteins and the intestinal microbiota also result in steady states that lack the progressive quality of secondary-type reactivity. Autoreactivity (natural autoantibody and autoreactive T cell formation is also stable and lacks the progressive quality of clonal expansion. Specific immune responses, currently regarded as the fundament of the operation of the immune system, may actually result from transient interruptions in this stable connectivity among lymphocytes. More permanent deficits in interconnectivity result in oligoclonal expansions of T lymphocytes, as seen in Omenn's syndrome and in the experimental transplantation of a suboptimal diversity of syngeneic T cells to immunodeficient hosts, which also have pathogenic consequences. Contrary to theories that forbid autoreactivity as potentially pathogenic, the physiology of the immune system is conservative and autoreactive. Pathology derives from failures of these conservative mechanisms.

  16. How important are sex differences in cannabinoid action?

    Science.gov (United States)

    Fattore, Liana; Fratta, Walter

    2010-06-01

    In humans as in animals, males and females are dissimilar in their genetic and hormonally driven behaviour; they process information differently, perceive experience and emotions in different ways, display diverse attitudes, language and social skills, and show sex-related differences in the brain anatomy and organization. Drug addiction is a widespread relapsing illness that affects both men and women. Sex-dependent differences have been frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. Beside sex differences observed in the cannabinoid-induced effects related to cannabis abuse and dependence, cannabinoids have been shown to exert sex-dependent effects also in other physiological and behavioural aspects, such as food intake and energy balance (more evident in males), or anxiety and depression (more evident in females). Research has just begun to identify factors which could provide a neurobiological basis for gender-based differences in cannabinoid effects, among which, gonadal hormones seem to play a crucial role. Yet, cannabinoid pharmacodynamic and pharmacokinetic may also be important, as sex differences in cannabinoid effects might be due, at least in part, to differences in muscle mass and fat tissue distribution between males and females. Here, we will review both clinical and laboratory-based research evidence revealing important sex-related differences in cannabinoid effects, and put forward some suggestions for future studies to fill the gap in our knowledge of gender-specific bias in cannabinoid pharmacology.

  17. Extension of the irradiation system at TIARA for production of radioisotopes to be used in plant physiology

    International Nuclear Information System (INIS)

    Ishioka, N.S.; Watanabe, S.; Fujimaki, S.; Sakamoto, K.; Matsuhashi, S.

    2005-01-01

    A target irradiation system for radioisotope production at the TIARA AVF cyclotron facility has been improved for extending physiological studies of plants. Experiments using a position imaging technique require a variety of positron-emitting radioisotopes and their labelled compounds. Therefore, a compact revolver equipped with six target cambers for gas and liquid targets were newly constructed, in addition to the original target irradiation system consisting of two solid target chambers and one gas target chamber, placed on the movable table. The control system was also reconstructed with a local area network for communication between the control station beside the irradiation port and the hot laboratory. Use of this system enables us to produce routinely positron-emitting tracers for plant physiology. (author)

  18. From Physiology to Prevention: Further remarks on a physiological imperative

    Directory of Open Access Journals (Sweden)

    B Jouanjean

    2012-05-01

    Full Text Available Physiology, is the fundamental and functional expression of life. It is the study of all the representative functions of Man in all his capacities, and in particular, his capacity to work. It is very possible to establish a link between a physiological and physiopathological state, the capacity of work and the economy, which can be understood as the articulation between the physiological capacities of Man and the production of work. If these functions are innately acquired by Man they are likewise maintained by regulatory functions throughout life. The stability of these regulatory mechanisms represent the state of good health. The management of this state, constitutes Primary Prevention where both chronic and acute physiopathology defines an alteration in these regulatory mechanisms. We deduce from this reasoning that a tripartite management adapted to the physiological situation is viable and that by choosing parameters specific to individual and collective behavior, it is possible to inject, and combine, at each level and to each demand in order to budget a healthcare system in a more balanced and equitable way. 

  19. Septin functions in organ system physiology and pathology.

    Science.gov (United States)

    Dolat, Lee; Hu, Qicong; Spiliotis, Elias T

    2014-02-01

    Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression.

  20. Mother's prior intrauterine position affects the sex ratio of her offspring in house mice.

    OpenAIRE

    Vandenbergh, J G; Huggett, C L

    1994-01-01

    Sex ratio alterations related to environmental factors occur in several mammals, but no mechanism has been identified to explain the adjustment. Intrauterine position (IUP) may provide the context in which such alterations occur. Previous studies on house mice and gerbils reveal that the position of a fetus in the uterus in relation to the sex of its neighbors influences its later anatomy, physiology, and behavior. The anogenital distance (AGD) of females located between two males (2M) is lon...

  1. Sex education in Portugal.

    Science.gov (United States)

    Frade, A; Vilar, D

    1991-05-01

    The article on sex education in Portugal covers background, the educational system, the clashes of the 1960's over sex education, the Committee for the Study of Sexuality and Education (CSSE), the policies, politics and social movements during the period 1974 - 1984, the discussions in Parliament, the 1988 Reform of the Educational System, the Family Planning Association (FPA) and sex education, and the future role of the FPA. It was not until the institution of the multiparity parliamentary system in 1974 that discussing social and political changes was possible, culminating in 1984 with new legislation on abortion, family planning, and sex education. School reform came in 1987/8 with the Ministry of Education primarily responsible for curricula. The 1960's brought with it the influence of the Catholic Church. Change came in the form of progressivism among Catholics who replaced dogma with dialogue and listening. Sex education was considered as preparation for marriage, but masturbation, contraception, and prostitution were also discussed. In addition, the founder of FPA chaired the CSSE in 1971 and opened up debate on sex issues and drafted a bill to establish co-education in Portuguese schools. The revolution of 1974 brought an end to censorship and brought forth a policy of developing family planning. Changed in the Family Code gave women greater equality. UNFPA supported teacher training in non-sexist education. With human reproduction included in the natural sciences, there was still no school sex education policy and contraception was only sometimes represented in the biology curriculum. The focus of FPA was on contraception and abortion. Finally in the 1980's, the first sex education programs were developed for out-of-school youth. Even though in the 1970's there were leftists groups promoting sex education, it took leftist parliamentary power to get legislation on sex education in the schools adopted. The Ministry of Education however was pressured by the

  2. [Human orgasm from the physiological perspective--part I].

    Science.gov (United States)

    Gałecki, Piotr; Depko, Andrzej; Jedrzejewska, Sylwia; Talarowska, Monika

    2012-07-01

    Physiological phenomenon of sexuality occurring in both sexes that brings physical and mental satisfaction, and often affects the quality of life is an orgasm. The ability to experience regular orgasms affects relationship with partner. The definition of orgasm is not an easy task. The way of experiencing it is subjective, and the possibility of observing significantly reduced. Contemporary works on the phenomenon of orgasm are concentrated on several aspects: biological perspective (neurophysiological and biochemical determinants of orgasm), psychological perspective and on the differences in its course in both sexes. In sexology are two models of sexual response: a linear model of sexual response (by W. Masters and V. Johnson, and H. S. Kaplan) and the circular model of sexual response (created by R. Basson). The ability to experiencing an orgasm is inherent in men. In women, that phenomenon is acquired, is the consequence of further experience.

  3. Morphology and physiology of the olfactory system of blood-feeding insects.

    Science.gov (United States)

    Guidobaldi, F; May-Concha, I J; Guerenstein, P G

    2014-01-01

    Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain

  4. Structure-Function Relations in Physiology Education: Where's the Mechanism?

    Science.gov (United States)

    Lira, Matthew E.; Gardner, Stephanie M.

    2017-01-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such…

  5. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    Science.gov (United States)

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  6. Vigor-S, a new system for evaluating the physiological potential of maize seeds

    Directory of Open Access Journals (Sweden)

    Danielle Otte Carrara Castan

    Full Text Available ABSTRACT: The refinement of vigor tests and the possibility of utilizing computer resources for the effective evaluation of the seed physiological potential have attracted considerable interest from research and seed technologists. The aim of this study was to evaluate the physiological potential of maize seeds using the newly-created Automated Analysis of Seed Vigor System (Vigor-S compared with other recommended seed vigor tests; two maize hybrids were used, each represented by seven seed lots. Germination and vigor (cold test, saturated salt accelerated aging, and field seedling emergence evaluations were conducted. For the evaluation of seed vigor with the use of seedling image analysis resources, two systems were compared: the Seed Vigor Imaging System (SVIS®, developed by Ohio State University, USA and the Vigor-S, resulting from collaboration between USP/ESALQ and EMBRAPA (Embrapa Instrumentation. Using these two systems, three day old seedlings were scanned and the images were analyzed. Similar results for the vigor index, uniformity of development, and seedling length were obtained. The computerized image analysis of seedlings using Vigor-S has advantages with respect to accuracy, speed, and the possibility of automatic application to a worksheet. It is a consistent alternative for the evaluation of maize seed vigor, and produces information compatible with that obtained by the accelerated aging test and SVIS®.

  7. Gender, single-sex schooling and maths achievement

    OpenAIRE

    O'Neill, Donal

    2013-01-01

    This paper uses a distinctive feature of the Irish education system to examine the impact of single-sex education on the gender difference in mathematical achievement at the top of the distribution. The Irish primary school system is interesting both for the fact that many children attend single-sex schools, and because these single-sex schools are part of the general educational system, rather than serving a particular socio-economic group. In keeping with research on other co...

  8. Sex differences in sensorimotor mu rhythms during selective attentional processing.

    Science.gov (United States)

    Popovich, C; Dockstader, C; Cheyne, D; Tannock, R

    2010-12-01

    We used magnetoencephalography to investigate the effect of directed attention on sensorimotor mu (8-12 Hz) response (mu reactivity) to non-painful electrical stimulation of the median nerve in healthy adults. Mu desynchronization in the 10-12 Hz bandwidth is typically observed during higher-order cognitive functions including selective attentional processing of sensorimotor information (Pfurtscheller, Neuper, & Krauz, 2000). We found attention-related sex differences in mu reactivity, with females showing (i) prolonged mu desynchrony when attending to somatosensory stimuli, (ii) attentional modulation of the mu response based on whether attention was directed towards or away from somatosensory stimuli, which was absent in males, and (iii) a trend for greater neuronal excitability of the primary somatosensory region suggesting greater physiological responsiveness to sensory stimulation overall. Our findings suggest sex differences in attentional control strategies when processing somatosensory stimuli, whose salience may be greater for females. These sex differences in attention to somatosensory stimuli may help elucidate the well-documented sex biases in pain processing wherein females typically report greater sensitivity to experimental and clinical pain. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Sex-Typing of Occupations in the Israeli Education System: Students versus Teachers.

    Science.gov (United States)

    Kulik, Liat

    1997-01-01

    Rating of the femininity/masculinity of 27 occupations was undertaken by four age groups in the Israeli education system: 14-year-olds (n=194); 17-year-olds (n=183); university students (n=89); and teachers (n=148). Results indicated that sex-related stereotypes of occupations continue to be maintained among youth and adults. (JOW)

  10. Fröhlich systems in cellular physiology

    Czech Academy of Sciences Publication Activity Database

    Šrobár, Fedor

    2012-01-01

    Roč. 113, č. 2 (2012), s. 95-104 ISSN 1214-6994 R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:67985882 Keywords : Biophysics * Cellular Physiology Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. The sensitivity of the child to sex steroids: possible impact of exogenous estrogens

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Juul, Anders; Leffers, Henrik

    2006-01-01

    The current trends of increasing incidences of testis, breast and prostate cancers are poorly understood, although it is assumed that sex hormones play a role. Disrupted sex hormone action is also believed to be involved in the increased occurrence of genital abnormalities among newborn boys...... and precocious puberty in girls. In this article, recent literature on sex steroid levels and their physiological roles during childhood is reviewed. It is concluded that (i) circulating levels of estradiol in prepubertal children are lower than originally claimed; (ii) children are extremely sensitive...... levels during fetal and prepubertal development may have severe effects in adult life and (v) the daily production rates of sex steroids in children estimated by the Food and Drug Administration in 1999 and still used in risk assessments are highly overestimated and should be revised. Because no lower...

  12. Detection of a novel, integrative aging process suggests complex physiological integration.

    Science.gov (United States)

    Cohen, Alan A; Milot, Emmanuel; Li, Qing; Bergeron, Patrick; Poirier, Roxane; Dusseault-Bélanger, Francis; Fülöp, Tamàs; Leroux, Maxime; Legault, Véronique; Metter, E Jeffrey; Fried, Linda P; Ferrucci, Luigi

    2015-01-01

    Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels of many biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women's Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging). The first axis was associated with anemia, inflammation, and low levels of calcium and albumin. The axis structure was precisely reproduced in all three populations and in all demographic sub-populations (by sex, race, etc.); we call the process represented by the axis "integrated albunemia." Integrated albunemia increases and accelerates with age in all populations, and predicts mortality and frailty--but not chronic disease--even after controlling for age. This suggests a role in the aging process, though causality is not yet clear. Integrated albunemia behaves more stably across populations than its component biomarkers, and thus appears to represent a higher-order physiological process emerging from the structure of underlying regulatory networks. If this is correct, detection of this process has substantial implications for physiological organization more generally.

  13. Detection of a novel, integrative aging process suggests complex physiological integration.

    Directory of Open Access Journals (Sweden)

    Alan A Cohen

    Full Text Available Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels of many biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women's Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging. The first axis was associated with anemia, inflammation, and low levels of calcium and albumin. The axis structure was precisely reproduced in all three populations and in all demographic sub-populations (by sex, race, etc.; we call the process represented by the axis "integrated albunemia." Integrated albunemia increases and accelerates with age in all populations, and predicts mortality and frailty--but not chronic disease--even after controlling for age. This suggests a role in the aging process, though causality is not yet clear. Integrated albunemia behaves more stably across populations than its component biomarkers, and thus appears to represent a higher-order physiological process emerging from the structure of underlying regulatory networks. If this is correct, detection of this process has substantial implications for physiological organization more generally.

  14. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2009-02-01

    Full Text Available Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae. Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus have a heteromorphic XY pair corresponding to linkage group (LG 19. In this study, we found that the ninespine stickleback (Pungitius pungitius has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X(1X(2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans and the fourspine stickleback (Apeltes quadracus. However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.

  15. Sex differences in partner preferences in humans and animals.

    Science.gov (United States)

    Balthazart, Jacques

    2016-02-19

    A large number of morphological, physiological and behavioural traits are differentially expressed by males and females in all vertebrates including humans. These sex differences, sometimes, reflect the different hormonal environment of the adults, but they often remain present after subjects of both sexes are placed in the same endocrine conditions following gonadectomy associated or not with hormonal replacement therapy. They are then the result of combined influences of organizational actions of sex steroids acting early during development, or genetic differences between the sexes, or epigenetic mechanisms differentially affecting males and females. Sexual partner preference is a sexually differentiated behavioural trait that is clearly controlled in animals by the same type of mechanisms. This is also probably true in humans, even if critical experiments that would be needed to obtain scientific proof of this assertion are often impossible for pragmatic or ethical reasons. Clinical, epidemiological and correlative studies provide, however, converging evidence strongly suggesting, if not demonstrating, that endocrine, genetic and epigenetic mechanisms acting during the pre- or perinatal life control human sexual orientation, i.e. homosexuality versus heterosexuality. Whether they interact with postnatal psychosexual influences remains, however, unclear at present. © 2016 The Author(s).

  16. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  17. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  18. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    Science.gov (United States)

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  19. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering.

    Science.gov (United States)

    Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph

    Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

  20. Sex as a biological variable: Drug use and abuse.

    Science.gov (United States)

    Riley, Anthony L; Hempel, Briana J; Clasen, Matthew M

    2018-04-01

    The study of sex as a biological variable is a necessary emphasis across a wide array of endpoints, including basic neuroscience, medicine, mental health, physiology and behavior. The present review summarizes work from clinical and preclinical populations on sex differences in drug use and abuse, ranging from initiation to escalation/dysregulation and from drug cessation/abstinence to relapse. These differences are analyzed in the context of the addiction cycle conceptualization of Koob and his colleagues and address patterns of drug use (binge/intoxication), motivation underlying its use (withdrawal/negative affect) and likelihood and causes of craving and relapse of drug taking (preoccupation/anticipation). Following this overview, an assessment of the basis for the reported sex differences is discussed in the context of the affective (rewarding and aversive) properties of drugs of abuse and how such properties and their balance vary with sex and contribute to drug intake. Finally, the interaction of sex with several experiential (drug history) and subject (age) factors and how these interactions affect reward and aversion are discussed to highlight the importance of understanding such interactions in predicting drug use and abuse. We note that sex as a biological variable remains one of critical evaluation and that such investigations of sex differences in drug use and abuse continue and be expanded to assess all facets of their mediation, including these affective properties, how their balance may be impacted by the multiple conditions under which drugs are taken and how this overall balance affects drug use and addiction vulnerability. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players.

    Science.gov (United States)

    Lin, Tung-Cheng

    2013-11-01

    Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.

  2. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Pengfei Cai

    2016-04-01

    Full Text Available Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions.

  3. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum.

    Science.gov (United States)

    Cai, Pengfei; Liu, Shuai; Piao, Xianyu; Hou, Nan; Gobert, Geoffrey N; McManus, Donald P; Chen, Qijun

    2016-04-01

    Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions.

  4. Factors That Contribute to Assay Variation in Quantitative Analysis of Sex Steroid Hormones Using Liquid and Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Xu, Xia; Veenstra, Timothy D.

    2012-01-01

    The list of physiological events in which sex steroids play a role continues to increase. To decipher the roles that sex steroids play in any condition requires high quality cohorts of samples and assays that provide highly accurate quantitative measures. Liquid and gas chromatography coupled with mass spectrometry (LC-MS and GC-MS) have…

  5. Sex Determination, Sex Ratios, and Genetic Conflict

    NARCIS (Netherlands)

    Werren, John H.; Beukeboom, Leo W.

    1998-01-01

    Genetic mechanisms of sex determination are unexpectedly diverse and change rapidly during evolution. We review the role of genetic conflict as the driving force behind this diversity and turnover. Genetic conflict occurs when different components of a genetic system are subject to selection in

  6. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    OpenAIRE

    Tessa K Solomon-Lane; Erica J Crespi; Erica J Crespi; Matthew Scott Grober; Matthew Scott Grober

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has ...

  7. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change

    OpenAIRE

    Solomon-Lane, Tessa K.; Crespi, Erica J.; Grober, Matthew S.

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has be...

  8. Endogenous opioid systems: physiological role in the self-limitation of seizures.

    Science.gov (United States)

    Tortella, F C; Long, J B; Holaday, J W

    1985-04-15

    Immediately following a seizure, the severity of subsequent seizures is significantly reduced. The involvement of endogenous opioid systems as a physiological regulator of this postseizure inhibition was studied in rats using repeated maximal electroshock (MES) seizures. Both the opiate antagonist (-)-naloxone and morphine tolerance abolished the progressive seizure protection associated with repeated MES. We propose that endogenous opioids, activated by a prior seizure, provide a central homeostatic inhibitory mechanism which may be responsible for the initiation of a postictal refractory state in the epileptic.

  9. "One country, two systems": Sociopolitical implications for female migrant sex workers in Hong Kong

    Directory of Open Access Journals (Sweden)

    Griffiths Sian

    2008-12-01

    Full Text Available Abstract Background Under the "two countries, one system" policy implemented by China to manage the return of Hong Kong's sovereignty, Hong Kong has maintained a comparatively prosperous economy within the Asian region. This has resulted in an environment which fosters migration from the mainland to Hong Kong, due largely to proximity, higher earning potential, common language, and a relaxing of border control measures. However not all mainland China citizens are equally able to access these new migration schemes and indeed a number of women such as sex workers are either migrating and/or working illegally and without occupational, legal and health protection within Hong Kong. Discussion Female migrant sex workers are exposed to a number of significant threats to their health, however their illegal status contributes to even greater vulnerability. The prevailing discourses which view these women as either "trafficked women" or as "illegal immigrants" do not adequately account for the complex situations which result in such women's employment in Hong Kong's sex industry. Rather, their position can best be understood within the broader frameworks provided by migration literature and the concept of "structural violence". This allows for a greater understanding of the socio-political issues which are systematically denying migrant sex workers adequate access to health care and other opportunities for social advancement. When these issues are taken into account, it becomes clear that the current relevant legislation regarding both immigration and sex work is perpetuating the marginalised and vulnerable status of migrant sex workers. Unless changes are made, structural barriers will remain in place which impede the ability of migrant sex workers to manage their own health needs and status. Conclusion Female migrant sex workers in Hong Kong are extremely vulnerable to a number of occupational health and safety hazards which have significantly

  10. Evolution of vertebrate sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  11. Physiology and biochemistry of honey bees

    Science.gov (United States)

    Despite their tremendous economic importance, honey bees are not a typical model system for studying general questions of insect physiology. This is primarily due to the fact that honey bees live in complex social settings which impact their physiological and biochemical characteristics. Not surpris...

  12. RESONANCES REQUIRED: DYNAMICAL ANALYSIS OF THE 24 Sex AND HD 200964 PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G., E-mail: rob@phys.unsw.edu.au [Department of Astrophysics, School of Physics, Faculty of Science, University of New South Wales, NSW 2052 (Australia)

    2012-12-20

    We perform several suites of highly detailed dynamical simulations to investigate the architectures of the 24 Sextantis and HD 200964 planetary systems. The best-fit orbital solution for the two planets in the 24 Sex system places them on orbits with periods that lie very close to 2:1 commensurability, while that for the HD 200964 system places the two planets therein in orbits whose periods lie close to a 4:3 commensurability. In both cases, the proposed best-fit orbits are mutually crossing-a scenario that is only dynamically feasible if the planets are protected from close encounters by the effects of mutual mean-motion resonance (MMR). Our simulations reveal that the best-fit orbits for both systems lie within narrow islands of dynamical stability, and are surrounded by much larger regions of extreme instability. As such, we show that the planets are only feasible if they are currently trapped in mutual MMR-the 2:1 resonance in the case of 24 Sex b and c, and the 4:3 resonance in the case of HD 200964 b and c. In both cases, the region of stability is strongest and most pronounced when the planetary orbits are mutually coplanar. As the inclination of planet c with respect to planet b is increased, the stability of both systems rapidly collapses.

  13. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes

    Science.gov (United States)

    Rovatsos, Michail; Pokorná, Martina Johnson; Altmanová, Marie; Kratochvíl, Lukáš

    2015-01-01

    Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647

  14. Homage to Bateman: sex roles predict sex differences in sexual selection.

    Science.gov (United States)

    Fritzsche, Karoline; Arnqvis, Göran

    2013-07-01

    Classic sex role theory predicts that sexual selection should be stronger in males in taxa showing conventional sex roles and stronger in females in role reversed mating systems. To test this very central prediction and to assess the utility of different measures of sexual selection, we estimated sexual selection in both sexes in four seed beetle species with divergent sex roles using a novel experimental design. We found that sexual selection was sizeable in females and the strength of sexual selection was similar in females and males in role-reversed species. Sexual selection was overall significantly stronger in males than in females and residual selection formed a substantial component of net selection in both sexes. Furthermore, sexual selection in females was stronger in role-reversed species compared to species with conventional sex roles. Variance-based measures of sexual selection (the Bateman gradient and selection opportunities) were better predictors of sexual dimorphism in reproductive behavior and morphology across species compared to trait-based measures (selection differentials). Our results highlight the importance of using assays that incorporate components of fitness manifested after mating. We suggest that the Bateman gradient is generally the most informative measure of the strength of sexual selection in comparisons across sexes and/or species. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  15. A Longitudinal Study of Growth, Sex Steroids, and IGF-1 in Boys With Physiological Gynecomastia.

    Science.gov (United States)

    Mieritz, Mikkel G; Rakêt, Lars L; Hagen, Casper P; Nielsen, John E; Talman, Maj-Lis M; Petersen, Jørgen H; Sommer, Stefan H; Main, Katharina M; Jørgensen, Niels; Juul, Anders

    2015-10-01

    Physiological gynecomastia is common and affects a large proportion of otherwise healthy adolescent boys. It is thought to be caused by an imbalance between estrogen and testosterone, although this is rarely evident in analyses of serum. This study aimed to describe the frequency of physiological gynecomastia and to determine possible etiological factors (eg, auxology and serum hormone levels) in a longitudinal setup. A prospective cohort study of 106 healthy Danish boys (5.8-16.4 years) participated in the longitudinal part of the COPENHAGEN Puberty Study. The boys were examined every 6 months during an 8-year follow-up. Median number of examinations was 10 (2-15). Blood samples were analyzed for FSH, LH, testosterone, estradiol, SHBG, inhibin B, anti-Müllerian hormone, IGF-1, and IGF binding protein-3 by immunoassays. Auxological parameters, pubertal development, and the presence of gynecomastia were evaluated at each visit. Fifty-two of 106 boys (49%) developed gynecomastia, of which 10 (19%) presented with intermittent gynecomastia. Boys with physiological gynecomastia reached peak height velocity at a significantly younger age than boys who did not develop gynecomastia (13.5 versus 13.9 years, P = .027), and they had significantly higher serum levels of IGF-1 (P = .000), estradiol (P = .013), free testosterone (P Gynecomastia is frequent in pubertal boys. Increased IGF-1 levels and pubertal growth appear to be associated, whereas changes in estrogen to testosterone ratio seem negligible.

  16. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair

    Science.gov (United States)

    Zárate, Sandra; Stevnsner, Tinna; Gredilla, Ricardo

    2017-01-01

    Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer’s disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain. PMID:29311911

  17. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair

    Directory of Open Access Journals (Sweden)

    Sandra Zárate

    2017-12-01

    Full Text Available Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer’s disease (AD. Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.

  18. A prospective observational study comparing a physiological scoring system with time-based discharge criteria in pediatric ambulatory surgical patients.

    Science.gov (United States)

    Armstrong, James; Forrest, Helen; Crawford, Mark W

    2015-10-01

    Discharge criteria based on physiological scoring systems can be used in the postanesthesia care unit (PACU) to fast-track patients after ambulatory surgery; however, studies comparing physiological scoring systems with traditional time-based discharge criteria are lacking. The purpose of this study was to compare PACU discharge readiness times using physiological vs time-based discharge criteria in pediatric ambulatory surgical patients. We recorded physiological observations from consecutive American Society of Anesthesiologists physical status I-III patients aged 1-18 yr who were admitted to the PACU after undergoing ambulatory surgery in a tertiary academic pediatric hospital. The physiological score was a combination of the Aldrete and Chung systems. Scores were recorded every 15 min starting upon arrival in the PACU. Patients were considered fit for discharge once they attained a score ≥12 (maximum score, 14), provided no score was zero, with the time to achieve a score ≥12 defining the criteria-based discharge (CBD) time. Patients were discharged from the PACU when both the CBD and the existing time-based discharge (TBD) criteria were met. The CBD and TBD data were compared using Kaplan-Meier and log-rank analysis. Observations from 506 children are presented. Median (interquartile range [IQR]) age was 5.5 [2.8-9.9] yr. Median [IQR] CBD and TBD PACU discharge readiness times were 30 [15-45] min and 60 [45-60] min, respectively. Analysis of Kaplan-Meier curves indicated a significant difference in discharge times using the different criteria (hazard ratio, 5.43; 95% confidence interval, 4.51 to 6.53; P < 0.001). All patients were discharged home without incident. This prospective study suggests that discharge decisions based on physiological criteria have the potential for significantly speeding the transit of children through the PACU, thereby enhancing PACU efficiency and resource utilization.

  19. Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration.

    Science.gov (United States)

    Sandbakk, Øyvind; Solli, Guro Strøm; Holmberg, Hans-Christer

    2018-01-01

    The current review summarizes scientific knowledge concerning sex differences in world-record performance and the influence of sport discipline and competition duration. In addition, the way that physiological factors relate to sex dimorphism is discussed. While cultural factors played a major role in the rapid improvement of performance of women relative to men up until the 1990s, sex differences between the world's best athletes in most events have remained relatively stable at approximately 8-12%. The exceptions are events in which upper-body power is a major contributor, where this difference is more than 12%, and ultraendurance swimming, where the gap is now less than 5%. The physiological advantages in men include a larger body size with more skeletal-muscle mass, a lower percentage of body fat, and greater maximal delivery of anaerobic and aerobic energy. The greater strength and anaerobic capacity in men normally disappear when normalized for fat-free body mass, whereas the higher hemoglobin concentrations lead to 5-10% greater maximal oxygen uptake in men with such normalization. The higher percentage of muscle mass in the upper body of men results in a particularly large sex difference in power production during upper-body exercise. While the exercise efficiency of men and women is usually similar, women have a better capacity to metabolize fat and demonstrate better hydrodynamics and more even pacing, which may be advantageous, in particular during long-lasting swimming competitions.

  20. The Impact of Sex Work Interruption on Blood-Derived T Cells in Sex Workers from Nairobi, Kenya.

    Science.gov (United States)

    Omollo, Kenneth; Boily-Larouche, Geneviève; Lajoie, Julie; Kimani, Makobu; Cheruiyot, Julianna; Kimani, Joshua; Oyugi, Julius; Fowke, Keith Raymond

    Unprotected sexual intercourse exposes the female genital tract (FGT) to semen-derived antigens, which leads to a proinflammatory response. Studies have shown that this postcoital inflammatory response can lead to recruitment of activated T cells to the FGT, thereby increasing risk of HIV infection. The purpose of this study was to evaluate the impact of sex work on activation and memory phenotypes of peripheral T cells among female sex workers (FSW) from Nairobi, Kenya. Thirty FSW were recruited from the Pumwani Sex Workers Cohort, 10 in each of the following groups: HIV-exposed seronegative (at least 7 years in active sex work), HIV positive, and New Negative (HIV negative, less than 3 years in active sex work). Blood was obtained at three different phases (active sex work, abstinence from sex work-sex break, and following resumption of sex work). Peripheral blood mononuclear cells were isolated and stained for phenotypic markers (CD3, CD4, CD8, and CD161), memory phenotype markers (CD45RA and CCR7), activation markers (CD69, HLA-DR, and CD95), and the HIV coreceptor (CCR5). T-cell populations were compared between groups. In HIV-positive women, CD8+CCR5+ T cells declined at the sex break period, while CD4+CD161+ T cells increased when returning to sex work. All groups showed no significant changes in systemic T-cell activation markers following the interruption of sex work, however, significant reductions in naive CD8+ T cells were noted. For each of the study points, HIV positives had higher effector memory and CD8+CD95+ T cells and lower naive CD8+ T cells than the HIV-uninfected groups. Interruption of sex work had subtle effects on systemic T-cell memory phenotypes.

  1. Numerical Oscillations Analysis for Nonlinear Delay Differential Equations in Physiological Control Systems

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-01-01

    Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.

  2. Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging.

    Science.gov (United States)

    McMullan, Rachel C; Kelly, Scott A; Hua, Kunjie; Buckley, Brian K; Faber, James E; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2016-11-01

    Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age-related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long-term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long-term patterns of exercise during aging and its physiological effects in a well-controlled environment. One-year-old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long-term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex-dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long-term exercise may serve as a preventive measure against age-related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long-term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype-by-environment interactions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. A generic organ based ontology system, applied to vertebrate heart anatomy, development and physiology

    Directory of Open Access Journals (Sweden)

    Bertens Laura M.F.

    2011-03-01

    Full Text Available We present a novel approach to modelling biological information using ontologies. The system interlinks three ontologies, comprising anatomical, developmental and taxonomical information, and includes instances of structures for different species. The framework is constructed for comparative analyses in the field of evolutionary development. We have applied the approach to the vertebrate heart and present four case studies of the functionality of the system, focusing on cross-species comparisons, developmental studies, physiological studies and 3D visualisation.

  4. Outcomes of three different models for sex education and citizenship programs concerning knowledge, attitudes, and behavior of Brazilian adolescents.

    Science.gov (United States)

    Díaz, Margarita; Mello, Maeve Brito de; Sousa, Maria Helena de; Cabral, Francisco; Castro e Silva, Ricardo de; Campos, Márcia; Faúndes, Anibal

    2005-01-01

    Three different school-based sex education and citizenship programs in public schools in Rio de Janeiro, Belo Horizonte, and Salvador, Brazil, were evaluated in a cross-sectional study comparing knowledge, attitudes, and practices in sexuality, citizenship, and gender issues among adolescents participating in the programs' activities as compared to adolescents enrolled in schools without such programs (controls). Results showed that Salvador's program achieved good results, with significant changes in knowledge on sexuality and reproductive physiology, attitudes regarding citizenship, and current use of modern contraceptives; Rio de Janeiro's program succeeded in improving students' knowledge of reproductive physiology and attitudes towards sexuality; Belo Horizonte's participants showed greater knowledge of reproductive physiology and STI/HIV prevention but had less positive attitudes towards gender issues, while reporting greater sexual activity. The main difference between Salvador's program and the others was the focus on creative and cultural activities; Belo Horizonte's main difference was its lack of interaction with health services and professionals. However, after the evaluation Belo Horizonte reframed its educational strategies and launched a scaling-up process in a joint effort with the health and school systems.

  5. Exercise Effects on Sleep Physiology

    Directory of Open Access Journals (Sweden)

    Sunao eUchida

    2012-04-01

    Full Text Available This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. Thus, research on the effects of exercise on sleep began, in the 1960’s, with a focus primarily on sleep EEG (CNS sleep changes. Those early studies found only small effects of exercise on sleep. More recent sleep research has explored not only CNS functioning, but somatic physiology as well. As physical exercise mostly affects somatic functions, endocrine and autonomic nervous system (ANS changes that occur during sleep should be affected by daytime exercise. Since endocrinological, metabolic and autonomic changes can be measured during sleep, it should be possible to assess exercise effects on somatic physiology in addition to CNS sleep quality, building from standard polysomnographic (PSG techniques. Incorporating measures of somatic physiology in the quantitative assessment of sleep could further our understanding of sleep's function as an auto-regulatory, global phenomenon.

  6. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  7. A multi-sensor monitoring system of human physiology and daily activities.

    Science.gov (United States)

    Doherty, Sean T; Oh, Paul

    2012-04-01

    To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.

  8. Quantitative sexing (Q-Sexing) and relative quantitative sexing (RQ ...

    African Journals Online (AJOL)

    samer

    Key words: Polymerase chain reaction (PCR), quantitative real time polymerase chain reaction (qPCR), quantitative sexing, Siberian tiger. INTRODUCTION. Animal molecular sexing .... 43:3-12. Ellegren H (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc.

  9. Sex differences in emotional perception: Meta analysis of divergent activation.

    Science.gov (United States)

    Filkowski, Megan M; Olsen, Rachel M; Duda, Bryant; Wanger, Timothy J; Sabatinelli, Dean

    2017-02-15

    Behavioral and physiological sex differences in emotional reactivity are well documented, yet comparatively few neural differences have been identified. Here we apply quantitative activation likelihood estimation (ALE) meta-analysis across functional brain imaging studies that each reported clusters of activity differentiating men and women as they participated in emotion-evoking tasks in the visual modality. This approach requires the experimental paradigm to be balanced across the sexes, and thus may provide greater clarity than previous efforts. Results across 56 emotion-eliciting studies (n=1907) reveal distinct activation in the medial prefrontal cortex, anterior cingulate cortex, frontal pole, and mediodorsal nucleus of the thalamus in men relative to women. Women show distinct activation in bilateral amygdala, hippocampus, and regions of the dorsal midbrain including the periaqueductal gray/superior colliculus and locus coeruleus. While some clusters are consistent with prevailing perspectives on the foundations of sex differences in emotional reactivity, thalamic and brainstem regions have not previously been highlighted as sexually divergent. These data strongly support the need to include sex as a factor in functional brain imaging studies of emotion, and to extend our investigative focus beyond the cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    Directory of Open Access Journals (Sweden)

    Adauto Lima Cardoso

    2015-06-01

    Full Text Available Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.

  11. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning.

    Science.gov (United States)

    Hamson, Dwayne K; Roes, Meighen M; Galea, Liisa A M

    2016-06-13

    Sex differences in neurological disease exist in incidence, severity, progression, and symptoms and may ultimately influence treatment. Cognitive disturbances are frequent in neuropsychiatric disease with men showing greater cognitive impairment in schizophrenia, but women showing more severe dementia and cognitive decline with Alzheimer's disease. Although there are no overall differences in intelligence between the sexes, men, and women demonstrate slight but consistent differences in a number of cognitive domains. These include a male advantage, on average, in some types of spatial abilities and a female advantage on some measures of verbal fluency and memory. Sex differences in traits or behaviors generally indicate the involvement of sex hormones, such as androgens and estrogens. We review the literature on whether adult levels of testosterone and estradiol influence spatial ability in both males and females from rodent models to humans. We also include information on estrogens and their ability to modulate verbal memory in men and women. Estrone and progestins are common components of hormone therapies, and we also review the existing literature concerning their effects on cognition. We also review the sex differences in the hippocampus and prefrontal cortex as they relate to cognitive performance in both rodents and humans. There has been greater recognition in the scientific literature that it is important to study both sexes and also to analyze study findings with sex as a variable. Only by examining these sex differences can we progress to finding treatments that will improve the cognitive health of both men and women. © 2016 American Physiological Society. Compr Physiol 6:1295-1337, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  12. Sex- and age-related differences of myocardial perfusion at rest assessed with multidetector computed tomography

    DEFF Research Database (Denmark)

    Byrne, Christina; Kühl, J Tobias; Zacho, Mette

    2013-01-01

    The clinical presentation of ischemic heart disease in women differs from men, which could reflect sex-related differences of normal physiology. Cardiac CT angiography provides a noninvasive method to assess both regional and transmural myocardial perfusion in addition to coronary atherosclerosis....

  13. Does predation control adult sex ratios and longevities in marine pelagic copepods?

    DEFF Research Database (Denmark)

    Hirst, A.G.; Bonnet, D.; Conway, D.V.P.

    2010-01-01

    We assess the causes of adult sex ratio skew in marine pelagic copepods by examining changes in these ratios between the juveniles and adults, sexual differences in juvenile stage durations, and mortality rates of adults in the field and laboratory (when free from predators). In the field, late...... copepodite stages (CIV and CV) commonly have sex ratios that are either not significantly different from equity (1 : 1), or slightly male biased. By contrast, in adults, these ratios are commonly significantly biased toward female dominance. Sex ratio skews are therefore primarily attributable to processes...... in adults. Members of the non-Diaptomoidea have especially skewed adult ratios; in the members Oithonidae and Clausocalanidae this is not generated from differences between male and female adult physiological longevity (i.e., laboratory longevity when free of predators). In the genera Acartia, Oithona...

  14. Mercury Concentrations of Bluegill (Lepomis macrochirus Vary by Sex

    Directory of Open Access Journals (Sweden)

    Charles P. Madenjian

    2015-11-01

    Full Text Available Patterns in relative differences in contaminant concentrations between the sexes across many species of fish may reveal clues for important behavioral and physiological differences between the sexes, and may also be useful in developing fish consumption advisories and efficient designs for programs meant to monitor contaminant levels in fish. We determined skin-off fillet and whole-fish total mercury (Hg concentrations of 28 adult female and 26 adult male bluegills (Lepomis macrochirus from Squaw Lake, Oakland County, Michigan (MI, USA. Bioenergetics modeling was used to quantify the effect of growth dilution on the difference in Hg concentrations between the sexes. On average, skin-off fillet and whole-fish Hg concentrations were 25.4% higher and 26.6% higher, respectively, in females compared with males. Thus, the relative difference in Hg concentrations between the sexes for skin-off fillets was nearly identical to that for whole fish. However, mean skin-off fillet Hg concentration (363 ng/g was 2.3 times greater than mean whole-fish Hg concentration (155 ng/g. Males grew substantially faster than females, and bioenergetics modeling results indicated that the growth dilution effect could account for females having 14.4% higher Hg concentrations than males. Our findings should be useful in revising fish consumption advisories.

  15. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  16. Insomnia with physiological hyperarousal is associated with hypertension.

    Science.gov (United States)

    Li, Yun; Vgontzas, Alexandros N; Fernandez-Mendoza, Julio; Bixler, Edward O; Sun, Yuanfeng; Zhou, Junying; Ren, Rong; Li, Tao; Tang, Xiangdong

    2015-03-01

    Previous studies have suggested that insomnia with objective short sleep duration is associated with a higher risk of hypertension, and it has been speculated that the underlying mechanism is physiological hyperarousal. In this study, we tested whether insomnia with physiological hyperarousal measured by Multiple Sleep Latency Test (MSLT), a standard test of sleepiness/alertness, is associated with increased risk of hypertension. Two hundred nineteen chronic insomniacs and 96 normal sleepers were included in this study. Chronic insomnia was defined based on standard diagnostic criteria with symptoms lasting ≥6 months. All subjects underwent 1 night in laboratory polysomnography followed by a standard MSLT. We used the median mean MSLT value (ie, >14 minutes) and the 75th percentile of mean MSLT value (ie, >17 minutes) to define hyperarousal. Hypertension was defined based either on blood pressure measures or on diagnosis treatment by a physician. After controlling for age, sex, body mass index, apnea-hypopnea index, diabetes mellitus, smoking, alcohol, and caffeine use, insomnia combined with MSLT >14 minutes increased the odds of hypertension by 300% (odds ratio=3.27; 95% confidence interval=1.20-8.96), whereas insomnia combined with MSLT >17 minutes increased even further the odds of hypertension by 400% (odds ratio=4.33; 95% confidence interval=1.48-12.68) compared with normal sleepers with MSLT ≤14 minutes. Insomnia associated with physiological hyperarousal is associated with a significant risk of hypertension. Long MSLT values may be a reliable index of the physiological hyperarousal and biological severity of chronic insomnia. © 2015 American Heart Association, Inc.

  17. Dysregulated physiological stress systems and accelerated cellular aging.

    Science.gov (United States)

    Révész, Dóra; Verhoeven, Josine E; Milaneschi, Yuri; de Geus, Eco J C N; Wolkowitz, Owen M; Penninx, Brenda W J H

    2014-06-01

    Exposure to chronic stressors is associated with accelerated biological aging as indicated by reduced leukocyte telomere length (LTL). This impact could be because of chronic overactivation of the body's physiological stress systems. This study examined the associations between LTL and the immune system, hypothalamic-pituitary-adrenal axis and autonomic nervous system. LTL was assessed in 2936 adults from the Netherlands Study of Depression and Anxiety. Inflammation markers (interleukin-6, c-reactive protein, tumor necrosis factor-alpha), hypothalamic-pituitary-adrenal-axis indicators (salivary cortisol awakening curve [area under the curve indicators, with respect to the ground and increase], evening levels, 0.5 mg dexamethasone cortisol suppression ratio), and autonomic nervous system measures (heart rate, respiratory sinus arrhythmia, pre-ejection period) were determined. Linear regression analyses were performed and adjusted for sociodemographic, lifestyle and clinical factors. Shorter LTL was significantly associated with higher c-reactive protein, interleukin-6, area under the curve with respect to increase, and heart rate. A cumulative index score was calculated based on the number of highest tertiles of these 4 stress markers. LTL demonstrated a significant gradient within subjects ranging from having zero (5528 base pairs) to having 4 elevated stress markers (5371 base pairs, p for trend = 0.002), corresponding to a difference of 10 years of accelerated biological aging. Contrary to the expectations, shorter LTL was also associated with longer pre-ejection period, indicating lower sympathetic tone. This large-scale study showed that inflammation, high awakening cortisol response, and increased heart rate are associated with shorter LTL, especially when they are dysregulated cumulatively. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. PowerPoint presentation in learning physiology by undergraduates with different learning styles.

    Science.gov (United States)

    Ankad, Roopa B; Shashikala, G V; Herur, Anita; Manjula, R; Chinagudi, Surekharani; Patil, Shailaja

    2015-12-01

    PowerPoint presentations (PPTs) have become routine in medical colleges because of their flexible and varied presentation capabilities. Research indicates that students prefer PPTs over the chalk-and-talk method, and there is a lot of debate over advantages and disadvantages of PPTs. However, there is no clear evidence that PPTs improve student learning/performance. Furthermore, there are a variety of learning styles with sex differences in classrooms. It is the responsibility of teacher/facilitator and student to be aware of learning style preferences to improve learning. The present study asked the following research question: do PPTs equally affect the learning of students with different learning styles in a mixed sex classroom? After we assessed students' predominant learning style according to the sensory modality that one most prefers to use when learning, a test was conducted before and after a PPT to assess student performance. The results were analyzed using Student's t-test and ANOVA with a Bonferroni post hoc test. A z-test showed no sex differences in preferred learning styles. There was significant increase in posttest performance compared with that of the pretest in all types of learners of both sexes. There was also a nonsignificant relationship among sex, learning style, and performance after the PPT. A PPT is equally effective for students with different learning style preferences and supports mixed sex classrooms. Copyright © 2015 The American Physiological Society.

  19. A framework for analyzing sex-selective abortion: the example of changing sex ratios in Southern Caucasus

    Science.gov (United States)

    Hohmann, Sophie A; Lefèvre, Cécile A; Garenne, Michel L

    2014-01-01

    The paper proposes a socioeconomic framework of supply, demand, and regulation to explain the development of sex-selective abortion in several parts of the world. The framework is then applied to three countries of southern Caucasus (Armenia, Azerbaijan, and Georgia) where sex-selective abortion has developed since the collapse of the Soviet Union. The authors argue that sex-selective abortion cannot be explained simply by patriarchal social systems, sex discrimination, or son preference. The emphasis is put on the long-term acceptability of abortion in the region, on acceptability of sex-screening by both the medical establishment and by the population, on newly imported techniques of sex-screening, and on the changing demand for children associated with the major economic and social changes that followed the dismantlement of the Soviet Union. PMID:25349481

  20. Breaking the rules: sex roles and genetic mating system of the pheasant coucal.

    Science.gov (United States)

    Maurer, G; Double, M C; Milenkaya, O; Süsser, M; Magrath, R D

    2011-10-01

    Generally in birds, the classic sex roles of male competition and female choice result in females providing most offspring care while males face uncertain parentage. In less than 5% of species, however, reversed courtship sex roles lead to predominantly male care and low extra-pair paternity. These role-reversed species usually have reversed sexual size dimorphism and polyandry, confirming that sexual selection acts most strongly on the sex with the smaller parental investment and accordingly higher potential reproductive rate. We used parentage analyses and observations from three field seasons to establish the social and genetic mating system of pheasant coucals, Centropus phasianinus, a tropical nesting cuckoo, where males are much smaller than females and provide most parental care. Pheasant coucals are socially monogamous and in this study males produced about 80% of calls in the dawn chorus, implying greater male sexual competition. Despite the substantial male investments, extra-pair paternity was unusually high for a socially monogamous, duetting species. Using two or more mismatches to determine extra-pair parentage, we found that 11 of 59 young (18.6%) in 10 of 21 broods (47.6%) were not sired by their putative father. Male incubation, starting early in the laying sequence, may give the female opportunity and reason to seek these extra-pair copulations. Monogamy, rather than the polyandry and sex-role reversal typical of its congener, C. grillii, may be the result of the large territory size, which could prevent females from monopolising multiple males. The pheasant coucal's exceptional combination of classic sex-roles and male-biased care for extra-pair young is hard to reconcile with current sexual selection theory, but may represent an intermediate stage in the evolution of polyandry or an evolutionary remnant of polyandry.

  1. Sleep and Physiological Dysregulation: A Closer Look at Sleep Intraindividual Variability.

    Science.gov (United States)

    Bei, Bei; Seeman, Teresa E; Carroll, Judith E; Wiley, Joshua F

    2017-09-01

    Variable daily sleep (ie, higher intraindividual variability; IIV) is associated with negative health consequences, but potential physiological mechanisms are poorly understood. This study examined how the IIV of sleep timing, duration, and quality is associated with physiological dysregulation, with diurnal cortisol trajectories as a proximal outcome and allostatic load (AL) as a multisystem distal outcome. Participants are 436 adults (Mage ± standard deviation = 54.1 ± 11.7, 60.3% women) from the Midlife in the United States study. Sleep was objectively assessed using 7-day actigraphy. Diurnal cortisol was measured via saliva samples (four/day for 4 consecutive days). AL was measured using 23 biomarkers from seven systems (inflammatory, hypothalamic-pituitary-adrenal axis, metabolic glucose and lipid, cardiovascular, parasympathetic, sympathetic) using a validated bifactor model. Linear and quadratic effects of sleep IIV were estimated using a validated Bayesian model. Controlling for covariates, more variable sleep timing (p = .04 for risetime, p = .097 for bedtime) and total sleep time (TST; p = .02), but not mean sleep variables, were associated with flatter cortisol diurnal slope. More variable sleep onset latency and wake after sleep onset, later average bedtime, and shorter TST were associated with higher AL adjusting for age and sex (p-values sleep patterns were associated with blunted diurnal cortisol trajectories but not with higher multisystem physiological dysregulation. The associations between sleep IIV and overall health are likely complex, including multiple biopsychosocial determinants and require further investigation. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. A Methodology for Measuring the Physiological Strain of Enhanced Soldiers: The 1998 Soldier Combat System Enhancement Study

    National Research Council Canada - National Science Library

    Amos, Denys

    1998-01-01

    ... or enhanced capabilities conducting routine operations in the tropics. Core temperature, mean skin temperature and heart rate are appropriate measures for evaluating the physiological burden of soldier combat system enhancements...

  3. The importance of age, sex and place in understanding socioeconomic inequalities in allostatic load: Evidence from the Scottish Health Survey (2008-2011).

    Science.gov (United States)

    Robertson, Tony; Watts, Eleanor

    2016-02-09

    Given the broad spectrum of health and wellbeing outcomes that are patterned by socioeconomic position (SEP), it has been suggested that there may be common biological pathways linking SEP and health. Allostatic load is one such pathway, which aims to measure cumulative burden/dysregulation across multiple physiological systems. This study aimed to determine the contextual and demographic factors (age, sex and place) that may be important in better understanding the links between lower SEP and higher allostatic load. Data were from a nationally representative sample of adults (18+): the Scottish Health Survey (2008-2011). Higher SEP ('1') was defined as having 'Higher'-level, secondary school qualifications versus having lower level or no qualifications ('0'). For allostatic load, a range of 10 biomarkers across the cardiovascular, metabolic and immune systems were used. Respondents were scored "1" for each biomarker that fell into the highest quartile of risk. Linear regressions were run in STATA, including SEP, age (continuous and as a 7-category variable), sex (male/female), urbanity (a 5-category variable ranging from primary cities to remote rural areas) and geographical location (based on 10 area-level healthboards). Interactions between SEP and each predictor, as well as stratified analyses, were tested. Lower SEP was associated with higher allostatic load even after adjusting for age, sex and place (b = -0.631, 95 % CI -0.795, -0.389, p < 0.001). There was no significant effect moderation between SEP and age, sex or place. Stratified analysis did show that the inequality identified in the baseline models widened with age, becoming significant at ages 35-44, before narrowing at older ages (75+). There was no difference by sex, but more mixed findings with regards place (urbanity or geographical location), with a mix of significant and non-significant results by SEP that did not appear to follow any pattern. Inequalities in allostatic load by educational

  4. Effect of genotype, finishing system, and sex on physiochemical characteristics of goat meat

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues

    2011-12-01

    Full Text Available Seventy-eight kids of both sexes and five genotypes were used: Alpine, ½ Boer + ½ Alpine (½ BA, ¾ Boer + ¼ Alpine, ½ Anglo-nubian + ½ Alpine and "tricross" (½ Anglo-nubian + ¼ Boer + ¼ Alpine with initial average weight of 14.1 ± 2.5. The objective was to evaluate the effect of genotype, finishing system, and sex on the physiochemical characteristics of goat meat. Finishing systems were: ST1 - kid + dam in pasture and ST2 - weaned kid and feedlot. Kids in ST1 were kept in an area with Panicum maximum cv. Tanzania, and after grazing, water and mineral salt/mix were fed ad libitum to the animals. The animals in ST2 were confined in collective pens distributed according to genotypes and received diet with 16% CP and 73% TDN. The values of pH, a* (red content, Cooking Loss (CL, and Ether Extract (EE percentage were influenced by genotype. Values for red content (a* and L* (brightness, CL and percentages of moisture, protein, EE, and ash were influenced by the finishing system. Longissimus dorsi muscle from animals ½ BA exhibited better physiochemical characteristics. For greater tenderness and higher percentages of fat, consumers should choose female kid goat meat.

  5. XX/XY system of sex determination in the geophilomorph centipede Strigamia maritima

    Czech Academy of Sciences Publication Activity Database

    Green, J. E.; Dalíková, Martina; Sahara, K.; Marec, František; Akam, M.

    2016-01-01

    Roč. 11, č. 2 (2016), č. článku e0150292. E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA600960925; GA ČR(CZ) GA14-22765S Institutional support: RVO:60077344 Keywords : sex determination * Strigamia maritima * XX/XY system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150292

  6. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    Science.gov (United States)

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Temporal and sex-specific variability in Rhinoceros Auklet diet in the central California Current system

    Science.gov (United States)

    Carle, Ryan D.; Beck, Jessie N.; Calleri, David M.; Hester, Michelle M.

    2015-06-01

    We used stable isotopes (δ15N and δ13C) and compared prey provided to chicks by each sex to evaluate seasonal and sex-specific diets in Rhinoceros Auklets (Cerorhinca monocerata) in the central California Current system during 2012-2013. Mixing models indicated northern anchovy (Engraulis mordax) were important prey for adults during fall/winter and juvenile rockfishes (Sebastes spp.) were important prey during incubation both years. Adult trophic level increased between incubation and chick-rearing periods in both years. During 2012, δ15N and δ13C of chick-rearing males and females differed significantly; mixing models indicated that females ate more Pacific saury (Cololabis saira) and less market squid (Doryteuthis opalescens) than males. Likewise, females delivered significantly more Pacific saury and less market squid to chicks than males during 2012. Chick growth (g d- 1) and chick survival to fledging were significantly lower during 2012 than 2013, likely because chicks were fed lesser quality prey or fed less frequently in 2012. Lesser body mass of females during incubation in 2012 indicated sex-specific diet differences may have been related to female energetic constraints. The observed variability in Rhinoceros Auklet diet underscores the importance of managing multiple prey populations in this system so that generalist predators have sufficient resources through changing conditions.

  8. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well.

    Science.gov (United States)

    Wijchers, Patrick J; Yandim, Cihangir; Panousopoulou, Eleni; Ahmad, Mushfika; Harker, Nicky; Saveliev, Alexander; Burgoyne, Paul S; Festenstein, Richard

    2010-09-14

    Differences between males and females are normally attributed to developmental and hormonal differences between the sexes. Here, we demonstrate differences between males and females in gene silencing using a heterochromatin-sensitive reporter gene. Using "sex-reversal" mouse models with varying sex chromosome complements, we found that this differential gene silencing was determined by X chromosome complement, rather than sex. Genome-wide transcription profiling showed that the expression of hundreds of autosomal genes was also sensitive to sex chromosome complement. These genome-wide analyses also uncovered a role for Sry in modulating autosomal gene expression in a sex chromosome complement-specific manner. The identification of this additional layer in the establishment of sexual dimorphisms has implications for understanding sexual dimorphisms in physiology and disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  10. A Sex Work Research Symposium: Examining Positionality in Documenting Sex Work and Sex Workers’ Rights

    OpenAIRE

    Megan Lowthers; Magdalena Sabat; Elya M. Durisin; Kamala Kempadoo

    2017-01-01

    Historically, academic literature on sex work has documented the changing debates, policies, and cultural discourse surrounding the sex industry, and their impact on the rights of sex workers worldwide. As sex work scholars look to the future of sex workers’ rights, however, we are also in a critical moment of self-reflection on how sex work scholarship engages with sex worker communities, produces knowledge surrounding sex work, and represents the lived experiences of sex workers’ rights, or...

  11. Sex, Diet, and the Social Environment: Factors Influencing Hair Cortisol Concentration in Free-Ranging Black Bears (Ursus americanus).

    Science.gov (United States)

    Lafferty, Diana J R; Laudenslager, Mark L; Mowat, Garth; Heard, Doug; Belant, Jerrold L

    2015-01-01

    Increasingly, measures of glucocorticoid levels (e.g., cortisol), key components of the neuroendocrine stress axis, are being used to measure past hypothalamic-pituitary-adrenal (HPA) activity to index psychological and physiological stress exhibited by wildlife for assessing individual and population-level well-being. However, many intrinsic and extrinsic factors affect HPA activity in animals. Using American black bears (Ursus americanus; n = 116) as an ecological model and hair cortisol concentration (HCC) as an integrative measure of past HPA activity, we evaluated the influence of diet, sex and the social environment on black bear HCC in a free-ranging population that spanned adjoining ecoregions with differing densities of potential conspecific and heterospecific competitors. HCC varied by sex, with female HCC ranging from 0.6 to 10.7 pg/mg (median = 4.5 ± 1.2 mean absolute deviation [MAD]) and male HCC ranging from 0.5 to 35.1 pg/mg (median = 6.2 ± 2.6 MAD). We also observed a three-way interaction among sex, δ14C and ecoregion, which may indicate that some differences in HCC between female and male black bears results from variability in the nutritional needs of larger-bodied males relative to smaller-bodied females, slight differences in food resources use between ecoregions as well as sex-based differences regarding the social environment. Once we understand what drives sex-specific differences in HCC, HCC may aid our understanding of the physiological responses by bears and other wildlife to diverse environmental challenges.

  12. Workplace Re-organization and Changes in Physiological Stress Markers

    DEFF Research Database (Denmark)

    Carlsson, Rikke Hinge; Hansen, Åse Marie; Kristiansen, Jesper

    2014-01-01

    The aim of this study was to investigate changes in physiological stress markers as a consequence of workplace reorganization. Moreover, we aimed to investigate changes in the psychosocial work environment (job strain, effortreward imbalance (ERI), in psychological distress (stress symptoms......, perceived stress) and the mediating effect of these factors on changes in physiological stress markers. We used data from a longitudinal study that studied the health consequences of a major reorganization of non-state public offices executed in Denmark on 1 January 2007. Collection of clinical...... and questionnaire data was in 2006 and 2008, and in this sub-study we included 359 participants. To reflect stress reactions of the autonomic nervous system, the endocrine system and the immune system, we included 13 physiological markers. We observed significant change in several physiological stress markers...

  13. Major component analysis of dynamic networks of physiologic organ interactions

    International Nuclear Information System (INIS)

    Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P

    2015-01-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)

  14. Dopamine and Stress System Modulation of Sex Differences in Decision Making.

    Science.gov (United States)

    Georgiou, Polymnia; Zanos, Panos; Bhat, Shambhu; Tracy, J Kathleen; Merchenthaler, Istvan J; McCarthy, Margaret M; Gould, Todd D

    2018-01-01

    Maladaptive decision making is associated with several neuropsychiatric disorders, including problem gambling and suicidal behavior. The prevalence of these disorders is higher in men vs women, suggesting gender-dependent regulation of their pathophysiology underpinnings. We assessed sex differences in decision making using the rat version of the Iowa gambling task. Female rats identified the most optimal choice from session 1, whereas male rats from session 5. Male, but not female rats, progressively improved their advantageous option responding and surpassed females. Estrus cycle phase did not affect decision making. To test whether pharmacological manipulations targeting the dopaminergic and stress systems affect decision making in a sex-dependent manner, male and female rats received injections of a dopamine D 2 receptor (D 2 R) antagonist (eticlopride), D 2 R agonist (quinpirole), corticotropin-releasing factor 1 (CRF 1 ) antagonist (antalarmin), and α 2 -adrenergic receptor antagonist (yohimbine; used as a pharmacological stressor). Alterations in mRNA levels of D 2 R and CRF 1 were also assessed. Eticlopride decreased advantageous responding in male, but not female rats, whereas quinpirole decreased advantageous responding specifically in females. Yohimbine dose-dependently decreased advantageous responding in female rats, whereas decreased advantageous responding was only observed at higher doses in males. Antalarmin increased optimal choice responding only in female rats. Higher Drd2 and Crhr1 expression in the amygdala were observed in female vs male rats. Higher amygdalar Crhr1 expression was negatively correlated with advantageous responding specifically in females. This study demonstrates the relevance of dopaminergic- and stress-dependent sex differences to maladaptive decision making.

  15. Physiological and pathophysiological bone turnover - role of the immune system.

    Science.gov (United States)

    Weitzmann, M Neale; Ofotokun, Ighovwerha

    2016-09-01

    Osteoporosis develops when the rate of osteoclastic bone breakdown (resorption) exceeds that of osteoblastic bone formation, which leads to loss of BMD and deterioration of bone structure and strength. Osteoporosis increases the risk of fragility fractures, a cause of substantial morbidity and mortality, especially in elderly patients. This imbalance between bone formation and bone resorption is brought about by natural ageing processes, but is frequently exacerbated by a number of pathological conditions. Of importance to the aetiology of osteoporosis are findings over the past two decades attesting to a deep integration of the skeletal system with the immune system (the immuno-skeletal interface (ISI)). Although protective of the skeleton under physiological conditions, the ISI might contribute to bone destruction in a growing number of pathophysiological states. Although numerous research groups have investigated how the immune system affects basal and pathological osteoclastic bone resorption, recent findings suggest that the reach of the adaptive immune response extends to the regulation of osteoblastic bone formation. This Review examines the evolution of the field of osteoimmunology and how advances in our understanding of the ISI might lead to novel approaches to prevent and treat bone loss, and avert fractures.

  16. Conserved sex chromosomes across adaptively radiated Anolis lizards.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina; Kratochvíl, Lukáš

    2014-07-01

    Vertebrates possess diverse sex-determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex-determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  17. Effect of noisy stimulation on neurobiological sensitization systems and its role for normal and pathological physiology

    Science.gov (United States)

    Huber, Martin; Braun, Hans; Krieg, J.\\:Urgen-Christian

    2004-03-01

    Sensitization is discussed as an important phenomenon playing a role in normal physiology but also with respect to the initiation and progression of a variety of neuropsychiatric disorders such as epilepsia, substance-related disorders or recurrent affective disorders. The relevance to understand the dynamics of sensitization phenomena is emphasized by recent findings that even single stimulations can induce longlasting changes in biological systems. To address specific questions associated with the sensitization dynamics, we use a computational approach and develop simple but physiologically-plausible models. In the present study we examine the effect of noisy stimulation on sensitization development in the model. We consider sub- and suprathresold stimulations with varying noise intensities and determine as response measures the (i) absolute number of stimulus-induced sensitzations and (ii) the temporal relsation of stimulus-sensitization coupling. The findings indicate that stochastic effects including stochastic resonance might well contribute to the physiology of sensitization mechanisms under both nomal and pathological conditions.

  18. Sex differences in discriminative power of volleyball game-related statistics.

    Science.gov (United States)

    João, Paulo Vicente; Leite, Nuno; Mesquita, Isabel; Sampaio, Jaime

    2010-12-01

    To identify sex differences in volleyball game-related statistics, the game-related statistics of several World Championships in 2007 (N=132) were analyzed using the software VIS from the International Volleyball Federation. Discriminant analysis was used to identify the game-related statistics which better discriminated performances by sex. Analysis yielded an emphasis on fault serves (SC = -.40), shot spikes (SC = .40), and reception digs (SC = .31). Specific robust numbers represent that considerable variability was evident in the game-related statistics profile, as men's volleyball games were better associated with terminal actions (errors of service), and women's volleyball games were characterized by continuous actions (in defense and attack). These differences may be related to the anthropometric and physiological differences between women and men and their influence on performance profiles.

  19. Sex change strategy and the aromatase genes.

    Science.gov (United States)

    Gardner, L; Anderson, T; Place, A R; Dixon, B; Elizur, A

    2005-04-01

    Sequential hermaphroditism is a common reproductive strategy in many teleosts. Steroid production is known to mediate both the natural and induced sex change, yet beyond this the physiology directing this process has received little attention. Cytochrome P450 aromatase is a key enzyme in the hormonal pathway catalysing the conversion of sex steroids, androgens to oestrogens, and thus is highly relevant to the process of sex change. This study reports the isolation of cDNA sequences for aromatase isoforms CYP19A1 and CYP19A2 from teleost species representing three forms of sexual hermaphroditism: Lates calcarifer (protandry), Cromileptes altivelis (protogyny), and Gobiodon histrio (bi-directional). Deduced amino acid analysis of these isoforms with other reported isoforms from gonochoristic (single sex) teleosts revealed 56-95% identity within the same isoform while only 48-65% identity between isoforms irrespective of species and sexual strategy. Phylogenetic analysis supported this result separating sequences into isoform exclusive clades in spite of species apparent evolutionary distance. Furthermore, this study isolates 5' flanking regions of all above genes and describes putative cis-acting elements therein. Elements identified include steroidogenic factor 1 binding site (SF-1), oestrogen response element (ERE), progesterone response element (PRE), androgen response element (ARE), glucocorticoid response elements (GRE), peroxisome proliferator-activated receptor alpha/retinoid X receptor alpha heterodimer responsive element (PPARalpha/RXRalpha), nuclear factor kappabeta (NF-kappabeta), SOX 5, SOX 9, and Wilms tumor suppressor (WTI). A hypothetical in vivo model was constructed for both isoforms highlighting potential roles of these putative cis-acting elements with reference to normal function and sexual hermaphroditism.

  20. Helping Behavior: Effects of Sex and Sex-Typing.

    Science.gov (United States)

    Basow, Susan A.; Crawley, Donna M.

    1982-01-01

    Male and female experimenters requested adult shoppers (N=178) to fill out a questionnaire. Refusal data showed shoppers helping other-sex more than same-sex experimenters. Other results showed a significant three-way interaction among helper and helpee sex and sex-typing and situation sex-typing and that helper sex-typing did not have significant…

  1. The emergence of Applied Physiology within the discipline of Physiology.

    Science.gov (United States)

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  2. Sex differences in stress-related psychiatric disorders: neurobiological perspectives.

    Science.gov (United States)

    Bangasser, Debra A; Valentino, Rita J

    2014-08-01

    Stress is associated with the onset and severity of several psychiatric disorders that occur more frequently in women than men, including posttraumatic stress disorder (PTSD) and depression. Patients with these disorders present with dysregulation of several stress response systems, including the neuroendocrine response to stress, corticolimbic responses to negatively valenced stimuli, and hyperarousal. Thus, sex differences within their underlying circuitry may explain sex biases in disease prevalence. This review describes clinical studies that identify sex differences within the activity of these circuits, as well as preclinical studies that demonstrate cellular and molecular sex differences in stress responses systems. These studies reveal sex differences from the molecular to the systems level that increase endocrine, emotional, and arousal responses to stress in females. Exploring these sex differences is critical because this research can reveal the neurobiological underpinnings of vulnerability to stress-related psychiatric disorders and guide the development of novel pharmacotherapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    Science.gov (United States)

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  4. Ambulatory diffuse optical tomography and multimodality physiological monitoring system for muscle and exercise applications

    Science.gov (United States)

    Hu, Gang; Zhang, Quan; Ivkovic, Vladimir; Strangman, Gary E.

    2016-09-01

    Ambulatory diffuse optical tomography (aDOT) is based on near-infrared spectroscopy (NIRS) and enables three-dimensional imaging of regional hemodynamics and oxygen consumption during a person's normal activities. Although NIRS has been previously used for muscle assessment, it has been notably limited in terms of the number of channels measured, the extent to which subjects can be ambulatory, and/or the ability to simultaneously acquire synchronized auxiliary data such as electromyography (EMG) or electrocardiography (ECG). We describe the development of a prototype aDOT system, called NINscan-M, capable of ambulatory tomographic imaging as well as simultaneous auxiliary multimodal physiological monitoring. Powered by four AA size batteries and weighing 577 g, the NINscan-M prototype can synchronously record 64-channel NIRS imaging data, eight channels of EMG, ECG, or other analog signals, plus force, acceleration, rotation, and temperature for 24+ h at up to 250 Hz. We describe the system's design, characterization, and performance characteristics. We also describe examples of isometric, cycle ergometer, and free-running ambulatory exercise to demonstrate tomographic imaging at 25 Hz. NINscan-M represents a multiuse tool for muscle physiology studies as well as clinical muscle assessment.

  5. Physiological Factors Contributing to Postflight Changes in Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R

  6. Safe sex

    Science.gov (United States)

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  7. Automatic duress alarms through physiological response monitoring

    International Nuclear Information System (INIS)

    Roehrig, S.C.

    1977-07-01

    Physiological response monitoring under controlled conditions can provide an effective means for passively determining if the wearer is under moderate to severe stresses. By monitoring the heart rate (HR) and galvanic skin response (GSR) of an individual, it is possible to detect in real time the increase in heart rate and GSR levels due to physiological reactions to mental duress. With existing physiological monitoring equipment, however, the work load of the wearer must be well defined since it is impossible, without additional data, to distinguish mental duress responses from those resulting from moderate physical exertion. Similarly, environmental conditions should be constrained within set limits to avoid masking increases in GSR levels due to metntal stress from those associated with increased perspiration. These constraints should not prove overly restrictive and would allow an integrated security system utilizing physiological monitoring equipment to provide an effective real time, automated early warning system for detection of mental duress or death of the wearer

  8. Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: a simulation study.

    Directory of Open Access Journals (Sweden)

    Pei-Chi Yang

    2010-01-01

    Full Text Available Acute effects of sex steroid hormones likely contribute to the observation that post-pubescent males have shorter QT intervals than females. However, the specific role for hormones in modulating cardiac electrophysiological parameters and arrhythmia vulnerability is unclear. Here we use a computational modeling approach to incorporate experimentally measured effects of physiological concentrations of testosterone, estrogen and progesterone on cardiac ion channel targets. We then study the hormone effects on ventricular cell and tissue dynamics comprised of Faber-Rudy computational models. The "female" model predicts changes in action potential duration (APD at different stages of the menstrual cycle that are consistent with clinically observed QT interval fluctuations. The "male" model predicts shortening of APD and QT interval at physiological testosterone concentrations. The model suggests increased susceptibility to drug-induced arrhythmia when estradiol levels are high, while testosterone and progesterone are apparently protective. Simulations predict the effects of sex steroid hormones on clinically observed QT intervals and reveal mechanisms of estrogen-mediated susceptibility to prolongation of QT interval. The simulations also indicate that acute effects of estrogen are not alone sufficient to cause arrhythmia triggers and explain the increased risk of females to Torsades de Pointes. Our results suggest that acute effects of sex steroid hormones on cardiac ion channels are sufficient to account for some aspects of gender specific susceptibility to long-QT linked arrhythmias.

  9. Mother's prior intrauterine position affects the sex ratio of her offspring in house mice.

    Science.gov (United States)

    Vandenbergh, J G; Huggett, C L

    1994-11-08

    Sex ratio alterations related to environmental factors occur in several mammals, but no mechanism has been identified to explain the adjustment. Intrauterine position (IUP) may provide the context in which such alterations occur. Previous studies on house mice and gerbils reveal that the position of a fetus in the uterus in relation to the sex of its neighbors influences its later anatomy, physiology, and behavior. The anogenital distance (AGD) of females located between two males (2M) is longer than that of females not between two males (OM). We have found that the IUP, as determined by cesarean section and by an index of the AGD, correlates with the sex ratio of the litters produced by female mice. The sex ratio of the first litter born to 2M females was 58% males, for 1M females was 51% males and for OM females was 42% males. The effect on sex ratio continues into the second litter. The number of pups produced by mothers of different IUPs in her first two litters did not differ, suggesting that the sex ratio adjustment occurs prior to parturition. These results provide a basis for the natural variability observed in sex ratios of litter-bearing mammals and suggest that one or more intrauterine mechanisms may be responsible for environmentally related sex ratio alterations.

  10. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  11. Microbial manipulation of host sex determination

    NARCIS (Netherlands)

    Beukeboom, Leo W.

    A recent study in the lepidopteran Ostrinia scapulalis shows that endosymbionts can actively manipulate the sex determination mechanism of their host. Wolbachia bacteria alter the sex-specific splicing of the doublesex master switch gene. In ZZ males of this female heterogametic system, the female

  12. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect.

    Directory of Open Access Journals (Sweden)

    Antoine Abrieux

    Full Text Available Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males and after different delays (2 h and 24 h, and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses

  13. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect.

    Science.gov (United States)

    Abrieux, Antoine; Mhamdi, Amel; Rabhi, Kaouther K; Egon, Julie; Debernard, Stéphane; Duportets, Line; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2016-01-01

    Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides

  14. Sex and Gender Roles in Relation to Mental Health and Allostatic Load.

    Science.gov (United States)

    Juster, Robert-Paul; Pruessner, Jens C; Desrochers, Alexandra Bisson; Bourdon, Olivier; Durand, Nadia; Wan, Nathalie; Tourjman, Valérie; Kouassi, Edouard; Lesage, Alain; Lupien, Sonia J

    2016-09-01

    Beyond male/female binaries, gender roles represent masculine and feminine traits that we assimilate and enact throughout life span development. Bem proposed that "androgynous" individuals adeptly adapt to different contexts by alternating from a strong repertoire of both masculine and feminine gender roles. By contrast, "undifferentiated" individuals may not adapt as well to social norms because of weak self-endorsed masculinity and femininity. Among 204 adults (mean [standard error] age = 40.4 [0.9] years; 70% women) working in a psychiatric hospital, we hypothesized that androgynous individuals would present better mental health and less physiological dysregulations known as allostatic load (AL) than undifferentiated individuals. AL was indexed using 20 biomarkers using the conventional "all-inclusive" formulation that ascribes cutoffs without regard for sex or an alternative "sex-specific" formulation with cutoffs tailored for each sex separately while controlling for sex hormones (testosterone, estradiol, progesterone). Well-validated questionnaires were used. Independent of sex, androgynous individuals experienced higher self-esteem and well-being and lower depressive symptoms than did undifferentiated individuals. Men manifested higher AL than did women using the all-inclusive AL index (p = .044, ηP = 0.025). By contrast, the sex-specific AL algorithm unmasked a sex by gender roles interaction for AL (p = .043, ηP = 0.048): with the highest AL levels in undifferentiated men. Analysis using a gender index based on seven gendered constructs revealed that a greater propensity toward feminine characteristics correlated only with elevated sex-specific AL (r = 0.163, p = .025). Beyond providing psychobiological evidence for Bem's theory, this study highlights how sex-specific AL formulations detect the effects of sociocultural gender.

  15. EVA Physiology and Medical Considerations Working in the Suit

    Science.gov (United States)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  16. Sex Reversal in Amphibians.

    Science.gov (United States)

    Flament, Stéphane

    2016-01-01

    Amphibians have been widely used to study developmental biology due to the fact that embryo development takes place independently of the maternal organism and that observations and experimental approaches are easy. Some amphibians like Xenopus became model organisms in this field. In the first part of this article, the differentiation of the gonads in amphibians and the mechanisms governing this process are reviewed. In the second part, the state of the art about sex reversal, which can be induced by steroid hormones in general and by temperature in some species, is presented. Also information about pollutants found in the environment that could interfere with the development of the amphibian reproductive apparatus or with their reproductive physiology is given. Such compounds could play a part in the amphibian decline, since in the wild, many amphibians are endangered species. © 2016 S. Karger AG, Basel.

  17. Physiological correlates of peer victimization and aggression in African American urban adolescents

    Science.gov (United States)

    KLIEWER, WENDY; DIBBLE, ASHLEY E.; GOODMAN, KIMBERLY L.; SULLIVAN, TERRI N.

    2018-01-01

    This study examined physiological correlates (cortisol and α-amylase [AA]) of peer victimization and aggression in a sample of 228 adolescents (45% male, 55% female; 90% African American; M age = 14 years, SD = 1.6 years) who participated in a longitudinal study of stress, physiology, and adjustment. Adolescents were classified into victimization/aggression groups based on patterns with three waves of data. At Wave 3, youth completed the Social Competence Interview (SCI), and four saliva samples were collected prior to, during, and following the SCI. Repeated-measures analyses of variance with victimization/aggression group as the predictor, and physiological measures as outcomes, controlling for time of day, pubertal status, and medication use revealed significant Group×SCI Phase interactions for salivary AA (sAA), but not for cortisol. The results did not differ by sex. For analyses with physical victimization/aggression, aggressive and nonaggressive victims showed increases in sAA during the SCI, nonvictimized aggressors showed a decrease, and the normative contrast group did not show any change. For analyses with relational victimization/aggression, nonaggressive victims were the only group who demonstrated sAA reactivity. Incorporating physiological measures into peer victimization studies may give researchers and clinicians insight into youth’s behavior regulation, and help shape prevention or intervention efforts. PMID:22559136

  18. Comparative Analysis of Drosophila melanogaster Gut Microbiota with Respect to Host Strain, Sex, and Age.

    Science.gov (United States)

    Han, Gangsik; Lee, Hyo Jung; Jeong, Sang Eun; Jeon, Che Ok; Hyun, Seogang

    2017-07-01

    Microbiota has a significant impact on the health of the host individual. The complexity of the interactions between mammalian hosts and their microbiota highlights the value of using Drosophila melanogaster as a model organism, because of its relatively simple microbial community and ease of physiological and genetic manipulation. However, highly variable and sometimes inconsistent results regarding the microbiota of D. melanogaster have been reported for host samples collected from different geographical locations; discrepancies that may be because of the inherent physiological conditions of the D. melanogaster host. Here, we conducted a comparative analysis of the gut microbiota of two D. melanogaster laboratory strains, w 1118 and Canton S, with respect to the sex and age of the host, by pyrosequencing of the 16S rRNA gene. In addition to the widespread and abundant commensal bacterial genera Lactobacillus and Acetobacter, we identified Enterococcus and Leuconostoc as major host-strain-specific bacterial genera. The relative proportions of these bacterial genera, and those of the species within each, were found to differ markedly with respect to strain, sex, and age of the host, even though host individuals were reared under the same nutritional conditions. By using various bioinformatic tools, we uncovered several characteristic features of microbiota corresponding to specific categories of the flies: host-sex-bias association of specific bacteria, age-dependent alteration of microbiota across host species and sex, and uniqueness of the microbiota of female w 1118 flies. Our results, thus, help to further our understanding of host-microbe interactions in the D. melanogaster model.

  19. Outcomes of three different models for sex education and citizenship programs concerning knowledge, attitudes, and behavior of Brazilian adolescents

    Directory of Open Access Journals (Sweden)

    Campos Márcia

    2005-01-01

    Full Text Available Three different school-based sex education and citizenship programs in public schools in Rio de Janeiro, Belo Horizonte, and Salvador, Brazil, were evaluated in a cross-sectional study comparing knowledge, attitudes, and practices in sexuality, citizenship, and gender issues among adolescents participating in the programs' activities as compared to adolescents enrolled in schools without such programs (controls. Results showed that Salvador's program achieved good results, with significant changes in knowledge on sexuality and reproductive physiology, attitudes regarding citizenship, and current use of modern contraceptives; Rio de Janeiro's program succeeded in improving students' knowledge of reproductive physiology and attitudes towards sexuality; Belo Horizonte's participants showed greater knowledge of reproductive physiology and STI/HIV prevention but had less positive attitudes towards gender issues, while reporting greater sexual activity. The main difference between Salvador's program and the others was the focus on creative and cultural activities; Belo Horizonte's main difference was its lack of interaction with health services and professionals. However, after the evaluation Belo Horizonte reframed its educational strategies and launched a scaling-up process in a joint effort with the health and school systems.

  20. Sex differences in Little Auk Alle alle parental care: Transition from biparental to paternal-only care

    Science.gov (United States)

    Harding, A.M.A.; van Pelt, Thomas I.; Lifjeld, J.T.; Mehlum, F.

    2004-01-01

    Understanding differences in male and female care in biparental care systems can help interpret the selective pressures that shape parental strategies. We examined Little Auk Alle alle parental care at a breeding colony during the chick-rearing and fledging periods by conducting observations on marked, known-sex pairs, and by examining the sex ratio of birds carrying food to the colony. Little Auks transitioned from biparental to mostly paternal-only care during late chick-rearing. Males delivered more meals and spent more time at the colony than females during late chick-rearing. Very few females were present at the colony by the end of chick-rearing and through the fledging period, and all marked parents observed accompanying their chick to sea were male. Chick mass loss prior to fledging was associated with the lack of provisioning by the female parent, rather than a reduction in feeding frequency by both parents. The occurrence of paternal-only care during and after fledging is discussed in relation to physiological, ecological and phylogenetic constraints.

  1. Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera).

    Science.gov (United States)

    Villar, Gabriel; Baker, Thomas C; Patch, Harland M; Grozinger, Christina M

    2015-07-01

    In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system.

  2. Sex differences in the developing brain as a source of inherent risk.

    Science.gov (United States)

    McCarthy, Margaret M

    2016-12-01

    Brain development diverges in males and females in response to androgen production by the fetal testis. This sexual differentiation of the brain occurs during a sensitive window and induces enduring neuroanatomical and physiological changes that profoundly impact behavior. What we know about the contribution of sex chromosomes is still emerging, highlighting the need to integrate multiple factors into understanding sex differences, including the importance of context. The cellular mechanisms are best modeled in rodents and have provided both unifying principles and surprising specifics. Markedly distinct signaling pathways direct differentiation in specific brain regions, resulting in mosaicism of relative maleness, femaleness, and sameness through-out the brain, while canalization both exaggerates and constrains sex differences. Non-neuronal cells and inflammatory mediators are found in greater number and at higher levels in parts of male brains. This higher baseline of inflammation is speculated to increase male vulnerability to developmental neuropsychiatric disorders that are triggered by inflammation.

  3. Translocation-based genetic sexing system to enhance the sterile insect technique against the melon fly (Diptera: Tephritidae)

    International Nuclear Information System (INIS)

    McCombs, S.D.; Lee, S.G.; Saul, S.H.

    1993-01-01

    The autosomal recessive bubble wing (bw) mutant was used to construct a translocation-based genetic sex sorting system in the melon fly, Bactrocera cucurbitae (Coquillett). The translocation stock has females with the bubble wing phenotype that are unable to fly, but the males are wild-type and fly normally. The bubble wing translocation strain has lower egg hatch, larval viability, and eclosion rates than the wild-type strain. Expression of the bubble wing trait is temperature-dependent, with high expression of the trait in 92% of adults at 23°C but in only 15% of adults at 28°C. This translocation-based sex sorting system is the only method available for automatic separation of male and female melon flies in sterile insect release programs

  4. Age, sex, and telomere dynamics in a long-lived seabird with male-biased parental care.

    Directory of Open Access Journals (Sweden)

    Rebecca C Young

    Full Text Available The examination of telomere dynamics is a recent technique in ecology for assessing physiological state and age-related traits from individuals of unknown age. Telomeres shorten with age in most species and are expected to reflect physiological state, reproductive investment, and chronological age. Loss of telomere length is used as an indicator of biological aging, as this detrimental deterioration is associated with lowered survival. Lifespan dimorphism and more rapid senescence in the larger, shorter-lived sex are predicted in species with sexual size dimorphism, however, little is known about the effects of behavioral dimorphism on senescence and life history traits in species with sexual monomorphism. Here we compare telomere dynamics of thick-billed murres (Urialomvia, a species with male-biased parental care, in two ways: 1 cross-sectionally in birds of known-age (0-28 years from one colony and 2 longitudinally in birds from four colonies. Telomere dynamics are compared using three measures: the telomere restriction fragment (TRF, a lower window of TRF (TOE, and qPCR. All showed age-related shortening of telomeres, but the TRF measure also indicated that adult female murres have shorter telomere length than adult males, consistent with sex-specific patterns of ageing. Adult males had longer telomeres than adult females on all colonies examined, but chick telomere length did not differ by sex. Additionally, inter-annual telomere changes may be related to environmental conditions; birds from a potentially low quality colony lost telomeres, while those at more hospitable colonies maintained telomere length. We conclude that sex-specific patterns of telomere loss exist in the sexually monomorphic thick-billed murre but are likely to occur between fledging and recruitment. Longer telomeres in males may be related to their homogamous sex chromosomes (ZZ or to selection for longer life in the care-giving sex. Environmental conditions appeared to

  5. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects.

    NARCIS (Netherlands)

    Giltay, E.J.; Kho, K.H.; Blansjaar, B.A.; Verbeek, M.M.; Geurtz, P.B.; Geleijnse, J.M.; Gooren, L.J.G.

    2005-01-01

    There is a close relationship between the brain and the endocrine system. The brain expresses receptors for sex steroids and is capable of metabolizing these hormones. We explored (1) sex differences in homovanillic acid (HVA), a metabolite of the neurotransmitter dopamine, and (2) the effects of

  6. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects

    NARCIS (Netherlands)

    Giltay, E.J.; Kho, King H.; Blansjaar, B.A.; Verbeek, M.M.; Geurtz, P.B.H.; Geleijnse, J.M.

    2005-01-01

    There is a close relationship between the brain and the endocrine system. The brain expresses receptors for sex steroids and is capable of metabolizing these hormones. We explored (1) sex differences in homovanillic acid (HVA), a metabolite of the neurotransmitter dopamine, and (2) the effects of

  7. Sex, Diet, and the Social Environment: Factors Influencing Hair Cortisol Concentration in Free-Ranging Black Bears (Ursus americanus)

    Science.gov (United States)

    Lafferty, Diana J. R.; Laudenslager, Mark L.; Mowat, Garth; Heard, Doug; Belant, Jerrold L.

    2015-01-01

    Increasingly, measures of glucocorticoid levels (e.g., cortisol), key components of the neuroendocrine stress axis, are being used to measure past hypothalamic-pituitary-adrenal (HPA) activity to index psychological and physiological stress exhibited by wildlife for assessing individual and population-level well-being. However, many intrinsic and extrinsic factors affect HPA activity in animals. Using American black bears (Ursus americanus; n = 116) as an ecological model and hair cortisol concentration (HCC) as an integrative measure of past HPA activity, we evaluated the influence of diet, sex and the social environment on black bear HCC in a free-ranging population that spanned adjoining ecoregions with differing densities of potential conspecific and heterospecific competitors. HCC varied by sex, with female HCC ranging from 0.6 to 10.7 pg/mg (median = 4.5 ± 1.2 mean absolute deviation [MAD]) and male HCC ranging from 0.5 to 35.1 pg/mg (median = 6.2 ± 2.6 MAD). We also observed a three-way interaction among sex, δ14C and ecoregion, which may indicate that some differences in HCC between female and male black bears results from variability in the nutritional needs of larger-bodied males relative to smaller-bodied females, slight differences in food resources use between ecoregions as well as sex-based differences regarding the social environment. Once we understand what drives sex-specific differences in HCC, HCC may aid our understanding of the physiological responses by bears and other wildlife to diverse environmental challenges. PMID:26529405

  8. Sex, Diet, and the Social Environment: Factors Influencing Hair Cortisol Concentration in Free-Ranging Black Bears (Ursus americanus.

    Directory of Open Access Journals (Sweden)

    Diana J R Lafferty

    Full Text Available Increasingly, measures of glucocorticoid levels (e.g., cortisol, key components of the neuroendocrine stress axis, are being used to measure past hypothalamic-pituitary-adrenal (HPA activity to index psychological and physiological stress exhibited by wildlife for assessing individual and population-level well-being. However, many intrinsic and extrinsic factors affect HPA activity in animals. Using American black bears (Ursus americanus; n = 116 as an ecological model and hair cortisol concentration (HCC as an integrative measure of past HPA activity, we evaluated the influence of diet, sex and the social environment on black bear HCC in a free-ranging population that spanned adjoining ecoregions with differing densities of potential conspecific and heterospecific competitors. HCC varied by sex, with female HCC ranging from 0.6 to 10.7 pg/mg (median = 4.5 ± 1.2 mean absolute deviation [MAD] and male HCC ranging from 0.5 to 35.1 pg/mg (median = 6.2 ± 2.6 MAD. We also observed a three-way interaction among sex, δ14C and ecoregion, which may indicate that some differences in HCC between female and male black bears results from variability in the nutritional needs of larger-bodied males relative to smaller-bodied females, slight differences in food resources use between ecoregions as well as sex-based differences regarding the social environment. Once we understand what drives sex-specific differences in HCC, HCC may aid our understanding of the physiological responses by bears and other wildlife to diverse environmental challenges.

  9. Sex differences in addiction.

    Science.gov (United States)

    Becker, Jill B

    2016-12-01

    Women exhibit more rapid escalation from casual drug taking to addiction, exhibit a greater withdrawal response with abstinence, and tend to exhibit greater vulnerability than men in terms of treatment outcome. In rodents, short-term estradiol intake in female rats enhances acquisition and escalation of drug taking, motivation for drugs of abuse, and relapse-like behaviors. There is also a sex difference in the dopamine response in the nucleus accumbens. Ovariectomized female rats exhibit a smaller initial dopamine increase after cocaine treatment than castrated males. Estradiol treatment of ovariectomized female rats enhances stimulated dopamine release in the dorsolateral striatum, but not in the nucleus accumbens, resulting in a sex difference in the balance between these two dopaminergic projections. In the situation where drug-taking behavior becomes habitual, dopamine release has been reported to be enhanced in the dorsolateral striatum and attenuated in the nucleus accumbens. The sex difference in the balance between these neural systems is proposed to underlie sex differences in addiction.

  10. Heritable Variation for Sex Ratio under Environmental Sex Determination in the Common Snapping Turtle (Chelydra Serpentina)

    Science.gov (United States)

    Janzen, F. J.

    1992-01-01

    The magnitude of quantitative genetic variation for primary sex ratio was measured in families extracted from a natural population of the common snapping turtle (Chelydra serpentina), which possesses temperature-dependent sex determination (TSD). Eggs were incubated at three temperatures that produced mixed sex ratios. This experimental design provided estimates of the heritability of sex ratio in multiple environments and a test of the hypothesis that genotype X environment (G X E) interactions may be maintaining genetic variation for sex ratio in this population of C. serpentina. Substantial quantitative genetic variation for primary sex ratio was detected in all experimental treatments. These results in conjunction with the occurrence of TSD in this species provide support for three critical assumptions of Fisher's theory for the microevolution of sex ratio. There were statistically significant effects of family and incubation temperature on sex ratio, but no significant interaction was observed. Estimates of the genetic correlations of sex ratio across environments were highly positive and essentially indistinguishable from +1. These latter two findings suggest that G X E interaction is not the mechanism maintaining genetic variation for sex ratio in this system. Finally, although substantial heritable variation exists for primary sex ratio of C. serpentina under constant temperatures, estimates of the effective heritability of primary sex ratio in nature are approximately an order of magnitude smaller. Small effective heritability and a long generation time in C. serpentina imply that evolution of sex ratios would be slow even in response to strong selection by, among other potential agents, any rapid and/or substantial shifts in local temperatures, including those produced by changes in the global climate. PMID:1592234

  11. Anatomy and Physiology of the Small Bowel.

    Science.gov (United States)

    Volk, Neil; Lacy, Brian

    2017-01-01

    Comprehension of small intestine physiology and function provides a framework for the understanding of several important disease pathways of the gastrointestinal system. This article reviews the development, anatomy and histology of the small bowel in addition to physiology and digestion of key nutrients. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

    Science.gov (United States)

    2013-01-01

    Background Hydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays. Results The drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA. Conclusions We present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar

  13. Understanding the broad influence of sex hormones and sex differences in the brain.

    Science.gov (United States)

    McEwen, Bruce S; Milner, Teresa A

    2017-01-02

    Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Applied physiology of triathlon.

    Science.gov (United States)

    O'Toole, M L; Douglas, P S

    1995-04-01

    The triathlon is a 3-event endurance sport in which athletes compete sequentially in swimming, cycling and running. The primary determinant of success is the ability to sustain a high rate of energy expenditure for prolonged periods of time. Exercise training-induced physiological adaptations in virtually all systems of the body allow the athlete to accomplish this. Aerobic capacity (measured as maximal oxygen uptake, VO2max), economy of motion (submaximal VO2) and fractional utilisation of maximal capacity (%VO2max) reflect the integrated responses of these physiological adaptations. Numerous studies have reported relatively high mean VO2max values for various groups of triathletes that are comparable to those reported for athletes in single-event endurance sports and clearly above those reported for untrained individuals. In shorter distance triathlons and in studies using recreational (rather than elite) triathletes, VO2max is related to performance in the corresponding event of the triathlon (e.g. tethered swimming VO2max with swim time). In longer events and with more elite triathletes, VO2max correlates less well with performance. The physiological adaptations that correspond to and facilitate improved VO2max occur centrally in the cardiovascular system, centred on increased maximal cardiac output, and peripherally in the metabolic systems, centred around increased arterio-venous O2 (a-v O2) difference. While a high VO2max in individuals is clearly of importance to triathlon performance, energy output must be sustained for long periods of time, making economy of motion also very important. Studies suggests that competitive swimmers have better swimming economy than triathletes. However, since many triathletes have previously been competitive swimmers this finding is questionable. The finding suggests that triathletes from nonswimming backgrounds would benefit from improving swimming technique rather than concentrating training workouts solely on distance. In

  15. Ready for a fight? The physiological effects of detecting an opponent's pheromone cues prior to a contest.

    Science.gov (United States)

    Garcia, Mark J; Williams, John; Sinderman, Benjamin; Earley, Ryan L

    2015-10-01

    Reception of pheromone cues can elicit significant physiological (e.g. steroid hormone levels) changes in the recipient. These pheromone-induced physiological changes have been well documented for male-female interactions, but scarcely in same-sex interactions (male-male and female-female). We sought to address this dearth in the current literature and examine whether mangrove rivulus fish (Kryptolebias marmoratus) could detect and, ultimately, mount a physiological response to the pheromone signature of a potential, same-sex competitor. We examined steroid hormone levels in mangrove rivulus exposed to one of three treatments: 1) isolation, 2) exposure to pheromones of a size-matched partner, and 3) pheromone exposure to a size-matched opponent followed by a physical encounter with the opponent. We found that exposure to a competitor's pheromone cues elicited a significant increase in testosterone levels. Increases in testosterone were similar across genetically distinct lineages derived from geographically distinct populations. Further, testosterone levels were similar between individuals only exposed to pheromone cues and individuals exposed to both pheromone cues and a subsequent physical encounter. Our findings led us to generate a number of testable predictions regarding how mangrove rivulus utilize pheromone signals in social interactions, the molecular mechanisms linking social stimuli and hormonal responses, and the possible adaptive benefits of hormonal responsiveness to receiving a potential competitor's pheromone cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A PHYSIOLOGICALLY BASED COMPUTATIONAL MODEL OF THE BPG AXIS IN FATHEAD MINNOWS: PREDICTING EFFECTS OF ENDOCRINE DISRUPTING CHEMICAL EXPOSURE ON REPRODUCTIVE ENDPOINTS

    Science.gov (United States)

    This presentation describes development and application of a physiologically-based computational model that simulates the brain-pituitary-gonadal (BPG) axis and other endpoints important in reproduction such as concentrations of sex steroid hormones, 17-estradiol, testosterone, a...

  17. Neuroanatomy and sex differences of the lordosis-inhibiting system in the lateral septum

    Science.gov (United States)

    Tsukahara, Shinji; Kanaya, Moeko; Yamanouchi, Korehito

    2014-01-01

    Female sexual behavior in rodents, termed lordosis, is controlled by facilitatory and inhibitory systems in the brain. It has been well demonstrated that a neural pathway from the ventromedial hypothalamic nucleus (VMN) to the midbrain central gray (MCG) is essential for facilitatory regulation of lordosis. The neural pathway from the arcuate nucleus to the VMN, via the medial preoptic nucleus, in female rats mediates transient suppression of lordosis, until female sexual receptivity is induced. In addition to this pathway, other regions are involved in inhibitory regulation of lordosis in female rats. The lordosis-inhibiting systems exist not only in the female brain but also in the male brain. The systems contribute to suppression of heterotypical sexual behavior in male rats, although they have the potential ability to display lordosis. The lateral septum (LS) exerts an inhibitory influence on lordosis in both female and male rats. This review focuses on the neuroanatomy and sex differences of the lordosis-inhibiting system in the LS. The LS functionally and anatomically links to the MCG to exert suppression of lordosis. Neurons of the intermediate part of the LS (LSi) serve as lordosis-inhibiting neurons and project axons to the MCG. The LSi-MCG neural connection is sexually dimorphic, and formation of the male-like LSi-MCG neural connection is affected by aromatized testosterone originating from the testes in the postnatal period. The sexually dimorphic LSi-MCG neural connection may reflect the morphological basis of sex differences in the inhibitory regulation of lordosis in rats. PMID:25278832

  18. Explaining sex differences in lifespan in terms of optimal energy allocation in the baboon

    DEFF Research Database (Denmark)

    King, Annette M.; Kirkwood, Thomas B.L.; Shanley, Daryl P.

    2017-01-01

    and other physiological functions, to differ between males and females. We present a model in which females provide all offspring care and males compete for access to reproductive females and in which the partitioning of available energy between the competing fitness-enhancing functions of growth......We provide a quantitative test of the hypothesis that sex role specialization may account for sex differences in lifespan in baboons if such specialization causes the dependency of fitness upon longevity, and consequently the optimal resolution to an energetic trade-off between somatic maintenance...... from differences in the value of somatic maintenance relative to other fitness-enhancing functions in keeping with the disposable soma theory....

  19. Sex selection and restricting abortion and sex determination.

    Science.gov (United States)

    Zilberberg, Julie

    2007-11-01

    Sex selection in India and China is fostered by a limiting social structure that disallows women from performing the roles that men perform, and relegates women to a lower status level. Individual parents and individual families benefit concretely from having a son born into the family, while society, and girls and women as a group, are harmed by the widespread practice of sex selection. Sex selection reinforces oppression of women and girls. Sex selection is best addressed by ameliorating the situations of women and girls, increasing their autonomy, and elevating their status in society. One might argue that restricting or prohibiting abortion, prohibiting sex selection, and prohibiting sex determination would eliminate sex selective abortion. But this decreases women's autonomy rather than increases it. Such practices will turn underground. Sex selective infanticide, and slower death by long term neglect, could increase. If abortion is restricted, the burden is placed on women seeking abortions to show that they have a legally acceptable or legitimate reason for a desired abortion, and this seriously limits women's autonomy. Instead of restricting abortion, banning sex selection, and sex determination, it is better to address the practice of sex selection by elevating the status of women and empowering women so that giving birth to a girl is a real and positive option, instead of a detriment to the parents and family as it is currently. But, if a ban on sex selective abortion or a ban on sex determination is indeed instituted, then wider social change promoting women's status in society should be instituted simultaneously.

  20. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  1. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  2. Is immune system-related hypertension associated with ovarian hormone deficiency?

    Science.gov (United States)

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2016-03-01

    What is the topic of this review? This review summarizes recent data on the role of ovarian hormones and sex in inflammation-related hypertension. What advances does it highlight? The adaptive immune system has recently been implicated in the development of hypertension in males but not in females. The role of the immune system in the development of hypertension in women and its relationship to ovarian hormone production are highlighted. The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant changes in the expression of genes regulating the immune system. Likewise, in animal models, ovariectomy results in hypertension and an upregulation in T-cell tumour necrosis factor-α-related genes. Oestrogen replacement results in decreases in inflammatory genes in the brain regions involved in blood pressure regulation. Together, these studies suggest that the response of the adaptive immune system to ovarian hormone deficiency is a significant contributor to hypertension in women. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  3. Sex Trading Among Hazardously Drinking Jailed Women.

    Science.gov (United States)

    Schonbrun, Yael Chatav; Johnson, Jennifer; Anderson, Bradley J; Stein, Michael D

    For women involved in sex trading, both alcohol problems and passage through the criminal justice system are highly prevalent. This study is the first to conduct a focused examination of factors associated with sex trading among hazardously drinking, pretrial, jailed women. Cocaine use, social support for alcohol abstinence, and more days incarcerated in the 90 days leading up to the index incarceration were significantly associated with sex trading involvement among alcoholic women. Helping incarcerated alcoholic women reduce cocaine use and improve sober support networks during and following an incarceration may minimize sex trading after release.

  4. Environmental physiology

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. Subject areas include: the effects of environmental pollutants on homeostasis of the hematopoietic system; pollutant effects on steroid metabolism; pollutant effects on pulmonary macrophages; effects of toxic gases on lung cells; the development of immunological methods for assessing lung damage at the cellular level; the response of erythropoietin concentration to various physiological changes; and the study of actinide metabolism in monkey skeletons

  5. Regulating plant physiology with organic electronics.

    Science.gov (United States)

    Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus

    2017-05-02

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  6. Gastrointestinal physiology and digestive disorders in sleep.

    Science.gov (United States)

    Kanaly, Travis; Shaheen, Nicholas J; Vaughn, Bradley V

    2009-11-01

    The dynamic interplay of the digestive system and sleep is an excellent example of brain-body interaction. New advances in measuring techniques provide an opportunity to evaluate physiology that is dependent upon the sleep/wake state or circadian rhythm and potentially differentiate between normal and pathological conditions. Sleep-related changes in gastrointestinal physiology create vulnerabilities to digestive issues such as reflux, whereas disorders such as duodenal ulcers raise the importance of circadian variations in digestive system function. Advances in the area of normal sleep physiology have furthered our understanding of the underlying cause of irritable bowel syndrome, and the mechanisms by which sleep disruption may aggravate inflammatory bowel disease. Additionally, important early work has shown that the treatment of digestive disorders such as reflux can improve sleep quality just as the improvement in sleep may aid in the treatment of digestive disorders. For the clinician, these forward steps in our knowledge mark the start of an era in which understanding the effects of the sleep/wake state and circadian rhythms on gastrointestinal physiology promise to yield novel diagnostic and therapeutic opportunities.

  7. Same-Sex and Different-Sex Cohabiting Couple Relationship Stability.

    Science.gov (United States)

    Manning, Wendy D; Brown, Susan L; Stykes, J Bart

    2016-08-01

    Relationship stability is a key indicator of well-being, but most U.S.-based research has been limited to different-sex couples. The 2008 panel of the Survey of Income and Program Participation (SIPP) provides an untapped data resource to analyze relationship stability of same-sex cohabiting, different-sex cohabiting, and different-sex married couples (n = 5,701). The advantages of the SIPP data include the recent, nationally representative, and longitudinal data collection; a large sample of same-sex cohabitors; respondent and partner socioeconomic characteristics; and identification of a state-level indicator of a policy stating that marriage is between one man and one woman (i.e., DOMA). We tested competing hypotheses about the stability of same-sex versus different-sex cohabiting couples that were guided by incomplete institutionalization, minority stress, relationship investments, and couple homogamy perspectives (predicting that same-sex couples would be less stable) as well as economic resources (predicting that same-sex couples would be more stable). In fact, neither expectation was supported: results indicated that same-sex cohabiting couples typically experience levels of stability that are similar to those of different-sex cohabiting couples. We also found evidence of contextual effects: living in a state with a constitutional ban against same-sex marriage was significantly associated with higher levels of instability for same- and different-sex cohabiting couples. The level of stability in both same-sex and different-sex cohabiting couples is not on par with that of different-sex married couples. The findings contribute to a growing literature on health and well-being of same-sex couples and provide a broader understanding of family life.

  8. Sex differences in microRNA regulation of gene expression: no smoke, just miRs

    Directory of Open Access Journals (Sweden)

    Morgan Christopher P

    2012-09-01

    Full Text Available Abstract Males and females differ widely in morphology, physiology, and behavior leading to disparities in many health outcomes, including sex biases in the prevalence of many neurodevelopmental disorders. However, with the exception of a relatively small number of genes on the Y chromosome, males and females share a common genome. Therefore, sexual differentiation must in large part be a product of the sex biased expression of this shared genetic substrate. microRNAs (miRs are small non-coding RNAs involved in the post-transcriptional regulation of up to 70% of protein-coding genes. The ability of miRs to regulate such a vast amount of the genome with a high degree of specificity makes them perfectly poised to play a critical role in programming of the sexually dimorphic brain. This review describes those characteristics of miRs that make them particularly amenable to this task, and examines the influences of both the sex chromosome complement as well as gonadal hormones on their regulation. Exploring miRs in the context of sex differences in disease, particularly in sex-biased neurodevelopmental disorders, may provide novel insight into the pathophysiology and potential therapeutic targets in disease treatment and prevention.

  9. Physiological characterization of the SynCardia total artificial heart in a mock circulation system.

    Science.gov (United States)

    Crosby, Jessica R; DeCook, Katrina J; Tran, Phat L; Smith, Richard G; Larson, Douglas F; Khalpey, Zain I; Burkhoff, Daniel; Slepian, Marvin J

    2015-01-01

    The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving biventricular replacement system for a wide variety of patients with end-stage heart failure. Although the clinical performance of the TAH is established, modern physiological characterization, in terms of elastance behavior and pressure-volume (PV) characterization has not been defined. Herein, we examine the TAH in terms of elastance using a nonejecting left ventricle, and then characterize the PV relation of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Furthermore, we show that the TAH has a PV relation behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload-dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload; however, this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared with the human heart.

  10. Anatomy and Physiology. Revised Teacher Edition.

    Science.gov (United States)

    Hartman, Danene; And Others

    This curriculum guide contains 14 units of instruction for a course in anatomy and physiology for surgical technology students. The units cover the following topics: (1) organization of the body; (2) cells, tissues, and membranes; (3) integumentary system; (4) skeletal system; (5) muscular system; (6) nervous system; (7) special sense organs; (8)…

  11. Variations in body morphology explain sex differences in thermoeffector function during compensable heat stress.

    Science.gov (United States)

    Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S

    2017-05-01

    .66, respectively; both P body and local sweat rates were negatively related to that ratio (correlation coefficient range, -0.33 to -0.62; all P < 0.05) during both work rates in men and women. Those relationships accounted for 10-48% of inter-individual thermoeffector variance (P < 0.05). Furthermore, after accounting for morphological differences, sex explained no more than 5% of that variability (P < 0.05). It was concluded that, when assessed during compensable exercise, sex differences in thermoeffector function were largely determined morphologically, rather than being sex dependent. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. Amateur boxing: physical and physiological attributes.

    Science.gov (United States)

    Chaabène, Helmi; Tabben, Montassar; Mkaouer, Bessem; Franchini, Emerson; Negra, Yassine; Hammami, Mehrez; Amara, Samiha; Chaabène, Raja Bouguezzi; Hachana, Younés

    2015-03-01

    Boxing is one of the oldest combat sports. The aim of the current review is to critically analyze the amateur boxer's physical and physiological characteristics and to provide practical recommendations for training as well as new areas of scientific research. High-level male and female boxers show a propensity for low body fat levels. Although studies on boxer somatotypes are limited, the available information shows that elite-level male boxers are characterized by a higher proportion of mesomorphy with a well-developed muscle mass and a low body fat level. To help support the overall metabolic demands of a boxing match and to accelerate the recovery process between rounds, athletes of both sexes require a high level of cardiorespiratory fitness. International boxers show a high peak and mean anaerobic power output. Muscle strength in both the upper and lower limbs is paramount for a fighter's victory and is one of the keys to success in boxing. As boxing punches are brief actions and very dynamic, high-level boxing performance requires well-developed muscle power in both the upper and lower limbs. Albeit limited, the available studies reveal that isometric strength is linked to high-level boxing performance. Future investigations into the physical and physiological attributes of boxers are required to enrich the current data set and to help create a suitable training program.

  13. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  14. Sex workers talk about sex work: six contradictory characteristics of legalised sex work in Melbourne, Australia.

    Science.gov (United States)

    Begum, Sufia; Hocking, Jane S; Groves, Jan; Fairley, Christopher K; Keogh, Louise A

    2013-01-01

    Despite research suggesting that legal sex work is safe and that emotional risks and social stigma are of greater concern than health risks, much research on sex work has focused on health risks. Given the legalisation of sex work in Victoria, Australia, it is timely to look beyond health. Three focus groups were conducted with a total of 14 female sex workers on their experience of legal sex work, both positive and negative, and the social acceptability of their profession. Thematic analysis was used to identify the key ways that sex workers described sex work. Women saw legal sex work as safer than illegal sex work, but still not socially acceptable. However, they also described six contradictory elements of sex work, which was seen as: financially rewarding and entrapping; empowering and demeaning; increasing some opportunities while reducing others; flexible and demanding; offering both intimacy and competition; and leading to a 'double life'. While legalisation has improved the safety of sex work, stigma and discrimination persist.

  15. Didactic tools for understanding respiratory physiology

    International Nuclear Information System (INIS)

    Kehoe, P Donnelly; Bratovich, C; Perrone, Ms; Castells, L Mendez

    2007-01-01

    The challenges in Bioengineering are not only the application of engineering knowledge to the measurement of physiological variables, but also the simulation of biological systems. Experience has shown that the physiology of the respiratory system involves a set of concepts that cannot be effectively taught without the help of a group of didactic tools that contribute to the measurement of characteristic specific variables and to the simulation of the system itself. This article describes a series of tools designed to optimize the teaching of the respiratory system, including the use of spirometers and software developed entirely by undergraduate Bioengineering students from Universidad Nacional de Entre Rios (UNER). The impact these resources have caused on the understanding of the topic and how each of them has facilitated the interpretation of the concepts by the students is also discussed

  16. Effect of Parkinson's Disease on the Production of Structured and Unstructured Speaking Tasks: Respiratory Physiologic and Linguistic Considerations

    Science.gov (United States)

    Huber, Jessica E.; Darling, Meghan

    2011-01-01

    Purpose: To examine the effects of cognitive-linguistic deficits and respiratory physiologic changes on respiratory support for speech in individuals with Parkinson's disease (PD) using two speech tasks: reading and extemporaneous speech. Method: Five women with PD, 9 men with PD, and 14 age- and sex-matched control participants read a passage and…

  17. A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice.

    Directory of Open Access Journals (Sweden)

    Eunice H Chin

    Full Text Available Maternal overnutrition and obesity during pregnancy can have long-term effects on offspring physiology and behaviour. These developmental programming effects may be mediated by fetal exposure to glucocorticoids, which is regulated in part by placental 11β-hydroxysteroid dehydrogenase (11β-HSD type 1 and 2. We tested whether a maternal high-fat, high-sucrose diet would alter expression of placental 11β-HSD1 and 2, thereby increasing fetal exposure to maternal glucocorticoids, with downstream effects on offspring physiology and behaviour. C57BL/6J mice were fed a high-fat, high-sucrose (HFHS diet or a nutrient-matched low-fat, no-sucrose control diet prior to and during pregnancy and lactation. At day 17 of gestation, HFHS dams had ~20% lower circulating corticosterone levels than controls. Furthermore, there was a significant interaction between maternal diet and fetal sex for circulating corticosterone levels in the fetuses, whereby HFHS males tended to have higher corticosterone than control males, with no effect in female fetuses. However, placental 11β-HSD1 or 11β-HSD2 expression did not differ between diets or show an interaction between diet and sex. To assess potential long-term consequences of this sex-specific effect on fetal corticosterone, we studied locomotor activity and metabolic traits in adult offspring. Despite a sex-specific effect of maternal diet on fetal glucocorticoids, there was little evidence of sex-specific effects on offspring physiology or behaviour, although HFHS offspring of both sexes had higher circulating corticosterone at 9 weeks of age. Our results suggest the existence of as yet unknown mechanisms that mitigate the effects of altered glucocorticoid exposure early in development, making offspring resilient to the potentially negative effects of a HFHS maternal diet.

  18. Comparative investigation of physiological responses of field-grown ...

    African Journals Online (AJOL)

    An important consideration in designing and managing forage systems is the knowledge of the physiological response mechanisms to cutting, especially when water deficit conditions are prevailing. The objective of this study was to determine the physiological response of Medicago sativa and Festuca arundinacea to ...

  19. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  20. Stochastic control of living systems: Normalization of physiological functions by magnetic field with 1/f power spectrum

    Science.gov (United States)

    Muzalevskaya, N. I.; Uritsky, V. M.; Korolyov, E. V.; Reschikov, A. M.; Timoshinov, G. P.

    1993-08-01

    For the first time correcting stochastic control of physiological status of living systems by weak low-frequency fluctuating magnetic field with 1/f spectrum (1/f MF) is demonstrated experimentally. The correction was observed in all main systems, including cardiovascular, central nervous, immunity systems of experimental animals. Pronounced prophylactic and therapeutic influence of 1/f MF on malignant growth and radiation disease was discovered. Theoretical interpretation of the results obtained is based upon the notion of fundamental role of 1/f fluctuations in homeostasis of living systems.

  1. Study Progress of Physiological Responses in High Temperature Environment

    Science.gov (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  2. Effects of government registration on unprotected sex among female sex workers in Tijuana, Mexico

    Science.gov (United States)

    Sirotin, Nicole; Strathdee, Steffanie A.; Lozada, Remedios; Abramovitz, Daniela; Semple, Shirley J.; Bucardo, Jesús; Patterson, Thomas L.

    2010-01-01

    Background Sex work is partially regulated in Tijuana, but little is known of its health effects. A recent behavioral intervention among female sex workers (FSWs) decreased incidence of HIV/STIs by 40%. We evaluated effects of sex worker regulation on condom use among FSWs randomized to this intervention. Methods FSWs aged ≥18 years who reported unprotected sex with ≥1 client in the last 2 months and whether they were registered with Tijuana’s Municipal Health Department underwent a brief, theory-based behavioral intervention to increase condom use. At baseline and 6 months, women underwent interviews and testing for HIV, syphilis, C. trachomatis and N. gonorrhoeae. Negative binomial regression was used to determine the effect of registration on numbers of unprotected sex acts and cumulative HIV/STI incidence. Results Of 187 women, 83 (44%) were registered. Lack of registration was associated with higher rates of unprotected sex (rate ratio: 1.7, 95% CI: 1.2–2.3), compared to FSWs who were registered, after controlling for potential confounders. Conclusions Registration predicted increased condom use among FSWs enrolled in a behavioral intervention. Public health programs designed to improve condom use among FSWs may benefit from understanding the impact of existing regulation systems on HIV risk behaviors. PMID:20956076

  3. Effects of government registration on unprotected sex amongst female sex workers in Tijuana; Mexico.

    Science.gov (United States)

    Sirotin, Nicole; Strathdee, Steffanie A; Lozada, Remedios; Abramovitz, Daniela; Semple, Shirley J; Bucardo, Jesús; Patterson, Thomas L

    2010-11-01

    Sex work is partially regulated in Tijuana, but little is known of its health effects. A recent behavioural intervention amongst female sex workers (FSWs) decreased incidence of HIV/STIs by 40%. We evaluated effects of sex worker regulation on condom use amongst FSWs randomized to this intervention. FSWs aged ≥18 years who reported unprotected sex with ≥1 client in the last 2 months and whether they were registered with Tijuana's Municipal Health Department underwent a brief, theory-based behavioural intervention to increase condom use. At baseline and 6 months, women underwent interviews and testing for HIV, syphilis, Chlamydia trachomatis and Neisseria gonorrhoeae. Negative binomial regression was used to determine the effect of registration on numbers of unprotected sex acts and cumulative HIV/STI incidence. Of 187 women, 83 (44%) were registered. Lack of registration was associated with higher rates of unprotected sex (rate ratio: 1.7, 95% CI: 1.2-2.3), compared to FSWs who were registered, after controlling for potential confounders. Registration predicted increased condom use amongst FSWs enrolled in a behavioural intervention. Public health programmes designed to improve condom use amongst FSWs may benefit from understanding the impact of existing regulation systems on HIV risk behaviours. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes.

    Science.gov (United States)

    Foley, B R; Rose, C G; Rundle, D E; Leong, W; Edmands, S

    2013-11-01

    Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear-nuclear (specifically X chromosome-autosome), we found the strongest deleterious interaction in this system was mito-nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6×) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems.

  5. Learning about facts of life: perspective from medical students on sources and preferences about puberty and sex education in Karachi.

    Science.gov (United States)

    Shaikh, Masood Ali; Mubeen, Syed Muhammand; Furqan, Muhammad

    2017-11-01

    Puberty heralds the onset of adulthood, and is fraught with complex physiological and psychological changes and emotions. In this study, we looked at the sources of information about puberty and sex education among males and females, age at which they learned about them, and the opinions on the role of schools and parents in imparting this education among medical students.A cross-sectional pilot study, using convenience sampling was conducted among 153 medical students of the Hamdard College of Medicine and Dentistry (HCM&D) in Karachi. Regarding most common source of information about puberty; 23 (25.3%) males identified friends as the most important source of information. While 31 (50.0%) women identified their mothers as the most important source.Regarding most common source of information about reproductive systems and sex; 17 (27.4%) women identified school teachers as the most common source of information, while 26 (28.6%) men identified books and magazines.

  6. Do sex reversal procedures differentially affect agonistic behaviors and sex steroid levels depending on the sexual genotype in Nile tilapia?

    Science.gov (United States)

    Gennotte, Vincent; Akonkwa, Balagizi; Mélard, Charles; Denoël, Mathieu; Cornil, Charlotte A; Rougeot, Carole

    2017-04-01

    In Nile tilapia Oreochromis niloticus, phenotypic males and females with different sexual genotypes (XX, XY, YY) have particular behavioral and physiological traits. Compared to natural XX females and XY males, XY and YY females and XX males expressed higher level of aggressiveness that could be related to higher levels of 17β-estradiol and 11-ketotestosterone, respectively. Our results suggest that the presence of a Y chromosome increases aggressiveness in females. However, since the same relationship between aggressiveness and the Y chromosome is not observed in males, we can hypothesize that the differences in aggressiveness are not directly dependent on the genotype but on the sex reversal procedures applied on young fry during their sexual differentiation to produce these breeders. These hormonal treatments could have permanently modified the development of the brain and consequently influenced the behavior of adults independently of their genotype. In both hypotheses (genotype or sex reversal influence), the causes of behavioral modifications have to be searched in an early modification of the brain sexual differentiation. © 2017 Wiley Periodicals, Inc.

  7. Sex steroids, immune system, and parasitic infections: facts and hypotheses.

    Science.gov (United States)

    Nava-Castro, Karen; Hernández-Bello, Romel; Muñiz-Hernández, Saé; Camacho-Arroyo, Ignacio; Morales-Montor, Jorge

    2012-07-01

    It has been widely reported that the incidence and the severity of natural parasitic infections are different between males and females of several species, including humans. This sexual dimorphism involves a distinct exposure of males and females to various parasite infective stages, differential effects of sex steroids on immune cells, and direct effects of these steroids on parasites, among others. Typically, for a large number of parasitic diseases, the prevalence and intensity is higher in males than females; however, in several parasitic infections, males are more resistant than females. In the present work, we review the effects of sex hormones on immunity to protozoa and helminth parasites, which are the causal agents of several diseases in humans, and discuss the most recent research related to the role of sex steroids in the complex host-parasite relationship. © 2012 New York Academy of Sciences.

  8. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study

    DEFF Research Database (Denmark)

    Faerch, K; Borch-Johnsen, Knut; Vaag, A

    2010-01-01

    We aimed to examine whether sex differences in fasting plasma glucose (FPG), 2 h post-OGTT plasma glucose (2hPG) and HbA(1c) could be explained by differences in body size and/or body composition between men and women in a general non-diabetic Danish population. Moreover, we aimed to study to what...

  9. Gender and sex differences in job status and hypertension.

    Science.gov (United States)

    Clougherty, Jane E; Eisen, Ellen A; Slade, Martin D; Kawachi, Ichiro; Cullen, Mark R

    2011-01-01

    Studies have shown greater health risks associated with blue-collar manufacturing employment for women than men. It remains challenging, however, to distinguish gendered job status (affected by family composition and other personal characteristics) from sex-linked biological differences influencing physiological response to workplace physical hazards. We examined the effects of hourly (blue-collar) status on incident hypertension among men and women, using health claims data for 14, 618 white- and blue-collar aluminium manufacturing employees in eight US states. To explore gender differences in job status, we developed sex-stratified propensity score models identifying key socioeconomic predictors of hourly status for men and women. To examine the effects of hourly employment on hypertension risk, after adjusting for gender differences in job status, we applied time-weighted logistic regression models, stratified by propensity score, with additional adjustment for socioeconomic confounders. Family structure (partnership, parity) influenced job status for both sexes; single mothers were more likely to hold hourly jobs (OR 2.02; 95% CI 1.37 to 2.97) and partnered men with children less likely (OR 0.68; 95% CI 0.56 to 0.83). Education, age at hire and race influenced job status for both sexes. The effect of hourly status on hypertension was significant only among women predicted to be hourly (OR 1.78; 95% CI 1.34 to 2.35). Our results indicate significant risks of hypertension associated with hourly status for women, possibly exacerbated by sociodemographic factors predicting hourly status (eg, single parenthood, low education). Greater attention to gender differences in job status, and finer exploration of sex-linked biological differences influencing responsivity to workplace exposures, is warranted.

  10. A virtual laboratory system for physiology teaching

    Directory of Open Access Journals (Sweden)

    KArl Bohme

    1995-12-01

    Full Text Available There exist a number of areas in the teaching of physiology which potentially lend themselves to a Computer-Based Learning approach. One such area which has been explored at Manchester Metropolitan University (MMU and elsewhere (Dewhurst, 1993; Kwan, 1993 is the use of multimedia tools to simulate aspects of experiments traditionally performed on animals. The use of real animal specimens (for example, frogs or rats for dissection and experimentation is both costly and contrary to the ethics of some students.

  11. Personality, emotion, and individual differences in physiological responses.

    Science.gov (United States)

    Stemmler, Gerhard; Wacker, Jan

    2010-07-01

    A dominant paradigm in biopsychological personality research seeks to establish links between emotional and motivational traits and habitual, transsituationally consistent individual differences in measures of physiological activity. An alternative approach conceptualizes traits as dispositions that are only operative in certain situational contexts and consequently predicts associations between emotional and motivational traits and physiological activity only for trait-relevant situational contexts in which the physiological systems underlying the traits in question are engaged. In the present paper we first examine and contrast these personistic and interactionistic conceptualizations of personality and personality-physiology associations and then present data from several large studies (N>100) in which electrocortical (e.g., frontal alpha asymmetry) and somatovisceral parameters were measured in various situational contexts (e.g., after the induction of either anger, or fear, or anxiety). As predicted by the interactionistic conceptualization of traits as dispositions the situational context and its subjective representation by the participants moderated the personality-physiology relationships for measures of both central and peripheral nervous system activity. We conclude by outlining the implications of the interactionistic approach for biopsychological personality research. Copyright © 2009 Elsevier B.V. All rights reserved.

  12. Physiological mechanisms underlying animal social behaviour.

    Science.gov (United States)

    Seebacher, Frank; Krause, Jens

    2017-08-19

    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  13. Suckling Behavior in Domestic Goats: Interaction Between Litter Size and Kid Sex

    OpenAIRE

    Ruiz-Miranda, Carlos R; Thompson, Katerina V; Callard, Michelle

    1998-01-01

    Studies of milk allocation in polytocous species provide the opportunity to investigate the effects of offspring number and sex ratio on maternal investment. In these species maternal control over milk allocation is more difficult because physiological limits on milk production may stimulate sibling competition. This study investigated the nursing behavior of domestic goats bearing twins or singletons in an experimental situation for the first 47 days post-partum. Milk yield and composition d...

  14. [Sex differentiation of central nervous system--brain of man and woman].

    Science.gov (United States)

    Arai, Yasumasa

    2004-02-01

    Sex differentiation of human brain is mostly dependent on the prenatal exposure to androgen(testosterone). Congenital aromatase deficiency does not disturb male brain development in men. This is quite different from experimental evidence from rodents whose brains need intraneuronal aromatization from androgen to estrogen to induce sex differentiation. There is evidence for male-female differences in brain structures. Some of them(INHA-3) appear to be related with sexual orientation. The other(BNST) might participate in forming gender-identity. In addition, sexually dimorphic features are recognized in some cognitive activities. The possible involvement of genetic factors in human brain sex differentiation is also discussed.

  15. A role for a neo-sex chromosome in stickleback speciation

    Science.gov (United States)

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  16. The concentration of fear: mice's behavioural and physiological stress responses to different degrees of predation risk

    Science.gov (United States)

    Sánchez-González, Beatriz; Planillo, Aimara; Navarro-Castilla, Álvaro; Barja, Isabel

    2018-02-01

    Predation is an unavoidable and dangerous fact in the lifetime of prey animals and some sign of the proximity of a predator may be enough to trigger a response in the prey. We investigated whether different degrees of predation risk by red foxes ( Vulpes vulpes) evoke behavioural and physiological stress responses in wood mice ( Apodemus sylvaticus) . We examined the variation in mice responses due to individual factors (sex and reproductive status) and related them to the concentration of the volatile compounds from fox faeces over time. In our experiment, we introduced predation cues into four plots, each subjected to a different concentration treatment (0, 10, 50 and 100% concentration of fresh faeces of red fox), based on the following outline: initial odourless phase 0, phase1 in which predation treatment was renewed daily, and phase 2 in which we renewed the treatment only on the first day. Wood mice were live trapped during all three phases and the physiological response was measured non-invasively by analysing faecal corticosterone metabolites (FCM) in freshly collected faeces. Data were analysed by Generalized Linear Mixed Models. Overall, males were trapped less often than females, and reproductively active individuals from both sexes avoided traps more than non-reproductively active individuals, especially in medium- and high- concentration plots. Variations in FCM concentrations were explained by plot, the interaction between plot and treatment phase, and the interaction between the treatment phase and the reproductive status. During phase 1, we detected a significant rise in FCM levels that increased with predator faecal odour concentration. Additionally, reproductively active individuals showed a strong physiological response during both phases 1 and 2 in all plots, except the control plot. Our results indicated that wood mice are able to discriminate different degrees of predation risk, which allows them to trigger gradual changes in their

  17. Predicting delayed cerebral ischemia after subarachnoid hemorrhage using physiological time series data.

    Science.gov (United States)

    Park, Soojin; Megjhani, Murad; Frey, Hans-Peter; Grave, Edouard; Wiggins, Chris; Terilli, Kalijah L; Roh, David J; Velazquez, Angela; Agarwal, Sachin; Connolly, E Sander; Schmidt, J Michael; Claassen, Jan; Elhadad, Noemie

    2018-03-20

    To develop and validate a prediction model for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) using a temporal unsupervised feature engineering approach, demonstrating improved precision over standard features. 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Baseline information and standard grading scales were evaluated: age, sex, Hunt Hess grade, modified Fisher Scale (mFS), and Glasgow Coma Scale (GCS). An unsupervised approach applying random kernels was used to extract features from physiological time series (systolic and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (Partial Least Squares, linear and kernel Support Vector Machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.58. Combined demographics and grading scales: AUC 0.60. Random kernel derived physiologic features: AUC 0.74. Combined baseline and physiologic features with redundant feature reduction: AUC 0.77. Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that our models achieve higher classification accuracy.

  18. Meat quality of "Galician Mountain" foals breed. Effect of sex, slaughter age and livestock production system.

    Science.gov (United States)

    Franco, Daniel; Rodríguez, Eva; Purriños, Laura; Crecente, Santiago; Bermúdez, Roberto; Lorenzo, José M

    2011-06-01

    The effects of sex, slaughter age (9 vs. 12 months) and livestock production system (freedom extensive system (FES) vs. semi extensive system (SES)) of "Galician Mountain" foals breed on meat quality from the Longissimus dorsi (LD) muscle were investigated. Forty-two foals had been used for this study, 19 (11 females and 8 males) were reared in a semi extensive system and weaned three months prior to slaughtering (8 and 11 were slaughtered at 9 and 12 months, respectively) while the other 23 (11 females and 12 males) were reared together with its mothers in a system in freedom and were slaughtered at the age of 9 months. The obtained results showed that there were no significant differences between the sexes and the slaughter age whereas the livestock production system was a significant variation source on intramuscular fat content and meat tenderness because SES foals showed 51.6% more of IMF and the improved meat tenderness achieved a shear force of lean meat (20.5%) and heme-iron (1.62 mg/100g meat) comparable to veal meat. Furthermore, the meat samples showed a higher luminosity (L*>40), a very good water holding capacity, measured by cooking losses (<18.3%), and a tenderness less than 4 kg. Thus, it can be classified as "very tender" meat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  20. Sex-dependent effects of cannabis-induced analgesia.

    Science.gov (United States)

    Cooper, Ziva D; Haney, Margaret

    2016-10-01

    Preclinical studies demonstrate that cannabinoid-mediated antinociceptive effects vary according to sex; it is unknown if these findings extend to humans. This retrospective analysis compared the analgesic, subjective and physiological effects of active cannabis (3.56-5.60% THC) and inactive cannabis (0.00% THC) in male (N=21) and female (N=21) cannabis smokers under double-blind, placebo-controlled conditions. Pain response was measured using the Cold-Pressor Test (CPT). Participants immersed their hand in cold water (4°C); times to report pain (pain sensitivity) and withdraw the hand (pain tolerance) were recorded. Subjective drug ratings were also measured. Among men, active cannabis significantly decreased pain sensitivity relative to inactive cannabis (pcannabis failed to decrease pain sensitivity relative to inactive. Active cannabis increased pain tolerance in both men women immediately after smoking (pcannabis also increased subjective ratings of cannabis associated with abuse liability ('Take again,' 'Liking,' 'Good drug effect'), drug strength, and 'High' relative to inactive in both men and women (pcannabis smokers, men exhibit greater cannabis-induced analgesia relative to women. These sex-dependent differences are independent of cannabis-elicited subjective effects associated with abuse-liability, which were consistent between men and women. As such, sex-dependent differences in cannabis's analgesic effects are an important consideration that warrants further investigation when considering the potential therapeutic effects of cannabinoids for pain relief. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Sex differences in the fetal programming of hypertension.

    Science.gov (United States)

    Grigore, Daniela; Ojeda, Norma B; Alexander, Barbara T

    2008-01-01

    Numerous clinical and experimental studies support the hypothesis that the intrauterine environment is an important determinant of cardiovascular disease and hypertension. This review examined the mechanisms linking an adverse fetal environment and increased risk for chronic disease in adulthood with an emphasis on gender differences and the role of sex hormones in mediating sexual dimorphism in response to a suboptimal fetal environment. This review focuses on current findings from the PubMed database regarding animal models of fetal programming of hypertension, sex differences in phenotypic outcomes, and potential mechanisms in offspring of mothers exposed to an adverse insult during gestation. For the years 1988 to 2007, the database was searched using the following terms: fetal programming, intrauterine growth restriction, low birth weight, sex differences, estradiol, testosterone, high blood pressure, and hypertension. The mechanisms involved in the fetal programming of adult disease are multifactorial and include alterations in the regulatory systems affecting the long-tterm control of arterial pressure. Sex differences have been observed in animal models of fetal programming, and recent studies suggest that sex hormones may modulate activity of regulatory systems, leading to a lower incidence of hypertension and vascular dysfunction in females compared with males. Animal models of fetal programming provide critical support for the inverse relationship between birth weight and blood pressure. Experimental models demonstrate that sex differences are observed in the pathophysiologic response to an adverse fetal environment. A role for sex hormone involvement is strongly suggested,with modulation of the renin-angiotensin system as a possible mechanism.

  2. PRECONCEPTION AND PRENATAL DIAGNOSTIC TECHNIQUES ACT 1994 AND ITS MAIN ROLE TO CURB SEX DETERMINATION AND SEX SELECTION

    OpenAIRE

    Adv. Vaishali V. Waghmare; Dr. (Mrs) Hema Menon

    2016-01-01

    India has a male dominated culture where women are treated like a commodity and slave. Our Indian society gives preference only to the Son not to female because of which girls' child is not heartily welcomed and discrimination against girl child still prevails. Sex selective abortion is one of major issue in recent era in relation to violence against women under which the Ultrasonography machine plays an important role of sex detection. Main cause for sex selection are Patriarchal system, Do...

  3. Sex differences in motor and cognitive abilities predicted from human evolutionary history with some implications for models of the visual system.

    Science.gov (United States)

    Sanders, Geoff

    2013-01-01

    This article expands the knowledge base available to sex researchers by reviewing recent evidence for sex differences in coincidence-anticipation timing (CAT), motor control with the hand and arm, and visual processing of stimuli in near and far space. In CAT, the differences are between sex and, therefore, typical of other widely reported sex differences. Men perform CAT tasks with greater accuracy and precision than women, who tend to underestimate time to arrival. Null findings arise because significant sex differences are found with easy but not with difficult tasks. The differences in motor control and visual processing are within sex, and they underlie reciprocal patterns of performance in women and men. Motor control is exerted better by women with the hand than the arm. In contrast, men showed the reverse pattern. Visual processing is performed better by women with stimuli within hand reach (near space) as opposed to beyond hand reach (far space); men showed the reverse pattern. The sex differences seen in each of these three abilities are consistent with the evolutionary selection of men for hunting-related skills and women for gathering-related skills. The implications of the sex differences in visual processing for two visual system models of human vision are discussed.

  4. Alterations in physiology and anatomy during pregnancy.

    Science.gov (United States)

    Tan, Eng Kien; Tan, Eng Loy

    2013-12-01

    Pregnant women undergo profound anatomical and physiological changes so that they can cope with the increased physical and metabolic demands of their pregnancies. The cardiovascular, respiratory, haematological, renal, gastrointestinal and endocrine systems all undergo important physiological alterations and adaptations needed to allow development of the fetus and to allow the mother and fetus to survive the demands of childbirth. Such alterations in anatomy and physiology may cause difficulties in interpreting signs, symptoms, and biochemical investigations, making the clinical assessment of a pregnant woman inevitably confusing but challenging. Understanding these changes is important for every practicing obstetrician, as the pathological deviations from the normal physiological alterations may not be clear-cut until an adverse outcome has resulted. Only with a sound knowledge of the physiology and anatomy changes can the care of an obstetric parturient be safely optimized for a better maternal and fetal outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  6. Numerical Simulation of Hemodynamic and Physiological Responses of Human Cardiovascular and Respiratory System under Drugs Administration

    Czech Academy of Sciences Publication Activity Database

    Převorovská, Světlana; Maršík, František

    2004-01-01

    Roč. 4, č. 4 (2004), s. 295-304 ISSN 1567-8822 R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z2076919 Keywords : human cardiovascular and respiratory system * baroreflex and chemoreflex control * physiologically based pharmacokinetic model Subject RIV: BK - Fluid Dynamics

  7. Determination of sex by armbone dimensions.

    Science.gov (United States)

    Aye, Victor Omakoji

    2010-06-15

    Sex determination is a vital part of the medico-legal system but can be difficult in cases where the body is damaged. The purpose of this study was to develop a technique for sex determination from three arm-bone dimensions (wrist circumference, arm length and arm span). This knowledge can be applied in cases of mass disaster, homicide and events such as sports. Data were collected for 95 Nigerian male students and 90 Nigerian female students using physical anthropometry. Discriminant function presented the wrist dimension as the dominant contributor in this study. Combination equations for both the wrist and arm-span dimensions correctly classified sex (male/female) with an accuracy rate of 84.9%. On cross-validation, sex was also established with the same 84.9% accuracy rate. Sex determination was higher in males. Sexual dimorphism was established in this study, although the wrist circumference was more distinct than arm span; a combination of both generated sex with an accuracy prediction rate of 84.9%. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Both COMT Val158Met single nucleotide polymorphism and sex-dependent differences influence response inhibition

    Directory of Open Access Journals (Sweden)

    Valentina eMione

    2015-05-01

    Full Text Available Reactive and proactive control of actions are cognitive abilities that allow to deal with a continuously changing environment by adjusting already programmed actions. They also set forthcoming acts by evaluating the outcome of the previous ones. Earlier studies highlighted sex related differences in the strategies and in the pattern of brain activation during cognitive tasks involving reactive and proactive control. To further identify sex-dependent characteristics in the cognitive control of actions, in this study we have assessed whether/how differences in reactive and proactive control were modulated by the COMT Val158Met single nucleotide polymorphism, a genetic factor known to influence the functionality of the dopaminergic system, in particular at the level of prefrontal cortex. Two groups of male and female participants were further sorted according to their genotype (Val/Met, Val/Val and Met/Met and tested in a stop signal task, a consolidated tool to measure reactive and proactive control in experimental and clinical settings. In each group of participants we estimated both a measure of the capacity to react to unexpected events and the ability of monitoring their performance. The between groups comparison of these measures indicated a poorer ability of male individuals carrying the Val/Val genotype in error-monitoring, suggesting that differences between sexes could be influenced by the efficiency of COMT and that other sex-specific factors have to be considered. The comprehension of inter-groups behavioral and physiological correlates of cognitive control will provide more accurate diagnostic tools for predicting the incidence and the development of pathologies like ADHD or deviant behaviors as drug or alcohol abuse.

  9. Conservation physiology of animal migration

    Science.gov (United States)

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals. PMID:27293751

  10. On the origin of sex chromosomes from meiotic drive

    Science.gov (United States)

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  11. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    Directory of Open Access Journals (Sweden)

    Malikeh Pour Ebrahim

    2017-03-01

    Full Text Available Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications.

  12. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae).

    Science.gov (United States)

    Giovannotti, M; Trifonov, V A; Paoletti, A; Kichigin, I G; O'Brien, P C M; Kasai, F; Giovagnoli, G; Ng, B L; Ruggeri, P; Cerioni, P Nisi; Splendiani, A; Pereira, J C; Olmo, E; Rens, W; Caputo Barucchi, V; Ferguson-Smith, M A

    2017-03-01

    Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

  13. Focus on the emerging new fields of network physiology and network medicine

    Science.gov (United States)

    Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.

    2016-10-01

    Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.

  14. Methodological Advances for Detecting Physiological Synchrony During Dyadic Interactions

    OpenAIRE

    McAssey, M.P.; Helm, J.; Hsieh, F.; Sbarra, D.; Ferrer, E.

    2011-01-01

    A defining feature of many physiological systems is their synchrony and reciprocal influence. An important challenge, however, is how to measure such features. This paper presents two new approaches for identifying synchrony between the physiological signals of individuals in dyads. The approaches are adaptations of two recently-developed techniques, depending on the nature of the physiological time series. For respiration and thoracic impedance, signals that are measured continuously, we use...

  15. The effectiveness of the motion picture association of America's rating system in screening explicit violence and sex in top-ranked movies from 1950 to 2006.

    Science.gov (United States)

    Nalkur, Priya G; Jamieson, Patrick E; Romer, Daniel

    2010-11-01

    Youth exposure to explicit film violence and sex is linked to adverse health outcomes and is a serious public health concern. The Motion Picture Association of America's (MPAA's) rating system's effectiveness in reducing youth exposure to harmful content has been questioned. To determine the MPAA's rating system's effectiveness in screening explicit violence and sex since the system's initiation (1968) and the introduction of the PG-13 category (1984). Also, to examine evidence of less restrictive ratings over time ("ratings creep"). Top-grossing movies from 1950 to 2006 (N = 855) were coded for explicitness of violent and sexual content. Trends in rating assignments and in the content of different rating categories since 1968 were assessed. The explicitness of violent and sexual content significantly increased following the rating system's initiation. The system did not differentiate violent content as well as sexual content, and ratings creep was only evident for violent films. Explicit violence in R-rated films increased, while films that would previously have been rated R were increasingly assigned to PG-13. This pattern was not evident for sex; only R-rated films exhibited higher levels of explicit sex compared to preratings period. While relatively effective for screening explicit sex, the rating system has allowed increasingly violent content into PG-13 films, thereby increasing youth access to more harmful content. Assignment of films in the current rating system should be more sensitive to the link between violent media exposure and youth violence. Copyright © 2010 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  16. Longitudinal effects of environmental enrichment on behaviour and physiology of pigs reared on an intensive-stock farm

    Directory of Open Access Journals (Sweden)

    Augusto Vitale

    2011-10-01

    Full Text Available The aim of this paper was to provide a longitudinal evaluation of the effects of physical enrichments on the behaviour and physiology of intensive stock-farming pigs. Twenty-eight crossbred pigs of both sexes, were exposed to four types of enrichments (hemp ropes, steel chains, plastic balls, rubber hoses over a period of eleven weeks. This investigation was based on specific abnormal behaviours and physiological indicators, including hematologic parameters. For behavioural score, focal sampling was used with recording of abnormal behaviours (body-, tail- and ear-biting, belly nosing, running, and interaction with objects (for Enriched pigs. The presence of skin injuries was also recorded. In general, the frequency of abnormal behaviours was significantly reduced in the Enriched group. A timerelated profile appeared in the use of the enrichments. Males showed higher occurrence of skin injuries than females. Physiological measurements, such as levels of complement system, white blood cells and neutrophils, were lower in pigs from the Enriched group. Enriched pigs, as a whole, presented much lower levels of serum DHEA-S concentration over two weeks. The findings of this study show the successful provision of appropriate enrichments to encourage behaviours which may result in satisfactory animal oral interaction with the enriching objects, preventing them biting pen-mates. In this respect, the objects proposed were strongly effective in producing changes in behaviour which could mitigate inadequate conditions, such as the relationship between animal body weight and the available space allowance.

  17. Human physiological models of insomnia.

    Science.gov (United States)

    Richardson, Gary S

    2007-12-01

    Despite the wide prevalence and important consequences of insomnia, remarkably little is known about its pathophysiology. Available models exist primarily in the psychological domain and derive from the demonstrated efficacy of behavioral treatment approaches to insomnia management. However, these models offer little specific prediction about the anatomic or physiological foundation of chronic primary insomnia. On the other hand, a growing body of data on the physiology of sleep supports a reasonably circumscribed overview of possible pathophysiological mechanisms, as well as the development of physiological models of insomnia to guide future research. As a pragmatic step, these models focus on primary insomnia, as opposed to comorbid insomnias, because the latter is by its nature a much more heterogeneous presentation, reflecting the effects of the distinct comorbid condition. Current understanding of the regulation of sleep and wakefulness in mammalian brain supports four broad candidate areas: 1) disruption of the sleep homeostat; 2) disruption of the circadian clock; 3) disruption of intrinsic systems responsible for the expression of sleep states; or 4) disruption (hyperactivity) of extrinsic systems capable of over-riding normal sleep-wake regulation. This review examines each of the four candidate pathophysiological mechanisms and the available data in support of each. While studies that directly test the viability of each model are not yet available, descriptive data on primary insomnia favor the involvement of dysfunctional extrinsic stress-response systems in the pathology of primary chronic insomnia.

  18. Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species

    Science.gov (United States)

    Atsumi, Kazufumi; Kamiya, Takashi; Nozawa, Aoi; Aoki, Yuma; Tasumi, Satoshi; Koyama, Takashi; Nakamura, Osamu; Suzuki, Yuzuru

    2018-01-01

    There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome. PMID

  19. Turning sex inside-out: Peripheral contributions to sexual differentiation of the central nervous system

    Directory of Open Access Journals (Sweden)

    Swift-Gallant Ashlyn

    2012-05-01

    Full Text Available Abstract Sexual differentiation of the nervous system occurs via the interplay of genetics, endocrinology and social experience through development. Much of the research into mechanisms of sexual differentiation has been driven by an implicit theoretical framework in which these causal factors act primarily and directly on sexually dimorphic neural populations within the central nervous system. This review will examine an alternative explanation by describing what is known about the role of peripheral structures and mechanisms (both neural and non-neural in producing sex differences in the central nervous system. The focus of the review will be on experimental evidence obtained from studies of androgenic masculinization of the spinal nucleus of the bulbocavernosus, but other systems will also be considered.

  20. Biochemical responses and physiological status in the crab Hemigrapsus crenulatus (Crustacea, Varunidae) from high anthropogenically-impacted estuary (Lenga, south-central Chile).

    Science.gov (United States)

    Díaz-Jaramillo, M; Socowsky, R; Pardo, L M; Monserrat, J M; Barra, R

    2013-02-01

    Estuarine environmental assessment by sub-individual responses is important in order to understand contaminant effects and to find suitable estuarine biomonitor species. Our study aimed to analyze oxidative stress responses, including glutathione-S-transferase (GST) activity, total antioxidant capacity (ACAP) and lipid peroxidation levels (TBARS) in estuarine crabs Hemigrapsus crenulatus from a high anthropogenically-impacted estuary (Lenga) compared to low and non-polluted estuaries (Tubul and Raqui), in a seasonal scale (winter-summer), tissue specific (hepatopancreas and gills) and sex related responses. Results showed that hepatopancreas in male crabs better reflected inter-estuary differences. Morpho-condition traits as Cephalothorax hepatopancreas index (CHI) could be used as an indicator of physiological status of estuarine crabs. Discriminant analysis also showed that GST and TBARS levels in summer are more suitable endpoints for establishing differences between polluted and non-polluted sites. These results suggest the importance of seasonality, target tissue, sex and physiological status of brachyuran crabs for estuarine biomonitoring assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Physiology of Fear and Sound

    DEFF Research Database (Denmark)

    Garner, Tom Alexander; Grimshaw, Mark

    2013-01-01

    and systematically altering the game environment in response. This article presents empirical data the analysis of which advocates electrodermal activity and electromyography as suitable physiological measures to work effectively within a computer video game-based biometric feedback loop, within which sound......The potential value of a looping biometric feedback system as a key component of adaptive computer video games is significant. Psychophysiological measures are essential to the development of an automated emotion recognition program, capable of interpreting physiological data into models of affect...

  2. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers

    Directory of Open Access Journals (Sweden)

    Rajabi Taleieh

    2015-09-01

    Full Text Available In this paper we present a microfluidic system based on transparent biocompatible polymers with a porous membrane as substrate for various cell types which allows the simulation of various physiological barriers under continuous laminar flow conditions at distinct tunable shear rates. Besides live cell and fluorescence microscopy, integrated electrodes enable the investigation of the permeability and barrier function of the cell layer as well as their interaction with external manipulations using the Electric Cell-substrate Impedance Sensing (ECIS method.

  3. Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems.

    Science.gov (United States)

    Willis, Craig K R

    2015-10-01

    Conservation physiology aims to apply an understanding of physiological mechanisms to management of imperiled species, populations, or ecosystems. One challenge for physiologists hoping to apply their expertise to conservation is connecting the mechanisms we study, often in the laboratory, with the vital rates of populations in the wild. There is growing appreciation that infectious pathogens can threaten populations and species, and represent an important issue for conservation. Conservation physiology has much to offer in terms of addressing the threat posed to some host species by infectious pathogens. At the same time, the well-developed theoretical framework of disease ecology could provide a model to help advance the application of physiology to a range of other conservation issues. Here, I use white-nose syndrome (WNS) in hibernating North American bats as an example of a conservation problem for which integrative physiological research has been a critical part of research and management. The response to WNS highlights the importance of a well-developed theoretical framework for the application of conservation physiology to a particular threat. I review what is known about physiological mechanisms associated with mortality from WNS and emphasize the value of combining a strong theoretical background with integrative physiological studies in order to connect physiological mechanisms with population processes and thereby maximize the potential benefits of conservation physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination.

    Science.gov (United States)

    Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš

    2010-11-01

    The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

  5. Influence of sex and age on fasting and post-prandial gallbladder volumes

    International Nuclear Information System (INIS)

    Pazzi, P.; Putinati, S.; Barbieri, D.; Trevisani, L.; Limoni, G.; Lupi, L.; Bighi, S.

    1989-01-01

    Aging and female sex are major risk factors for cholesterol gallstones: in addition to hepatic secretion of lithogenic bile, decreased gallbladder contractility may play a role in such physiological conditions. This study was aimed at evaluating the effect of age and sex on gallbladder kinetics in healthy subjects. Gallbladder volume was measured on the US images of 157 fasting subjects using the sum-of-cylinders method. No significant difference was observed between males and females. On the contrary, age was shown to have a significant positive correlation with fasting gallbladder volume, particulary in males. In a second group of 63 healthy volunteers gallbladder volumes were evaluated both before and after a standard meal. The subjects were grouped according to age, and fasting gallbladder volume appeared to be significantly greater in the groups formed by older people. Gallbladder volumes were compared in younger groups (under 35), and gallbladder emptying resulted to be much more complete in males than in females. On the contrary, no significant differences was observed between males and famales over50 - which suggests a possible role of sex - and age-related hormonal factors. The above changes in gallbladder function may facilitate bile stasis which might in turn contribute to the increased risk for cholesterol gallstones notoriously associated with advanced age and female sex

  6. A new mathematical model of gastrointestinal transit incorporating age- and gender-dependent physiological parameters

    International Nuclear Information System (INIS)

    Stubbs, J.B.

    1992-01-01

    As part of the revision by the International Commission on Radiological Protection (ICRP) of its report on Reference Man, an extensive review of the literature regarding anatomy and morphology of the gastrointestinal (GI) tract has been completed. Data on age- and gender-dependent GI physiology and motility may be included in the proposed ICRP report. A new mathematical model describing the transit of substances through the GI tract as well as the absorption and secretion of material in the GI tract has been developed. This mathematical description of GI tract kinetics utilizes more physiologically accurate transit processes than the mathematically simple, but nonphysiological, GI tract model that was used in ICRP Report 30. The proposed model uses a combination of zero- and first-order kinetics to describe motility. Some of the physiological parameters that the new model accounts for include sex, age, pathophysiological condition and meal phase (solid versus liquid). A computer algorithm, written in BASIC, based on this new model has been derived and results are compared to those of the ICRP-30 model

  7. Exercise Physiology and the Academy: Contributions to Physiological Concepts and Biological Systems during the Commemorative Years

    Science.gov (United States)

    Tipton, Charles M.

    2006-01-01

    To determine the contributions made by Academy Fellows during the past 75 years to concepts within the body of knowledge associated with exercise physiology, a literature search was undertaken. Of the charter Fellows, Hetherington and eight others (34%) were identified. Schneider in 1933 was the first of 18 Fellows who became authors, co-authors,…

  8. Long Term Physiologic and Behavioural Effects of Housing Density and Environmental Resource Provision for Adult Male and Female Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Christopher J. Pinelli

    2017-06-01

    Full Text Available There is considerable interest in refining laboratory rodent environments to promote animal well-being, as well as research reproducibility. Few studies have evaluated the long term impact of enhancing rodent environments with resources and additional cagemates. To that end, male and female Sprague Dawley (SD rats were housed singly (n = 8/sex, in pairs (n = 16/sex, or in groups of four (n = 16/sex for five months. Single and paired rats were housed in standard cages with a nylon chew toy, while group-housed rats were kept in double-wide cages with two PVC shelters and a nylon chew toy and were provided with food enrichment three times weekly. Animal behaviour, tests of anxiety (open field, elevated plus maze, and thermal nociception, and aspects of animal physiology (fecal corticoid levels, body weight, weekly food consumption, organ weights, and cerebral stress signaling peptide and receptor mRNA levels were measured. Significant differences were noted, primarily in behavioural data, with sustained positive social interactions and engagement with environmental resources noted throughout the study. These results suggest that modest enhancements in the environment of both male and female SD rats may be beneficial to their well-being, while introducing minimal variation in other aspects of behavioural or physiologic responses.

  9. First-Year Medical Students' Naïve Beliefs about Respiratory Physiology

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Silvia; Abrahams, Amaal; Bugarith, Kishor; Friedling, Jacqui; Gunston, Geney; Kelly-Laubscher, Roisin; Schmidt, Henk G.

    2016-01-01

    The present study explored the nature and frequency of physiology naïve beliefs by investigating novices' understanding of the respiratory system. Previous studies have shown considerable misconceptions related to physiology but focused mostly on specific physiological processes of normal respiration. Little is known about novices' broader…

  10. Unique aspects of competitive weightlifting: performance, training and physiology.

    Science.gov (United States)

    Storey, Adam; Smith, Heather K

    2012-09-01

    development of weightlifters is ~15-20% and ~13-16% greater, respectively, than in other strength and power athletes. In addition, weightlifting training has been shown to reduce the typical sex-related difference in the expression of neuromuscular strength and power. However, this apparent sex-related difference appears to be augmented with increasing adult age demonstrating that women undergo a greater age-related decline in muscle shortening velocity and peak power when compared with men. Weightlifting training and competition has been shown to induce significant structural and functional adaptations of the cardiovascular system. The collective evidence shows that these adaptations are physiological as opposed to pathological. Finally, the acute exercise-induced testosterone, cortisol and growth hormone responses of weightlifters have similarities to that of following conventional strength and hypertrophy protocols involving large muscle mass exercises. The routine assessment of the basal testosterone : cortisol ratio may be beneficial when attempting to quantify the adaptive responses to weightlifting training. As competitive weightlifting is becoming increasingly popular around the world, further research addressing the physiological responses and adaptations of female weightlifters and younger (i.e. ≤17 years of age) and older (i.e. ≥35 years of age) weightlifters of both sexes is required.

  11. Same sex marriage and the perceived assault on opposite sex marriage.

    Science.gov (United States)

    Dinno, Alexis; Whitney, Chelsea

    2013-01-01

    Marriage benefits both individuals and societies, and is a fundamental determinant of health. Until recently same sex couples have been excluded from legally recognized marriage in the United States. Recent debate around legalization of same sex marriage has highlighted for anti-same sex marriage advocates and policy makers a concern that allowing same sex couples to marry will lead to a decrease in opposite sex marriages. Our objective is to model state trends in opposite sex marriage rates by implementation of same sex marriages and other same sex unions. Marriage data were obtained for all fifty states plus the District of Columbia from 1989 through 2009. As these marriage rates are non-stationary, a generalized error correction model was used to estimate long run and short run effects of same sex marriages and strong and weak same sex unions on rates of opposite sex marriage. We found that there were no significant long-run or short run effects of same sex marriages or of strong or weak same sex unions on rates of opposite sex marriage. A deleterious effect on rates of opposite sex marriage has been argued to be a motivating factor for both the withholding and the elimination of existing rights of same sex couples to marry by policy makers-including presiding justices of current litigation over the rights of same sex couples to legally marry. Such claims do not appear credible in the face of the existing evidence, and we conclude that rates of opposite sex marriages are not affected by legalization of same sex civil unions or same sex marriages.

  12. Same Sex Marriage and the Perceived Assault on Opposite Sex Marriage

    Science.gov (United States)

    Dinno, Alexis; Whitney, Chelsea

    2013-01-01

    Background Marriage benefits both individuals and societies, and is a fundamental determinant of health. Until recently same sex couples have been excluded from legally recognized marriage in the United States. Recent debate around legalization of same sex marriage has highlighted for anti-same sex marriage advocates and policy makers a concern that allowing same sex couples to marry will lead to a decrease in opposite sex marriages. Our objective is to model state trends in opposite sex marriage rates by implementation of same sex marriages and other same sex unions. Methods and Findings Marriage data were obtained for all fifty states plus the District of Columbia from 1989 through 2009. As these marriage rates are non-stationary, a generalized error correction model was used to estimate long run and short run effects of same sex marriages and strong and weak same sex unions on rates of opposite sex marriage. We found that there were no significant long-run or short run effects of same sex marriages or of strong or weak same sex unions on rates of opposite sex marriage. Conclusion A deleterious effect on rates of opposite sex marriage has been argued to be a motivating factor for both the withholding and the elimination of existing rights of same sex couples to marry by policy makers–including presiding justices of current litigation over the rights of same sex couples to legally marry. Such claims do not appear credible in the face of the existing evidence, and we conclude that rates of opposite sex marriages are not affected by legalization of same sex civil unions or same sex marriages. PMID:23776536

  13. The weaker sex? The propensity for male-biased piglet mortality.

    Directory of Open Access Journals (Sweden)

    Emma M Baxter

    Full Text Available For the most part solutions to farm animal welfare issues, such as piglet mortality, are likely to lie within the scientific disciplines of environmental design and genetic selection, however understanding the ecological basis of some of the complex dynamics observed between parent and offspring could make a valuable contribution. One interesting, and often discussed, aspect of mortality is the propensity for it to be sex-biased. This study investigated whether known physiological and behavioural indicators of piglet survival differed between the sexes and whether life history strategies (often reported in wild or feral populations relating to parental investment were being displayed in a domestic population of pigs. Sex ratio (proportion of males (males/males+females at birth was 0.54 and sex allocation (maternal investment measured as piglet birth weight/litter weight was statistically significantly male-biased at 0.55 (t(35 = 2.51 P = 0.017, suggesting that sows invested more in sons than daughters during gestation. Despite this investment in birth weight, a known survival indicator, total pre-weaning male mortality was statistically significantly higher than female mortality (12% vs. 7% respectively z = 2.06 P = 0.040. Males tended to suffer from crushing by the sow more than females and statistically significantly more males died from disease-related causes. Although males were born on average heavier, with higher body mass index and ponderal index, these differences were not sustained. In addition male piglets showed impaired thermoregulation compared to females. These results suggest male-biased mortality exists despite greater initial maternal investment, and therefore reflects the greater susceptibility of this sex to causal mortality factors. Life history strategies are being displayed by a domestic population of pigs with sows in this study displaying a form of parental optimism by allocating greater resources at birth

  14. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  15. Deconstructing the superorganism: social physiology, groundplans, and sociogenomics

    DEFF Research Database (Denmark)

    Johnson, Brian R; Linksvayer, Timothy A

    2010-01-01

    changes in the regulation of ancestral gene sets affecting reproductive physiology and behavior, and we argue that this hypothesis is explanatory for the evolution of division of labor (social anatomy) but not for the regulatory systems that ensure group-level coordination of action (social physiology...... to a truly integrative approach remains, as social physiology--the basis of group-level coordination--has generally been neglected by geneticists. In this paper, we begin a synthesis of these fields by first reviewing three classes of social insect organization that mark major transitions in increasing...

  16. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    Science.gov (United States)

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Anatomy and Physiology. Health Occupations Education. Teacher's Guide.

    Science.gov (United States)

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Nine units on anatomy and physiology are presented in this teacher's guide. The units are the following: organization and general plan of the body; skeletal and muscular systems; digestive system; circulatory system; respiratory system; nervous system and special senses; urinary system; reproductive system; and endocrine glands. Each instructional…

  18. Interpreting sex differences in enamel hypoplasia in human and non-human primates: Developmental, environmental, and cultural considerations.

    Science.gov (United States)

    Guatelli-Steinberg, D; Lukacs, J R

    1999-01-01

    The purpose of this review is to provide a synoptic, critical evaluation of the evidence of, and potential etiological factors contributing to, sex differences in the expression of enamel hypoplasia (EH). Specifically, this review considers theoretical expectations and empirical evidence bearing on two central issues. The first of these is the impact of a theorized inherent male vulnerability to physiological stress on sex differences in EH. The second issue is the potential contribution to sex differences in EH of intrinsic differences in male and female enamel composition and development. To address this first issue, EH frequencies by sex are examined in samples subject to a high degree of physiological stress. Based on the concept of inherent male vulnerability (or female buffering), males in stressful environments would be expected to exhibit higher EH frequencies than females. This expectation is evaluated in light of cultural practices of sex-biased investment that mediate the relationship between environmental stress and EH expression. Defects forming prenatally afford an opportunity to study this relationship without the confounding effects of sex-biased postnatal investment. Data bearing on this issue derive from previously conducted studies of EH in permanent and deciduous teeth in both modern and archaeological samples as well as from new data on Indian schoolchildren. To address the second issue, fundamental male-female enamel differences are evaluated for their potential impact on EH expression. A large sex difference in the duration of canine crown formation in non-human primates suggests that male canines may have greater opportunity to record stress events than those of females. This expectation is examined in great apes, whose canines often record multiple episodes of stress and are sexually dimorphic in crown formation times. With respect to the first issue, in most studies, sex differences in EH prevalence are statistically nonsignificant

  19. Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor

  20. Transmogrified Religious Systems and the Phenomenon of Sex ...

    African Journals Online (AJOL)

    This paper examines the changing roles of traditional religious institution in a renowned West African kingdom of Benin, in Nigeria and highlights how religious institutions have been transmogrified to support the pervasiveness of sex trafficking in the region. It relies on ethnographic data generated though key informant ...

  1. Incarcerated Dutch Juvenile Sex Offenders Compared with Non-Sex Offenders

    Science.gov (United States)

    van Wijk, Anton Ph.; Vreugdenhil, Coby; van Horn, Joan; Vermeiren, Robert; Doreleijers, Theo A. H.

    2007-01-01

    There is some debate about whether or not sex offenders are similar to non-sex offenders with regard to family background (parental characteristics), personality, and psychopathology. The central aim of this study focused on the comparison of juvenile sex offenders and non-sex offenders. The sample consisted of incarcerated juvenile male sex (n =…

  2. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  3. Development of concept-based physiology lessons for biomedical engineering undergraduate students.

    Science.gov (United States)

    Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T

    2013-06-01

    Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.

  4. Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

    Science.gov (United States)

    Holleley, Clare E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur

    2016-01-01

    Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes. © 2016 S. Karger AG, Basel.

  5. Effects of chronic cesium-137 ingestion on physiological system in rat

    International Nuclear Information System (INIS)

    Voisin, Philippe; Grignard, Elise; Souidi, Maamar; Gueguen, Yann; Lestaevel, Philippe; Grandcolas, Line; Grison, Stephane; Dublineau, Isabelle; Gourmelon, Patrick

    2008-01-01

    Full text: Several diseases have been reported in populations living in contaminated territories in the vicinity of Chernobyl, such as behavior disorders, anxiety symptoms, cardiovascular diseases, perturbations of endocrine and reproductive status, immunity disturbances. Therefore, the post-Chernobyl contamination by 137 Cs is of particular concern for public health. The objective of this study was to determine in a rat model the effects of 137 Cs contamination by ingestion of 6500 Bq/L on several physiological systems, central nervous system, cardiovascular system, steroidogenesis, intestinal functions, metabolism of cholesterol and of vitamin D. The animals were chronically and sub-chronically contaminated via drinking water (∼150 Bq per day) at a post-accidental dose level. Our experiments demonstrated that chronic ingestion of 137 Cs induced some disturbances of these systems. A decrease in blood pressure was observed in contaminated animals. At the same time, changes in cardiac function were evidenced via increased plasma levels of CK and CK-MB and variations in gene expression of proteins involved in vascular tonus (Gueguen et al. Toxicol Lett 2007), and of K + channels in cardiac left ventricle. Vitamin D metabolism was also modified by 137 Cs with a diminution of plasma level of Vitamin D (1,25(OH)D3), and changes in mRNA levels of cytochrome P450 CYP27B1 and CYP2R1 in brain and liver (Tissandie et al. Toxicology 2006). Concerning cholesterol metabolism, no changes in plasma lipid levels were noted, although increased gene expression of liver X receptor α (LXRα), low-density lipoprotein receptor (LDLr) and apolipoprotein B (ApoB) (Souidi et al. Int J Toxicol 2006). In addition, steroidogenesis seemed to be modified, since decreased plasma level of 17β-estradiol and increased corticosterone plasma level were observed following chronic 137 Cs ingestion. These changes were associated with modification of mRNA levels of nuclear receptors in testis and of

  6. Physiologic TLR9-CpG-DNA interaction is essential for the homeostasis of the intestinal immune system.

    Science.gov (United States)

    Hofmann, Claudia; Dunger, Nadja; Doser, Kristina; Lippert, Elisabeth; Siller, Sebastian; Edinger, Matthias; Falk, Werner; Obermeier, Florian

    2014-01-01

    Cytosine-guanosine dinucleotide (CpG) motifs are immunostimulatory components of bacterial DNA and activators of innate immunity through Toll-like receptor 9 (TLR9). Administration of CpG oligodeoxynucleotides before the onset of experimental colitis prevents intestinal inflammation by enforcement of regulatory mechanisms. It was investigated whether physiologic CpG/TLR9 interactions are critical for the homeostasis of the intestinal immune system. Mesenteric lymph node cell and lamina propria mononuclear cell (LPMC) populations from BALB/c wild-type (wt) or TLR9 mice were assessed by flow cytometry and proteome profiling. Cytokine secretion was determined and nuclear extracts were analyzed for nuclear factor kappa B (NF-κB) and cAMP response-element binding protein activity. To assess the colitogenic potential of intestinal T cells, CD4-enriched cells from LPMC of wt or TLR9 donor mice were injected intraperitoneally in recipient CB-17 SCID mice. TLR9 deficiency was accompanied by slight changes in cellular composition and phosphorylation of signaling proteins of mesenteric lymph node cell and LPMC. LPMC from TLR9 mice displayed an increased proinflammatory phenotype compared with wt LPMC. NF-κB activity in cells from TLR9 mice was enhanced, whereas cAMP response-element binding activity was reduced compared with wt. Transfer of lamina propria CD4-enriched T cells from TLR9 mice induced severe colitis, whereas wt lamina propria CD4-enriched T cells displayed an attenuated phenotype. Lack of physiologic CpG/TLR9 interaction impairs the function of the intestinal immune system indicated by enhanced proinflammatory properties. Thus, physiologic CpG/TLR interaction is essential for homeostasis of the intestinal immune system as it is required for the induction of counterregulating anti-inflammatory mechanisms.

  7. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Arbeitman Michelle N

    2011-07-01

    Full Text Available Abstract Background Understanding animal development and physiology at a molecular-biological level has been advanced by the ability to determine at high resolution the repertoire of mRNA molecules by whole transcriptome resequencing. This includes the ability to detect and quantify rare abundance transcripts and isoform-specific mRNA variants produced from a gene. The sex hierarchy consists of a pre-mRNA splicing cascade that directs the production of sex-specific transcription factors that specify nearly all sexual dimorphism. We have used deep RNA sequencing to gain insight into how the Drosophila sex hierarchy generates somatic sex differences, by examining gene and transcript isoform expression differences between the sexes in adult head tissues. Results Here we find 1,381 genes that differ in overall expression levels and 1,370 isoform-specific transcripts that differ between males and females. Additionally, we find 512 genes not regulated downstream of transformer that are significantly more highly expressed in males than females. These 512 genes are enriched on the × chromosome and reside adjacent to dosage compensation complex entry sites, which taken together suggests that their residence on the × chromosome might be sufficient to confer male-biased expression. There are no transcription unit structural features, from a set of features, that are robustly significantly different in the genes with significant sex differences in the ratio of isoform-specific transcripts, as compared to random isoform-specific transcripts, suggesting that there is no single molecular mechanism that generates isoform-specific transcript differences between the sexes, even though the sex hierarchy is known to include three pre-mRNA splicing factors. Conclusions We identify thousands of genes that show sex-specific differences in overall gene expression levels, and identify hundreds of additional genes that have differences in the abundance of isoform

  8. Usage of the Terms Prostitution, Sex Work, Transactional Sex, and Survival Sex: Their Utility in HIV Prevention Research.

    Science.gov (United States)

    McMillan, Karen; Worth, Heather; Rawstorne, Patrick

    2018-07-01

    This article considers the terms prostitution, sex work, transactional sex, and survival sex, the logic of their deployment and utility to research concerned with people who are paid for sex, and HIV. The various names for paid sex in HIV research are invested in strategically differentiated positionings of people who receive payment and emphasize varying degrees of choice. The terminologies that seek to distinguish a range of economically motivated paid sex practices from sex work are characterized by an emphasis on the local and the particular, efforts to evade the stigma attached to the labels sex worker and prostitute, and an analytic prioritizing of culture. This works to bestow cultural legitimacy on some locally specific forms of paid sex and positions those practices as artifacts of culture rather than economy. This article contends that, in HIV research in particular, it is necessary to be cognizant of ways the deployment of alternative paid sex categories relocates and reinscribes stigma elsewhere. While local identity categories may be appropriate for program implementation, a global category is necessary for planning and funding purposes and offers a purview beyond that of isolated local phenomena. We argue that "sex work" is the most useful global term for use in research into economically motivated paid sex and HIV, primarily because it positions paid sex as a matter of labor, not culture or morality.

  9. Sex differences in contaminant concentrations of fish: a synthesis

    Science.gov (United States)

    Madenjian, Charles P.; Rediske, Richard R.; Krabbenhoft, David P.; Stapanian, Martin A.; Chernyak, Sergei M.; O'Keefe, James P.

    2016-01-01

    Comparison of whole-fish polychlorinated biphenyl (PCB) and total mercury (Hg) concentrations in mature males with those in mature females may provide insights into sex differences in behavior, metabolism, and other physiological processes. In eight species of fish, we observed that males exceeded females in whole-fish PCB concentration by 17 to 43%. Based on results from hypothesis testing, we concluded that these sex differences were most likely primarily driven by a higher rate of energy expenditure, stemming from higher resting metabolic rate (or standard metabolic rate (SMR)) and higher swimming activity, in males compared with females. A higher rate of energy expenditure led to a higher rate of food consumption, which, in turn, resulted in a higher rate of PCB accumulation. For two fish species, the growth dilution effect also made a substantial contribution to the sex difference in PCB concentrations, although the higher energy expenditure rate for males was still the primary driver. Hg concentration data were available for five of the eight species. For four of these five species, the ratio of PCB concentration in males to PCB concentration in females was substantially greater than the ratio of Hg concentration in males to Hg concentration in females. In sea lamprey (Petromyzon marinus), a very primitive fish, the two ratios were nearly identical. The most plausible explanation for this pattern was that certain androgens, such as testosterone and 11-ketotestosterone, enhanced Hg-elimination rate in males. In contrast, long-term elimination of PCBs is negligible for both sexes. According to this explanation, males ingest Hg at a higher rate than females, but also eliminate Hg at a higher rate than females, in fish species other than sea lamprey. Male sea lamprey do not possess either of the above-specified androgens. These apparent sex differences in SMRs, activities, and Hg-elimination rates in teleost fishes may also apply, to some degree, to higher

  10. Physiologic and Pharmacokinetic Changes in Pregnancy

    Directory of Open Access Journals (Sweden)

    Maged eCostantine

    2014-04-01

    Full Text Available Physiologic changes in pregnancy induce profound alterations to the pharmacokinetic properties of many medications. These changes affect distribution, absorption, metabolism, and excretion of drugs, and thus may impact their pharmacodynamic properties during pregnancy. Pregnant women undergo several adaptations in many organ systems. Some adaptations are secondary to hormonal changes in pregnancy, while others occur to support the gravid woman and her developing fetus. Some of the changes in maternal physiology during pregnancy include, for example, increased maternal fat and total body water, decreased plasma protein concentrations, especially albumin, increased maternal blood volume, cardiac output and blood flow to the kidneys and uteroplacental unit, and decreased blood pressure. The maternal blood volume expansion occurs at a larger proportion than the increase in red blood cell mass, which results in physiologic anemia and hemodilution. Other physiologic changes include increased tidal volume, partially compensated respiratory alkalosis, delayed gastric emptying and gastrointestinal motility, and altered activity of hepatic drug metabolizing enzymes. Understating these changes and their profound impact on the pharmacokinetic properties of drugs in pregnancy is essential to optimize maternal and fetal health.

  11. Is the sex communication of two pyralid moths, Plodia interpunctella and Ephestia kuehniella, under circadia clock regulation?

    Czech Academy of Sciences Publication Activity Database

    Závodská, Radka; Fexová, Silvie; von Wowern, G.; Han, G.-B.; Doležel, David; Šauman, Ivo

    2012-01-01

    Roč. 27, č. 3 (2012), s. 206-216 ISSN 0748-7304 R&D Projects: GA MŠk LC07032; GA ČR GP204/08/P579; GA AV ČR IAA500960802 Institutional research plan: CEZ:AV0Z50070508 Keywords : pyralid moth * sex communication * circadian rhythm Subject RIV: ED - Physiology Impact factor: 3.229, year: 2012

  12. Cadmium in the shore crab Carcinus maenas along the Norwegian coast: geographical and seasonal variation and correlation to physiological parameters.

    Science.gov (United States)

    Knutsen, Heidi; Wiech, Martin; Duinker, Arne; Maage, Amund

    2018-03-27

    Previously, high concentrations of cadmium have been found in the hepatopancreas of the edible or brown crab (Cancer pagurus) sampled from positions north of about 67° N, compared to regions further south along the Norwegian coast, with no clear understanding why. In order to study a similar organism in the same ecosystem, the present study analyzed 210 shore crabs (Carcinus maenas) from four different locations along the Norwegian coast, two in the North and two in the South. The physiological variables size, sex, molting stage, hepatosomatic index, carapace color, and gonad maturation were registered, in attempt to explain the high inter-individual variation in cadmium levels in hepatopancreas. In contrast to the brown crabs, the shore crabs showed no clear geographical differences in cadmium concentrations. This indicates physiological differences between the two crab species. No clear and consistent correlations were found between cadmium levels and physiological parameters, except for sex, where cadmium concentration in hepatopancreas was twice as high in males compared to females. The cadmium levels also varied with season, with approximately 40 and 60% lower cadmium concentration in April than August for male and female shore crabs, respectively. None of the analyzed cadmium concentrations in muscle meat from claws exceeded EUs food safety limit, and low cadmium levels in soup prepared from shore crabs clearly indicated that this dish is not problematic regarding food safety.

  13. Genetic approaches in comparative and evolutionary physiology

    Science.gov (United States)

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  14. [Characteristics of the sympathoadrenal system response to psychoemotional stress under hypoxic conditions in aged people with physiological and accelerated aging of the respiratory system].

    Science.gov (United States)

    Asanov, E O; Os'mak, Ie D; Kuz'mins'ka, L A

    2013-01-01

    The peculiarities of the response of the sympathoadrenal system to psychoemotional and hypoxic stress in healthy young people and in aged people with physiological and accelerated aging of respiratory system were studied. It was shown that in aging a more pronounced response of the sympathoadrenal system to psychoemotional stress. At the same time, elderly people with different types of aging of the respiratory system did not demonstrate a difference in the response of the sympathoadrenal system to psychoemotional stress. Unlike in young people, in aged people, combination of psychoemotional and hypoxic stresses resulted in further activation of the sympathoadrenal system. The reaction of the sympathoadrenal system was more expressed in elderly people with accelerated ageing of the respiratory system.

  15. Impact of Early Sport Specialization: A Physiological Perspective

    Science.gov (United States)

    Kaleth, Anthony S.; Mikesky, Alan E.

    2010-01-01

    This article addresses the question of whether early sport specialization provides a "physiological" advantage for future athletic success. It examines the limited literature related to the effects of early specialization on the body's organ systems: the endocrine system, the muscular system, the nervous system, and the cardiovascular system. The…

  16. The physiological functions of central nervous system pericytes and a potential role in pain

    Science.gov (United States)

    Beazley-Long, Nicholas; Durrant, Alexandra M; Swift, Matthew N; Donaldson, Lucy F

    2018-01-01

    Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states. PMID:29623199

  17. Men Are from Mars, Women Are from Venus: Sex Differences in Insulin Action and Secretion.

    Science.gov (United States)

    Basu, Ananda; Dube, Simmi; Basu, Rita

    2017-01-01

    Sex difference plays a substantial role in the regulation of glucose metabolism in healthy glucose-tolerant humans. The factors which may contribute to the sex-related differences in glucose metabolism include differences in lifestyle (diet and exercise), sex hormones, and body composition. Several epidemiological and observational studies have noted that impaired glucose tolerance is more common in women than men. Some of these studies have attributed this to differences in body composition, while others have attributed impaired insulin sensitivity as a cause of impaired glucose tolerance in women. We studied postprandial glucose metabolism in 120 men and 90 women after ingestion of a mixed meal. Rates of meal glucose appearance, endogenous glucose production, and glucose disappearance were calculated using a novel triple-tracer isotope dilution method. Insulin action and secretion were calculated using validated physiological models. While rate of meal glucose appearance was higher in women than men, rates of glucose disappearance were higher in elderly women than elderly men while young women had lower rates of glucose disappearance than young men. Hence, sex has an impact on postprandial glucose metabolism, and sex differences in carbohydrate metabolism may have important implications for approaches to prevent and manage diabetes in an individual.

  18. A Theoretical Analysis of Sex Differences In Same-Sex Friendships.

    Science.gov (United States)

    Barth, Robert J.; Kinder, Bill N.

    1988-01-01

    Investigates sex differences in same-sex friendships of 312 undergraduate students in terms of the intersection and social penetration model of relationship development, and Bem's theory of sex role orientation. Finds significant sex-related differences in depth, duration, and involvement. (FMW)

  19. Sex Therapy

    Science.gov (United States)

    Sex therapy Overview Sex therapy is a type of psychotherapy — a general term for treating mental health problems by talking with a mental health professional. Through sex therapy, you can address concerns about sexual function, ...

  20. Two component systems: physiological effect of a third component.

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

  1. Differential sex-specific effects of oxygen toxicity in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Zhang, Yuhao; Lingappan, Krithika

    2017-01-01

    Despite the well-established sex-specific differences in the incidence of bronchopulmonary dysplasia (BPD), the molecular mechanism(s) behind these are not completely understood. Pulmonary angiogenesis is critical for alveolarization and arrest in vascular development adversely affects lung development. Human neonatal umbilical vein endothelial cells (HUVECs) provide a robust in vitro model for the study of endothelial cell physiology and function. Male and Female HUVECs were exposed to room air (21% O 2 , 5% CO 2 ) or hyperoxia (95% O 2 , 5% CO 2 ) for up to 72 h. Cell viability, proliferation, H 2 O 2 production and angiogenesis were analyzed. Sex-specific differences in the expression of VEGFR2 and modulation of NF-kappa B pathway were measured. Male HUVECs have decreased survival, greater oxidative stress and impairment in angiogenesis compared to similarly exposed female cells. There is differential expression of VEGFR2 between male and female HUVECs and greater activation of the NF-kappa B pathway in female HUVECs under hyperoxic conditions. The results indicate that sex differences exist between male and female HUVECs in vitro after hyperoxia exposure. Since endothelial dysfunction has a major role in the pathogenesis of BPD, these differences could explain in part the mechanisms behind sex-specific differences in the incidence of this disease. - Highlights: • Cellular sex effects viability and oxidative stress in HUVECs exposed to hyperoxia. • Male HUVECs show greater impairment in angiogenesis compared to female cells. • Sex-specific modulation of VEGFR2 and the NF-kappaB pathway was noted.

  2. Temperature-dependent sex determination modulates cardiovascular maturation in embryonic snapping turtles Chelydra serpentina.

    Science.gov (United States)

    Alvine, Travis; Rhen, Turk; Crossley, Dane A

    2013-03-01

    We investigated sex differences in cardiovascular maturation in embryos of the snapping turtle Chelydra serpentina, a species with temperature-dependent sex determination. One group of eggs was incubated at 26.5°C to produce males. Another group of eggs was incubated at 26.5°C until embryos reached stage 17; eggs were then shifted to 31°C for 6 days to produce females, and returned to 26.5°C for the rest of embryogenesis. Thus, males and females were at the same temperature when autonomic tone was determined and for most of development. Cholinergic blockade increased resting blood pressure (P(m)) and heart rate (f(H)) in both sexes at 75% and 90% of incubation. However, the magnitude of the f(H) response was enhanced in males compared with females at 90% of incubation. β-adrenergic blockade increased P(m) at 75% of incubation in both sexes but had no effect at 90% of incubation. β-adrenergic blockade reduced f(H) at both time points but produced a stronger response at 90% versus 75% of incubation. We found that α-adrenergic blockade decreased P(m) in both sexes at 75% and 90% of incubation and decreased f(H) at 75% of incubation in both sexes. At 90% of incubation, f(H) decreased in females but not males. Although these data clearly demonstrate sexual dimorphism in the autonomic regulation of cardiovascular physiology in embryos, further studies are needed to test whether differences are caused by endocrine signals from gonads or by a hormone-independent temperature effect.

  3. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  4. The sex specific metabolic footprint of Oithona davisae

    Science.gov (United States)

    Heuschele, Jan; Nemming, Louise; Tolstrup, Lea; Kiørboe, Thomas; Nylund, Göran M.; Selander, Erik

    2016-11-01

    In pelagic copepods, the group representing the highest animal abundances on earth, males and females have distinct morphological and behavioural differences. In several species female pheromones are known to facilitate the mate finding process, and copepod exudates induce changes in physiology and behaviour in several phytoplankton species. Here we tested whether the sexual dimorphism in morphology and behaviour is mirrored in the exudate composition of males and females. We find differences in the exudate composition, with females seemingly producing more compounds. While we were able to remove the sex pheromones from the water by filtration through reverse phase solid phase extraction columns, we were not able to recover the active pheromone from the solid phase.

  5. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Thomas Schwitzer

    2016-01-01

    Full Text Available Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.

  6. Seed sexing revealed female bias in two Rumex species

    Directory of Open Access Journals (Sweden)

    Dagmara Kwolek

    2011-07-01

    Full Text Available Sex-ratio bias in seeds of dioecious Rumex species with sex chromosomes is an interesting and still unsettled issue. To resolve gender among seeds of R. acetosa and R. thyrsiflorus (two species with an XX/XY1Y2 sex chromosome system, this work applied a PCR-based method involving DNA markers located on Y chromosomes. Both species showed female-biased primary sex ratios, with female bias greater in R. acetosa than in R. thyrsiflorus. The observed predominance of female seeds is consistent with the view that the female biased sex ratios in Rumex are conditioned not only postzygotically but also prezygotically.

  7. Evidence of oligogenic sex determination in the apple snail Pomacea canaliculata.

    Science.gov (United States)

    Yusa, Yoichi; Kumagai, Natsumi

    2018-02-26

    A small number of genes may interact to determine sex, but few such examples have been demonstrated in animals, especially through comprehensive mating experiments. The highly invasive apple snail Pomacea canaliculata is gonochoristic and shows a large variation in brood sex ratio, and the involvement of multiple genes has been suggested for this phenomenon. We conducted mating experiments to determine whether their sex determination involves a few or many genes (i.e., oligogenic or polygenic sex determination, respectively). Full-sib females or males that were born from the same parents were mated to an adult of the opposite sex, and the brood sex ratios of the parents and their offspring were investigated. Analysis of a total of 4288 offspring showed that the sex ratios of offspring from the full-sib females were variable but clustered into only a few values. Similar patterns were observed for the full-sib males, although the effect was less clear because fewer offspring were used (n = 747). Notably, the offspring sex ratios of all full-sib females in some families were nearly 0.5 (proportion of males) with little variation. These results indicate that the number of genotypes of the full-sibs, and hence genes involved in sex determination, is small in this snail. Such oligogenic systems may be a major sex-determining system among animals, especially those with variable sex ratios.

  8. Sex-Specific Associations between Telomere Dynamics and Oxidative Status in Adult and Nestling Pied Flycatchers.

    Science.gov (United States)

    López-Arrabé, Jimena; Monaghan, Pat; Cantarero, Alejandro; Boner, Winnie; Pérez-Rodríguez, Lorenzo; Moreno, Juan

    Oxidative stress can contribute to an acceleration of telomere erosion, leading to cellular senescence and aging. Increased investment in reproduction is known to accelerate senescence, generally resulting in reduced future reproductive potential and survival. To better understand the role played by oxidative status and telomere dynamics in the conflict between maintenance and reproduction, it is important to determine how these factors are related in parents and their offspring. We investigated the relationship between oxidative status and telomere measurements in pied flycatchers (Ficedula hypoleuca). Total antioxidant status (TAS) in plasma, total levels of glutathione in red blood cells (RBCs), and oxidative damage in plasma lipids (malondialdehyde [MDA]) were assessed in both parents and nestlings. Telomeres were measured in RBCs in adults. Our results showed sex differences in oxidative variables in adults that are likely to be mediated by sex steroids, with testosterone and estrogens increasing and reducing, respectively, the production of reactive oxygen and nitrogen species. We found a negative association between telomere length (TL) and MDA in adults in the previous season. Moreover, TL was positively associated with TAS in females, while telomere shortening (ΔTL) correlated positively with MDA in males in the current year. These associations could be reflecting differences between sexes in reproductive physiology. We found a positive correlation between parental ΔTL and nestling MDA, an example of how parental physiological aging could affect offspring quality in terms of oxidative stress that highlights the constraints imposed by higher rates of ΔTL during reproduction and rearing.

  9. Interactive Effects of Culture and Sex Hormones on Sex Role Orientation

    Directory of Open Access Journals (Sweden)

    Belinda ePletzer

    2015-07-01

    Full Text Available Sex role orientation, i.e. a person’s masculinity or femininity, influences cognitive and emotional performance, like biological sex. While it is now widely accepted that sex differences are modulated by the hormonal status of female participants (menstrual cycle, hormonal contraceptive use, the question, whether hormonal status and sex hormones also modulate participants sex role orientation has hardly been addressed previously. The present study assessed sex role orientation and hormonal status as well as sex hormone levels in three samples of participants from two different cultures (Northern American, Middle European. Menstrual cycle phase did not affect participant’s masculinity or femininity, but had a significant impact on reference group. While women in their follicular phase (low levels of female sex hormones determined their masculinity and femininity in reference to men, women in their luteal phase (high levels of female sex hormones determined their masculinity and femininity in reference to women. Hormonal contraceptive users rated themselves as significantly more feminine and less masculine than naturally cycling women. Furthermore, the impact of biological sex on the factorial structure of sex role orientation as well as the relationship of estrogen to masculinity/femininity was modulated by culture. We conclude that culture and sex hormones interactively affect sex role orientation and hormonal status of participants should be controlled for when assessing masculinity and/or femininity.

  10. Sex Headaches

    Science.gov (United States)

    Sex headaches Overview Sex headaches are brought on by sexual activity — especially an orgasm. You may notice a dull ache in your head ... severe headache just before or during orgasm. Most sex headaches are nothing to worry about. But some ...

  11. Simultaneous acquisition of physiological data and nuclear medicine images

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Klein, H.A.; Orenstein, S.R.

    1988-01-01

    A technique has been developed that allows the simultaneous acquisition of both image and physiological data into a standard nuclear medicine computer system. The physiological data can be displayed along with the nuclear medicine images allowing temporal correlation between the two. This technique has been used to acquire images of gastroesophageal reflux simultaneously with the intraluminal esophageal pH. The resulting data are displayed either as a standard dynamic sequence with the physiological data appearing in a corner of the image or as condensed dynamic images

  12. Risk of epilepsy in opposite-sex and same-sex twins

    DEFF Research Database (Denmark)

    Mao, Yanyan; Ahrenfeldt, Linda Juel; Christensen, Kaare

    2018-01-01

    Background: There is a complex interaction between female and male sex hormones and the risk of epilepsy. Whether prenatal exposure to higher levels of sex hormones affects the development of epilepsy in childhood or later in life is not well known. The sex hormone environment of fetuses may...... be affected by the sex of the co-twin. We estimated the risk of epilepsy for twins with an opposite-sex (OS) co-twin compared with twins with a same-sex (SS) co-twin. Methods: From the Danish Twin Registry, we identified OS female twins (n = 11,078), SS female twins (n = 19,186), OS male twins (n = 11...

  13. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  14. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  15. Structure-function relations in physiology education: Where's the mechanism?

    Science.gov (United States)

    Lira, Matthew E; Gardner, Stephanie M

    2017-06-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.

  16. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides

    OpenAIRE

    Ling-Feng Miao; Fan Yang; Chun-Yu Han; Yu-Jin Pu; Yang Ding; Li-Jia Zhang

    2017-01-01

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of ph...

  17. Aging and sex hormones in males

    Science.gov (United States)

    Decaroli, Maria Chiara

    2017-01-01

    ABSTRACT Several large cohort studies have disclosed the trajectories of sex steroids changes overtime in men and their clinical significance. In men the slow, physiological decline of serum testosterone (T) with advancing age overlaps with the clinical condition of overt, pathological hypogonadism. In addition, the increasing number of comorbidities, together with the high prevalence of chronic diseases, all further contribute to the decrease of serum T concentrations in the aging male. For all these reasons both the diagnosis of late-onset hypogonadism (LOH) in men and the decision about starting or not T replacement treatment remain challenging. At present, the biochemical finding of T deficiency alone is not sufficient for diagnosing hypogonadism in older men. Coupling hypogonadal symptoms with documented low serum T represents the best strategy to refine the diagnosis of hypogonadism in older men and to avoid unnecessary treatments. PMID:27831823

  18. Sex dimorphism in seizure-controlling networks.

    Science.gov (United States)

    Giorgi, Fillippo Sean; Galanopoulou, Aristea S; Moshé, Solomon L

    2014-12-01

    Males and females show a different predisposition to certain types of seizures in clinical studies. Animal studies have provided growing evidence for sexual dimorphism of certain brain regions, including those that control seizures. Seizures are modulated by networks involving subcortical structures, including thalamus, reticular formation nuclei, and structures belonging to the basal ganglia. In animal models, the substantia nigra pars reticulata (SNR) is the best studied of these areas, given its relevant role in the expression and control of seizures throughout development in the rat. Studies with bilateral infusions of the GABA(A) receptor agonist muscimol have identified distinct roles of the anterior or posterior rat SNR in flurothyl seizure control, that follow sex-specific maturational patterns during development. These studies indicate that (a) the regional functional compartmentalization of the SNR appears only after the third week of life, (b) only the male SNR exhibits muscimol-sensitive proconvulsant effects which, in older animals, is confined to the posterior SNR, and (c) the expression of the muscimol-sensitive anticonvulsant effects become apparent earlier in females than in males. The first three postnatal days are crucial in determining the expression of the muscimol-sensitive proconvulsant effects of the immature male SNR, depending on the gonadal hormone setting. Activation of the androgen receptors during this early period seems to be important for the formation of this proconvulsant SNR region. We describe molecular/anatomical candidates underlying these age- and sex-related differences, as derived from in vitro and in vivo experiments, as well as by [(14)C]2-deoxyglucose autoradiography. These involve sex-specific patterns in the developmental changes in the structure or physiology or GABA(A) receptors or of other subcortical structures (e.g., locus coeruleus, hippocampus) that may affect the function of seizure-controlling networks

  19. The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress.

    Science.gov (United States)

    Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John

    2017-01-09

    Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An Evolutionary Framework for Understanding Sex Differences in Croatian Mortality Rates

    Directory of Open Access Journals (Sweden)

    Daniel J. Kruger

    2006-12-01

    Full Text Available Being male is the strongest demographic predictor of early mortality in Croatia. For every woman who dies between the ages of 15 and 34, three men die. Between the ages of 15 and 54, men are four times as likely as women to die from behavioral causes of death, such as accidents, homicides, and suicides. A causal explanation for sex differences in mortality must be based on an understanding of how sex differences were shaped by natural selection, and how those differences interact with environmental factors to create observed patterns and variations. In brief, males have been selected for riskier behavioral and physiological strategies than women, because of the greater variance and skew in male reproductive success. This paper examines the sex difference in Croatian mortality in three parts. First, we quantify the Croatian Male to Female Mortality Ratio (M:F MR for 9 major causes of death across age group to provide a richer understanding of the sex difference in mortality from a life history framework. Second, we compare the Croatian M:F MR from behavioral, internal, and all causes with that of the available world population to demonstrate how Croatian mortality can be understood as part of a universal pattern that is influenced by unique environmental context. Third, we investigate how the War of Independence in 1991-1995 affected mortality patterns though its impact on behavioral strategies and the physical embodiment of distress.

  1. Same Sex Marriage and the Perceived Assault on Opposite Sex Marriage

    OpenAIRE

    Dinno, Alexis; Whitney, Chelsea

    2013-01-01

    BACKGROUND: Marriage benefits both individuals and societies, and is a fundamental determinant of health. Until recently same sex couples have been excluded from legally recognized marriage in the United States. Recent debate around legalization of same sex marriage has highlighted for anti-same sex marriage advocates and policy makers a concern that allowing same sex couples to marry will lead to a decrease in opposite sex marriages. Our objective is to model state trends in opposite sex mar...

  2. The Stability of Same-Sex Cohabitation, Different-Sex Cohabitation, and Marriage

    Science.gov (United States)

    Lau, Charles Q.

    2012-01-01

    This study contributes to the emerging demographic literature on same-sex couples by comparing the level and correlates of union stability among 4 types of couples: (a) male same-sex cohabitation, (b) female same-sex cohabitation, (c) different-sex cohabitation, and (d) different-sex marriage. The author analyzed data from 2 British birth cohort…

  3. Computer support for physiological cell modelling using an ontology on cell physiology.

    Science.gov (United States)

    Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda

    2006-01-01

    The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.

  4. Physiological-Social Scores in Predicting Outcomes of Prehospital Internal Patients

    Directory of Open Access Journals (Sweden)

    Abbasali Ebrahimian

    2014-01-01

    Full Text Available The physiological-social modified early warning score system is a newly developed instrument for the identification of patients at risk. The aim of this study was to investigate the feasibility of using the physiological-social modified early warning score system for the identification of patients that needed prehospital emergency care. This prospective cohort study was conducted with 2157 patients. This instrument was used as a measure to detect critical illness in patients hospitalised in internal wards. Judgment by an emergency medicine specialist was used as a measure of standard. Data were analyzed by using receiver operating characteristics curves and the area under the curve with 95% confidence interval. The mean score of the physiological-social modified early warning score system was 2.71 ± 3.55. Moreover, 97.6% patients with the score ≥ 4 needed prehospital emergency services. The area under receiver operating characteristic curve was 0.738 (95% CI = 0.708–0.767. Emergency medical staffs can use PMEWS ≥ 4 to identify those patients hospitalised in the internal ward as at risk patients. The physiological-social modified early warning score system is suggested to be used for decision-making of emergency staff about internal patients’ wards in EMS situations.

  5. Sex during Pregnancy

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Sex During Pregnancy KidsHealth / For Parents / Sex During Pregnancy ... satisfying and safe sexual relationship during pregnancy. Is Sex During Pregnancy Safe? Sex is considered safe during ...

  6. (Patho)physiology of cross-sex hormone administration to transsexual people: the potential impact of male-female genetic differences

    NARCIS (Netherlands)

    Gooren, L.J.; Kreukels, B.P.C.; Lapauw, B.; Giltay, E.J.

    2015-01-01

    There is a limited body of knowledge of desired and undesired effects of cross-sex hormones in transsexual people. Little attention has been given to the fact that chromosomal configurations, 46,XY in male-to-female transsexuals subjects (MtoF) and 46,XX in female-to-male transsexual subjects

  7. Implantable Nanosensors: Towards Continuous Physiologic Monitoring

    OpenAIRE

    Ruckh, Timothy T.; Clark', Heather A.

    2013-01-01

    Continuous physiologic monitoring would add greatly to both home and clinical medical treatment for chronic conditions. Implantable nanosensors are a promising platform for designing continuous monitoring systems. This feature reviews design considerations and current approaches towards such devices.

  8. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Valbona Hoxha

    Full Text Available Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood-brain barrier (bbb to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood-brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb-specific G-protein coupled receptor moody and bbb-specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior.

  9. Support for the microgenderome invites enquiry into sex differences

    OpenAIRE

    Wallis, Amy; Butt, Henry; Ball, Michelle; Lewis, Donald P.; Bruck, Dorothy

    2016-01-01

    ABSTRACT The microgenderome defines the interaction between microbiota, sex hormones and the immune system. Our recent research inferred support for the microgenderome by showing sex differences in microbiota-symptom associations in a clinical sample of patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). This addendum expands upon the sex-specific pattern of associations that were observed. Interpretations are hypothesized in relation to genera versus species-level an...

  10. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  11. Sex trafficking and health care in Metro Manila: identifying social determinants to inform an effective health system response.

    Science.gov (United States)

    Williams, Timothy P; Alpert, Elaine J; Ahn, Roy; Cafferty, Elizabeth; Konstantopoulos, Wendy Macias; Wolferstan, Nadya; Castor, Judith Palmer; McGahan, Anita M; Burke, Thomas F

    2010-12-15

    This social science case study examines the sex trafficking of women and girls in Metro Manila through a public health lens. Through key informant interviews with 51 health care and anti-trafficking stakeholders in Metro Manila, this study reports on observations about sex trafficking in Metro Manila that provide insight into understanding of risk factors for sex trafficking at multiple levels of the social environment: individual (for example, childhood abuse), socio-cultural (for example, gender inequality and a "culture of migration"), and macro (for example, profound poverty caused, inter alia, by environmental degradation disrupting traditional forms of labor). It describes how local health systems currently assist sex-trafficking victims, and provides a series of recommendations, ranging from prevention to policy, for how health care might play a larger role in promoting the health and human rights of this vulnerable population. Copyright © 2010 Williams, Alpert, Ahn, Cafferty, Konstantopoulos, Wolferstan, Castor, McGahan, and Burke. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  12. Sex differences in cardiovascular and subjective stress reactions: prospective evidence in a realistic military setting.

    Science.gov (United States)

    Taylor, Marcus K; Larson, Gerald E; Hiller Lauby, Melissa D; Padilla, Genieleah A; Wilson, Ingrid E; Schmied, Emily A; Highfill-McRoy, Robyn M; Morgan, Charles A

    2014-01-01

    Evidence points to heightened physiological arousal in response to acute stress exposure as both a prospective indicator and a core characteristic of posttraumatic stress disorder (PTSD). Because females may be at higher risk for PTSD development, it is important to evaluate sex differences in acute stress reactions. This study characterized sex differences in cardiovascular and subjective stress reactions among military survival trainees. One hundred and eighty-five military members (78% males) were studied before, during, and 24 h after stressful mock captivity. Cardiovascular (heart rate [HR], systolic blood pressure [SBP], diastolic blood pressure [DBP]) and dissociative states were measured at all three time points. Psychological impact of mock captivity was assessed during recovery. General linear modeling with repeated measures evaluated sex differences for each cardiovascular endpoint, and causal steps modeling was used to explore interrelationships among sex, cardiovascular reactions and psychological impact of mock captivity. Although females had lower SBP than males at all three time points, the difference was most pronounced at baseline and during stress. Accordingly, females showed greater residual elevation in SBP during recovery. Females had lower DBP at all three time points. In addition, females reported greater psychological impact of mock captivity than males. Exploratory causal steps modeling suggested that stress-induced HR may partially mediate the effect of sex on psychological impact of mock captivity. In conclusion, this study demonstrated sex-specific cardiovascular stress reactions in military personnel, along with greater psychological impact of stress exposure in females. This research may elucidate sex differences in PTSD development.

  13. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    Science.gov (United States)

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  14. Clinical Physiology: A Successful Academic and Clinical Discipline is Threatened in Sweden

    Science.gov (United States)

    Arheden, Hakan

    2009-01-01

    Clinical physiologists in Sweden are physicians (the majority with a PhD degree) with thorough training in system physiology and pathophysiology. They investigate patients in a functional approach and are engaged in basic and applied physiology teaching and research. In 1954, clinical physiology was founded as an independent academic and clinical…

  15. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids and hippocampus

    Directory of Open Access Journals (Sweden)

    Aarthi Raksha Gobinath

    2015-01-01

    Full Text Available Sex differences exist in vulnerability, symptoms and treatment of many neuropsychiatric disorders. In this review we discuss both preclinical and clinical research that investigates how sex influences depression endophenotypes at the behavioral, neuroendocrine, and neural levels across the lifespan. Chronic exposure to stress is a risk factor for depression and we discuss how stress during the prenatal, postnatal, and adolescent periods differentially affects males and females depending on the method of stress and metric examined. Given that the integrity of the hippocampus is compromised in depression, we specifically focus on sex differences in how hippocampal plasticity is affected by stress and depression across the lifespan. In addition, we examine how female physiology predisposes depression in adulthood, specifically in postpartum and perimenopausal periods. Finally, we discuss the underrepresentation of women in both preclinical and clinical research and how this limits our understanding of sex differences in vulnerability, presentation, and treatment of depression.

  16. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids, and hippocampus

    Science.gov (United States)

    Gobinath, Aarthi R.; Mahmoud, Rand; Galea, Liisa A.M.

    2015-01-01

    Sex differences exist in vulnerability, symptoms, and treatment of many neuropsychiatric disorders. In this review, we discuss both preclinical and clinical research that investigates how sex influences depression endophenotypes at the behavioral, neuroendocrine, and neural levels across the lifespan. Chronic exposure to stress is a risk factor for depression and we discuss how stress during the prenatal, postnatal, and adolescent periods differentially affects males and females depending on the method of stress and metric examined. Given that the integrity of the hippocampus is compromised in depression, we specifically focus on sex differences in how hippocampal plasticity is affected by stress and depression across the lifespan. In addition, we examine how female physiology predisposes depression in adulthood, specifically in postpartum and perimenopausal periods. Finally, we discuss the underrepresentation of women in both preclinical and clinical research and how this limits our understanding of sex differences in vulnerability, presentation, and treatment of depression. PMID:25610363

  17. Sex determines effect of physical activity on diet preference: Association of striatal opioids and gut microbiota composition.

    Science.gov (United States)

    Lee, Jenna R; Muckerman, Julie E; Wright, Anna M; Davis, Daniel J; Childs, Tom E; Gillespie, Catherine E; Vieira-Potter, Victoria J; Booth, Frank W; Ericsson, Aaron C; Will, Matthew J

    2017-09-15

    Previous studies suggest an interaction between the level of physical activity and diet preference. However, this relationship has not been well characterized for sex differences that may exist. The present study examined the influence of sex on diet preference in male and female Wistar rats that were housed under either sedentary (no wheel access) (SED) or voluntary wheel running access (RUN) conditions. Following a 1 week acclimation period to these conditions, standard chow was replaced with concurrent ad libitum access to a choice of 3 pelleted diets (high-fat, high-sucrose, and high-corn starch) in the home cage. SED and RUN conditions remained throughout the next 4 week diet preference assessment period. Body weight, running distance, and intake of each diet were measured daily. At the conclusion of the 4 week diet preference test, animals were sacrificed and brains were collected for mRNA analysis. Fecal samples were also collected before and after the 4 week diet preference phase to characterize microbiota composition. Results indicate sex dependent interactions between physical activity and both behavioral and physiological measures. Females in both RUN and SED conditions preferred the high-fat diet, consuming significantly more high-fat diet than either of the other two diets. While male SED rats also preferred the high-fat diet, male RUN rats consumed significantly less high-fat diet than the other groups, instead preferring all three diets equally. There was also a sex dependent influence of physical activity on both reward related opioid mRNA expression in the ventral striatum and the characterization of gut microbiota. The significant sex differences in response to physical activity observed through both behavioral and physiological measures suggest potential motivational or metabolic difference between males and females. The findings highlight the necessity for further exploration between male and female response to physical activity and feeding

  18. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy

    Science.gov (United States)

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; (Sam) Ma, Zhanshan

    2016-12-01

    There are three sex ratio strategies (SRS) in nature—male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton’s local mate competition (LMC) and Clark’s local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC & LRC) in the field of SRS research.

  19. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    Science.gov (United States)

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase. © 2014 Japanese Society of Animal Science.

  20. The sensitivity of the child to sex steroids: possible impact of exogenous estrogens

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Juul, Anders; Leffers, Henrik

    2006-01-01

    to estradiol and may respond with increased growth and/or breast development even at serum levels below the current detection limits; (iii) no threshold has been established, below which no hormonal effects can be seen in children exposed to exogenous steroids or endocrine disruptors; (iv) changes in hormone...... levels during fetal and prepubertal development may have severe effects in adult life and (v) the daily production rates of sex steroids in children estimated by the Food and Drug Administration in 1999 and still used in risk assessments are highly overestimated and should be revised. Because no lower...... and precocious puberty in girls. In this article, recent literature on sex steroid levels and their physiological roles during childhood is reviewed. It is concluded that (i) circulating levels of estradiol in prepubertal children are lower than originally claimed; (ii) children are extremely sensitive...