WorldWideScience

Sample records for physical processes modeling

  1. Composing Models of Geographic Physical Processes

    Science.gov (United States)

    Hofer, Barbara; Frank, Andrew U.

    Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.

  2. Physical and mathematical modelling of extrusion processes

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.

    2000-01-01

    The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...

  3. Physics at a 100 TeV pp Collider: Standard Model Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mangano, M. L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zanderighi, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Aguilar Saavedra, J. A. [Univ. of Granada (Spain); Alekhin, S. [Univ. of Hamburg (Germany). Inst. for Theoretical Physics; Inst. for High Energy Physics (IHEP), Moscow (Russian Federation); Badger, S. [Univ. of Edinburgh, Scotland (United Kingdom); Bauer, C. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Becher, T. [Univ. Bern (Switzerland); Bertone, V. [Univ. of Oxford (United Kingdom); Bonvini, M. [Univ. of Oxford (United Kingdom); Boselli, S. [Univ. of Pavia (Italy); Bothmann, E. [Gottingen Univ. (Germany); Boughezal, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Cacciari, M. [Univ. Paris Diderot (France); Sorbonne Univ., Paris (France); Carloni Calame, C M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Caola, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Campbell, J. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Carrazza, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiesa, M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Cieri, L. [Univ. of Zurich (Switzerland); Cimaglia, F. [Univ. degli Studi di Milano (Italy); Febres Cordero, F. [Physikalisches Inst., Freiburg (Germany); Ferrarese, P. [Gottingen Univ. (Germany); D' Enterria, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ferrera, G. [Univ. degli Studi di Milano (Italy); Garcia i Tormo, X. [Univ. Bern (Switzerland); Garzelli, M. V. [Univ. of Hamburg (Germany); Germann, E. [Monash Univ., Melbourne, VIC (Australia); Hirschi, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Han, T. [Univ. of Pittsburgh, PA (United States); Ita, H. [Physikalisches Inst., Freiburg (Germany); Jager, B. [Univ. of Tubingen (Germany); Kallweit, S. [Johannes Gutenberg Univ., Mainz (Germany); Karlberg, A. [Univ. of Oxford (United Kingdom); Kuttimalai, S. [Durham Univ. (United Kingdom); Krauss, F. [Durham Univ. (United Kingdom); Larkoski, A. J. [Harvard Univ., Cambridge, MA (United States); Lindert, J. [Univ. of Zurich (Switzerland); Luisoni, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Maierhofer, P. [Univ. of Freiburg (Germany); Mattelaer, O. [Durham Univ. (United Kingdom); Martinez, H. [Univ. of Pavia (Italy); Moch, S. [Univ. of Hamburg (Germany); Montagna, G. [Univ. of Pavia (Italy); Moretti, M. [Univ. of Ferrara (Italy); Nason, P. [Univ. of Milano (Italy); Nicrosini, O. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Oleari, C. [Univ. of Milano (Italy); Pagani, D. [Univ. Catholique de Louvain (Belgium); Papaefstathiou, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Petriello, F. [Northwestern Univ., Evanston, IL (United States); Piccinini, F. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Pierini, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pierog, T. [Karlsruhe Inst. of Technology (KIT) (Germany); Pozzorini, S. [Univ. of Zurich (Switzerland); Re, E. [National Centre for Scientific Research (CNRS), Annecy-le-Vieux (France). Lab. of Annecy-le-Vieux for Theoretical Physics (LAPTh); Robens, T. [Technische Universitat Dresden (Germany); Rojo, J. [Univ. of Oxford (United Kingdom); Ruiz, R. [Durham Univ. (United Kingdom); Sakurai, K. [Durham Univ. (United Kingdom); Salam, G. P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salfelder, L. [Univ. of Tubingen (Germany); Schonherr, M. [Univ. of Ferrara (Italy); Schulze, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schumann, S. [Univ. Gottingen (Germany); Selvaggi, M. [Univ. Catholique de Louvain (Belgium); Shivaji, A. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Siodmok, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Polish Academy of Sciences (PAS), Krakow (Poland); Skands, P. [Monash Univ., Melbourne, VIC (Australia); Torrielli, P. [Univ. of Torino (Italy); Tramontano, F. [Univ. of Napoli (Italy); Tsinikos, I. [Univ. Catholique de Louvain (Belgium); Tweedie, B. [Univ. of Pittsburgh, PA (United States); Vicini, A. [Univ. degli Studi di Milano (Italy); Westhoff, S. [Heidelberg Univ. (Germany); Zaro, M. [Sorbonne Univ., Paris (France); Zeppenfeld, D. [Forschungszentrum Karlsruhe (Germany)

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  4. Graphene growth process modeling: a physical-statistical approach

    Science.gov (United States)

    Wu, Jian; Huang, Qiang

    2014-09-01

    As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical-statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.

  5. 3D physical modeling for patterning process development

    Science.gov (United States)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  6. Physically based modelling and optimal operation for product drying during post-harvest processing.

    NARCIS (Netherlands)

    Boxtel, van A.J.B.; Lukasse, L.; Farkas, I.; Rendik, Z.

    1996-01-01

    The development of new procedures for crop production and post-harvest processing requires models. Models based on physical backgrounds are most useful for this purpose because of their extrapolation potential. An optimal procedure is developed for alfalfa drying using a physical model. The model

  7. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  8. Didactical-Scientific Modeling: integrating experimental activities and the process of scientific modeling in the teaching of Physics

    Directory of Open Access Journals (Sweden)

    Leonardo Albuquerque Heidemann

    2016-04-01

    Full Text Available The dissociated way with which the theory and practice are often treated in Physics teaching contributes to students' difficulties in using scientific knowledge to represent real events, which are not idealized situations as the events presented in most textbook problems. Considering that the process of scientific modeling is of fundamental importance for students to learn Science, about Science and how to do Science, Brandão, Araujo and Veit, supported by Vergnaud's Theory of Conceptual Fields and by Bunge's concept of scientific modeling, propose a theoretical-methodological framework for modeling in Physics Education named Didactical-Scientific Modeling (DSM. The authors defend the thesis that it is possible to consider the process of scientific modeling as a conceptual field underlying the specific conceptual fields of Physics. They elucidate knowledge associated to the facing of problems that involve the use, exploration and validation of didactical versions of scientific models. However, the goal of this framework is not to explain how the concepts related to empirical testability are connected to scientific modeling concepts. In order to fill this gap, we present in this article an expansion of this theoretical-methodological framework based on Bunge's concepts on contrasting scientific ideas. In this regard, we insert experimental work concepts in the conceptual field associated to the process of didactical-scientific modeling. Lastly, we exemplify its use in order to support the design and execution of experimental activities focused on the scientific-didactical process, and we also discuss some implications for future research in Physics Education.

  9. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    Science.gov (United States)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  10. A Model of the Creative Process Based on Quantum Physics and Vedic Science.

    Science.gov (United States)

    Rose, Laura Hall

    1988-01-01

    Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…

  11. HSP v2: Haptic Signal Processing with Extensions for Physical Modeling

    DEFF Research Database (Denmark)

    Overholt, Daniel; Kontogeorgakopoulos, Alexandros; Berdahl, Edgar

    2010-01-01

    The Haptic Signal Processing (HSP) platform aims to enable musicians to easily design and perform with digital haptic musical instruments [1]. In this paper, we present some new objects introduced in version v2 for modeling of musical dynamical systems such as resonators and vibrating strings. To....... To our knowledge, this is the first time that these diverse physical modeling elements have all been made available for a modular, real-time haptics platform....

  12. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar-Saavedra, Juan Antonio; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  13. Analysis of metal forming processes by using physical modeling and new plastic similarity condition

    International Nuclear Information System (INIS)

    Gronostajski, Z.; Hawryluk, M.

    2007-01-01

    In recent years many advances have been made in numerical methods, for linear and non-linear problems. However the success of them depends very much on the correctness of the problem formulation and the availability of the input data. Validity of the theoretical results can be verified by an experiment using the real or soft materials. An essential reduction of time and costs of the experiment can be obtained by using soft materials, which behaves in a way analogous to that of real metal during deformation. The advantages of using of the soft materials are closely connected with flow stress 500 to 1000 times lower than real materials. The accuracy of physical modeling depend on the similarity conditions between physical model and real process. The most important similarity conditions are materials similarity in the range of plastic and elastic deformation, geometrical, frictional and thermal similarities. New original plastic similarity condition for physical modeling of metal forming processes is proposed in the paper. It bases on the mathematical description of similarity of the flow stress curves of soft materials and real ones

  14. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-01

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  15. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez-Rivera, Efrain [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holm, Elizabeth Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States); Patterson, Burton R. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Homer, Eric R. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  16. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-01-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  17. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-05-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  18. DEVELOPMENT OF SCIENCE PROCESS SKILLS STUDENTS WITH PROJECT BASED LEARNING MODEL- BASED TRAINING IN LEARNING PHYSICS

    Directory of Open Access Journals (Sweden)

    Ratna Malawati

    2016-06-01

    Full Text Available This study aims to improve the physics Science Process Skills Students on cognitive and psychomotor aspects by using model based Project Based Learning training.The object of this study is the Project Based Learning model used in the learning process of Computationa Physics.The method used is classroom action research through two learning cycles, each cycle consisting of the stages of planning, implementation, observation and reflection. In the first cycle of treatment with their emphasis given training in the first phase up to third in the model Project Based Learning, while the second cycle is given additional treatment with emphasis discussion is collaboration in achieving the best results for each group of products. The results of data analysis showed increased ability to think Students on cognitive and Science Process Skills in the psychomotor.

  19. Development of the physical model

    International Nuclear Information System (INIS)

    Liu Zunqi; Morsy, Samir

    2001-01-01

    Full text: The Physical Model was developed during Program 93+2 as a technical tool to aid enhanced information analysis and now is an integrated part of the Department's on-going State evaluation process. This paper will describe the concept of the Physical Model, including its objectives, overall structure and the development of indicators with designated strengths, followed by a brief description of using the Physical Model in implementing the enhanced information analysis. The work plan for expansion and update of the Physical Model is also presented at the end of the paper. The development of the Physical Model is an attempt to identify, describe and characterize every known process for carrying out each step necessary for the acquisition of weapons-usable material, i.e., all plausible acquisition paths for highly enriched uranium (HEU) and separated plutonium (Pu). The overall structure of the Physical Model has a multilevel arrangement. It includes at the top level all the main steps (technologies) that may be involved in the nuclear fuel cycle from the source material production up to the acquisition of weapons-usable material, and then beyond the civilian fuel cycle to the development of nuclear explosive devices (weaponization). Each step is logically interconnected with the preceding and/or succeeding steps by nuclear material flows. It contains at its lower levels every known process that is associated with the fuel cycle activities presented at the top level. For example, uranium enrichment is broken down into three branches at the second level, i.e., enrichment of UF 6 , UCl 4 and U-metal respectively; and then further broken down at the third level into nine processes: gaseous diffusion, gas centrifuge, aerodynamic, electromagnetic, molecular laser (MLIS), atomic vapor laser (AVLIS), chemical exchange, ion exchange and plasma. Narratives are presented at each level, beginning with a general process description then proceeding with detailed

  20. Problems in physical modeling of magnetic materials

    International Nuclear Information System (INIS)

    Della Torre, E.

    2004-01-01

    Physical modeling of magnetic materials should give insights into the basic processes involved and should be able to extrapolate results to new situations that the models were not necessarily intended to solve. Thus, for example, if a model is designed to describe a static magnetization curve, it should also be able to describe aspects of magnetization dynamics. Both micromagnetic modeling and Preisach modeling, the two most popular magnetic models, fulfill this requirement, but in the process of fulfilling this requirement, they both had to be modified in some ways. Hence, we should view physical modeling as an iterative process whereby we start with some simple assumptions and refine them as reality requires. In the process of refining these assumptions, we should try to appeal to physical arguments for the modifications, if we are to come up with good models. If we consider phenomenological models, on the other hand, that is as axiomatic models requiring no physical justification, we can follow them logically to see the end and examine the consequences of their assumptions. In this way, we can learn the properties, limitations and achievements of the particular model. Physical and phenomenological models complement each other in furthering our understanding of the behavior of magnetic materials

  1. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?

    Science.gov (United States)

    Critchell, Kay; Lambrechts, Jonathan

    2016-03-01

    Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.

  2. Excellence in Physics Education Award: Modeling Theory for Physics Instruction

    Science.gov (United States)

    Hestenes, David

    2014-03-01

    All humans create mental models to plan and guide their interactions with the physical world. Science has greatly refined and extended this ability by creating and validating formal scientific models of physical things and processes. Research in physics education has found that mental models created from everyday experience are largely incompatible with scientific models. This suggests that the fundamental problem in learning and understanding science is coordinating mental models with scientific models. Modeling Theory has drawn on resources of cognitive science to work out extensive implications of this suggestion and guide development of an approach to science pedagogy and curriculum design called Modeling Instruction. Modeling Instruction has been widely applied to high school physics and, more recently, to chemistry and biology, with noteworthy results.

  3. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  4. A longitudinal investigation of older adults' physical activity: Testing an integrated dual-process model.

    Science.gov (United States)

    Arnautovska, Urska; Fleig, Lena; O'Callaghan, Frances; Hamilton, Kyra

    2017-02-01

    To assess the effects of conscious and non-conscious processes for prediction of older adults' physical activity (PA), we tested a dual-process model that integrated motivational (behavioural intention) and volitional (action planning and coping planning) processes with non-conscious, automatic processes (habit). Participants (N = 215) comprised community-dwelling older adults (M = 73.8 years). A longitudinal design was adopted to investigate direct and indirect effects of intentions, habit strength (Time 1), and action planning and coping planning (Time 2) on PA behaviour (Time 3). Structural equation modelling was used to evaluate the model. The model provided a good fit to the data, accounting for 44% of the variance in PA behaviour at Time 3. PA was predicted by intentions, action planning, and habit strength, with action planning mediating the intention-behaviour relationship. An effect of sex was also found where males used fewer planning strategies and engaged in more PA than females. By investigating an integration of conscious and non-conscious processes, this study provides a novel understanding of older adults' PA. Interventions aiming to promote PA behaviour of older adults should target the combination of psychological processes.

  5. Assessing physical models used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Computer codes used to predict the behaviour of aerosols in water-cooled reactor containment buildings after severe accidents contain a variety of physical models. Special models are in place for describing agglomeration processes where small aerosol particles combine to form larger ones. Other models are used to calculate the rates at which aerosol particles are deposited on building structures. Condensation of steam on aerosol particles is currently a very active area in aerosol modelling. In this paper, the physical models incorporated in the current available international codes for all of these processes are reviewed and documented. There is considerable variation in models used in different codes, and some uncertainties exist as to which models are superior. 28 refs

  6. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  7. A study on the intrusion model by physical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    In physical modeling, the actual phenomena of seismic wave propagation are directly measured like field survey and furthermore the structure and physical properties of subsurface can be known. So the measured datasets from physical modeling can be very desirable as input data to test the efficiency of various inversion algorithms. An underground structure formed by intrusion, which can be often seen in seismic section for oil exploration, is investigated by physical modeling. The model is characterized by various types of layer boundaries with steep dip angle. Therefore, this physical modeling data are very available not only to interpret seismic sections for oil exploration as a case history, but also to develop data processing techniques and estimate the capability of software such as migration, full waveform inversion. (author). 5 refs., 18 figs.

  8. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    Science.gov (United States)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  9. Greenhouse climate : from physical processes to a dynamic model

    OpenAIRE

    Bot, G.P.A.

    1983-01-01

    In this thesis greenhouse climate has been studied as the set of environmental conditions in a greenhouse in so far as they affect crop growth and development. In chapter 2 this set has been defined in terms of temperatures and vapour pressures. Moreover we have indicated which physical processes co-operate in the greenhouse. So the dependency of the greenhouse climate on the outside weather, the physical properties of the greenhouse construction and the way ventilation and heating is perform...

  10. Using Machine Learning as a fast emulator of physical processes within the Met Office's Unified Model

    Science.gov (United States)

    Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.

    2017-12-01

    The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.

  11. Engaging Students In Modeling Instruction for Introductory Physics

    Science.gov (United States)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  12. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  13. Review of searches for rare processes and physics beyond the Standard Model at HERA

    International Nuclear Information System (INIS)

    South, David M.; Turcato, Monica

    2016-01-01

    The electron-proton collisions collected by the H1 and ZEUS experiments at HERA comprise a unique particle physics data set, and a comprehensive range of measurements has been performed to provide new insight into the structure of the proton. The high centre of mass energy at HERA has also allowed rare processes to be studied, including the production of W and Z 0 bosons and events with multiple leptons in the final state. The data have also opened up a new domain to searches for physics beyond the Standard Model including contact interactions, leptoquarks, excited fermions and a number of supersymmetric models. This review presents a summary of such results, where the analyses reported correspond to an integrated luminosity of up to 1 fb -1 , representing the complete data set recorded by the H1 and ZEUS experiments. (orig.)

  14. Declarative modeling for process supervision

    International Nuclear Information System (INIS)

    Leyval, L.

    1989-01-01

    Our work is a contribution to computer aided supervision of continuous processes. It is inspired by an area of Artificial Intelligence: qualitative physics. Here, supervision is based on a model which continuously provides operators with a synthetic view of the process; but this model is founded on general principles of control theory rather than on physics. It involves concepts such as high gain or small time response. It helps in linking temporally the evolution of various variables. Moreover, the model provides predictions of the future behaviour of the process, which allows action advice and alarm filtering. This should greatly reduce the famous cognitive overload associated to any complex and dangerous evolution of the process

  15. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  16. Greenhouse climate : from physical processes to a dynamic model

    NARCIS (Netherlands)

    Bot, G.P.A.

    1983-01-01

    In this thesis greenhouse climate has been studied as the set of environmental conditions in a greenhouse in so far as they affect crop growth and development. In chapter 2 this set has been defined in terms of temperatures and vapour pressures. Moreover we have indicated which physical processes

  17. Model reduction and physical understanding of slowly oscillating processes : the circadian cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Goussis, Dimitris A. (Ploutonos 7, Palaio Faliro, Greece); Najm, Habib N.

    2006-01-01

    A differential system that models the circadian rhythm in Drosophila is analyzed with the computational singular perturbation (CSP) algorithm. Reduced nonstiff models of prespecified accuracy are constructed, the form and size of which are time-dependent. When compared with conventional asymptotic analysis, CSP exhibits superior performance in constructing reduced models, since it can algorithmically identify and apply all the required order of magnitude estimates and algebraic manipulations. A similar performance is demonstrated by CSP in generating data that allow for the acquisition of physical understanding. It is shown that the processes driving the circadian cycle are (i) mRNA translation into monomer protein, and monomer protein destruction by phosphorylation and degradation (along the largest portion of the cycle); and (ii) mRNA synthesis (along a short portion of the cycle). These are slow processes. Their action in driving the cycle is allowed by the equilibration of the fastest processes; (1) the monomer dimerization with the dimer dissociation (along the largest portion of the cycle); and (2) the net production of monomer+dimmer proteins with that of mRNA (along the short portion of the cycle). Additional results (regarding the time scales of the established equilibria, their origin, the rate limiting steps, the couplings among the variables, etc.) highlight the utility of CSP for automated identification of the important underlying dynamical features, otherwise accessible only for simple systems whose various suitable simplifications can easily be recognized.

  18. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  19. Physical Model Method for Seismic Study of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Bogdan Roşca

    2008-01-01

    Full Text Available The study of the dynamic behaviour of concrete dams by means of the physical model method is very useful to understand the failure mechanism of these structures to action of the strong earthquakes. Physical model method consists in two main processes. Firstly, a study model must be designed by a physical modeling process using the dynamic modeling theory. The result is a equations system of dimensioning the physical model. After the construction and instrumentation of the scale physical model a structural analysis based on experimental means is performed. The experimental results are gathered and are available to be analysed. Depending on the aim of the research may be designed an elastic or a failure physical model. The requirements for the elastic model construction are easier to accomplish in contrast with those required for a failure model, but the obtained results provide narrow information. In order to study the behaviour of concrete dams to strong seismic action is required the employment of failure physical models able to simulate accurately the possible opening of joint, sliding between concrete blocks and the cracking of concrete. The design relations for both elastic and failure physical models are based on dimensional analysis and consist of similitude relations among the physical quantities involved in the phenomenon. The using of physical models of great or medium dimensions as well as its instrumentation creates great advantages, but this operation involves a large amount of financial, logistic and time resources.

  20. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  1. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  2. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  3. The effectiveness of CCDSR learning model to improve skills of creating lesson plan and worksheet science process skill (SPS) for pre-service physics teacher

    Science.gov (United States)

    Limatahu, I.; Suyatno; Wasis; Prahani, B. K.

    2018-03-01

    In the previous research, CCDSR (Condition, Construction, Development, Simulation, and Reflection) learning model has been developed to improve science process skills for pre-service physics teacher. This research is aimed to analyze the effectiveness of CCDSR learning model towards the improvement skills of creating lesson plan and worksheet of Science Process Skill (SPS) for pre-service physics teacher in academic year 2016/2017. This research used one group pre-test and post-test design on 12 pre-service physics teacher at Physics Education, University of Khairun. Data collection was conducted through test and observation. Creating lesson plan and worksheet SPS skills of pre-service physics teacher measurement were conducted through Science Process Skill Evaluation Sheet (SPSES). The data analysis technique was done by Wilcoxon t-test and n-gain. The CCDSR learning model consists of 5 phases, including (1) Condition, (2) Construction, (3) Development, (4) Simulation, and (5) Reflection. The results showed that there was a significant increase in creating lesson plan and worksheet SPS skills of pre-service physics teacher at α = 5% and n-gain average of moderate category. Thus, the CCDSR learning model is effective for improving skills of creating lesson plan and worksheet SPS for pre-service physics teacher.

  4. Physical models for classroom teaching in hydrology

    Directory of Open Access Journals (Sweden)

    A. Rodhe

    2012-09-01

    Full Text Available Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.

  5. Differences in spatial understanding between physical and virtual models

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2014-03-01

    Full Text Available In the digital age, physical models are still used as major tools in architectural and urban design processes. The reason why designers still use physical models remains unclear. In addition, physical and 3D virtual models have yet to be differentiated. The answers to these questions are too complex to account for in all aspects. Thus, this study only focuses on the differences in spatial understanding between physical and virtual models. In particular, it emphasizes on the perception of scale. For our experiment, respondents were shown a physical model and a virtual model consecutively. A questionnaire was then used to ask the respondents to evaluate these models objectively and to establish which model was more accurate in conveying object size. Compared with the virtual model, the physical model tended to enable quicker and more accurate comparisons of building heights.

  6. Process modelling on a canonical basis[Process modelling; Canonical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, Volker

    2006-12-20

    Based on an equation oriented solving strategy, this thesis investigates a new approach to process modelling. Homogeneous thermodynamic state functions represent consistent mathematical models of thermodynamic properties. Such state functions of solely extensive canonical state variables are the basis of this work, as they are natural objective functions in optimisation nodes to calculate thermodynamic equilibrium regarding phase-interaction and chemical reactions. Analytical state function derivatives are utilised within the solution process as well as interpreted as physical properties. By this approach, only a limited range of imaginable process constraints are considered, namely linear balance equations of state variables. A second-order update of source contributions to these balance equations is obtained by an additional constitutive equation system. These equations are general dependent on state variables and first-order sensitivities, and cover therefore practically all potential process constraints. Symbolic computation technology efficiently provides sparsity and derivative information of active equations to avoid performance problems regarding robustness and computational effort. A benefit of detaching the constitutive equation system is that the structure of the main equation system remains unaffected by these constraints, and a priori information allows to implement an efficient solving strategy and a concise error diagnosis. A tailor-made linear algebra library handles the sparse recursive block structures efficiently. The optimisation principle for single modules of thermodynamic equilibrium is extended to host entire process models. State variables of different modules interact through balance equations, representing material flows from one module to the other. To account for reusability and encapsulation of process module details, modular process modelling is supported by a recursive module structure. The second-order solving algorithm makes it

  7. Physical and chemical characterization of bioaerosols - Implications for nucleation processes

    Science.gov (United States)

    Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G.

    The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the

  8. On Process Modelling Using Physical Oriented And Phenomena Based Principles

    Directory of Open Access Journals (Sweden)

    Mihai Culea

    2000-12-01

    Full Text Available This work presents a modelling framework based on phenomena description of the process. The approach is taken to easy understand and construct process model in heterogeneous possible distributed modelling and simulation environments. A simplified case study of a heat exchanger is considered and Modelica modelling language to check the proposed concept. The partial results are promising and the research effort will be extended in a computer aided modelling environment based on phenomena.

  9. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  10. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    Science.gov (United States)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗CO2 is calculated using the

  11. Programs for low-energy nuclear physics data processing

    International Nuclear Information System (INIS)

    Antuf'ev, Yu.P.; Dejneko, A.S.; Ekhichev, O.I.; Kuz'menko, V.A.; Mashkarov, Yu.G.; Nemashkalo, B.A.; Skakun, E.A.; Storizhko, V.E.; Shlyakhov, N.A.

    1978-01-01

    Purpose of six computer programs developed in KhPTI of AN USSR for the processing of the experimental data on low energy nuclear physics ia friendly described. The programs are written in Algol-60 language. They are applied to some types of nuclear reactions and permit to process differential cross sections and γ spectra, to compute statistical tensors and excitation functions as well as to analyze some processes by means of theoretical models

  12. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  13. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    Science.gov (United States)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  14. Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis

    DEFF Research Database (Denmark)

    Green, Sara; Batterman, Robert

    2017-01-01

    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism ...... modeling in developmental biology. In such contexts, the relation between models at different scales and from different disciplines is neither reductive nor completely autonomous, but interdependent....... from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom......-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the “tyranny of scales” problem present a challenge to reductive explanations in both physics and biology. The problem refers to the scale...

  15. [Modern model of organization of pedagogical process in physical education of students in universities

    OpenAIRE

    Bashavets, N.A.

    2016-01-01

    Current studies are characterized by active development of models of physical education students (sectional, professionally oriented, individual, improving traditional etc.). The author, based on analysis of international experience, tryed to determine the most appropriate model of physical education in Ukrainian universities

  16. A Physical Analog Model of Strike-Slip Faulting for Model-Based Inquiry in the Classroom

    Science.gov (United States)

    Curren, I. S.; Glesener, G.

    2013-12-01

    Geoscience educators often use qualitative physical analog models to demonstrate natural processes; while these are effective teaching tools, they often neglect the fundamental scientific practices that make up the core of scientific work. Physical analog models with dynamic properties that can be manipulated and measured quantitatively in real-time, on the other hand, can give students the opportunity to explore, observe and empirically test their own ideas and hypotheses about the relevant target concepts within a classroom setting. Providing classroom content for inquiry, such as a hands-on physical analog model, which fosters students' production and refinement of their mental models in participatory and discursive activities have been argued by many education researchers to help students build a deeper understanding of science and scientific reasoning. We present a physical analog model that was originally developed by UCLA's Modeling and Educational Demonstrations Laboratory (MEDL) for the purpose of engaging students in the study of elastic rebound on a strike-slip fault; it was later modified to accommodate research of complex tectonic processes associated with strike-slip faulting, which are currently debated by scientists in both the geology and geophysics disciplines. During experimentation, it became clear that this new design could be used as a relevant resource for inquiry from which students would be able to make and discuss real-time empirical measurements and observations to help them infer causal accounts of theoretical and/or unobservable dynamic processes within the Earth's crust. In our poster session, we will: 1) demonstrate the physical analog model; 2) describe various real-time data collection tools, as well as quantitative methods students can use to process their data; and 3) describe the surficial, structural and relational similarities between the physical analog model and the target concepts intended for students to explore in the

  17. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO 2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  18. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  19. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  20. It's the parameters, stupid! Moving beyond multi-model and multi-physics approaches to characterize and reduce predictive uncertainty in process-based hydrological models

    Science.gov (United States)

    Clark, Martyn; Samaniego, Luis; Freer, Jim

    2014-05-01

    Multi-model and multi-physics approaches are a popular tool in environmental modelling, with many studies focusing on optimally combining output from multiple model simulations to reduce predictive errors and better characterize predictive uncertainty. However, a careful and systematic analysis of different hydrological models reveals that individual models are simply small permutations of a master modeling template, and inter-model differences are overwhelmed by uncertainty in the choice of the parameter values in the model equations. Furthermore, inter-model differences do not explicitly represent the uncertainty in modeling a given process, leading to many situations where different models provide the wrong results for the same reasons. In other cases, the available morphological data does not support the very fine spatial discretization of the landscape that typifies many modern applications of process-based models. To make the uncertainty characterization problem worse, the uncertain parameter values in process-based models are often fixed (hard-coded), and the models lack the agility necessary to represent the tremendous heterogeneity in natural systems. This presentation summarizes results from a systematic analysis of uncertainty in process-based hydrological models, where we explicitly analyze the myriad of subjective decisions made throughout both the model development and parameter estimation process. Results show that much of the uncertainty is aleatory in nature - given a "complete" representation of dominant hydrologic processes, uncertainty in process parameterizations can be represented using an ensemble of model parameters. Epistemic uncertainty associated with process interactions and scaling behavior is still important, and these uncertainties can be represented using an ensemble of different spatial configurations. Finally, uncertainty in forcing data can be represented using ensemble methods for spatial meteorological analysis. Our systematic

  1. Learning about physical parameters: the importance of model discrepancy

    International Nuclear Information System (INIS)

    Brynjarsdóttir, Jenný; O'Hagan, Anthony

    2014-01-01

    Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)

  2. Protein Folding: Search for Basic Physical Models

    Directory of Open Access Journals (Sweden)

    Ivan Y. Torshin

    2003-01-01

    Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.

  3. Modellus: Learning Physics with Mathematical Modelling

    Science.gov (United States)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations

  4. Development of a Mantle Convection Physical Model to Assist with Teaching about Earth's Interior Processes

    Science.gov (United States)

    Glesener, G. B.; Aurnou, J. M.

    2010-12-01

    The Modeling and Educational Demonstrations Laboratory (MEDL) at UCLA is developing a mantle convection physical model to assist educators with the pedagogy of Earth’s interior processes. Our design goal consists of two components to help the learner gain conceptual understanding by means of visual interactions without the burden of distracters, which may promote alternative conceptions. Distracters may be any feature of the conceptual model that causes the learner to use inadequate mental artifact to help him or her understand what the conceptual model is intended to convey. The first component, and most important, is a psychological component that links properties of “everyday things” (Norman, 1988) to the natural phenomenon, mantle convection. Some examples of everyday things may be heat rising out from a freshly popped bag of popcorn, or cold humid air falling from an open freezer. The second component is the scientific accuracy of the conceptual model. We would like to simplify the concepts for the learner without sacrificing key information that is linked to other natural phenomena the learner will come across in future science lessons. By taking into account the learner’s mental artifacts in combination with a simplified, but accurate, representation of what scientists know of the Earth’s interior, we expect the learner to have the ability to create an adequate qualitative mental simulation of mantle convection. We will be presenting some of our prototypes of this mantle convection physical model at this year’s poster session and invite constructive input from our colleagues.

  5. Model-based processing for underwater acoustic arrays

    CERN Document Server

    Sullivan, Edmund J

    2015-01-01

    This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Third...

  6. Work Models in the Design Process for House Interior and Exterior: Physical or Virtual?

    Science.gov (United States)

    Bradecki, Tomasz; Uherek-Bradecka, Barbara

    2017-10-01

    The article presents the effects of research on different types of models of single family houses and multifamily houses. Exterior layout and interior functional layout are the main drivers for the final result of a design. Models are an important medium for presentation of architectural designs and play a pivotal role in explaining the first idea to people and potential clients. Although 3D models have unlimited possibilities of representation, some people cannot understand or ‘feel’ the designed space. The authors try to test how to combine the interior and the exterior in a single synthetic model. Several models of different houses have been presented in the article. All the case studies were developed with physical models, 3D models, and 2D hand sketches. The main focus of the work with the models was to achieve a coherent vision for future feeling of open space in designed houses. The research shows how synthetic models might be helpful in the design process. The research was carried in the URBAN model research group (urbanmodel.org, Gliwice, Poland) that consists of academic researchers and architects. The models reflect architectural experience gathered by the authors during their work on theoretical models, architectural projects and by supervision on site during construction site visits. Conclusions might be helpful for developers, architects, interior designers and architecture students.

  7. Flavor physics in the 3-3-1 models

    International Nuclear Information System (INIS)

    Pleitez, Vicente

    2013-01-01

    Full text: Flavor Physics is entering in a new precision era that will allow to uncover new physics scenarios at the TeV scale if they really do exist. We will discuss flavor changing neutral currents (FCNC) processes in the context of the minimal 3-3-1 model. In particular, we show that in this model, these processes do not impose necessarily strong constraints on the mass of the Z' of the model if we also consider the neutral scalar contributions to such processes, like the neutral meson mass differences and their rare semi-leptonic decays. We first obtain numerical values for all the mixing matrices of the model i.e., the unitary matrices that rotate the left- and right-handed quarks in each charge sector and give the correct mass of all the quarks and the CKM mixing matrix. Then, we find that there is a range of parameters in which the neutral scalar contributions to these processes may interfere with those of the Z', implying that this vector boson may be lighter than it has been thought. The model with right-handed neutrino will also brief discussed. (author)

  8. Overland erosion of uranium-mill-tailings impoundments: physical processes and computational methods

    International Nuclear Information System (INIS)

    Walters, M.H.

    1983-03-01

    The surface runoff and erosional processes of watersheds caused by rainfall-runoff are reviewed. Soil properties, topography, and rainstorm distribution are discussed with respect to their effects on soil erosion. The effects of climate and vegetation are briefly presented. Regression models and physical process simulation models are reviewed

  9. LHC Higgs physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Spannowsky, M.

    2007-01-01

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  10. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  11. Holistic simulation of geotechnical installation processes numerical and physical modelling

    CERN Document Server

    2015-01-01

    The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...

  12. Dispersal from deep ocean sources: physical and related scientific processes

    International Nuclear Information System (INIS)

    Robinson, A.R.; Kupferman, S.L.

    1985-02-01

    This report presents the results of the workshop ''Dispersal from Deep Ocean Sources: Physical and Related Scientific Processes,'' together with subsequent developments and syntheses of the material discussed there. The project was undertaken to develop usable predictive descriptions of dispersal from deep oceanic sources. Relatively simple theoretical models embodying modern ocean physics were applied, and observational and experimental data bases were exploited. All known physical processes relevant to the dispersal of passive, conservative tracers were discussed, and contact points for inclusion of nonconservative processes (biological and chemical) were identified. Numerical estimates of the amplitude, space, and time scales of dispersion were made for various mechanisms that control the evolution of the dispersal as the material spreads from a bottom point source to small-, meso-, and world-ocean scales. Recommendations for additional work are given. The volume is presented as a handbook of dispersion processes. It is intended to be updated as new results become available

  13. The Canadian Assessment of Physical Literacy: Development of a Model of Children's Capacity for a Healthy, Active Lifestyle Through a Delphi Process.

    Science.gov (United States)

    Francis, Claire E; Longmuir, Patricia E; Boyer, Charles; Andersen, Lars Bo; Barnes, Joel D; Boiarskaia, Elena; Cairney, John; Faigenbaum, Avery D; Faulkner, Guy; Hands, Beth P; Hay, John A; Janssen, Ian; Katzmarzyk, Peter T; Kemper, Han C; Knudson, Duane; Lloyd, Meghann; McKenzie, Thomas L; Olds, Tim S; Sacheck, Jennifer M; Shephard, Roy J; Zhu, Weimo; Tremblay, Mark S

    2016-02-01

    The Canadian Assessment of Physical Literacy (CAPL) was conceptualized as a tool to monitor children's physical literacy. The original model (fitness, activity behavior, knowledge, motor skill) required revision and relative weights for calculating/interpreting scores were required. Nineteen childhood physical activity/fitness experts completed a 3-round Delphi process. Round 1 was open-ended questions. Subsequent rounds rated statements using a 5-point Likert scale. Recommendations were sought regarding protocol inclusion, relative importance within composite scores and score interpretation. Delphi participant consensus was achieved for 64% (47/73) of statement topics, including a revised conceptual model, specific assessment protocols, the importance of longitudinal tracking, and the relative importance of individual protocols and composite scores. Divergent opinions remained regarding the inclusion of sleep time, assessment/ scoring of the obstacle course assessment of motor skill, and the need for an overall physical literacy classification. The revised CAPL model (overlapping domains of physical competence, motivation, and knowledge, encompassed by daily behavior) is appropriate for monitoring the physical literacy of children aged 8 to 12 years. Objectively measured domains (daily behavior, physical competence) have higher relative importance. The interpretation of CAPL results should be reevaluated as more data become available.

  14. Physics students' approaches to learning and cognitive processes in solving physics problems

    Science.gov (United States)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly

  15. A STUDY OF NUCLEAR PHYSICS PROCESSES AT MIDDLE SCHOOL

    Directory of Open Access Journals (Sweden)

    Mykola I. Sadovyi

    2011-02-01

    Full Text Available The article discloses the problem of new technology usage for the physics’ experiment in the quantum physics modeling. Currency of investigation consists in the need of physics experiment organization and realization in high energy physics with the consistent usage of activity method in middle education institutions. This kind of method considerably stirs up the process of model usage and modeling, abstracting, idealization and analogy. Idealized objects’ creation, elementary part transmutation, in particular, that does not exist in the objective reality, but possesses definite prototypes in the real world that help in their first approximation to the truth. The program Macromedia Flesh has been used in the article. This program has a range of advantages comparing to other possible software according to their possibilities and usage simplicity. The program uses all kinds of computer graph (raster, vectorial, which gives great opportunities for graphic objects’ creation, and prepared files take minimum of the constant memory. A part of developed experiments of the modeling character is given in the article. Demonstrations are done in dynamic rate.

  16. Multiphoton Processes and Attosecond Physics

    CERN Document Server

    Midorikawa, Katsumi; 12th International Conference on Multiphoton Processes; 3rd International Conference on Attosecond Physics

    2012-01-01

    Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.

  17. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  18. The Health Action Process Approach as a motivational model for physical activity self-management for people with multiple sclerosis: a path analysis.

    Science.gov (United States)

    Chiu, Chung-Yi; Lynch, Ruth T; Chan, Fong; Berven, Norman L

    2011-08-01

    To evaluate the Health Action Process Approach (HAPA) as a motivational model for physical activity self-management for people with multiple sclerosis (MS). Quantitative descriptive research design using path analysis. One hundred ninety-five individuals with MS were recruited from the National Multiple Sclerosis Society and a neurology clinic at a university teaching hospital in the Midwest. Outcome was measured by the Physical Activity Stages of Change Instrument, along with measures for nine predictors (severity, action self-efficacy, outcome expectancy, risk perception, perceived barriers, intention, maintenance self-efficacy, action and coping planning, and recovery self-efficacy). The respecified HAPA physical activity model fit the data relatively well (goodness-of-fit index = .92, normed fit index = .91, and comparative fit index = .93) explaining 38% of the variance in physical activity. Recovery self-efficacy, action and coping planning, and perceived barriers directly contributed to the prediction of physical activity. Outcome expectancy significantly influenced intention and the relationship between intention and physical activity is mediated by action and coping planning. Action self-efficacy, maintenance self-efficacy, and recovery self-efficacy directly or indirectly affected physical activity. Severity of MS and action self-efficacy had an inverse relationship with perceived barriers and perceived barriers influenced physical activity. Empirical support was found for the proposed HAPA model of physical activity for people with MS. The HAPA model appears to provide useful information for clinical rehabilitation and health promotion interventions.

  19. Multiscale physical processes of fine sediment in an estuary

    NARCIS (Netherlands)

    Wan, Y.

    2015-01-01

    This study presented in this book investigates micro- and macro- scale physical processes of a large-scale fine sediment estuarine system with a moderate tidal range as well as a highly seasonal-varying freshwater inflow. Based on a series measured, experimented and modeled results, the research

  20. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  1. Does physics instruction foster university students' cognitive processes?: A descriptive study of teacher activities

    Science.gov (United States)

    Ferguson-Hessler, Monica G. M.; de Jong, Ton

    This study aims at giving a systematic description of the cognitive activities involved in teaching physics. Such a description of instruction in physics requires a basis in two models, that is, the cognitive activities involved in learning physics and the knowledge base that is the foundation of expertise in that subject. These models have been provided by earlier research. The model of instruction distinguishes three main categories of instruction process: presenting new information, integrating (i.e., bringing structure into) new knowledge, and connecting elements of new knowledge to prior knowledge. Each of the main categories has been divided into a number of specific instruction processes. Hereby any limited and specific cognitive teacher activity can be described along the two dimensions of process and type of knowledge. The model was validated by application to lectures and problem-solving classes of first year university courses. These were recorded and analyzed as to instruction process and type of knowledge. Results indicate that teachers are indeed involved in the various types of instruction processes defined. The importance of this study lies in the creation of a terminology that makes it possible to discuss instruction in an explicit and specific way.

  2. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  3. Physical Processes Involved In Yellow Sea Solitary Waves

    Science.gov (United States)

    Warn-Varnas, A.; Chin-Bing, S.; King, D.; Lamb, K.; Hawkins, J.; Teixeira, M.

    The study area is located south of the Shandong peninsula. In this area, soliton gener- ation and propagation studies are per formed with the Lamb(1994) model. The model is nonhydrostatic and is formulated in 2 1/2 dimensions for terrain following c oordi- nates. In the area, 20 to 30 m topographic variations over distances of 10 to 20 km are found to occur in the digit al atlas of Choi (1999). The area is shallow with maximum depths ranging from 40 m to 70 m. Along the southern boundary of the region the semi-diurnal tidal strength magnitude varies from .6 m/sec to 1.2 m/sec, Fang(1994). We show that, for sum mer conditions, the existing physical processes associated with the semi-diurnal tidal flow over the topographic variations , in the shelfbreak region, lead to the formation of internal bores in the model simulations. Through acting phys- ical proce sses, the internal bores propagate on and off the shelf. A disintegration process of internal bores into solitary waves occ urs through frequency and ampli- tude dispersion. SAR observations of the area show images containing six events con- sisting of internal bores and solitary waves that travel in a well-defined direction for two and a half days. The origin of the trains appeared to be at a point along a steep topo graphic drop. The SAR observations are used for guiding and tuning the model simulations, by comparing spectra of observed and modeled wavelengths. The tuned model yields wavelengths that are within a factor of 2 of the SAR data. The modeled amp litudes are within a factor of 2 of amplitudes obtained with a two-layer model and the SAR data The signature on the acoustical field of ongoing physical processes through the interaction of the resultant oceanic struct ure with the acoustical field is pursued. Internal bore and solitary wave structures interact with the acoustic field. A re distribution of acoustical energy to higher acoustical modes occurs at some fre- quencies. Mode decomposition of the

  4. The application of the algorithm of the individualization of students’ physical education process

    Directory of Open Access Journals (Sweden)

    L.N. Barybina

    2014-12-01

    Full Text Available Purpose: theoretically and experimentally justify the use of the algorithm of physical education process individualization in universities taking into account the psychophysiological features of students. Material: the study involved 413 students. It was defined indicators of the level of physical fitness and functional status, psycho-physiological features. Results: it was worked out the algorithm of individualization of students’ physical education process. It was defined the structure of the complex preparedness and it was developed models of characteristics of students - representatives of different sports specializations. It was established that for the successful construction of the training process, it is necessary to combine the parameters of physical, functional training and physiological indicators into a single integral evaluation of the individual characteristics of students. It was shown that at the students of the experimental group was improved indicators of functional, psychophysiological capabilities and physical preparedness. Conclusions: the application of the algorithm of the individualization of process of physical education enhances the functionality of the students.

  5. Physical Analysis of Cross-Wedge Rolling Process of a Stepped Shaft

    Directory of Open Access Journals (Sweden)

    Łukasz Wójcik

    2017-12-01

    Full Text Available The paper presents experimental- model research results on the process of cross-wedge rolling of an axially-symmetrical element (stepped shaft. During research was used plastic mass on the basis of waxes in black and white colour. The aim of this experimental research was to determine the best option of forming in terms of values obtained and the course of forces. Physical examination was carried out using specialist machines, that is model and laboratory cross-wedge rolling mill. Experimental analysis was carried out using billets with the temperature of 15°C, whereas the actual process was carried out for billet from C45 carbon steel of temperature 1150°C. The study compared the dimensions of the components obtained during rolling tests and forming forces obtained in the result of physical modeling with forces obtained during real tests.

  6. An Incremental Physically-Based Model of P91 Steel Flow Behaviour for the Numerical Analysis of Hot-Working Processes

    Directory of Open Access Journals (Sweden)

    Alberto Murillo-Marrodán

    2018-04-01

    Full Text Available This paper is aimed at modelling the flow behaviour of P91 steel at high temperature and a wide range of strain rates for constant and also variable strain-rate deformation conditions, such as those in real hot-working processes. For this purpose, an incremental physically-based model is proposed for the P91 steel flow behavior. This formulation considers the effects of dynamic recovery (DRV and dynamic recrystallization (DRX on the mechanical properties of the material, using only the flow stress, strain rate and temperature as state variables and not the accumulated strain. Therefore, it reproduces accurately the flow stress, work hardening and work softening not only under constant, but also under transient deformation conditions. To accomplish this study, the material is characterised experimentally by means of uniaxial compression tests, conducted at a temperature range of 900–1270 °C and at strain rates in the range of 0.005–10 s−1. Finally, the proposed model is implemented in commercial finite element (FE software to provide evidence of the performance of the proposed formulation. The experimental compression tests are simulated using the novel model and the well-known Hansel–Spittel formulation. In conclusion, the incremental physically-based model shows accurate results when work softening is present, especially under variable strain-rate deformation conditions. Hence, the present formulation is appropriate for the simulation of the hot-working processes typically conducted at industrial scale.

  7. Short review of runoff and erosion physically based models

    Directory of Open Access Journals (Sweden)

    Gabrić Ognjen

    2015-01-01

    Full Text Available Processes of runoff and erosion are one of the main research subjects in hydrological science. Based on the field and laboratory measurements, and analogous with development of computational techniques, runoff and erosion models based on equations which describe the physics of the process are also developed. Several models of runoff and erosion which describes entire process of genesis and sediment transport on the catchment are described and compared.

  8. Prediction of Physical Activity Level Using Processes of Change From the Transtheoretical Model: Experiential, Behavioral, or an Interaction Effect?

    Science.gov (United States)

    Romain, Ahmed Jérôme; Horwath, Caroline; Bernard, Paquito

    2018-01-01

    The purpose of the present study was to compare prediction of physical activity (PA) by experiential or behavioral processes of change (POCs) or an interaction between both types of processes. A cross-sectional study. This study was conducted using an online questionnaire. A total of 394 participants (244 women, 150 men), with a mean age of 35.12 ± 12.04 years and a mean body mass index of 22.97 ± 4.25 kg/m 2 were included. Participants completed the Processes of Change, Stages of Change questionnaires, and the International Physical Activity Questionnaire to evaluate self-reported PA level (total, vigorous, and moderate PA). Hierarchical multiple regression models were used to test the prediction of PA level. For both total PA (β = .261; P behavioral POCs were a significant predictor. Regarding moderate PA, only the interaction between experiential and behavioral POCs was a significant predictor (β = .123; P = .017). Our results provide confirmation that behavioral processes are most prominent in PA behavior. Nevertheless, it is of interest to note that the interaction between experiential and behavioral POCs was the only element predicting moderate PA level. Experiential processes were not associated with PA level.

  9. Bringing life to soil physical processes

    Science.gov (United States)

    Hallett, P. D.

    2013-12-01

    When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but

  10. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  11. Identification of physical models

    DEFF Research Database (Denmark)

    Melgaard, Henrik

    1994-01-01

    of the model with the available prior knowledge. The methods for identification of physical models have been applied in two different case studies. One case is the identification of thermal dynamics of building components. The work is related to a CEC research project called PASSYS (Passive Solar Components......The problem of identification of physical models is considered within the frame of stochastic differential equations. Methods for estimation of parameters of these continuous time models based on descrete time measurements are discussed. The important algorithms of a computer program for ML or MAP...... design of experiments, which is for instance the design of an input signal that are optimal according to a criterion based on the information provided by the experiment. Also model validation is discussed. An important verification of a physical model is to compare the physical characteristics...

  12. Physical Modelling Of The Steel Flow In RH Apparatus

    Directory of Open Access Journals (Sweden)

    Pieprzyca J.

    2015-09-01

    Full Text Available The efficiency of vacuum steel degassing using RH methods depends on many factors. One of the most important are hydrodynamic processes occurring in the ladle and vacuum chamber. It is always hard and expensive to determine the flow character and the way of steel mixing in industrial unit; thus in this case, methods of physical modelling are applied. The article presents the results of research carried out on the water physical model of RH apparatus concerning the influence of the flux value of inert gas introduced through the suck legs on hydrodynamic conditions of the process. Results of the research have visualization character and are presented graphically as a RTD curves. The main aim of such research is to optimize the industrial vacuum steel degassing process by means of RH method.

  13. Physical models of cell motility

    CERN Document Server

    2016-01-01

    This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force ...

  14. Physical education resources, class management, and student physical activity levels: a structure-process-outcome approach to evaluating physical education effectiveness.

    Science.gov (United States)

    Bevans, Katherine B; Fitzpatrick, Leslie-Anne; Sanchez, Betty M; Riley, Anne W; Forrest, Christopher

    2010-12-01

    This study was conducted to empirically evaluate specific human, curricular, and material resources that maximize student opportunities for physical activity during physical education (PE) class time. A structure-process-outcome model was proposed to identify the resources that influence the frequency of PE and intensity of physical activity during PE. The proportion of class time devoted to management was evaluated as a potential mediator of the relations between resource availability and student activity levels. Data for this cross-sectional study were collected from interviews conducted with 46 physical educators and the systematic observation of 184 PE sessions in 34 schools. Regression analyses were conducted to test for the main effects of resource availability and the mediating role of class management. Students who attended schools with a low student-to-physical educator ratio had more PE time and engaged in higher levels of physical activity during class time. Access to adequate PE equipment and facilities was positively associated with student activity levels. The availability of a greater number of physical educators per student was found to impact student activity levels by reducing the amount of session time devoted to class management. The identification of structure and process predictors of student activity levels in PE will support the allocation of resources and encourage instructional practices that best support increased student activity levels in the most cost-effective way possible. Implications for PE policies and programs are discussed. © 2010, American School Health Association.

  15. Dark matter physics, flavor physics and LHC constraints in the dark matter model with a bottom partner

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomohiro [Institute for Advanced Research, Nagoya University,Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan); Kawamura, Junichiro [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Okawa, Shohei [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Omura, Yuji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan)

    2017-03-10

    In the scenario that dark matter (DM) is a weakly interacting massive particle, there are many possibilities of the interactions with the Standard Model (SM) particles to achieve the relic density of DM. In this paper, we consider a simple DM model where the DM candidate is a complex scalar boson. The model contains a new complex gauge singlet scalar boson and a new fermion whose gauge charge is the same as the right-handed down-type quark. We dub the new fermion the bottom partner. These new particles have Yukawa interactions with the SM down-type quarks. The DM candidate interacts with the SM particles through the Yukawa interactions. The Yukawa interactions are not only relevant to the annihilation process of the DM but also contribute to the flavor physics, such as the ΔF=2 processes. In addition, the flavor alignment of the Yukawa couplings is related to the decay modes of the bottom partner, and thus we can find the explicit correlations among the physical observables in DM physics, flavor physics, and the signals at the LHC. We survey the ΔF=2 processes based on the numerical analyses of the thermal relic density, the direct detection of the DM, and the current LHC bounds. We investigate the perturbative bound on the Yukawa coupling as well. A Study of a fermionic DM model with extra scalar quarks is also given for comparison.

  16. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    Science.gov (United States)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  17. Visual persuasion with physically attractive models in ads: An examination of how the ad model influences product evaluations

    OpenAIRE

    Söderlund, Magnus; Lange, Fredrik

    2006-01-01

    This paper examines the prevalent advertising practice of visually juxtaposing an anonymous, physically attractive ad model and a product in terms of its effects on the attitude toward the product. In this appeal, in which there are no explicit verbal claims about how the two objects are connected, we argue that the physically attractive model sets in motion a process in which emotions and the attitude toward the ad model serve as mediating variables, and that this process ultimately results ...

  18. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  19. An Application of the Trans-Contextual Model of Motivation in Elementary School Physical Education

    Science.gov (United States)

    Ntovolis, Yannis; Barkoukis, Vassilis; Michelinakis, Evaggelos; Tsorbatzoudis, Haralambos

    2015-01-01

    Elementary school physical education can play a prominent role in promoting children's leisure-time physical activity. The trans-contextual model of motivation has been proven effective in describing the process through which school physical education can affect students' leisure-time physical activity. This model has been tested in secondary…

  20. Microphysics in Multi-scale Modeling System with Unified Physics

    Science.gov (United States)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  1. Physical and numerical modeling of Joule-heated melters

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  2. Physical and numerical modeling of Joule-heated melters

    International Nuclear Information System (INIS)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs

  3. Model of future officers' availability to the management physical training

    Directory of Open Access Journals (Sweden)

    Olkhovy O.M.

    2012-03-01

    Full Text Available A purpose of work is creation of model of readiness of graduating student to implementation of official questions of guidance, organization and leadthrough of physical preparation in the process of military-professional activity. An analysis is conducted more than 40 sources and questionnaire questioning of a 21 expert. For introduction of model to the system of physical preparation of students the list of its basic constituents is certain: theoretical methodical readiness; functionally-physical readiness; organizationally-administrative readiness. It is certain that readiness of future officers to military-professional activity foresees determination of level of forming of motive capabilities, development of general physical qualities.

  4. Physical models on discrete space and time

    International Nuclear Information System (INIS)

    Lorente, M.

    1986-01-01

    The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references

  5. Being qua becoming: Aristotle's "Metaphysics", quantum physics, and Process Philosophy

    Science.gov (United States)

    Johnson, David Kelley

    In Aristotle's First Philosophy, science and philosophy were partners, but with the rise of empiricism, went their separate ways. Metaphysics combined the rational and irrational (i.e. final cause/unmoved mover) elements of existence to equate being with substance, postulating prime matter as pure potential that was actuated by form to create everything. Modern science reveres pure reason and postulates its theory of being by a rigorous scientific methodology. The Standard Model defines matter as energy formed into fundamental particles via forces contained in fields. Science has proved Aristotle's universe wrong in many ways, but as physics delves deeper into the quantum world, empiricism is reaching its limits concerning fundamental questions of existence. To achieve its avowed mission of explaining existence completely, physics must reunite with philosophy in a metascience modeled on the First Philosophy of Aristotle. One theory of being that integrates quantum physics and metaphysics is Process Philosophy.

  6. PHYSICAL EDUCATION - PHYSICAL CULTURE. TWO MODELS, TWO DIDACTIC

    Directory of Open Access Journals (Sweden)

    Manuel Vizuete Carrizosa

    2014-11-01

    The survival of these conflicting positions and their interests and different views on education, in a lengthy space of time, as a consequence threw two teaching approaches and two different educational models, in which the objectives and content of education differ , and with them the forms and methods of teaching. The need to define the cultural and educational approach, in every time and place, is now a pressing need and challenge the processes of teacher training, as responsible for shaping an advanced physical education, adjusted to the time and place, the interests and needs of citizens and the democratic values of modern society.

  7. Modeling the Central California Coastal Upwelling System: Physics, Ecosystems and Resource Management

    National Research Council Canada - National Science Library

    Chavez, Francisco P; Barber, Richard T; Chai, Fei; Chao, Yi; De Vogelaere, Andrew P; Kindle, John C; Maffione, Robert A; Marinovic, Baldo; McWilliams, James C; Paduan, Jeffrey D

    2003-01-01

    To develop a coupled physical-biological model that can utilize available data to accurately simulate physical, chemical and biological processes within the Monterey Bay National Marine Sanctuary (MBNMS...

  8. Physical and mathematical modeling of antimicrobial photodynamic therapy

    Science.gov (United States)

    Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang

    2014-07-01

    Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.

  9. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  10. Physics at the LHC - From Standard Model measurements to Searches for New Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, Karl [Freiburg University (Germany)

    2014-07-01

    The successful operation of the Large Hadron Collider (LHC) during the past two years allowed to explore particle interaction in a new energy regime. Measurements of important Standard Model processes like the production of high-p{sub T} jets, W and Z bosons and top and b-quarks were performed by the LHC experiments. In addition, the high collision energy allowed to search for new particles in so far unexplored mass regions. Important constraints on the existence of new particles predicted in many models of physics beyond the Standard Model could be established. With integrated luminosities reaching values around 5 fb{sup −1} in 2011, the experiments reached as well sensitivity to probe the existence of the Standard Model Higgs boson over a large mass range. In the present report the major physics results obtained by the two general-purpose experiments ATLAS and CMS are summarized.

  11. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  12. Stochastic processes from physics to finance

    CERN Document Server

    Paul, Wolfgang

    2013-01-01

    This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

  13. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  14. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  15. Modelling of physical properties - databases, uncertainties and predictive power

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    in the estimated/predicted property values, how to assess the quality and reliability of the estimated/predicted property values? The paper will review a class of models for prediction of physical and thermodynamic properties of organic chemicals and their mixtures based on the combined group contribution – atom......Physical and thermodynamic property in the form of raw data or estimated values for pure compounds and mixtures are important pre-requisites for performing tasks such as, process design, simulation and optimization; computer aided molecular/mixture (product) design; and, product-process analysis...

  16. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

    Science.gov (United States)

    Dudziak, Martin Joseph

    , by virtue of mathematical and computational models that may be transferred from the macroscopic domain to the microscopic. A consequence of this multi-faceted thesis is that there may be mature analytical tools and techniques that have heretofore not been adequately recognized for their value to quantum physics. These may include adaptations of neural networks, cellular automata, chaotic attractors, and parallel processing systems. Conceptual and practical architectures are presented for the development of software and hardware environments to employ massively parallel computing for the modeling of large populations of dynamic processes.

  17. Physical processes and the maintenance of nutrient-rich euphotic zones

    International Nuclear Information System (INIS)

    Gargett, A.E.

    1991-01-01

    Oceanic euphotic zones characterized by high macronutrients but low primary productivity are found in the upwelling gyres of the world ocean. This paper reviews the physical processes which interact to maintain high nutrient concentrations in the near-surface ocean in such regions, illustrating the range of relevant forcing functions with regional examples. Predictions of the direction of change of the physical systems in these areas under increasing greenhouse gas concentrations can be based on the present generation of coupled ocean-atmosphere global circulation models, but these results have significant uncertainty

  18. The role of physical processes controlling the behaviour of radionuclide contaminants in the aquatic environment: a review of state-of-the-art modelling approaches

    International Nuclear Information System (INIS)

    Monte, Luigi; Perianez, Raul; Boyer, Patrick; Smith, Jim T.; Brittain, John E.

    2009-01-01

    This paper is aimed at presenting and discussing the methodologies implemented in state-of-the-art models for predicting the physical processes of radionuclide migration through the aquatic environment, including transport due to water currents, diffusion, settling and re-suspension. Models are briefly described, model parameter values reviewed and values recommended. The different modelling approaches are briefly classified and the advantages and disadvantages of the various model approaches and methodologies are assessed.

  19. Physical processes in collapse driven supernova

    International Nuclear Information System (INIS)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs

  20. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  1. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    Science.gov (United States)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  2. Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment

    Science.gov (United States)

    Brietzke, G. B.; Hainzl, S.; Zöller, G.

    2012-04-01

    As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).

  3. Laser isotope separation: the physics of the process

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1990-01-01

    The physics of the AVLIS process is analysed. The intricacy of physics considerations, technology and economic forecast is developed. The scaling of a production unit is a complicated optimization which takes into account the limitations imposed by physics laws (spectroscopy, plasma physics,...), technology (vapor production, laser industry,...), and economy. But the only philosophy which prevails for such R and D programs is to be cheaper than competitive processes and to reach the goal first to get the market

  4. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  5. Model of students’ sport-oriented physical education with application of information technologies

    Directory of Open Access Journals (Sweden)

    O.M. Olkhovy

    2015-06-01

    Full Text Available Purpose: working out and practical application of approaches to perfection of physical education system’s functioning. Material: in the research students (boys- n=92, girls- n=45 of 18-20 years old took part. Results: structural model of students’ sport-oriented physical education with application of information technologies has been formed. The main purpose of such model’s creation was cultivation of students’ demand in physical functioning and formation of healthy life style in students’ environment. The model of the process includes orienting, executive and control components. In this model groups of commonly accepted physical education and sport-oriented groups function. Conclusions: Main structural components of the created model have been determined: conceptual, motivation-active, resulting.

  6. Levels of processing and picture memory: the physical superiority effect.

    Science.gov (United States)

    Intraub, H; Nicklos, S

    1985-04-01

    Six experiments studied the effect of physical orienting questions (e.g., "Is this angular?") and semantic orienting questions (e.g., "Is this edible?") on memory for unrelated pictures at stimulus durations ranging from 125-2,000 ms. Results ran contrary to the semantic superiority "rule of thumb," which is based primarily on verbal memory experiments. Physical questions were associated with better free recall and cued recall of a diverse set of visual scenes (Experiments 1, 2, and 4). This occurred both when general and highly specific semantic questions were used (Experiments 1 and 2). Similar results were obtained when more simplistic visual stimuli--photographs of single objects--were used (Experiments 5 and 6). As in the case of the semantic superiority effect with words, the physical superiority effect for pictures was eliminated or reversed when the same physical questions were repeated throughout the session (Experiments 4 and 6). Conflicts with results of previous levels of processing experiments with words and nonverbal stimuli (e.g., faces) are explained in terms of the sensory-semantic model (Nelson, Reed, & McEvoy, 1977). Implications for picture memory research and the levels of processing viewpoint are discussed.

  7. How physiological and physical processes contribute to the phenology of cyanobacterial blooms in large shallow lakes: A new Euler-Lagrangian coupled model.

    Science.gov (United States)

    Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun

    2018-09-01

    Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal

  8. Physical and Chemical Environmental Abstraction Model

    International Nuclear Information System (INIS)

    Nowak, E.

    2000-01-01

    As directed by a written development plan (CRWMS M and O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M and O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M and O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address

  9. PHYSICAL EDUCATION - PHYSICAL CULTURE. TWO MODELS, TWO DIDACTIC

    Directory of Open Access Journals (Sweden)

    Manuel Vizuete Carrizosa

    2014-10-01

    Full Text Available Physical Education is currently facing a number of problems that are rooted in the identity crisis prompted by the spread of the professional group, the confrontation of ideas from the scientific community and the competing interests of different political and social areas, compared to which physical education has failed, or unable, to react in time. The political and ideological confrontation that characterized the twentieth century gave us two forms, each with a consistent ideological position, in which the body as a subject of education was understood from two different positions: one set from the left and communism and another, from Western democratic societies.The survival of these conflicting positions and their interests and different views on education, in a lengthy space of time, as a consequence threw two teaching approaches and two different educational models, in which the objectives and content of education differ , and with them the forms and methods of teaching. The need to define the cultural and educational approach, in every time and place, is now a pressing need and challenge the processes of teacher training, as responsible for shaping an advanced physical education, adjusted to the time and place, the interests and needs of citizens and the democratic values of modern society.

  10. Physical Properties for Lipids Based Process and Product Design

    DEFF Research Database (Denmark)

    Ana Perederic, Olivia; Kalakul, Sawitree; Sarup, Bent

    Lipid processing covers several oil and fats technologies such as: edible oil production, biodieselproduction, oleochemicals (e.g.: food additives, detergents) and pharmaceutical product manufacturing. New demands regarding design and development of better products and more sustainable processes...... related to lipids technology, emerge according to consumers demanding improved product manufacturing from sustainable resources and new legislation regarding environmental safety [1]. Physical and thermodynamic property data and models for prediction of pure compound properties and mixtures properties...... involving lipids represent the basic and most important requirements for process product design, simulation and optimization. Experimentally measured values of involved compounds are desirable, but in most of the cases these are not available for all the compounds and properties needed. The lack...

  11. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels

    1998-01-01

    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...

  12. Evaluating crown fire rate of spread predictions from physics-based models

    Science.gov (United States)

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  13. A Multi-State Physics Modeling approach for the reliability assessment of Nuclear Power Plants piping systems

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Colli, Davide; Zio, Enrico; Tao, Liu; Tong, Jiejuan

    2015-01-01

    Highlights: • We model piping systems degradation of Nuclear Power Plants under uncertainty. • We use Multi-State Physics Modeling (MSPM) to describe a continuous degradation process. • We propose a Monte Carlo (MC) method for calculating time-dependent transition rates. • We apply MSPM to a piping system undergoing thermal fatigue. - Abstract: A Multi-State Physics Modeling (MSPM) approach is here proposed for degradation modeling and failure probability quantification of Nuclear Power Plants (NPPs) piping systems. This approach integrates multi-state modeling to describe the degradation process by transitions among discrete states (e.g., no damage, micro-crack, flaw, rupture, etc.), with physics modeling by (physic) equations to describe the continuous degradation process within the states. We propose a Monte Carlo (MC) simulation method for the evaluation of the time-dependent transition rates between the states of the MSPM. Accountancy is given for the uncertainty in the parameters and external factors influencing the degradation process. The proposed modeling approach is applied to a benchmark problem of a piping system of a Pressurized Water Reactor (PWR) undergoing thermal fatigue. The results are compared with those obtained by a continuous-time homogeneous Markov Chain Model

  14. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  15. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  16. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  17. Integrating 3D geological information with a national physically-based hydrological modelling system

    Science.gov (United States)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE land cover change studies and integrated assessments of groundwater and surface water resources.

  18. Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions

    Science.gov (United States)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.

  19. ARCHITECTURAL FORM CREATION IN THE DESIGN STUDIO: PHYSICAL MODELING AS AN EFFECTIVE DESIGN TOOL

    Directory of Open Access Journals (Sweden)

    Wael Abdelhameed

    2011-11-01

    Full Text Available This research paper attempts to shed more light on an area of the design studio, which concerns with the use of physical modeling as a design medium in architectural form creation. An experiment has been carried out during an architectural design studio in order to not only investigate physical modeling as a tool of form creation but also improve visual design thinking that students employ while using this manual tool. To achieve the research objective, a method was proposed and applied to track form creation processes, based upon three types of operation, namely: sketching transformations, divergent physical-modeling transformations, and convergent physical-modeling transformations. The method helps record the innovative transitions of form during conceptual designing in a simple way. Investigating form creation processes and activities associated with visual design thinking enables the research to conclude to general results of the role of physical modeling in the conceptual phase of designing, and to specific results of the methods used in this architectural design studio experiment.

  20. FORMULATION OF MATHEMATICAL PROBLEM DESCRIBING PHYSICAL AND CHEMICAL PROCESSES AT CONCRETE CORROSION

    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov

    2017-06-01

    Full Text Available The article deals with the relevance of new scientific research focused on modeling of physical and chemical processes occurring in the cement concrete at their exploitation. The basic types of concrete corrosion are described. The problem of mass transfer processes in a flat reinforced concrete wall at concrete corrosion of the first and the second types has been mathematically formulated.

  1. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  2. Impact of physical permafrost processes on hydrological change

    Science.gov (United States)

    Hagemann, Stefan; Blome, Tanja; Beer, Christian; Ekici, Altug

    2015-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact projected hydrological changes over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Observed SST and sea ice for 1979-1999 are used to consider induced changes in the simulated hydrological cycle. In addition, simulated SST and sea ice are taken from a MPI-ESM simulation conducted for CMIP5 following the RCP8.5 scenario. The

  3. Numerical modeling of atmospheric washout processes

    International Nuclear Information System (INIS)

    Bayer, D.; Beheng, K.D.; Herbert, F.

    1987-01-01

    For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW) [de

  4. Simplified Physics Based Models Research Topical Report on Task #2

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta; Ganesh, Priya

    2014-10-31

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.

  5. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  6. Demand-based maintenance and operators support based on process models; Behovsstyrt underhaall och operatoersstoed baserat paa process modeller

    Energy Technology Data Exchange (ETDEWEB)

    Dahlquist, Erik; Widarsson, Bjoern; Tomas-Aparicio, Elena

    2012-02-15

    There is a strong demand for systems that can give early warnings on upcoming problems in process performance or sensor measurements. In this project we have developed and implemented such a system on-line. The goal with the system is to give warnings about both faults needing urgent actions, as well giving advice on roughly when service may be needed for specific functions. The use of process simulation models on-line can offer a significant tool for operators and process engineers to analyse the performance of the process and make the most correct and fastest decision when problems arise. In this project physical simulation models are used in combination with decision support tools. By using a physical model it is possible to compare the measured data to the data obtained from the simulation and give these deviations as input to a decision support tool with Bayesian Networks (BN) that will result in information about the probability for wrong measurement in the instruments, process problems and maintenance needs. The application has been implemented in a CFB boiler at Maelarenergi AB. After tuning the model the system has been used online during September - October 2010 and May - October 2011, showing that the system is working on-line with respect to running the simulation model but with batch runs with respect to the BN. Examples have been made for several variables where trends of the deviation between simulation results and measured data have been used as input to a BN, where the probability for different faults has been calculated. Combustion up in the separator/cyclones has been detected several times, problems with fuel feed on both sides of the boiler as well. A moisture sensor not functioning as it should and suspected malfunctioning temperature meters as well. Deeper investigations of the true cause of problems have been used as input to tune the BN

  7. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    Science.gov (United States)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  8. Simulation of petroleum recovery in naturally fractured reservoirs: physical process representation

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Hernani P.; Miranda Filho, Daniel N. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Schiozer, Denis J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    The naturally fractured reservoir recovery normally involves risk especially in intermediate to oil wet systems because of the simulations poor efficiency results under waterflood displacement. Double-porosity models are generally used in fractured reservoir simulation and have been implemented in the major commercial reservoir simulators. The physical processes acting in petroleum recovery are represented in double-porosity models by matrix-fracture transfer functions, therefore commercial simulators have their own implementations, and as a result different kinetics and final recoveries are attained. In this work, a double porosity simulator was built with Kazemi et al. (1976), Sabathier et al. (1998) and Lu et al. (2008) transfer function implementations and their recovery results have been compared using waterflood displacement in oil-wet or intermediate-wet systems. The results of transfer function comparisons have showed recovery improvements in oil-wet or intermediate-wet systems under different physical processes combination, particularly in fully discontinuous porous medium when concurrent imbibition takes place, coherent with Firoozabadi (2000) experimental results. Furthermore, the implemented transfer functions, related to a double-porosity model, have been compared to double-porosity commercial simulator model, as well a discrete fracture model with refined grid, showing differences between them. Waterflood can be an effective recovery method even in fully discontinuous media for oil-wet or intermediate-wet systems where concurrent imbibition takes place with high enough pressure gradients across the matrix blocks. (author)

  9. Fundamentals of Numerical Modelling of Casting Processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper

    Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...

  10. Virtual milk for modelling and simulation of dairy processes.

    Science.gov (United States)

    Munir, M T; Zhang, Y; Yu, W; Wilson, D I; Young, B R

    2016-05-01

    The modeling of dairy processing using a generic process simulator suffers from shortcomings, given that many simulators do not contain milk components in their component libraries. Recently, pseudo-milk components for a commercial process simulator were proposed for simulation and the current work extends this pseudo-milk concept by studying the effect of both total milk solids and temperature on key physical properties such as thermal conductivity, density, viscosity, and heat capacity. This paper also uses expanded fluid and power law models to predict milk viscosity over the temperature range from 4 to 75°C and develops a succinct regressed model for heat capacity as a function of temperature and fat composition. The pseudo-milk was validated by comparing the simulated and actual values of the physical properties of milk. The milk thermal conductivity, density, viscosity, and heat capacity showed differences of less than 2, 4, 3, and 1.5%, respectively, between the simulated results and actual values. This work extends the capabilities of the previously proposed pseudo-milk and of a process simulator to model dairy processes, processing different types of milk (e.g., whole milk, skim milk, and concentrated milk) with different intrinsic compositions, and to predict correct material and energy balances for dairy processes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. The effectiveness of collaborative problem based physics learning (CPBPL) model to improve student’s self-confidence on physics learning

    Science.gov (United States)

    Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.

    2018-03-01

    In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.

  12. Pre-Service Physics Teachers' Argumentation in a Model Rocketry Physics Experience

    Science.gov (United States)

    Gürel, Cem; Süzük, Erol

    2017-01-01

    This study investigates the quality of argumentation developed by a group of pre-service physics teachers' (PSPT) as an indicator of subject matter knowledge on model rocketry physics. The structure of arguments and scientific credibility model was used as a design framework in the study. The inquiry of model rocketry physics was employed in…

  13. Determining the thermal and physicals properties of oil processing products

    Directory of Open Access Journals (Sweden)

    Viktoria I. Kryvda

    2015-03-01

    Full Text Available In the last decades both technological process’ improvement and primary energy resources saving are the main tasks of oil refineries. Using various oil products does impose an accurate knowledge of their properties. The dispersion analysis applied makes possible to construct a model simulating the primary oil refining products’ and raw materials’ thermal physical properties. As a result of data approximation there were obtained polynomials with coefficients differing from attributable to the studied oil products fractions. The research represents graphic dependences of thermal physical properties on temperature values for diesel oil fraction. The linear character of density and calorific capacity dependencies from temperature is represented with a proportional error in calculations. The relative minimum error is below 2% that confirms the implemented calculations’ adequacy. The resulting model can be used in calculations for further technological process improvements.

  14. Physical processes in the interstellar medium

    CERN Document Server

    Spitzer, Lyman

    2008-01-01

    Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

  15. Does job burnout mediate negative effects of job demands on mental and physical health in a group of teachers? Testing the energetic process of Job Demands-Resources model.

    Science.gov (United States)

    Baka, Łukasz

    2015-01-01

    The aim of the study was to investigate the direct and indirect - mediated by job burnout - effects of job demands on mental and physical health problems. The Job Demands-Resources model was the theoretical framework of the study. Three job demands were taken into account - interpersonal conflicts at work, organizational constraints and workload. Indicators of mental and physical health problems included depression and physical symptoms, respectively. Three hundred and sixteen Polish teachers from 8 schools participated in the study. The hypotheses were tested with the use of tools measuring job demands (Interpersonal Conflicts at Work, Organizational Constraints, Quantitative Workload), job burnout (the Oldenburg Burnout Inventory), depression (the Beck Hopelessness Scale), and physical symptoms (the Physical Symptoms Inventory). The regression analysis with bootstrapping, using the PROCESS macros of Hayes was applied. The results support the hypotheses partially. The indirect effect and to some extent the direct effect of job demands turned out to be statistically important. The negative impact of 3 job demands on mental (hypothesis 1 - H1) and physical (hypothesis 2 - H2) health were mediated by the increasing job burnout. Only organizational constraints were directly associated with mental (and not physical) health. The results partially support the notion of the Job Demands-Resources model and provide further insight into processes leading to the low well-being of teachers in the workplace. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. About one discrete model of splitting by the physical processes of a piezoconductive medium with gas hydrate inclusions

    Science.gov (United States)

    Poveshchenko, Yu A.; Podryga, V. O.; Rahimly, P. I.; Sharova, Yu S.

    2018-01-01

    The thermodynamically equilibrium model for splitting by the physical processes of a two-component three-phase filtration fluid dynamics with gas hydrate inclusions is considered in the paper, for which a family of two-layer completely conservative difference schemes of the support operators method with time weights profiled in space is constructed. On the irregular grids of the theory of the support-operators method applied to the specifics of the processes of transfer of saturations and internal energies of water and gas in a medium with gas hydrate inclusions, methods of directwind approximation of these processes are considered. These approximations preserve the continual properties of divergence-gradient operations in their difference form and are related to the velocity field providing saturations transfer and internal energies of fluids. Fluid dynamics with gas hydrate inclusions are also calculated on the basis of the proposed approach, in particular, in areas of severe pressure depression in the collector space.

  17. Physical modeling of spent-nuclear-fuel container

    Directory of Open Access Journals (Sweden)

    Wang Liping

    2012-11-01

    Full Text Available A new physical simulation model was developed to simulate the casting process of the ductile iron heavy section spent-nuclear-fuel container. In this physical simulation model, a heating unit with DR24 Fe-Cr-Al heating wires was used to compensate the heat loss across the non-natural surfaces of the sample, and a precise and reliable casting temperature controlling/monitoring system was employed to ensure the thermal behavior of the simulated casting to be similar to the actual casting. Also, a mould system was designed, in which changeable mould materials can be used for both the outside and inside moulds for different applications. The casting test was carried out with the designed mould and the cooling curves of central and edge points at different isothermal planes of the casting were obtained. Results show that for most isothermal planes, the temperature control system can keep the temperature differences within 6 ℃ between the edge points and the corresponding center points, indicating that this new physical simulation model has high simulation accuracy, and the mould developed can be used for optimization of casting parameters of spent-nuclear-fuel container, such as composition of ductile iron, the pouring temperature, the selection of mould material and design of cooling system. In addition, to maintain the spheroidalization of the ductile iron, the force-chilling should be used for the current physical simulation to ensure the solidification of casting in less than 2 h.

  18. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G

    2011-01-01

    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  19. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  20. [The Process of Healing Child Physical Abuse: Sprouting and Twining].

    Science.gov (United States)

    Chang, Hsin-Yi; Feng, Jui-Ying; Tseng, Ren-Mei

    2018-06-01

    Child physical abuse impacts the physical and psychological health of survivors. Healing child abuse is an essential process that helps survivors reorganize the meaning of the trauma and pursue a normal life. Considering the trauma of child physical abuse within the social context allows the experiences of individual survivors to be reflected in their process of healing. To explore the social interaction and construction process of healing experienced by survivors of child physical abuse. A qualitative research design using grounded theory was applied. Purposive and theoretical sampling was used to recruit survivors of childhood physical abuse who had experienced healing. Semi-structured, in-depth interviews were used and data were analyzed using open, axial, and selective coding. The process of healing child physical abuse in this study was a process of sprouting and twining. Three core categories emerged: thriving, relationships, and ethics. The healing process was analogous to a seed growing in poor soil, sprouting out from the ground, and striving to live by seeking support. The survivors constantly established interactive relationships with their selves and with others and struggled to keep family bonds grounded and growing within the frame of ethics. The healing process of sprouting and twining for child physical abuse survivors in Taiwan integrates thriving, relationships, and ethics. Professionals working with child-physical-abuse survivors must recognize conflicts in ethics. Strategies should be developed to assist survivors to cope with the impact of childhood trauma in order to facilitate the healing process.

  1. Computer-Aided Modeling of Lipid Processing Technology

    DEFF Research Database (Denmark)

    Diaz Tovar, Carlos Axel

    2011-01-01

    increase along with growing interest in biofuels, the oleochemical industry faces in the upcoming years major challenges in terms of design and development of better products and more sustainable processes to make them. Computer-aided methods and tools for process synthesis, modeling and simulation...... are widely used for design, analysis, and optimization of processes in the chemical and petrochemical industries. These computer-aided tools have helped the chemical industry to evolve beyond commodities toward specialty chemicals and ‘consumer oriented chemicals based products’. Unfortunately...... to develop systematic computer-aided methods (property models) and tools (database) related to the prediction of the necessary physical properties suitable for design and analysis of processes employing lipid technologies. The methods and tools include: the development of a lipid-database (CAPEC...

  2. Modeling process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-02-01

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

  3. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  4. Causally nonseparable processes admitting a causal model

    International Nuclear Information System (INIS)

    Feix, Adrien; Araújo, Mateus; Brukner, Caslav

    2016-01-01

    A recent framework of quantum theory with no global causal order predicts the existence of ‘causally nonseparable’ processes. Some of these processes produce correlations incompatible with any causal order (they violate so-called ‘causal inequalities’ analogous to Bell inequalities ) while others do not (they admit a ‘causal model’ analogous to a local model ). Here we show for the first time that bipartite causally nonseparable processes with a causal model exist, and give evidence that they have no clear physical interpretation. We also provide an algorithm to generate processes of this kind and show that they have nonzero measure in the set of all processes. We demonstrate the existence of processes which stop violating causal inequalities but are still causally nonseparable when mixed with a certain amount of ‘white noise’. This is reminiscent of the behavior of Werner states in the context of entanglement and nonlocality. Finally, we provide numerical evidence for the existence of causally nonseparable processes which have a causal model even when extended with an entangled state shared among the parties. (paper)

  5. Physics-based process modeling, reliability prediction, and design guidelines for flip-chip devices

    Science.gov (United States)

    Michaelides, Stylianos

    Flip Chip on Board (FCOB) and Chip-Scale Packages (CSPs) are relatively new technologies that are being increasingly used in the electronic packaging industry. Compared to the more widely used face-up wirebonding and TAB technologies, flip-chips and most CSPs provide the shortest possible leads, lower inductance, higher frequency, better noise control, higher density, greater input/output (I/O), smaller device footprint and lower profile. However, due to the short history and due to the introduction of several new electronic materials, designs, and processing conditions, very limited work has been done to understand the role of material, geometry, and processing parameters on the reliability of flip-chip devices. Also, with the ever-increasing complexity of semiconductor packages and with the continued reduction in time to market, it is too costly to wait until the later stages of design and testing to discover that the reliability is not satisfactory. The objective of the research is to develop integrated process-reliability models that will take into consideration the mechanics of assembly processes to be able to determine the reliability of face-down devices under thermal cycling and long-term temperature dwelling. The models incorporate the time and temperature-dependent constitutive behavior of various materials in the assembly to be able to predict failure modes such as die cracking and solder cracking. In addition, the models account for process-induced defects and macro-micro features of the assembly. Creep-fatigue and continuum-damage mechanics models for the solder interconnects and fracture-mechanics models for the die have been used to determine the reliability of the devices. The results predicted by the models have been successfully validated against experimental data. The validated models have been used to develop qualification and test procedures for implantable medical devices. In addition, the research has helped develop innovative face

  6. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  7. Outlooks for mathematical modelling of the glass melting process

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)

    1997-12-31

    Mathematical modelling is nowadays a standard tool for major producers of float glass, T.V. glass and fiberglass. Also for container glass furnaces, glass tank modelling proves to be a valuable method to optimize process conditions. Mathematical modelling is no longer just a way to visualize the flow patterns and to provide data on heat transfer. It can also predict glass quality in relation to process parameters, because all chemical and physical phenomena are included in the latest generation of models, based on experimental and theoretical research on these phenomena.

  8. Modeling Physical Processes at Galactic Scales and Above

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-16

    What should these lectures be? The subject is so broad that many books can be written about it. I decided to prepare these lectures as if I were teaching my own graduate student. Given my research interests, I selected what the student would need to know to be able to discuss science with me and to work on joint research projects. So, the story presented below is both personal and incomplete, but it does cover several subjects that are poorly represented in the existing textbooks (if at all). Some of topics I focus on below are closely connected, others are disjoint, some are just side detours on specific technical questions. There is an overlapping theme, however. Our goal is to follow the cosmic gas from large scales, low densities, (relatively) simple physics to progressively smaller scales, higher densities, closer relation to galaxies, and more complex and uncertain physics. We follow a "yellow brick road" from the gas well beyond any galaxy confines to the actual sites of star formation and stellar feedback. On the way we will stop at some places for a tour and run without looking back through some others. So, the road will be uneven. The organization of the material is as follows: physics of the intergalactic medium, from intergalactic medium to circumgalactic medium, interstellar medium: gas in galaxies, star formation, and stellar feedback.

  9. Literature Review of Dredging Physical Models

    Science.gov (United States)

    This U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, special report presents a review of dredging physical ...model studies with the goal of understanding the most current state of dredging physical modeling, understanding conditions of similitude used in past...studies, and determining whether the flow field around a dredging operation has been quantified. Historical physical modeling efforts have focused on

  10. Physics-based process model approach for detecting discontinuity during friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Amber; Pfefferkorn, Frank E.; Duffie, Neil A.; Ferrier, Nicola J.; Smith, Christopher B.; Malukhin, Kostya; Zinn, Michael

    2015-02-12

    The goal of this work is to develop a method for detecting the creation of discontinuities during friction stir welding. This in situ weld monitoring method could significantly reduce the need for post-process inspection. A process force model and a discontinuity force model were created based on the state-of-the-art understanding of flow around an friction stir welding (FSW) tool. These models are used to predict the FSW forces and size of discontinuities formed in the weld. Friction stir welds with discontinuities and welds without discontinuities were created, and the differences in force dynamics were observed. In this paper, discontinuities were generated by reducing the tool rotation frequency and increasing the tool traverse speed in order to create "cold" welds. Experimental force data for welds with discontinuities and welds without discontinuities compared favorably with the predicted forces. The model currently overpredicts the discontinuity size.

  11. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    Science.gov (United States)

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  12. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  13. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  14. Systems and models with anticipation in physics and its applications

    International Nuclear Information System (INIS)

    Makarenko, A

    2012-01-01

    Investigations of recent physics processes and real applications of models require the new more and more improved models which should involved new properties. One of such properties is anticipation (that is taking into accounting some advanced effects).It is considered the special kind of advanced systems – namely a strong anticipatory systems introduced by D. Dubois. Some definitions, examples and peculiarities of solutions are described. The main feature is presumable multivaluedness of the solutions. Presumable physical examples of such systems are proposed: self-organization problems; dynamical chaos; synchronization; advanced potentials; structures in micro-, meso- and macro- levels; cellular automata; computing; neural network theory. Also some applications for modeling social, economical, technical and natural systems are described.

  15. Computational Methods for Physical Model Information Management: Opening the Aperture

    International Nuclear Information System (INIS)

    Moser, F.; Kirgoeze, R.; Gagne, D.; Calle, D.; Murray, J.; Crowley, J.

    2015-01-01

    The volume, velocity and diversity of data available to analysts are growing exponentially, increasing the demands on analysts to stay abreast of developments in their areas of investigation. In parallel to the growth in data, technologies have been developed to efficiently process, store, and effectively extract information suitable for the development of a knowledge base capable of supporting inferential (decision logic) reasoning over semantic spaces. These technologies and methodologies, in effect, allow for automated discovery and mapping of information to specific steps in the Physical Model (Safeguard's standard reference of the Nuclear Fuel Cycle). This paper will describe and demonstrate an integrated service under development at the IAEA that utilizes machine learning techniques, computational natural language models, Bayesian methods and semantic/ontological reasoning capabilities to process large volumes of (streaming) information and associate relevant, discovered information to the appropriate process step in the Physical Model. The paper will detail how this capability will consume open source and controlled information sources and be integrated with other capabilities within the analysis environment, and provide the basis for a semantic knowledge base suitable for hosting future mission focused applications. (author)

  16. The importance of information goods abstraction levels for information commerce process models

    NARCIS (Netherlands)

    Wijnhoven, Alphonsus B.J.M.

    2002-01-01

    A process model, in the context of e-commerce, is an organized set of activities for the creation, (re-)production, trade and delivery of goods. Electronic commerce studies have created important process models for the trade of physical goods via Internet. These models are not easily suitable for

  17. Models in Physics, Models for Physics Learning, and Why the Distinction May Matter in the Case of Electric Circuits

    Science.gov (United States)

    Hart, Christina

    2008-01-01

    Models are important both in the development of physics itself and in teaching physics. Historically, the consensus models of physics have come to embody particular ontological assumptions and epistemological commitments. Educators have generally assumed that the consensus models of physics, which have stood the test of time, will also work well…

  18. Building a multilevel modeling network for lipid processing systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri; Díaz Tovar, Carlos Axel; Hukkerikar, Amol

    2011-01-01

    ). The applicability of this methodology is highlighted in each level of modeling through the analysis of a lipid process that has significant relevance in the edible oil and biodiesel industries since it determines the quality of the final oil product, the physical refining process of oils and fats....

  19. Review of mathematical and physical basis of two-phase flow modelling

    International Nuclear Information System (INIS)

    Bottoni, M.; Sengpiel, W.

    1992-08-01

    Starting from a continuum-mechanical approach, this report gives a detailed overview of the deduction of conservation equations for the analytical description of two-phase flows by means of an adequate averaging process resulting in a two-fluid model and a homogeneous mixture model. The mathematical process of averaging leads to macroscopic formulations of stress terms and interfacial interaction terms. These terms depend on microscopic variables and thus give some helpful insight into the physical processes which have to be described by constitutive relations. (orig.) [de

  20. Concept of a cognitive-numeric plant and process modelizer

    International Nuclear Information System (INIS)

    Vetterkind, D.

    1990-01-01

    To achieve automatic modeling of plant distrubances and failure limitation procedures, first the system's hardware and the present media (water, steam, coolant fluid) are formalized into fully computable matrices, called topographies. Secondly a microscopic cellular automation model, using lattice gases and state transition rules, is combined with a semi - microscopic cellular process model and with a macroscopic model, too. In doing this, at semi-microscopic level there are acting a cellular data compressor, a feature detection device and the Intelligent Physical Element's process dynamics. At macroscopic level the Walking Process Elements, a process evolving module, a test-and-manage device and abstracting process net are involved. Additionally, a diagnosis-coordinating and a counter measurements coordinating device are used. In order to automatically get process insights, object transformations, elementary process functions and associative methods are used. Developments of optoelectronic hardware language components are under consideration

  1. Effect of Uncertainties in Physical Property Estimates on Process Design - Sensitivity Analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Jones, Mark Nicholas; Sin, Gürkan

    for performing sensitivity of process design subject to uncertainties in the property estimates. To this end, first uncertainty analysis of the property models of pure components and their mixtures was performed in order to obtain the uncertainties in the estimated property values. As a next step, sensitivity......Chemical process design calculations require accurate and reliable physical and thermodynamic property data and property models of pure components and their mixtures in order to obtain reliable design parameters which help to achieve desired specifications. The uncertainties in the property values...... can arise from the experiments itself or from the property models employed. It is important to consider the effect of these uncertainties on the process design in order to assess the quality and reliability of the final design. The main objective of this work is to develop a systematic methodology...

  2. Workshop on Processing Physic-Chemistry Advanced – WPPCA

    International Nuclear Information System (INIS)

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “2nd Workshop on Processing Physic-Chemistry advanced (WPPCA)”, that was held from, April 4-8, 2016, at the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia. The proceedings consist of 17 contributions that were presented as plenary talks at the event. The abstracts of all participants contributions were published in the Abstract Book with ISSN 2500-8420. The scientific program of the 2nd WPPCA consisted of 12 Magisterial Conferences, 28 Poster Presentations and 2 Courses with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Spain, Unite States of America, Mexico and Chile. Moreover, the 2nd WPPCA allowed to establish a shared culture of the research and innovation that enriches the area of the processing physical-chemistry of the materials and the industrial applications. All papers in these Proceedings refer to one from the following topics: Semiconductors, Superconductivity, Nanostructure Materials and Modelling, Simulation and Diagnostics. The editor hopes that those interested in the area of the science of materials can to enjoy this reading, that reflects a wide variety of current issues. On behalf of the organizing committee of the 2nd WPPCA, we are extremely thankful to all authors for providing their valuable contributions for these Proceedings as well as the reviewers for their constructive recommendations and criticism aiding to improve the presented articles. Besides, especially we appreciate the great support provided by the Sponsors and Partners. (paper)

  3. Physically-based modelling of polycrystalline semiconductor devices

    International Nuclear Information System (INIS)

    Lee, S.

    2000-01-01

    Thin-film technology using polycrystalline semiconductors has been widely applied to active-matrix-addressed liquid crystal displays (AMLCDs) where thin-film transistors act as digital pixel switches. Research and development is in progress to integrate the driver circuits around the peripheral of the display, resulting in significant cost reduction of connections between rows and columns and the peripheral circuitry. For this latter application, where for instance it is important to control the greyscale voltage level delivered to the pixel, an understanding of device behaviour is required so that models can be developed for analogue circuit simulation. For this purpose, various analytical models have been developed based on that of Seto who considered the effect of monoenergetic trap states and grain boundaries in polycrystalline materials but not the contribution of the grains to the electrical properties. The principal aim of this thesis is to describe the use of a numerical device simulator (ATLAS) as a tool to investigate the physics of the trapping process involved in the device operation, which additionally takes into account the effect of multienergetic trapping levels and the contribution of the grain into the modelling. A study of the conventional analytical models is presented, and an alternative approach is introduced which takes into account the grain regions to enhance the accuracy of the analytical modelling. A physically-based discrete-grain-boundary model and characterisation method are introduced to study the effects of the multienergetic trap states on the electrical characteristics of poly-TFTs using CdSe devices as the experimental example, and the electrical parameters such as the density distribution of the trapping states are extracted. The results show excellent agreement between the simulation and experimental data. The limitations of this proposed physical model are also studied and discussed. (author)

  4. Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Chou, S.K.; Chua, K.J.

    2013-01-01

    Highlights: ► Group contribution methods from molecular level have been used for the prediction. ► Complete prediction of the physical properties for 5 methyl esters has been done. ► The predicted results can be very useful for biodiesel combustion modeling. ► Various models have been compared and the best model has been identified. ► Predicted properties are over large temperature ranges with excellent accuracies. -- Abstract: In order to accurately simulate the fuel spray, atomization, combustion and emission formation processes of a diesel engine fueled with biodiesel, adequate knowledge of biodiesel’s physical properties is desired. The objective of this work is to do a detailed physical properties prediction for the five major methyl esters of biodiesel for combustion modeling. The physical properties considered in this study are: normal boiling point, critical properties, vapor pressure, and latent heat of vaporization, liquid density, liquid viscosity, liquid thermal conductivity, gas diffusion coefficients and surface tension. For each physical property, the best prediction model has been identified, and very good agreements have been obtained between the predicted results and the published data where available. The calculated results can be used as key references for biodiesel combustion modeling.

  5. Advances in the physics modelling of CANDU liquid injection shutdown systems

    International Nuclear Information System (INIS)

    Smith, H.J.; Robinson, R.; Guertin, C.

    1993-01-01

    The physics modelling of liquid poison injection shutdown systems in CANDU reactors accounts for the major phenomena taking place by combining the effects of both moderator hydraulics and neutronics. This paper describes the advances in the physics modelling of liquid poison injection shutdown systems (LISS), discusses some of the effects of the more realistic modelling, and briefly describes the automation methodology. Modifications to the LISS methodology have improved the realism of the physics modelling, showing that the previous methodology significantly overestimated energy deposition during the simulation of a loss of coolant transient in Bruce A, by overestimating the reactivity transient. Furthermore, the automation of the modelling process has reduced the time needed to carry put LISS evaluations to the same level as required for shutoff-rod evaluations, while at the same time minimizing the amount of input, and providing a method for tracing all files used, thus adding a level of quality assurance to the calculation. 5 refs., 11 figs

  6. Modelling the Pultrusion Process of Off Shore Wind Turbine Blades

    DEFF Research Database (Denmark)

    Baran, Ismet

    together with the thermal and cure developments are addressed. A detailed survey on pultrusion is presented including numerical and experimental studies available in the literature since the 1980s. Keeping the multi-physics and large amount of variables involved in the pultrusion process in mind...... and shape distortions in the pultrusion process. Together these models present a thermo-chemical-mechanical model framework for the process which is unprecedented in literature. In this framework, the temperature and degree of cure fields already calculated in the thermo-chemical model are mapped...

  7. Adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, relational and physical victimization, and peer liking.

    Science.gov (United States)

    Kawabata, Yoshito; Tseng, Wan-Ling; Crick, Nicki R

    2014-01-01

    A three-wave longitudinal study among ethnically diverse preadolescents (N = 597 at Time 1, ages 9-11) was conducted to examine adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, victimization, and peer liking indexed by peer acceptance and friendships. A series of nested structural equation models tested the hypothesized links among these peer-domain factors. It was hypothesized that (1) relational aggression trails both adaptive and maladaptive processes, linking to more peer victimization and more peer liking, whereas physical aggression is maladaptive, resulting in more peer victimization and less peer liking; (2) physical and relational victimization is maladaptive, relating to more aggression and less peer liking; (3) peer liking may be the social context that promotes relational aggression (not physical aggression), whereas peer liking may protect against peer victimization, regardless of its type; and (4) peer liking mediates the link between forms of aggression and forms of peer victimization. Results showed that higher levels of peer liking predicted relative increases in relational aggression (not physical aggression), which in turn led to more peer liking. On the other hand, more peer liking was predictive of relative decreases in relational aggression and relational victimization in transition to the next grade (i.e., fifth grade). In addition, relational victimization predicted relative increases in relational aggression and relative decreases in peer liking. Similarly, physical aggression was consistently and concurrently associated more physical victimization and was marginally predictive of relative increases in physical victimization in transition to the next grade. More peer liking predicted relative decreases in physical victimization, which resulted in lower levels of peer liking. The directionality and magnitude of these paths did not differ between boys and girls. © 2013 Wiley

  8. Probing new physics in rare charm processes

    International Nuclear Information System (INIS)

    Hewett, J.L.

    1994-09-01

    The possibility of using the charm system to search for new physics is addressed. Phenomena such as D 0 - bar D 0 mixing and rare decays of charmed mesons are first examined in the Standard Model to test the present understanding and to serve as benchmarks for signals from new sources. The effects of new physics from various classes of non-standard dynamical models on D 0 - bar D 0 mixing are investigated

  9. Synergy of modeling processes in the area of soft and hard modeling

    Directory of Open Access Journals (Sweden)

    Sika Robert

    2017-01-01

    Full Text Available High complexity of production processes results in more frequent use of computer systems for their modeling and simulation. Process modeling helps to find optimal solution, verify some assumptions before implementation and eliminate errors. In practice, modeling of production processes concerns two areas: hard modeling (based on differential equations of mathematical physics and soft (based on existing data. In the paper the possibility of synergistic connection of these two approaches was indicated: it means hard modeling support based on the tools used in soft modeling. It aims at significant reducing the time in order to obtain final results with the use of hard modeling. Some test were carried out in the Calibrate module of NovaFlow&Solid (NF&S simulation system in the frame of thermal analysis (ATAS-cup. The authors tested output values forecasting in NF&S system (solidification time on the basis of variable parameters of the thermal model (heat conduction, specific heat, density. Collected data was used as an input to prepare soft model with the use of MLP (Multi-Layer Perceptron neural network regression model. The approach described above enable to reduce the time of production process modeling with use of hard modeling and should encourage production companies to use it.

  10. Integrated Numerical Experiments (INEX) and the Free-Electron Laser Physical Process Code (FELPPC)

    International Nuclear Information System (INIS)

    Thode, L.E.; Chan, K.C.D.; Schmitt, M.J.; McKee, J.; Ostic, J.; Elliott, C.J.; McVey, B.D.

    1990-01-01

    The strong coupling of subsystem elements, such as the accelerator, wiggler, and optics, greatly complicates the understanding and design of a free electron laser (FEL), even at the conceptual level. To address the strong coupling character of the FEL the concept of an Integrated Numerical Experiment (INEX) was proposed. Unique features of the INEX approach are consistency and numerical equivalence of experimental diagnostics. The equivalent numerical diagnostics mitigates the major problem of misinterpretation that often occurs when theoretical and experimental data are compared. The INEX approach has been applied to a large number of accelerator and FEL experiments. Overall, the agreement between INEX and the experiments is very good. Despite the success of INEX, the approach is difficult to apply to trade-off and initial design studies because of the significant manpower and computational requirements. On the other hand, INEX provides a base from which realistic accelerator, wiggler, and optics models can be developed. The Free Electron Laser Physical Process Code (FELPPC) includes models developed from INEX, provides coupling between the subsystem models, and incorporates application models relevant to a specific trade-off or design study. In other words, FELPPC solves the complete physical process model using realistic physics and technology constraints. Because FELPPC provides a detailed design, a good estimate for the FEL mass, cost, and size can be made from a piece-part count of the FEL. FELPPC requires significant accelerator and FEL expertise to operate. The code can calculate complex FEL configurations including multiple accelerator and wiggler combinations

  11. PHYSICAL RESOURCES OF INFORMATION PROCESSES AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Mikhail O. Kolbanev

    2014-11-01

    Full Text Available Subject of study. The paper describes basic information technologies for automating of information processes of data storage, distribution and processing in terms of required physical resources. It is shown that the study of these processes with such traditional objectives of modern computer science, as the ability to transfer knowledge, degree of automation, information security, coding, reliability, and others, is not enough. The reasons are: on the one hand, the increase in the volume and intensity of information exchange in the subject of human activity and, on the other hand, drawing near to the limit of information systems efficiency based on semiconductor technologies. Creation of such technologies, which not only provide support for information interaction, but also consume a rational amount of physical resources, has become an actual problem of modern engineering development. Thus, basic information technologies for storage, distribution and processing of information to support the interaction between people are the object of study, and physical temporal, spatial and energy resources required for implementation of these technologies are the subject of study. Approaches. An attempt is made to enlarge the possibilities of traditional cybernetics methodology, which replaces the consideration of material information component by states search for information objects. It is done by taking explicitly into account the amount of physical resources required for changes in the states of information media. Purpose of study. The paper deals with working out of a common approach to the comparison and subsequent selection of basic information technologies for storage, distribution and processing of data, taking into account not only the requirements for the quality of information exchange in particular subject area and the degree of technology application, but also the amounts of consumed physical resources. Main findings. Classification of resources

  12. Physics Based Modeling of Compressible Turbulance

    Science.gov (United States)

    2016-11-07

    AFRL-AFOSR-VA-TR-2016-0345 PHYSICS -BASED MODELING OF COMPRESSIBLE TURBULENCE PARVIZ MOIN LELAND STANFORD JUNIOR UNIV CA Final Report 09/13/2016...on the AFOSR project (FA9550-11-1-0111) entitled: Physics based modeling of compressible turbulence. The period of performance was, June 15, 2011...by ANSI Std. Z39.18 Page 1 of 2FORM SF 298 11/10/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll PHYSICS -BASED MODELING OF COMPRESSIBLE

  13. Relaxation processes and physical aging in metallic glasses

    Science.gov (United States)

    Ruta, B.; Pineda, E.; Evenson, Z.

    2017-12-01

    Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with

  14. Physical Modeling of the Processes Responsible for the Mid-Latitude Storm Enhanced Plasma Density

    Science.gov (United States)

    Fuller-Rowell, T. J.; Maruyama, N.; Fedrizzi, M.; Codrescu, M.; Heelis, R. A.

    2016-12-01

    Certain magnetic local time sectors at mid latitudes see substantial increases in plasma density in the early phases of a geomagnetic storm. The St. Patrick's Day storms of 2013 and 2015 were no exception, both producing large increases of total electron content at mid latitudes. There are theories for the build up of the storm enhanced density (SED), but can current theoretical ionosphere-thermosphere coupled models actually reproduce the response for an actual event? Not only is it necessary for the physical model to contain the appropriate physics, they also have to be forced by the correct drivers. The SED requires mid-latitude zonal transport to provide plasma stagnation in sunlight to provide the production. The theory also requires a poleward drift perpendicular to the magnetic field to elevate the plasma out of the body of the thermosphere to regions of substantially less loss rate. It is also suggested that equatorward winds are necessary to further elevate the plasma to regions of reduced loss. However, those same winds are also likely to transport molecular nitrogen rich neutral gas equatorward, potentially canceling out the benefits of the neutral circulation. Observations of mid-latitude zonal plasma flow are first analyzed to see if this first necessary ingredient is substantiated. The drift observations are then used to tune the driver to determine if, with the appropriate electric field driver, the latest physical models can reproduce the substantial plasma build up. If it can, the simulation can also be used to assess the contribution of the equatorward meridional wind; are they an asset to the plasma build up, or does the enhanced molecular species they carry counteract their benefit.

  15. Validation of the TTM processes of change measure for physical activity in an adult French sample.

    Science.gov (United States)

    Bernard, Paquito; Romain, Ahmed-Jérôme; Trouillet, Raphael; Gernigon, Christophe; Nigg, Claudio; Ninot, Gregory

    2014-04-01

    Processes of change (POC) are constructs from the transtheoretical model that propose to examine how people engage in a behavior. However, there is no consensus about a leading model explaining POC and there is no validated French POC scale in physical activity This study aimed to compare the different existing models to validate a French POC scale. Three studies, with 748 subjects included, were carried out to translate the items and evaluate their clarity (study 1, n = 77), to assess the factorial validity (n = 200) and invariance/equivalence (study 2, n = 471), and to analyze the concurrent validity by stage × process analyses (study 3, n = 671). Two models displayed adequate fit to the data; however, based on the Akaike information criterion, the fully correlated five-factor model appeared as the most appropriate to measure POC in physical activity. The invariance/equivalence was also confirmed across genders and student status. Four of the five existing factors discriminated pre-action and post-action stages. These data support the validation of the POC questionnaire in physical activity among a French sample. More research is needed to explore the longitudinal properties of this scale.

  16. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  17. A student's guide to Python for physical modeling

    CERN Document Server

    Kinder, Jesse M

    2015-01-01

    Python is a computer programming language that is rapidly gaining popularity throughout the sciences. A Student’s Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. A website that accompanies this guide provides additional resourc...

  18. Physical processes in the Indian seas

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Das, V.K.; Antony, M.K.

    The proceedings volume comprise 38 papers covering air-sea boundary problems, open-ocean dynamics, nearshore processes, observational and analysis techniques, etc. This volume helps in taking stock of physical oceanographic activities in India...

  19. 3D finite element modelling of sheet metal blanking process

    Science.gov (United States)

    Bohdal, Lukasz; Kukielka, Leon; Chodor, Jaroslaw; Kulakowska, Agnieszka; Patyk, Radoslaw; Kaldunski, Pawel

    2018-05-01

    The shearing process such as the blanking of sheet metals has been used often to prepare workpieces for subsequent forming operations. The use of FEM simulation is increasing for investigation and optimizing the blanking process. In the current literature a blanking FEM simulations for the limited capability and large computational cost of the three dimensional (3D) analysis has been largely limited to two dimensional (2D) plane axis-symmetry problems. However, a significant progress in modelling which takes into account the influence of real material (e.g. microstructure of the material), physical and technological conditions can be obtained by using 3D numerical analysis methods in this area. The objective of this paper is to present 3D finite element analysis of the ductile fracture, strain distribution and stress in blanking process with the assumption geometrical and physical nonlinearities. The physical, mathematical and computer model of the process are elaborated. Dynamic effects, mechanical coupling, constitutive damage law and contact friction are taken into account. The application in ANSYS/LS-DYNA program is elaborated. The effect of the main process parameter a blanking clearance on the deformation of 1018 steel and quality of the blank's sheared edge is analyzed. The results of computer simulations can be used to forecasting quality of the final parts optimization.

  20. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  1. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  2. Gyrofluid Modeling of Turbulent, Kinetic Physics

    Science.gov (United States)

    Despain, Kate Marie

    2011-12-01

    Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.

  3. Physical processes in hot cosmic plasmas

    International Nuclear Information System (INIS)

    Fabian, A.G.; Giovannelli, F.

    1990-01-01

    The interpretation of many high energy astrophysical phenomena relies on a detailed knowledge of radiation and transport processes in hot plasmas. The understanding of these plasma properties is one of the aims of terrestrial plasma physics. While the microscopic properties of astrophysical plasmas can hardly be determined experimentally, laboratory plasmas are more easily accessible to experimental techniques, but transient phenomena and the interaction of the plasma with boundaries often make the interpretation of measurements cumbersome. This book contains the talks given at the NATO Advanced Research Workshop on astro- and plasma-physics in Vulcano, Sicily, May 29-June 2, 1989. The book focuses on three main areas: radiation transport processes in hot (astrophysical and laboratory) plasmas; magnetic fields; their generation, reconnection and their effects on plasma transport properties; relativistic and ultra-high density plasmas

  4. Physical model for membrane protrusions during spreading

    International Nuclear Information System (INIS)

    Chamaraux, F; Ali, O; Fourcade, B; Keller, S; Bruckert, F

    2008-01-01

    During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane–cytoskeleton complex, such as the membrane–cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane–cytoskeleton adherence

  5. Physics as Information Processing

    International Nuclear Information System (INIS)

    D'Ariano, Giacomo Mauro

    2011-01-01

    I review some recent advances in foundational research at Pavia QUIT group. The general idea is that there is only Quantum Theory without quantization rules, and the whole Physics - including space-time and relativity - is emergent from the quantum-information processing. And since Quantum Theory itself is axiomatized solely on informational principles, the whole Physics must be reformulated in information-theoretical terms: this is the It from bit of J. A. Wheeler.The review is divided into four parts: a) the informational axiomatization of Quantum Theory; b) how space-time and relativistic covariance emerge from quantum computation; c) what is the information-theoretical meaning of inertial mass and of (ℎ/2π), and how the quantum field emerges; d) an observational consequence of the new quantum field theory: a mass-dependent refraction index of vacuum. I will conclude with the research lines that will follow in the immediate future.

  6. Modeling and analyses for an extended car-following model accounting for drivers' situation awareness from cyber physical perspective

    Science.gov (United States)

    Chen, Dong; Sun, Dihua; Zhao, Min; Zhou, Tong; Cheng, Senlin

    2018-07-01

    In fact, driving process is a typical cyber physical process which couples tightly the cyber factor of traffic information with the physical components of the vehicles. Meanwhile, the drivers have situation awareness in driving process, which is not only ascribed to the current traffic states, but also extrapolates the changing trend. In this paper, an extended car-following model is proposed to account for drivers' situation awareness. The stability criterion of the proposed model is derived via linear stability analysis. The results show that the stable region of proposed model will be enlarged on the phase diagram compared with previous models. By employing the reductive perturbation method, the modified Korteweg de Vries (mKdV) equation is obtained. The kink-antikink soliton of mKdV equation reveals theoretically the evolution of traffic jams. Numerical simulations are conducted to verify the analytical results. Two typical traffic Scenarios are investigated. The simulation results demonstrate that drivers' situation awareness plays a key role in traffic flow oscillations and the congestion transition.

  7. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification

    International Nuclear Information System (INIS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2015-01-01

    Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s −1 , and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components

  8. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Dingqian [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Chen, Fei, E-mail: feechn@gmail.com [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Cui, Zhenshan, E-mail: cuizs@sjtu.edu.cn [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China)

    2015-05-14

    Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s{sup −1}, and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components.

  9. The limitations of mathematical modeling in high school physics education

    Science.gov (United States)

    Forjan, Matej

    The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems

  10. Mathematical modelling of the laser processing of compose materials

    International Nuclear Information System (INIS)

    Gromyko, G.F.; Matsuka, N.P.

    2009-01-01

    Expansion of the protective coating scope led to the necessity to work out lower priced methods of treatment of machine elements. Making of an adequate, agreed with process features, mathematical model and development of effective methods of its solving are promising directions in this fields. In this paper the mathematical model of high-temperature laser treatment via moving source of pre-sprayed with composite powder padding is developed. Presented model describes accurately enough the heat processes taking place by laser processing of machine elements. Varying input parameters of model (laser power, temperature and composition of environment, characteristics and quantitative composition of using materials, etc.) one can get a cheap tool of preliminary estimates for wide range of similar problems. Difference method, based on process physical features and taking into account main process-dependent parameters had been developed for solving of the built system of nonlinear equations. (authors)

  11. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  12. Quantification of chemical and physical processes influencing ozone during long-range transport using a trajectory ensemble

    Directory of Open Access Journals (Sweden)

    M. Cain

    2012-08-01

    Full Text Available During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3 into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution.

    The results show that the net chemical processing (Δ O3chem over the whole simulation is greater than net physical processing (Δ O3phys in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport or production (an upper tropospheric biomass burning case. However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases.

    Processing is quantified using a Lagrangian

  13. Monte Carlo tools for Beyond the Standard Model Physics , April 14-16

    DEFF Research Database (Denmark)

    Badger...[], Simon; Christensen, Christian Holm; Dalsgaard, Hans Hjersing

    2011-01-01

    This workshop aims to gather together theorists and experimentalists interested in developing and using Monte Carlo tools for Beyond the Standard Model Physics in an attempt to be prepared for the analysis of data focusing on the Large Hadron Collider. Since a large number of excellent tools....... To identify promising models (or processes) for which the tools have not yet been constructed and start filling up these gaps. To propose ways to streamline the process of going from models to events, i.e. to make the process more user-friendly so that more people can get involved and perform serious collider...

  14. Visual search for conjunctions of physical and numerical size shows that they are processed independently.

    Science.gov (United States)

    Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J; Dague, Taylor D

    2017-03-01

    The size congruity effect refers to the interaction between numerical magnitude and physical digit size in a symbolic comparison task. Though this effect is well established in the typical 2-item scenario, the mechanisms at the root of the interference remain unclear. Two competing explanations have emerged in the literature: an early interaction model and a late interaction model. In the present study, we used visual conjunction search to test competing predictions from these 2 models. Participants searched for targets that were defined by a conjunction of physical and numerical size. Some distractors shared the target's physical size, and the remaining distractors shared the target's numerical size. We held the total number of search items fixed and manipulated the ratio of the 2 distractor set sizes. The results from 3 experiments converge on the conclusion that numerical magnitude is not a guiding feature for visual search, and that physical and numerical magnitude are processed independently, which supports a late interaction model of the size congruity effect. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  16. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    Science.gov (United States)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  17. Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [Univ. of Washington, Seattle, WA (United States); Dennis, John [Univ. of Washington, Seattle, WA (United States); MacCready, Parker [Univ. of Washington, Seattle, WA (United States); Whitney, Michael [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  18. Thermal modeling: at the crossroads of several subjects of physics

    International Nuclear Information System (INIS)

    1997-01-01

    The modeling of thermal phenomena is of prime importance for the dimensioning of industrial facilities. However, the understanding of thermal processes requires to refer to other subjects of physics like electromagnetism, matter transformation, fluid mechanics, chemistry etc.. The aim of this workshop organized by the industrial electro-thermal engineering section of the French society of thermal engineers is to take stock of current or forthcoming advances in the coupling of thermal engineering codes with electromagnetic, fluid mechanics, chemical and mechanical engineering codes. The modeling of phenomena remains the essential link between the laboratory research of new processes and their industrial developments. From the 9 talks given during this workshop, 2 of them deal with thermal processes in nuclear reactors and fall into the INIS scope and the others concern the modeling of industrial heating or electrical processes and were selected for ETDE. (J.S.)

  19. ERP differences between processing of physical characteristics and personality attributes

    Science.gov (United States)

    2012-01-01

    Background Limited data from behavioral and brain-imaging studies indicate that personality traits and physical characteristics are processed differently by the brain. Additionally, electrophysiological results of studies comparing the processing of positive and negative words have produced mixed results. It is therefore not clear how physical and personality attributes with emotional valence (i.e., positive and negative valence) are processed. Thus, this study aimed to examine the neural activity associated with words describing personality traits and physical characteristics with positive or negative emotional valence using Event Related Potentials (ERPs). Methods A sample of 15 healthy adults (7 men, 8 women) participated in a computerized word categorization task. Participants were asked to categorize visual word stimuli as physical characteristics or personality traits, while ERPs were recorded synchronously. Results Behavioral reaction times to negative physical stimuli were shorter compared to negative personality words, however reaction times did not significantly differ for positive stimuli. Electrophysiological results showed that personality stimuli elicited larger P2 and LPC (Late Positive Component) amplitudes compared to physical stimuli, regardless of negative or positive valence. Moreover, negative as compared with positive stimuli elicited larger P2 and LPC amplitudes. Conclusion Personality and physical stimuli were processed differently regardless of positive or negative valence. These findings suggest that personality traits and physical characteristics are differentially classified and are associated with different motivational significance. PMID:22967478

  20. Electrical Storm Simulation to Improve the Learning Physics Process

    Science.gov (United States)

    Martínez Muñoz, Miriam; Jiménez Rodríguez, María Lourdes; Gutiérrez de Mesa, José Antonio

    2013-01-01

    This work is part of a research project whose main objective is to understand the impact that the use of Information and Communication Technology (ICT) has on the teaching and learning process on the subject of Physics. We will show that, with the use of a storm simulator, physics students improve their learning process on one hand they understand…

  1. Comparison of autoregressive (AR) strategy with that of regression approach for determining ozone layer depletion as a physical process

    International Nuclear Information System (INIS)

    Yousufzai, M.A.K; Aansari, M.R.K.; Quamar, J.; Iqbal, J.; Hussain, M.A.

    2010-01-01

    This communication presents the development of a comprehensive characterization of ozone layer depletion (OLD) phenomenon as a physical process in the form of mathematical models that comprise the usual regression, multiple or polynomial regression and stochastic strategy. The relevance of these models has been illuminated using predicted values of different parameters under a changing environment. The information obtained from such analysis can be employed to alter the possible factors and variables to achieve optimum performance. This kind of analysis initiates a study towards formulating the phenomenon of OLD as a physical process with special reference to the stratospheric region of Pakistan. The data presented here establishes that the Auto regressive (AR) nature of modeling OLD as a physical process is an appropriate scenario rather than using usual regression. The data reported in literature suggest quantitatively the OLD is occurring in our region. For this purpose we have modeled this phenomenon using the data recorded at the Geophysical Centre Quetta during the period 1960-1999. The predictions made by this analysis are useful for public, private and other relevant organizations. (author)

  2. NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure

    Science.gov (United States)

    Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.

    2013-12-01

    Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.

  3. DEVELOPMENT OF COORDINATION ABILITIES OF SPECIAL MEDICAL GROUPS STUDENTS IN PHYSICAL EDUCATION PROCESS

    Directory of Open Access Journals (Sweden)

    E. N. Dotsenko

    2013-08-01

    Full Text Available Purpose. To analyze the problem of motor abilities development and health of students of special medical group in the process of physical education in technical universities. Determine the major factors, characteristics, and the relationship of physical development, physical fitness and coordination abilities of female students in special medical group. Establish regularities in precise movements mastering of different coordination structure and develop model characteristics of the relationship of coordination abilities and motor characteristics of students in special medical group. To substantiate and verify efficiency of coordination abilities development method of female students with regard to their functional status in the course of physical education in higher school. Methodology. Theoretical and methodological argument, characteristic of the experimental program in physical education teaching process of students in special medical group was shown. Findings. Research is to develop the training content in special medical groups with the use of coordinating elements and exercises to enhance the motor abilities of female students. Their influence on the level of physical development, functional training, as well as regularities in mastering and movement control of different coordinating structure at the female students of special medical group was studied. The comparative characteristic of female students athletic ability in the dynamics of the educational process, differentiated into groups according to nosology was presented. The criterion of spare capacities upgrade of the motor system in controlling the movements of different coordination structure was determined. Originality. The method of coordination abilities development of female students in special medical group, that aims on the formation and correction of motor control system of different coordination structure, a sense of body position and its individual parts in space, improving

  4. Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description

    DEFF Research Database (Denmark)

    Eitelberger, Johannes; Svensson, Staffan; Hofstetter, Karin

    2011-01-01

    transport when used to describe transient processes. A suitable modeling approach was found by distinguishing between the two phases of water in wood, namely bound water in the cell walls and water vapor in the lumens. Such models are capable of reproducing transient moisture transport processes......, but the physical origin of the coupling between the two phases remains unclear. In this paper, the physical background on the microscale is clarified and transformed into a comprehensive macroscopic description, ending up with a dual-scale model comprising three coupled differential equations for bound water...

  5. Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming

    2015-06-01

    Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.

  6. Model Unspecific Search for New Physics with High pT Photons in CMS

    CERN Document Server

    Schmitz, Stefan Antonius

    2009-01-01

    In 2009 the LHC collider at the European center of particle physics CERN will start operations, colliding protons with a center of mass energy of up to 14 TeV. Designed as a large multi purpose detector CMS 3 will then start taking collision data. CMS will perform precision measurements within the Standard Model of particle physics and expand the search for new physical phenomena into regions that have not yet been probed by previous experiments. Many theories about what physics beyond the Standard Model at the TeV scale might look like have been proposed. Together these models leave room for a broad spectrum of possible experimental signatures that one might look for in the data. Various analyses focus on processing the available information with the aim of finding evidence for a specific model of choice. MUSiC as a Model Unspecific Search in CMS provides a complementary approach by scanning the data for noteworthy deviations from the Standard Model expectation while making only basic assumptions about the n...

  7. Modeling critical zone processes in intensively managed environments

    Science.gov (United States)

    Kumar, Praveen; Le, Phong; Woo, Dong; Yan, Qina

    2017-04-01

    Processes in the Critical Zone (CZ), which sustain terrestrial life, are tightly coupled across hydrological, physical, biochemical, and many other domains over both short and long timescales. In addition, vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behaviors in ecologic and hydrologic functions, subsequently controlling CZ processes. We hypothesize that the interplay between micro-topographic variability and these emergent behaviors will shape complex responses of a range of ecosystem dynamics within the CZ. Here, we develop a modeling framework ('Dhara') that explicitly incorporates micro-topographic variability based on lidar topographic data with coupling of multi-layer modeling of the soil-vegetation continuum and 3-D surface-subsurface transport processes to study ecological and biogeochemical dynamics. We further couple a C-N model with a physically based hydro-geomorphologic model to quantify (i) how topographic variability controls the spatial distribution of soil moisture, temperature, and biogeochemical processes, and (ii) how farming activities modify the interaction between soil erosion and soil organic carbon (SOC) dynamics. To address the intensive computational demand from high-resolution modeling at lidar data scale, we use a hybrid CPU-GPU parallel computing architecture run over large supercomputing systems for simulations. Our findings indicate that rising CO2 concentration and air temperature have opposing effects on soil moisture, surface water and ponding in topographic depressions. Further, the relatively higher soil moisture and lower soil temperature contribute to decreased soil microbial activities in the low-lying areas due to anaerobic conditions and reduced temperatures. The decreased microbial relevant processes cause the reduction of nitrification rates, resulting in relatively lower nitrate

  8. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  9. Forward Physics at the LHC within and beyond the Standard Model

    CERN Document Server

    d'Enterria, David

    2008-01-01

    We review the detection capabilities in the forward direction of the various LHC experiments together with the associated physics programme. A selection of measurements accessible with near-beam instrumentation in various sectors (and extensions) of the Standard Model is outlined, including QCD (diffractive and elastic scattering, low-x parton dynamics, hadronic Monte Carlos for cosmic-rays), electroweak processes in gamma-gamma interactions, and Higgs physics (vector-boson-fusion and central exclusive production).

  10. Kinetics of Thermally Activated Physical Processes in Disordered Media

    Directory of Open Access Journals (Sweden)

    Bertrand Poumellec

    2015-07-01

    Full Text Available We describe a framework for modeling the writing and erasure of thermally-distributed activated processes that we can specifically apply to UV-induced refractive index change, particularly in fibers. From experimental measurements (isochrons and/or isotherms, this framework allows to find the distribution function of the activation energy by providing only a constant, which can be determined by a simple variable change when a few assumptions are fulfilled. From this modeling, it is possible to know the complete evolution in time of the system. It is also possible to determine the annealing conditions for extending a lifetime. This approach can also be used for other physical quantities, such as photodarkening, stress relaxation, and luminescence decay, provided that it can be described by a distribution function.

  11. Application of Statistical Model in Wastewater Treatment Process Modeling Using Data Analysis

    Directory of Open Access Journals (Sweden)

    Alireza Raygan Shirazinezhad

    2015-06-01

    Full Text Available Background: Wastewater treatment includes very complex and interrelated physical, chemical and biological processes which using data analysis techniques can be rigorously modeled by a non-complex mathematical calculation models. Materials and Methods: In this study, data on wastewater treatment processes from water and wastewater company of Kohgiluyeh and Boyer Ahmad were used. A total of 3306 data for COD, TSS, PH and turbidity were collected, then analyzed by SPSS-16 software (descriptive statistics and data analysis IBM SPSS Modeler 14.2, through 9 algorithm. Results: According to the results on logistic regression algorithms, neural networks, Bayesian networks, discriminant analysis, decision tree C5, tree C & R, CHAID, QUEST and SVM had accuracy precision of 90.16, 94.17, 81.37, 70.48, 97.89, 96.56, 96.46, 96.84 and 88.92, respectively. Discussion and conclusion: The C5 algorithm as the best and most applicable algorithms for modeling of wastewater treatment processes were chosen carefully with accuracy of 97.899 and the most influential variables in this model were PH, COD, TSS and turbidity.

  12. Modeling the astrophysical dynamical process with laser-plasmas

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jun; Zhang Jie

    2001-01-01

    The use of the state-of-the-art laser facility makes it possible to create conditions of the same or similar to those in the astrophysical processes. The introduction of the astrophysics-relevant ideas in laser-plasma experiments is propitious to the understanding of the astrophysical phenomena. However, the great difference between the laser-produced plasmas and the astrophysical processes makes it awkward to model the latter by laser-plasma experiments. The author addresses the physical backgrounds for modeling the astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. Thus, allowing the creation of experimental test beds where observations and models can be quantitatively compared with laser-plasma data. Special attentions are paid on the possibilities of using home-made laser facilities to model astrophysical phenomena

  13. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  14. The effectiveness of flipped classroom learning model in secondary physics classroom setting

    Science.gov (United States)

    Prasetyo, B. D.; Suprapto, N.; Pudyastomo, R. N.

    2018-03-01

    The research aimed to describe the effectiveness of flipped classroom learning model on secondary physics classroom setting during Fall semester of 2017. The research object was Secondary 3 Physics group of Singapore School Kelapa Gading. This research was initiated by giving a pre-test, followed by treatment setting of the flipped classroom learning model. By the end of the learning process, the pupils were given a post-test and questionnaire to figure out pupils' response to the flipped classroom learning model. Based on the data analysis, 89% of pupils had passed the minimum criteria of standardization. The increment level in the students' mark was analysed by normalized n-gain formula, obtaining a normalized n-gain score of 0.4 which fulfil medium category range. Obtains from the questionnaire distributed to the students that 93% of students become more motivated to study physics and 89% of students were very happy to carry on hands-on activity based on the flipped classroom learning model. Those three aspects were used to generate a conclusion that applying flipped classroom learning model in Secondary Physics Classroom setting is effectively applicable.

  15. Models in physics teaching

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho

    2016-01-01

    In this work we show an approach based on models, for an usual subject in an introductory physics course, in order to foster discussions on the nature of physical knowledge. The introduction of elements of the nature of knowledge in physics lessons has been emphasised by many educators and one uses...... the case of metals to show the theoretical and phenomenological dimensions of physics. The discussion is made by means of four questions whose answers cannot be reached neither for theoretical elements nor experimental measurements. Between these two dimensions it is necessary to realise a series...... of reasoning steps to deepen the comprehension of microscopic concepts, such as electrical resistivity, drift velocity and free electrons. When this approach is highlighted, beyond the physical content, aspects of its nature become explicit and may improve the structuring of knowledge for learners...

  16. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2018-06-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  17. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    Science.gov (United States)

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  18. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    Science.gov (United States)

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  19. Modeling and Experimental Validation of the Electron Beam Selective Melting Process

    Directory of Open Access Journals (Sweden)

    Wentao Yan

    2017-10-01

    Full Text Available Electron beam selective melting (EBSM is a promising additive manufacturing (AM technology. The EBSM process consists of three major procedures: ① spreading a powder layer, ② preheating to slightly sinter the powder, and ③ selectively melting the powder bed. The highly transient multi-physics phenomena involved in these procedures pose a significant challenge for in situ experimental observation and measurement. To advance the understanding of the physical mechanisms in each procedure, we leverage high-fidelity modeling and post-process experiments. The models resemble the actual fabrication procedures, including ① a powder-spreading model using the discrete element method (DEM, ② a phase field (PF model of powder sintering (solid-state sintering, and ③ a powder-melting (liquid-state sintering model using the finite volume method (FVM. Comprehensive insights into all the major procedures are provided, which have rarely been reported. Preliminary simulation results (including powder particle packing within the powder bed, sintering neck formation between particles, and single-track defects agree qualitatively with experiments, demonstrating the ability to understand the mechanisms and to guide the design and optimization of the experimental setup and manufacturing process.

  20. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  1. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    Science.gov (United States)

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  2. Physical model of Nernst element

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-08-01

    Generation of electric power by the Nernst effect is a new application of a semiconductor. A key point of this proposal is to find materials with a high thermomagnetic figure-of-merit, which are called Nernst elements. In order to find candidates of the Nernst element, a physical model to describe its transport phenomena is needed. As the first model, we began with a parabolic two-band model in classical statistics. According to this model, we selected InSb as candidates of the Nernst element and measured their transport coefficients in magnetic fields up to 4 Tesla within a temperature region from 270 K to 330 K. In this region, we calculated transport coefficients numerically by our physical model. For InSb, experimental data are coincident with theoretical values in strong magnetic field. (author)

  3. Modeling Organizational Design - Applying A Formalism Model From Theoretical Physics

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2008-06-01

    Full Text Available Modern organizations are exposed to diverse external environment influences. Currently accepted concepts of organizational design take into account structure, its interaction with strategy, processes, people, etc. Organization design and planning aims to align this key organizational design variables. At the higher conceptual level, however, completely satisfactory formulation for this alignment doesn’t exist. We develop an approach originating from the application of concepts of theoretical physics to social systems. Under this approach, the allocation of organizational resources is analyzed in terms of social entropy, social free energy and social temperature. This allows us to formalize the dynamic relationship between organizational design variables. In this paper we relate this model to Galbraith's Star Model and we also suggest improvements in the procedure of the complex analytical method in organizational design.

  4. Physical Modeling Modular Boxes: PHOXES

    DEFF Research Database (Denmark)

    Gelineck, Steven; Serafin, Stefania

    2010-01-01

    This paper presents the development of a set of musical instruments, which are based on known physical modeling sound synthesis techniques. The instruments are modular, meaning that they can be combined in various ways. This makes it possible to experiment with physical interaction and sonic...

  5. Predicting physical activity in adolescents: the role of compensatory health beliefs within the Health Action Process Approach.

    Science.gov (United States)

    Berli, Corina; Loretini, Philipp; Radtke, Theda; Hornung, Rainer; Scholz, Urte

    2014-01-01

    Compensatory health beliefs (CHBs), defined as beliefs that healthy behaviours can compensate for unhealthy behaviours, may be one possible factor hindering people in adopting a healthier lifestyle. This study examined the contribution of CHBs to the prediction of adolescents' physical activity within the theoretical framework of the Health Action Process Approach (HAPA). The study followed a prospective survey design with assessments at baseline (T1) and two weeks later (T2). Questionnaire data on physical activity, HAPA variables and CHBs were obtained twice from 430 adolescents of four different Swiss schools. Multilevel modelling was applied. CHBs added significantly to the prediction of intentions and change in intentions, in that higher CHBs were associated with lower intentions to be physically active at T2 and a reduction in intentions from T1 to T2. No effect of CHBs emerged for the prediction of self-reported levels of physical activity at T2 and change in physical activity from T1 to T2. Findings emphasise the relevance of examining CHBs in the context of an established health behaviour change model and suggest that CHBs are of particular importance in the process of intention formation.

  6. Physical activity (PA) and the disablement process

    DEFF Research Database (Denmark)

    Schultz-Larsen, Kirsten; Rahmanfard, Naghmeh; Holst, Claus

    2012-01-01

    . Among older women, the association between RPA and incidence of disability was attenuated in analyses that controlled for baseline mobility function. Thus, the association between physical activity and mortality reflected processes different from those underlying a simple relation between physical...... activity, disability and mortality. Physical activity was an ubiquitous predictor of longevity, but only for women....... community-living persons, aged 75-83 years, we evaluated the 1021 who reported no disability in basic activities of daily living. Participants were followed for a median of 8.34 years in public registers to determine onset of disability and mortality. RPA predicted mortality in older women (HR=1.77, 95%CI=1...

  7. Structural Stability Monitoring of a Physical Model Test on an Underground Cavern Group during Deep Excavations Using FBG Sensors

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-08-01

    Full Text Available Fiber Bragg Grating (FBG sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.

  8. Study of seismic data acquisition using physical modeling system; Butsuri model jikken sochi wo mochiita data shutoku gijutsu ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, R; Tsuru, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-10-01

    For the physical modeling system of Technology Research Center, Japan National Oil Corporation, data acquisition on the ocean and ground can be simulated using models. This system can provide data for verification of the data processing and elastic wave simulation algorithm. This can also provide data for decision of experiment specifications by making a model simulating the underground structure of the given test field. The model used for the physical modeling system is a gradient multilayer model with six-layer structure. Depth migration before stacking was conducted using data obtained through two acquisition methods, i.e., up-dip acquisition and down-dip acquisition. The depth migration before stacking was performed for data obtained by up-dip acquisition in addition to the records obtained by down-dip acquisition. Consequently, a definite reflection surface was observed, which has not been observed from the processing results of down-dip acquisition data. 9 figs.

  9. Model-independent and quasi-model-independent search for new physics at CDF

    International Nuclear Information System (INIS)

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.; Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.

    2008-01-01

    Data collected in run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed transverse momentum and is particularly sensitive to new electroweak scale physics that appears predominantly in one final state. This global search for new physics in over 300 exclusive final states in 927 pb -1 of pp collisions at √(s)=1.96 TeV reveals no such significant indication of physics beyond the standard model.

  10. Designing quantum information processing via structural physical approximation.

    Science.gov (United States)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  11. Cirrus Susceptibility to Changes in Ice Nuclei: Physical Processes, Model Uncertainties, and Measurement Needs

    Science.gov (United States)

    Jensen, Eric

    2018-01-01

    One of the proposed concepts for mitigating the warming effect of increasing greenhouse gases is seeding cirrus cloud with ice nuclei (IN) in order to reduce the lifetime and coverage of cold cirrus that have a net warming impact on the earth's surface. Global model simulations of the net impact of changing upper tropospheric IN have given widely disparate results, partly as a result of poor understanding of ice nucleation processes in the current atmosphere, and partly as a result of poor representation of these processes in global models. Here, we present detailed process-model simulations of tropical tropopause layer (TTL) transport and cirrus formation with ice nuclei properties based on recent laboratory nucleation experiments and field measurements of aerosol composition. The model is used to assess the sensitivity of TTL cirrus occurrence frequency and microphysical properties to the abundance and efficacy of ice nuclei. The simulated cloud properties compared with recent high-altitude aircraft measurements of TTL cirrus and ice supersaturation. We find that abundant effective IN (either from glassy organic aerosols or crystalline ammonium sulfate with concentrations greater than about 100/L) prevent the occurrences of large ice concentration and large ice supersaturations, both of which are clearly indicated by the in situ observations. We find that concentrations of effective ice nuclei larger than about 50/L can drive significant changes in cirrus microphysical properties and occurrence frequency. However, the cloud occurrence frequency can either increase or decrease, depending on the efficacy and abundance of IN added to the TTL. We suggest that our lack of information about ice nuclei properties in the current atmosphere, as well as uncertainties in ice nucleation processes and their representations in global models, preclude meaningful estimates of climate impacts associated with addition of ice nuclei in the upper troposphere. We will briefly discuss

  12. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  13. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [National Center for Atmospheric Research, Boulder, CO (United States); Dennis, John [National Center for Atmospheric Research, Boulder, CO (United States); MacCready, Parker [Univ. of Washington, Seattle, WA (United States); Whitney, Michael [Univ. of Connecticut

    2015-11-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. To develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.

  14. Physical-Socio-Economic Modeling of Climate Change

    Science.gov (United States)

    Chamberlain, R. G.; Vatan, F.

    2008-12-01

    /information operations model. Each of these models focuses on part of the overall picture while; each contributes information about its area of expertise to a common pool and draws from that pool and the feedbacks from the other models as needed. Existing high-quality physical models are based on analysis of the dynamic interactions of atmospheric, land, and ocean processes. The demographic model tracks the civilian demographics needed by the other models. The populations of neighborhood group age-gender cohorts are affected by births, deaths, aging, and migration. This model provides labor supply and product demand curves to the economic model. The political model focuses on political actors and describes how they use their clout to seek their goals. Clout is derived from civilian support, the formal and informal alliances that actors make with each other, military strength, wealth, and control of information. It considers how they are constrained by their cultural heritage. It deals with shifting alliances. The economic model determines local and international prices and production quantities for a small number of products, including imports and exports and black markets; wages, jobs, and unemployment for a small number of labor categories; capital, growth, and inflation; resource usage and pollution. The media/information operations model addresses the effects of the control and content of inter- group and intra-group communications-and the side effects of these on other groups. This model will consist of rules (probably a large number of them) detailing the effects of media/information operations of various kinds on civilian parameters used in the other models, such as political goals, concern saliencies, and shapes of supply and demand curves.

  15. Deep inelastic processes and the parton model

    International Nuclear Information System (INIS)

    Altarelli, G.

    The lecture was intended as an elementary introduction to the physics of deep inelastic phenomena from the point of view of theory. General formulae and facts concerning inclusive deep inelastic processes in the form: l+N→l'+hadrons (electroproduction, neutrino scattering) are first recalled. The deep inelastic annihilation e + e - →hadrons is then envisaged. The light cone approach, the parton model and their relation are mainly emphasized

  16. Utilisation of transparent synthetic soil surrogates in geotechnical physical models: A review

    Directory of Open Access Journals (Sweden)

    Abideen Adekunle Ganiyu

    2016-08-01

    Full Text Available Efforts to obtain non-intrusive measurement of deformations and spatial flow within soil mass prior to the advent of transparent soils have perceptible limitations. The transparent soil is a two-phase medium composed of both the synthetic aggregate and fluid components of identical refractive indices aiming at attaining transparency of the resulting soil. The transparency facilitates real life visualisation of soil continuum in physical models. When applied in conjunction with advanced photogrammetry and image processing techniques, transparent soils enable the quantification of the spatial deformation, displacement and multi-phase flow in physical model tests. Transparent synthetic soils have been successfully employed in geotechnical model tests as soil surrogates based on the testing results of their geotechnical properties which replicate those of natural soils. This paper presents a review on transparent synthetic soils and their numerous applications in geotechnical physical models. The properties of the aggregate materials are outlined and the features of the various transparent clays and sands available in the literature are described. The merits of transparent soil are highlighted and the need to amplify its application in geotechnical physical model researches is emphasised. This paper will serve as a concise compendium on the subject of transparent soils for future researchers in this field.

  17. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    Science.gov (United States)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  18. The Physical Internet and Business Model Innovation

    Directory of Open Access Journals (Sweden)

    Diane Poulin

    2012-06-01

    Full Text Available Building on the analogy of data packets within the Digital Internet, the Physical Internet is a concept that dramatically transforms how physical objects are designed, manufactured, and distributed. This approach is open, efficient, and sustainable beyond traditional proprietary logistical solutions, which are often plagued by inefficiencies. The Physical Internet redefines supply chain configurations, business models, and value-creation patterns. Firms are bound to be less dependent on operational scale and scope trade-offs because they will be in a position to offer novel hybrid products and services that would otherwise destroy value. Finally, logistical chains become flexible and reconfigurable in real time, thus becoming better in tune with firm strategic choices. This article focuses on the potential impact of the Physical Internet on business model innovation, both from the perspectives of Physical-Internet enabled and enabling business models.

  19. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.

    1999-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics

  20. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz; Saputra, Wardana; Kirati, Wissem

    2017-01-01

    and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model

  1. Recent progress of an integrated implosion code and modeling of element physics

    International Nuclear Information System (INIS)

    Nagatomo, H.; Takabe, H.; Mima, K.; Ohnishi, N.; Sunahara, A.; Takeda, T.; Nishihara, K.; Nishiguchu, A.; Sawada, K.

    2001-01-01

    Physics of the inertial fusion is based on a variety of elements such as compressible hydrodynamics, radiation transport, non-ideal equation of state, non-LTE atomic process, and relativistic laser plasma interaction. In addition, implosion process is not in stationary state and fluid dynamics, energy transport and instabilities should be solved simultaneously. In order to study such complex physics, an integrated implosion code including all physics important in the implosion process should be developed. The details of physics elements should be studied and the resultant numerical modeling should be installed in the integrated code so that the implosion can be simulated with available computer within realistic CPU time. Therefore, this task can be basically separated into two parts. One is to integrate all physics elements into a code, which is strongly related to the development of hydrodynamic equation solver. We have developed 2-D integrated implosion code which solves mass, momentum, electron energy, ion energy, equation of states, laser ray-trace, laser absorption radiation, surface tracing and so on. The reasonable results in simulating Rayleigh-Taylor instability and cylindrical implosion are obtained using this code. The other is code development on each element physics and verification of these codes. We had progress in developing a nonlocal electron transport code and 2 and 3 dimension radiation hydrodynamic code. (author)

  2. A physical model to predict climate dynamics in ventilated bulk-storage of agricultural produce

    NARCIS (Netherlands)

    Lukasse, L.J.S.; Kramer-Cuppen, de J.E.; Voort, van der A.J.

    2007-01-01

    This paper presents a physical model for predicting climate dynamics in ventilated bulk-storage of agricultural produce. A well-ordered model presentation was obtained by combining an object-oriented zonal decomposition with a process-oriented decomposition through matrix¿vector notation. The

  3. Beyond the standard model with B and K physics

    International Nuclear Information System (INIS)

    Grossman, Y

    2003-01-01

    In the first part of the talk the flavor physics input to models beyond the standard model is described. One specific example of such new physics model is given: A model with bulk fermions in a non factorizable one extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the standard model predictions in each of these observables

  4. Hillslope runoff processes and models

    Science.gov (United States)

    Kirkby, Mike

    1988-07-01

    Hillslope hydrology is concerned with the partition of precipitation as it passes through the vegetation and soil between overland flow and subsurface flow. Flow follows routes which attenuate and delay the flow to different extents, so that a knowledge of the relevant mechanisms is important. In the 1960s and 1970s, hillslope hydrology developed as a distinct topic through the application of new field observations to develop a generation of physically based forecasting models. In its short history, theory has continually been overturned by field observation. Thus the current tendency, particularly among temperate zone hydrologists, to dismiss all Hortonian overland flow as a myth, is now being corrected by a number of significant field studies which reveal the great range in both climatic and hillslope conditions. Some recent models have generally attempted to simplify the processes acting, for example including only vertical unsaturated flow and lateral saturated flows. Others explicitly forecast partial or contributing areas. With hindsight, the most complete and distributed models have generally shown little forecasting advantage over simpler approaches, perhaps trending towards reliable models which can run on desk top microcomputers. The variety now being recognised in hillslope hydrological responses should also lead to models which take account of more complex interactions, even if initially with a less secure physical and mathematical basis than the Richards equation. In particular, there is a need to respond to the variety of climatic responses, and to spatial variability on and beneath the surface, including the role of seepage macropores and pipes which call into question whether the hillside can be treated as a Darcian flow system.

  5. Roles of medical image processing in medical physics

    International Nuclear Information System (INIS)

    Arimura, Hidetaka

    2011-01-01

    Image processing techniques including pattern recognition techniques play important roles in high precision diagnosis and radiation therapy. The author reviews a symposium on medical image information, which was held in the 100th Memorial Annual Meeting of the Japan Society of Medical Physics from September 23rd to 25th. In this symposium, we had three invited speakers, Dr. Akinobu Shimizu, Dr. Hideaki Haneishi, and Dr. Hirohito Mekata, who are active engineering researchers of segmentation, image registration, and pattern recognition, respectively. In this paper, the author reviews the roles of the medical imaging processing in medical physics field, and the talks of the three invited speakers. (author)

  6. Final Report Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [Univ. of Connecticut, Storrs, CT (United States); Dennis, John [Univ. of Connecticut, Storrs, CT (United States); MacCready, Parker [Univ. of Connecticut, Storrs, CT (United States); Whitney, Michael M. [Univ. of Connecticut, Storrs, CT (United States)

    2016-09-30

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  7. A model-independent "General Search" for new physics with the ATLAS detector at LHC

    CERN Document Server

    Bianchi, Riccardo Maria

    2014-06-02

    The LHC particle collider accelerates bunches of colliding protons at an energy never reached before, and a completely new landscape of new physics has been opened. In this scenario the number of possible physics processes and signatures becomes virtually infinite, making the setup of dedicated analyses impossible. Moreover it is important being able to reveal new physics signals even in regions of the phase-space where it is less lucky to be found, or where suitable theoretical models are missing. In this Thesis a new model-independent “General Search” for the ATLAS experiment has been conceived. In fact, at the time this project started, no model-independent search was set for ATLAS. In the end the new analysis has been run over the first data at 7 TeV collected by the ATLAS experiment, and the results presented. The data have shown a very good agreement with the Standard Model expectation, and no evidence of new physics has been observed. But the strategy and methodology of the new model-independent Ge...

  8. Modeling styles in business process modeling

    NARCIS (Netherlands)

    Pinggera, J.; Soffer, P.; Zugal, S.; Weber, B.; Weidlich, M.; Fahland, D.; Reijers, H.A.; Mendling, J.; Bider, I.; Halpin, T.; Krogstie, J.; Nurcan, S.; Proper, E.; Schmidt, R.; Soffer, P.; Wrycza, S.

    2012-01-01

    Research on quality issues of business process models has recently begun to explore the process of creating process models. As a consequence, the question arises whether different ways of creating process models exist. In this vein, we observed 115 students engaged in the act of modeling, recording

  9. Searches for Physics Beyond Standard Model at LHC with ATLAS

    CERN Document Server

    Soni, N; The ATLAS collaboration

    2013-01-01

    This contribution summarises some of the recent results on the searches for physics beyond the Standard Model using the pp-collision data collected at Large Hadron Collider (LHC) with ATLAS detector at centre-of-mass energy of sqrt{s} = 8 TeV. The search for supersymmetry (SUSY) is carried out in a large variety of production modes such as strong production of squarks and gluinos, weak production of sleptons and gauginos os production of massive long-lived particles through R-parity violation. No excess above the Standard Model background expectation is observed and exclusion limits are derived on the production of new physics. The results are interpreted as lower limits on sparticle masses in SUSY breaking scenarios. Searches for new exotic phenomena such as dark matter, large extra dimensions and black holes are also performed at ATLAS. As in the case of SUSY searches, no new exotic phenomena is observed and results are presented as upper limits on event yields from non-Standard-Model processes in a model i...

  10. A validated physical model of greenhouse climate.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the

  11. Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics

    Science.gov (United States)

    Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina

    2012-03-01

    Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.

  12. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    Science.gov (United States)

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  13. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  14. Testing principle working mechanisms of the health action process approach for subjective physical age groups.

    Science.gov (United States)

    Wienert, Julian; Kuhlmann, Tim; Fink, Sebastian; Hambrecht, Rainer; Lippke, Sonia

    2016-01-01

    This study investigated differences in social-cognitive predictors and self-regulatory planning, as proposed by the health action process approach (HAPA), across three different subjective physical age groups for physical activity. With a cross-sectional design, 521 participants across the chronological age span from 25 to 86 years (M = 48.79; SD = 12.66) were separated into three groups: those who feel physically younger than they are in terms of chronological age, the same perceived and chronological age, and feeling physically older compared to their chronological age. Participants were assessed regarding their perceived vulnerability, outcome expectancies, general intentions, planning, self-efficacy, and stages of physical activity (non-intenders, intenders, and actors). Data were analysed via mean comparison and multigroup structural equation modelling. Mean differences for all but one construct were eminent in all groups, generally showing that those feeling physically younger also report better social-cognitive predictors of physical activity (e.g. lower perceived vulnerability) in comparison to those who feel the same age or older. The model showed that basic working mechanisms of the HAPA can be applied to all groups. With that, the results provide for the first time evidence that principle working mechanism of the HAPA can be applied to all subjective physical age groups. These may be used to tailor health promoting interventions according to participants' needs as a more suitable proxy than chronological age.

  15. Framework for understanding LENR processes, using conventional condensed matter physics

    International Nuclear Information System (INIS)

    Chubb, Scott R.

    2006-01-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  16. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  17. Mathematical modeling of the voloxidation process. Final report

    International Nuclear Information System (INIS)

    Stanford, T.G.

    1979-06-01

    A mathematical model of the voloxidation process, a head-end reprocessing step for the removal of volatile fission products from spent nuclear fuel, has been developed. Three types of voloxidizer operation have been considered; co-current operation in which the gas and solid streams flow in the same direction, countercurrent operation in which the gas and solid streams flow in opposite directions, and semi-batch operation in which the gas stream passes through the reactor while the solids remain in it and are processed batch wise. Because of the complexity of the physical ahd chemical processes which occur during the voloxidation process and the lack of currently available kinetic data, a global kinetic model has been adapted for this study. Test cases for each mode of operation have been simulated using representative values of the model parameters. To process 714 kgm/day of spent nuclear fuel, using an oxidizing atmosphere containing 20 mole percent oxygen, it was found that a reactor 0.7 m in diameter and 2.49 m in length would be required for both cocurrent and countercurrent modes of operation while for semibatch operation a 0.3 m 3 reactor and an 88200 sec batch processing time would be required

  18. Process modeling style

    CERN Document Server

    Long, John

    2014-01-01

    Process Modeling Style focuses on other aspects of process modeling beyond notation that are very important to practitioners. Many people who model processes focus on the specific notation used to create their drawings. While that is important, there are many other aspects to modeling, such as naming, creating identifiers, descriptions, interfaces, patterns, and creating useful process documentation. Experience author John Long focuses on those non-notational aspects of modeling, which practitioners will find invaluable. Gives solid advice for creating roles, work produ

  19. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  20. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  1. Statistical Analysis Methods for Physics Models Verification and Validation

    CERN Document Server

    De Luca, Silvia

    2017-01-01

    The validation and verification process is a fundamental step for any software like Geant4 and GeantV, which aim to perform data simulation using physics models and Monte Carlo techniques. As experimental physicists, we have to face the problem to compare the results obtained using simulations with what the experiments actually observed. One way to solve the problem is to perform a consistency test. Within the Geant group, we developed a C++ compact library which will be added to the automated validation process on the Geant Validation Portal

  2. Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.

    Science.gov (United States)

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Mimmo, R; Guaragno, M; Tosti, G; Darowski, M

    2003-12-01

    Physical models of the circulation are used for research, training and for testing of implantable active and passive circulatory prosthetic and assistance devices. However, in comparison with numerical models, they are rigid and expensive. To overcome these limitations, we have developed a model of the circulation based on the merging of a lumped parameter physical model into a numerical one (producing therefore a hybrid). The physical model is limited to the barest essentials and, in this application, developed to test the principle, it is a windkessel representing the systemic arterial tree. The lumped parameters numerical model was developed in LabVIEW environment and represents pulmonary and systemic circulation (except the systemic arterial tree). Based on the equivalence between hydraulic and electrical circuits, this prototype was developed connecting the numerical model to an electrical circuit--the physical model. This specific solution is valid mainly educationally but permits the development of software and the verification of preliminary results without using cumbersome hydraulic circuits. The interfaces between numerical and electrical circuits are set up by a voltage controlled current generator and a voltage controlled voltage generator. The behavior of the model is analyzed based on the ventricular pressure-volume loops and on the time course of arterial and ventricular pressures and flow in different circulatory conditions. The model can represent hemodynamic relationships in different ventricular and circulatory conditions.

  3. Contextualization processes and the initial education of physics teachers

    Directory of Open Access Journals (Sweden)

    Cristina Cândida de Macedo

    2014-03-01

    Full Text Available Contextualization of school contents has been seen as a possibility of facilitating students’ learning, since it makes the educative process more significant to them. However, there is no agreement as to the meaning and the forms of applying such processes. Particularly in the area of Science teaching, the creation of thematic projects has been seen as a way of contextualizing school contents. It is noteworthy that the experience with the education of Physics teachers shows that the creation and execution of such projects brings many difficulties to teachers, the main obstacle being the understanding of what contextualized educative processes are. Having this in mind, a project has been elaborated with the objective of analyzing the comprehension Physics teachers that are going through teacher education courses have of the processes of contextualization. The data for this investigation has been obtained from students who attended a course of the Physics Teacher Education module at the Federal University of Itajubá. It is significant to mention that in this course students are asked to create three versions of a thematic project. In order to analyze the data, the procedure of Thematic Content and Category Analysis was adopted. This research shows that Physics teachers to be incorporate the discourses of the educative ideas throughout the course. However, there is a series of obstacles they face as they attempt to understand and carry out contextualized educative processes. Those difficulties are connected to their experience with this kind of educative process throughout the years they spend at school and in the teacher education course. We conclude thus that it is essential that contextualized educative activities be part of the reality of teacher education programs.

  4. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  5. Beyond The Standard Model Higgs Physics with Photons with the CMS Detector

    CERN Document Server

    Teixeira de Lima, Rafael

    The experimental discovery of the Higgs boson is one of the latest successes of the Standard Model of particle physics. Although all measurements have confirmed that this newly discovered particle is the Higgs boson predicted by the Standard Model, with no deviations to suggest otherwise, the Higgs boson can guide us to new models which modify the electroweak symmetry breaking mechanism or predict new states that couple to the Higgs. Therefore, it's paramount to directly look for modifications of our current model with the help of the recently discovered particle. In this thesis, two analyses involving beyond the Standard Model physics tied to the Higgs sector will be explored. First, looking at exotic Higgs decays, an analysis searching for the final state with photons and missing transverse energy will be presented. Then, the search for Higgs pair production, both resonantly and non-resonantly (a process predicted by the Standard Model, albeit at very low rates), in the final state with two bottom quark je...

  6. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    Science.gov (United States)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  7. Girdler-sulfide process physical properties

    International Nuclear Information System (INIS)

    Neuburg, H.J.; Atherley, J.F.; Walker, L.G.

    1977-05-01

    Physical properties of pure hydrogen sulfide and of gaseous and liquid solutions of the H 2 S-H 2 O system have been formulated. Tables for forty-nine different properties in the pressure and temperature range of interest to the Girdler-Sulfide (GS) process for heavy water production are given. All properties are presented in SI units. A computer program capable of calculating properties of the pure components as well as gaseous mixtures and liquid solutions at saturated and non-saturated conditions is included. (author)

  8. Computerized transportation model for the NRC Physical Protection Project. Versions I and II

    International Nuclear Information System (INIS)

    Anderson, G.M.

    1978-01-01

    Details on two versions of a computerized model for the transportation system of the NRC Physical Protection Project are presented. The Version I model permits scheduling of all types of transport units associated with a truck fleet, including truck trailers, truck tractors, escort vehicles and crews. A fixed-fleet itinerary construction process is used in which iterations on fleet size are required until the service requirements are satisfied. The Version II model adds an aircraft mode capability and provides for a more efficient non-fixed-fleet itinerary generation process. Test results using both versions are included

  9. Optimization of a Cu CMP process modeling parameters of nanometer integrated circuits

    International Nuclear Information System (INIS)

    Ruan Wenbiao; Chen Lan; Ma Tianyu; Fang Jingjing; Zhang He; Ye Tianchun

    2012-01-01

    A copper chemical mechanical polishing (Cu CMP) process is reviewed and analyzed from the view of chemical physics. Three steps Cu CMP process modeling is set up based on the actual process of manufacturing and pattern-density-step-height (PDSH) modeling from MIT. To catch the pattern dependency, a 65 nm testing chip is designed and processed in the foundry. Following the model parameter extraction procedure, the model parameters are extracted and verified by testing data from the 65 nm testing chip. A comparison of results between the model predictions and test data show that the former has the same trend as the latter and the largest deviation is less than 5 nm. Third party testing data gives further evidence to support the great performance of model parameter optimization. Since precise CMP process modeling is used for the design of manufacturability (DFM) checks, critical hotspots are displayed and eliminated, which will assure good yield and production capacity of IC. (semiconductor technology)

  10. Isothermal CFD-model of Peirce-Smith converting process

    Energy Technology Data Exchange (ETDEWEB)

    Vaarno, J.; Pitkaelae, J.; Ahokainen, T.; Jokilaakso, A.

    1997-12-31

    The Peirce-Smith converter has been a dominating copper and nickel matte refining process since 1905. Due to extremely difficult process conditions, very little measured data has been available for studying interactions of the gas injection and molten sulphide matte. Detailed information on fluid dynamics of the gas injection is needed in solving gas injection related problems like refractory wear, accretion growth and tuyere blockage as well as optimising the efficiency of momentum and mass transfer created by the gas jets. A commercial CFD-code PHOENICS was used to solve isothermal flow field of gas and liquid in a Peirce-Smith converter. An Euler-Euler based algorithm was chosen for modelling fluid dynamics and evaluating controlling forces of a submerged gas injection generally. Predictions were made with a {kappa}-{epsilon} turbulence model in the body fitted co-ordinate system. The model has been verified with a 1/4 scale water model, and a parametric study with the mathematical model of submerged gas injection was made for the PS-process and the ladle injection processes. Limits of the modelling technique used were recognised, but calculated results indicates that the present model predicts the general flow field with reasonable accuracy and it can be used as input for more detailed mathematical models of gas plumes. Predicted bubble distribution, pattern of the flow field and magnitude of flow velocities were also used to evaluate scaling factors of physical models and general flow conditions of an industrial PS-converter. (orig.) 28 refs.

  11. Model-Independent and Quasi-Model-Independent Search for New Physics at CDF

    OpenAIRE

    CDF Collaboration

    2007-01-01

    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data, and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed t...

  12. Robust Building Energy Load Forecasting Using Physically-Based Kernel Models

    Directory of Open Access Journals (Sweden)

    Anand Krishnan Prakash

    2018-04-01

    Full Text Available Robust and accurate building energy load forecasting is important for helping building managers and utilities to plan, budget, and strategize energy resources in advance. With recent prevalent adoption of smart-meters in buildings, a significant amount of building energy consumption data became available. Many studies have developed physics-based white box models and data-driven black box models to predict building energy consumption; however, they require extensive prior knowledge about building system, need a large set of training data, or lack robustness to different forecasting scenarios. In this paper, we introduce a new building energy forecasting method based on Gaussian Process Regression (GPR that incorporates physical insights about load data characteristics to improve accuracy while reducing training requirements. The GPR is a non-parametric regression method that models the data as a joint Gaussian distribution with mean and covariance functions and forecast using the Bayesian updating. We model the covariance function of the GPR to reflect the data patterns in different forecasting horizon scenarios, as prior knowledge. Our method takes advantage of the modeling flexibility and computational efficiency of the GPR while benefiting from the physical insights to further improve the training efficiency and accuracy. We evaluate our method with three field datasets from two university campuses (Carnegie Mellon University and Stanford University for both short- and long-term load forecasting. The results show that our method performs more accurately, especially when the training dataset is small, compared to other state-of-the-art forecasting models (up to 2.95 times smaller prediction error.

  13. Validation of a 3D multi-physics model for unidirectional silicon solidification

    NARCIS (Netherlands)

    Simons, P.; Lankhorst, A.M.; Habraken, A.; Faber, A.J.; Tiuleanu, D.; Pingel, R.

    2012-01-01

    A model for transient movements of solidification fronts has been added to X-stream, an existing multi-physics simulation program for high temperature processes with flow and chemical reactions. The implementation uses an enthalpy formulation and works on fixed grids. First we show the results of a

  14. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  15. Evaluating a Model of Youth Physical Activity

    Science.gov (United States)

    Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary

    2010-01-01

    Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…

  16. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  17. Simplified Models for LHC New Physics Searches

    CERN Document Server

    Alves, Daniele; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Buckley, Matthew; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R.Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven; Evans, Jared A.; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto; Freitas, Ayres; Gainer, James S.; Gershtein, Yuri; Gray, Richard; Gregoire, Thomas; Gripaios, Ben; Gunion, Jack; Han, Tao; Haas, Andy; Hansson, Per; Hewett, JoAnne; Hits, Dmitry; Hubisz, Jay; Izaguirre, Eder; Kaplan, Jared; Katz, Emanuel; Kilic, Can; Kim, Hyung-Do; Kitano, Ryuichiro; Koay, Sue Ann; Ko, Pyungwon; Krohn, David; Kuflik, Eric; Lewis, Ian; Lisanti, Mariangela; Liu, Tao; Liu, Zhen; Lu, Ran; Luty, Markus; Meade, Patrick; Morrissey, David; Mrenna, Stephen; Nojiri, Mihoko; Okui, Takemichi; Padhi, Sanjay; Papucci, Michele; Park, Michael; Park, Myeonghun; Perelstein, Maxim; Peskin, Michael; Phalen, Daniel; Rehermann, Keith; Rentala, Vikram; Roy, Tuhin; Ruderman, Joshua T.; Sanz, Veronica; Schmaltz, Martin; Schnetzer, Stephen; Schuster, Philip; Schwaller, Pedro; Schwartz, Matthew D.; Schwartzman, Ariel; Shao, Jing; Shelton, Jessie; Shih, David; Shu, Jing; Silverstein, Daniel; Simmons, Elizabeth; Somalwar, Sunil; Spannowsky, Michael; Spethmann, Christian; Strassler, Matthew; Su, Shufang; Tait, Tim; Thomas, Brooks; Thomas, Scott; Toro, Natalia; Volansky, Tomer; Wacker, Jay; Waltenberger, Wolfgang; Yavin, Itay; Yu, Felix; Zhao, Yue; Zurek, Kathryn

    2012-01-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a...

  18. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  19. Through-process modelling of texture and anisotropy in AA5182

    Science.gov (United States)

    Crumbach, M.; Neumann, L.; Goerdeler, M.; Aretz, H.; Gottstein, G.; Kopp, R.

    2006-07-01

    A through-process texture and anisotropy prediction for AA5182 sheet production from hot rolling through cold rolling and annealing is reported. Thermo-mechanical process data predicted by the finite element method (FEM) package T-Pack based on the software LARSTRAN were fed into a combination of physics based microstructure models for deformation texture (GIA), work hardening (3IVM), nucleation texture (ReNuc), and recrystallization texture (StaRT). The final simulated sheet texture was fed into a FEM simulation of cup drawing employing a new concept of interactively updated texture based yield locus predictions. The modelling results of texture development and anisotropy were compared to experimental data. The applicability to other alloys and processes is discussed.

  20. Physical-Mathematical Model for Fixed-Bed Solid Fuel Gasification Process Simulation

    Directory of Open Access Journals (Sweden)

    Slyusarskiy Konstantin V.

    2017-01-01

    Full Text Available Phycial-mathmatical model for fixed-bed coal gasification process simulation is proposed. The heterogeneous carbon oxidation chemical reactions were simulated via Arrhenius equation while homogeneous reactions in gas phase were calculated using Gibbs free energy minimization procedure. The syngas component concentration field and fuel conversion distribution as well as syngas final temperature and composition were defined for fixed bed gasification of T-grade coal of Kuznetskiy deposit. The optimal fuel residence time and gasifyer specific productivity were defined. The prevail reactions in oxidizing and reduction zones together with its height were defined.

  1. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    Science.gov (United States)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  2. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  3. Using Physical Context-Based Authentication against External Attacks: Models and Protocols

    Directory of Open Access Journals (Sweden)

    Wilson S. Melo

    2018-01-01

    Full Text Available Modern systems are increasingly dependent on the integration of physical processes and information technologies. This trend is remarkable in applications involving sensor networks, cyberphysical systems, and Internet of Things. Despite its complexity, such integration results in physical context information that can be used to improve security, especially authentication. In this paper, we show that entities sharing the same physical context can use it for establishing a secure communication channel and protecting each other against external attacks. We present such approach proposing a theoretical model for generating unique bitstreams. Two different protocols are suggested. Each one is evaluated using probabilistic analysis and simulation. In the end, we implement the authentication mechanism in a case study using networks radio signal as physical event generator. The results demonstrate the performance of each of the protocols and their suitability for applications in real world.

  4. Beyond Standard Model Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  5. The Processes of Inclusion and Exclusion in Physical Education

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Agergaard, Sine

    2015-01-01

    Existing research on inclusion and exclusion processes in physical education (PE) has particularly focused on exclusion from PE as something being done to students and attributed to specific social categories such as (female) gender, (low) physical skills or (minority) ethnic background....... This article aims to develop a social-relational perspective on inclusion and exclusion processes defined as students’ participation or non-participation in PE interpreted as a community of practice. In so doing, the article examines how students’ experiences of participation and non-participation in PE...... or non-participation is important not only in terms of how we talk about students as passive victims or active agents, but also in terms of future intervention aimed at promoting inclusion processes in PE....

  6. Physical Abuse, Cognitive and Emotional Processes, and Aggressive/Disruptive Behavior Problems

    Science.gov (United States)

    Teisl, Michael; Cicchetti, Dante

    2008-01-01

    Cognitive and emotional processes were examined in maltreated children with a history of physical abuse (n = 76), children with a history of maltreatment other than physical abuse (i.e., sexual abuse, physical neglect, and emotional maltreatment; n = 91), and a group of non-maltreated comparison children (N = 100). Physical abuse was associated…

  7. Topos models for physics and topos theory

    International Nuclear Information System (INIS)

    Wolters, Sander

    2014-01-01

    What is the role of topos theory in the topos models for quantum theory as used by Isham, Butterfield, Döring, Heunen, Landsman, Spitters, and others? In other words, what is the interplay between physical motivation for the models and the mathematical framework used in these models? Concretely, we show that the presheaf topos model of Butterfield, Isham, and Döring resembles classical physics when viewed from the internal language of the presheaf topos, similar to the copresheaf topos model of Heunen, Landsman, and Spitters. Both the presheaf and copresheaf models provide a “quantum logic” in the form of a complete Heyting algebra. Although these algebras are natural from a topos theoretic stance, we seek a physical interpretation for the logical operations. Finally, we investigate dynamics. In particular, we describe how an automorphism on the operator algebra induces a homeomorphism (or isomorphism of locales) on the associated state spaces of the topos models, and how elementary propositions and truth values transform under the action of this homeomorphism. Also with dynamics the focus is on the internal perspective of the topos

  8. Plasma and process characterization of high power magnetron physical vapor deposition with integrated plasma equipment--feature profile model

    International Nuclear Information System (INIS)

    Zhang Da; Stout, Phillip J.; Ventzek, Peter L.G.

    2003-01-01

    High power magnetron physical vapor deposition (HPM-PVD) has recently emerged for metal deposition into deep submicron features in state of the art integrated circuit fabrication. However, the plasma characteristics and process mechanism are not well known. An integrated plasma equipment-feature profile modeling infrastructure has therefore been developed for HPM-PVD deposition, and it has been applied to simulating copper seed deposition with an Ar background gas for damascene metalization. The equipment scale model is based on the hybrid plasma equipment model [M. Grapperhaus et al., J. Appl. Phys. 83, 35 (1998); J. Lu and M. J. Kushner, ibid., 89, 878 (2001)], which couples a three-dimensional Monte Carlo sputtering module within a two-dimensional fluid model. The plasma kinetics of thermalized, athermal, and ionized metals and the contributions of these species in feature deposition are resolved. A Monte Carlo technique is used to derive the angular distribution of athermal metals. Simulations show that in typical HPM-PVD processing, Ar + is the dominant ionized species driving sputtering. Athermal metal neutrals are the dominant deposition precursors due to the operation at high target power and low pressure. The angular distribution of athermals is off axis and more focused than thermal neutrals. The athermal characteristics favor sufficient and uniform deposition on the sidewall of the feature, which is the critical area in small feature filling. In addition, athermals lead to a thick bottom coverage. An appreciable fraction (∼10%) of the metals incident to the wafer are ionized. The ionized metals also contribute to bottom deposition in the absence of sputtering. We have studied the impact of process and equipment parameters on HPM-PVD. Simulations show that target power impacts both plasma ionization and target sputtering. The Ar + ion density increases nearly linearly with target power, different from the behavior of typical ionized PVD processing. The

  9. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  10. A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    Science.gov (United States)

    Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael; Perdue, Gabriel; Wenzel, Hans; Wright, Dennis H.; Yarba, Julia

    2017-10-01

    The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variants of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.

  11. Mechanical and physical simulation of complex 3-D bulk forming processes with Forge3

    International Nuclear Information System (INIS)

    Chenot, J-L.; Chastel, Y.

    2000-01-01

    To-day there is a growing need to predict numerically not only the mechanical parameters, but also the final microstructure of the work-piece. On the other hand, the use of simulation codes to analyze complex laboratory experiments can be viewed as a powerful way to improve the analysis of physical data. We outline basic methods for developing a finite element model of unsteady metal forming processes. At first the thermal and mechanical equations are recalled with several integral formulations. The most important issues are discussed, including time integration, evolving contact with rigid or deformable tools, meshing, remeshing, and parallel computing. Physical coupling is presented with the two possible approaches: introduction of internal parameters describing the evolution of microstructure and coupling with constitutive equations; multi-scale computation illustrated by the texture prediction. Finally it is shown that the inverse approach can be successfully applied to improve parameters identification from data acquisition of laboratory tests, or possibly from industrial experiments. This methodology can be utilized for: constitutive modeling, friction behavior, or even for internal parameters laws describing physical evolution. (author)

  12. Bridging scales in polymer physics and processing

    NARCIS (Netherlands)

    Hütter, M.; Kröger, M.; Öttinger, H.C.; Schweizer, T.

    2001-01-01

    Understanding both the flow behavior of polymers during processing and the end-use properties offinished plastic products from a molecular picture of the constituent polymers has been a long-standing dreamin polymer engineering and science. It is the goal of our work in the Polymer Physics Group to

  13. Model of a programmable quantum processing unit based on a quantum transistor effect

    Science.gov (United States)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  14. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to

  15. A physical model of the proton radiation belts of Jupiter inside Europa’s orbit

    DEFF Research Database (Denmark)

    Nénon, Quentin; Sicard, Angelica; Kollmann, Peter

    2018-01-01

    A physical model of the Jovian trapped protons with kinetic energies higher than 1 MeV inward of the orbit of the icy moon Europa is presented. The model, named Salammbô, takes into account the radial diffusion process, the absorption effect of the Jovian moons, and the Coulomb collisions and cha...

  16. Symbolic Processing Combined with Model-Based Reasoning

    Science.gov (United States)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  17. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  18. Predictive modeling of coupled multi-physics systems: II. Illustrative application to reactor physics

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel; Badea, Madalina Corina

    2014-01-01

    Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner

  19. Data, analysis and modeling of physical properties for process designof systems involving lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    2013-01-01

    Pure component and mixture properties are necessary for synthesis, design, and analysis of processes forthe production of edible oils, fats, biodiesel, and other lipids. The lack of measured data for these systemsmakes it necessary to develop reliable predictive models based on limited data. We...

  20. Physical and numerical modeling of hydrophysical proceses on the site of underwater pipelines

    Science.gov (United States)

    Garmakova, M. E.; Degtyarev, V. V.; Fedorova, N. N.; Shlychkov, V. A.

    2018-03-01

    The paper outlines issues related to ensuring the exploitation safety of underwater pipelines that are at risk of accidents. The performed research is based on physical and mathematical modeling of local bottom erosion in the area of pipeline location. The experimental studies were performed on the basis of the Hydraulics Laboratory of the Department of Hydraulic Engineering Construction, Safety and Ecology of NSUACE (Sibstrin). In the course of physical experiments it was revealed that the intensity of the bottom soil reforming depends on the deepening of the pipeline. The ANSYS software has been used for numerical modeling. The process of erosion of the sandy bottom was modeled under the pipeline. Comparison of computational results at various mass flow rates was made.

  1. A Toolkit to Study Sensitivity of the Geant4 Predictions to the Variations of the Physics Model Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Laura [Fermilab; Genser, Krzysztof [Fermilab; Hatcher, Robert [Fermilab; Kelsey, Michael [SLAC; Perdue, Gabriel [Fermilab; Wenzel, Hans [Fermilab; Wright, Dennis H. [SLAC; Yarba, Julia [Fermilab

    2017-08-21

    Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. This raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.

  2. Processes of behavior change and weight loss in a theory-based weight loss intervention program: a test of the process model for lifestyle behavior change.

    Science.gov (United States)

    Gillison, Fiona; Stathi, Afroditi; Reddy, Prasuna; Perry, Rachel; Taylor, Gordon; Bennett, Paul; Dunbar, James; Greaves, Colin

    2015-01-16

    Process evaluation is important for improving theories of behavior change and behavioral intervention methods. The present study reports on the process outcomes of a pilot test of the theoretical model (the Process Model for Lifestyle Behavior Change; PMLBC) underpinning an evidence-informed, theory-driven, group-based intervention designed to promote healthy eating and physical activity for people with high cardiovascular risk. 108 people at high risk of diabetes or heart disease were randomized to a group-based weight management intervention targeting diet and physical activity plus usual care, or to usual care. The intervention comprised nine group based sessions designed to promote motivation, social support, self-regulation and understanding of the behavior change process. Weight loss, diet, physical activity and theoretically defined mediators of change were measured pre-intervention, and after four and 12 months. The intervention resulted in significant improvements in fiber intake (M between-group difference = 5.7 g/day, p behavior change, and the predicted mechanisms of change specified in the PMBLC were largely supported. Improvements in self-efficacy and understanding of the behavior change process were associated with engagement in coping planning and self-monitoring activities, and successful dietary change at four and 12 months. While participants reported improvements in motivational and social support variables, there was no effect of these, or of the intervention overall, on physical activity. The data broadly support the theoretical model for supporting some dietary changes, but not for physical activity. Systematic intervention design allowed us to identify where improvements to the intervention may be implemented to promote change in all proposed mediators. More work is needed to explore effective mechanisms within interventions to promote physical activity behavior.

  3. Modeling soil processes - are we lost in diversity?

    Science.gov (United States)

    Vogel, Hans-Joerg; Schlüter, Steffen

    2015-04-01

    Soils are among the most complex environmental systems. Soil functions - e.g. production of biomass, habitat for organisms, reactor for and storage of organic matter, filter for ground water - emerge from a multitude of processes interacting at different scales. It still remains a challenge to model and predict these functions including their stability and resilience towards external perturbations. As an inherent property of complex systems it is prohibitive to unravel all the relevant process in all detail to derive soil functions and their dynamics from first principles. Hence, when modeling soil processes and their interactions one is close to be lost in the overwhelming diversity and spatial heterogeneity of soil properties. In this contribution we suggest to look for characteristic similarities within the hyperdimensional state space of soil properties. The underlying hypothesis is that this state space is not evenly and/or randomly populated but that processes of self organization produce attractors of physical, chemical and biological properties which can be identified. (The formation of characteristic soil horizons is an obvious example). To render such a concept operational a suitable and limited set of indicators is required. Ideally, such indicators are i) related to soil functions, ii) are measurable and iii) are integral measures of the relevant physical, chemical and biological soil properties. This would allow for identifying suitable attractors. We will discuss possible indicators and will focus on soil structure as an especially promising candidate. It governs the availability of water and gas, it effects the spatial distribution of organic matter and, moreover, it forms the habitat of soil organisms and it is formed by soil biota. Quantification of soil structural properties became possible only recently with the development of more powerful tools for non-invasive imaging. Future research need to demonstrate in how far these tools can be used to

  4. The optical model in atomic physics

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1978-01-01

    The optical model for electron scattering on atoms has quite a short history in comparison with nuclear physics. The main reason for this is that there were insufficient data. Angular distribution for elastic and some inelastic scattering have now been measured for the atoms which exist in gaseous form at reasonable temperatures, inert gases, hydrogen, alkalies and mercury being the main ones out in. The author shows that the optical model makes sense in atomic physics by considering its theory and recent history. (orig./AH) [de

  5. Nonlinear Fluctuation Behavior of Financial Time Series Model by Statistical Physics System

    Directory of Open Access Journals (Sweden)

    Wuyang Cheng

    2014-01-01

    Full Text Available We develop a random financial time series model of stock market by one of statistical physics systems, the stochastic contact interacting system. Contact process is a continuous time Markov process; one interpretation of this model is as a model for the spread of an infection, where the epidemic spreading mimics the interplay of local infections and recovery of individuals. From this financial model, we study the statistical behaviors of return time series, and the corresponding behaviors of returns for Shanghai Stock Exchange Composite Index (SSECI and Hang Seng Index (HSI are also comparatively studied. Further, we investigate the Zipf distribution and multifractal phenomenon of returns and price changes. Zipf analysis and MF-DFA analysis are applied to investigate the natures of fluctuations for the stock market.

  6. Working group report: Flavor physics and model building

    Indian Academy of Sciences (India)

    cO Indian Academy of Sciences. Vol. ... This is the report of flavor physics and model building working group at ... those in model building have been primarily devoted to neutrino physics. ..... [12] Andrei Gritsan, ICHEP 2004, Beijing, China.

  7. A New Modeling Approach for Future Challenges in Process and Product Design

    DEFF Research Database (Denmark)

    Eden, Mario Richard; Jørgensen, Sten Bay; Gani, Rafiqul

    2003-01-01

    In this paper, a new technique for model reduction that is based on rearranging a part of the model representing the constitutive equations is presented. The rearrangement of the constitutive equations leads to the definition of a new set of pseudo-intensive variables, where the component...... compositions are replaced by reduction parameters in the process model. Since the number of components dominates the size of the traditional model equations, a significant reduction of the model size is obtained through this new technique. Some interesting properties of this new technique is that the model...... reduction does not introduce any approximations to the model, it does not change the physical location of the process variables and it provides a, visualization of the process and operation that otherwise would not be possible. Furthermore by employing the recently introduced principle of reverse problem...

  8. A New Modeling Approach for Future Challenges in Process and Product Design

    DEFF Research Database (Denmark)

    In this paper, a new technique for model reduction that is based on rearranging a part of the model representing the constitutive equations is presented. The rearrangement of the constitutive equations leads to the definition of a new set of pseudo-intensive variables, where the component...... compositions are replaced by reduction parameters in the process model. Since the number of components dominates the size of the traditional model equations, a significant reduction of the model size is obtained through this new technique. Some interesting properties of this new technique is that the model...... reduction does not introduce any approximations to the model, it does not change the physical location of the process variables and it provides a visualization of the process and operation that otherwise would not be possible. Furthermore by employing the recently introduced principle of reverse problem...

  9. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode

    Science.gov (United States)

    Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G. M.; Toppetti, A.

    2017-12-01

    Traditional aerosol mechanisms underestimate the observed organic aerosol concentration, especially due to the lack of information on secondary organic aerosol (SOA) formation and processing. In this study we evaluate the chemical and transport model CAMx during a one-month in winter (February 2013) over a 5 km resolution domain, covering the whole Po valley (Northern Italy). This works aims at investigating the effects of chemical and physical atmospheric processing on modelling results and, in particular, to evaluate the CAMx sensitivity to organic aerosol (OA) modelling schemes: we will compare the recent 1.5D-VBS algorithm (CAMx-VBS) with the traditional Odum 2-product model (CAMx-SOAP). Additionally, the thorough diagnostic analysis of the reproduction of meteorology, precursors and aerosol components was intended to point put strength and weaknesses of the modelling system and address its improvement. Firstly, we evaluate model performance for criteria PM concentration. PM10 concentration was underestimated both by CAMx-SOAP and even more by CAMx-VBS, with the latter showing a bias ranging between -4.7 and -7.1 μg m-3. PM2.5 model performance was to some extent better than PM10, showing a mean bias ranging between -0.5 μg m-3 at rural sites and -5.5 μg m-3 at urban and suburban sites. CAMx performance for OA was clearly worse than for the other PM compounds (negative bias ranging between -40% and -75%). The comparisons of model results with OA sources (identified by PMF analysis) shows that the VBS scheme underestimates freshly emitted organic aerosol while SOAP overestimates. The VBS scheme correctly reproduces biomass burning (BBOA) contributions to primary OA concentrations (POA). In contrast VBS slightly underestimates the contribution from fossil-fuel combustion (HOA), indicating that POA emissions related to road transport are either underestimated or associated to higher volatility classes. The VBS scheme under-predictes the SOA too, but to a lesser

  10. Advanced statistics to improve the physical interpretation of atomization processes

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Radu, Lucian

    2013-01-01

    Highlights: ► Finite pdf mixtures improves physical interpretation of sprays. ► Bayesian approach using MCMC algorithm is used to find the best finite mixture. ► Statistical method identifies multiple droplet clusters in a spray. ► Multiple drop clusters eventually associated with multiple atomization mechanisms. ► Spray described by drop size distribution and not only its moments. -- Abstract: This paper reports an analysis of the physics of atomization processes using advanced statistical tools. Namely, finite mixtures of probability density functions, which best fitting is found using a Bayesian approach based on a Markov chain Monte Carlo (MCMC) algorithm. This approach takes into account eventual multimodality and heterogeneities in drop size distributions. Therefore, it provides information about the complete probability density function of multimodal drop size distributions and allows the identification of subgroups in the heterogeneous data. This allows improving the physical interpretation of atomization processes. Moreover, it also overcomes the limitations induced by analyzing the spray droplets characteristics through moments alone, particularly, the hindering of different natures of droplet formation. Finally, the method is applied to physically interpret a case-study based on multijet atomization processes

  11. Historical trend determination process of learning of Physics in high school

    Directory of Open Access Journals (Sweden)

    Ana Grethel Suárez-Stable

    2016-10-01

    Full Text Available This paper is dealing with the valuation of the behavior of the teaching-learning process of the Physics in the Senior High School and the powerful of the historical treatment to the teaching methods towards the developer learning of this subject. For the analyzed states, we support ourselves in the periodization stated by Urquizar (2009, who takes as object the scientific culture, this topic has some contacts with the theme studied in this investigation. We assumed the items of this researcher, including our position according to some elements pertained to the model we reveled.

  12. A deterministic combination of numerical and physical models for coastal waves

    DEFF Research Database (Denmark)

    Zhang, Haiwen

    2006-01-01

    of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...

  13. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  14. Physical/biogeochemical coupled model : impact of an offline vs online strategy

    Science.gov (United States)

    Hameau, Angélique; Perruche, Coralie; Bricaud, Clément; Gutknecht, Elodie; Reffray, Guillaume

    2014-05-01

    Mercator-Ocean, the French ocean forecasting center, has been developing several operational forecasting systems and reanalysis of the physical and biogeochemical 3D-Ocean. Here we study the impact of an offline vs online strategy to couple the physical (OPA) and biogeochemical (PISCES) modules included in the NEMO platform. For this purpose, we perform global one-year long simulations at 1° resolution. The model was initialized with global climatologies. The spin-up involved 10 years of biogeochemical off-line simulation forced by a climatology of ocean physics. The online mode consists in running physical and biogeochemical models simultaneously whereas in the offline mode, the biogeochemical model is launched alone, forced by averaged physical forcing (1 day, 7 days,… ). The Mercator operational biogeochemical system is currently using the offline mode with a weekly physical forcing. A special treatment is applied to the vertical diffusivity coefficient (Kz): as it varies of several orders of magnitude, we compute the mean of the LOG10 of Kz. Moreover, a threshold value is applied to remove the highest values corresponding to enhanced convection. To improve this system, 2 directions are explored. First, 3 physical forcing frequencies are compared to quantify errors due to the offline mode: 1 hour (online mode), 1 day and 1 week (offline modes). Secondly, sensitivity tests to the threshold value applied to Kz are performed. The simulations are evaluated by systematically comparing model fields to observations (Globcolour product and World Ocean Atlas 2005) at global and regional scales. We show first that offline simulations are in good agreement with online simulation. As expected, the lower the physical forcing frequency is, the closer to the online solution is the offline simulation. The threshold value on the vertical diffusivity coefficient manages the mixing strength within the mixed layer. A value of 1 m2.s-1 appears to be a good compromise to approach

  15. Removing the Blinders: Toward an Integrative Model of Organizational Change in Sport and Physical Activity.

    Science.gov (United States)

    Cunningham, George B.

    2002-01-01

    Discusses the nature of the change process in physical education and sports, presenting a model to incorporate in studies of radical organizational change. The integration of four theories (institutionalism, population ecology, strategic choice, and resource dependence) provides the basis for the model. The paper offers a hypothetical example and…

  16. Four discourse models of physics teacher education

    OpenAIRE

    Larsson, Johanna; Airey, John

    2017-01-01

    In Sweden, as in many other countries, the education of high-school physics teachers is typically carried out in three different environments; the education department, the physics department and school itself during teaching practice. Trainee physics teachers are in the process of building their professional identity as they move between these three environments. Although much has been written about teacher professional identity (see overview in Beijaard, Meijer, & Verloop, 2004) little ...

  17. Framework for understanding LENR processes, using conventional condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)

    2006-07-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  18. Integration of Tuyere, Raceway and Shaft Models for Predicting Blast Furnace Process

    Science.gov (United States)

    Fu, Dong; Tang, Guangwu; Zhao, Yongfu; D'Alessio, John; Zhou, Chenn Q.

    2018-06-01

    A novel modeling strategy is presented for simulating the blast furnace iron making process. Such physical and chemical phenomena are taking place across a wide range of length and time scales, and three models are developed to simulate different regions of the blast furnace, i.e., the tuyere model, the raceway model and the shaft model. This paper focuses on the integration of the three models to predict the entire blast furnace process. Mapping output and input between models and an iterative scheme are developed to establish communications between models. The effects of tuyere operation and burden distribution on blast furnace fuel efficiency are investigated numerically. The integration of different models provides a way to realistically simulate the blast furnace by improving the modeling resolution on local phenomena and minimizing the model assumptions.

  19. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    Science.gov (United States)

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  20. The Process of Physics Teaching Assistants' Pedagogical Content Knowledge Development

    Science.gov (United States)

    Seung, Eulsun

    2013-01-01

    This study explored the process of physics teaching assistants' (TAs) PCK development in the context of teaching a new undergraduate introductory physics course. "Matter and Interactions" (M&I) has recently adopted a new introductory physics course that focuses on the application of a small number of fundamental physical…

  1. Influence of different natural physical fields on biological processes

    Science.gov (United States)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  2. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Birgit Wieland

    2017-10-01

    Full Text Available The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  3. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling.

    Science.gov (United States)

    Wieland, Birgit; Ropte, Sven

    2017-10-05

    The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  4. A Structural Equation Model of Expertise in College Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Carr, Martha

    2009-01-01

    A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…

  5. A Structural Equation Model of Conceptual Change in Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  6. Reflector antenna analysis using physical optics on Graphics Processing Units

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Sørensen, Hans Henrik Brandenborg; Dammann, Bernd

    2014-01-01

    The Physical Optics approximation is a widely used asymptotic method for calculating the scattering from electrically large bodies. It requires significant computational work and little memory, and is thus well suited for application on a Graphics Processing Unit. Here, we investigate the perform......The Physical Optics approximation is a widely used asymptotic method for calculating the scattering from electrically large bodies. It requires significant computational work and little memory, and is thus well suited for application on a Graphics Processing Unit. Here, we investigate...

  7. Cooling problems of thermal power plants. Physical model studies

    International Nuclear Information System (INIS)

    Neale, L.C.

    1975-01-01

    The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators

  8. Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics

    Science.gov (United States)

    Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan

    2017-01-01

    The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…

  9. Visualizing the process of process modeling with PPMCharts

    NARCIS (Netherlands)

    Claes, J.; Vanderfeesten, I.T.P.; Pinggera, J.; Reijers, H.A.; Weber, B.; Poels, G.; La Rosa, M.; Soffer, P.

    2013-01-01

    In the quest for knowledge about how to make good process models, recent research focus is shifting from studying the quality of process models to studying the process of process modeling (often abbreviated as PPM) itself. This paper reports on our efforts to visualize this specific process in such

  10. Statistical physics of media processes: Mediaphysics

    Science.gov (United States)

    Kuznetsov, Dmitri V.; Mandel, Igor

    2007-04-01

    The processes of mass communications in complicated social or sociobiological systems such as marketing, economics, politics, animal populations, etc. as a subject for the special scientific subbranch-“mediaphysics”-are considered in its relation with sociophysics. A new statistical physics approach to analyze these phenomena is proposed. A keystone of the approach is an analysis of population distribution between two or many alternatives: brands, political affiliations, or opinions. Relative distances between a state of a “person's mind” and the alternatives are measures of propensity to buy (to affiliate, or to have a certain opinion). The distribution of population by those relative distances is time dependent and affected by external (economic, social, marketing, natural) and internal (influential propagation of opinions, “word of mouth”, etc.) factors, considered as fields. Specifically, the interaction and opinion-influence field can be generalized to incorporate important elements of Ising-spin-based sociophysical models and kinetic-equation ones. The distributions were described by a Schrödinger-type equation in terms of Green's functions. The developed approach has been applied to a real mass-media efficiency problem for a large company and generally demonstrated very good results despite low initial correlations of factors and the target variable.

  11. Electroweak penguin decays as probes of physics beyond the Standard Model

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Electroweak penguin decays are sensitive to new, virtual particles and therefore offer a unique window on any physics beyond the Standard Model. In the B sector, penguin decays such as B0->K*0mu+mu- give a number of measurable quantities which can be precisely predicted by theory. The LHCb experiment has made the world's most precise measurements of this and several other related decays. These measurements give constraints on any new physics phenomena contributing to the relevant loop processes at mass scales well in excess of those that can be accessed by direct searches. The recent experimental progress of such measurements will be presented.

  12. Physics-based distributed snow models in the operational arena: Current and future challenges

    Science.gov (United States)

    Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.

    2017-12-01

    The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.

  13. Physical processes in spin polarized plasmas

    International Nuclear Information System (INIS)

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained

  14. Testing methodologies for quantifying physical models uncertainties. A comparative exercise using CIRCE and IPREM (FFTBM)

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, Jordi, E-mail: jordi.freixa-terradas@upc.edu; Alfonso, Elsa de, E-mail: elsa.de.alfonso@upc.edu; Reventós, Francesc, E-mail: francesc.reventos@upc.edu

    2016-08-15

    Highlights: • Uncertainty of physical models are a key issue in Best estimate plus uncertainty analysis. • Estimation of uncertainties of physical models of thermal hydraulics system codes. • Comparison of CIRCÉ and FFTBM methodologies. • Simulation of reflood experiments in order to evaluate uncertainty of physical models related to the reflood scenario. - Abstract: The increasing importance of Best-Estimate Plus Uncertainty (BEPU) analyses in nuclear safety and licensing processes have lead to several international activities. The latest findings highlighted the uncertainties of physical models as one of the most controversial aspects of BEPU. This type of uncertainties is an important contributor to the total uncertainty of NPP BE calculations. Due to the complexity of estimating this uncertainty, it is often assessed solely by engineering judgment. The present study comprises a comparison of two different state-of-the-art methodologies CIRCÉ and IPREM (FFTBM) capable of quantifying the uncertainty of physical models. Similarities and differences of their results are discussed through the observation of probability distribution functions and envelope calculations. In particular, the analyzed scenario is core reflood. Experimental data from the FEBA and PERICLES test facilities is employed while the thermal hydraulic simulations are carried out with RELAP5/mod3.3. This work is undertaken under the framework of PREMIUM (Post-BEMUSE Reflood Model Input Uncertainty Methods) benchmark.

  15. Integration of a Three-Dimensional Process-Based Hydrological Model into the Object Modeling System

    Directory of Open Access Journals (Sweden)

    Giuseppe Formetta

    2016-01-01

    Full Text Available The integration of a spatial process model into an environmental modeling framework can enhance the model’s capabilities. This paper describes a general methodology for integrating environmental models into the Object Modeling System (OMS regardless of the model’s complexity, the programming language, and the operating system used. We present the integration of the GEOtop model into the OMS version 3.0 and illustrate its application in a small watershed. OMS is an environmental modeling framework that facilitates model development, calibration, evaluation, and maintenance. It provides innovative techniques in software design such as multithreading, implicit parallelism, calibration and sensitivity analysis algorithms, and cloud-services. GEOtop is a physically based, spatially distributed rainfall-runoff model that performs three-dimensional finite volume calculations of water and energy budgets. Executing GEOtop as an OMS model component allows it to: (1 interact directly with the open-source geographical information system (GIS uDig-JGrass to access geo-processing, visualization, and other modeling components; and (2 use OMS components for automatic calibration, sensitivity analysis, or meteorological data interpolation. A case study of the model in a semi-arid agricultural catchment is presented for illustration and proof-of-concept. Simulated soil water content and soil temperature results are compared with measured data, and model performance is evaluated using goodness-of-fit indices. This study serves as a template for future integration of process models into OMS.

  16. A question driven socio-hydrological modeling process

    Science.gov (United States)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  17. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given

  18. Process evaluation of a worksite social and physical environmental intervention

    NARCIS (Netherlands)

    Coffeng, J.K.; Hendriksen, I.J.M.; Mechelen, W. van; Boot, C.R.L.

    2013-01-01

    OBJECTIVE:: To evaluate the process of implementation of a social and physical environmental intervention and to explore differences regarding this process between both interventions. METHODS:: Context, recruitment, dose delivered, fidelity, reach, dose received, satisfaction, and implementation

  19. Organizational Dimensions of Innovative Practice: A Qualitative Investigation of the Processes Supporting Innovation Adoption in Outpatient Physical Therapy Practice.

    Science.gov (United States)

    Sabus, Carla; Spake, Ellen

    2018-01-01

    The ability to innovate and adapt practice is a requirement of the progressive healthcare provider. Innovative practice by rehabilitation providers has largely been approached as personal professional development; this study extends that perspective by examining innovation uptake from the organizational level. The varied professions can be expected to have distinct qualities of innovation adoption that reflect professional norms, values, and expectations. The purpose of this qualitative study was to describe the organizational processes of innovation uptake in outpatient physical therapy practice. Through nomination, two outpatient, privately owned physical therapy clinics were identified as innovation practices. Eighteen physical therapists, three owners, and a manager participated in the study. The two clinics served as case studies within a grounded theory approach. Data were collected through observation, unstructured questioning, work flow analysis, focus group sessions, and artifact analysis. Data were analyzed and coded among the investigators. A theoretical model of the innovation adoption process in outpatient physical therapy practice was developed. Elements of the model included (1) change grounded in relationship-centered care, (2) clinic readiness to accept change, and (3) clinic adaptability and resilience. A social paradigm of innovation adoption informed through this research complements the concentration on personal professional development.

  20. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong

    2017-11-28

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.

  1. Ecohydrologic process modeling of mountain block groundwater recharge.

    Science.gov (United States)

    Magruder, Ian A; Woessner, William W; Running, Steve W

    2009-01-01

    Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) (Running and Hunt 1993). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) (Running et al. 1987). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m(3) /d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates. Copyright © 2009 The Author(s). Journal compilation © 2009 National Ground Water Association.

  2. Fingerprinting: Modelling and mapping physical top soil properties with the Mole

    Science.gov (United States)

    Loonstra, Eddie; van Egmond, Fenny

    2010-05-01

    The Mole is a passive gamma ray soil sensor system. It is designed for the mobile collection of radioactive energy stemming from soil. As the system is passive, it only measures energy that reaches the surface of soil. In general, this energy comes from upto 30 to 40 cm deep, which can be considered topsoil. The gathered energy spectra are logged every second, are processed with the method of Full Spectrum Analysis. This method uses all available spectral data and processes it with a Chi square optimalisation using a set of standard spectra into individual nuclide point data. A standard spectrum is the measured full spectrum of a specific detector derived when exposed to 1 Bq/kg of a nuclide. With this method the outcome of the surveys become quantitative.The outcome of a field survey with the Mole results in a data file containing point information of position, Total Counts and the decay products of 232Th, 238U, 40K and 137Cs. Five elements are therefor available for the modelling of soil properties. There are several ways for the modelling of soil properties with sensor derived gamma ray data. The Mole generates ratio scale output. For modelling a quantitative deterministic approach is used based on sample locations. This process is called fingerprinting. Fingerprinting is a comparison of the concentration of the radioactive trace elements and the lab results (pH, clay content, etc.) by regression analysis. This results in a mathematical formula describing the relationship between a dependent and independent property. The results of the sensor readings are interpolated into a nuclide map with GIS software. With the derived formula a soil property map is composed. The principle of fingerprinting can be applied on large geographical areas for physical soil properties such as clay, loam or sand (50 micron), grain size and organic matter. Collected sample data of previous field surveys within the same region can be used for the prediction of soil properties elsewhere

  3. Soil physical properties influencing the fitting parameters in Philip and Kostiakov infiltration models

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1994-05-01

    Among the many models developed for monitoring the infiltration process those of Philip and Kostiakov have been studied in detail because of their simplicity and the ease of estimating their fitting parameters. The important soil physical factors influencing the fitting parameters in these infiltration models are reported in this study. The results of the study show that the single most important soil property affecting the fitting parameters in these models is the effective porosity. 36 refs, 2 figs, 5 tabs

  4. A physical process of the radial acceleration of disc galaxies

    Science.gov (United States)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2018-03-01

    An impact model of gravity designed to emulate Newton's law of gravitation is applied to the radial acceleration of disc galaxies. Based on this model (Wilhelm et al. 2013), the rotation velocity curves can be understood without the need to postulate any dark matter contribution. The increased acceleration in the plane of the disc is a consequence of multiple interactions of gravitons (called `quadrupoles' in the original paper) and the subsequent propagation in this plane and not in three-dimensional space. The concept provides a physical process that relates the fit parameter of the acceleration scale defined by McGaugh et al. (2016) to the mean free path length of gravitons in the discs of galaxies. It may also explain the gravitational interaction at low acceleration levels in MOdification of the Newtonian Dynamics (MOND, Milgrom 1983, 1994, 2015, 2016). Three examples are discussed in some detail: the spiral galaxies NGC 7814, NGC 6503 and M 33.

  5. Impact E-Learning Platform Moodle on the Physic's Learning Process in the High School's Students

    Science.gov (United States)

    Torres-Montealban, Jonas; Ruiz-Chavarria, Gregorio; Gomez-Lozoya, Enrique Armando

    2011-03-01

    As a didactic proposal, moodle e-learning platform was implemented in one of two Physics High School's group at UACH, in order to show how the use of new technologies can improve the learning progress linked to physics concepts. As a result, the first group worked at the same time with inside class activities as well as outside resources from the moodle e-platform. The second group only worked with inside class activities. This teaching application was developed in six sections. Section I defines the educational framework. Section II identifies the key physic's concepts to be studied in each proposed activity. Section III describes the didactic model. Section IV displays the compared results between similarities and differences in both groups. Section VI shows the gathered information in order to be discussed as a topic related on how new technologies improve the Physic's learning process in the high school' students.

  6. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    Science.gov (United States)

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  7. PERCEIVED AUTONOMY SUPPORT AND BEHAVIORAL ENGAGEMENT IN PHYSICAL EDUCATION: A CONDITIONAL PROCESS MODEL OF POSITIVE EMOTION AND AUTONOMOUS MOTIVATION.

    Science.gov (United States)

    Yoo, Jin

    2015-06-01

    A variety of theoretical perspectives describe the crucial behavioral roles of motivation and emotion, but how these interact with perceptions of social contexts and behaviors is less well understood. This study examined whether autonomous motivation mediated the relationship between perceived autonomy support and behavioral engagement in physical education and whether this mediating process was moderated by positive emotion. A sample of 592 Korean middle-school students (304 boys, 288 girls; M age = 14.0 yr., SD = 0.8) completed questionnaires. Autonomous motivation partially mediated the positive association between perceived autonomy support and behavioral engagement. Positive emotion moderated the relationship between autonomous motivation and behavioral engagement. This indirect link was stronger as positive emotion increased. These findings suggest the importance of integrating emotion into motivational processes to understand how and when perceived autonomy support is associated with behavioral engagement in physical education.

  8. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  9. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  10. Multi-physics modeling in electrical engineering. Application to a magneto-thermo-mechanical model

    International Nuclear Information System (INIS)

    Journeaux, Antoine

    2013-01-01

    The modeling of multi-physics problems in electrical engineering is presented, with an application to the numerical computation of vibrations within the end windings of large turbo-generators. This study is divided into four parts: the impositions of current density, the computation of local forces, the transfer of data between disconnected meshes, and the computation of multi-physics problems using weak coupling, Firstly, the representation of current density within numerical models is presented. The process is decomposed into two stages: the construction of the initial current density, and the determination of a divergence-free field. The representation of complex geometries makes the use of analytical methods impossible. A method based on an electrokinetic problem is used and a fully geometrical method are tested. The geometrical method produces results closer to the real current density than the electrokinetic problem. Methods to compute forces are numerous, and this study focuses on the virtual work principle and the Laplace force considering the recommendations of the literature. Laplace force is highly accurate but is applicable only if the permeability is uniform. The virtual work principle is finally preferred as it appears as the most general way to compute local forces. Mesh-to-mesh data transfer methods are developed to compute multi-physics models using multiples meshes adapted to the subproblems and multiple computational software. The interpolation method, a locally conservative projection, and an orthogonal projection are compared. Interpolation method is said to be fast but highly diffusive, and the orthogonal projections are highly accurate. The locally conservative method produces results similar to the orthogonal projection but avoid the assembly of linear systems. The numerical computation of multi-physical problems using multiple meshes and projections is then presented. However for a given class of problems, there is not an unique coupling

  11. A macro-physics model of depreciation rate in economic exchange

    Science.gov (United States)

    Marmont Lobo, Rui F.; de Sousa, Miguel Rocha

    2014-02-01

    This article aims at a new approach for a known fundamental result: barter or trade increases economic value. It successfully bridges the gap between the theory of value and the exchange process attached to the transition from endowments to the equilibrium in the core and contract curve. First, we summarise the theory of value; in Section 2, we present the Edgeworth (1881) box and an axiomatic approach and in Section 3, we apply our pure exchange model. Finally (in Section 4), using our open econo-physics pure barter (EPB) model, we derive an improvement in value, which means that pure barter leads to a decline in depreciation rate.

  12. Introduction of a pyramid guiding process for general musculoskeletal physical rehabilitation

    Directory of Open Access Journals (Sweden)

    Stark Timothy W

    2006-06-01

    Full Text Available Abstract Successful instruction of a complicated subject as Physical Rehabilitation demands organization. To understand principles and processes of such a field demands a hierarchy of steps to achieve the intended outcome. This paper is intended to be an introduction to a proposed pyramid scheme of general physical rehabilitation principles. The purpose of the pyramid scheme is to allow for a greater understanding for the student and patient. As the respected Food Guide Pyramid accomplishes, the student will further appreciate and apply supported physical rehabilitation principles and the patient will understand that there is a progressive method to their functional healing process.

  13. Evaluating performances of simplified physically based landslide susceptibility models.

    Science.gov (United States)

    Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale

    2015-04-01

    Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk

  14. Physical-chemical model of nanodiamond formation at explosion

    International Nuclear Information System (INIS)

    Chernyshev, A.P.; Lukyanchikov, L.A.; Lyakhov, N.Z.; Pruuel, E.R.; Sheromov, M.A.; Ten, K.A.; Titov, V.M.; Tolochko, B.P.; Zhogin, I.L.; Zubkov, P.I.

    2007-01-01

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state

  15. Physical-chemical model of nanodiamond formation at explosion

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, A.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Lukyanchikov, L.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Lyakhov, N.Z. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Pruuel, E.R. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Sheromov, M.A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ten, K.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Titov, V.M. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Tolochko, B.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)]. E-mail: b.p.tolochko@inp.nsk.su; Zhogin, I.L. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Zubkov, P.I. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation)

    2007-05-21

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state.

  16. The r-process nucleosynthesis: Nuclear physics challenges

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  17. A Baseline Patient Model to Support Testing of Medical Cyber-Physical Systems.

    Science.gov (United States)

    Silva, Lenardo C; Perkusich, Mirko; Almeida, Hyggo O; Perkusich, Angelo; Lima, Mateus A M; Gorgônio, Kyller C

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are currently a trending topic of research. The main challenges are related to the integration and interoperability of connected medical devices, patient safety, physiologic closed-loop control, and the verification and validation of these systems. In this paper, we focus on patient safety and MCPS validation. We present a formal patient model to be used in health care systems validation without jeopardizing the patient's health. To determine the basic patient conditions, our model considers the four main vital signs: heart rate, respiratory rate, blood pressure and body temperature. To generate the vital signs we used regression models based on statistical analysis of a clinical database. Our solution should be used as a starting point for a behavioral patient model and adapted to specific clinical scenarios. We present the modeling process of the baseline patient model and show its evaluation. The conception process may be used to build different patient models. The results show the feasibility of the proposed model as an alternative to the immediate need for clinical trials to test these medical systems.

  18. Physical and numerical modelling of heat treatment the precipitation-hardening complex-phase steel (CP

    Directory of Open Access Journals (Sweden)

    B. Koczurkiewicz

    2013-01-01

    Full Text Available The article presents the results of physical and numerical modeling of the processes of thermo- plastic treatment of an experimental complex-phase (CP steel. Numerical tests were carried out using a commercial software program, ThermoCalc. Based on the obtained test results, the austenitization temperature was established. Physical modeling was performed using a DIL 805A/D dilatometer and the Gleeble 3800 system. The characteristic temperatures of the steel and the primary austenite grain size were determined. The test pieces were also subjected to metallographic examinations and Vickers hardness tests. The obtained results served for building an actual CCT diagram for the steel tested.

  19. Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems

    Directory of Open Access Journals (Sweden)

    Maik Streblau

    2014-05-01

    Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.

  20. Ladder physics in the spin fermion model

    Science.gov (United States)

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  1. Ladder physics in the spin fermion model

    International Nuclear Information System (INIS)

    Tsvelik, A. M.

    2017-01-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  2. Revision Vodcast Influence on Assessment Scores and Study Processes in Secondary Physics

    Science.gov (United States)

    Marencik, Joseph J.

    A quasi-experimental switching replications design with matched participants was employed to determine the influence of revision vodcasts, or video podcasts, on students' assessment scores and study processes in secondary physics. This study satisfied a need for quantitative results in the area of vodcast influence on students' learning processes. Thirty-eight physics students in an urban Ohio public high school participated in the study. The students in one Physics class were paired with students in another Physics class through the matching characteristics of current student cumulative test score mean and baseline study process as measured by the Study Process Questionnaire (SPQ). Students in both classes were given identical pedagogic treatment and access to traditional revision tools except for the supplemental revision vodcasts given to the experimental group. After students in the experimental group viewed the revision vodcast for a particular topic, the assessment scores of the students in the experimental group were compared to the assessment scores of the control group through the direct-difference, D, test to determine any difference between the assessment score means of each group. The SPQ was given at the beginning of the experiment and after each physics assessment. The direct-difference method was again used to determine any difference between the SPQ deep approach scores of each group. The SPQ was also used to determine any correlative effects between study process and revision vodcast use on students' assessment scores through descriptive statistics and an analysis of variance (ANOVA) test. Analysis indicated that revision vodcast use significantly increased students' assessment scores (p.05). There were no significant correlative effects of revision vodcast use and study processes on students' assessment scores (p>.05). This study offers educators the empirical support to devote the necessary effort, time, and resources into developing successful

  3. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng

    2009-01-01

    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  4. Simplified models for new physics in vector boson scattering. Input for Snowmass 2013

    International Nuclear Information System (INIS)

    Reuter, Juergen; Kilian, Wolfgang; Sekulla, Marco

    2013-07-01

    In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.

  5. Simplified models for new physics in vector boson scattering. Input for Snowmass 2013

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kilian, Wolfgang; Sekulla, Marco [Siegen Univ. (Germany). Theoretische Physik I

    2013-07-15

    In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.

  6. Simplified Models for LHC New Physics Searches

    International Nuclear Information System (INIS)

    Alves, Daniele; Arkani-Hamed, Nima; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R. Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto

    2012-01-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ∼ 50-500 pb -1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  7. Simplified Models for LHC New Physics Searches

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele; /SLAC; Arkani-Hamed, Nima; /Princeton, Inst. Advanced Study; Arora, Sanjay; /Rutgers U., Piscataway; Bai, Yang; /SLAC; Baumgart, Matthew; /Johns Hopkins U.; Berger, Joshua; /Cornell U., Phys. Dept.; Buckley, Matthew; /Fermilab; Butler, Bart; /SLAC; Chang, Spencer; /Oregon U. /UC, Davis; Cheng, Hsin-Chia; /UC, Davis; Cheung, Clifford; /UC, Berkeley; Chivukula, R.Sekhar; /Michigan State U.; Cho, Won Sang; /Tokyo U.; Cotta, Randy; /SLAC; D' Alfonso, Mariarosaria; /UC, Santa Barbara; El Hedri, Sonia; /SLAC; Essig, Rouven, (ed.); /SLAC; Evans, Jared A.; /UC, Davis; Fitzpatrick, Liam; /Boston U.; Fox, Patrick; /Fermilab; Franceschini, Roberto; /LPHE, Lausanne /Pittsburgh U. /Argonne /Northwestern U. /Rutgers U., Piscataway /Rutgers U., Piscataway /Carleton U. /CERN /UC, Davis /Wisconsin U., Madison /SLAC /SLAC /SLAC /Rutgers U., Piscataway /Syracuse U. /SLAC /SLAC /Boston U. /Rutgers U., Piscataway /Seoul Natl. U. /Tohoku U. /UC, Santa Barbara /Korea Inst. Advanced Study, Seoul /Harvard U., Phys. Dept. /Michigan U. /Wisconsin U., Madison /Princeton U. /UC, Santa Barbara /Wisconsin U., Madison /Michigan U. /UC, Davis /SUNY, Stony Brook /TRIUMF; /more authors..

    2012-06-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first {approx} 50-500 pb{sup -1} of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  8. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.

    Science.gov (United States)

    Lecca, Paola

    2018-01-01

    We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of

  9. Business process model repositories : efficient process retrieval

    NARCIS (Netherlands)

    Yan, Z.

    2012-01-01

    As organizations increasingly work in process-oriented manner, the number of business process models that they develop and have to maintain increases. As a consequence, it has become common for organizations to have collections of hundreds or even thousands of business process models. When a

  10. Analyzing numerics of bulk microphysics schemes in community models: warm rain processes

    Directory of Open Access Journals (Sweden)

    I. Sednev

    2012-08-01

    Full Text Available Implementation of bulk cloud microphysics (BLK parameterizations in atmospheric models of different scales has gained momentum in the last two decades. Utilization of these parameterizations in cloud-resolving models when timesteps used for the host model integration are a few seconds or less is justified from the point of view of cloud physics. However, mechanistic extrapolation of the applicability of BLK schemes to the regional or global scales and the utilization of timesteps of hundreds up to thousands of seconds affect both physics and numerics.

    We focus on the mathematical aspects of BLK schemes, such as stability and positive-definiteness. We provide a strict mathematical definition for the problem of warm rain formation. We also derive a general analytical condition (SM-criterion that remains valid regardless of parameterizations for warm rain processes in an explicit Eulerian time integration framework used to advanced finite-difference equations, which govern warm rain formation processes in microphysics packages in the Community Atmosphere Model and the Weather Research and Forecasting model. The SM-criterion allows for the existence of a unique positive-definite stable mass-conserving numerical solution, imposes an additional constraint on the timestep permitted due to the microphysics (like the Courant-Friedrichs-Lewy condition for the advection equation, and prohibits use of any additional assumptions not included in the strict mathematical definition of the problem under consideration.

    By analyzing the numerics of warm rain processes in source codes of BLK schemes implemented in community models we provide general guidelines regarding the appropriate choice of time steps in these models.

  11. Physical activity across the curriculum: year one process evaluation results

    Directory of Open Access Journals (Sweden)

    Sullivan Debra K

    2008-07-01

    Full Text Available Abstract Background Physical Activity Across the Curriculum (PAAC is a 3-year elementary school-based intervention to determine if increased amounts of moderate intensity physical activity performed in the classroom will diminish gains in body mass index (BMI. It is a cluster-randomized, controlled trial, involving 4905 children (2505 intervention, 2400 control. Methods We collected both qualitative and quantitative process evaluation data from 24 schools (14 intervention and 10 control, which included tracking teacher training issues, challenges and barriers to effective implementation of PAAC lessons, initial and continual use of program specified activities, and potential competing factors, which might contaminate or lessen program effects. Results Overall teacher attendance at training sessions showed exceptional reach. Teachers incorporated active lessons on most days, resulting in significantly greater student physical activity levels compared to controls (p Conclusion In the first year of the PAAC intervention, process evaluation results were instrumental in identifying successes and challenges faced by teachers when trying to modify existing academic lessons to incorporate physical activity.

  12. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    Science.gov (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  13. REPRODUCING THE OBSERVED ABUNDANCES IN RCB AND HdC STARS WITH POST-DOUBLE-DEGENERATE MERGER MODELS-CONSTRAINTS ON MERGER AND POST-MERGER SIMULATIONS AND PHYSICS PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Athira; Herwig, Falk; Denissenkov, Pavel A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Clayton, Geoffrey C.; Staff, Jan [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Pignatari, Marco [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Paxton, Bill [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

    2013-07-20

    The R Coronae Borealis (RCB) stars are hydrogen-deficient, variable stars that are most likely the result of He-CO WD mergers. They display extremely low oxygen isotopic ratios, {sup 16}O/{sup 18}O {approx_equal} 1-10, {sup 12}C/{sup 13}C {>=} 100, and enhancements up to 2.6 dex in F and in s-process elements from Zn to La, compared to solar. These abundances provide stringent constraints on the physical processes during and after the double-degenerate merger. As shown previously, O-isotopic ratios observed in RCB stars cannot result from the dynamic double-degenerate merger phase, and we now investigate the role of the long-term one-dimensional spherical post-merger evolution and nucleosynthesis based on realistic hydrodynamic merger progenitor models. We adopt a model for extra envelope mixing to represent processes driven by rotation originating in the dynamical merger. Comprehensive nucleosynthesis post-processing simulations for these stellar evolution models reproduce, for the first time, the full range of the observed abundances for almost all the elements measured in RCB stars: {sup 16}O/{sup 18}O ratios between 9 and 15, C-isotopic ratios above 100, and {approx}1.4-2.35 dex F enhancements, along with enrichments in s-process elements. The nucleosynthesis processes in our models constrain the length and temperature in the dynamic merger shell-of-fire feature as well as the envelope mixing in the post-merger phase. s-process elements originate either in the shell-of-fire merger feature or during the post-merger evolution, but the contribution from the asymptotic giant branch progenitors is negligible. The post-merger envelope mixing must eventually cease {approx}10{sup 6} yr after the dynamic merger phase before the star enters the RCB phase.

  14. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  15. Physics at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)669060; Roloff, Philipp Gerhard

    2015-01-01

    CLIC is a concept for a future linear collider which would use two-beam acceleration to produce e+e- collisions with a centre-of-mass energy of 3 TeV. A staging scenario would also provide collisions at lower centre-of-mass energies, provisionally 350 GeV and 1.4 TeV. In order to demonstrate the wide range of physics processes available at such a linear collider, and to benchmark the performance of proposed detector models, a campaign of simulated physics analyses including Higgs, top and beyond the Standard Model processes has been undertaken at these three energy stages. These proceedings present the current status of these studies and illustrate the potential for precision physics measurements at CLIC.

  16. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    Energy Technology Data Exchange (ETDEWEB)

    AbdElHaleem, H S [Cairo Univ.-CivlI Eng. Dept., Giza (Egypt); EI-Ahwany, A H [CairoUlmrsity- Faculty ofEngincering - Chemical Engineering Department, Giza (Egypt); Ibrahim, H I [Helwan University- Faculty of Engineering - Biomedical Engineering Department, Helwan (Egypt); Ibrahim, G [Menofia University- Faculty of Engineering Sbebin EI Kom- Basic Eng. Sc. Dept., Menofia (Egypt)

    2004-07-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type.

  17. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    International Nuclear Information System (INIS)

    AbdElHaleem, H.S.; EI-Ahwany, A. H.; Ibrahim, H.I.; Ibrahim, G.

    2004-01-01

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type

  18. Comparison Study on Low Energy Physics Model of GEANT4

    International Nuclear Information System (INIS)

    Park, So Hyun; Jung, Won Gyun; Suh, Tae Suk

    2010-01-01

    The Geant4 simulation toolkit provides improved or renewed physics model according to the version. The latest Geant4.9.3 which has been recoded by developers applies inserted Livermore data and renewed physics model to the low energy electromagnetic physics model. And also, Geant4.9.3 improved the physics factors by modified code. In this study, the stopping power and CSDA(Continuously Slowing Down Approximation) range data of electron or particles were acquired in various material and then, these data were compared with NIST(National Institute of Standards and Technology) data. Through comparison between data of Geant4 simulation and NIST, the improvement of physics model on low energy electromagnetic of Geant4.9.3 was evaluated by comparing the Geant4.9.2

  19. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    Science.gov (United States)

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  20. Process correlation analysis model for process improvement identification.

    Science.gov (United States)

    Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  1. The impact of working memory and the "process of process modelling" on model quality: Investigating experienced versus inexperienced modellers

    DEFF Research Database (Denmark)

    Martini, Markus; Pinggera, Jakob; Neurauter, Manuel

    2016-01-01

    of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling....... the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension...

  2. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    International Nuclear Information System (INIS)

    Plotnitsky, Arkady

    2014-01-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well. (paper)

  3. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  4. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  5. Methods for evaluating physical processes in strong external fields at e{sup +}e{sup -} colliders. Furry picture and quasi-classical approach

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Stefano [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Hartin, Anthony [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    Future linear colliders designs, ILC and CLIC, are expected to be powerful machines for the discovery of Physics Beyond the Standard Model and subsequent precision studies. However, due to the intense beams (high luminosity, high energy), strong electromagnetic fields occur in the beam-beam interaction region. In the context of precision high energy physics, the presence of such strong fields may yield sensitive corrections to the observed electron-positron processes. The Furry picture of quantum states gives a conceptually simple tool to treat physics processes in an external field. A generalization of the quasi-classical operator method (QOM) as an approximation is considered too.

  6. Product and Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian T.; Gani, Rafiqul

    . These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product and process modelling theory and practice followed by a series of case studies drawn from a variety......This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models...... to biotechnology applications, food, polymer and human health application areas. The book highlights to important nature of modern product and process modelling in the decision making processes across the life cycle. As such it provides an important resource for students, researchers and industrial practitioners....

  7. A self-taught artificial agent for multi-physics computational model personalization.

    Science.gov (United States)

    Neumann, Dominik; Mansi, Tommaso; Itu, Lucian; Georgescu, Bogdan; Kayvanpour, Elham; Sedaghat-Hamedani, Farbod; Amr, Ali; Haas, Jan; Katus, Hugo; Meder, Benjamin; Steidl, Stefan; Hornegger, Joachim; Comaniciu, Dorin

    2016-12-01

    Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelligence concepts to learn this task, inspired by how human experts manually perform it. The problem is reformulated in terms of reinforcement learning. In an off-line phase, Vito, our self-taught artificial agent, learns a representative decision process model through exploration of the computational model: it learns how the model behaves under change of parameters. The agent then automatically learns an optimal strategy for on-line personalization. The algorithm is model-independent; applying it to a new model requires only adjusting few hyper-parameters of the agent and defining the observations to match. The full knowledge of the model itself is not required. Vito was tested in a synthetic scenario, showing that it could learn how to optimize cost functions generically. Then Vito was applied to the inverse problem of cardiac electrophysiology and the personalization of a whole-body circulation model. The obtained results suggested that Vito could achieve equivalent, if not better goodness of fit than standard methods, while being more robust (up to 11% higher success rates) and with faster (up to seven times) convergence rate. Our artificial intelligence approach could thus make personalization algorithms generalizable and self-adaptable to any patient and any model. Copyright © 2016. Published by Elsevier B.V.

  8. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  9. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  10. Component- and system-level degradation modeling of digital Instrumentation and Control systems based on a Multi-State Physics Modeling Approach

    International Nuclear Information System (INIS)

    Wang, Wei; Di Maio, Francesco; Zio, Enrico

    2016-01-01

    Highlights: • A Multi-State Physics Modeling (MSPM) framework for reliability assessment is proposed. • Monte Carlo (MC) simulation is utilized to estimate the degradation state probability. • Due account is given to stochastic uncertainty and deterministic degradation progression. • The MSPM framework is applied to the reliability assessment of a digital I&C system. • Results are compared with the results obtained with a Markov Chain Model (MCM). - Abstract: A system-level degradation modeling is proposed for the reliability assessment of digital Instrumentation and Control (I&C) systems in Nuclear Power Plants (NPPs). At the component level, we focus on the reliability assessment of a Resistance Temperature Detector (RTD), which is an important digital I&C component used to guarantee the safe operation of NPPs. A Multi-State Physics Model (MSPM) is built to describe this component degradation progression towards failure and Monte Carlo (MC) simulation is used to estimate the probability of sojourn in any of the previously defined degradation states, by accounting for both stochastic and deterministic processes that affect the degradation progression. The MC simulation relies on an integrated modeling of stochastic processes with deterministic aging of components that results to be fundamental for estimating the joint cumulative probability distribution of finding the component in any of the possible degradation states. The results of the application of the proposed degradation model to a digital I&C system of literature are compared with the results obtained by a Markov Chain Model (MCM). The integrated stochastic-deterministic process here proposed to drive the MC simulation is viable to integrate component-level models into a system-level model that would consider inter-system or/and inter-component dependencies and uncertainties.

  11. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-03-01

    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  12. The evaluation of the efficiency of introducing the model of the methodical system of physical education of agrarian students

    Directory of Open Access Journals (Sweden)

    Gryban G.P.

    2012-12-01

    Full Text Available Quality indicators of an educational process in agricultural universities after methodology model of physical education has been implemented. The purpose of the work was to determine the effectiveness of methodology model of physical education by the students of agricultural institutes. The evaluation system included a program-based purposeful approach to quality assurance of training and management integration of different aspects of training and educating the students by the physical education. It was based on the general principles of the administration theory and included ensuring the proper coordination between the teacher and students to obtain reliable and objective information about the effectiveness of the educational process. The study involved 188 first-year students of the experimental groups (105 men, 83 women and 181 first-year students of the control groups (92 men, 89 women of the Zhytomyr National Agroecological University in 2006/2007 academic year who have been trained in this program for four years. The effectiveness of the model was evaluated according to the following parameters: the effectiveness of a educational process in physical education and the level of preparedness of students of agricultural institutes to sport and health promotion during their professional work in the agricultural sector after motivational, cognitive and activity criteria.

  13. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  14. Physical model for the generation of ideal resources in multipartite quantum networking

    International Nuclear Information System (INIS)

    Ciccarello, F.; Zarcone, M.; Paternostro, M.; Bose, S.; Browne, D. E.; Palma, G. M.

    2010-01-01

    We propose a physical model for generating multipartite entangled states of spin-s particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies in the management of stationary and well-separated spins. Among the generable states, there is a class of N-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W, and Greenberger-Horne-Zeilinger states.

  15. New physics beyond the standard model of particle physics and parallel universes

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Franzstr. 40, 53111 Bonn (Germany)]. E-mail: rainer.plaga@gmx.de

    2006-03-09

    It is shown that if-and only if-'parallel universes' exist, an electroweak vacuum that is expected to have decayed since the big bang with a high probability might exist. It would neither necessarily render our existence unlikely nor could it be observed. In this special case the observation of certain combinations of Higgs-boson and top-quark masses-for which the standard model predicts such a decay-cannot be interpreted as evidence for new physics at low energy scales. The question of whether parallel universes exist is of interest to our understanding of the standard model of particle physics.

  16. Links between galaxy evolution, morphology and internal physical processes

    International Nuclear Information System (INIS)

    Kraljic, Katarina

    2014-01-01

    This thesis aims at making the link between galaxy evolution, morphology and internal physical processes, namely star formation as the outcome of the turbulent multiphase interstellar medium, using the cosmological zoom-in simulations, simulations of isolated and merging galaxies, and the analytic model of star formation. In Chapter 1, I explain the motivation for this thesis and briefly review the necessary background related to galaxy formation and modeling with the use of numerical simulations. I first explore the evolution of the morphology of Milky-Way-mass galaxies in a suite of zoom-in cosmological simulations through the analysis of bars. I analyze the evolution of the fraction of bars with redshift, its dependence on the stellar mass and accretion history of individual galaxies. I show in particular, that the fraction of bars declines with increasing redshift, in agreement with the observations. This work also shows that the obtained results suggest that the bar formation epoch corresponds to the transition between an early 'violent' phase of spiral galaxies formation at z > 1, during which they are often disturbed by major mergers or multiple minor mergers as well as violent disk instabilities, and a late 'secular' phase at z [fr

  17. A physics based method for combining multiple anatomy models with application to medical simulation.

    Science.gov (United States)

    Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David

    2009-01-01

    We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.

  18. Modeling of biopharmaceutical processes. Part 2: Process chromatography unit operation

    DEFF Research Database (Denmark)

    Kaltenbrunner, Oliver; McCue, Justin; Engel, Philip

    2008-01-01

    Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent. The theoret......Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent...

  19. Application of Physically based landslide susceptibility models in Brazil

    Science.gov (United States)

    Carvalho Vieira, Bianca; Martins, Tiago D.

    2017-04-01

    Shallow landslides and floods are the processes responsible for most material and environmental damages in Brazil. In the last decades, some landslides events induce a high number of deaths (e.g. Over 1000 deaths in one event) and incalculable social and economic losses. Therefore, the prediction of those processes is considered an important tool for land use planning tools. Among different methods the physically based landslide susceptibility models having been widely used in many countries, but in Brazil it is still incipient when compared to other ones, like statistical tools and frequency analyses. Thus, the main objective of this research was to assess the application of some Physically based landslide susceptibility models in Brazil, identifying their main results, the efficiency of susceptibility mapping, parameters used and limitations of the tropical humid environment. In order to achieve that, it was evaluated SHALSTAB, SINMAP and TRIGRS models in some studies in Brazil along with the Geotechnical values, scales, DEM grid resolution and the results based on the analysis of the agreement between predicted susceptibility and the landslide scar's map. Most of the studies in Brazil applied SHALSTAB, SINMAP and to a lesser extent the TRIGRS model. The majority researches are concentrated in the Serra do Mar mountain range, that is a system of escarpments and rugged mountains that extends more than 1,500 km along the southern and southeastern Brazilian coast, and regularly affected by heavy rainfall that generates widespread mass movements. Most part of these studies used conventional topographic maps with scales ranging from 1:2000 to 1:50000 and DEM-grid resolution between 2 and 20m. Regarding the Geotechnical and hydrological values, a few studies use field collected data which could produce more efficient results, as indicated by international literature. Therefore, even though they have enormous potential in the susceptibility mapping, even for comparison

  20. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    International Nuclear Information System (INIS)

    Moiseyev, A.V.

    2008-01-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  1. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)

    2008-07-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  2. B physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hewett, J.A.L.

    1997-12-01

    The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given

  3. The impact of working memory and the "process of process modelling" on model quality: Investigating experienced versus inexperienced modellers.

    Science.gov (United States)

    Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R; Weber, Barbara

    2016-05-09

    A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling.

  4. Applying the Business Process and Practice Alignment Meta-model: Daily Practices and Process Modelling

    Directory of Open Access Journals (Sweden)

    Ventura Martins Paula

    2017-03-01

    Full Text Available Background: Business Process Modelling (BPM is one of the most important phases of information system design. Business Process (BP meta-models allow capturing informational and behavioural aspects of business processes. Unfortunately, standard BP meta-modelling approaches focus just on process description, providing different BP models. It is not possible to compare and identify related daily practices in order to improve BP models. This lack of information implies that further research in BP meta-models is needed to reflect the evolution/change in BP. Considering this limitation, this paper introduces a new BP meta-model designed by Business Process and Practice Alignment Meta-model (BPPAMeta-model. Our intention is to present a meta-model that addresses features related to the alignment between daily work practices and BP descriptions. Objectives: This paper intends to present a metamodel which is going to integrate daily work information into coherent and sound process definitions. Methods/Approach: The methodology employed in the research follows a design-science approach. Results: The results of the case study are related to the application of the proposed meta-model to align the specification of a BP model with work practices models. Conclusions: This meta-model can be used within the BPPAM methodology to specify or improve business processes models based on work practice descriptions.

  5. I spy with my little eye: cognitive processing of framed physical activity messages.

    Science.gov (United States)

    Bassett-Gunter, Rebecca L; Latimer-Cheung, Amy E; Martin Ginis, Kathleen A; Castelhano, Monica

    2014-01-01

    The primary purpose was to examine the relative cognitive processing of gain-framed versus loss-framed physical activity messages following exposure to health risk information. Guided by the Extended Parallel Process Model, the secondary purpose was to examine the relation between dwell time, message recall, and message-relevant thoughts, as well as perceived risk, personal relevance, and fear arousal. Baseline measures of perceived risk for inactivity-related disease and health problems were administered to 77 undergraduate students. Participants read population-specific health risk information while wearing a head-mounted eye tracker, which measured dwell time on message content. Perceived risk was then reassessed. Next, participants read PA messages while the eye tracker measured dwell time on message content. Immediately following message exposure, recall, thought-listing, fear arousal, and personal relevance were measured. Dwell time on gain-framed messages was significantly greater than loss-framed messages. However, message recall and thought-listing did not differ by message frame. Dwell time was not significantly related to recall or thought-listing. Consistent with the Extended Parallel Process Model, fear arousal was significantly related to recall, thought-listing, and personal relevance. In conclusion, gain-framed messages may evoke greater dwell time than loss-famed messages. However, dwell time alone may be insufficient for evoking further cognitive processing.

  6. Service Learning In Physics: The Consultant Model

    Science.gov (United States)

    Guerra, David

    2005-04-01

    Each year thousands of students across the country and across the academic disciplines participate in service learning. Unfortunately, with no clear model for integrating community service into the physics curriculum, there are very few physics students engaged in service learning. To overcome this shortfall, a consultant based service-learning program has been developed and successfully implemented at Saint Anselm College (SAC). As consultants, students in upper level physics courses apply their problem solving skills in the service of others. Most recently, SAC students provided technical and managerial support to a group from Girl's Inc., a national empowerment program for girls in high-risk, underserved areas, who were participating in the national FIRST Lego League Robotics competition. In their role as consultants the SAC students provided technical information through brainstorming sessions and helped the girls stay on task with project management techniques, like milestone charting. This consultant model of service-learning, provides technical support to groups that may not have a great deal of resources and gives physics students a way to improve their interpersonal skills, test their technical expertise, and better define the marketable skill set they are developing through the physics curriculum.

  7. Model-implementation fidelity in cyber physical system design

    CERN Document Server

    Fabre, Christian

    2017-01-01

    This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques. Addresses CPS design problems such as cross-application interference, parsimonious modeling, and trustful code production Describes solutions, such as simulation for extra-functional properties, extension of cod...

  8. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  9. Equifinality and process-based modelling

    Science.gov (United States)

    Khatami, S.; Peel, M. C.; Peterson, T. J.; Western, A. W.

    2017-12-01

    Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.

  10. An introduction to relativistic processes and the standard model of electroweak interactions

    CERN Document Server

    Becchi, Carlo Maria

    2006-01-01

    These notes are designed as a guide-line for a course in Elementary Particle Physics for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the theoretical framework and of the phenomenological aspects of the physics of interactions among fundamental constituents of matter. The first part of the volume is devoted to the description of scattering processes in the context of relativistic quantum field theory. The use of the semi-classical approximation allows us to illustrate the relevant computation techniques in a reasonably small amount of space. Our approach to relativistic processes is original in many respects. The second part contains a detailed description of the construction of the standard model of electroweak interactions, with special attention to the mechanism of particle mass generation. The extension of the standard model to include neutrino masses is also described. We have included a number of detailed computations of cross sections and decay rates of...

  11. Multiphase porous media modelling: A novel approach to predicting food processing performance.

    Science.gov (United States)

    Khan, Md Imran H; Joardder, M U H; Kumar, Chandan; Karim, M A

    2018-03-04

    The development of a physics-based model of food processing is essential to improve the quality of processed food and optimize energy consumption. Food materials, particularly plant-based food materials, are complex in nature as they are porous and have hygroscopic properties. A multiphase porous media model for simultaneous heat and mass transfer can provide a realistic understanding of transport processes and thus can help to optimize energy consumption and improve food quality. Although the development of a multiphase porous media model for food processing is a challenging task because of its complexity, many researchers have attempted it. The primary aim of this paper is to present a comprehensive review of the multiphase models available in the literature for different methods of food processing, such as drying, frying, cooking, baking, heating, and roasting. A critical review of the parameters that should be considered for multiphase modelling is presented which includes input parameters, material properties, simulation techniques and the hypotheses. A discussion on the general trends in outcomes, such as moisture saturation, temperature profile, pressure variation, and evaporation patterns, is also presented. The paper concludes by considering key issues in the existing multiphase models and future directions for development of multiphase models.

  12. Are Physical Education Majors Models for Fitness?

    Science.gov (United States)

    Kamla, James; Snyder, Ben; Tanner, Lori; Wash, Pamela

    2012-01-01

    The National Association of Sport and Physical Education (NASPE) (2002) has taken a firm stance on the importance of adequate fitness levels of physical education teachers stating that they have the responsibility to model an active lifestyle and to promote fitness behaviors. Since the NASPE declaration, national initiatives like Let's Move…

  13. A physical model of sensorimotor interactions during locomotion

    Science.gov (United States)

    Klein, Theresa J.; Lewis, M. Anthony

    2012-08-01

    In this paper, we describe the development of a bipedal robot that models the neuromuscular architecture of human walking. The body is based on principles derived from human muscular architecture, using muscles on straps to mimic agonist/antagonist muscle action as well as bifunctional muscles. Load sensors in the straps model Golgi tendon organs. The neural architecture is a central pattern generator (CPG) composed of a half-center oscillator combined with phase-modulated reflexes that is simulated using a spiking neural network. We show that the interaction between the reflex system, body dynamics and CPG results in a walking cycle that is entrained to the dynamics of the system. We also show that the CPG helped stabilize the gait against perturbations relative to a purely reflexive system, and compared the joint trajectories to human walking data. This robot represents a complete physical, or ‘neurorobotic’, model of the system, demonstrating the usefulness of this type of robotics research for investigating the neurophysiological processes underlying walking in humans and animals.

  14. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  15. GLN standard as a facilitator of physical location identification within process of distribution

    Directory of Open Access Journals (Sweden)

    Davor Dujak

    2017-09-01

    perspective of its implementation in the TSL industry. Results: Result of the work is an analysis of the current situation and problems associated with an identification of physical locations in the distribution process and the description of the information needs of the TSL industry.  Shows strengths and weaknesses of the GLN standard and opportunities and threats arising from its implementation in logistics. In addition, authors developed a business model that main aspect is the value proposition and benefits for stakeholders in the processes of distribution. Conclusions: The ability to implement GS1 standards in logistics, despite numerous references to literature and the real needs of business, it is still ambiguously defined. Therefore, in this article authors focus on the concept of using GLN standard to improve an identification and unification of description of physical location. This study resulted in the development of tool implementing founded functionality (in the context of providing information about the physical location in business practice.

  16. Physical Modelling of Geotechnical Structures in Ports and Offshore

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2017-04-01

    Full Text Available The physical modelling of subsoil behaviour and soil-structure interaction is essential for the proper design of offshore structures and port infrastructure. A brief introduction to such modelling of geoengineering problems is presented and some methods and experimental devices are described. The relationships between modelling scales are given. Some examples of penetration testing results in centrifuge and calibration chamber are presented. Prospects for physical modelling in geotechnics are also described.

  17. An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models

    Science.gov (United States)

    Ma, H.-Y.; Chuang, C. C.; Klein, S. A.; Lo, M.-H.; Zhang, Y.; Xie, S.; Zheng, X.; Ma, P.-L.; Zhang, Y.; Phillips, T. J.

    2015-12-01

    We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two-step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off-line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a "Core" integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud-associated processes relative to observations.

  18. Wave Generation in Physical Models

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...

  19. Predictive modeling of coupled multi-physics systems: I. Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2014-01-01

    Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially

  20. Accelerator physics and modeling: Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings

  1. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    Science.gov (United States)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  2. Part of the job: the role of physical work conditions in the nurse turnover process.

    Science.gov (United States)

    Vardaman, James M; Cornell, Paul T; Allen, David G; Gondo, Maria B; Muslin, Ivan S; Mobley, Robin N; Brock, Meagan E; Sigmon, Tracy L

    2014-01-01

    Retention of nursing staff remains an important issue for health care managers. Turnover research has focused primarily on motivational and social factors as keys to retention, whereas the role of the physical work conditions has received considerably less attention. However, work design theory suggests that physical work conditions may be an important factor in fostering retention among nursing staff. The aim of this study was to integrate work design theory with turnover process models to explore the influence of perceptions of physical work conditions on the development of turnover intentions among nursing staff. Drawing on two samples of registered nurses working in cancer units in metropolitan hospitals in the southeastern United States, this study explores the impact of perceptions of physical work conditions on turnover intentions using ordinary least squares regression. Hypotheses are tested in Study 1 and replicated in Study 2. A measure of perceptions of physical work conditions is also developed and validated using exploratory (Study 1) and confirmatory (Study 2) factor analyses. Perceptions of physical work conditions explain variance in turnover intentions above than that explained by motivational and social factors. Specifically, employee perceptions of noisy work conditions are found to significantly increase turnover intentions, whereas perceptions that work conditions facilitate tasks were found to significantly reduce turnover intentions. Perceptions of temperature and health hazard did not show significant effects. Results suggest that health care managers and scholars should re-examine the role of physical work conditions in the turnover process. Investments in upgrades that facilitate tasks may foster retention better than investments that simply improve employee comfort. Negative perceptions of work conditions may have no impact if they are considered a normal "part of the job," although negative perceptions of conditions that are viewed as

  3. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  4. Process depending morphology and resulting physical properties of TPU

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de [Institute of Polymer Science and Processing (iPSP), Aalen University (Germany)

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  5. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  6. Fermi-level effects in semiconductor processing: A modeling scheme for atomistic kinetic Monte Carlo simulators

    Science.gov (United States)

    Martin-Bragado, I.; Castrillo, P.; Jaraiz, M.; Pinacho, R.; Rubio, J. E.; Barbolla, J.; Moroz, V.

    2005-09-01

    Atomistic process simulation is expected to play an important role for the development of next generations of integrated circuits. This work describes an approach for modeling electric charge effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model has been applied to the diffusion of electrically active boron and arsenic atoms in silicon. Several key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye length to smooth out the atomistic point-charge distribution, (ii) algorithms to correctly update the charge state in a physically accurate and computationally efficient way, and (iii) an efficient implementation of the drift of charged particles in an electric field. High-concentration effects such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency, accuracy, and relevance of the model are discussed.

  7. Technical Manual for the SAM Physical Trough Model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  8. PC-based process distribution to solve iterative Monte Carlo simulations in physical dosimetry

    International Nuclear Information System (INIS)

    Leal, A.; Sanchez-Doblado, F.; Perucha, M.; Rincon, M.; Carrasco, E.; Bernal, C.

    2001-01-01

    A distribution model to simulate physical dosimetry measurements with Monte Carlo (MC) techniques has been developed. This approach is indicated to solve the simulations where there are continuous changes of measurement conditions (and hence of the input parameters) such as a TPR curve or the estimation of the resolution limit of an optimal densitometer in the case of small field profiles. As a comparison, a high resolution scan for narrow beams with no iterative process is presented. The model has been installed on a network PCs without any resident software. The only requirement for these PCs has been a small and temporal Linux partition in the hard disks and to be connecting by the net with our server PC. (orig.)

  9. The iFlow modelling framework v2.4: a modular idealized process-based model for flow and transport in estuaries

    Science.gov (United States)

    Dijkstra, Yoeri M.; Brouwer, Ronald L.; Schuttelaars, Henk M.; Schramkowski, George P.

    2017-07-01

    The iFlow modelling framework is a width-averaged model for the systematic analysis of the water motion and sediment transport processes in estuaries and tidal rivers. The distinctive solution method, a mathematical perturbation method, used in the model allows for identification of the effect of individual physical processes on the water motion and sediment transport and study of the sensitivity of these processes to model parameters. This distinction between processes provides a unique tool for interpreting and explaining hydrodynamic interactions and sediment trapping. iFlow also includes a large number of options to configure the model geometry and multiple choices of turbulence and salinity models. Additionally, the model contains auxiliary components, including one that facilitates easy and fast sensitivity studies. iFlow has a modular structure, which makes it easy to include, exclude or change individual model components, called modules. Depending on the required functionality for the application at hand, modules can be selected to construct anything from very simple quasi-linear models to rather complex models involving multiple non-linear interactions. This way, the model complexity can be adjusted to the application. Once the modules containing the required functionality are selected, the underlying model structure automatically ensures modules are called in the correct order. The model inserts iteration loops over groups of modules that are mutually dependent. iFlow also ensures a smooth coupling of modules using analytical and numerical solution methods. This way the model combines the speed and accuracy of analytical solutions with the versatility of numerical solution methods. In this paper we present the modular structure, solution method and two examples of the use of iFlow. In the examples we present two case studies, of the Yangtze and Scheldt rivers, demonstrating how iFlow facilitates the analysis of model results, the understanding of the

  10. Upper ocean physical processes in the Tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Ram, P.S.

    This monograph is the outcome of an attempt by the authors to present a synthesis of the studies on physical processes in the Tropical Indian Ocean (TIO) in relation to air-sea interaction, monsoon/climate variability and biological productivity...

  11. Signal processing approaches to secure physical layer communications in multi-antenna wireless systems

    CERN Document Server

    Hong, Y-W Peter; Kuo, C-C Jay

    2013-01-01

    This book introduces various signal processing approaches to enhance physical layer secrecy in multi-antenna wireless systems. Wireless physical layer secrecy has attracted much attention in recent years due to the broadcast nature of the wireless medium and its inherent vulnerability to eavesdropping. While most articles on physical layer secrecy focus on the information-theoretic aspect, we focus specifically on the signal processing aspects, including beamforming and precoding techniques for data transmission and discriminatory training schemes for channel estimation. The discussions will c

  12. Evolution of quantum-like modeling in decision making processes

    Energy Technology Data Exchange (ETDEWEB)

    Khrennikova, Polina [School of Management, University of Leicester, University Road Leicester LE1 7RH (United Kingdom)

    2012-12-18

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schroedinger equation to describe the evolution of people's mental states. A shortcoming of Schroedinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  13. Evolution of quantum-like modeling in decision making processes

    Science.gov (United States)

    Khrennikova, Polina

    2012-12-01

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  14. Evolution of quantum-like modeling in decision making processes

    International Nuclear Information System (INIS)

    Khrennikova, Polina

    2012-01-01

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  15. Health physics aspects of processing EBR-I coolant

    International Nuclear Information System (INIS)

    Burke, L.L.; Thalgott, J.O.; Poston, J.W. Jr.

    1998-01-01

    The sodium-potassium reactor coolant removed from the Experimental Breeder Reactor Number One after a partial reactor core meltdown had been stored at the Idaho National Engineering and Environmental Laboratory for 40 years. The State of Idaho considered this waste the most hazardous waste stored in the state and required its processing. The reactor coolant was processed in three phases. The first phase converted the alkali metal into a liquid sodium-potassium hydroxide. The second phase converted this caustic to a liquid sodium-potassium carbonate. The third phase solidified the sodium-potassium carbonate into a form acceptable for land disposal. Health physics aspects and dose received during each phase of the processing are discussed

  16. Detectors and signal processing for high-energy physics

    International Nuclear Information System (INIS)

    Rehak, P.

    1981-01-01

    Basic principles of the particle detection and signal processing for high-energy physics experiments are presented. It is shown that the optimum performance of a properly designed detector system is not limited by incidental imperfections, but solely by more fundamental limitations imposed by the quantum nature and statistical behavior of matter. The noise sources connected with the detection and signal processing are studied. The concepts of optimal filtering and optimal detector/amplifying device matching are introduced. Signal processing for a liquid argon calorimeter is analyzed in some detail. The position detection in gas counters is studied. Resolution in drift chambers for the drift coordinate measurement as well as the second coordinate measurement is discussed

  17. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri

    2016-01-01

    The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...... between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based...

  18. "Physically-based" numerical experiment to determine the dominant hillslope processes during floods?

    Science.gov (United States)

    Gaume, Eric; Esclaffer, Thomas; Dangla, Patrick; Payrastre, Olivier

    2016-04-01

    To study the dynamics of hillslope responses during flood event, a fully coupled "physically-based" model for the combined numerical simulation of surface runoff and underground flows has been developed. A particular attention has been given to the selection of appropriate numerical schemes for the modelling of both processes and of their coupling. Surprisingly, the most difficult question to solve, from a numerical point of view, was not related to the coupling of two processes with contrasted kinetics such as surface and underground flows, but to the high gradient infiltration fronts appearing in soils, source of numerical diffusion, instabilities and sometimes divergence. The model being elaborated, it has been successfully tested against results of high quality experiments conducted on a laboratory sandy slope in the early eighties, which is still considered as a reference hillslope experimental setting (Abdul & Guilham). The model appeared able to accurately simulate the pore pressure distributions observed in this 1.5 meter deep and wide laboratory hillslope, as well as its outflow hydrograph shapes and the measured respective contributions of direct runoff and groundwater to these outflow hydrographs. Based on this great success, the same model has been used to simulate the response of a theoretical 100-meter wide and 10% sloped hillslope, with a 2 meter deep pervious soil and impervious bedrock. Three rain events have been tested: a 100 millimeter rainfall event over 10 days, over 1 day or over one hour. The simulated responses are hydrologically not realistic and especially the fast component of the response, that is generally observed in the real-world and explains flood events, is almost absent of the simulated response. Thinking a little about the whole problem, the simulation results appears totally logical according to the proposed model. The simulated response, in fact a recession hydrograph, corresponds to a piston flow of a relatively uniformly

  19. Physical quality of grains subjected to moistening and drying processes for marketing

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    Full Text Available ABSTRACT The aim was to evaluate the physical quality of conventional and transgenic corn grains, through drying and wetting processes for marketing. The experimental design was completely randomized in a factorial scheme (7 x 3 x 2, corresponding to seven drying times (0, 20, 40, 60, 80, 100 and 120 min, three temperatures of the drying air (80, 100 and 120 °C and two hybrids of corn (conventional AG 1051 and transgenic Herculex@ 30S31H. Grain drying was held in convection oven with forced air ventilation while the wetting was done in a B.O.D chamber. The water movement in the grain, the volume and the electrical conductivity were evaluated periodically. The results showed that the transgenic corn grain reduced the negative effects of drying and moistening on the physical quality. The increase in drying air temperature accelerated the physical deterioration of conventional and transgenic corn grains. The increase in water content by the moistening process caused losses in grain physical quality, similar to the drying process, for both the conventional and transgenic corn grains.

  20. Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER

    International Nuclear Information System (INIS)

    Groebner, R.J.; Snyder, P.B.; Leonard, A.W.; Chang, C.S.; Maingi, R.; Boyle, D.P.; Diallo, A.; Hughes, J.W.; Davis, E.M.; Ernst, D.R.; Landreman, M.; Xu, X.Q.; Boedo, J.A.; Cziegler, I.; Diamond, P.H.; Eldon, D.P.; Callen, J.D.; Canik, J.M.; Elder, J.D.; Fulton, D.P.

    2013-01-01

    Joint experiment/theory/modelling research has led to increased confidence in predictions of the pedestal height in ITER. This work was performed as part of a US Department of Energy Joint Research Target in FY11 to identify physics processes that control the H-mode pedestal structure. The study included experiments on C-Mod, DIII-D and NSTX as well as interpretation of experimental data with theory-based modelling codes. This work provides increased confidence in the ability of models for peeling–ballooning stability, bootstrap current, pedestal width and pedestal height scaling to make correct predictions, with some areas needing further work also being identified. A model for pedestal pressure height has made good predictions in existing machines for a range in pressure of a factor of 20. This provides a solid basis for predicting the maximum pedestal pressure height in ITER, which is found to be an extrapolation of a factor of 3 beyond the existing data set. Models were studied for a number of processes that are proposed to play a role in the pedestal n e and T e profiles. These processes include neoclassical transport, paleoclassical transport, electron temperature gradient turbulence and neutral fuelling. All of these processes may be important, with the importance being dependent on the plasma regime. Studies with several electromagnetic gyrokinetic codes show that the gradients in and on top of the pedestal can drive a number of instabilities. (paper)

  1. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  2. A model-independent ''general search'' for new physics with the ATLAS detector at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Riccardo Maria

    2014-03-18

    The LHC particle collider accelerates bunches of protons at energies never reached before, thus opening a completely new landscape of new physics. In this scenario the number of possible physics processes and signatures becomes virtually infinite, making the setup of dedicated analyses impossible. Moreover there are regions of the phase-space where signals of new physics are not very likely to be found, or where suitable theoretical models are missing, and it is important to be able to reveal new processes from such regions as well. At the time this Thesis was started, no model-independent analysis had been set for the ATLAS experiment at LHC. The goal of this work was then to conceive and develop a new model-independent ''General Search'' for ATLAS, and to explore its possibilities. The new analysis has been then implemented and run over the first data which have been collected by the ATLAS experiment at a centre-of-mass energy of 7 TeV. This work presents the motivation of the data analysis, describes its implementation and shows the results. The data have shown a very good agreement with the Standard Model expectation and no evidence of new physics has been observed. Nevertheless, an efficient strategy and methodology for a new model-independent ''General Search'' have been defined and they are ready to be used in a next version of this analysis, over a larger set of experimental data. During this work, a new innovative software framework has been also conceived and developed to ease the implementation of physics analysis code using Computer-Aided- Software-Engineering (CASE) principles. The framework has been successfully used to analyze the very first LHC data, and then it has been transformed into an open-source modular framework for HEP data analysis, and presented at Physics and Computer Science international conferences.

  3. Semantic Business Process Modeling

    OpenAIRE

    Markovic, Ivan

    2010-01-01

    This book presents a process-oriented business modeling framework based on semantic technologies. The framework consists of modeling languages, methods, and tools that allow for semantic modeling of business motivation, business policies and rules, and business processes. Quality of the proposed modeling framework is evaluated based on the modeling content of SAP Solution Composer and several real-world business scenarios.

  4. Physical plausibility of cold star models satisfying Karmarkar conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fuloria, Pratibha [Kumaun University, Physics Dept., Almora (India); Pant, Neeraj [N.D.A., Maths Dept., Khadakwasla, Pune (India)

    2017-11-15

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  5. Physical plausibility of cold star models satisfying Karmarkar conditions

    International Nuclear Information System (INIS)

    Fuloria, Pratibha; Pant, Neeraj

    2017-01-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  6. Physical plausibility of cold star models satisfying Karmarkar conditions

    Science.gov (United States)

    Fuloria, Pratibha; Pant, Neeraj

    2017-11-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9 . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.

  7. An analytical model of SAGD process considering the effect of threshold pressure gradient

    Science.gov (United States)

    Morozov, P.; Abdullin, A.; Khairullin, M.

    2018-05-01

    An analytical model is proposed for the development of super-viscous oil deposits by the method of steam-assisted gravity drainage, taking into account the nonlinear filtration law with the limiting gradient. The influence of non-Newtonian properties of oil on the productivity of a horizontal well and the cumulative steam-oil ratio are studied. Verification of the proposed model based on the results of physical modeling of the SAGD process was carried out.

  8. Implementation of the GFS physical package in the GRAPES regional model: single column experiment

    Science.gov (United States)

    Chen, Baode; Huang, Wei; Bao, Jian-wen

    2015-04-01

    There is a growing concern about coupling among physical components in NWP models. The Physics package of the NCEP Global Forecast System (GFS) has been considerably turned and connection among various components is well considered. Thus, the full GFS physical package was implemented into the GRAPES-MESO and its single column version as well. Using the data collected at ARM Southern Great Plain site during the summer 1997 Intensive Observing Period, several experiments of single-column model (SCM) were conducted to test performance of a set of original physical processes of GRAPES(CTL experiment) and the GFS physics package implemented(GFS experiment). Temperature, moisture, radiation, surface heat flux, surface air temperature and precipitation are evaluated. It is found that potential temperature and vapor mixing ratio simulated by GFS experiment is more accurate than that of CTL experiment. Errors of surface downward solar and long-wave radiation simulated by GFS experiment are less than that of CTL experiment and upward latent and sensible heat flux are also better agreeing with observation. The maximum and minimum 2-m air temperatures of the GFS experiment are close to observation compared with that of CTL experiment. Analysis of precipitation simulated shows that both sets of physical processes well reproduce heavy rainfall events. Failure and delay of moderate rainfall events and over predictions of drizzle events are commonly found for two sets of experiments. For the case of three rainfall events, the errors of potential temperature and vapor mixing ratio simulated by GFS experiment were smaller than that of CTL experiment. It is shown that the late occurrences of rainfall are resulted from a more stable temperature profile and lower moisture simulated in boundary layer than those from the observation prior to rainfall. When the simulated rainfall occurs, the simulated temperature and moisture become more favorable to the precipitation than observation.

  9. Radiological/Health physics program assessement at Rocky Flats, the process

    International Nuclear Information System (INIS)

    Psomas, P.O.

    1996-01-01

    The Department of Energy, Rocky Flats Office, Safety and Health Group, Health Physics Team (HPT) is responsible for oversight of the Radiation Protection and Health Physics Program (RPHP) of the Integrating Management Contractor (IMC), Kaiser-Hill (K-H) operations at the Rocky Flats Environmental Technology Site (RFETS). As of 1 January 1996 the Rocky Flats Plant employed 300 DOE and 4,300 contractor personnel (K-H and their subcontractors). WSI is a subcontractor and provides plant security. To accomplish the RPHP program oversight HPT personnel developed a systematic methodology for performing a functional RPHP Assessment. The initial process included development of a flow diagram identifying all programmatic elements and assessment criteria documents. Formulation of plans for conducting interviews and performance of assessments constituted the second major effort. The generation of assessment reports was the final step, based on the results of this process. This assessment will be a 6 person-year effort, over the next three years. This process is the most comprehensive assessment of any Radiation Protection and Health Physics (RPHP) Program ever performed at Rocky Flats. The results of these efforts will establish a baseline for future RPHP Program assessments at RFETS. This methodology has been well-received by contractor personnel and creates no Privacy Act violations or other misunderstandings

  10. Business Process Modeling: Perceived Benefits

    Science.gov (United States)

    Indulska, Marta; Green, Peter; Recker, Jan; Rosemann, Michael

    The process-centered design of organizations and information systems is globally seen as an appropriate response to the increased economic pressure on organizations. At the methodological core of process-centered management is process modeling. However, business process modeling in large initiatives can be a time-consuming and costly exercise, making it potentially difficult to convince executive management of its benefits. To date, and despite substantial interest and research in the area of process modeling, the understanding of the actual benefits of process modeling in academia and practice is limited. To address this gap, this paper explores the perception of benefits derived from process modeling initiatives, as reported through a global Delphi study. The study incorporates the views of three groups of stakeholders - academics, practitioners and vendors. Our findings lead to the first identification and ranking of 19 unique benefits associated with process modeling. The study in particular found that process modeling benefits vary significantly between practitioners and academics. We argue that the variations may point to a disconnect between research projects and practical demands.

  11. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

    Science.gov (United States)

    Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.

    2015-07-01

    This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

  12. Theoretical and methodological foundation of the process of students’ physical training of higher educational institutions

    Directory of Open Access Journals (Sweden)

    Pilipej L. P.

    2013-02-01

    Full Text Available Efficiency of the existent system of physical education is considered in the higher institutes of Ukraine. Information of unsatisfactory level of physical preparedness of university entrants and graduating students of higher institutes is resulted. The lacks of construction of process of physical education are shown on the basis of normatively-command approach. Absence of the programs, which take into account motivation and terms of activity of higher institutes, disparity the requirements of integration in the river-bed of the Bologna Process, is shown. The analysis of publications is resulted in accordance with the modern scientific paradigm of construction of the system of physical education of students on the basis of methodology of synergetics. Information of the questionnaire questioning is utillized in research. Cross-correlation connections are presented between elements of physical education systems, which influence on efficiency of process. The basic requirements of construction of process of physical education of students of institutes of higher are set.

  13. Operative and informative nuclear-physical quality monitoring of technological process

    International Nuclear Information System (INIS)

    Sattarov, G.S.; Muzafarov, A.M.; Komilov, J.M.; Kadirov, F.; Kist, A.A.

    2004-01-01

    Full text: In Navoi region more than 40 years extraction of uranium and more than 35 years of gold are conducted. For the element analysis of ores and the technological products containing uranium and gold, various physical and chemical and nuclear-physical methods of the analysis are applied. The last possess a number of advantages, due to their high sensitivity, an opportunity of simultaneous definition elements with automation of process of the analysis and with expressness, necessary at the analysis of elements on short-living radionuclides. In the given work comparative characteristics of the operative control of technological process of extraction of gold, uranium and some rare elements with the help of nuclear-physical methods of the analysis of powder samples, a continuous stream of a pulp and solutions are presented. They are: the control of process of sorption leaching of gold; qualities of ores, gravity and fleet-concentrates methods x-ray spectral, x-ray-energy-disperse, radio display, gamma-absorption and neutron-activation analyses are related to them. Concrete examples of use of the developed techniques for research of geochemical behaviour of the basic and accompanying elements, for the control of technological process of extraction of gold, uranium and some rare and rare-earth elements (V, Sc, Mo, Re) from ores and intermediate products of manufacture are presented; for the analysis of uranium protoxide-oxide, and also for an estimation of a condition of tailing mines of the industrial enterprises

  14. Exotic smoothness and physics differential topology and spacetime models

    CERN Document Server

    Asselmeyer-Maluga, T

    2007-01-01

    The recent revolution in differential topology related to the discovery of non-standard ("exotic") smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit - but now shown to be incorrect - assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further app...

  15. Modeling Physical Processes at the Nanoscale—Insight into Self-Organization of Small Systems (abstract)

    Science.gov (United States)

    Proykova, Ana

    2009-04-01

    Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.

  16. Modeling of nanosecond pulsed laser processing of polymers in air and water

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Hattel, Jesper H.

    2018-01-01

    radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer interaction at such wavelengths is purely photo-thermal in nature and the laser–plasma interaction is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method......Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in air. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the process considering the effect of ambient...... media. Therefore, in the present work, models are developed for laser ablation of polymers in air and water considering all the relevant physical phenomena such as laser–polymer interaction, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser...

  17. Establishing the Common Community Physics Package by Transitioning the GFS Physics to a Collaborative Software Framework

    Science.gov (United States)

    Xue, L.; Firl, G.; Zhang, M.; Jimenez, P. A.; Gill, D.; Carson, L.; Bernardet, L.; Brown, T.; Dudhia, J.; Nance, L. B.; Stark, D. R.

    2017-12-01

    The Global Model Test Bed (GMTB) has been established to support the evolution of atmospheric physical parameterizations in NCEP global modeling applications. To accelerate the transition to the Next Generation Global Prediction System (NGGPS), a collaborative model development framework known as the Common Community Physics Package (CCPP) is created within the GMTB to facilitate engagement from the broad community on physics experimentation and development. A key component to this Research to Operation (R2O) software framework is the Interoperable Physics Driver (IPD) that hooks the physics parameterizations from one end to the dynamical cores on the other end with minimum implementation effort. To initiate the CCPP, scientists and engineers from the GMTB separated and refactored the GFS physics. This exercise demonstrated the process of creating IPD-compliant code and can serve as an example for other physics schemes to do the same and be considered for inclusion into the CCPP. Further benefits to this process include run-time physics suite configuration and considerably reduced effort for testing modifications to physics suites through GMTB's physics test harness. The implementation will be described and the preliminary results will be presented at the conference.

  18. Modification of Gaussian mixture models for data classification in high energy physics

    Science.gov (United States)

    Štěpánek, Michal; Franc, Jiří; Kůs, Václav

    2015-01-01

    In high energy physics, we deal with demanding task of signal separation from background. The Model Based Clustering method involves the estimation of distribution mixture parameters via the Expectation-Maximization algorithm in the training phase and application of Bayes' rule in the testing phase. Modifications of the algorithm such as weighting, missing data processing, and overtraining avoidance will be discussed. Due to the strong dependence of the algorithm on initialization, genetic optimization techniques such as mutation, elitism, parasitism, and the rank selection of individuals will be mentioned. Data pre-processing plays a significant role for the subsequent combination of final discriminants in order to improve signal separation efficiency. Moreover, the results of the top quark separation from the Tevatron collider will be compared with those of standard multivariate techniques in high energy physics. Results from this study has been used in the measurement of the inclusive top pair production cross section employing DØ Tevatron full Runll data (9.7 fb-1).

  19. Shallow water processes govern system-wide phytoplankton bloom dynamics: A modeling study

    Science.gov (United States)

    Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.

    2009-01-01

    A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process ra