WorldWideScience

Sample records for photovoltaics pv industry

  1. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  2. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  3. Rooftop photovoltaic (PV) systems : a cost–benefit analysis study of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2013-01-01

    Rooftop photovoltaic (PV) systems can be readily deployed on industrial halls with relatively large rooftop area. Feed-in tariff above the base price of electricity is offered in many countries to subsidize the high initial investment of PV systems. In order to fully capitalize the benefit of the

  4. Photovoltaics for Buildings Cutting-Edge PV

    International Nuclear Information System (INIS)

    Hayter, S. J.; Martin, R. L.

    1998-01-01

    Photovoltaic (PV) technology development for building-integrated applications (commonly called PV for Buildings) is one of the fastest growing areas in the PV industry. Buildings represent a huge potential market for photovoltaics because they consume approximately two-thirds of the electricity consumed in the US. The PV and buildings industries are beginning to work together to address issues including building codes and standards, integration, after-market servicing, education, and building energy efficiency. One of the most notable programs to encourage development of new PV-for-buildings products is the PV:BONUS program, supported by the US Department of Energy. Demand for these products from building designers has escalated since the program was initiated in 1993. This paper presents a range of PV-for-buildings issues and products that are currently influencing today's PV and buildings markets

  5. Optimizing economic benefit of rooftop photovoltaic (PV) systems through lowering energy demand of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of photovoltaic (PV) systems on the rooftop. To promote deployment of PV systems, feed-in tariff (FIT) higher than the electricity rate is available in many countries to subsidize

  6. Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry

    DEFF Research Database (Denmark)

    Zou, Hongyang; Du, Huibin; Ren, Jingzheng

    2017-01-01

    development from the perspective of technological innovation. By incorporating a Technological Innovation System (TIS) approach, the analysis performed here complements the previous literature, which has not provided agrounded itself in a theoretical framework for associated analyses. In addition......China’s photovoltaic (PV) industry has undergone dramatic development in recent years and is now the global market leader in terms of newly added capacity. However, market diffusion and adoption in China is not ideal. This paper examines the blocking and inducement mechanisms of China’s PV industry......, to determine the current market dynamics, we closely examine the market concentration trends as well as the vertical and horizontal integration of upstream and downstream actors and calculate the market concentration of the upstream and downstream integration (74.8% and 36.3%). The results of applying the TIS...

  7. Rooftop photovoltaic (PV) systems for industrial halls: Achieving economic benefit via lowering energy demand

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote deployment of renewable energy generation, feed-in tariff (FIT) higher than the

  8. Canadian PV [photovoltaic] commercial activity report for 1989

    International Nuclear Information System (INIS)

    1992-01-01

    The Canadian Photovoltaic Industries Association (CPIA) conducted a survey among 65 Canadian firms involved in the photovoltaic industry and technology to determine the degree of commercial activity. Overall revenue for these firms in 1989 increased nearly 15% to ca $15 million. Actual reported sales of photovoltaic (PV) modules totalled 400 kW for use in Canada and abroad, of which communications applications accounted for ca 40% of these sales. Export sales were significant, with 59% of reported sales sold as packages being exported. Sales of systems within Canada were fairly evenly distributed between Quebec, Ontario, the Prairies, and British Columbia. The private sector share of reported sales was 42% or greater in terms of both dollar or peak wattage. Residential-use and water-pumping segments of the market reported increased activity. Internationally, annual PV module sales in 1989 were reported to be 42 MW peak, a 20% increase from 1988. The USA has the world market share with 36%, followed by Japan at 30%. Survey respondents made suggestions for more equitable tax treatment for PV products, and saw environmental issues as having a major impact on marketing strategies. 27 refs., 11 tabs

  9. Space and industrial markets for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, C.R.; Hardingham, C.M.

    2000-07-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  10. Space and industrial markets for photovoltaics

    International Nuclear Information System (INIS)

    Huggins, C.R.; Hardingham, C.M.

    2000-01-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  11. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    Science.gov (United States)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  12. Household photovoltaic market in Xining, Qingha province, China: the role of local PV business

    International Nuclear Information System (INIS)

    Ling, S.; Boardman, B.

    2002-01-01

    This paper assesses the present and future market for household photovoltaic (PV) systems in rural Northwest China, especially from the PV commerce at Xining, Qinghai Province. This unsubsidised free market is now met by the emerging PV industry in China, which includes cell and module manufacturers, and PV system distributors and assemblers. For widespread deployment of such a renewable energy technology, the development of a local free market seems more successful than donor- or 'government subsidy'-driven programmes. Presently, there is a thriving infant PV industry in Northwest China, mostly centred in Xining. Xining-based PV sales companies have extensive networks for selling, marketing and servicing household PV systems for rural farmers and nomads. Small systems are now ordinary items on sale in local shops. Based on interviews and fieldwork observations with seven major PV sales companies in Xining, the household PV market is assessed from the present business operations of these companies. Detail of primary sources is given with the aim of archiving seminal progress in the history of photovoltaic power. The results suggest that although the household PV market will continue to grow, current government and international sponsored PV programmes can create both opportunities and barriers for the infant PV market an industry in China. (author)

  13. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-30

    The installed capacity of global and U.S. photovoltaic (PV) systems has soared in recent years, driven by declining PV prices and government incentives. The U.S. Department of Energy’s (DOE) SunShot Initiative aims to make PV cost competitive without incentives by reducing the cost of PV-generated electricity by about 75% between 2010 and 2020. This summary report—based on research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL)—examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices.

  14. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  15. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  16. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  17. NREL PV working with industry, Third quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Cook, G.

    1998-12-04

    This quarterly report encourages cooperative R and D by providing the US PV industry with information on activities and capabilities of the laboratories. This issue contains information on the CIS and CdTe R and D teams, an editorial by Richard King on the stand-out accomplishments of the PV Program, and an overview of the NCPV Program Review Meeting highlighting the strength of US photovoltaics.

  18. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  19. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-Cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarrett; Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-01

    This presentation summarizes the findings from the report 'SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future.' This presentation was given as a webinar on September 26, 2017.

  20. PV Status Report 2009. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2009-08-01

    Photovoltaics is a key technology option to realise the shift to a decarbonised energy supply. The solar resources in Europe and world wide are abundant and cannot be monopolised by one country. Regardless for what reasons and how fast the oil price and energy prices increase in the future, Photovoltaics and other renewable energies are the only ones to offer a reduction of prices rather than an increase in the future. As a response to the economic crisis, most of the G20 countries have designed economic recovery packages which include 'green stimulus' measures. However, compared to the new Chinese Energy Revitalisation Plan under discussion, the pledged investments in green energy are marginal. If no changes are made, China which now strongly supports its renewable energy industry, will emerge even stronger after the current financial crisis. In 2008, the Photovoltaic industry production almost doubled and reached a world-wide production volume of 7.3 GWp of Photovoltaic modules. Yearly growth rates over the last decade were in average more than 40%, which makes Photovoltaics one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect lower prices for consumers. The trend that thin-film Photovoltaics grew faster than the overall PV market continued in 2008. The Eighth Edition of the 'PV Status Report' tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation.

  1. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  2. Photovoltaics: PV takes off the UK

    International Nuclear Information System (INIS)

    Noble, Ray; Gregory, Jenny

    2000-01-01

    Despite historical ups and downs, there is still ambition to bring increasingly efficient photovoltaic (PV) systems to the market. PV for major remote telecommunications systems is now an established part of the market, many mobile phone systems are powered by PV and there is potential for increased use of home solar systems, especially in developing countries. Over the past few years, building-integrated PV (BIPV) has been on the increase. In 1999, global production from PV exceeded 200 MW and the UK installed capacity was greater than 1 MW. BIPV is a fast growing market and its characteristics and advantages are discussed. PV installations at Nottingham University, Greenwich Pavilion, BP Amoco Sunbury, Baglan Bay, BP filling stations, and Sainsbury's are described

  3. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  4. A strategic research agenda for photovoltaic solar energy technology : report of the EU PV technology platform

    NARCIS (Netherlands)

    Sinke, W.C.; Zolingen, van R.J.C.; Ballif, C.; Bett, A.; Dimmler, B.; Dimova-Malinovska, D.; Fath, P.; Ferrazza, F.; Gabler, H.-J.; Hall, M.; Marti, A.; Mason, N.; Mellikov, E.; Milner, A.; Mogensen, P.; Panhuber, C.; Pearsall, N.; Poortmans, J.; Protogeropoulos, C.; Sarre, G.; Sarti, D.; Strauss, P.; Topic, M.; Zdanowicz, T.

    2007-01-01

    The EU PV Technology Platform [1] aims at joining forces on a European level to contribute to the further development of photovoltaic solar energy into a competitive technology that can be applied on a large scale and to the strengthening of the position of the European PV industry on the global

  5. Solar PV Industry in Jiangsu Province [China

    International Nuclear Information System (INIS)

    2010-03-01

    Jiangsu Province is a leading province in China both in terms of Solar PV application as well as its implementation. The Netherlands Business Support Office in Nanjing reports on the photovoltaic solar cell industry in Jiangsu Province with details on opportunities for foreign investors; applications of solar energy in the province; Chinese government; relevant organizations; and key Chinese players in this sector.

  6. Canadian photovoltaic industry directory

    International Nuclear Information System (INIS)

    1998-01-01

    This directory has been prepared to help potential photovoltaic (PV) customers identify Canadian-based companies who can meet their needs, and to help product manufacturers and distributors identify potential new clients and/or partners within the PV industry for new and improved technologies. To assist the reader, an information matrix is provided that identifies the product and service types offered by each firm and its primary clients served. A list of companies by province or territory is also included. The main section lists companies in alphabetical order. Information presented for each includes address, contact person, prime activity, geographic area served, languages in which services are offered, and a brief company profile

  7. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  8. 'Made in Europe' photovoltaic industry Conference - perspectives in the face of the crisis?'

    International Nuclear Information System (INIS)

    Masson, Gaetan; Goeke, Berthold; Barber, Nicolas; Frey, Peter; Laborde, Eric; Michael Lippert; Matthias Reichmuth; Daniel Lincot

    2011-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the future of the photovoltaic industry. In the framework of this French-German exchange of experience, about 120 participants exchanged views on some innovative projects, as well as some solutions to grid integration and electricity storage. The question of anticipated grid parity through self-consumption was addressed too. This document brings together the available presentations (slides) made during this event: 1 - PV, a competitive source of energy in Europe: tomorrows' grid parity and markets in Europe (Gaetan Masson); 2 - Photovoltaics support in Germany - developments and challenges (Berthold Goeke); 3 - New support mechanism to the photovoltaic industry: optimizing the model, the French market asset (Nicolas Barber); 4 - PV production in Germany - threats and opportunities (Peter Frey); 5 - PV Alliance - From Labs to Fabs: ensuring the photovoltaic industry future through innovation and R and D collaborations in France and Germany (Eric Laborde); 6 - Smart energy storage improving grid integration of decentralized PV energy (Michael Lippert); 7 - Onsite Consumption - the anticipated Grid Parity (Matthias Reichmuth); 8 - The photovoltaic energy research and development institute - IRDeP (Daniel Lincot)

  9. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  10. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  11. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  12. Innovation and technology transfer through global value chains: Evidence from China's PV industry

    International Nuclear Information System (INIS)

    Zhang, Fang; Gallagher, Kelly Sims

    2016-01-01

    China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain. - Highlights: •The value chain analytical approach is synergized with the theories of technology transfer and innovation systems. •A detailed review of how China integrated itself into the global solar PV innovation system is provided. •Four main factors shape PV technology transfer to China across various value chain segments. •Innovation in cleaner energy technologies is a combination of global and national innovation processes.

  13. PV Status Report 2010. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2010-08-01

    Photovoltaics is a solar power technology to generate Electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report combines international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last decade were on average more than 40 %, thus making Photovoltaics one of the fastest growing industries at present. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  14. Government subsidies for the Chinese photovoltaic industry

    International Nuclear Information System (INIS)

    Xiong, Yongqing; Yang, Xiaohan

    2016-01-01

    Since 2009, the subsidy for large-scale photovoltaic (PV) power plants had been launched, which effectively promoted the development of PV industry. At the same time, negative effects, like serious oversupply of PV industry, were brought about by these large scale governmental subsidies. Although governmental subsidy strongly supports the China PV companies, few of them have competitiveness in the global market. This dramatically conflictive phenomenon attracted many researchers’ attentions in recent years. However, investigations on the best entry and exit occasions of governmental subsidies for the PV industry were rarely reported in previous studies. Therefore, based on the existing division method of enterprise development model, classification of 72 PV companies listed in Shanghai and Shenzhen Stock Exchanges in China was firstly carried out in this paper. This is followed by studying the influence of governmental subsidies on the indexes of different stages of enterprise development. Finally, a conclusion was drawn that the governmental subsidies at Early Exploratory Stage can maximize the social and economic effects, suggesting the best entry occasion, and subsidies at Intermediate Stage and Mature Stage have little effects on its turnover and aggravate the overcapacity of PV supply, suggesting a suitable exit occasion. - Highlights: • Enterprise development stages were determined based on net revenue. • Subsidy effects on PV companies at different developing stages were studied. • The occasion to provide subsidy at different developing stages was investigated. • Z-score formula method was used to find the best exit occasion of subsidy.

  15. The market for photovoltaic (PV) technology

    International Nuclear Information System (INIS)

    Frantzis, L.; Vejtasa, K.M.

    1993-01-01

    This paper describes a study that was intended to provide the Electric Power Research Institute (EPRI) with a market analysis for photovoltaic (PV) technologies under development by EPRI and others. The analysis was to focus on markets and factors leading to significant incremental growth for PV demand, large enough to support more efficient scale PV manufacturing capacity. EPRI anticipates that PV ultimately could provide grid-connected power, however, the 1995--2010 market dynamics are uncertain. The specific objectives of this study, therefore, were to: determine what major future domestic US markets for PV technologies will emerge and provide enough volume to support significant improvements in manufacturing costs through manufacturing economies of scale; provide insight on what is needed to gain acceptance of PV technologies for electric power generation in those major markets; provide insight on when investments in demonstration and manufacturing facilities should be made and what is needed to be successful in each element of the business that these markets could support (e.g., technology development, manufacturing, sales, installation, and service); and provide key insights on the requirements for commercial success of PV in the utility sector

  16. Photovoltaic electricity industry and markets Status and trends in France 1992-2002 - Technical report. Survey report of photovoltaic power applications in France 2002

    International Nuclear Information System (INIS)

    Claverie, Andre; Juquois, Fabrice

    2003-01-01

    The report provides a picture of the photovoltaic industry and its applications in France covering the years 1992 to end 2002. The main stream of photovoltaic (PV) activity in France is that of off-grid power systems. Nevertheless, the ADEME and other public authority partners decided in 1999 to contribute to the funding of grid-connected distributed photovoltaic power systems. During the year 2002, 3,4 MW of photovoltaic power systems were installed in France and its overseas departments. The annual off-grid PV power system market remains stable at around 2,4 MW per year and that of grid-connected distributed power systems reached almost 1 MW in 2002. The total cumulative installed PV power in France is 17 MW of which 15 MW are off-grid systems and 2 MW are grid-connected distributed PV power systems. This installed capacity represents the annual production of 15 GWh of electricity. The PV cell/module industry remains very active. The annual production of photovoltaic multi-crystalline silicon cells increased by 25 % during the year 2002 to reach 17 MW while the production of amorphous silicon thin film modules increased slightly to go over half a megawatt. Two French companies started introducing on the market photovoltaic modules specifically designed for building integration. Price of photovoltaic power systems is decreasing towards 20 euros per watt for off-grid systems under public funding and turnkey prices for grid-connected distributed PV power systems vary from 6 to 8 euros per watt according to the level of building integration. Business turnover of main companies covering the whole field of cell/module manufacturing and PV power system developers/installers, increased 18 % in 2002 to reach 130 million euros. Due to a Governmental decision taken in 1998, the ADEME increased its annual public budget for the promotion of PV in France to reach around 10 MEUR per year. This new measure allowed a) to reactivate the ADEME's research and technological

  17. Final Technical Report - Photovoltaics for You (PV4You) Program

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J. M. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Sherwood, L. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Pulaski, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Cook, C. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Kalland, S. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Haynes, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States)

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership

  18. Decade of PV Industry R and D Advances in Silicon Module Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R.[U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

    2001-01-18

    The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

  19. PV Obelisk - Information system with photovoltaics

    International Nuclear Information System (INIS)

    Ruoss, D.; Rasmussen, J.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed

  20. PV-BUK: Operating and maintenance costs of photovoltaic installations; PV-BUK - Betriebs- und Unterhaltskosten von PV-Anlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P. [Enecolo AG, Moenchaltorf (Switzerland); Ruoss, D.; Schudel, P. [Envision, Lucerne (Switzerland); Kottmann, A.; Steinle, F. [BE Netz AG, Lucerne (Switzerland)

    2008-03-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out to determine the costs for facility management, to estimate future cost development and to propose activities for the further reduction of the operation and maintenance costs of photovoltaic systems. Information on the cost situation was collected by literature study, as well as in interviews and surveys with photovoltaic (PV) experts and the owners of PV installations. The discussion of the results at a workshop with about 20 Swiss PV experts is noted. The results are presented and discussed. These show that operating costs per kWh decrease with the size of the PV system. Figures are quoted. The major part of the costs are quoted as being those for spare parts, especially for the inverter. The authors are of the opinion that, in future, costs for facility management will further decrease, as they are partly linked to capital and insurance costs. Potential for optimisation is said to exist in several areas of facility management such as, for example, in system monitoring and fast reaction in the case of malfunctions.

  1. Comparing the International Knowledge Flow of China’s Wind and Solar Photovoltaic (PV Industries: Patent Analysis and Implications for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    2018-06-01

    Full Text Available Climate-relevant technologies, like wind and solar energy, are crucial for mitigating climate change and for achieving sustainable development. Recent literature argues that Chinese solar firms play more active roles in international knowledge flows, which may better explain their success in international markets when compared to those of Chinese wind firms; however, empirical evidence remains sparse. This study aims to explore to what extent and how do the international knowledge flows differ between China’s wind and solar photovoltaic (PV industries? From a network perspective, this paper develops a three-dimensional framework to compare the knowledge flows in both explicit and tacit dimensions: (i inter-country explicit knowledge clusters (by topological clustering of patent citation network; (ii inter-firm explicit knowledge flow (patent citation network of key firms; and, (iii inter-firm tacit knowledge flow (by desktop research and interviews. The results show that China’s PV industry has stronger international knowledge linkages in terms of knowledge clustering and explicit knowledge flow, but the wind power industry has a stronger tacit knowledge flow. Further, this study argues that the differences of global knowledge links between China’s wind and solar PV industries may be caused by technology characteristics, market orientation, and policy implementation. This suggests that these industries both have strong connections to global knowledge networks, but they may involve disparate catch-up pathways that concern follower-modes and leader-modes. These findings are important to help us understand how China can follow sustainable development pathways in the light of climate change.

  2. PVSOFT99 - Photovoltaic (PV) System Sizing And Simulation Software

    African Journals Online (AJOL)

    A computer program (PVSOFT99) has been developed for sizing and simulation of stand-alone photovoltaic (PV) systems. Two distinct PV sizing algorithms, one based on the worst case and the other on the reliability concept, have been incorporated in the program. The reliability concept is generalized in that variation of ...

  3. Research and photovoltaic industry at the United States; Recherche et industrie photovoltaique (PV) aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, Ch; Herino, R; Delville, R; Allegre, R

    2006-06-15

    For a big country as the United States, the solar energy can be a solution for the air quality improvement, the greenhouse gases fight and the reduction of the dependence to the imported petroleum and also for the economic growth by the increase of the employment in the solar industry sector. This document takes stock on the photovoltaic in the United States in the industrial and research domains. The american photovoltaic industry is the third behind the Japan and the Germany. (A.L.B.)

  4. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  5. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  6. Photovoltaic (PV) energy in the Netherlands and Switzerland. A comparison

    International Nuclear Information System (INIS)

    Van der Loo, F.; Spiessens, P.

    1995-01-01

    The development of photovoltaic (PV) energy in Switzerland and the Netherlands is compared for a number of aspects. The Swiss have realized more PV capacity. Also the economic conditions to develop PV are better in Switzerland than in the Netherlands. In Switzerland the public support is mobilized for solar energy while in the Netherlands a social basis is created for wind energy. 3 ills., 3 tabs

  7. PV Obelisk - Information system with photovoltaics; PV-Obelisk Orientierungssystem mit Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.; Rasmussen, J.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed.

  8. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  9. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  10. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  11. Energy metrics analysis of hybrid - photovoltaic (PV) modules

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Electronics and Communication, Krishna Institute of Engineering and Technology, 13 k.m. stone, Ghaziabad - Meerut Road, Ghaziabad 201 206, UP (India); Barnwal, P.; Sandhu, G.S.; Sodha, M.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2009-12-15

    In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected. (author)

  12. An innovation-focused roadmap for a sustainable global photovoltaic industry

    International Nuclear Information System (INIS)

    Zheng, Cheng; Kammen, Daniel M.

    2014-01-01

    The solar photovoltaic (PV) industry has undergone a dramatic evolution over the past decade, growing at an average rate of 48 percent per year to a global market size of 31 GW in 2012, and with the price of crystalline-silicon PV module as low as $0.72/W in September 2013. To examine this evolution we built a comprehensive dataset from 2000 to 2012 for the PV industries in the United States, China, Japan, and Germany, which we used to develop a model to explain the dynamics among innovation, manufacturing, and market. A two-factor learning curve model is constructed to make explicit the effect of innovation from economies of scale. The past explosive growth has resulted in an oversupply problem, which is undermining the effectiveness of “demand-pull” policies that could otherwise spur innovation. To strengthen the industry we find that a policy shift is needed to balance the excitement and focus on market forces with a larger commitment to research and development funding. We use this work to form a set of recommendations and a roadmap that will enable a next wave of innovation and thus sustainable growth of the PV industry into a mainstay of the global energy economy. - Highlights: • We construct a two-factor learning curve model to quantify the effect of innovation. • We identify the industry-wide oversupply a barrier for incentivizing innovations. • We build a conceptual framework to inform an innovation-focused roadmap for the PV industry. • We recommend open data model for PV to accelerate policy and market innovations

  13. Spatial lifecycles of cleantech industries – The global development history of solar photovoltaics

    International Nuclear Information System (INIS)

    Binz, Christian; Tang, Tian; Huenteler, Joern

    2017-01-01

    New industries develop in increasingly globalized networks, whose dynamics are not well understood by academia and policy making. Solar photovoltaics (PV) are a case in point for an industry that experienced several shifts in its spatial organization over a short period of time. A lively debate has recently emerged on whether the spatial dynamics in new cleantech sectors are in line with existing industry lifecycle models or whether globalization created new lifecycle patterns that are not fully explained in the literature. This paper addresses this question based on an extensive analysis of quantitative data in the solar PV sector. Comprehensive global databases containing 86,000 patents as well as manufacturing and sales records are used to analyze geographic shifts in the PV sector’s innovation, manufacturing and market deployment activities between 1990 and 2012. The analysis reveals spatial lifecycle patterns with lower-than-expected first mover advantages in manufacturing and market activities and an earlier entry of firms from emerging economies in manufacturing and knowledge creation. We discuss implications of these findings for the competitive positions of companies in developed and emerging economies, derive new stylized hypotheses for industry lifecycle theories, and sketch policy approaches that are reflexive of global interdependencies in emerging cleantech industries. - Highlights: • The global spatial lifecycle of the solar photovoltaic (PV) industry is analyzed. • Our data partly contradicts existing industry lifecycle theories. • Latecomers in China started manufacturing and deployment earlier than expected. • Pioneers in the US and EU retained significant first-mover advantages in patenting. • Industry lifecycle theory needs updates in the production and market dimensions.

  14. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  15. Synergies Connecting the Photovoltaics and Solid-State Lighting Industries

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2003-05-01

    Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

  16. Canadian photovoltaic industry directory --1998

    International Nuclear Information System (INIS)

    1998-01-01

    The directory is intended to help potential PV customers identify Canadian-based companies who can meet their needs, and to help product manufacturers and distributors identify potential new clients and/or partners within the PV industry for new and improved technologies leading to greater end-use customer satisfaction. The principal feature of the directory is an information matrix that identifies the product and service types offered by each firm and the primary clients served. There is also a list of companies by province and territory, followed by an alphabetical listing of all companies, with detailed information including, mailing address, contact person, prime activity, geographic area served, languages in which services are provided, and a brief company profile. Additional information provided by the companies themselves, dealing with items such as number of systems sold, the total installed capacity, etc., is included in an 'experience matrix' for each firm. Sources of additional information on photovoltaic systems are included in a list at the end of the directory

  17. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  18. Present status and prospects of photovoltaic market in China

    International Nuclear Information System (INIS)

    Zhao Ruirui; Shi Guang; Chen Hongyu; Ren Anfu; Finlow, David

    2011-01-01

    In 2009, the photovoltaic (PV) industry expanded greatly in China. Developing PV technology is both necessary and urgent, as China is a large country, which consumes huge amounts of energy. In addition, because China has a natural advantage of excellent solar resources, its government has provided significant support in this field. In order to motivate the PV industry, the Ministries of Finance and Construction established coordinated policies to offer financial inducements. The government will implement the Jintaiyang project in the near future: 15 billion US dollars will be invested and 294 demonstration projects will be built. The developing Chinese PV market holds great promise. The aim of this paper is to analyze the present status of the Chinese PV market, discuss the opportunities available, and the potential challenges anticipated in the developing process including some engineering roadblocks encountered in the PV system, and to outline possible future scenarios in this field. - Research highlights: → In 2009, the photovoltaic (PV) industry expanded greatly in China. → The price of electricity generated by PV will be gradually reduced. → A photovoltaic industrial chain in China has already formed. → Research on PV systems will also promote the development of improved technologies.

  19. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  20. Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia

    International Nuclear Information System (INIS)

    Sivaraman, Deepak; Horne, Ralph E.

    2011-01-01

    The last decade has seen significant innovation and change in regulatory incentives to support photovoltaic deployment globally. With high fossil fuel dependency and abundant solar resource availability in Australia, grid connected photovoltaics are a viable low carbon technology option in existing electricity grids. Drawing on international examples, the potential to increase grid PV deployment through government response and regulation is explored. For each renewable energy certificate (REC) earned by small scale photovoltaics until 2012, the market provides four additional certificates under the current banded renewable targets. Our analysis indicates that REC eligibility is not accurately estimated currently, and an energy model is developed to calculate the variance. The energy model estimates as much as 26% additional REC's to be obtained by a 3 kWp PV system, when compared to the currently used regulatory method. Moreover, the provision of REC's increases benefits to PV technologies, in the process distorting CO 2 abatement (0.21 tonne/REC) by 68%, when PV displaces peaking natural gas plants. Consideration of the secondary effects of a banded structure on emissions trading market is important in the context of designing a range of initiatives intended to support a transition to a low carbon electricity sector. - Research Highlights: →Grid connected photovoltaics hedge spikes in peak demand summer electricity prices. →Nationwide feed in tariff and new building regulations needed to increase PV deployment. →Australia has transitioned from a solar rebate to a banded solar credit structure. →The currently used regulatory deeming method underestimates REC eligibility by 27%. →The banded structure can potentially distort CO 2 abatement by as much as 68%.

  1. Building brighter PV business

    International Nuclear Information System (INIS)

    Hacker, R.

    2002-01-01

    The current status and future prospects of the UK market for solar photovoltaic (PV) electricity are briefly discussed. Through the Department of Trade and Industry (DTI), the UK Government has supported research and development (R and D) into PV for a number of years. This programme has now been extended to demonstrating PV systems on houses. Phase 2 - the domestic field trial programme - aims to monitor the performance of individual systems and the impact on a cluster of systems on the electricity network. New funding had allowed a trebling of the size of this programme, which involves both private developers and housing associations. The DTI is also working to promote PV on commercial buildings, eg the installation of BP Solar PV systems at BP petrol stations. The PV industry in the UK is technically strong and is working to overcome the barriers in the UK to greater uptake of the technology (including cost, conservatism, legal requirements and metering practices). Improvements are expected in a number of recent initiatives in the electricity industry to boost PV use and the PV industry is lobbying for PV to be included in the Enhanced Capital Allowances (ECA) scheme

  2. PV installations, protection and the code

    Energy Technology Data Exchange (ETDEWEB)

    Silecky, L. [Mersen, Toronto, ON (Canada)

    2010-12-15

    This article discussed the need for improved standards in Ontario's solar industry to ensure safety for the systems and also safety for the workers. Photovoltaic cells used in solar arrays can now deliver between 50 vDC to 600 vDC. The workings of such a high voltage photocell must be understood in order to understand its protection needs. Since PVs are semiconductors and susceptible to damage from short circuits and overloads, a fast-acting overcurrent protective device (OCPD) should be used. Combiner boxes are also needed to provide a clean method of safely connecting all the wires that are needed in the system, including surge protection and a means of isolation between the PV array and the inverter. Section 50 of the Canadian Electrical Code outlines the requirements for solar PV systems, but it does not mention the protection of DC circuits, including DC fuse protectors which are manufactured to provide a high degree of protection for the PV array. As the photovoltaic (PV) market continues to grow in Ontario, the PV industry also has a responsibility to ensure it is in compliance with codes and standards related to photovoltaic systems. This author suggested that Article 690 of the National Electric Code (NEC) is a good document to use when determining the requirements for PV systems. 3 figs.

  3. Survey of photovoltaic industry and policy in Germany and China

    International Nuclear Information System (INIS)

    Grau, Thilo; Huo, Molin; Neuhoff, Karsten

    2012-01-01

    Photovoltaic (PV) technologies have demonstrated significant price reductions, but large-scale global application of PV requires further technology improvements and cost reductions along the value chain. We survey policies in Germany and China and the industrial actors they can encourage to pursue innovation, including deployment support, investment support for manufacturing plants and R and D support measures. While deployment support has been successful, investment support for manufacturing in these nations has not been sufficiently tied to innovation incentives, and R and D support has been comparatively weak. The paper concludes with a discussion of the opportunities for global policy coordination. - Highlights: ► Describes policies applied to support PV technology and characterizes the technical potential and industry structure in Germany and China. ► Identifies opportunities to enhance innovation incentives—to contribute to 50% further cost reductions required for large scale application. ► Discusses synergies of technology policy in both countries by identifying and pursuing shared environmental and technology objectives.

  4. Simulation and Modeling of a Five -Level (NPC Inverter Fed by a Photovoltaic Generator and Integrated in a Hybrid Wind-PV Power System

    Directory of Open Access Journals (Sweden)

    M. Rezki,

    2017-08-01

    Full Text Available A distributed hybrid coordinated wind photovoltaic (PV power system was proposed in this paper. As oil and coal reserves are being depleted whilst at the same time the energy demand is growing, it is important to consider alternative energy generating techniques. Today, the five-level (NPC inverter represents a good alternative for several industrial applications. To take advantage of the five-level inverter topology and the benefits of renewable energy represented by a photovoltaic generator, a new scheme of these controllers is proposed in this work. This paper outlines the design of a hybrid power system consisting of a solar photovoltaic (PV and a wind power system. The system is modeled in Matlab Simulink and tested for various conditions. The model and results are discussed in this paper.

  5. Feasibility Study of Economics and Performance of Solar PV at the Atlas Industrial Park in Duluth, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installation and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.

  6. The development of the wafer cost and availability for the photovoltaic industry

    International Nuclear Information System (INIS)

    Herzer, H.

    1991-01-01

    The photovoltaic (PV) industry is a young industry which has not yet matured to handle its business in a profitable way. One of the main reasons is the conflict between operating technologies, real costs, and diversified applications under loss-generating market conditions and the big visions to make photovoltaics become a renewable clean energy source for the future. A driving force always has been the projection of low-cost metallurgical sand reduction combined with ribbon/sheet approaches if c-Si is concerned, and the advent of a-Si and thin film technologies if alternatives and c-Si replacing materials are concerned. Today, we recognize a concentration towards c-Si as the basic material for power PV modules and systems. With regard to the scientific/technological state of the art, even here, a wide range of methods are presently investigated. The potential in terms of efficiency and cost-advantages/disadvantages will be commented. Looking at the industrial status of large-scale production commercial and economical aspects are dominating, bringing everything to the classical production of monocrystalline and multicrystalline wafers, both in connection with ID or multi-wire cutting. 5 figs., 4 tabs., 12 refs

  7. PV solar electricity industry: Market growth and perspective

    International Nuclear Information System (INIS)

    Hoffmann, Winfried

    2006-01-01

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  8. PV solar electricity industry: Market growth and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Winfried [RWE SCHOTT Solar GmbH, Carl-Zeiss-Str. 4, 63755 Alzenau (Germany)

    2006-11-23

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  9. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  10. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  11. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    International Nuclear Information System (INIS)

    Tour, Arnaud de la; Glachant, Matthieu; Meniere, Yann

    2011-01-01

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data highlight a policy-driven effort to catch up in critical technological areas. - Research Highlights: →China has become the world leader in the production of PV cells and modules, but remains far behind industrialized countries in the more upstream segments of the photovoltaic industry. →International technology transfers from industrialized countries to China have taken place through two main channels: the competitive market of manufacturing equipments, and labour mobility. →Fierce competition between equipment manufacturers and public availability of core technology have prevented intellectual property rights from hindering technology transfers towards China. →As compared with their foreign competitors, Chinese firms file many patents, but of low technical and commercial value. →Chinese firms' innovation is focused on process rather than on products.

  12. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  13. Photovoltaic energy congress 'PV Industry Forum 2008' of Munich. Looking for new technologies

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    The debate between scientists and investors about photovoltaic conversion remains dominated by the silicon shortage and by replacement solutions that should allow the world market to maintain its strong growth. Thin film, concentrators and trackers are the three processes put forward, alone, or more and more combined with each others. This article presents the German context of photovoltaic power, the world market status, the German industry as world leader in this domain, and the technology advances in thin films, optical concentration, and tracking. (J.S.)

  14. The new NOZ-PV: Market-oriented

    International Nuclear Information System (INIS)

    Ter Horst, E.

    1995-01-01

    In the proposal for the new National Research Program for Photovoltaics (NOZ-PV) 1995-1999 the focus is on four subjects: solar cell technology, the industrial support, the stimulation of autonomous, favorable applications and markets for PV, and the realization of a training program PV in the Built Areas. The program will be carried out as a market-oriented program. 1 tab., 2 figs

  15. PHOTOVOLTAICS AND THE ENVIRONMENT 1998. REPORT ON THE WORKSHOP PHOTOVOLTAICS AND THE ENVIRONMENT 1999

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.; ZWEIBEL,K.; MOSKOWITZ,P.

    1999-02-01

    The objective of the workshop ``Photovoltaics and the Environment'' was to bring together PV manufacturers and industry analysts to define EH and S issues related to the large-scale commercialization of PV technologies.

  16. Photovoltaics in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bolcso, S L

    1983-06-01

    A literature review was carried out for the purpose of summarizing the current conditions existing and affecting photovoltaics (PV) technology in a Canadian context. Information is presented concerning: PV device materials and efficiencies; PV cell manufacturing techniques; other materials/device designs; photovoltaic costs, markets, and research and development; PV and microelectronics; and Canadian strengths and opportunities. It was concluded that PV's simplicity, amenability to mass production and environmentally benign nature will likely assure it a faster and eventually greater market penetration than any other renewable energy form (and possibly some conventional forms). It is recommended that the Ministry of State, Science and Technology coordinate a joint microelectronics-photovoltaic research effort, by: indentifying areas where joint efforts would be mutually beneficial; identifying the strategic value of PV; identifying a set of goals for Canadian programs; coordinating efforts between government, universities and industry; developing supporting strategies for the mining and smelting of indigenous semiconducting materials; determining the economic support required to develop a silicon processing plant for the production of microelectronic chips and PV cells; developing Canadian expertise in providing complete PV systems competitive in world markets; and developing a marketing strategy for a coordinated PV/microelectronics effort. 60 refs., 17 figs., 12 tabs.

  17. Analysis on PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive by 2030 in Japan

    International Nuclear Information System (INIS)

    Endo, E.; Ichinohe, M.

    2004-01-01

    The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive against other energy technologies and make the target for PV capacity achievable by 2030 in Japan under expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. According to the results of analysis, under 6000 JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120 JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost need not in 2030, if we can reduce it less than 170 JPY/W. The total subsidy meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue of the assumed carbon tax can afford enough the annual total subsidy. This means if photovoltaics can attain the PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently. (authors)

  18. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  19. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  20. Status of photovoltaics in the Newly Associated States

    International Nuclear Information System (INIS)

    Pietruszko, S.M.; Mikolajuk, A.; Fara, L.; Fara, S.; Vitanov, P.; Stratieva, N.; Rehak, J.; Barinka, R.; Mellikov, E.; Palfy, M.; Shipkovs, P.; Krotkus, A.; Saly, V.; Nemac, F.; Swens, J.; Nowak, S.; Zachariou, A.; Fechner, H.; Passiniemi, P.

    2004-01-01

    The Status of Photovoltaics in the Central and Eastern Europe presents the state of the art of photovoltaics (PV) in the Newly Associated States (NAS): Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, Slovenia. The attempt was made to cover all photovoltaics activities in NAS, from research to industry and markets as well as from technology development to dissemination and education. The document covers the following topics and issues: organization of PV research and demonstration activities, stakeholders involved in research and technology development (RTD), scientific potential of NAS PV community, PV activities carried out in NAS countries, PV policies and support mechanisms, achievements and barriers, challenges and needs to the development of PV in the NAS. (authors)

  1. The Effectiveness of Warranties in the Solar Photovoltaic and Automobile Industries

    Science.gov (United States)

    Formica, Tyler J.

    A warranty is an agreement outlined by a manufacturer to a customer that defines performance requirements for a product or service. Although long warranty periods are a useful marketing tool, in 2011 the warranty claims expense was 2.6% of total sales for computer original equipment manufacturers (OEMs) and is over 2% of total sales in many other industries today. Solar PV systems offer inverters with 5-15 year warranties and PV modules with 25-year performance warranties. This is problematic for the return on investment (ROI) of solar PV systems when the modules are still productive and covered under warranty but inverter failures occur due to degradation of electronic components after their warranty has expired. Out-of-warranty inverter failures during the lifetime of solar panels decrease the ROI of solar PV systems significantly and can cause the annual ROI to actually be negative 15-25 years into the lifetime of the system. This thesis analyzes the factors that contribute to designing an optimal warranty period and the relationship between reliability and warranty periods using General Motors (GM) and the solar PV industry as case studies. A return on investment of a solar photovoltaic system is also conducted and the effect of reliability, changing tax credit structures, and failure areas of solar PV systems are analyzed.

  2. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM System through Temperature Regulation and Performance Enhancement of Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2014-03-01

    Full Text Available The current research seeks to maintain high photovoltaic (PV efficiency and increased operating PV life by maintaining them at a lower temperature. Solid-liquid phase change materials (PCM are integrated into PV panels to absorb excess heat by latent heat absorption mechanism and regulate PV temperature. Electrical and thermal energy efficiency analysis of PV-PCM systems is conducted to evaluate their effectiveness in two different climates. Finally costs incurred due to inclusion of PCM into PV system and the resulting benefits are discussed in this paper. The results show that such systems are financially viable in higher temperature and higher solar radiation environment.

  3. Economic governance in the Chinese PV industry: Structural and individual factors influencing market development

    Directory of Open Access Journals (Sweden)

    Gruss, Laura

    2015-03-01

    Full Text Available Since the beginning of the new millennium, the global production of photovoltaic (PV modules has been experiencing a rapid growth. In 2008, China already had 50 times more producers than in 2001 and three Chinese companies ranked amongst the top 10 PV producers worldwide. However, overcapacities and international trade disputes have challenged the success story of the Chinese PV industry. In order to try to tackle the mechanisms which have fostered the overall development of the Chinese PV industry since the 2000s, I have conducted a qualitative case study on Chinese PV modules producers. Following the logic of a qualitative research design, theories on cluster development have been used as an analytical device for structuring the causal narrative. In a circular research process design, structural factors, such as local growth fetishism and rebalancing, as well as individual factors, such as herd behaviour and wishful thinking, have been identified as drivers along the line of the life cycle of clusters. In this respect, this paper contests the still popular idea of the Chinese central government as the omnipotent and rational director of the Chinese economy and takes the consequences of past decentralization policies as well as bounded rationality into consideration. Since the political emphasis of regional development for global competitiveness had similar policy effects in different countries, the findings call for a context sensitive comparison between industries and countries.

  4. NREL photovoltaic program FY 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.D.; Hansen, A.; Smoller, S.

    1998-06-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

  5. Global PV Market Development

    International Nuclear Information System (INIS)

    Schmidt, F.

    2009-01-01

    The dawn of 2009 saw several events which caused major turbulence in the global photovoltaic industry. In 2008 the Spanish PV market grew beyond all expectations and even outranked Germany as the world's number one market. However, the promotion scheme was modified and a market cap was introduced in 2009, cutting back the maximum capacity to be installed to about the level of 2007. In addition, the industry is facing an oversupply of PV modules and a harsh recession which is significantly affecting the traditionally strong PV markets. International photovoltaic companies are challenged by a changing market situation: all of a sudden, competition has increased significantly, pushing the customer to the fore. As a result, a consolidation process is expected within the PV industry worldwide. However, the story is not all negative. In the U.S., the election of Barack Obama may be seen as the starting signal for a massive expansion in PV, likely to bring the country to first place globally within the next five years. Furthermore, different markets and market segments are being opened up - especially in Europe - thanks to the gradual arrival of generation parity and new PV support mechanisms. EuPD Research has observed and studied international PV markets since its foundation. The information included in the presentation is based on a wide range of quantitative and qualitative studies that EuPD Research has conducted in the key markets since 2002. Florian Schmidt, EuPD Research's Head of Product Management, will give an overview of the global PV market and how it is developing in this crucial year 2009. Aspects such as technology development, production capacities and the demand side will be included, with a special emphasis on the European PV markets. So far Chinese PV companies have often benefited from the booming PV markets in Europe, above all Germany and Spain. Due to the lack of domestic market, the Chinese industry strongly depends on the export and is

  6. Comparative Study Between Wind and Photovoltaic (PV) Systems

    Science.gov (United States)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  7. Development of solar energy for efficient PV application systems

    International Nuclear Information System (INIS)

    Said, Aziz

    2006-01-01

    It is essential to increase research, development, awareness for the application of solar energy as an important source of life. The cost of PV systems has decreased due to the improvement in techniques of manufacturing and performance. In reality, photovoltaic is one technology that allows the production of electricity with only two components: technological, which is the PV module and environmental, which is the sun. The knowledge of the components market represents a critical parameters in establishing sustainable industrial applications on different activity sectors. This paper illustrates the advantages of using photovoltaic in rural area and their economic and environmental impact. In regions where petroleum or other fossil fuels are not available, and where these remote area are not connected to the electrical grid, there is a strong and increasing demand for the technologies related to photovoltaic application systems. Water extracting and pumping, telecommunication and lighting, irrigation systems, electrical driven cars and trucks represent some of these important applications. The paper also develops critical skills for the most useful PV application in Egypt and provide to the industry a development forecast for the new technology. Then an initiation contacts and cooperation on PV application between industries specially in North Africa Middle East in order to improve the reliability and to get cheaper systems.(Author)

  8. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    International Nuclear Information System (INIS)

    Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

    1993-08-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R ampersand D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project's ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R ampersand D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ''generic'' problem areas are being addressed through a teamed research approach

  9. Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds

    Czech Academy of Sciences Publication Activity Database

    Paulescu, M.; Badescu, V.; Brabec, Marek

    2013-01-01

    Roč. 54, č. 1 (2013), s. 104-112 ISSN 0360-5442 R&D Projects: GA MŠk LD12009 Institutional support: RVO:67985807 Keywords : PV (photovoltaic) plants * Sunshine number * Nowcasting * ARIMA (Autoregressive Integrated Moving Average ) modeling Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 4.159, year: 2013

  10. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  11. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  12. Introduction of photovoltaic systems in the near and intermediate future: An industrial assessment

    International Nuclear Information System (INIS)

    Aulich, H.A.

    1993-01-01

    The introduction of photovoltaic power (PV) generation systems within the next ten years is considered, using mainly crystalline silicon solar cells. Within that time period, PV will not compete with large conventional baseload plants, but rather will be used for decentralized, distributed systems. The current module and system technology has been shown to be reliable, and must now be converted into industrial production to achieve the necessary cost reduction. For large scale production no obstacles exist with respect to production equipment, materials, resources, energy pay-back, and environmental issues. However, besides improvements in terms of system efficiency, considerable efforts are necessary to develop the market both in industrialized as well as in developing countries to install the increased production volume necessary for cost reduction. In Europe, Japan, and the USA, the emphasis for large scale PV dissemination should be on saving resources and protecting the environment, while in the developing countries PV is often the most economic and environmentally sound solution to bring electricity and basic services to billions of people around the globe that are not connected to the grid

  13. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  14. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra [Portland State Univ., Portland, OR (United States); Ingle, Aaron [Portland State Univ., Portland, OR (United States); Lutzenhiser, Loren [Portland State Univ., Portland, OR (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their ways of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.

  15. Photovoltaic industry in France in 2013. French version of the report written for the photovoltaic program of the International Energy Agency. Final report

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2014-06-01

    This document is the French National Survey Report on photovoltaic energy for the year 2013. This report provides a comprehensive review of photovoltaic activities in France in 2013. It describes the current state of the PV market, including French authorities' support measures and economic aspects. It gives an account of PV industry with key manufacturers and operators as well as R and D programmes. The data contained in the report concern the year 2013. The main sources of information used for the report are the following: data produced by the French Observation and statistics office (SOeS, Service de l'observation et des statistiques), ADEME's reports and studies, reports and studies produced by the Syndicat des energies renouvelables (SER) and by ENERPLAN union, publications Systemes solaires, reports by Observatoire des energies renouvelables (Observer), Plein Soleil magazine, web sites (institutional, photovoltaic.info, L'echo du solaire, etc.), data from equipment suppliers, company publications and press releases, corporate strategy flyers and contacts with professionals in the sector

  16. PV in the US: where is the market going and how will it get there?

    International Nuclear Information System (INIS)

    Mints, P.

    2006-01-01

    As the global PV industry continues its rapid growth in Europe and Japan, the reasons for the USA losing its once leading position are considered. An important factor influencing the demand for photovoltaics anywhere is the subsidies. In Germany, their very successful feed-in tariff law is currently the driving-force for their PV industry and has created the biggest market in the world for PV products. Similar schemes in other parts of Europe are expected to stimulate demand. In the USA, demand for photovoltaics has slowed and production has followed, and in Asia manufacturing costs are much less. For a surge in the PV industry in the USA, it will be necessary for state and federal governments to provide motivation. (author)

  17. Models for a stand-alone PV system[Photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Hansen, L.H.; Bindner, H.

    2000-12-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risoe National Laboratory. The work has been supported by the Danish Ministry of Energy, as a part of the activities in the Solar Energy Centre Denmark. The study is carried out at Risoe National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery, controller, inverter and load. The models for PV module and battery are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model (KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program that provides a graphical interface for building models as modular block diagrams. The non-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements. The performance of the best linear Black box model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risoe. (au)

  18. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  19. MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car

    OpenAIRE

    Aji, Seno; Ajiatmo, Dwi; Robandi, Imam; Suryoatmojo, Heri

    2013-01-01

    This paper presents a control called Maximum Power Point Tracking (MPPT) for photovoltaic (PV) system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC) is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cy...

  20. National Survey Report of PV Power Applications in France 2012. Photovoltaic Power Applications in France - National Survey Report 2012

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2013-05-01

    The PV power of all grid-connected photovoltaic systems installed in 2012 stood at 1 079 MW. This represented a 38 % fall compared with 2011. New grid-connected distributed systems, the majority of which were building-integrated, represented a total power of 756 MW, while grid-connected centralised ground-based power plants accounted for 323 MW. New PV installations in mainland France accounted for 35 % of total new electricity production capacity commissioned in 2012. The off-grid stand-alone photovoltaic system sector remains marginal with around 0,2 MW installed. The cumulative power capacity of all photovoltaic systems in operation at the end of 2012 stood at 4 003 MW (281 724 systems) representing an increase of 37% compared with 2011. Residential systems less than or equal to 3 kW accounted for 86% of all installations and 16 % of total power capacity, while systems exceeding 250 kW accounted for 0,3% of all installations and 44% of total capacity. In 2012, photovoltaic electricity production accounted for 0,7% of France's total electricity production. In France, the estimated average price of European-manufactured photovoltaic modules stood at 0,72 EUR/W in 2012. The fall in prices observed over the last two years has led to substantial growth in the medium-power and high-power systems sector. The turnkey price stood at around 3,7 EUR/W in 2012 for building-integrated residential systems (IAB) using European modules. The price of simplified building-integrated systems (ISB) on commercial and industrial buildings stood at 2,0 EUR/W, and at 1,6 EUR/W for high-power grid-connected ground-mounted systems (all prices mentioned are exclusive of VAT). The French photovoltaic component industry faced stiff international competition in 2012. The industrial value chain has, on the whole, remained relatively unscathed, but small installation companies have been the worst affected. Upstream of the PV sector, photovoltaic-grade silicon manufacturing is currently at

  1. PV Working with Industry, 2nd Quarter, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Moon, S.

    2000-06-29

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 2000, issue is titled ``Our Shared PV Future''. It contains a review of several important PV-related meetings held in the prior three months: the NCPV Program Review, the 16 European PV Conference, and year-2000 Earth Day activities in Denver, CO. The editorialist is Paul Maycock, Publisher of PV News.

  2. The photovoltaic industry on the path to a sustainable future--environmental and occupational health issues.

    Science.gov (United States)

    Bakhiyi, Bouchra; Labrèche, France; Zayed, Joseph

    2014-12-01

    As it supplies solar power, a priori considered harmless for the environment and human health compared with fossil fuels, the photovoltaic (PV) industry seems to contribute optimally to reduce greenhouse gas emissions and, overall, to sustainable development. However, considering the forecast for rapid growth, its use of potentially toxic substances and manufacturing processes presenting health and safety problems may jeopardize its benefits. This paper aims to establish a profile of the PV industry in order to determine current and emerging environmental and health concerns. A review of PV system life cycle assessments, in light of the current state of the industry and its developmental prospects, reveals information deficits concerning some sensitive life cycle indicators and environmental impacts, together with incomplete information on toxicological data and studies of workers' exposure to different chemical and physical hazards. Although solar panel installation is generally considered relatively safe, the occupational health concerns related to the growing number of hazardous materials handled in the PV industry warrants an all-inclusive occupational health and safety approach in order to achieve an optimal equilibrium with sustainability. To prevent eco-health problems from offsetting the benefits currently offered by the PV industry, manufacturers should cooperate actively with workers, researchers and government agencies toward improved and more transparent research, the adoption of specific and stricter regulations, the implementation of preventive risk management of occupational health and safety and, lastly, greater responsibilization toward PV systems from their design until their end of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Analysis of PV system's values beyond energy - by country and stakeholder

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Polo, A.; Hass, R.; Suna, D.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme and PV-Up-Scale analyses, identifies, evaluates and quantifies the major values and benefits of urban scale photovoltaics (PV) based on country and stakeholder specifics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The values evaluated and quantified in this report are categorised under the following groups: Avoiding fossil fuels, environmental benefits, benefits for electric utilities, industry development and employment benefits and the customer's individual benefits. The relevance of PV to meeting peak demand is discussed, as are the benefits for architects and building developers.

  4. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method

    International Nuclear Information System (INIS)

    Lin, Chia-Hung; Huang, Cong-Hui; Du, Yi-Chun; Chen, Jian-Liung

    2011-01-01

    Highlights: → The FOICM can shorten the tracking time less than traditional methods. → The proposed method can work under lower solar radiation including thin and heavy clouds. → The FOICM algorithm can achieve MPPT for radiation and temperature changes. → It is easy to implement in a single-chip microcontroller or embedded system. -- Abstract: This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.

  5. National survey report on PV power applications in Switzerland 2006

    International Nuclear Information System (INIS)

    Huesser, P.; Hostettler, T.

    2007-01-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  6. National survey report on PV power applications in Switzerland 2006

    Energy Technology Data Exchange (ETDEWEB)

    Huesser, P. [Nova Energie GmbH, Aarau (Switzerland); Hostettler, T. [Ingenieurbuero Hostettler, Berne (Switzerland)

    2007-07-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  7. Photovoltaics: sunny spells ahead for solar electricity

    International Nuclear Information System (INIS)

    Plastow, James

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies presents an overview of the photovoltaic (PV) sector in the UK covering PV technology, the manufacture of monocrystalline silicon and thin-film PV cells, and PV applications in stand-alone systems and grid-connected systems. The steady growth in the UK PV industry, the building integrated market, and the government's concern over the UK's slow progress are discussed. The announcement of the Department of Trade and Industry's market stimulation programme, reduced value added tax (VAT) on PV systems, and showcase PV installations such as the Sydney 2000 Olympics project are listed as recent highlights

  8. Photovoltaic Self-Consumption; Autoconsumo fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Abella, M.; Chenlo Romero, F.

    2013-02-01

    This paper analyzes the photovoltaic (PV) self consumption, or the option of using photovoltaic systems connected to the electric grid for the purpose of consuming the PV generated energy in the own installation (homes, small industries, office buildings, etc.) in order to reduce the external demand and the electric bill. At this time there is a legal vacuum regarding the installation of these generation systems for self-consumption, and the PV business sector and society are calling for the establishment of a legal and economic framework. Assuming that what can be saved with a photovoltaic system for domestic self-consumption is the cost of the kWh consumed currently 15c/kWh that there are no additional charges and that the cost of the turnkey photovoltaic system currently ranges from 1.8/Wp to 2.5/Wp, the resulting amortization period would be between 8 and 11 years for the condition of annual net metering. (Author) 31 refs.

  9. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    Science.gov (United States)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  10. Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets

    Directory of Open Access Journals (Sweden)

    Federica Cucchiella

    2015-11-01

    Full Text Available Photovoltaic (PV systems are becoming a relevant electricity source, characterised by a growing trend in the last years. This paper analyses the economic feasibility of investments in industrial PV systems of different sizes (200 kW, 400 kW, 1 MW, and 5 MW, in the absence of subsidies, and in a mature market (Italy. The selected indicators for this kind of assessment are net present value (NPV and discounted payback time (DPBT. Furthermore, the environmental advantage in comparison to fossil sources of energy is evaluated through the reduction of carbon dioxide emissions (ERcd. Finally, a sensitivity analysis on critical variables (percentage of self-consumed energy, average annual insolation rate, annual electricity purchase price, annual electricity sale price, unitary investment cost and opportunity cost is conducted. Results highlight the strategic role of self-consumption in a market characterised by an absence of public policy incentives and the presence of interesting economic opportunities for industrial applications.

  11. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  12. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  13. ISO 14000: Review and guidelines for the photovoltaic industry

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.

    1997-08-01

    The International Organization for Standardization (ISO) has released and is in the process of ratifying a new set of environmental management system standards, ISO 14000. These voluntary international standards will have a significant impact on how companies throughout the international community manage their environmental programs. Initially this impact will result in increased international trade opportunities due to the anticipated customer requirement for suppliers to demonstrate certification. Other potential impacts will benefit both companies engaged in international commerce and companies with a domestic focus. These would include installing a cohesive system to manage environmental matters, participation within a new regulatory paradigm, and adhering to a potentially new set of legal standards. The wide range of potential environmental, commercial, legal and regulatory benefits offered by ISO 14000 offer most companies significant reason to explore the possibilities of implementing an environmental management system. Organizations will be able to anticipate and meet growing environmental expectations and to ensure ongoing compliance with national and international requirements as well as satisfy the growing demands of customers, stakeholders and the interested public. As an emerging industry with significant international ties, the photovoltaic (PV) community will be effected from these standards if they do become globally adopted. In fact some major players in the PV industry have recently received certification to ISO 9000. This again demonstrates a trend within the industry to move toward a uniform system approach to management. This paper will expose interested parties within the PV industry to the details of ISO 14000 and will assist decision makers assess the various possibilities for implementation certification of ISO 14000 for an individual facility.

  14. Interrogating protective space : shielding, nurturing and empowering Dutch solar PV

    NARCIS (Netherlands)

    Verhees, B.; Raven, R.P.J.M.; Veraart, F.C.A.; Smith, A.G.; Kern, F.

    2012-01-01

    This paper reviews the developments of solar photovoltaic technology in the Netherlands. Despite the recent boom in PV industries and deployment around the globe, the Dutch have until now not experienced major growth in the diffusion of PV electricity generation. But this is only part of the story.

  15. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  16. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  17. Diversity in solar photovoltaic energy: Implications for innovation and policy

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    We undertake a qualitative empirical study of the solar photovoltaic (PV) industry in order to investigate the role of diversity in stimulating innovation and diffusion. Based on evolutionary-economic concepts, we identify the main dimensions and components of diversity in the solar PV industry.

  18. Analysis of the policy effects of downstream Feed-In Tariff on China’s solar photovoltaic industry

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zheng, Shilin; Zhang, Yanhua; Zhang, Kai

    2016-01-01

    The Chinese government initiated the Feed-In Tariff (“FIT”) policy for downstream power generation in August 2013. The effectiveness of the downstream FIT policy has attracted the attention of academia and government. Using the quarterly data of listed solar PV companies between 2009 and 2015, this paper provides an empirical analysis regarding the effects of the downstream FIT policy. We find that (1) the FIT policy has significantly enhanced the inventory turnover of listed PV firms and improved their profitability; (2) the FIT policy has significant effects on the inventory turnover of midstream companies and mixed industry-chain companies mainly engaged in downstream operations; (3) FIT policy is more favorable towards increasing the inventory turnover of private enterprises. Our results indicate that the FIT policy can have substantial effects on the sustainable development of China's solar photovoltaic industry. - Highlights: •The article focuses on the analysis of the effect of downstream FIT policy. •We test how FIT policy affects overcapacity and profitability of solar PV companies. •We find FIT policy significantly solved the overcapacity of China’s solar PV industry. •We find FIT policy improved profitability of listed solar PV companies. •FIT policy can’t be played alone and should be combined with taxation and R&D policy.

  19. Photovoltaics for Buildings: Key Issues in Pursuit of Market Readiness

    International Nuclear Information System (INIS)

    Sheila, J.; Hayter, P.E.

    1998-01-01

    The photovoltaic (PV) industry is rapidly beginning to recognize the market potential of the buildings sector. New PV-for-buildings products have recently become commercially available, and numerous products that are under development will be introduced within the next 5 years. To ensure that these new products will be adopted and used in common building practices, the PV industry should recognize and address important buildings industry issues. These issues include building codes and standards, after-market servicing, education, and warranties and insurance policies. Photovoltaic systems are also still very expensive. The simplest method for increasing their value for a building is to decrease the building's electrical loads through energy efficiency and conservation. Meeting these goals can only be accomplished through partnerships with the U.S. Department of Energy (DOE), private industry, and public institutions

  20. Photovoltaic energy potential of Quebec

    International Nuclear Information System (INIS)

    Royer, J.; Thomas, R.

    1993-01-01

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  1. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  2. Design and Analysis of Photovoltaic (PV) Power Plant at Different Locations in Malaysia

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.

    2018-05-01

    Power generation from sun oriented vitality through a photovoltaic (PV) system is ended up prevalent over the world due to clean innovation. Geographical location of Malaysia is very favorable for PV power generation system. The Malaysian government has also taken different steps to increase the use of solar energy especially by emphasizing on building integrated PV (BIPV) system. Comparative study on the feasibility of BIPV installation at the different location of Malaysia is rarely found. On the other hand, solar cell temperature has a negative impact on the electricity generation. So in this study cost effectiveness and initial investment cost of building integrated grid connected solar PV power plant in different regions of Malaysia have been carried. The effect of PV solar cell temperature on the payback period (PBP) is also investigated. Highest PBP is 12.38 years at Selangor and lowest PBP is 9.70 years at Sabah (Kota Kinabalu). Solar cell temperature significantly increases the PBP of PV plant and highest 14.64% and lowest 13.20% raise of PBP are encountered at Penang and Sarawak respectively.

  3. Data book on new energy technology development in FY 1997. Photovoltaic (PV) power generation; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Taiyoko hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of understanding the present status of photovoltaic power system (PVPS) and supporting its promotion, various data were collected. The significance of adopting PV power technology was specified for customers of various levels, such as nation, local communities, industries and individual households, to clarify the CO2 reduction effect and energy pay-back time. Data illustrate the solar cell production according to region, cell types, industries, applications, production value, and market price. Policies for PVPS in industrial countries were compared with those in Japan. Distribution of PVPS in various countries was compared with that in Japan in respect to installations and purposes of the introduction of PVPS. Financial aid programs such as subsidies, tax benefits and loans for the installation of PVPS in Japan were listed. The trend of PV-related budget of MITI was shown with every project`s description. Steps of introducing PVPS from plan to installation were depicted in the form of flow chart. Were shown measures sponsored by the government or local organizations to promote PVPS. Domestic and foreign firms related to PVPS including PV module suppliers, and PV installation contractors were listed

  4. Environmental impacts of electricity self-consumption from organic photovoltaic battery systems at industrial facilities in Denmark

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Hauschild, Michael Zwicky

    2017-01-01

    investigate the life cycle environmental impacts of electricity self-consumption from an OPV system coupled with a sodium/nickel chloride battery at an iron/metal industry in Denmark. Results show that an OPV system without storage could decrease the carbon footprint of the industry; installation......Organic photovoltaics (OPV) show promise of greatly improving the environmental and economic performance of PV compared to conventional silicon. Life cycle assessment studies have assessed the environmental impacts of OPV, but not under a self-consumption scheme for industrial facilities. We...

  5. Photovoltaic module with integrated power conversion and interconnection system - the European project PV-MIPS

    OpenAIRE

    Henze, N.; Engler, A.; Zacharias, P.

    2006-01-01

    Within the 6th framework program funded by the European Commission the project PV-MIPS (Photovoltaic Module with Integrated Power Conversion System) was launched in November 2004. Together with eleven European partners from Germany, Austria, Greece and the Netherlands a solar module with integrated in-verter shall be developed that can feed solar electricity directly into the grid. The challenging objective of the project is to reduce the total costs of a PV system. At the same time lifetime ...

  6. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John [High Performance PV, Phoenix, AZ (United States)

    2015-11-01

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how the reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.

  7. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  8. Industry consultation on grid connection of small PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Knight, J.; Thorneycroft, J.; Cotterell, M.; Gambro, S.

    2000-07-01

    This report presents the results of consultation within the PV industry and the electricity supply industry concerning guidelines for the connection of small PV systems to the electricity network. (author)

  9. U.S. Department of Energy Photovoltaic Energy Program Contract Summary: Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Surek, T.

    2001-02-21

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and U.S. Department of Energy (DOE) National Photovoltaics Program from October 1, 1999, through September 30, 2000 (FY 2000). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy-as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals. This Contract Summary for fiscal year (FY) 2000 documents some 179 research projects supported by the PV Program, performed by 107 organizations in 32 states, including 69 projects performed by universities and 60 projects performed by our industry partners. Of the total FY 2000 PV Program budget of $65.9 million, the industry and university research efforts received $36.9 million, or nearly 56%. And, of this amount, more than 93% was for contractors selected on a competitive basis. Much of the funding to industry was matched by industry cost-sharing. Each individual effort described in this summary represents another step toward improving PV manufacturing, performance, cost, and applications, and another step toward accomplishing the DOE PV Program's overall mission.

  10. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  11. The energy roof - Photovoltaics and solar collectors combined; PV und Kollektoren schoen kombiniert. Das Energiedach

    Energy Technology Data Exchange (ETDEWEB)

    Niederhaeusern, A.

    2008-07-01

    In this Interview with Giorgio Hefti, CEO of the Swiss Tritec group, the company's aims and the products offered are discussed. These include mains-connected and island-operated photovoltaic (PV) systems. The history of the company is briefly discussed, as is co-operation with local installers and the company's function as a general contractor for large installations. These include, amongst others, the PV-installation on the 'Stade de Suisse' football stadium in Berne. PV systems for single-family homes and their costs are examined. Also, mounting systems for combining PV and solar collectors (combined power and heat generation) are discussed, as are combinations of PV and heat-pumps. Hybrid PV-solar-collectors and their disadvantages are discussed as is the future of the Tritec group, which has grown continuously over the years and is active in several European countries.

  12. The role of photovoltaics in reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Blakers, A.; Green, M.; Leo, T.; Outhred, H.; Robins, B.

    1991-01-01

    This report examines the opportunities that will arise for the Australian photovoltaic industry if external costs of energy conversion are internalized. Such external costs include local pollution, resource depletion and the emission of greenhouse gases. Generation of electricity from photovoltaic (PV) modules is now a widely accepted environmentally friendly energy conversion technology. At present, high capital costs restricts its use to the provision of small amounts of power in remote areas, where it successfully competes against small diesel generators. However, as costs continue to decline, photovoltaic systems will compete successfully with progressively larger diesel-electric systems in Australia, in a market worth more than a billion dollars. Direct competition with electricity generated by conventional means for state grids is possible after the turn of the century. The present Australian photovoltaic industry is export oriented. The market for PV systems in poor rural areas in Asia is potentially very large. The cost of supplying small quantities of electricity to millions of rural households is high, making photovoltaics a competitive option. It is concluded that the Australian photovoltaic industry is in a good position to participate in the growth in this market sector. 48 refs., 28 tabs., 18 figs., ills

  13. Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Belhamadia

    2017-03-01

    Full Text Available This paper presents a cost analysis study of a hybrid diesel and Photovoltaic (PV system in Kuala Terengganu, Malaysia. It first presents the climate conditions of the city followed by the load profile of a 2MVA network; the system was evaluated as a standalone system. Diesel generator rating was considered such that it follows ISO 8528. The maximum size of the PV system was selected such that its penetration would not exceed 25%. Several sizes were considered but the 400kWp system was found to be the most cost efficient. Cost estimation was done using Hybrid Optimization Model for Electric Renewable (HOMER. Based on the simulation results, the climate conditions and the NEC 960, the numbers of the maximum and minimum series modules were suggested as well as the maximum number of the parallel strings.

  14. Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level

    International Nuclear Information System (INIS)

    Nawaz, I.; Tiwari, G.N.

    2006-01-01

    In this paper the energy payback time and CO 2 emissions of photovoltaic (PV) system have been analyzed. The embodied energy for production of PV module based on single crystal silicon, as well as for the manufacturing of other system components have been computed at macro- and micro-level assuming irradiation of 800-1200 W/m 2 in different climatic zones in India for inclined surface. The energy payback time with and without balance-of-system for open field and rooftop has been evaluated. It is found that the embodied energy at micro-level is significantly higher than embodied energy at macro-level. The effect of insolation, overall efficiency, lifetime of PV system on energy pay back time and CO 2 emissions have been studied with and without balance of system. A 1.2 kW p PV system of SIEMENS for mudhouse at IIT, Delhi based on macro- and micro-level has been evaluated. The CO 2 mitigation potential, the importance and role of PV system for sustainable development are also highlighted

  15. Department of Energy: Photovoltaics program - FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  16. MPPT Based on Fuzzy Logic Controller (FLC for Photovoltaic (PV System in Solar Car

    Directory of Open Access Journals (Sweden)

    Seno Aji

    2013-12-01

    Full Text Available This paper presents a control called Maximum Power Point Tracking (MPPT for photovoltaic (PV system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cycle value is used to adjust the angle of ignition switch (MOSFET gate on the Boost converter. The proposed method was shown through simulation performed using PSIM and MATLAB software. Simulation results show that the system is able to improve the PV power extraction efficiency significantly by approximately 98% of PV’s power.

  17. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  18. Regional PV power estimation and forecast to mitigate the impact of high photovoltaic penetration on electric grid.

    Science.gov (United States)

    Pierro, Marco; De Felice, Matteo; Maggioni, Enrico; Moser, David; Perotto, Alessandro; Spada, Francesco; Cornaro, Cristina

    2017-04-01

    The growing photovoltaic generation results in a stochastic variability of the electric demand that could compromise the stability of the grid and increase the amount of energy reserve and the energy imbalance cost. On regional scale, solar power estimation and forecast is becoming essential for Distribution System Operators, Transmission System Operator, energy traders, and aggregators of generation. Indeed the estimation of regional PV power can be used for PV power supervision and real time control of residual load. Mid-term PV power forecast can be employed for transmission scheduling to reduce energy imbalance and related cost of penalties, residual load tracking, trading optimization, secondary energy reserve assessment. In this context, a new upscaling method was developed and used for estimation and mid-term forecast of the photovoltaic distributed generation in a small area in the north of Italy under the control of a local DSO. The method was based on spatial clustering of the PV fleet and neural networks models that input satellite or numerical weather prediction data (centered on cluster centroids) to estimate or predict the regional solar generation. It requires a low computational effort and very few input information should be provided by users. The power estimation model achieved a RMSE of 3% of installed capacity. Intra-day forecast (from 1 to 4 hours) obtained a RMSE of 5% - 7% while the one and two days forecast achieve to a RMSE of 7% and 7.5%. A model to estimate the forecast error and the prediction intervals was also developed. The photovoltaic production in the considered region provided the 6.9% of the electric consumption in 2015. Since the PV penetration is very similar to the one observed at national level (7.9%), this is a good case study to analyse the impact of PV generation on the electric grid and the effects of PV power forecast on transmission scheduling and on secondary reserve estimation. It appears that, already with 7% of PV

  19. A global strategy for the European PV industry

    International Nuclear Information System (INIS)

    Viaud, M.; Despotou, E.; Latour, M.; Hoffmann, W.; Macias, E.; Cameron, M.; Laborde, E.

    2004-01-01

    The objective was to develop a comprehensive strategy that answers to the need of today European PV industry. Namely: - Develop PV markets in Europe - Develop export markets. - Position the European PV industry within the European political environment and support the effort of national actors in their local objectives. This method lends itself to brainstorming to create actions and synergies, on order to achieve strategy objectives. The whole work is based on working groups clearly defined on the purpose, where all EPIA members are invited to participate. The overall first results are presented during the 19. EU PV Conference in Paris and EPIA will do recommendations on actions to be undertaken in the future. This strategy is co-financed by EPIA members and the 6. Framework Programme for research of the European Commission through the PV Catapult project. (authors)

  20. UPVG efforts to commercialize photovoltaics

    International Nuclear Information System (INIS)

    Serfass, J.A.; Wills, B.N.

    1995-01-01

    The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the US electric utility industry and the US Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)--an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)--an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process

  1. The European Photovoltaic Technology Platform

    International Nuclear Information System (INIS)

    Nowak, S.; Aulich, H.; Bal, J.L.; Dimmler, B.; Garnier, A.; Jongerden, G.; Luther, J.; Luque, A.; Milner, A.; Nelson, D.; Pataki, I.; Pearsall, N.; Perezagua, E.; Pietruszko, S.; Rehak, J.; Schellekens, E.; Shanker, A.; Silvestrini, G.; Sinke, W.; Willemsen, H.

    2006-05-01

    The European Photovoltaic Technology Platform is one of the European Technology Platforms, a new instrument proposed by the European Commission. European Technology Platforms (ETPs) are a mechanism to bring together all interested stakeholders to develop a long-term vision to address a specific challenge, create a coherent, dynamic strategy to achieve that vision and steer the implementation of an action plan to deliver agreed programmes of activities and optimise the benefits for all parties. The European Photovoltaic Technology Platform has recently been established to define, support and accompany the implementation of a coherent and comprehensive strategic plan for photovoltaics. The platform will mobilise all stakeholders sharing a long-term European vision for PV, helping to ensure that Europe maintains and improves its industrial position. The platform will realise a European Strategic Research Agenda for PV for the next decade(s). Guided by a Steering Committee of 20 high level decision-makers representing all relevant European PV Stakeholders, the European PV Technology Platform comprises 4 Working Groups dealing with the subjects policy and instruments; market deployment; science, technology and applications as well as developing countries and is supported by a secretariat

  2. Raising objectives: how global PV production could reach 5 GWp by 2010

    International Nuclear Information System (INIS)

    Cameron, A.; Jones, J.

    2006-01-01

    A recent international workshop for the solar photovoltaic (PV) industry organised by the European Photovoltaic Industry Association (EPIA) examined market trends and technological developments. Under a business-as-usual (BAU) scenario, the EPIA predicts that the global PV market would only reach 3.2 GWp by 2010. But workshop participants believe that, given sufficient support measures to encourage investment, the global market could be accelerated to reach 5400 MW per year by 2010, with an achievable annual installed capacity of over 5 GWp and production of 30,000 tonnes of solar-grade silicon per year at a cost of 30-40 euros/kg. Major markets are expected to be Germany, Japan, USA, China and Spain. Examples of the type of policies and strategies necessary for accelerated growth are given and countries with potential for a significant increase in annual PV installation rates are identified. The current main constraint on market growth is the global shortage of suitable silicon, but confidence in the solar market is now sufficient for significant new manufacturing plant to be planned. Investment in other PV technologies is also required, plus a decrease in the price of PV modules. EPIA does not expect a short-term price reduction for PV until after 2007 but the workshop concluded that the PV industry could expect to see an average price reduction of around 5% per year (for cells, modules and complete systems) by 2011

  3. The potential market for PV building products

    International Nuclear Information System (INIS)

    1998-01-01

    This study was carried out by ECOTEC Research and Consulting Limited (ECOTEC) in collaboration with the Newcastle Photovoltaic Application Centre (NPAC) and ECD Energy and Environment (ECD) under the Department of Trade and Industry's (DTI) New and Renewable Energy Programme (contract reference S/P2/00277/00/00). The aim was to assess the future market potential for building-integrated photovoltaic (BIPV) products in terms of current product availability, product development needs, the nature and size of the potential market, and the opportunities for government and the PV supply industry to work together to develop the market. The study itself comprised a review of existing BIPV products, an analysis of the development of the world market for BIPV, a market research survey of building professionals, and meetings of two 'focus groups' drawn from the PV 'supply side' and from buildings professionals. In principle, BIPV products can be used in virtually any type of building, but the main applications are considered to be housing and offices. (author)

  4. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  5. The Status and Outlook for the Photovoltaics Industry

    Science.gov (United States)

    Carlson, David

    2006-03-01

    The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.

  6. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  7. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    International Nuclear Information System (INIS)

    Abdoulaye, D; Koalaga, Z; Zougmore, F

    2012-01-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  8. Second update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D; Bruhns, H

    2001-07-01

    This update of the database of photovoltaic (PV) installations in the UK developed by Altechnica for the Department of Trade and Industry has double the number of records of the previous edition, and focuses on the use of photovoltaic (PV) installations for buildings, for example using some form of a PV array, building integrated PV module, and building attached PV array. The growth in building related PV installations is examined along with the use of PV in telecommunication equipment, navigation buoys and light vessels, buildings, pumps for solar water heating systems, schools, lighthouses, and petrol stations. Details are given of the electronic data entry form for the database and the increase in the number of fields to allow additional information such as tilt angle and orientation area of the array to be added.

  9. The Brazilian equipment for photovoltaic systems industry: current concepts; A industria brasileira de equipamentos para sistemas fotovoltaicos: panorama atual

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Fabiana Karla de Oliveira Martins; Cavaliero, Carla Kazue Nakao [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: fkv@fem.unicamp.br, e-mail: cavaliero@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], e-mail: lh2ennio@ifi.unicamp.br

    2008-07-01

    The use of renewable alternative sources of energy in the world has been growing in the last few decades due to concerns about dependence on fossil sources and to environmental reasons, related to climatic change and its effects on mankind. Tax and/or financial incentives have been instituted for the population, to have access to renewable source technologies, and for the local equipment industry, to develop more quickly. In Brazil, the PV (photovoltaic) equipment to convert solar into electricity is more often used in low income rural communities, located distant from the grid network. However, since there is no currently specific regulatory incentive mechanism for this source in the country, the Brazilian PV equipment industry has not made great advances and the market is largely dominated by multinationals. Against this background, this work has as objective to analyze the current PV equipment industry in Brazil, in such way that the obtained information can aid in a future elaboration of a national program development to promote the use of this technology, stimulating the domestic industry and reducing the dependence on imported equipment. (author)

  10. Photovoltaic conference on research and innovation

    International Nuclear Information System (INIS)

    Moisan, Francois; Huennekes, Christoph; Malbranche, Philippe; Neuhaus, Holger; Lincot, Daniel; Dimroth, Frank; Signamarcheix, Thomas; Baudrit, Mathieu; Wasselin, Jocelyne; Franz, Oliver; Lippert, Michael; Bena, Michel

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on photovoltaic research and innovation. In the framework of this French-German exchange of experience, about 80 participants exchanged views on PV research priorities and on the possible cooperation paths capable to meet the challenges of an increasing worldwide competition. Beside the analysis of national and European support programmes, the presentations addressed also the technological advances in the domain of energy efficiency and fabrication of PV systems, but also the energy storage solutions and the problems of integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Photovoltaic R and D financing in France (Francois Moisan); 2 - Research consortia: research promotion in Germany (Christoph Huennekes); 3 - EeRA Joint research Programme Photovoltaic Solar energy: cooperation support to PV research at the European level (Philippe Malbranche); 4 - The Research Project 'SONNe' - A shining example within the German Funding Scheme 'Innovation Alliance' (Holger Neuhaus); 5 - The 'Ile de France Photovoltaic Institute': a huge cooperation between academic and industrial partners for the improvement of photovoltaic energy efficiency and competitiveness (Daniel Lincot); 6 - SOLARBOND the basis for a successful French-German collaboration (Frank Dimroth); 7 - Smart Country model project: Successful integration of distributed generation in rural areas - Smart integration of PV power generation thanks to the combination with a modified biogas storage system (Oliver Franz); 8 - Sol-ion Conversion, storage and management of residential PV energy (Michael Lippert); 9 - Improving Tools to massively integrate Renewables in the European electric System (Michel Bena)

  11. PV-WEB: internet-based PV information tool

    International Nuclear Information System (INIS)

    Cowley, P.

    2003-01-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members

  12. PV-WEB: internet-based PV information tool

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, P

    2003-07-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members.

  13. First steps in developing the niche market for PV in conservatories

    International Nuclear Information System (INIS)

    2002-06-01

    This report describes the findings of a project commissioned by the Department of Trade and Industry (DTI) to review and quantitatively assess the prospects and potential for the integration of photovoltaic (PV) modules and components into conservatories. This is considered one way of expanding the market for domestic PV installations in the UK. The report describes the outputs from the project's various work packages. These included: an assessment of the benefits provided by PVs in conservatories in terms of energy use, shading, simulations and aesthetics; the definition of design requirements for integrating PV; development of designs; market surveys of consumers, the conservatory industry and the house building industry; and the development of user guidelines

  14. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  15. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  16. Effect of Thermoelectric Cooling (TEC module and the water flow heatsink on Photovoltaic (PV panel performance

    Directory of Open Access Journals (Sweden)

    Amelia A.R.

    2017-01-01

    Full Text Available Photovoltaic (PV panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  17. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    Science.gov (United States)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  18. NREL PV Working With Industry, v. 27, Third Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Nahan, R.

    2000-09-12

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The third quarter, contains articles on several important PV-related conferences held in the prior three months: the REAP/HBCU Conference and the IPS-2000 Photochemistry Conference. The issue also contains a preview article of the PV Specialists conference held in Alaska in September. The editorialist is John Benner, PV Specialist Conference Program Chairman.

  19. The solar generation childhood and adolescence of terrestrial photovoltaics

    CERN Document Server

    Wolfe, Philip R

    2018-01-01

    The first book to address the early development of the photovoltaic industry, and the pioneering researchers and companies in the sector. Well before the end of this century, solar power will be the world's dominant power source. This book looks at the origins of this smart sustainable energy technology, tracing the pioneering years from its inception following the 1973 oil crisis to the end of the last millennium—just as the sector was poised for explosive growth. It focuses on the progress of the early terrestrial photovoltaic sector, often in the face of skepticism or apathy. It also covers the research and achievements of people and organizations within the PV business. Written by a leader in the field with more than 40 years of experience and an international reputation in the sustainable energy industry, The Solar Generation: Childhood and Adolescence of Terrestrial Photovoltaics offers enlightening coverage on the terrestrial PV industry. The first part of this 3-volume set provides a historical bac...

  20. Lighting rural and peri-urban homes of the Gambia using solar photovoltaics (PV)

    Energy Technology Data Exchange (ETDEWEB)

    Sanneh, E.S.; Hu, A.H. [National Taipei Univ. of Technology, Taiwan (China). Inst. of Environmental Engineering Technology

    2009-07-01

    The main fuel supplies of Gambia are fuel woods, petroleum products, and liquefied petroleum gas (LPG). This study considered the use of solar photovoltaic (PV) as a principal source of power for rural and peri-urban communities in Gambia. The country currently has high rates of poverty and malnutrition, and it is expected that the provision of electricity to communities will encourage economic growth. Gambia is also heavily dependent on foreign imports of oil. To date, PV systems have been used for water pumping, refrigeration, and telecommunications projects. The study showed that better access to sustainable energy services is needed at the micro-level to stimulate businesses and income-generating activities, as well as at the macro level to foster economic growth. Financing methods for developing solar energy in Gambia include credit financing; PV market transformative initiatives; revolving loan funds; and government-granted renewable energy concessions for institutionally-owned and maintained systems. A pilot program has been established to investigate the acceptability of PV lighting systems for rural populations. 46 refs., 2 tabs., 7 figs.

  1. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  2. ENEA activities on photovoltaic energy

    International Nuclear Information System (INIS)

    Coiante, D.; Messana, C.

    1989-01-01

    Photovoltaic conversion appears to be a promising technology for producing electricity. Photovoltaic (PV) solar cells directly convert sun radiation into electricity, without needing moving parts or any kind of fuel. In a long term perspective, PV conversion is expected to become an integrative energy source; at present, high costs are the main limiting factor of the diffusion of PV technology. Costs can be reduced through the joint effect of technological innovation and mass production: therefore, the Italian strategy consists in promoting the gradual enlargement of production volumes and, at the same time, the introduction of less expensive technologies and processes, as soon as they become available. The main responsibility for PV strategies and activities is assigned to ENEA, the Italian National Commission for Nuclear and Alternative Energy Sources. The ENEA five year plan (1985-1989) had allocated about 100 M$ in the PV sector and, as a result, today ENEA is the main national organization promoting PV energy development. ENEA programs include both in house research and external activities. The latter are carried out by universities and industrial firms and concern the whole PV production process from raw materials to complete systems. In Italy there are three main industrial enterprises which produce PV modules an systems: Italsolar (formerly Pragma, ENI group), Ansaldo (IRI group) and Helios Technology, a private firm. Their total annual production capacity amounts to about 2 MW per shift, and is expected to increase in the near future. In 1986, the whole production has been about 0.7 MW: a substantial share of this production has been marketed abroad, mostly as complete systems. (author). 6 tabs

  3. U.S. Department of Energy photovoltaic energy program contract summary, fiscal year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Surek, T.; Hansen, A.

    2000-02-17

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and US Department of Energy (DOE) National Photovoltaics Program from October 1, 1998, through September 30, 1999 (FY 1999). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the US industry's world leadership in research and technology development and (2) help the US industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals.

  4. U.S. Department of Energy photovoltaic energy program contract summary, fiscal year 1999

    International Nuclear Information System (INIS)

    Surek, T.; Hansen, A.

    2000-01-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and US Department of Energy (DOE) National Photovoltaics Program from October 1, 1998, through September 30, 1999 (FY 1999). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the US industry's world leadership in research and technology development and (2) help the US industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals

  5. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  6. Recovering valuable metals from recycled photovoltaic modules.

    Science.gov (United States)

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  7. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  8. Photovoltaic Subcontract Program, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K.A. (ed.)

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  9. Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2014-01-01

    Full Text Available Feed-in-Tariff (FiT mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i briefly reviews the mechanisms, advantages, and evolution of FiT; (ii describes the developments of PV, (iii applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium; and finally (iv predicts the levelized cost of energy (LCOE in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future.

  10. Electricity demand savings from distributed solar photovoltaics

    International Nuclear Information System (INIS)

    Glassmire, John; Komor, Paul; Lilienthal, Peter

    2012-01-01

    Due largely to recent dramatic cost reductions, photovoltaics (PVs) are poised to make a significant contribution to electricity supply. In particular, distributed applications of PV on rooftops, brownfields, and other similar applications – hold great technical potential. In order for this potential to be realized, however, PV must be “cost-effective”—that is, it must be sufficiently financially appealing to attract large amounts of investment capital. Electricity costs for most commercial and industrial end-users come in two forms: consumption (kWh) and demand (kW). Although rates vary, for a typical larger commercial or industrial user, demand charges account for about ∼40% of total electricity costs. This paper uses a case study of PV on a large university campus to reveal that even very large PV installations will often provide very small demand reductions. As a result, it will be very difficult for PV to demonstrate cost-effectiveness for large commercial customers, even if PV costs continue to drop. If policymakers would like PV to play a significant role in electricity generation – for economic development, carbon reduction, or other reasons – then rate structures will need significant adjustment, or improved distributed storage technologies will be needed. - Highlights: ► Demand charges typically account for ∼40% of total electricity costs for larger electricity users. ► Distributed photovoltaic (PV) systems provide minimal demand charge reductions. ► As a result, PVs are not a financially viable alternative to centralized electricity. ► Electricity rate structures will need changes for PV to be a major electricity source.

  11. Conference on the new models of photovoltaic consumption and commercialization

    International Nuclear Information System (INIS)

    Gastiger, Michaela; Persem, Melanie; Joly, Jean-Pierre; Freier, Karin; Fontaine, Pierre; Mueth, Thierry; Marliave, Luc de; Woerlen, Christine; Gerdung, Anja; Jedliczka, Marc; Mayer, Joerg; Jimenez, Julien; Richard, Pascal; Vogtmann, Michael; Schaefer, Felix; Martin, Nicolas; Blanc, Francois; Ostermann, Christoph; Borghese, Francois; Nykamp, Stefan; Von Appen, Jan; Buis, Sabine; Gossement, Arnaud

    2014-01-01

    This document gathers contributions (Power Point presentations) of a conference on new models of consumption and commercialisation in the solar photovoltaic sector in France and in Germany. These contributions address the following topics: Stimulating self-consumption and direct selling within the EEG; Development of PV self-consumption in France; Experience from applying the new support program for solar energy storage systems; Call for solar photovoltaic projects for own consumption in the Aquitaine region; The SMA flexible storage system (technical solutions for a PV system in a smart home); PV own consumption in industry and commerce, examples and operating concepts; Supplying tenants in multiple-family housing with solar power in the 'Neue Heimat' project; How to manage PV-storage self-consumption from a grid point of view

  12. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  13. Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors

    International Nuclear Information System (INIS)

    Holdermann, Claudius; Kissel, Johannes; Beigel, Jürgen

    2014-01-01

    This paper examines the economic viability of small-scale, grid-connected photovoltaics in the Brazilian residential and commercial sectors after the introduction of the net metering regulation in April 2012. This study uses the discounted cash flow method to calculate the specific investment costs that are necessary for photovoltaic systems to be economically viable for each of the 63 distribution networks in Brazil. We compare these values to the system costs that are estimated in the comprehensive study on photovoltaics that was developed by the Brazilian Association of Electric and Electronic Industries (ABINEE). In our calculation, we utilize the current electricity tariffs, including fees and taxes, which we obtained through telephone interviews and publicly available information. We obtained a second important parameter by simulating PV-systems with the program PV ⁎ Sol at the distribution company headquarters' locations. In our base case scenario that reflects the current situation, in none of the distribution networks photovoltaics is economically viable in either the commercial or residential sectors. We improved the environment for grid-connected photovoltaics in our scenarios by assuming both lower PV-system costs and a lower discount rate to determine the effect on photovoltaics viability. - Highlights: • We calculate the economic viability of photovoltaics in the residential and commercial sectors in Brazil. • The PV ⁎ Sol simulations are carried out at the headquarter locations for the 63 distribution companies. • Currently in none of the distribution networks, photovoltaics is economically viable in either the commercial or residential sectors. • We analyze how the variation of the specific investment costs and of the discount rate affects the economic viability

  14. The impact of photovoltaic (PV) installations on downwind particulate matter concentrations: Results from field observations at a 550-MWAC utility-scale PV plant.

    Science.gov (United States)

    Ravikumar, Dwarakanath; Sinha, Parikhit

    2017-10-01

    With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM

  15. Conference on new consumption and commercialization models for photovoltaic energy

    International Nuclear Information System (INIS)

    Freier, Karin; Fontaine, Pierre; Mayer, Joerg; Jimenez, Julien; Richard, Pascal; Vogtmann, Michael; Schaefer, Felix; Martin, Nicolas; Buis, Sabine

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on new consumption and commercialization models for photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on the new economic models for solar energy producers while the photovoltaic industry has to face a progressive reduction of feed-in tariffs and of other incentive mechanisms. Beside the legal and economic aspects, technical questions around energy storage and integration of photovoltaic production to the grid were also addressed. This document brings together the available presentations (slides) made during this event: 1 - Stimulating self-consumption and direct selling within the EEG (Karin Freier); 2 - Development of PV self-consumption in France (Pierre Fontaine); 3 - experience from applying the new support program for solar energy storage systems (Joerg Mayer); 4 - Call for solar photovoltaic projects for own consumption in Aquitaine region (Julien Jimenez); 5 - SMA Flexible Storage System - New version of the Sunny Island inverter for smart photovoltaic energy storage (Pascal Richard); 6 - PV Own Consumption in industry and commerce - examples und Operating Concepts (Michael Vogtmann); 7 - Supplying tenants in multiple-family housing with solar power in the 'Neue Heimat' project (Felix Schaefer); 8 - How to manage PV-storage self-consumption from a grid point of view? (Nicolas Martin); 9 - Closing talk (Sabine Buis)

  16. Solar Photovoltaic Electricity Applications in France. National Survey Report 2007

    International Nuclear Information System (INIS)

    Claverie, Andre; Jacquin, Philippe

    2008-01-01

    The overall power of installed PV systems in France in 2007 was 31,3 MW which represents a significant growth compared to 2006. This increase is mainly due to the national fiscal measures (new feed-in tariff and tax credit) launched in 2006. The implemented feed-in tariff model application supports building integration of photovoltaic generators with a much higher financial incentive than other type of photovoltaic installations. In the same way, local authorities like regional councils and departmental councils developed new policies to promote photovoltaics through specific grants. As the building integration of photovoltaic generators is encouraged by a feed-in tariff bonus, innovative products are appearing on the market or are under development. In parallel, actors like architects, designers, engineers are now paying attention to building integration of photovoltaic components (BIPV). New actors such as financial institutions, energy operators, and private investors have developed ambitious projects. With the increase of the market, new firms have been created including engineering, consultancies, electricity producers, PV products distributors and retailers, installation and maintenance companies. Photovoltaic industrial sector is getting stronger and large investments have been undertaken in order to develop a vertical integration of the photovoltaic value chain, from feedstock silicon production to final photovoltaic products. A new private-public consortium called 'PV Alliance Lab Fab' has been set up and an important R and D project under the name of 'Solar Nano Crystal' should start by the end of 2008. At the same time, R and D activities focus on photovoltaic silicon cells/modules conversion efficiency and long term reliability, production costs, new materials and device design, yield, environmental impact of industrial processes and optimisation of control and monitoring of photovoltaic systems. In addition to the ADEME and ANR

  17. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  18. Photovoltaics in Poland

    International Nuclear Information System (INIS)

    Pietruszko, Stanislaw M.

    2003-01-01

    The legislative framework and financing possibilities for photovoltaics (PV) in Poland are presented. Barriers that exist or can be encountered in implementing PV technology in Poland are identified. This paper also discusses future prospects and possibilities for developing photovoltaics in Poland. Finally, the paper suggests ways to promote, disseminate, and deploy PV technology in Poland. (Author)

  19. Producer responsibility and recycling solar photovoltaic modules

    International Nuclear Information System (INIS)

    McDonald, N.C.; Pearce, J.M.

    2010-01-01

    Rapid expansion of the solar photovoltaic (PV) industry is quickly causing solar to play a growing importance in the energy mix of the world. Over the full life cycle, although to a smaller degree than traditional energy sources, PV also creates solid waste. This paper examines the potential need for PV recycling policies by analyzing existing recycling protocols for the five major types of commercialized PV materials. The amount of recoverable semiconductor material and glass in a 1 m 2 area solar module for the five types of cells is quantified both physically and the profit potential of recycling is determined. The cost of landfill disposal of the whole solar module, including the glass and semiconductor was also determined for each type of solar module. It was found that the economic motivation to recycle most PV modules is unfavorable without appropriate policies. Results are discussed on the need to regulate for appropriate energy and environmental policy in the PV manufacturing industry particularly for PV containing hazardous materials. The results demonstrate the need to encourage producer responsibility not only in the PV manufacturing sector but also in the entire energy industry.

  20. Key technical and non-technical challenges for mass deployment of photovoltaic solar energy (PV)

    International Nuclear Information System (INIS)

    Sinke, W.C.

    2001-12-01

    Photovoltaic solar energy (PV) is used for direct conversion of sunlight into electricity. It is not to be confused with low-temperature thermal solar energy (e.g. solar domestic hot water systems) and with solar electricity production using a conventional high-temperature steam cycle (using parabolic troughs or 'power towers'). Important features of PV are: inherently renewable; sustainable if well designed, manufactured, used, and disposed; no moving parts, quiet; reliable if well designed and engineered; modular (from milliwatts to multi-megawatts); suitable for a wide variety of applications (stand-alone and grid-connected); large potential (regionally and globally); intermittent; capacity factor (ratio of average system power to installed (=peak) power) =0.08-0.24. PV is among the major renewable energy technologies in all well known energy scenarios, although a substantial role in % of the total energy production can only be achieved on the long term (typically 40-60 years years). Fortunately, long before that the PV market may be a rapidly growing, multi-billion euro business, providing enormous economic opportunities and many jobs

  1. Photovoltaic systems in Indonesia

    International Nuclear Information System (INIS)

    Tjaroko, T.; Bakker, P. de

    2001-01-01

    The article discusses the reasons for the slow growth of the photovoltaic industry in Indonesia where more than 100 million people have no access to electricity, but there is an abundance of solar power. There should be considerable scope for solar home systems in particular. Barriers to expansion of the PV market have included the devaluation of the rupee and the failure of many government-initiated projects. It is concluded that at present, the purchasing power of individuals is insufficient for the potential PV market to expand

  2. Photovoltaic system costs using local labor and materials in developing countries

    Science.gov (United States)

    Jacobson, E.; Fletcher, G.; Hein, G.

    1980-05-01

    The use of photovoltaic (PV) technology in countries that do not presently have high technology industrial capacity was investigated. The relative cost of integrating indigenous labor (and manufacturing where available) into the balance of the system industry of seven countries (Egypt, Haiti, the Ivory Coast, Kenya, Mexico, Nepal, and the Phillipines) was determined. The results were then generalized to other countries, at most levels of development. The results of the study imply several conclusions: (1) the cost of installing and maintaining comparable photovoltaic systems in developing countries is less than in the United States; (2) skills and some materials are available in the seven subject countries that may be applied to constructing and maintaining PV systems; (3) there is an interest in foreign countries in photovoltaics; and (4) conversations with foreign nationals suggest that photovoltaics must be introduced in foreign markets as an appropriate technology with high technology components rather than as a high technology system.

  3. The prospects for cost competitive solar PV power

    International Nuclear Information System (INIS)

    Reichelstein, Stefan; Yorston, Michael

    2013-01-01

    New solar Photovoltaic (PV) installations have grown globally at a rapid pace in recent years. We provide a comprehensive assessment of the cost competitiveness of this electric power source. Based on data available for the second half of 2011, we conclude that utility-scale PV installations are not yet cost competitive with fossil fuel power plants. In contrast, commercial-scale installations have already attained cost parity in the sense that the generating cost of power from solar PV is comparable to the retail electricity prices that commercial users pay, at least in certain parts of the U.S. This conclusion is shown to depend crucially on both the current federal tax subsidies for solar power and an ideal geographic location for the solar installation. Projecting recent industry trends into the future, we estimate that utility-scale solar PV facilities are on track to become cost competitive by the end of this decade. Furthermore, commercial-scale installations could reach “grid parity” in about ten years, if the current federal tax incentives for solar power were to expire at that point. - Highlights: ► Assessment of the cost competitiveness of new solar Photovoltaic (PV) installations. ► Utility-scale PV installations are not yet cost competitive with fossil fuel power plants. ► Commercial-scale installations have already attained cost parity in certain parts of the U.S. ► Utility-scale solar PV facilities are on track to become cost competitive by the end of this decade

  4. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh; Elgindy, Tarek; Liu, Yilu

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interest to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.

  5. Summary of third international executive conference on photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W.

    2001-07-01

    In December 1990, the International Energy Agency (IEA) invited photovoltaic manufacturers, electrical utilities, and government leaders to a groundbreaking First Congress of Executives conference in Taormina, Italy. The purpose was to develop a strategic approach to PV market development. The Taormina Congress focused on the diffusion of applications based on cost-effectiveness. A second IEA International Conference was held in Sun Valley, Idaho, in September 1995, focusing on the implementation of physical markets based on profit opportunities. Discussions in Sun Valley included the integration of utility and PV businesses into new partnerships in the developing world. By 1995, the strategic interaction of utility activity with photovoltaic technology was recognised and a number of new business opportunities were identified in both industrialised and developing countries. The November 1999 conference, held in Venice, Italy, has taken things a step further. It focused on communicating the 'value of the sun', as well as bringing in the developing business interests and expanding roles of the building construction industries and finance institutions. This theme was considered as being the most important issue of the conference and led to the conclusion that just selling kilowatt-hours is not enough, as the market needs complete products and better concepts. Further, all of the relevant stakeholders, including PV industry, project developers, architects, local, regional and national governments, and the IEA should collaborate in a world-wide effort to accelerate the growth of markets for photovoltaic electricity. The conference was designed to provide a unique forum for senior executives from the energy and building sectors, the photovoltaic industry, financial institutions and governments. The aim was to discuss and jointly develop strategic business opportunities for photovoltaics in a rapidly changing energy market and to take the growing movement

  6. The Italian programme in photovoltaic solar energy

    Science.gov (United States)

    Farinelli, U.

    Italian programs and goals for developing a photovoltaic (PV) industry and market are outlined. It is suggested that only a few megawatts of PVs will be produced for domestic consumption in the next few years, while the largest market is for developing nations where costly diesel-fueled generators are used. The installation of PV systems in developing areas will permit testing and scaling up of production capacities from several MW to several hundred MW and then to GW annual production. Approximately 55,000,000 was devoted to government research in PV in 1982 and a PV research laboratory is being built near Naples.

  7. Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study

    International Nuclear Information System (INIS)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Heaney, Mike

    2015-01-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with sub-hourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. - Highlights: • We propose an analytical framework to estimate grid integration costs for solar PV. • Increased operating costs from variability and uncertainty in solar PV are computed. • A case study of a utility in Arizona is conducted. • Grid integration costs are found in the $1.0–4.4/MWh range for a 17% PV penetration. • Increased system flexibility is essential for minimizing grid integration costs

  8. Distribution System Augmented by DC Links for Increasing the Hosting Capacity of PV Generation

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Demirok, Erhan; Teodorescu, Remus

    2012-01-01

    This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further, they are cha......This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further......, they are characterized by long radial feeders. Such feeders suffer from voltage rise and transformer overloading problems as the total number and capacity of the PV installations increase. The distribution network can be augmented by dc distribution links with power electronic converter interfaces to the traditional ac...... distribution systems. It is shown here that the dc links can be used to interconnect the different radial feeders and the excess power thus could be transferred to the nearby industrial load-center....

  9. PV potential and potential PV rent in European regions

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.; Thorn, Paul

    2013-01-01

    The paper provides a GIS based model for assessing the potentials of photovoltaic electricity in Europe by NUTS 2 regions. The location specific energy potential per PV-­‐panel area is estimated based on observations of solar irradiation, conversion efficiency, levelised costs and the social value...... of PV-­‐electricity. Combined with the potential density of PV-­‐panel area based on land cover and environental restrictions, the PV energy potential and the potential PV ressource rent is calculated. These calculations enbable the model to estimate the regional patterns at NUTS 2 level...

  10. Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands

    International Nuclear Information System (INIS)

    Trapani, Kim; Millar, Dean L.

    2013-01-01

    Highlights: ► Significant cost and carbon savings for offshore PV integration. ► Maximum savings at circa 315 MW for thin film PV integration. ► Minimum generating capacity of turbines significant in cost of electricity. ► Part-load efficiencies of current system could hugely limit the integration of renewables. - Abstract: The islands of Malta are located in the Mediterranean basin enjoying 5.3 kW h/m 2 /day of solar insolation, at a latitude of 35°50N. Electricity generation for the islands is dependent upon imported fossil fuels for combustion. The available solar resource could be exploited to offset the current generation of electricity using solar photovoltaic technology (PV). Due to the limited land availability onshore, the offshore environment surrounding the Maltese islands were considered for the installation of PV floating on the sea surface. The output from such an installation would have to be integrated with the existing conventional electricity generation infrastructure, which currently relies on gas and steam turbine technology. To assess the feasibility of floating PV being integrated with the existing fossil plant, monthly trend consumption data for Malta were analysed. The change in gasoil and heavy fuel oil (HFO) consumption resulting from the part load efficiency variation and the displacement of electricity generation from the PVs were estimated. A cost analysis was prepared for the system integration analysis specifically accounting for the reduction in combustion of fossil fuels at the power station and the capital expenditures and operating costs due to the floating PV installation. Aside from the basic cost-benefit of a floating PV installation, CO 2 savings are also considered

  11. How to Estimate Demand Charge Savings from PV on Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bird, Lori A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Rooftop photovoltaic (PV) systems are compensated through retail electricity tariffs - and for commercial and industrial customers, these are typically comprised of three components: a fixed monthly charge, energy charges, and demand charges. Of these, PV's ability to reduce demand charges has traditionally been the most difficult to estimate. In this fact sheet we explain the basics of demand charges, and provide a new method that a potential customer or PV developer can use to estimate a range of potential demand charge savings for a proposed PV system. These savings can then be added to other project cash flows, in assessing the project's financial performance.

  12. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  13. Is Germany's energy transition a case of successful green industrial policy? Contrasting wind and solar PV

    International Nuclear Information System (INIS)

    Pegels, Anna; Lütkenhorst, Wilfried

    2014-01-01

    In this paper, we address the challenge of Germany's energy transition (Energiewende) as the centrepiece of the country's green industrial policy. In addition to contributing to global climate change objectives, the Energiewende is intended to create a leading position for German industry in renewable energy technologies, boost innovative capabilities and create employment opportunities in future growth markets at the least possible cost. The success in reaching these aims, and indeed the future of the entire concept, is hotly debated. The paper aims to provide an up-to-date assessment of what has become a fierce controversy by comparing solar photovoltaic (PV) and wind energy along five policy objectives: (1) competitiveness, (2) innovation, (3) job creation, (4) climate change mitigation, and (5) cost. We find mixed evidence that Germany reaches its green industrial policy aims at reasonable costs. Wind energy seems to perform better against all policy objectives, while the solar PV sector has come under intense pressure from international competition. However, this is only a snapshot of current performance, and the long term and systemic perspective required for the energy sector transformation suggests a need for a balanced mix of a variety of clean energy sources. - Highlights: • We give an up-to-date assessment of costs and benefits of Germany's Energiewende. • We compare solar PV and wind to show key elements of policy success. • Considered policy objectives: competitiveness, innovation, jobs, emissions, costs. • Wind energy seems to perform better than solar PV against all policy objectives. • The results are a snapshot: a deep transformation requires energy diversification

  14. Proceedings of the PV self-consumption forum held at Rennes on February 8

    International Nuclear Information System (INIS)

    Ramard, Dominique; Laffaille, Didier; Lextrait, Herve; Richard, Pascal; Loyen, Richard; Gautier, Charles Antoine; Concas, Giorgia; Djahel, Thierry; Dehaese, Olivier; Rolland, Nicolas; Brossard, Clement; Labrune, Sylvere; Landais, Sebastien; Laurans, Bernard; Autric, Thierry; Mingant, Sylvie; Lamy, Marie-Laure; Lorant, Jacky; Woodrow, Mariana; Alazard, Raymond; Mathieu, Antoine; Ricaud, Claude; Lacirignola, Martino

    2017-02-01

    During this forum dedicated to photovoltaic (PV) self-consumption in Brittany region (Western France), the following topics were debated: - the direct generation of green electricity to cover ones' own needs and to share surplus with neighbours in economically interesting conditions; - the economical and legal frameworks of self-consumption in the residential, tertiary and industrial sectors and their evolution; - from individual to collective self-consumption: experience feedbacks and evaluation tools in France and in Europe. This document brings together the presentations (slides) given at this forum. A project structuring guide for photovoltaic (PV) self-consumption projects was elaborated after the forum and is presented in introduction

  15. A kick to the photovoltaic industry

    International Nuclear Information System (INIS)

    Deye, M.; Remoue, A.

    2010-01-01

    In order to stop the speculation fever and to stabilize the photovoltaic trade, the French government has decided to lower some of the warranted electricity repurchase tariffs related to photovoltaic power generation. This announcement should have important impacts on the photovoltaic industry which will redirect its means and products towards the residential sector. (J.S.)

  16. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes

    Science.gov (United States)

    Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel

    2017-06-01

    Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.

  17. Directory of French photovoltaic research and industry 2011

    International Nuclear Information System (INIS)

    Poubeau, Romain; Simmonet, Raphael; Canals, Jonathan

    2011-05-01

    After an overview of what is at stake in terms of industrial employment in the photovoltaic sector, a presentation of competitiveness clusters, a description of the value chain (cell manufacturers, arrays manufacturers, power inverter manufacturers, electric equipment manufacturers, structure component manufacturers, fabrication steps, etc.) in the photovoltaic sector, this document proposes a directory (addresses, activity descriptions) of research and industrial actors of the photovoltaic sector in France: research centres, manufacturers, industrial projects

  18. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  19. An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system

    International Nuclear Information System (INIS)

    Erdil, Erzat; Ilkan, Mustafa; Egelioglu, Fuat

    2008-01-01

    A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m 2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m 2 (i.e., 1.3x0.47 m 2 ) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive

  20. Integration of PV modules in existing Romanian buildings from rural areas

    Energy Technology Data Exchange (ETDEWEB)

    Fara, S.; Finta, D. [IPA SA Research Development, Engineering and Manufacturing for Automation Equipment and Systems, Bucharest (Romania); Fara, L.; Comaneci, D. [Polytechnic Univ. of Bucharest (Romania); Dabija, A.M. [Univ. of Architecture and Urbanism Ion Mincu, Bucharest (Romania); Tulcan-Paulescu, E. [West Univ. of Timisoara, Timisoara (Romania)

    2010-07-01

    Romania has launched a national research project to promote the use of distributed solar architecture and the use of BIPV systems. These systems include solar tunnels and active solar photovoltaic (PV) systems installed on the roofs and facades of buildings in rural areas. In contrast to other EU states, Romania does not have a photovoltaic building construction branch. The number of isolated cases are insufficient to identify a starting point regarding the PV market in the building industry. The main objective of the project is to demonstrate the efficiency of integrating various PV elements in buildings from rural areas, to test them and to make them known so that they can be used on a large scale. This will be accomplished by installing new products on 2 buildings in Bucharest and in 1 building in Timisoara. The PV modules will be integrated with the architecture. One of the buildings will be a historical building while the other 2 will be new buildings with different typologies. The installed power for each building will be of about 1.000 Wp, including some technologies with PV modules.

  1. Proceedings of the international photovoltaic solar energy conference held in Glasgow 1-5 May 2000

    International Nuclear Information System (INIS)

    Anon.

    2001-02-01

    The European Photovoltaic Solar Energy Conferences are dedicated to accelerating the impetus towards sustainable development of global PV markets. The 16th in the series, held in Glasgow UK, brought together more than 1500 delegates from 72 countries, and provided an important and vital forum for information exchange in the field. The Conference Proceedings place on record a new phase of market development and scientific endeavour in the PV industry, representing current and innovative thinking in all aspects of the science, technology, markets and business of photovoltaics. In three volumes, the Proceedings present some 790 papers selected for presentation by the scientific review committee of the 16th European Photovoltaic Solar Energy Conference. The Comprehensive range of topics covered comprises: Fundamentals, Novel Devices and New Materials. Thin Film Cells and Technologies. Space Cells and Systems. Crystalline Silicon Solar Cells and Technologies. PV Integration in Buildings. PV Modules and Components of PV Systems. Implementation, Strategies, National Programs and Financing Schemes. Market Deployment in Developing Countries. (author)

  2. Financial assessment of government subsidy policy on photovoltaic systems for industrial users: A case study in Taiwan

    International Nuclear Information System (INIS)

    Chou, Shuo-Yan; Nguyen, Thi Anh Tuyet; Yu, Tiffany Hui-Kuang; Phan, Nguyen Ky Phuc

    2015-01-01

    Due to Taiwan's limited energy resources, the development of solar photovoltaic (PV) in Taiwan has become one of the most important solutions for meeting future energy supply needs and ensuring environmental protection. A huge amount of researches about renewable energy sources has emerged recently in response to these issues. However, the amount of researches considering the effects of various influential parameters on the efficiency and performance of PV systems remains small, and is still limited to some specific parts of PV systems. In particular, researches considering thoughtfully the influence of government subsidies on PV financial assessment are still in development. This paper proposes an approach to analyze the benefit of installing a PV system under the impact of government financial subsidies, focusing especially on feed-in-tariff (FIT) and tax abatement policies for industrial users in Taiwan. In addition, a method for selecting the most appropriate policies is proposed for the government through the analysis of both user demand and the government's PV installation capacity target. - Highlights: • Analyzing the benefit of installing a PV system impacted by the government subsidy. • Analyzing the role of policy in the financial model of PV system. • Estimating the performance of PV system under the real weather condition. • Methods to select the policies which satisfy demands of both government and users. • Methods to select the policies which ensure cost-effectiveness of government's support.

  3. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  4. A Survey of State and Local PV Program Response to Financial Innovation and Disparate Federal Tax Treatment in the Residential PV Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holt, Edward [Ed Holt & Associates, Inc., Harpswell, ME (United States)

    2015-06-01

    High up-front costs and a lack of financing options have historically been the primary barriers to the adoption of photovoltaics (PV) in the residential sector. State clean energy funds, which emerged in a number of states from the restructuring of the electricity industry in the mid-to-late 1990s, have for many years attempted to overcome these barriers through PV rebate and, in some cases, loan programs. While these programs (rebate programs in particular) have been popular, the residential PV market in the United States only started to achieve significant scale in the last five years – driven in large part by an initial wave of financial innovation that led to the rise of third-party ownership.

  5. Conference on photovoltaic energy network parity

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Masson, Gaetan; Henzelmann, Orsten; Joly, Jean-Pierre; Guillemoles, Jean-Francois; Auffret, Jean-Marc; Berger, Arnaud; Binder, Jann; Martin, David; Beck, Bernhard; Mahuet, Audrey; Mueller, Thorsten; Contamin, Raphael

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the present day and future challenges of the development, support and market integration of photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on support models to renewable energy sources, research results on self-consumption and business models for the renewable energies sector. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's PV support policies (Pierre-Marie Abadie); 2 - Grid parity: first step towards PV competitiveness (Gaetan Masson); 3 - How competitive is solar power? Requirements and impact on the European industry (Orsten Henzelmann); 4 - Key elements of the National Institute of Solar energy - INeS (Jean-Pierre Joly); 5 - Research priorities according to the Paris Institute of Photovoltaics (Jean-Francois Guillemoles); 6 - Bosch Solar energy (Jean-Marc Auffret); 7 - Financing and insuring photovoltaics - History and future prospects (Arnaud Berger); 8 - Decentralized Photovoltaics: Autonomy, Self-Consumption and Reduction of Grid Loading through electrical and Thermal Storage (Jann Binder); 9 - Off Grid systems, mini grid and grid parity, field feedback and perspectives. From the producer-consumer to the smart grid: experience feedback of PV management models (David Martin); 10 - Benefits for solar power plants in respect of grid stabilization (Bernhard Beck); 11 - Renewable energies integration to electricity market: impacts and challenges (Audrey Mahuet); 12 - Promotion of PV in Germany: Feed-in tariffs, self-consumption and direct selling - Review and forecast (Thorsten Mueller); 13 - How to support renewable electricity in France? (Raphael Contamin)

  6. PV-DSM: Policy actions to speed commercialization

    International Nuclear Information System (INIS)

    Hoff, T.; Wenger, H.J.; Keane, D.M.

    1993-01-01

    Pacific Gas and Electric Company (PG ampersand E) recently applied Demand-Side Management (DSM) evaluation techniques to photovoltaic (PV) technology to develop the concept of photovoltaics as a Demand-Side Management option (PV-DSM). The analysis demonstrated that PV-DSM has the potential to be economically attractive. Two criticisms in response to that analysis are that the assumptions of 25 year financing and a 25 year evaluation period are unrealistic. This paper responds to those criticisms and documents the mathematical relationships to calculate the value of PV-DSM from a customer's perspective. It demonstrates how regulatory and government agencies could implement policies to resolve both issues and speed PV commercialization

  7. University Crystalline Silicon Photovoltaics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  8. Status of photovoltaic industry in China

    International Nuclear Information System (INIS)

    Hong Yang; He Wang; Guangde Chen; Huacong Yu; Jianping Xi; Rongqiang Cui

    2003-01-01

    In recent years, photovoltaic industry has achieved some remarkable development in China, This paper presents a summary and review of the present status of terrestrial photovoltaic industry, and tries to look at possible future scenarios in China, the recent progress with laboratory cells is also discussed. Topics covered include the production equipment, fabrication technology of cells and modules, storage battery, solar charge controller, DC/AC inverter, market and national policy. (Author)

  9. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  10. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John R. [High Performance PV, Phoenix, AZ (United States); Keating, T. J. [SunSpec Alliance, San Jose, CA (United States)

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  11. Optimal allocation of industrial PV-storage micro-grid considering important load

    Science.gov (United States)

    He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei

    2018-03-01

    At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.

  12. Comparing Photovoltaic (PV) Costs and Deployment Drivers in the Japanese and U.S. Residential and Commercial Markets

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seel, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-19

    Japan has re-emerged in 2013 as one of the world's fastest-growing and largest photovoltaic (PV) markets (Renewable Energy World 2013). Year-over-year growth in Japanese installed capacity in the first half of 2013 was about 270%. Japan's PV market was on pace to triple in 2013 compared with 2012, with approximately 2.7 GW installed during the first half of 2013 (compared to about 1.6 GW in the United States). This places Japan's market among the world's largest PV markets, along with China, Germany, and the United States. This report explores details of the rapidly changing Japanese market, and similarities and differences between the Japanese and U.S. markets. We collected data from a diverse group of Japanese PV installers, and we gathered additional Japanese and U.S. data from published sources as well as internal analyses.

  13. Photovoltaic materials: An analysis of emerging technology and markets

    International Nuclear Information System (INIS)

    1999-01-01

    Solar power has been around for more than a century, and photovoltaic cells have supplied power to US space flights and satellites since Vanguard I. Innovative materials, new processes, and new manufacturing techniques are bringing the price of PV power down to earth--opening up substantial opportunities to profit from this environmentally friendly energy source. This report from Technical Insights, takes a hard look at this rapidly emerging field. It discusses the current state-of-the-art in photovoltaic materials; what new processes and applications are showing the greatest commercial promise; what new markets are opening up; and who the key players are in the growing PV industry

  14. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, A.; James, T.; Woodhouse, M.

    2012-02-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

  15. PV Reliability -- Where We've Been and Where We're Going

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2017-04-27

    The photovoltaic (PV) industry has demonstrated impressive progress toward deploying hardware with excellent quality. As module prices drop and designs are squeezed to reduce cost of materials and processing, how will this affect the failures that are seen in the field?

  16. Numerical study of PV/T-SAHP system

    Institute of Scientific and Technical Information of China (English)

    Gang PEI; Jie JI; Ke-liang LIU; Han-feng HE; Ai-guo JIANG

    2008-01-01

    In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PV/T-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.

  17. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  18. Prismatic TIR (total internal reflection) low-concentration PV (photovoltaics)-integrated façade for low latitudes

    International Nuclear Information System (INIS)

    Sabry, Mohamed

    2016-01-01

    Low-concentration Façade-integrated Photovoltaic system in the form of TIR (total internal reflection) prismatic segmented façade could play an effective role in reducing the direct component of solar radiation transmitting through buildings, hence reducing both cooling and artificial lighting load on such buildings. A prismatic segmented façade is capable of allowing diffused skylight to transmit through it to the building interior, while preventing most of the direct solar radiation and converting it into clean energy by means of the integrated PV (​photovoltaics) cells. A range of prismatic TIR segmented façades with different head angles has been designed based on the geographical latitude of the chosen location. Each façade configuration is simulated by ray-tracing technique and its performance is investigated against realistic direct solar radiation data in two clear sky days representing summer and winter of the targeted location. Ray tracing simulations revealed that all of the selected configurations could collect most of the direct solar radiation in summer. In contrary, larger head angle of the segmented façade could collect wider intervals around the noon time till reaching a head angle of 23° at which most of the incident direct solar radiation could be collected. - Highlights: • 5 different head angles of prismatic segmented PV-integrated Façade are ray-traced. • Transmitted and PV-collected solar radiation percentages are determined. • DNI daily profiles with associated solar altitudes and azimuth data are simulated. • Expected transmitted and PV collected solar radiation are calculated for the proposed segments.

  19. Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites

    International Nuclear Information System (INIS)

    Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramírez, M.

    2014-01-01

    This work is aimed at looking into the impact of the solar spectrum distribution on the energy yield of some PV (photovoltaic) materials on both monthly and annual time scales. The relative spectral responses of eight different PV solar cells – representative of each considered technology – have been selected. Modeling solar spectra in four sites located in the north hemisphere together with a 12-month experimental campaign in which spectral irradiances were periodically recorded in two of these sites located in Spain have provided highly interesting results. Regardless of the site, the considered amorphous silicon and cadmium telluride PV cells experience the most noticeable modeled and experimental variations of their monthly spectral gains, whilst flatter seasonal ones are identified in the remaining considered PV technologies. Thus, the maximum monthly variations of these spectral gains take place in the a-Si PV cell, ranging from −16% (winter) to 4% (summer) in Stuttgart. Anyway, the monthly spread of the spectral effects decreases as the latitude of the site does. Last, the impact of the solar spectrum distribution is remarkably reduced when the period of integration is enlarged up to a year. In fact, annual spectral gains keep below 2.2% for all the studied technologies and sites. - Highlights: • Monthly and annual spectral effects on eight different PV (photovoltaic) technologies studied. • Modeled spectra in four sites combined with relative spectral responses. • Measured spectra (12 months) in two sites combined with relative spectral responses. • Higher bandgap technologies: noticeable monthly variations in their spectral gains. • Annual spectral gains keep below 2.2% for all the studied technologies and sites

  20. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  1. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  2. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  3. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  4. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weng, Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  5. Structural evolution of utility systems and its implications for photovoltaic applications

    International Nuclear Information System (INIS)

    Iannucci, J.J.; Shugar, D.S.

    1993-01-01

    Photovoltaics (PV) differ substantially from the central generating stations traditionally employed by utilities. PV utilizes a fuel which disappears nightly, operating only while the sun shines. It has the potential of being highly reliable while requiring low levels of operating and maintenance attention, and it can be deployed in a highly modular fashion close to load. It is precisely these differences that give rise to PV's greatest opportunities in successfully entering the utility market. The purpose of this paper is to explore an emerging utility paradigm, the Distributed Utility concept, and how utilities might change their current planning and resource selection processes to take advantage of it, both to the betterment of the PV industry and the utility's customers. Out of this exploration emerges the photovoltaics Diffusion Model strategy that bridges the gap from currently economic stand-alone special applications of PV in utility operations to bulk power production. (author). 12 refs, 5 figs

  6. The potential of solar PV in Ontario

    International Nuclear Information System (INIS)

    McMonagle, R.

    2005-01-01

    Canada has lagged behind other industrialized nations in the growth of solar energy markets. Currently, over 78 per cent of the global market for solar energy is for grid-connected applications where power is fed into the electrical distribution network. Less than 3.5 per cent of the Canadian solar market is grid-connected. This report investigated the potential size of the photovoltaic (PV) market in Ontario given adequate support from both governments and utilities. The forecast was based on sustainable growth levels that the solar industry as a whole might maintain over an extended period of time. It was suggested that it is technically feasible to install over 3000 MW of PV in single, detached homes in the province, which could generate over 3200 GWh each year. If the right policy conditions were put in place, the technical potential for PV on all buildings in Ontario is over 14,000 MW by 2025, which would generate over 13,000 GWh annually. Support mechanisms such as the Advanced Renewable Tariff (ART) or Standard Offer Contracts (SOC) will enable the PV industry to build capacity. Future markets for PV include new homes, commercial buildings and the existing housing stock. With a properly designed system, it is forecasted that the deployment of PV by 2025 could result in the involvement of 400,000 homes with over 1200 MW of installed capacity and over 290 MW installed annually by 2025. Recommendations to Ontario Power Authority's (OPA) report supply mix report focused on the use of SOCs as the appropriate support mechanism to start building solar capacity in Ontario, as projections using SOCs would see Ontario following the growth patterns of other nations. It was concluded that the OPA report does not acknowledge the current growth rates of PV globally, nor does it fully consider the potential of PV in Ontario. 9 refs., 8 figs

  7. Photovoltaic array performance simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D. F.

    1986-09-15

    The experience of the solar industry confirms that, despite recent cost reductions, the profitability of photovoltaic (PV) systems is often marginal and the configuration and sizing of a system is a critical problem for the design engineer. Construction and evaluation of experimental systems are expensive and seldom justifiable. A mathematical model or computer-simulation program is a desirable alternative, provided reliable results can be obtained. Sandia National Laboratories, Albuquerque (SNLA), has been studying PV-system modeling techniques in an effort to develop an effective tool to be used by engineers and architects in the design of cost-effective PV systems. This paper reviews two of the sources of error found in previous PV modeling programs, presents the remedies developed to correct these errors, and describes a new program that incorporates these improvements.

  8. A low cost wireless data acquisition system for a remote photovoltaic (PV) water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoubi, A.; Mechlouch, R. F.; Brahim, A. B. [National School of Engineering of Gabes, Gabes University, Chemical and Processes Engineering Department, Gabes (Tunisia)

    2011-07-01

    This paper presents the design and development of a 16F877 microcontroller-based wireless data acquisition system and a study of the feasibility of different existing methodologies linked to field data acquisition from remote photovoltaic (PV) water pumping systems. Various existing data transmission techniques were studied, especially satellite, radio, Global System for Mobile Communication (GSM) and General Packet Radio Service (GPRS). The system's hardware and software and an application to test its performance are described. The system will be used for reading, storing and analyzing information from several PV water pumping stations situated in remote areas in the arid region of the south of Tunisia. The remote communications are based on the GSM network and, in particular, on the Short text Message Service (SMS). With this integrated system, we can compile a complete database of the different parameters related to the PV water pumping systems of Tunisia. This data could be made available to interested parties over the Internet. (authors)

  9. An analysis of reliability for photovoltaic systems on the field test project for photovoltaic in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Oozeki, Takashi; Yamada, Takao; Kato, Kazuhiko [National Institute of Advanced Industrial Science and Technology (AIST), Research center for photovoltaic (RCPV), Tsukuba (Japan); Yamamoto, Taiji [New Energy and Industrial Technology Development Organization, MUZA Kawasaki Central Tower, Kanagawa (Japan)

    2008-07-01

    To develop a Photovoltaic (PV) module and cell efficiency are not only important, but also improving PV system performances is the significant technology. The long term reliability is one of the most important in PV systems' performances. In Japan, NEDO (New Energy and Industrial Technology Development Organization) has organized ''Field test (FT) project in Japan'' from FY 1992 up to now. The user of PV systems in the project cooperates for collecting monitoring data and reports the information of maintenance and some failures of PV systems for four years. In this paper, the failures and maintenance information are reported by using MTBF, MTTR, and so on. Moreover, the power conditioner is suspended by some protection or other reason - it is not failure, and the power conditioner can be restarted-which are obtained by PV system user's reports. (orig.)

  10. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switch...

  11. Solar PV O&M Standards and Best Practices – Existing Gaps and Improvement Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John R. [High Performance PV, Phoenix, AZ (United States); Keating, T. J. [SunSpec Alliance, San Jose, CA (United States)

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  12. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares the ...

  13. NREL PV working with industry, first quarter 2000; pulling out all the stops

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Poole, L.; Cook, G.

    2000-05-03

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The First Quarter, 2000, issue offers an in-depth look at the PV Program's Five Year Plan and the PV industry's progress in developing a 20-year roadmap. The editorialist is Roger Little, President and CEO of Spire Corporation and a member of the NCPV Advisory Board.

  14. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  15. Directory of the French Photovoltaic Industry 2017 - 2018

    International Nuclear Information System (INIS)

    2017-02-01

    More than 500 companies, of which 200 are industrial companies with a manufacturing unit located in France, and some fifty are research centres, this is the rich panorama prepared by the 2017-18 directory of the French photovoltaic industry, representing more than 8,200 jobs. These companies operate throughout the photovoltaic value chain: from chemistry and electronics, to electricity production, to the development, construction and maintenance of photovoltaic systems. They constitute an economic sector in full developmental swing and one that is providing new, high-added value jobs. Therefore, some of our research centres (National Institute of Solar Energy, Photovoltaic Institute of Ile de France) are among the most advanced in the world. Our network of industrial and service companies is filled with little gems that we have to make fruitful. Content of this directory: Presentation of the French renewable energies syndicate (SER); Presentation of SER-SOLER, French solar photovoltaic professionals group; 'Putting France on the map', foreword by Jean-Louis Bal, President of SER and Xavier Daval, President of SER-SOLER; Presentation of France solar industry; Presentation of photovoltaic quality Alliance Photovoltaique; Areas of activity; The members of SER-SOLER; Other members of SER-SOLER; Other Companies; Index (Alphabetical, By activity, By region); Advertisers

  16. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  17. On the influence of the European trade barrier on the chinese pv industry: Is the solution to the solar-dispute “successful”?

    International Nuclear Information System (INIS)

    McCarthy, Killian J.

    2016-01-01

    In July 2013 the European Union (EU) imposed restrictions on Chinese solar photovoltaic (PV) manufacturers, looking to exporting to the EU. In this paper, we consider the impact of this trade barrier, using a sample of 454 stock-listed PV producing firms. We find that the trade barrier erased US$ 8,19 million off the value of the average European PV manufacturers and US$ 247.03 million off the value of the average Chinese PV manufacturers. We also find that while the trade barrier reduced the willingness of the industry to reorganise, it stimulates Chinese manufacturers to reorganise both their domestic and their international operations. The latter, we warn, is likely an attempt by Chinese manufacturers to ‘tariff jump’. We conclude, therefore, that the trade barrier was both inefficient, in that it both hurt the companies it aimed to protect, and ineffective, as those it sought to punish may have circumvented it. - Highlights: • Consider the impact of EU trade restrictions on 454 PV producing firms. • Show that the regulation wiped $8 m off the average European PV manufacturer. • Show that the regulation wiped US$247 m off the value of the average Chinese PV manufacturers. • Show that the regulation stimulated Chinese firms to circumvent the barrier. • Conclude that the trade barrier was inefficient and ineffective.

  18. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  19. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  20. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  1. Solar Photovoltaic Energy Policy in Europe: Losing Sight of What is Right. Current Developments and Lessons Learned for Policy-makers and Industry

    International Nuclear Information System (INIS)

    Cherrelle, Eid

    2012-01-01

    Europe has set ambitious but drastic targets in order to fight climate change. The 20-20-20 objectives demonstrate this. By 2020, emissions are to be reduced by 20%, the share of renewable energy sources (RES) in energy consumption is targeted to rise to 20%, and energy efficiency is planned to increase by 20% in comparison to the 1990 levels in Europe. In order for Europe to reach these objectives, national targets for each Member State have been set. While not yet officially binding, the 2050 road-map of the Commission is focused on achieving even stronger reductions, namely a reduction of 80% in emissions compared to 1990 levels. The 2020 objectives account for less than half of these 2050 objectives. Consequently, Member States are currently under pressure to formulate efforts seriously to comply with their national and European targets as part of the objective of sustainability. European countries have increased capacity of renewables: hydroelectric power, wind power, biomass and solar energy are increasingly produced. As part of the planned renewable electricity capacities for 2020, solar photovoltaic panels (PVs) are the third largest installed RES source, after hydroelectric capacity and wind capacity. PV is an interesting renewable source for several reasons. First, PV uses an energy source which is available daily: the sun. Secondly, PV has shown positive cost and efficiency improvements over time, which makes it increasingly interesting from a business perspective. It is assumed that PV will provide electricity at competitive prices soon in some countries. Thirdly, PV is one of the few domestically usable applications for electricity generation. This might shift the position of consumers to being co-producers or so-called 'prosumers'. These are a few of the reasons that explain the interest in analyzing efforts linked to PV. From an industrial point of view, PV panels are produced in-and outside Europe. Looking from a European perspective, it is

  2. 8th Swiss National Photovoltaics Congress. Conference proceedings

    International Nuclear Information System (INIS)

    Nowak, S.

    2010-01-01

    These congress proceedings contain the presentations made at the two-day 8 th Swiss National Photovoltaics Conference held in Winterthur, Switzerland, in February 2010. The presentations were grouped into six sessions. The first session dealt with promotional activities for photovoltaics (PV) in Switzerland. The presentations dealt with the present state of PV promotion, the cantonal support program in Basle and the Swiss photovoltaics market in a global context. The session was rounded off with a podium discussion on the Swiss cost-covering remuneration system for solar power. This theme was looked at in more detail in the second session of the conference; successes and hindrances in the system were discussed as well as an example of an alternative solar power 'exchange'. The third session looked at building-integration of PV systems; facade and roof integration and the use of flexible solar cells were discussed. The second day of the conference featured three further sessions. The first session dealt with transfer of know-how from research institutes to industry. A general overview was presented and specific examples of successful know-how transfer were reported on. The next session dealt with the great challenges presented by the efforts being made to expand the use of PV. Safety aspects were discussed, as were the certified testing of modules, mains integration and the training of personnel involved with the implementation of PV systems. The final session looked at the scenarios, perspectives and visions for Swiss and European PV business. PV systems were examined from the point of view of the semiconductor business, European energy planning, the role of PV in future energy supply and the roles of customers, investors and politics on the way to a renewable future.

  3. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Weng, Dean [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  4. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  5. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  6. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Roger R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration; Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration; Balfour, John R. [High Performance PV, Phoenix, AZ (United States)

    2015-01-01

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  7. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss

  8. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss interdepartmental platform for

  9. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  10. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  11. Applied photovoltaics as a practical education in renewable energy technologies

    International Nuclear Information System (INIS)

    Stoev, Mitko

    2009-01-01

    The optional course „Applied Photovoltaic” for MEng students specializing in Electronics at the Faculty of Electronics and Automation, TU-Plovdiv is presented. The main topics of the advanced PV course as a modern sustainable energetic based on the photovoltaic effect and energy from Sun as a renewable energy source; materials and technologies in photovoltaic; design of solar cells and PV modules and PV generators up to 100 kWp; BIPV and CIPV systems; hybrid PV systems; PV mounting; monitoring of PV systems and EC regulations for PV systems connected to the utility grid are discussed. The advanced teaching method by online e-platform with virtual resources is presented. Key words: PV education, PV technologies, applied photovoltaic, e-platform

  12. Practical design considerations for photovoltaic power station

    Science.gov (United States)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  13. Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV

    Directory of Open Access Journals (Sweden)

    Sarawut Ninsawat

    2016-10-01

    Full Text Available In an urban area, the roof is the only available surface that can be utilized for installing solar photovoltaics (PV, and the active surface area depends on the type of roof. Shadows on a solar panel can be caused by nearby tall buildings, construction materials such as water tanks, or the roof configuration itself. The azimuth angle of the sun varies, based on the season and the time of day. Therefore, the simulation of shadow for one or two days or using the rule of thumb may not be sufficient to evaluate shadow effects on solar panels throughout the year. In this paper, a methodology for estimating the solar potential of solar PV on rooftops is presented, which is particularly applicable to urban areas. The objective of this method is to assess how roof type and shadow play a role in potentiality and financial benefit. The method starts with roof type extraction from high-resolution satellite imagery, using Object Base Image Analysis (OBIA, the generation of a 3D structure from height data and roof type, the simulation of shadow throughout the year, and the identification of potential and financial prospects. Based on the results obtained, the system seems to be adequate for calculating the financial benefits of solar PV to a very fine scale. The payback period varied from 7–13 years depending on the roof type, direction, and shadow impact. Based on the potentiality, a homeowner can make a profit of up to 200%. This method could help homeowners to identify potential roof area and economic interest.

  14. Prospects and strategy for large scale utility applications of photovoltaic power systems

    International Nuclear Information System (INIS)

    Vigotti, R.; Lysen, E.; Cole, A.

    1996-01-01

    The status and prospects of photovoltaic (PV) power systems are reviewed. The market diffusion strategy for the application of PV systems by utilities is described, and the mission, objectives and thoughts of the collaboration programme launched among 18 industrialized countries under the framework of the International Energy Agency are highly with particular reference to technology transfer to developing countries. Future sales of PV systems are expected to grow in the short and medium term mainly in the sector of isolated systems. (R.P.)

  15. SOL-IND. Photovoltaics integrated in an industrialised building process. Final report; SOL-IND. Solceller integreret i industrielt byggeri. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Frederiksen, K.H.B.; Vestersager Engdal, J. (EnergiMidt A/S, Silkeborg (Denmark))

    2008-06-15

    The purpose of the project, EFP06 - Photovoltaics integrated in an industrialised building process (SOLIND), has been to examine the possibilities for PV (photovoltaics) in an industrialized building process. The project is an information gathering and development project with basis in knowledge about the possibilities for PV in relation to specific housing projects in Skanska Bolig A/S, including BoKlok, developed in cooperation with IKEA. During the project a workshop with participating architectural students has been carried through resulting in detailed concepts. The concepts have in general terms been introduced nationally to the press and were invited to a poster presentation at the world's largest PV conference. In addition to this, a number of prototypes are produced together with other presentation material. The projects has been divided into three phases. The report is divided into these three phases. 1) Knowledge gathering and unravelling 2) Analysis, development and evaluation, workshop for students. 3) Promotion and demonstration of results The main results are: 4) The project has resulted in increased knowledge about the possibilities with photovoltaics in industrialized building processes. 5) A number of concepts have been developed to fit PV in the project phase of an industrialized building process. 6) The most promising concepts has been demonstrated as prototypes in different scale together with other presentation materials The project continues in SOL-IND2, with the purpose to prepare and carry out an integration of a PV system in an industrialized building process. A subsidy is granted in 2008 from the EFP to prepare the construction. (au)

  16. Impact of PID on industrial rooftop PV-installations

    Science.gov (United States)

    Buerhop, Claudia; Fecher, Frank W.; Pickel, Tobias; Patel, Tirth; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.

    2017-08-01

    Potential induced degradation (PID) causes severe damage and financial losses even in modern PV-installations. In Germany, approximately 19% of PV-installations suffer from PID and resulting power loss. This paper focuses on the impact of PID in real installations and how different evaluated time intervals influence the performance ratio (PR) and the determined degradation rate. The analysis focuses exemplarily on a 314 kWp PV-system in the Atlantic coastal climate. IR-imaging is used for identifying PID without operation interruption. Historic electric performance data are available from a monitoring system for several years on system level, string level as well as punctually measured module string IV- curves. The data sets are combined for understanding the PID behavior of this PV plant. The number of PID affected cells within a string varies strongly between 1 to 22% with the string position on the building complex. With increasing number of PID-affected cells the performance ratio decreases down to 60% for daily and monthly periods. Local differences in PID evolution rates are identified. An average PR-reduction of -3.65% per year is found for the PV-plant. On the string level the degradation rate varied up to 8.8% per year depending on the string position and the time period. The analysis reveals that PID generation and evolution in roof-top installations on industrial buildings with locally varying operation conditions can be fairly complex. The results yield that local operating conditions, e.g. ambient weather conditions as well as surrounding conditions on an industrial building, seem to have a dominating impact on the PID evolution rate.

  17. Integration of Photovoltaics in Buildings—Support Policies Addressing Technical and Formal Aspects

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2013-06-01

    Full Text Available The integration of photovoltaic (PV generators in the envelope of a building by means of building-integrated photovoltaics (BIPV offers an immense potential, both in market development and the production of renewable electric energy that is close to the point of electricity consumption. In Germany, for example, by integrating photovoltaics in buildings up to 50% of the electricity demand can be covered. The political support of BIPV would contribute to the development and installation of BIPV components and therefore also promote the development of new business areas for industries dealing with components used in building envelopes and photovoltaic generators. BIPV can be separated into three different integration types: “technical”, “formal” and “technical & formal”. Political instruments for the support of PV-installations, particularly BIPV are discussed in this paper using Germany and France as examples. Due to successful financial support policies, PV became the most powerful electricity production technology in Germany. In France, the unique financial support of BIPV is resulting in an exemplary development and growth of certified BIPV components available on the market and, from a technical, aesthetic architectural and legal certainty point of view, facilitating the easy and widespread integration of photovoltaic generators in buildings.

  18. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, Ross [Fresh Energy, St. Paul, MN (United States); Ross, Brian [CR Planning, Minneapolis, MN (United States)

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  19. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  20. The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

    Directory of Open Access Journals (Sweden)

    Haoyang Cui

    2013-01-01

    Full Text Available The transient photovoltaic (PV characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  1. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  2. Photovoltaic System in Progress

    DEFF Research Database (Denmark)

    Shoro, Ghulam Mustafa; Hussain, Dil Muhammad Akbar; Sera, Dezso

    2013-01-01

    This paper provides a comprehensive update on photovoltaic (PV) technologies and the materials. In recent years, targeted research advancement has been made in the photovoltaic cell technologies to reduce cost and increase efficiency. Presently, several types of PV solar panels are commercially...... falls in the third generation PV technologies. However, Multi-junction Cells are still considered new and have not yet achieved commercialization status. The fundamental change observed among all generations has been how the semiconductor material is employed and the development associated with crystal...

  3. Impacts of Voltage Control Methods on Distribution Circuit’s Photovoltaic (PV Integration Limits

    Directory of Open Access Journals (Sweden)

    Anamika Dubey

    2017-10-01

    Full Text Available The widespread integration of photovoltaic (PV units may result in a number of operational issues for the utility distribution system. The advances in smart-grid technologies with better communication and control capabilities may help to mitigate these challenges. The objective of this paper is to evaluate multiple voltage control methods and compare their effectiveness in mitigating the impacts of high levels of PV penetrations on distribution system voltages. A Monte Carlo based stochastic analysis framework is used to evaluate the impacts of PV integration, with and without voltage control. Both snapshot power flow and time-series analysis are conducted for the feeder with varying levels of PV penetrations. The methods are compared for their impacts on (1 the feeder’s PV hosting capacity; (2 the number of voltage violations and the magnitude of the largest bus voltage; (3 the net reactive power demand from the substation; and (4 the number of switching operations of feeder’s legacy voltage support devices i.e., capacitor banks and load tap changers (LTCs. The simulation results show that voltage control help in mitigating overvoltage concerns and increasing the feeder’s hosting capacity. Although, the legacy control solves the voltage concerns for primary feeders, a smart inverter control is required to mitigate both primary and secondary feeder voltage regulation issues. The smart inverter control, however, increases the feeder’s reactive power demand and the number of LTC and capacitor switching operations. For the 34.5-kV test circuit, it is observed that the reactive power demand increases from 0 to 6.8 MVAR on enabling Volt-VAR control for PV inverters. The total number of capacitor and LTC operations over a 1-year period also increases from 455 operations to 1991 operations with Volt-VAR control mode. It is also demonstrated that by simply changing the control mode of capacitor banks, a significant reduction in the unnecessary

  4. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  5. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  6. Update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.; Bruhns, H.

    1999-07-01

    The article describes an updated database of photovoltaic (PV) installations in the UK. The database contains more than 300 records representing over 40,000 photovoltaic installations with more than 100 buildings that use photovoltaic arrays. Figures show: (i) a chart of cumulative PV applications to date; (ii) a chart of cumulative installations in the database; (iii) the growth of Building Integrated PV installed to date; (iv) the cumulative growth of peak power of PV for buildings installed every year since 1985; (v) the distribution by application of all PV installations in the database and (vi) the various applications of PV installations.

  7. PV/T slates - Laboratory measurements; PV/T-Schiefer. Labormessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with an experimental outdoor set-up and reviews in-situ measurements made on a prototype of a ventilated PV-tile system (PV/T-Slates). The report describes the configuration and construction of the experimental PV-tiled roof and the measurement system used to measure its electrical and thermal performance. The results of the measurements made are presented in detail in graphical form. The influence of various factors such as air-slit width and mounting angle are discussed.

  8. Overcoming PV grid issues in the urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Ehara, T.

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at grid issues in urban photovoltaic electricity and how to overcome them. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The paper discusses the goal of mainstreaming PV systems in the urban environment. In this report, PV grid interconnection issues and countermeasures based on the latest studies are identified and summarised. Appropriate and understandable information is provided for all possible stakeholders. Possible impacts and benefits of PV grid interconnection are identified, technical measures designed to eliminate negative impacts and enhance possible benefits are presented. The status of research and demonstration projects is introduced and the latest outcomes are summarised. Recommendations and conclusions based on the review process are summarised and presented.

  9. Influence of Special Weather on Output of PV System

    Science.gov (United States)

    Zhang, Zele

    2018-01-01

    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  10. Photovoltaic research and development in Japan

    Science.gov (United States)

    Shimada, K.

    1983-01-01

    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies.

  11. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 5th European PV-hybrid and mini-grid conference 29th and 30th April, 2010 in Tarragona (Spain) the following lectures were held: (1) Overview of IEA PVPS Task 11 PV-hybrid systems within mini grids; (2) Photovoltaic revolution for deployment in developing countries; (3) Legal and financial conditions for the sustainable operation of mini-grids; (4) EU instruments to promote renewable energies in developing countries; (5) PV hybridization of diesel electricity generators: Conditions of profitability and examples in differential power and storage size ranges; (6) Education suit of designing PV hybrid systems; (7) Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam; (8) Techno-economic feasibility of energy supply of remote villages in Palestine by PV systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages); (9) Technical, economical and sustainability considerations of a solar PV mini grid as a tool for rural electrification in Uganda; (10) Can we rate inverters for rural electrification on the basis of energy efficiency?; (11) Test procedures for MPPT charge controllers characterization; (12) Energy storage for mini-grid stabilization; (13) Redox flow batteries - Already an alternative storage solution for hybrid PV mini-grids?; (14) Control methods for PV hybrid mini-grids; (15) Partial AC-coupling in mini-grids; (15) Normative issues of small wind turbines in PV hybrid systems; (16) Communication solutions for PV hybrid systems; (17) Towards flexible control and communication of mini-grids; (18) PV/methanol fuel cell hybrid system for powering a highway security variable message board; (19) Polygeneration smartgrids: A solution for the supply of electricity, potable water and hydrogen as fuel for transportation in remote Areas; (20) Implementation of the Bronsbergen micro grid using FACDS; (21) A revisited approach for the design of PV wind hybrid systems; (22

  12. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  13. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  14. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff

    DEFF Research Database (Denmark)

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar

    2017-01-01

    Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill......, and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-connected solar photovoltaic (PV)-battery storage system-with respect to maximum demand shaving. An effective......, technical, and economic aspects of the solar PV-battery system and the Malaysian electricity tariff for commercial and industrial customers....

  15. Experimental integrated photovoltaic systems

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Markovska, Natasha; Dimitrov, D.; Kocev, K.; Dimitrovski, D.

    2000-01-01

    Recently, the interest in building-integrated photovoltaic installations has started to increase within governmental and municipality authorities, as well as some industrial companies. To serve a national public-awareness program of solar electricity promotion and education, the indigenous solar energy potential, optimization of possible PV installation, and three test cases of building-integrated grid-connected experimental facilities have been studied. The results showed the feasibility and performance of the proposed concepts. (Original)

  16. Low-voltage grid-connection of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A.; Thornycroft, J.

    1999-07-01

    This report summarises the results of a project aimed at developing technical guidelines concerning grid connected photovoltaic (PV) inverter generators which are to be published in draft form as the {sup U}K Technical Guidelines for Inverter Connected Single Phase Photovoltaic (PV) Generators up to 5kVA{sup .} The background to the use of PV in the UK is traced, and the technical criteria for electrical integration of PV systems, and UK guidelines for grid connected PV systems are examined. The findings of the working group of the International Energy Agency (IEA) Implementing Agreement on Photovoltaic Power Systems are also presented in this report. Appendices discuss the UK technical guidelines, the IEA Task V activities,, utility aspects of grid-connected PV systems, and demonstration tests on grid-connected PV systems, and lists Task V reports.

  17. Building integrated photovoltaics

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.A.E.P.; Geurts, C.P.W.; Reinders, Angèle; Verlinden, Pierre; Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Photovoltaic (PV) installations can be realized in different situations and on different scales, such as at a building level. PV installations at the building level can either be added to the building envelope, which is called building added PV (BAPV), or they can be integrated into the building

  18. The Multi-TW Scale Future for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Gregory M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-19

    This chapter is focused on photovoltaics (PV) and argues that this rapidly developing technology is emerging as one of the most important tools policy makers have for meeting COP21 carbon emissions reduction targets. Focusing on the contributions and advancements that PV is likely to make to the global energy system over the next 10-15 years, it gives a basic overview of mainstream PV conversion technologies, summarizes roughly 40 years of research and industrial history then closes with a brief discussion of how PV and energy storage are likely to impact the world's energy landscape going forward. The chapter closely couples an increasingly urgent carbon emissions and climate change problem with dramatic PV advancements over the last 10 years in terms of both performance and cost. Ultimately PV is presented as an extremely useful tool for helping to reduce global carbon emissions with little to no increase in electricity costs, in a timeframe that is meaningful to the global carbon emissions problem.

  19. The multi-TW scale future for photovoltaics

    Science.gov (United States)

    Wilson, Gregory

    2018-01-01

    This chapter is focused on photovoltaics (PV) and argues that this rapidly developing technology is emerging as one of the most important tools policy makers have for meeting COP21 carbon emissions reduction targets. Focusing on the contributions and advancements that PV is likely to make to the global energy system over the next 10-15 years, it gives a basic overview of mainstream PV conversion technologies, summarizes roughly 40 years of research and industrial history then closes with a brief discussion of how PV and energy storage are likely to impact the world's energy landscape going forward. The chapter closely couples an increasingly urgent carbon emissions and climate change problem with dramatic PV advancements over the last 10 years in terms of both performance and cost. Ultimately PV is presented as an extremely useful tool for helping to reduce global carbon emissions with little to no increase in electricity costs, in a timeframe that is meaningful to the global carbon emissions problem.

  20. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  1. REVIEW ON GRID INTERFACING OF MULTIMEGAWATT PHOTOVOLTAIC INVERTERS

    OpenAIRE

    Mr. Vilas S. Solanke*; Mr. Naveen Kumar

    2016-01-01

    This paper presents review on the latest development of control of grid connected photovoltaic energy conversion system. Also this paper present existing systems control algorithm for three-phase and single phase grid-connected photovoltaic (PV) system. This paper focuses on one aspect of solar energy, namely grid interfacing of large-scale PV farms. This Grid-connected photovoltaic i.e. PV systems can provide a number of benefits to electric utilities, such as power loss reduction, improve...

  2. PV working with industry, Second Quarter, 1999: Shedding light on the matter

    International Nuclear Information System (INIS)

    Moon, S.; Poole, L.

    1999-01-01

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 1999 issue, titled ''Shedding Light on the Matter,'' focuses on the PV-related research activities of NREL's Basic Sciences Center. The editorialist is Satyen Deb, in his role as Director of the Basic Sciences Center

  3. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Shan Su

    2013-01-01

    Full Text Available The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.

  4. Innovation in Photovoltaic Science, Engineering, and Policy: A Potential Trillion-Dollar Global Industry for Sustainable Energy

    Science.gov (United States)

    Zheng, Cheng

    The solar photovoltaic (PV) technology was an expensive niche energy source only for satellite applications, hallmarked by the Bell Lab's launch of the Telstar satellite with PV cells in 1962. Over the past decades, the accumulation of vast amount of effort across various disciplines in science, engineering, and policy has enabled the phenomenal growth of the solar PV industry into a global enterprise with about 140 gigawatt (GW) of cumulative installations by the end of 2013. Further cost reduction through innovation holds the promise in deploying terawatt (TW)-scale solar PV systems globally in both developed and developing countries, meeting growing energy demand and mitigating climate change. Chapter 1 presents a big picture view of the unsustainable path, heavily relying on fossil fuels, in the current global energy landscape. The main body of the dissertation examines the solar PV technology from a holistic and interdisciplinary perspective: from the basic research, to innovations in manufacturing and installing PV modules, to the driving energy policies. Chapter 2 offers a fundamental understanding of the PV technology and a review on recent scientific advances in improving PV efficiency (W/m 2). Chapter 3 reviews the state-of-the-art process flow in manufacturing commercial PV modules. In the context of pursuing further reduction in manufacturing cost (/m2), the thin Si film concept and its recent research effort are reviewed. Aiming to explore novel ways to produce high-quality seed crystals for thin Si film deposition, the key findings of the laser crystallization experiment is presented in Chapter 4. The fundamental thermophysics of nucleation and crystal growth is first reviewed, which highlights the importance of temperature evolution and heat transport in modelling the ultrafast laser crystallization process. Laser crystallization of a range of Si nanostructures are then carried out to study the nucleation and crystal growth behavior under some novel

  5. Photovoltaics information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  6. Re-considering the Economics of Photovoltaic Power

    Energy Technology Data Exchange (ETDEWEB)

    Bazilian, M. [International Institute for Applied Systems Analysis IIASA, Laxenburg (Austria); Onyeji, I. [United Nations Industrial Development Organization UNIDO, Vienna (Austria); Liebreich, M.; Chase, J. [Bloomberg New Energy Finance BNEF, London (United Kingdom); MacGill, I. [University of New South Wales, Sydney (Australia); Shah, J. [KMR Infrastructure, Washington DC (United States); Gielen, D. [International Renewable Energy Agency IRENA, IITC, Bonn (Germany); Arent, D. [Joint Institute for Strategic Energy Analysis, Colorado (United States); Landfear, D. [AGL Energy Limited, Sydney (Australia); Zhengrong, S. [Suntech Power Holdings, Wuxi (China)

    2012-05-15

    We briefly consider the recent dramatic reductions in the underlying costs and market prices of solar photovoltaic (PV) systems, and their implications for decision-makers. In many cases, current PV costs and the associated market and technological shifts witnessed in the industry have not been fully noted by decision-makers. The perception persists that PV is prohibitively expensive, and still has not reached competitiveness? We find that the commonly used analytical comparators for PV vis a vis other power generation options may add further confusion. In order to help dispel existing misconceptions, we provide some level of transparency on the assumptions, inputs and parameters in calculations relating to the economics of PV. The paper is aimed at informing policy makers, utility decision-makers, investors and advisory services, in particular in high-growth developing countries, as they weigh the suite of power generation options available to them.

  7. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  8. A new future for the French photovoltaic industry

    International Nuclear Information System (INIS)

    Laborde, E.

    2009-01-01

    The French photovoltaic industry counts two major players: Photowatt and Tenesol (formerly Total-energy). Specialized in distribution networks and systems engineering, Tenesol has recently become involved in assembling photovoltaic panels; it holds a strong position in its historical markets (France's overseas territories and departments). Photowatt, now celebrating its 30. birthday, is the only French manufacturer of solar wafers, cells and modules. It represents the core of France's photovoltaic industry. Although some small businesses are emerging in this sector, very few of them are involved in technological activities capable of achieving an industrial scale. For a long time, Photowatt has been leading the market and has even risen to number five worldwide. It is thriving thanks to niche markets (isolated sites, solar pumps) with public funding (national or international). (author)

  9. Research and photovoltaic industry at the United States

    International Nuclear Information System (INIS)

    Lerouge, Ch.; Herino, R.; Delville, R.; Allegre, R.

    2006-06-01

    For a big country as the United States, the solar energy can be a solution for the air quality improvement, the greenhouse gases fight and the reduction of the dependence to the imported petroleum and also for the economic growth by the increase of the employment in the solar industry sector. This document takes stock on the photovoltaic in the United States in the industrial and research domains. The american photovoltaic industry is the third behind the Japan and the Germany. (A.L.B.)

  10. Building opportunities in the U.S. for PV (PV:BONUS): A progress report

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1994-01-01

    Five contract teams are developing photovoltaic (PV) products that will have a significant impact on building-integrated PV systems. The product lines that these teams are pursuing include roofing materials, building facade materials, PV integrated into modular homes, ac-PV modules, and utility-dispatchable PV systems. The objective of these efforts is to develop product and market opportunities that can provide for the introduction of PV into the buildings market sector at higher allowable installed systems costs than conventional ground- or roof-mounted systems. Each of the teams has a unique approach, and synergistic opportunities among teams are beginning to emerge. This paper reviews the product and market development efforts of these teams and describes the links between the product efforts and parallel analytical work to develop PV as a demand-side management option

  11. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  12. Co-ordinated experimental research into PV power interaction with the supply network - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, R.; Thornycroft, J.; Knight, J.

    2000-07-01

    This report describes the development of a procedure for type testing photovoltaic inverters that are suitable for connecting to the UK public distribution system based on experimental research and consultation within the industry. Phase 1 of the project investigated the performance of the inverters and the cumulative effect of multiple installation on a section of distributed network, and Phase 2 concentrated on the requirements for PV inverters that would allow them to be connected to the grid without further investigation and to develop a type test procedure. The production of the 'UK Technical Guidelines for Inverter Connected Single Phase Photovoltaic (PV) Generators up to 5kVA' based on the project results and its adoption by the Electricity Association as draft Engineering Recommendations G77 are reported.

  13. Impedance characterization of PV modules in outdoor conditions

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Thorsteinsson, Sune; Spataru, Sergiu

    2016-01-01

    Impedance spectroscopy (IS) has been used for laboratory characterizations of photovoltaic (PV) technologies under well controlled conditions. This work applies IS for outdoor characterization of PV panels, in order to observe the effect of irradiance (G) and temperature (T) on the PV module’s...

  14. Electricity generation modeling and photovoltaic forecasts in China

    Science.gov (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  15. Research and Design of Fixed Photovoltaic Support Structure Based on SAP2000

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2018-01-01

    Full Text Available In the solar photovoltaic power station project, PV support is one of the main structures, and fixed photovoltaic PV support is one of the most commonly used stents. For the the actual demand in a Japanese photovoltaic power, SAP2000 finite element analysis software is used in this paper, based on Japanese Industrial Standard (JIS C 8955-2011, describing the system of fixed photovoltaic support structure design and calculation method and process. The results show that: (1 according to the general requirements of 4 rows and 5 columns fixed photovoltaic support, the typical permanent load of the PV support is 4679.4 N, the wind load being 1.05 kN/m2, the snow load being 0.89 kN/m2 and the seismic load is 5877.51 N; (2 by theoretical calculation of the two ends extended beam model, the beam span under the rail is determined 2200 mm; (3 by the way of using the single factor experiment, through the calculation and analysis of SAP2000, the three best supporting points of the support of the W stent are determined; (4 by comprehensive simulation, the optimal parameters for the rail, beam, support and bolt are 60× 60× 1.0, 60× 60× 1.0, 40× 50× 2.0, and M10 respectively.

  16. Canadian photovoltaic commercial activity review

    International Nuclear Information System (INIS)

    Adkinson, D.J.; Royer, J.

    1992-01-01

    A survey was performed on the activities of the Canadian photovoltaic (PV) industry during 1988 for the three years of 1985-1987, and a similar survey was carried out in 1989. The findings of the latest survey are reported and compared with the previous survey. Market growth rates in the order of 15%/y and greater in the international market are reflected in the Canadian scene with an estimated 1989 activity in the range of $15 million. Details are presented of the distribution of firms across Canada, the distribution of annual sales activities by application, annual PV module sales in Europe and globally, breakdown of PV module powers produced by the United States, Japan, Europe, and others, breakdown of reported sales in Canada by source/destination, regional distribution of sales for installation in Canada, distribution by purchaser type for sales of PV equipment in Canada, and a summary of sales classified by application. In 1989 for the first time global demand for PV modules exceeded supply. 8 refs., 9 tabs

  17. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  18. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  19. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  20. Basic photovoltaic principles and methods

    Energy Technology Data Exchange (ETDEWEB)

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  1. Solar photovoltaic projects in the mainstream power market

    CERN Document Server

    Wolfe, Philip

    2012-01-01

    Develop large-scale solar photovoltaic projects with this book, to feed power into a grid. Contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and what will be the world's largest PV plant, the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry.Contents cover:planning and structuring projectssiting, planning and connection issuesbuilding and operating projectstechnology basicseconomies of PVhistory and business of PVfinancing and regulationtechnical aspects of system design.Supported by figures and photographs, this is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing mega-watt solar PV projects in a mainstream power market.

  2. Economic PV - a shift in thinking

    International Nuclear Information System (INIS)

    Maycock, P.

    1999-01-01

    This article argues that photovoltaic (PV) technology is already economically viable contrary to current opinion. A table of world PV module shipments for 1990 to 1998 by market sector is presented, and use of PV modules in consumer electronics such as calculators, battery trickle chargers, and garden lights; in communications and signals (eg. microwave repeaters, cellular communication); and in the residential sector in fluorescent lights, radios etc. are discussed. The early adopters of PV technology, and the value placed on PV devices by consumers are considered. Details of PV manufacturing costs for 1997, and forecasts for 2000 and 2010 are tabulated

  3. Energy matrices evaluation and exergoeconomic analysis of series connected N partially covered (glass to glass PV module) concentrated-photovoltaic thermal collector: At constant flow rate mode

    International Nuclear Information System (INIS)

    Tripathi, Rohit; Tiwari, G.N.; Dwivedi, V.K.

    2017-01-01

    Highlights: • Fluid, other than water has been chosen for achieving higher outlet temperature. • Mass flow rate and number of collector have been optimized. • Three PVT systems have been compared for evaluating annual energy and exergy. • Life cycle cost analysis has been evaluated to obtain exergetic cost. • Proposed PVT systems have been compared on the basis of energy matrices. - Abstract: In present analysis, a comparative study has been carried out to evaluate the annual performances of three systems or cases at constant flow rate, namely: case (i): partially covered (25% PV module) N concentrated photovoltaic thermal collectors connected in series, case (ii): fully covered (100% PV module) N concentrated photovoltaic thermal collectors in series and case (iii): N (0% PV module) convectional compound parabolic concentrator collector connected in series. Comparison for three cases has also been carried out by considering fluid namely: ethylene glycol for higher outlet temperature and better thermal performance which can be applicable for heating and steaming or small industry purpose. The embodied energy, energy matrices, uniform annual cost, exergetic cost and carbon credits are also evaluated for same systems. The energy payback time is found to be 5.58 years and energy production factor is to be 0.17 on energy basis for case (iii) which is maximum. The exergetic cost has computed as 17.85 Rs/kW h for 30 years of life time of the system. It is observed that N conventional compound parabolic concentrator collector [case (iii)] is most suitable for steam cooking or space heating but not self-sustainable to run the dc power motor due to unavailability of electrical power.

  4. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  5. PV-CAD: an integrated tool for designing PV facades; PV-CAD - Ein integriertes Werkzeug zur Auslegung von PV-Fassaden

    Energy Technology Data Exchange (ETDEWEB)

    Giese, H.; Viotto, M. [Inst. fuer Solare Energieversorgungstechnik (ISET) e.V., Kassel (Germany); Esser, M.; Pukrop, D. [Univ. Oldenburg (Germany). Abt. Energie- und Halbleiterforschung; Stellbogen, D. [Zentrum fuer Sonnenergie- und Wasserstoff-Forschung, Stuttgart (Germany)

    1997-12-31

    PV-CAD provides PV system planners with a practice-oriented tool for an efficient design of PV facades. Being compatible with the standard programmes of the architects` and electrical engineering sectors it can be used on already existing systems and allows the user to draw on previously acquired knowedge. Its open interfaces permit the integration of further design tools. PV CAD works under Microsoft Windows for which it has the necessary graphic user interface. Its compliance to PC standards opens up a wide range of applications and permits its use also on inexpensive computers. Thanks to its promotion by the Federal Ministry for Education, Science, Research, and Technology under the research project ``Computer programmes for the design of photovoltaic facades`` PV-CAD is available at a moderate price. PV-CAD permits an efficient planning of solar facades and therefore has the potential to stimulate the use of PV on buildings. (orig.) [Deutsch] Mit PV-CAD steht dem Anlagenplaner ein anwendungsorientiertes Werkzeug zur Verfuegung, das eine rationelle Auslegung von PV-Fassaden ermoeglicht. Die Kompatibilitaet zu Standardprogrammen aus dem Architektur- und Elektrosektor erlaubt die Nutzung bereits vorhandener Systeme und damit erworbener Kenntnisse. Offene Schnittstellen gestatten die Einbindung weiterer Entwurfswerkzeuge. PV-CAD arbeitet unter Microsoft-Windows und verfuegt ueber die entsprechende grafische Benutzerschnittstelle. Die Kompatibilitaet zum PC-Standard eroeffnet eine sehr breite Anwenderbasis und ermoeglicht den Einsatz des Programms auch auf preiswerten Rechnern. Aufgrund der Foerderung durch das Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie im Rahmen des Forschungsprojekts `Rechnerprogramm zur Auslegung von Photovoltaik-Fassaden` steht PV-CAD preiswert zur Verfuegung. PV-CAD ermoeglicht eine effiziente Planung von Solarfassaden und kann daher dem PV-Einsatz in Gebaeuden weitere Impulse geben. (orig.)

  6. PV working with industry, Second Quarter, 1999: Shedding light on the matter

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Poole, L.

    1999-09-13

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 1999 issue, titled ''Shedding Light on the Matter,'' focuses on the PV-related research activities of NREL's Basic Sciences Center. The editorialist is Satyen Deb, in his role as Director of the Basic Sciences Center.

  7. System engineering and design of LSC-PV for outdoor lighting applications

    NARCIS (Netherlands)

    Viswanathan, B.; Reinders, A.H.M.E.; De Boer, D.K.G.; Ras, A.; Zahn, H.; Desmet, L.

    2012-01-01

    Solar photovoltaic outdoor lighting applications usually comprise flat plate PV modules mounted on top of a light pole. In our paper instead, it is thought of to design the light pole as a luminescent solar concentrator photovoltaic (LSC-PV) module with solar cell strips and hence reduce costs of

  8. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. PV for rural electrification in developing countries - Programme design, planning and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W. [Institute for Sustainable Power, Highlands Ranch, CO (United States); Oldach, R.; Wilshaw, A. [IT Power Ltd, The Manor house, Chineham (United Kingdom)

    2003-09-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the design, planning and implementation of PV programmes. The guide contains details on the preparation for PV programmes, including the assessment of needs, stakeholder consultation, social context analysis, supply options and national policy considerations. The establishment of goals, delivery modes, timelines, logistics and quality assurance are discussed. Further, the implementation, monitoring and evaluation of PV programmes is discussed, as are a number of methodologies that have been developed with the aim of improving programme design and implementation. The guide highlights issues pertinent to rural energy programmes in developing countries and leads programme administrators through the process of planning, implementing and evaluating a PV programme.

  9. A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems

    International Nuclear Information System (INIS)

    Tan, Chee Wei; Green, Tim C.; Hernandez-Aramburo, Carlos A.

    2010-01-01

    This paper presents a stochastic simulation using Monte Carlo technique to size a battery to meet dual objectives of demand shift at peak electricity cost times and outage protection in BIPV (building integrated photovoltaic) systems. Both functions require battery storage and the sizing of battery using numerical optimization is popularly used. However, the weather conditions, outage events and demand peaks are not deterministic in nature. Therefore, the sizing of battery storage capacity should also be based on a probabilistic approach. The Monte Carlo simulation is a rigorous method to sizing BIPV system as it takes into account a real building load profiles, the weather information and the local historical outage distribution. The simulation is split into seasonal basis for the analysis of demand shifting and outage events in order to match the seasonal weather conditions and load profiles. Five configurations of PV (photovoltaic) are assessed that cover different areas and orientations. The simulation output includes the predicted PV energy yield, the amount of energy required for demand management and outage event. Therefore, consumers can base sizing decisions on the historical data and local risk of outage statistics and the success rate of meeting the demand shift required. Finally, the economic evaluations together with the sensitivity analysis and the assessment of customers' outage cost are discussed.

  10. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  11. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  12. Analysis and Modeling of Interharmonics from Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    The industry of solar Photovoltaic (PV) energy and its exploitation are still booming to enhance the sustainability of the society. When PV systems are connected to the grid, challenging issues should be addressed. One of the challenges is related to interharmonics in PV systems, especially...... with a largescale adoption of PV systems. However, the origins of interharmonics remain unclear, although the impact of interhamonics has been reported in literature. Thus, this paper explores the generation mechanisms of interharmonics in PV systems and its characteristics. The exploration reveals...... that the perturbation from the Maximum Power Point Tracking (MPPT) algorithm is one of the origins of interharmonics appearing in the grid current. Accordingly, the MPPT controller parameters such as the perturbation step-size and the sampling rate have an inevitable impact on the interharmonic characteristics...

  13. Photovoltaic Incentive Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  14. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  15. 2017 NREL Photovoltaic Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.

  16. PV as a core element of utility business plans

    International Nuclear Information System (INIS)

    Osborn, Don

    2000-01-01

    The author expounds the advantages and rationale for utility PV (photovoltaics) business strategies and discusses various initiatives being taken by some companies in the US. It is claimed that in perhaps 5-12 years the photovoltaics price will be competing with retail electricity and customer-owned utilities should be in a position to offer photovoltaics as an option rather than concede that business to someone else. Five specific reasons for investing in PVs are given and the message is that if you are not involved then get involved. The author describes his own company's commitments to PV and suggests that regulators and legislators should appreciate the long term interests of the ratepayer in that investment now in higher cost PV technology will lead to greater cost reductions in the future

  17. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  18. Photovoltaic performance and reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mrig, L. [ed.

    1993-12-01

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  19. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  20. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    International Nuclear Information System (INIS)

    Chel, Arvind; Tiwari, G.N.

    2010-01-01

    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW P photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO 2 emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems.

  1. Environmental costs of photovoltaics

    International Nuclear Information System (INIS)

    Hill, R.; Baumann, A.E.

    1993-01-01

    Photovoltaic (PV) systems are almost entirely benign in operation, and potential environmental hazards occur at the production and disposal stages. There are well established methods of monitoring and controlling potential hazards caused by the semiconductor materials used in PV modules such as silicon, copper indium diselenide and cadmium telluride. The main environmental hazards of photovoltaics are connected to the production processes. These processes require an input of energy, and this energy is derived from the standard fuel mix of the nation in which production takes place. The production of PV systems therefore has associated with it, emissions of greenhouse and acidic gases. However, as the new thin film PV technologies come into production, and the scale of production increases, the energy input to PV systems will decrease considerably, with consequent reduction in carbon dioxide emissions, to levels below that of other electricity generating technologies. (Author)

  2. Task 9: deployment of photovoltaic technologies: co-operation with developing countries. Sources of financing for PV-based rural electrification in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W. [Institute for Sustainable Power, Highlands Ranch, CO (United States); Syngellakis, K. [IT Power Ltd, The Manor house, Chineham (United Kingdom); Shanker, A. [Innovation Energie Developpement, IED, Francheville (France)

    2004-05-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at how PV-based rural electrification in developing countries can be financed. The objective of Task 9 is to increase the overall rate of successful deployment of PV systems in developing countries through increased co-operation and information exchange. This document provides an introduction to PV project financing, including funding sources available, strategies and planning needed to secure the necessary financial resources for the deployment of PV technologies in developing and transitional economies. Topics discussed include risk analysis and the barriers to financing, sources of financing, considerations and variables that influence financing decisions and the process for securing financing. Various forms of international and national financing are looked at, as are the factors influencing financing decisions.

  3. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  4. Photovoltaic applications for rural areas in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P. [Helsinki Univ. of Technology, Espoo (Finland); Faninger-Lund, H. [Solpros Ay, Helsinki (Finland)

    1997-12-31

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW{sub e}/a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W{sub p}. The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  5. Photovoltaic applications for rural areas in North-East Europe

    International Nuclear Information System (INIS)

    Lund, P.; Faninger-Lund, H.

    1997-01-01

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW e /a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W p . The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  6. Photovoltaic applications for rural areas in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P [Helsinki Univ. of Technology, Espoo (Finland); Faninger-Lund, H [Solpros Ay, Helsinki (Finland)

    1998-12-31

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW{sub e}/a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W{sub p}. The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  7. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    International Nuclear Information System (INIS)

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  8. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  9. The PV market

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1990s. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market however is highly dependent on a number of market factors such as the cost of conventional energy the cost of PV systems utility acceptance of PV and regulatory controls. Government and institutional regulations, environmental issues, and OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer stand-alone and utility markets

  10. The Geography of Solar Photovoltaics (PV and a New Low Carbon Urban Transition Theory

    Directory of Open Access Journals (Sweden)

    Peter Newton

    2013-06-01

    Full Text Available This paper examines the early phases of a 21st century energy transition that involves distributed generation technologies employing low or zero carbon emission power sources and their take-up within Australia, with particular reference to the major cities and solar photovoltaics (PV. This transition is occurring in a nation with significant path dependency to overcome in relation to fossil fuel use. Tracking the diffusion of solar PV technology within Australia over the past decade provides a basis for assessing those factors underpinning its exponential growth and its associated geography of diffusion. Positive evidence that there are pathways for cities to decarbonise is apparent but there appear to be different pathways for different city forms with lower density suburban areas showing the biggest take-up of household-based energy technologies. This suggests a model for the low carbon urban transition involving combinations of simple technological changes and harder structural changes, depending upon which parts of the urban fabric are in focus. This is being called a New Low Carbon Urban Transition Theory.

  11. A New Controller to Enhance PV System Performance Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Roshdy A AbdelRassoul

    2017-06-01

    Full Text Available In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.

  12. Solar photovoltaic basics a study guide for the NABCEP entry level exam

    CERN Document Server

    White, Sean

    2014-01-01

    Whether or not you are taking the NABCEP Entry Level Exam, learning the material covered in this book is the best investment you can make towards your place in the solar industry.This book explains the science of photovoltaics (PV) in a way that most people can understand using the curriculum which reflects the core modules of the NABCEP Entry Level Exam.Providing complete coverage of the NABCEP syllabus in easily accessible chapters, addressing all of the core objectives that will aid in passing the PV Entry Level Exam including the ten main skill sets:PV Markets and Applications Safety Basic

  13. Autonomous photovoltaic lighting system

    OpenAIRE

    Hafez, Ahmed A. A.; Montesinos Miracle, Daniel; Sudrià Andreu, Antoni

    2012-01-01

    This paper introduces a comparison between the conventional and Photovoltaic (PV) lighting systems. A simple sizing procedure for a PV stand-alone system was advised. The paper also proposes a novel PV lighting system. The proposed system is simple, compact and reliable. The system operation was investigated by thoroughly mathematical and simulation work.

  14. Overview of Recent Grid Codes for PV Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2012-01-01

    The challenge to bring down the cost of produced photovoltaic (PV) power had a major impact on the PV market and in consequence the grid operators experienced higher and higher PV power penetration. The growing share of this decentralized generation plants started to affect the grid stability...

  15. Optimal design of PV and HP system

    DEFF Research Database (Denmark)

    Nepper-Rasmussen, Bjarke Christian; Rasmussen, Theis Bo

    2015-01-01

    Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution is descr...... that the thermal storage with a BT is a better investment than a PV system without HP or no investment. Furthermore, it showed that the optimization model developed in this project is capable of finding the optimal combination of component sizes based on our data.......Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution...... is described, where the thermal energy is stored in a buffer tank (BT) capable of dispersing heat to either the heating system of a house or a hot water tank, for later use. The thermal storage solution including a BT can increase the self-consumption of residentially produced PV power and thereby shift...

  16. Optimal stochastic management of renewable MG (micro-grids) considering electro-thermal model of PV (photovoltaic)

    International Nuclear Information System (INIS)

    Najibi, Fatemeh; Niknam, Taher; Kavousi-Fard, Abdollah

    2016-01-01

    This paper aims to report the results of the research conducted to one thermal and electrical model for photovoltaic. Moreover, one probabilistic framework is introduced for considering all uncertainties in the optimal energy management of Micro-Grid problem. It should be noted that one typical Micro-Grid is being studied as a case, including different renewable energy sources, such as Photovoltaic, Micro Turbine, Wind Turbine, and one battery as a storage device for storing energy. The uncertainties of market price variation, photovoltaic and wind turbine output power change and load demand error are covered by the suggested probabilistic framework. The Micro-Grid problem is of nonlinear nature because of the stochastic behavior of the renewable energy sources such as Photovoltaic and Wind Turbine units, and hence there is need for a powerful tool to solve the problem. Therefore, in addition to the simulated thermal model and suggested probabilistic framework, a new algorithm is also introduced. The Backtracking Search Optimization Algorithm is described as a useful method to optimize the MG (micro-grids) problem. This algorithm has the benefit of escaping from the local optima while converging fast, too. The proposed algorithm is also tested on the typical Micro-Grid. - Highlights: • Proposing an electro-thermal model for PV. • Proposing a new stochastic formulation for optimal operation of renewable MGs. • Introduction of a new optimization method based on BSO to explore the problem search space.

  17. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  18. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing. Supplemental Requirements to ISO 9001-2008

    Energy Technology Data Exchange (ETDEWEB)

    Ramu, Govind [Sun Power, San Jose, CA (United States); Yamamichi, Masaaki [National Inst. of Advanced Industrial Science and Technology (AIST); Zhou, Wei [Trina Solar, San Jose, CA (United States); Mikonowicz, Alex [Powermark, Dallas, TX (United States); Lokanath, Sumanth [First Solar, Tempe, AZ (United States); Eguchi, Yoshihito [Mitsui Chemical, Rye Brook, NY (United States); Norum, Paul [Amonix, Seal Beach, CA (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

  19. A case study of utility PV economics

    International Nuclear Information System (INIS)

    Wenger, H.; Hoff, T.; Osborn, D.E.

    1997-01-01

    This paper presents selected results from a detailed study of grid-connected photovoltaic (PV) applications within the service area of the Sacramento Municipal Utility District. The intent is to better understand the economics and markets for grid-connected PV systems in a utility setting. Research results include: Benefits calculations for utility-owned PV systems at transmission and distribution voltages; How the QuickScreen software package can help utilities investigate the viability of distributed PV; Energy production and capacity credit estimates for fixed and tracking PV systems; Economics and rate impacts of net metering residential PV systems; Market potential estimates for residential rooftop PV systems; and Viability and timing of grid-connected PV commercialization paths

  20. Power electronics and control techniques for maximum energy harvesting in photovoltaic systems

    CERN Document Server

    Femia, Nicola

    2012-01-01

    Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) so

  1. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.

    Science.gov (United States)

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-07-09

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  2. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  3. PV Module Reliability Workshop | Photovoltaic Research | NREL

    Science.gov (United States)

    Gok, Cara Fagerholm, David M. Burns, Timothy J. Peshek, Laura S. Bruckman, Roger H. French Backsheet Chen, C. H. Hsueh, W. J. Hsieh Accurately Measuring PV Power Loss Due to Soiling-Michael Gostein and Walters, Stephen Barkaszi Tracking PV Changes: Bridging Between Thin-Film Cells and Modules-Russell

  4. A sunny future: expert elicitation of China's solar photovoltaic technologies

    Science.gov (United States)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  5. Transparent contacts for stacked compound photovoltaic cells

    Science.gov (United States)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  6. Effects of expiration of the Federal energy tax credit on the National Photovoltaics Program

    Science.gov (United States)

    Smith, J. L.

    1984-01-01

    Projected 1986 sales are significantly reduced as a direct result of system price increases following from expiration of the Federal energy tax credits. There would be greatly reduced emphasis on domestic electric utility applications. Indirect effects arising from unrealized economies of scale and reduced private investment in PV research and development (R&D) and in production facilities could have a very large cumulative adverse impact on the U.S. PV industry. The industry forecasts as much as fourfold reduction in 1990 sales if tax credits expire, compared with what sales would be with the credits. Because the National Photovoltaics Program is explicitly structured as a government partnership, large changes in the motivation or funding of either partner can affect Program success profoundly. Reduced industry participation implies that such industry tasks as industrialization and new product development would slow or halt. Those research areas receiving heavy R&D support from private PV manufacturers would be adversely affected.

  7. PSCAD Modules Representing PV Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  8. Photovoltaics: Energy for the New Millenium

    Science.gov (United States)

    Surek, Thomas

    2000-04-01

    Photovoltaics (PV) is a semiconductor-based technology that directly converts sunlight to electricity. The stimulus for terrestrial PV started more than 25 years ago in response to the oil crises of the 1970s, which resulted in major government programs in the United States, Europe, Japan, and elsewhere. Ongoing concerns with the global environment, as well as the worldwide efforts to seek alternate, indigenous sources of energy, continue to drive the investment in PV research and deployment. Today, the manufacture, sale, and use of PV has become a billion-dollar industry worldwide, with nearly 200 megawatts (MW) of PV modules shipped in 1999. The twenty five years of research and development led to the discovery of new PV materials, devices, and fabrication approaches; continuing improvements in the efficiency and reliability of solar cells and modules; and lower PV module and system costs. This talk reviews the rapid progress that has occurred in PV technology from the laboratory to the marketplace, including reviews of the leading technology options, status and issues, and key industry players. New processes for fabricating PV materials and devices, and innovative PV approaches with low-cost potential are elements of an ongoing research program aimed at future advancements in PV cost and performance While major market opportunities continue to exist in the developing countries, where sizable populations are without any electricity, today's manufacturing expansions are fueled by market initiatives for grid-connected PV in residential and commercial buildings. The combinations of increased production capacities, with the attendant cost reductions as a result of economies of scale, are expected to lead to sustainable markets. A key to achieving the ultimate potential of PV is to continue to increase the sunlight-to-electricity conversion efficiencies and translate the laboratory successes to cost-competitive products. Building a robust technology base is essential

  9. PV O&M Cost Model and Cost Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Andy

    2017-03-15

    This is a presentation on PV O&M cost model and cost reduction for the annual Photovoltaic Reliability Workshop (2017), covering estimating PV O&M costs, polynomial expansion, and implementation of Net Present Value (NPV) and reserve account in cost models.

  10. A control strategy for PV stand-alone applications

    International Nuclear Information System (INIS)

    Slouma, S; Baccar, H

    2015-01-01

    This paper proposes a stand-alone photovoltaic (PV) system study in domestic applications. Because of the decrease in power of photovoltaic module as a consequence of changes in solar radiation and temperature which affect the photovoltaic module performance, the design and control of DC-DC buck converter was proposed for providing power to the load from a photovoltaic source.In fact, the control of this converter is carried out with integrated MPPT (Maximum Power Point Tracking) algorithm which ensures a maximum energy generated by the PV arrays. Moreover, the output stage is composed by a battery energy storage system, dc-ac inverter, LCL filter which enables higher efficiency, low distortion ac waveforms and low leakage currents. The control strategy adopted is cascade control composed by two regulation loops.Simulations performed with PSIM software were able to validate the control system.The realization and testing of the photovoltaic system were achieved in the Photovoltaic laboratory of the Centre for Research and Energy Technologies at the Technopark Borj Cedria. Experimental results verify the effeciency of the proposed system

  11. A control strategy for PV stand-alone applications

    Science.gov (United States)

    Slouma, S.; Baccar, H.

    2015-04-01

    This paper proposes a stand-alone photovoltaic (PV) system study in domestic applications. Because of the decrease in power of photovoltaic module as a consequence of changes in solar radiation and temperature which affect the photovoltaic module performance, the design and control of DC-DC buck converter was proposed for providing power to the load from a photovoltaic source.In fact, the control of this converter is carried out with integrated MPPT (Maximum Power Point Tracking) algorithm which ensures a maximum energy generated by the PV arrays. Moreover, the output stage is composed by a battery energy storage system, dc-ac inverter, LCL filter which enables higher efficiency, low distortion ac waveforms and low leakage currents. The control strategy adopted is cascade control composed by two regulation loops.Simulations performed with PSIM software were able to validate the control system.The realization and testing of the photovoltaic system were achieved in the Photovoltaic laboratory of the Centre for Research and Energy Technologies at the Technopark Borj Cedria. Experimental results verify the effeciency of the proposed system.

  12. Voltage rise mitigation for solar PV integration at LV grids

    DEFF Research Database (Denmark)

    Yang, Guangya; Marra, Francesco; Juamperez Goñi, Miguel Angel

    2015-01-01

    Solar energy from photovoltaic (PV) is among the fastest developing renewable energy systems worldwide. Driven by governmental subsidies and technological development, Europe has seen a fast expansion of solar PV in the last few years. Among the installed PV plants, most of them are situated...

  13. Optimal Design of Modern Transformerless PV Inverter Topologies

    OpenAIRE

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    The design optimization of H5, H6, neutral point clamped, active-neutral point clamped, and conergy-NPC transformerless photovoltaic (PV) inverters is presented in this paper. The components reliability in terms of the corresponding malfunctions, affecting the PV inverter maintenance cost during the operational lifetime period of the PV installation, is also considered in the optimization process. According to the results of the proposed design method, different optimal values of the PV inver...

  14. 2015 NREL Photovoltaic Module Reliability Workshops

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  15. 2016 NREL Photovoltaic Module Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  16. U.S. photovoltaic program plan

    International Nuclear Information System (INIS)

    Annan, R.H.

    1993-01-01

    The US Photovoltaic Program stands midway into its Five-Year Plan, 1991--1995. Compared to previous periods, the progress and momentum of the past year and a half has been unprecedented on all fronts from record efficiencies in the laboratory, to advances in manufacturing, progress in PV industry scale-up, new applications, a more favorable regulatory environment, and growing market opportunities, both domestically and internationally. All of this activity is happening in the context of a new administration which supports accelerated development of environmental technologies. The DOE is committed to keeping this momentum alive to ensure US leadership in the growing photovoltaic market. The purpose of this paper is to give an update of the exciting progress and discuss ways to build on this momentum

  17. Emissions from photovoltaic life cycles.

    Science.gov (United States)

    Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik

    2008-03-15

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

  18. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  19. Review on the development of photovoltaic activities in Greece

    International Nuclear Information System (INIS)

    Protogeropoulos, C.; Chadjivassiliadis, J.

    2004-01-01

    The paper gives a thorough review of the past and recent activities in the field of photovoltaics in Greece. Reference is given to all affiliated governmental bodies, the interactive mechanisms, the main RTD organisations and the industry involved in the development of solar business in the country. Policy planning and some actions taking into consideration the local situation in harmonization with the policy of EU member states are also discussed. Potential areas for PV applications are highlighted and recommendations for the development of systems technology and market are made. A National Programme must be initiated by the government to encourage PV applications on the islands and to create a favourable framework for small grid-connected roof-top PV systems, covering the household sector in the country. (authors)

  20. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  1. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  2. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-22

    Market structure refers to the number of firms and the distribution of market shares among firms within an industry. In The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016, we examine market structure in the context of residential solar PV. We find that over 8,000 companies have installed at least one residential PV system, with about 2,900 companies active in 2016. The majority of residential PV installers are relatively small companies, with about half of installers installing fewer than five systems. At the same time, a subset of high-volume installers accumulated market share, especially beginning around 2010 with the emergence of alternative customer financing options.

  3. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Hong-Yun Yang

    2015-07-01

    Full Text Available Many of the photovoltaic (PV systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig, mass loss, heat release rate (HRR, carbon monoxide (CO and carbon dioxide (CO2 concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  4. Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

    2012-11-01

    This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

  5. Photovoltaic module parameters acquisition model

    Energy Technology Data Exchange (ETDEWEB)

    Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk

    2014-09-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  6. Photovoltaic module parameters acquisition model

    International Nuclear Information System (INIS)

    Cibira, Gabriel; Koščová, Marcela

    2014-01-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model

  7. Action plan for photovoltaic standards

    Energy Technology Data Exchange (ETDEWEB)

    Oldach, R.

    1999-07-01

    This report examines the present situation regarding international standards governing photovoltaic (PV) systems and components, and seeks to identify barriers to the commercialisation of PV systems in the UK due to the absence of standards and codes of practice, and develop an action plan to overcome these barriers. An overview of standardisation bodies and standard generation mechanisms is presented, and the PV cells and modules, stand-alone PV systems, utility interconnection with PV systems, and building integration of PV are reviewed.

  8. Module-level DC/DC conversion for photovoltaic systems

    NARCIS (Netherlands)

    Bergveld, H.J.; Büthker, D.; Castello, C.; Doorn, T.S.; Jong, de A.; van Otten, R.; Waal, de K.

    2011-01-01

    Photovoltaic (PV) systems are increasingly used to generate electrical energy from solar irradiance incident on PV modules. Each PV module is formed by placing a large amount of PV cells, typically 60, in series. The PV system is then formed by placing a number, typically 10–12, of PV modules in

  9. The Value of Transparency in Distributed Solar PV Markets

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Ahmed S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    Market transparency refers to the degree of customer awareness of product options and fair market prices for a given good. In The Value of Transparency in Distributed Solar PV Markets, we use residential solar photovoltaic (PV) quote data to study the value of transparency in distributed solar PV markets. We find that improved market transparency results in lower installation offer prices. Further, the results of this study suggest that PV customers benefit from gaining access to more PV quotes.

  10. Power of design - the future of building-integrated PV

    International Nuclear Information System (INIS)

    Abbate, Cinzia

    2001-01-01

    This paper discusses strategies to make building integrated photovoltaic (PV) systems more acceptable and to allow PV material to compete with conventional construction material. The history of developments in building integration and difficulties encountered by architects wishing to use PV products are explored, and the Dutch Amersfoot project in Utrecht involving a new suburb of 501 house covered with PV panels is described. Questions raised regarding architectural integration of PV systems, and PV systems and the construction market are discussed. The Italian PV programme, financial and political constraints, and the positioning of PV on existing structures are reported

  11. NREL PV Working With Industry, Fourth Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.

    2000-12-26

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The fourth quarter contains an article that is a followup to the IEEE PVSC conference held in Alaska in September 2000, an article about two new R and D initiatives, and an article on cooperative research efforts between the NCPV and the Solar Buildings and Concentrating Solar Power programs. The editorialist is Jim Rannels, Director of the Office of Power Technologies.

  12. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    International Nuclear Information System (INIS)

    De la Tour, A.; Glachant, M.; Meniere, Y.

    2010-01-01

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese Diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data rather highlight a policy-driven effort to catch up in critical technological areas. (authors)

  13. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    Energy Technology Data Exchange (ETDEWEB)

    De la Tour, A.; Glachant, M.; Meniere, Y.

    2010-07-01

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese Diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data rather highlight a policy-driven effort to catch up in critical technological areas. (authors)

  14. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    Energy Technology Data Exchange (ETDEWEB)

    Tour, Arnaud de la; Glachant, Matthieu; Meniere, Yann [Cerna, Mines ParisTech, 60 Boulevard Saint Michel, 75006 Paris (France)

    2011-02-15

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data highlight a policy-driven effort to catch up in critical technological areas. (author)

  15. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...... and some topologies, which requires two times of the peak ac-voltage magnitude) and, (5) the flying capacitor charges every switching cycle, which reduces the size of the required capacitor with switching frequency. In addition, industry standard half bridge module can be used in the new inverter without...

  16. Effect of wind speed on performance of a solar-pv array

    Science.gov (United States)

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  17. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  18. Practical issues for testing thin film PV modules at standard test conditions.

    OpenAIRE

    Marín González, Omar; Raga Arroyo, Manuela Pilar; Alonso Garcia, M. Carmen; Muñoz-García, Miguel Angel

    2013-01-01

    Thin film photovoltaic (TF) modules have gained importance in the photovoltaic (PV) market. New PV plants increasingly use TF technologies. In order to have a reliable sample of a PV module population, a huge number of modules must be measured. There is a big variety of materials used in TF technology. Some of these modules are made of amorphous or microcrystalline silicon. Other are made of CIS or CdTe. Not all these materials respond the same under standard test conditions (STC) of power...

  19. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  20. Treatment of transparent conductive oxides by laser processes for the development of Silicon photovoltaic cells

    International Nuclear Information System (INIS)

    Canteli Perez-Caballero, D.

    2015-01-01

    Transparent conductive oxides (TCOs) are heavily doped oxides with high transparency in the visible range of the spectrum and a very low sheet resistance, making them very attractive for applications in optoelectronic devices. TCOs are widely found in many different areas such as low emissivity windows, electric contacts in computers, televisions or portable devices, and, specially, in the photovoltaic (PV) industry. PV industry is mainly based on mono- and multicrystalline silicon, where TCOs are used as anti-reflective coatings, but the search for cheaper, alternative technologies has led to the development of thin film PV technologies, where TCOs are used as transparent contacts. With the maturation of the thin film PV industry, laser sources have become an essential tool, allowing the improvement of some industrial processes and the development of new ones. Because of the interest on a deeper understanding of the interaction processes between laser light and TCOs, the laser ablation of three of the most important TCOs has been studied in depth in the present work. (Author)

  1. Photovoltaic sources modeling

    CERN Document Server

    Petrone, Giovanni; Spagnuolo, Giovanni

    2016-01-01

    This comprehensive guide surveys all available models for simulating a photovoltaic (PV) generator at different levels of granularity, from cell to system level, in uniform as well as in mismatched conditions. Providing a thorough comparison among the models, engineers have all the elements needed to choose the right PV array model for specific applications or environmental conditions matched with the model of the electronic circuit used to maximize the PV power production.

  2. PV status report 2004. Research, Solar cell production and market implementation of photovoltaic s

    International Nuclear Information System (INIS)

    Jager-Waldau, A.

    2004-01-01

    The increasing demand for photovoltaic devices leads to the search for new developments with respect to material use and consumption, device design and production technologies, as well as new concepts to increase the overall efficiency. At present solar cell manufacturing is based on single junction device silicon wafer technology with close to 90% market share. Consistent with the time needed for any major change in the energy infrastructure, another 20 to 30 years of sustained and aggressive growth will be required for photovoltaic to substitute a significant share of the conventional energy sources. This growth will be possible if a continuous introduction of new technologies takes place, made possible by sound fundamental research. In October 2004 the Russian Duma ratified the Kyoto Protocol and it can be expected that the Protocol will now be set into force by the beginning of 2005. This recent development will definitively have an impact on the further implementation of renewable energies and photovoltaic is a prime source to deliver it. The Third Edition of the PV Status Report will widen its view to the enlarged European Union as well as the new player China and tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation. The opinion given in this report is based on the current information available to the author, and does not reflect the opinion of the European Commission. (author)

  3. A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong

    Directory of Open Access Journals (Sweden)

    Aotian Song

    2016-08-01

    Full Text Available Installing sustainable and renewable energy systems is a promising way of relieving Hong Kong’s dependence on imported fossil fuels. Solar photovoltaic (PV technology is a perfect solution for Hong Kong as it fits the economic and geographic situation. Through a review of the PV development history of five leading PV countries, Germany, Japan, Italy, Mainland China, and the USA, this paper serves as a useful policy toolbox to aid PV development. Based on the forerunners’ successful PV industry experiences and Hong Kong’s unique local situations, a series of incentive strategies were proposed for Hong Kong to help promote the utilization of solar PV systems by reducing the initial investment and providing reasonable subsidies at the initial stages and during the operation period of the PV systems. These results could be a practical reference for promoting renewable energy applications for local policy-makers.

  4. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  5. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  6. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  7. Dissemination of photovoltaics in the Gambia

    Energy Technology Data Exchange (ETDEWEB)

    Able-Thomas, U.; Pearsall, N.M. [University of Northumbria, Newcastle upon Tyne (United Kingdom); Hill, R.; O`Keefe, P. [University of Northumbria, Newcastle upon Tyne (United Kingdom)

    1995-11-01

    The Gambia has abundant solar energy but a significant shortfall in electrical generation and distribution capacity, along with a growing demand for electricity. This paper will outline areas in the application of photovoltaics (PV) in The Gambia which are both technically and economically viable. Photovoltaics is beginning to contribute to developmental efforts, but this contribution is rarely quantified. The paper will discuss the socio-economic benefits that The Gambia has derived from this appropriate technology. The application of PV on a scale much wider than at present will require strengthening of the infrastructure in PV systems, construction and maintenance and financing. The infrastructural needs of the country and its manufacturing capabilities will be assessed along with the organizational aspects for successful PV dissemination. (Author)

  8. R and D into stand-alone PV systems for export

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The current status of photovoltaic (PV) technology is reviewed for systems to provide electricity where mains supplies are unavailable, known as stand-alone PV systems. Typical applications and experiences with installed stand-alone systems are described. Economic issues and barriers to the wide use of PV systems are also examined. (UK)

  9. Implementation of the first student-designed PV array in Canada

    International Nuclear Information System (INIS)

    Hadlock, C.; DeLoyde, J.; Dhir, T.

    2004-01-01

    This paper is a culmination of a 2-year project involving students, faculty, staff member, and private industry. Solar Technology Education Project (STEP) became the first student-led group to successfully install a 36-panel photovoltaic (PV) array on a Canadian University campus. The fundraising, design, and assembly of the PV array was entirely student driven. The project was completed in January 2004 with the installation of a 2 kW photovoltaic grid-tied array mounted to the roof of the University of Waterloo's Federation Hall, the largest student-run pub in North America. The photovoltaic array was a demonstration project to raise awareness about solar technology and the need for energy efficiency in buildings. It took two years to complete the project, which was implemented in three phases. The first phase was aimed at raising the required capital. The second phase included design and fabrication of the array. The third phase, still ongoing today, is the community outreach phase, which involves educating the surrounding communities about the project, solar technology, and the role of individuals in combating global warming. This paper examines the steps required for the implementation of a successful educational photovoltaic project, using the students' experience as a roadmap. A section highlighting what's next for STEP is also presented as the students attempt to build on the momentum from the project. The aim is to launch a solar thermal project on another University of Waterloo building to move one step closer to the ultimate goal of a sustainable campus

  10. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  11. Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording)

    Science.gov (United States)

    Dhere, Neelkanth G.; Cruz, Leila R. O.

    2015-09-01

    Recently prices of photovoltaic (PV) systems have been reduced considerably and may continue to be reduced making them attractive. If these systems provide electricity over the stipulated warranty period, it would be possible attain socket parity within the next few years. Current photovoltaic module qualifications tests help in minimizing infant mortality but do not guarantee useful lifetime over the warranty period. The PV Module Quality Assurance Task Force (PVQAT) is trying to formulate accelerated tests that will be useful towards achieving the ultimate goal of assuring useful lifetime over the warranty period as well as to assure manufacturing quality. Unfortunately, assuring the manufacturing quality may require 24/7 presence. Alternatively, collecting data on the performance of fielded systems would assist in assuring manufacturing quality. Here PV systems installed by home-owners and small businesses can constitute as an important untapped source of data. The volunteer group, PV - Reliable, Safe and Sustainable Quality! (PVRessQ!) is providing valuable service to small PV system owners. Photovoltaic Reliability Group (PVRG) is initiating activities in USA and Brazil to assist home owners and small businesses in monitoring photovoltaic (PV) module performance and enforcing warranty. It will work in collaboration with small PV system owners, consumer protection agencies. Brazil is endowed with excellent solar irradiance making it attractive for installation of PV systems. Participating owners of small PV systems would instruct inverter manufacturers to copy the daily e-mails to PVRG and as necessary, will authorize the PVRG to carry out review of PV systems. The presentation will consist of overall activities of PVRG in USA and Brazil.

  12. Is solar PV generated electricity cheap in South Africa?

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2015-07-01

    Full Text Available This presentation reflects on photovoltaic (PV) generated electricity in South Africa, and whether it is a cheaper alternative to current generated electricity in the country. It is projected that by 2019 the installed capacity of PV could...

  13. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    OpenAIRE

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance...

  14. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  15. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  16. Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany

    International Nuclear Information System (INIS)

    Chowdhury, Sanjeeda; Sumita, Ushio; Islam, Ashraful; Bedja, Idriss

    2014-01-01

    Photovoltaic (PV) has the highest cost reduction potential among all renewable energy sources (RES). To overcome institutional barriers, developing the technology, and creating an initial market, policies are needed. Comparative case studies of Japan and German PV sector from 1990 to 2011 were developed. Japan dominated the PV industry during 1994–2004, PV market increased to 290 MW in 2005. After 2005 Japan's PV market decreased. German PV market increased from 44 MW in 2000 to 7.5 GW in 2011. The reason behind Japanese PV market decline was the unaligned energy policy and termination of incentives. This paper discusses about successful policy implementation and the impact of policy for the diffusion of PV technology. The analysis section of this paper shows how much the PV technology has been diffused during the period of 1990–2011 and finally what will make the transformation process successful. - Highlights: • We studied PV diffusion of Japan and German considering public energy policy, environmental policy and cost reduction. • This study determined that policy and incentives are responsible for cost reduction. • Japans concentration on nuclear energy more than renewables, made the PV diffusion slow. • Successful implementation of FIT helped Germany reduce PV electricity price more than grid electricity

  17. National Survey Report of PV Power Applications in France 2014

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Durand, Yvonnick

    2015-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual Trends in photovoltaic applications report. In parallel, National Survey Reports are produced annually by each Task 1 participant. The PVPS web site www.iea-pvps.org also plays an important role in disseminating information arising from the program, including national information. This document is the French National Survey Report on photovoltaics for the year 2014

  18. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the

  19. Training and certification of PV installers in Europe

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Tournaki, Stavroula; Gkouskos, Zacharias; Masson, Gaetan; Holden, John; Huidobro, Ana; Stoykova, Evelina; Rata, Camelia; Bacan, Andro; Maxoulis, Christos; Charalambous, Anthi

    2013-01-01

    The European strategy for the coming decades sets specific targets for a sustainable growth, including reaching a 20% share of renewables in final energy consumption till 2020. To achieve this target, a number of initiatives and measures have been in force. Europe, is currently the largest market for PV systems with more than 75% of the annual worldwide installations in 2011. The favourable European policies as well as the Member States’ supporting legislations have resulted in high market growth for photovoltaics. Applying PV technologies however, requires high qualified technicians to install, repair and maintain them. Until today, national markets have been growing faster than the skilled PV installers force can satisfy. The PVTRIN, an Intelligent Energy Europe action, addresses these issues by developing a training and certification scheme for technicians active in the installation and maintenance of small scale PV systems. During the implementation of the action, a market research was conducted in the six participating countries in order to record the stakeholders’ attitudes, perceptions and considerations and to adapt the training methods, tools and materials to the national PV industry requirements and markets’ needs. Indicative results of this analysis as well as the current situation regarding relevant training and certification schemes are presented in this paper. - Highlights: ► Market research in six EU countries on PV professional Training and Certification needs. ► PVTRIN scheme integrates the national legislations and the market's needs. ► The different aspects (technical, institutional, financial) are presented

  20. Good and bad practices in pv plants

    OpenAIRE

    Martinez Moreno, Francisco; Helleputte, F.; Tyutyundzhiev, N.; Rabal Echeverria, Daniel; Conlon, Michael; Fartaria, Tomás; Oteiza, David

    2013-01-01

    The PVCROPS project (PhotoVolta ic Cost r€duction, Reliability, Operational performance, Prediction and Simulation), cofinanced by European Commission in the frame of Seventh Framework Programme, has compiled in the “Good and bad practices: Manual to improve the quality and reduce the cost of PV systems” a collection of good and bad practices in actual PV plants . All the situations it collects represent the state-of-the-art of existing PV installations all around Europe. They show how ...

  1. The occurrence of a low-cost photovoltaic industry in the USA

    International Nuclear Information System (INIS)

    Colrat, M.

    2006-01-01

    Solar energy shows a revival of interest in the USA, even if the budget of the Department of Energy (DoE) in favor of photovoltaic solar conversion remains insignificant with respect to the enormous sums invested in fossil and nuclear energies. However, the proposal by the US President of a 139 million dollar allocation for R and D works in the photovoltaic industry represents a progressive awareness of the US about the energy and environment questions. Even behind Japan and Germany, the US photovoltaic industry remains a major actor on the international scene. Its capacity to innovate comes from its first world rank research activity in tight connection with the industry. (J.S.)

  2. An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhou

    2017-12-01

    Full Text Available This paper provides a review on various PV simulator technologies as well as presents a novel equivalent photovoltaic (PV source that was constructed by using un-illuminated solar panels and a DC power supply that operates in current source mode. The constructed PV source was used for testing photovoltaic converters and various maximum power point tracking (MPPT algorithms required for capturing the maximum possible output power. The mathematical model and electrical characteristics of the constructed PV source were defined and analyzed in detail in the paper. The constructed PV source has the advantages of high bandwidth over the switching circuit based PV simulators. The constructed PV source has been used for testing various power electronics converters and various control techniques effectively in laboratory environments for researchers and university students.

  3. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  4. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  5. A strategic model for PV dissemination in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Hiranvarodom, S. [Rajamangala Inst. of Technology, Dept. of Electrical Engineering, Pathumthani (Thailand); Hill, R. [University of Northumbria, Newcastle Photovoltaics Applications Centre, Newcastle upon Tyne (United Kingdom); O' Keefe, P. [University of Northumbria, Dept. of Geography and Environmental Management, Newcastle upon Tyne (United Kingdom)

    1999-07-01

    The process of information dissemination is necessary for the successful implementation for photovoltaic (PV) programmes in developing countries, and it is essential to consider the strategies for implementation of a PV project to ensure that it will be successful. This paper proposes a strategic model for PV dissemination in Thailand and discusses the roles of key players in the implementation of the strategy and the responsibilities of these organisations. (Author)

  6. European industrial policy with regard to photovoltaic electricity

    International Nuclear Information System (INIS)

    Dambrine, Fabrice

    2013-01-01

    The production of photovoltaic electricity has increased considerably over the last decade, especially in Europe and particularly in Germany and Italy, owing to the stimulus imparted by the advantageous rates for purchasing this electricity and by the steadily decreasing price of photovoltaic modules. This growth will continue in countries with intense sunshine and in areas that lack interconnected grids or where production is maximal during demand peaks caused by air-conditioning. Growth will also continue in the industrialized countries that want to re-balance their energy mix and break out of their heavy dependence on fossil fuels and nuclear power. In 2011, installations for generating nearly 30 GWc of solar photovoltaic power were set up around the world; and total power from this source at the end of 2011 was nearly 70 GWc, and could reach 300 GWc in 2020. This raises questions about how to develop industries for satisfying this demand

  7. Emissions from photovoltaic life cycles

    NARCIS (Netherlands)

    Fthenakis, V.M.; Kim, H.C.; Alsema, E.A.|info:eu-repo/dai/nl/073416258

    2008-01-01

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle

  8. Photovoltaic conference on system services

    International Nuclear Information System (INIS)

    Burges, Karsten; Freier, Karin; Vincent, Jeremy; Montigny, Marie; Engel, Bernd; Konstanciak, Wilhelm; Makdessi, Georges; Acres, Adrien; Schlaaff, Torsten; Defaix, Christophe

    2015-01-01

    The French-German office for Renewable energies (OFAEnR) organised a photovoltaic conference on system services and photovoltaic facilities. In the framework of this French-German exchange of experience, about 100 participants have analysed and discussed the regulatory, technical and economical context of system services, their evolution and implementation in the framework of an accelerated development of photovoltaic conversion in both countries. This document brings together the available presentations (slides) made during this event: 1 - Technical Introduction to system services: principles, actors and perspectives (Karsten Burges); 2 - Legal guidelines of EEG (Renewable energy Sources Act) and the System Stability Ordinance as well as future measures for PV grid integration (Karin Freier); 3 - evolution of ancillary services regulation; opening the possibility for new market players to participate in maintaining the system stability (Jeremy Vincent, Marie Montigny); 4 - Paradigm shift for ancillary services: PV as a new stakeholder (Bernd Engel); 5 - Challenges of RES integration (Wilhelm Konstanciak 6 - System services supplied by PV inverters, solutions for frequency and active/reactive power control at the injection point (Georges Makdessi); 7 - Grid disturbance abatement and voltage stability control by monitoring local scale PV production (Adrien Acres); 8 - Flexibly Adaptable Power Plant Controller - The Answer to Various Grid Requirements (Torsten Schlaaff); 9 - ENR-pool project: What kind of business model for ancillary services by PV power plants? (Christophe Defaix)

  9. Product reliability and thin-film photovoltaics

    Science.gov (United States)

    Gaston, Ryan; Feist, Rebekah; Yeung, Simon; Hus, Mike; Bernius, Mark; Langlois, Marc; Bury, Scott; Granata, Jennifer; Quintana, Michael; Carlson, Carl; Sarakakis, Georgios; Ogden, Douglas; Mettas, Adamantios

    2009-08-01

    Despite significant growth in photovoltaics (PV) over the last few years, only approximately 1.07 billion kWhr of electricity is estimated to have been generated from PV in the US during 2008, or 0.27% of total electrical generation. PV market penetration is set for a paradigm shift, as fluctuating hydrocarbon prices and an acknowledgement of the environmental impacts associated with their use, combined with breakthrough new PV technologies, such as thin-film and BIPV, are driving the cost of energy generated with PV to parity or cost advantage versus more traditional forms of energy generation. In addition to reaching cost parity with grid supplied power, a key to the long-term success of PV as a viable energy alternative is the reliability of systems in the field. New technologies may or may not have the same failure modes as previous technologies. Reliability testing and product lifetime issues continue to be one of the key bottlenecks in the rapid commercialization of PV technologies today. In this paper, we highlight the critical need for moving away from relying on traditional qualification and safety tests as a measure of reliability and focus instead on designing for reliability and its integration into the product development process. A drive towards quantitative predictive accelerated testing is emphasized and an industrial collaboration model addressing reliability challenges is proposed.

  10. Photovoltaic power: the inadequate purchase price

    International Nuclear Information System (INIS)

    Finon, D.

    2009-01-01

    The current policy of guaranteed purchase prices applied to photovoltaic power lacks rationality: prices are not graduated, commitment times are too long, there is no capping to capacity developed, subsidies (tax credit, direct subsidy, etc) are complex and give too favourable a return time. The lack of differentiation between products may also delay the emergence of new PV technologies. As a result, it is legitimate to envisage a cost/benefit analysis of future subsidies and to wonder about Frances ability, as a second rank player, to catch up with the leaders (Germany, Japan, United States). The report does not criticize policy based on purchase prices in itself: this is suitable or technology close to commercial operation in that it guarantees stable terms close to wholesale electricity market prices. It does, however, criticize adequacy in terms of less advanced PV technology, which results in purchase prices five times that of wind power. The report proposes re-targeting the system to take account of the significant stakes in PV power. Costly incentives for installing land PV cells and units should be quickly reduced, while industrial demonstration budgets deserve increases to further the development of new technologies (improved crystal silicon and thin layers). The demonstration phase and industrial development should be the primary focus, where a large part of potentially promising reductions in costs are likely to be achieved. (author)

  11. Federal policies to promote the widespread utilization of photovoltaic systems. Volume two. Technical document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The question of photovoltaic system interactions with electric utility grids is addressed. Discussions of system configurations, effects on utility dispatch and generation planning, effects of utility rate structures on photovoltaic deployment and vice versa, interactions of photovoltaic and electrical storage systems, effects on end-use reliability, and the ultimate limitations on photovoltaic penetration into electric grids are presented. Photovoltaic system economic issues are considered. Discussions of the high first cost and the Program plans and strategies to reduce costs (and PV prices), expected evolution of photovoltaic technology, effects of various financial incentives on photovoltaics, implications of utility vs non-utility ownership of photovoltaics, likelihood that sufficient capital will be available to adequately finance the deployment of photovoltaic systems, current status and expected evolution of the photovoltaic supply industry, and the programmatic activities directed at aiding the evolution of a healthy, competitive industry are presented. The basic issues of photovoltaic market development are studied. The potential of various market segments and the complexity involved in defining and identifying the various segments; issues to be faced in deployment of dispersed photovoltaic systems including innovation acceptance on the part of the building industry, building codes, zoning, insurance, information dissemination, public acceptance, solar access, state and local solar photovoltaic incentives, and the implications for urban and suburban land use; and the need for, and method of development of, photovoltaic standards and warranties on photovoltaic systems are discussed. The conclusions of the report with respect to the information requested by Congress are summarized, and findings for congressional action are presented. (WHK)

  12. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  13. The RENUE resource centre. Design study of building-integrated PV in a zero-carbon exhibition building

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.

    2001-07-01

    Studies at the RENUE building in London are described. The RENUE project is a renewable energy and urban sustainability demonstration of comfortable and elegant buildings which are zero-carbon users. Building-Integrated Photovoltaic (BIPV) systems are a factor in the zero-CO{sub 2} building. The building should be of special interest to protagonists of renewable energy, building designers and the PV industry.

  14. Flexible Power Control of Photovoltaic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Sangwongwanich, Ariya; Yang, Yongheng

    2018-01-01

    With a still increasing penetration level of grid-connected photovoltaic (PV) systems, more advanced and flexible control functionalities are demanded. To ensure a smooth and friendly integration between the PV systems and the grid, the power generated by the PV system needs to be flexible...

  15. New Best-Practices Guide for Photovoltaic System Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-24

    Fact sheet summarizing technical report TP-7A40-67553. As solar photovoltaic (PV) systems have continued their transition from niche applications into large, mature markets in the United States, their potential as financial investments has risen accordingly. Mainstream investors, however, need to feel confident about the risk and return of solar photovoltaic (PV) systems before committing funds. A major influence on risk and return for PV is operations and maintenance (O&M) - but O&M practices and costs vary widely across the United States, making these variables difficult for investors to predict. To address this barrier to continued PV investment, the PV O&M Working Group has developed a new best-practices guide for PV O&M.

  16. Photovoltaics and the environment

    International Nuclear Information System (INIS)

    Baumann, A.E.

    1994-01-01

    This paper considers the impact of photovoltaics on the environment and its application and role in the energy supply sector. It discusses the environmental and health impacts associated with photovoltaics by using Life Cycle Analysis as an instrument to determine its environmental effects. Recent Life Cycle studies have shown that PV can be considered an environmentally low risk technology, with its major environmental impacts occurring at the module manufacturing and waste disposal stages. The employment of environmental control mechanisms and statutory health and safety regulations at PV production facilities have helped to further reduce occupational and public health hazards. (author)

  17. Enel seeks strategic re-entry into the photovoltaic market. Cooperations promise economic efficiency; Enel strebt strategischen Wiedereinstieg in die Photovoltaik an. Kooperationen versprechen Wirtschaftlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Berger, W. [Orizzonti, Verona (Italy)

    2008-12-01

    Major Italian utility Enel has embarked again in activities in the field of photovoltaics (pv) after years of standstill caused by the company's privatisation in 1999. Now attractive feed-in tariffs, much untapped potential and strong interest of Italians in pv have opened the door for the development of new business in this unfolding mass market. More recently Enel has also strengthened ties with pv-cell and module production industry. (orig.)

  18. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  19. Solar Access to Public Capital (SAPC) Working Group: Best Practices in Commercial and Industrial (C&I) Solar Photovoltaic System Installation; Period of Performance: November 28, 2014-September 1, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Chris [Inst. of Building Technology and Safety (IBTS), Ashbum, VA (United States); Loomans, Len [Acuity Power, Wellesley Hills, MA (United States); Truitt, Andrew [Acuity Power, Wellesley Hills, MA (United States); Lockhart, Robert [Acuity Power, Wellesley Hills, MA (United States); Golden, Matt [Efficiency.org, San Francisco, CA (United States); Dabbagh, Kareem [Aurora Solar, Scotts Valley, CA (United States); Lawrence, Richard [North American Board of Certified Energy Practicioners (NABCEP), Clifton Park, NY (United States)

    2015-12-29

    This Best Practices in Commercial and Industrial Solar Photovoltaic System Installation Guide is the second of a series of guides designed to standardize and improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The Best Practices in C&I PV System Installation Guide is intended to outline the minimum requirements for commercial and industrial solar project developments. Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for self-certifying that they have fulfilled the guide requirements. Investors and rating agencies should verify compliance.

  20. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  1. Detection of arcing location on photovoltaic systems using filters

    Science.gov (United States)

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  2. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  3. PV/T slates - Pilot project in Steinhausen; PV/T-Schiefer. Pilotprojekt Steinhausen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with a ventilated PV-tile system (PV/T-Slates) mounted on a garden shed in Steinhausen, Switzerland. The installation provides power and heat to the main house. The report describes the construction and operation of this pilot project and the results of measurements made on its electrical and thermal performance. The results of measurements made are presented in detail in graphical form and compared with the results of simulation. Suggestions are made for the optimisation of the system. Figures are presented on energy production and energy flows in graphical form.

  4. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  5. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Peter F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sekulic, William R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dreifuerst, Gary [Lawrence Livermore National Laboratory - retired

    2018-04-02

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can and do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.

  6. Multifunctional a-Si PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K; Lund, P; Vartiainen, E [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The optimal use of the various forms of solar energy (passive, active, daylighting, photovoltaics) in buildings calls for an optimal integration of the technologies. As energy conservation potential in space heating may soon be exhausted, electricity efficiency and on-site generation will play an increasing role in energy-conscious building design. There, dispersed PV systems integrated into buildings show a significant market potential, due to a number of benefits: no extra land area is required, PV-array may replace conventional cladding materials and become a building element. Moreover, the produced PV-electricity is more valuable for the building owner than for an electric utility

  7. An Integrated Performance Evaluation Model for the Photovoltaics Industry

    Directory of Open Access Journals (Sweden)

    He-Yau Kang

    2012-04-01

    Full Text Available Global warming is causing damaging changes to climate around the World. For environmental protection and natural resource scarcity, alternative forms of energy, such as wind energy, fire energy, hydropower energy, geothermal energy, solar energy, biomass energy, ocean power and natural gas, are gaining attention as means of meeting global energy demands. Due to Japan’s nuclear plant disaster in March 2011, people are demanding a good alternative energy resource, which not only produces zero or little air pollutants and greenhouse gases, but also with a high safety level to protect the World. Solar energy, which depends on an infinite resource, the sun, is one of the most promising renewable energy sources from the perspective of environmental sustainability. Currently, the manufacturing cost of solar cells is still very high, and the power conversion efficiency is low. Therefore, photovoltaics (PV firms must continue to invest in research and development, commit to product differentiation, achieve economies of scale, and consider the possibility of vertical integration, in order to strengthen their competitiveness and to acquire the maximum benefit from the PV market. This research proposes a performance evaluation model by integrating analytic hierarchy process (AHP and data envelopment analysis (DEA to assess the current business performance of PV firms. AHP is applied to obtain experts’ opinions on the importance of the factors, and DEA is used to determine which firms are efficient. A case study is performed on the crystalline silicon PV firms in Taiwan. The findings shall help the firms determine their strengths and weaknesses and provide directions for future improvements in business operations.

  8. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  9. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  10. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  11. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-16

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  12. Performance of Integrated Photovoltaic Roofs

    NARCIS (Netherlands)

    Hendriks, N.A.; Pol, van de N.; Wisse, J.A.; Hendriks, N.A.; Schellen, H.L.; Spoel, van der W.H.

    2000-01-01

    The application of Photovoltaic (PV) systems has been supported strongly by the Dutch Government during the recent years. Several big projects have been heavily subsidised. At first instance this seems surprising, because the costs for PV -systems are very high, specifically in The Netherlands, with

  13. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  14. Design of a holographic micro-scale spectrum-splitting photovoltaic system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Russo, Juan M.; Kostuk, Raymond K.

    2015-09-01

    Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.

  15. The photovoltaic industry between growth and difficulties

    International Nuclear Information System (INIS)

    2013-01-01

    This article proposes an overview of the situation and trends of the photovoltaic industry sector. If half of the market was shared among few German, Chinese and American companies in 2010, it appears that half of photovoltaic cells and arrays were designed and manufactured in China in 2013. The European Union and the USA therefore introduced taxes on these products. As this sector appears to be a strategic one, this resulted in a new support for this industry by the Chinese government. The article then comments the French market: slow development in terms of energy production as well as in terms of equipment manufacturing. Thus, measures taken by the French government resulted in a diversification of products, but cost of production of electricity remains high. Perspectives are finally evoked, notably in Japan after the Fukushima accident

  16. Three-Phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2017-01-01

    Photovoltaic (PV) technology has experienced an unprecedented growth in the last two decades, transforming from mainly an off-grid niche generation to a major renewable energy technology, reaching approximately 227 GW of capacity worldwide at the end of 2015 with a predicted extra 50 GW of new...... a hardware point of view, detailing the different PV inverter structures and topologies and discussing the different control layers within a grid-connected PV plant. Modulation schemes for various PV inverter topologies, grid synchronization, current control, active and reactive power control, maximum power...

  17. Relay Protection Coordination for Photovoltaic Power Plant Connected on Distribution Network

    OpenAIRE

    Nikolovski, Srete; Papuga, Vanja; Knežević, Goran

    2014-01-01

    This paper presents a procedure and computation of relay protection coordination for a PV power plant connected to the distribution network. In recent years, the growing concern for environment preservation has caused expansion of photovoltaic PV power plants in distribution networks. Numerical computer simulation is an indispensable tool for studying photovoltaic (PV) systems protection coordination. In this paper, EasyPower computer program is used with the module Power Protector. Time-curr...

  18. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. Copyright © 2016. Published by Elsevier Inc.

  19. Computer Drawing Method for Operating Characteristic Curve of PV Power Plant Array Unit

    Science.gov (United States)

    Tan, Jianbin

    2018-02-01

    According to the engineering design of large-scale grid-connected photovoltaic power stations and the research and development of many simulation and analysis systems, it is necessary to draw a good computer graphics of the operating characteristic curves of photovoltaic array elements and to propose a good segmentation non-linear interpolation algorithm. In the calculation method, Component performance parameters as the main design basis, the computer can get 5 PV module performances. At the same time, combined with the PV array series and parallel connection, the computer drawing of the performance curve of the PV array unit can be realized. At the same time, the specific data onto the module of PV development software can be calculated, and the good operation of PV array unit can be improved on practical application.

  20. Probabilistic Forecasting of Photovoltaic Generation: An Efficient Statistical Approach

    DEFF Research Database (Denmark)

    Wan, Can; Lin, Jin; Song, Yonghua

    2017-01-01

    This letter proposes a novel efficient probabilistic forecasting approach to accurately quantify the variability and uncertainty of the power production from photovoltaic (PV) systems. Distinguished from most existing models, a linear programming based prediction interval construction model for P...... power generation is proposed based on extreme learning machine and quantile regression, featuring high reliability and computational efficiency. The proposed approach is validated through the numerical studies on PV data from Denmark.......This letter proposes a novel efficient probabilistic forecasting approach to accurately quantify the variability and uncertainty of the power production from photovoltaic (PV) systems. Distinguished from most existing models, a linear programming based prediction interval construction model for PV...

  1. Photovoltaic energy in power market

    NARCIS (Netherlands)

    Ho, D.T.; Frunt, J.; Myrzik, J.M.A.

    2009-01-01

    Photovoltaic (PV) penetration in the grid connected power system has been growing. Currently, PV electricity is usually directly sold back to the energy supplier at a fixed price and subsidy. However, subsidies should always be a temporary policy, and will eventually be terminated. A question is

  2. Solar-electric power: The U.S. photovoltaic industry roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-01-01

    To meet this challenge, we — the U.S.-based PV industry — have developed this roadmap as a guide for building our domestic industry, ensuring U.S. technology ownership, and implementing a sound commercialization strategy that will yield significant benefits at minimal cost. Putting the roadmap into action will call for reasonable and consistent co-investment by our industry and government in research and technology development.

  3. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-03-01

    Full Text Available The amount of electricity generated by Photovoltaic (PV systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. Keywords: Community solar, Photovoltaic system, Portfolio theory, Energy optimization, Electricity volatility

  4. DSP control of photovoltaic power generation system adding the function of shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Seo, H.-R.; Kim, K.-H.; Park, Y.-G.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    The growing number of power electronics-based equipment has created a problem on the quality of electric power supply since both high power industrial loads and domestic loads cause harmonics in the network voltage. Power quality problems can occur in the system or can be caused by the consumer. Active filter (AF) is widely used to compensate current harmonics and/or current imbalance of harmonic-producing loads. The power output of a photovoltaic (PV) system is directly affected by weather conditions. When alternating current (AC) power supply is required, power conversion by an inverter and an MPPT control is necessary. The proliferation of nonlinear loads such as inverter of PV power generation system can be treated as a harmonic source for the power distribution system. As such, the PV system combined with the function of the active filter system can be useful for the application in power distribution systems. This paper described a PV-AF system using DSP to prove that it is possible to combine AF theory to the three phase PV system connected to utility and verify it through experimental results. The paper described the control method of the PV-AF system, with reference to the photovoltaic power generation system, shunt active filter and PV-AF system. The experimental set-up was also presented. A laboratory system was designed and constructed to confirm the viability of the proposed PV-AF system. The test results revealed the stability and effectiveness of the proposed PV-AF system. 12 refs., 1 tabs., 12 figs.

  5. Georgetown University Photovoltaic Higher Education National Exemplar Facility (PHENEF)

    Science.gov (United States)

    Marshall, N.

    1984-01-01

    Several photographs of this facility using photovoltaic (PV) cells are shown. An outline is given of the systems requirements, system design and wiring topology, a simplified block design, module electrical characteristics, PV module and PV module matching.

  6. Performance of Series Connected GaAs Photovoltaic Converters under Multimode Optical Fiber Illumination

    Directory of Open Access Journals (Sweden)

    Tiqiang Shan

    2014-01-01

    Full Text Available In many military and industrial applications, GaAs photovoltaic (PV converters are connected in series in order to generate the required voltage compatible with most common electronics. Multimode optical fibers are usually used to carry high-intensity laser and illuminate the series connected GaAs PV converters in real time. However, multimode optical fiber illumination has a speckled intensity pattern. The series connected PV array is extremely sensitive to nonuniform illumination; its performance is limited severely by the converter that is illuminated the least. This paper quantifies the effects of multimode optical fiber illumination on the performance of series connected GaAs PV converters, analyzes the loss mechanisms due to speckles, and discusses the maximum illumination efficiency. In order to describe the illumination dependent behavior detailedly, modeling of the series connected PV array is accomplished based on the equivalent circuit for PV cells. Finally, a series of experiments are carried out to demonstrate the theory analysis.

  7. Performance Parameters for Grid-Connected PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  8. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  9. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  10. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen models project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.

  11. Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building

    International Nuclear Information System (INIS)

    Lu, Hao; Lu, Lin; Wang, Yuanhao

    2016-01-01

    Highlights: • Effects of dust pollution on PV panels mounted on building roofs were investigated by CFD. • The dust deposition rates first increased and then decreased with the increase of dust size. • The gravity has different influences on dust deposition rates of large and small dusts. • The influence of released dust number on dust deposition rate is less than 8%. • A simple model was developed to estimate the PV efficiency reduction ratio by dust pollution. - Abstract: Dust deposition on a solar photovoltaic (PV) system mounted on the windward roof of an isolated building was investigated by CFD simulation. The SST k-ω turbulence model with UDF inlet profiles and the discrete particle model (DPM) were adopted to simulate the wind flow fields and the dust deposition behavior, respectively. The CFD wind flow velocity profiles around the building were in good agreement with experimental results reported in the literature. The effects of various dust particle sizes, differing quantities of released dust particles, and the force of gravity on the rates of dust deposition upon the PV panels were investigated in detail. It was found that the dust deposition rate first rose and then declined with the increase of dust particle size. The maximum deposition rate was about 0.28% for 10 μm dust, and the minimum deposition rate was about 0.13% for 50 μm dust. Gravity also had a significant effect on the rate of dust deposition for large-particle dust (d_p > 5 μm), and the rate could reach 75% for 50 μm dust. However, the effect of gravity on dust deposition was less than 5% for small-particle dust (d_p < 5 μm). The effect of releasing differing quantities of dust particles on the dust deposition rate was less than 8%. Moreover, the mechanisms by which dust was deposited on the PV roof were analyzed and discussed. Finally, a simple empirical model was developed to estimate the PV efficiency reduction ratios in relation to exposure time, as based on this

  12. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  13. Status and prospects of photovoltaic RTD and demonstration within the european union

    International Nuclear Information System (INIS)

    Menna, P.; Gambi, R.; Gillett, W.; Ostrom, R.; Scholz, H.

    2004-01-01

    One pillars of the European Union strategy to meet the Kyoto targets is the goal to achieve a 12% share of renewable in gross energy consumption by 2010. Moreover, renewable represent an option to mitigate the current trend towards increasing energy dependence. In view of these policy commitments the future development of photovoltaic is supported through the EU Framework Programmes, for both research and demonstration activities. Research focuses on the next generation of PV technologies, including thin film PV, processing and automated manufacturing, cost reductions for components and systems as well as research for innovative applications of PV in the built environment. The aim of the demonstration activities is to accelerate the market penetration of more cost-effective PV technologies. The priorities are to demonstrate innovative production concepts for high efficiency modules and to transfer a new generation of PV products to industrial scale, as well as to promote the markets for building integration and autonomous generation systems. Incremental progress for PV can only be pursued by maintaining the stability of support programmes and subsidy schemes. To accelerate the development, demonstration and market introduction of a new generation of PV systems and make the European industry a stronger competitor, the Commission proceeds along a two track approach, combining an intense legislative initiative with a strong research and demonstration effort. (authors)

  14. A solar powered wireless computer mouse: industrial design concepts

    NARCIS (Netherlands)

    Reich, N.H.; Veefkind, M.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C.; Silvester, S.

    2009-01-01

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared

  15. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators

    NARCIS (Netherlands)

    Vishwanathan, B.; Reinders, A. H.M.E.; de Boer, D.K.G.; Desmet, L.; Ras, A. J.M.; Zahn, F. H.; Debije, M.G.

    2015-01-01

    To employ new solar photovoltaic technologies in products and buildings, many systems need to be adapted. Inspired by the cylindrical shape, in this work we have evaluated the performance of luminescent solar concentrator photovoltaic (LSC-PV) elements with narrow PV cell strips that could be

  16. Global Annual Final AC Yield Comparison between HCPV and c-Si PV

    Directory of Open Access Journals (Sweden)

    Juan Pablo Ferrer-Rodríguez

    2015-01-01

    Full Text Available A worldwide comparison of the annual yield between conventional c-Si photovoltaic (PV technology and high concentrated photovoltaic (HCPV technology is presented. The idea of this paper is to find the most appropriate locations for HCPV systems in terms of the annual energy produced when comparing to fixed tilt PV systems and two-axis oriented PY systems. For estimating the annual energy generation, the method of the Performance Ratio is used. For some locations with high annual direct normal irradiation values, which are distributed around the world, HCPV systems are found to be more advantageous than fixed tilt PV systems. World maps showing this comparison are presented.

  17. A new future for the French photovoltaic industry;Un nouvel avenir pour l'industrie photovoltaique francaise

    Energy Technology Data Exchange (ETDEWEB)

    Laborde, E. [PV Alliance et de Soleil en Tete, 75 - Paris (France)

    2009-11-15

    The French photovoltaic industry counts two major players: Photowatt and Tenesol (formerly Total-energy). Specialized in distribution networks and systems engineering, Tenesol has recently become involved in assembling photovoltaic panels; it holds a strong position in its historical markets (France's overseas territories and departments). Photowatt, now celebrating its 30. birthday, is the only French manufacturer of solar wafers, cells and modules. It represents the core of France's photovoltaic industry. Although some small businesses are emerging in this sector, very few of them are involved in technological activities capable of achieving an industrial scale. For a long time, Photowatt has been leading the market and has even risen to number five worldwide. It is thriving thanks to niche markets (isolated sites, solar pumps) with public funding (national or international). (author)

  18. A Practical Irradiance Model for Bifacial PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.

  19. Searching for public benefits in solar subsidies: A case study on the Australian government's residential photovoltaic rebate program

    International Nuclear Information System (INIS)

    Macintosh, Andrew; Wilkinson, Deb

    2011-01-01

    The Australian Government ran a renewable energy program in the 2000s that provided rebates to householders who acquired solar Photovoltaic (PV) energy systems. Originally called the Photovoltaic Rebate Program (PVRP), it was rebranded the Solar Homes and Communities Plan (SHCP) in November 2007. This paper evaluates both the PVRP and SHCP using measures of cost-effectiveness and fairness. It finds that the program was a major driver of a more than six-fold increase in PV generation capacity in the 2000s, albeit off a low base. In 2010, solar PV's share of the Australian electricity market was still only 0.1%. The program was also environmentally ineffective and costly, reducing emissions by 0.09 MtCO 2 -e/yr over the life of the rebated PV systems at an average cost of between AU$238 and AU$282/tCO 2 -e. In addition, the data suggest there were equity issues associated with the program, with 66% of all successful applicants residing in postal areas that were rated as medium-high or high on a Socio-economic Status (SES) scale. - Research highlights: → We evaluated a solar photovoltaic (PV) rebate program. → The program was ineffective, reducing emissions by 0.09 MtCO 2 -e/yr. → The average abatement cost was ∼AU$250/tCO 2 -e. → The program had a relatively minor impact as an industry assistance measure. → The distribution of rebates was skewed toward higher SES areas.

  20. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  1. Photovoltaics moving into the terawatt age

    Science.gov (United States)

    Weber, Eicke R.

    2017-08-01

    Photovoltaic (PV) technology has experienced an amazing development during the last decade, driven by the rapidly decreasing cost at even more rapidly increasing production volumes. This development is discussed from both perspectives, the global PV market and the technology developments accompanying this process. An outlook is given for the possible size of the global PV installations in 2030 and 2050.

  2. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-01-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  3. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-11-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  4. The world PV market 2000: shifting from subsidy to 'fully economic'?

    International Nuclear Information System (INIS)

    Maycock, Paul

    2000-01-01

    This article presents an overview of the world grid-connected photovoltaic (PV) market concentrating on the US, Japan and Germany. The PV markets in the three countries are examined, and PV module shipments, the economics of residential PVs in the markets, and forecasts of the grid-connected market are discussed. Details are given of the German 100,000 roofs PV roof subsidy programme to stimulate the residential and commercial grid-connected market. A summary of the grid-connected PV markets in the three countries, and economic information on German grid-connected PV roofs are tabulated

  5. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  6. Photovoltaic systems engineering

    CERN Document Server

    Messenger, Roger A

    2010-01-01

    BackgroundPopulation and Energy DemandEnergy UnitsCurrent World Energy Use PatternsExponential GrowthHubbert's Gaussian ModelNet Energy, Btu Economics, and the Test for SustainabilityDirect Conversion of Sunlight to Electricity with PhotovoltaicsThe SunThe Solar SpectrumThe Effect of Atmosphere on SunlightSunlight SpecificsCapturing SunlightIntroduction to PV SystemsThe PV CellThe PV ModuleThe PV ArrayEnergy StoragePV System LoadsPV System AvailabilityAssociated System Electronic ComponentsGeneratorsBalance of System (BOS) ComponentsGrid-Connected Utility-Interactive PV SystemsApplicable Codes and StandardsDesign Considerations for Straight Grid-Connected PV SystemsDesign of a System Based on Desired Annual System PerformanceDesign of a System Based on Available Roof SpaceDesign of a Microinverter-Based SystemDesign of a Nominal 21 kW System that Feeds a Three-Phase Distribution PanelDesign of a Nominal 250 kW SystemSystem Performance MonitoringMechanical ConsiderationsImportant Properties of MaterialsEstabli...

  7. Operational characteristic analysis of PV generation system for grid connection by using a senseless MPPT control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-J.; Kim, K.-H.; Park, H.-Y.; Seo, H.-R.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    In photovoltaics, the sun's light energy is captured to create electricity. One of the key issues about a photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional maximum power point tracking (MPPT) control method, both voltage and current coming out from PV array require feedback. The system may fail to track the MPP of a PV array when unexpected weather conditions happen. This paper proposed a novel PV output senseless (POS) control method to solve the problem. The proposed POS MPPT control method only had one factor to consider, the load current. To verify this theory, a POS MPPT control was applied to a manufactured PV generation system, and the results of the the simulated and experimental data under real weather conditions were compared and analyzed. Several tables and diagrams were presented, including the circuit diagram of a manufactured PV generation system connected to grid as well as the the specifications of the PV array and PCS used for the experiment. Reasonable results were obtained in this study. In addition, the scheme was found to be very useful in maximizing power from PV array to load with feedback of only the load current. 8 refs., 3 tabs., 15 figs.

  8. Interharmonics from Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    As the penetration level of grid-connected Photovoltaic (PV) systems increases, the power quality is one of the major concerns for system operators and the demands are becoming even stricter. The impact of interharmonics on the grid has been acknowledged in recent research when considering a large......-scale adoption of PV inverters. However, the origins of interharmonics remain unclear. Thus, this paper performs tests on a commercial PV inverter to explore interharmonic generation and more important investigates the mechanism of interharmonic emission. The investigation reveals that the perturbation...... of the solutions. Simulation results indicate that the constant-voltage MPPT method is the most suitable solution to the mitigation of interharmonics introduced by the MPPT operation, as it avoids the perturbation in the PV voltage during operation....

  9. Institutional barriers for building integrated PV

    International Nuclear Information System (INIS)

    Mierlo, B. van

    2000-01-01

    Being an alternative for fossil fuels photovoltaics have to overcome traditional structures, procedures, cultures and values. As a new building material photovoltaics also have to deal with the structure and culture of the building sector. In this paper the institutional bottlenecks for the introduction of PV on a large scale are explored in five areas: financing, administration, structure of energy sector, architecture, communication and marketing. Nevertheless, on the whole the developments are encouraging. (author)

  10. Global PV markets and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wolfsegger, Cristoph [European Photolvoltaic Industry Association (EPIA), Brussels, Belgium (Belgium)

    2007-06-15

    This presentation mainly talks about the global importance of the PV industry, not only in the environmental sphere but also in the economic sphere. It is firstly given the major information of the European Photovoltaic Industry Association (EPIA), where there can be found the lists of those full member countries that work as: components manufacturers, consulting, and associate members. Then, it is given a briefly explanation about the Alliance for Rural Electrification (ARE), and the reasons why the -PV systems- are almost the panacea to both the energy and the environmental issue. In addition, it is given the most relevant information about how to implement this system in those regions that have not yet implemented it. Besides, there are explained some of the benefits that this system has. It is shortly explained how this system is working in German and it is also shown a comparison chart about the photovoltaic feed-in tariffs. There are shown some graphics and charts having information related to the global markets and the global installations of PV systems and other issues related to them. [Spanish] Esta presentacion habla principalmente acerca de la importancia que hoy en dia tiene la industria fotovoltaica alrededor del mundo, esto no solo ocurre en el ambito ambiental sino tambien en el economico. En la primer parte se muestra la informacion mas importante acerca de la Asociacion Europea de la Industria Fotovoltaica (EPIA por sus siglas en ingles), en donde se encuentran las listas de los paises que son miembros permanentes trabajando como: fabricantes de componentes, asesores y miembros asociados. Enseguida, se da, de manera escueta, una explicacion acerca de la ARE, asi como las razones por las que los sistemas fotovoltaicos son casi la panacea tanto para los problemas ambientales como para los energeticos. Ademas, se explica la informacion mas relevante acerca de como implementar este sistema en aquellas partes del mundo que todavia no lo han realizado

  11. Photovoltaic-Thermal New Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McNutt, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Dennis [Group14 Engineering, Inc., Denver, CO (United States); Heinicke, David [Group14 Engineering, Inc., Denver, CO (United States)

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  12. Experimental Performance Investigation of Photovoltaic/Thermal (PV–T System

    Directory of Open Access Journals (Sweden)

    Bakir C.

    2013-04-01

    Full Text Available Photovoltaic solar cells convert light energy from the sun into electricity. Photovoltaic cells are produced by semi-conducting materials to convert the energy into electricity and during this process heat is absorbed by the solar radiation. This heat causes a loss of electricity generation efficiencies.In this study, an experimental setup was designed and established to test two separate photovoltaic panel systems with alone PV and with water cooling system PV/T to examine the heat effect on PV systems. The absorbed heat energy behind the photovoltaic cell's surface in insulated ambient was removed by means of a water cooling system and the tests for both systems were simultaneously performed along the July 2011. It is found that without active water cooling, the temperature of the PV module was higher during day time and solar cells could only achieve around 8% conversion efficiency. On the other hand, when the PV module was operated with active water cooling condition, the temperature dropped significantly, leading to an increase in the efficiency of solarcells as much as 13.6%. Gained from absorbed solar heat and maximum thermal conversion efficiencies of the system are determined as 49% and 51% for two different mass flow rates. It is observed that water flow rate is effective on the increasing the conversion efficiency as well as absorption and transitionrates of cover glass in PV/T (PV–Thermal collector, the insulation material and cell efficiency. As a conclusion, the conversion efficiency of the PV system with water cooling might be improved on average about 10%. Therefore, it is recommended that PV system should be designed with most efficient type cooling system to enhance the efficiency and to decrease the payback period.

  13. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type

    Energy Technology Data Exchange (ETDEWEB)

    Fraisse, G.; Johannes, K. [Laboratoire Optimisation de la Conception et Ingenierie de l' Environnement, Ecole Superieure d' Ingenieurs de Chambery, Campus Scientifique Savoie Technolac, 73376 Le Bourget du Lac Cedex (France); Menezo, C. [Centre de Thermique de Lyon, Domaine Scientifique de La Doua, Bat. Freyssinet, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex (France)

    2007-11-15

    The integration of photovoltaic (PV) modules in buildings allows one to consider a multifunctional frame and then to reduce the cost by substitution of components. In order to limit the rise of the cell operating temperature, a photovoltaics/thermal (PV/T) collector combines a solar water heating collector and PV cells. The recovered heat energy can be used for heating systems and domestic hot water. A combination with a Direct Solar Floor is studied. Its low operating temperature level is appropriate for the operating conditions of the mono- or poly-crystalline photovoltaic modules which are selected in that study. However, for a system including a glass covered collector and localised in Macon area in France, we show that the annual photovoltaic cell efficiency is 6.8% which represents a decrease of 28% in comparison with a conventional non-integrated PV module of 9.4% annual efficiency. This is obviously due to a temperature increase related to the cover. On the other hand, we show that without a glass cover, the efficiency is 10% which is 6% better than a standard module due to the cooling effect. Moreover, in the case of a glazed PV/T collector with a conventional control system for Direct Solar Floor, the maximum temperature reached at the level of the PV modules is higher than 100{sup o}C. This is due to the oversize of the collectors during the summer when the heating needs are null, i.e. without a heated swimming pool for example. This temperature level does not allow the use of EVA resin (ethylene vinyl acetate) in PV modules due to strong risks of degradation. The current solution consists of using amorphous cells or, if we do not enhance the thermal production, uncovered PV/T collector. Further research led to water hybrid PV/T solar collectors as a one-piece component, both reliable and efficient, and including the thermal absorber, the heat exchanger and the photovoltaic functions. (author)

  14. Design of Residential Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Mathe, Laszlo

    2017-01-01

    Renewable energy has become very important both worldwide and on the European market, mainly due to the decrease in the photovoltaic (PV) system cost (up to 75%) during the last decade. PV installations worldwide have reached 227 GW at the end of 2015 with a predicted extra 50 GW of new...

  15. A Quantitative Analysis of Photovoltaic Modules Using Halved Cells

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-01-01

    Full Text Available In a silicon wafer-based photovoltaic (PV module, significant power is lost due to current transport through the ribbons interconnecting neighbour cells. Using halved cells in PV modules is an effective method to reduce the resistive power loss which has already been applied by some major PV manufacturers (Mitsubishi, BP Solar in their commercial available PV modules. As a consequence, quantitative analysis of PV modules using halved cells is needed. In this paper we investigate theoretically and experimentally the difference between modules made with halved and full-size solar cells. Theoretically, we find an improvement in fill factor of 1.8% absolute and output power of 90 mW for the halved cell minimodule. Experimentally, we find an improvement in fill factor of 1.3% absolute and output power of 60 mW for the halved cell module. Also, we investigate theoretically how this effect confers to the case of large-size modules. It is found that the performance increment of halved cell PV modules is even higher for high-efficiency solar cells. After that, the resistive loss of large-size modules with different interconnection schemes is analysed. Finally, factors influencing the performance and cost of industrial halved cell PV modules are discussed.

  16. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  17. PV monitoring at Jubilee Campus - Nottingham University

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Gan, G.

    2002-07-01

    This report summarises the results of a project monitoring the efficiency of photovoltaic (PV) modules integrated in the roofs of atria to meet the energy consumption needs of ventilation fans in the academic buildings at the Jubilee Campus of the University of Nottingham. Details are given of the instrumentation of one atrium to allow the monitoring the effectiveness of the ventilation in cooling the PV arrays integrated in the atrium roof, the economic analysis of the benefit of cooling the PV system, and the use of computational fluid dynamics (CFD) modelling to predict the performance of the atrium. The design of the PV system, the calculated system efficiency, the high cost of atrium integrated PV power supplies, the periodic failure of the inverters, and the overheating of the PV array and the atrium space in the summer are discussed.

  18. Optimum Design Of Grid Connected Photovoltaic System Using Concentrators

    Directory of Open Access Journals (Sweden)

    Eng. Mohammed Fawzy

    2015-08-01

    Full Text Available Abstract Due to the increasing demand of electrical energy in Egypt and also in many neighboring countries around the world the main problem facing electrical energy production using classical methods such steam power stations is the depletion of fossil fuels. The gap between the electrical energy demand and the continuous increase on the fossil fuel cost make the problem of electricity generation more sophisticated. With the continuous decrease of the photovoltaic PV technologies cost it doesnt make sense neglecting the importance of electricity production using solar photovoltaic PV especially that the annual average daily energy received is about 6 kamp12310whmamp123112day in Cairo Egypt 30N.In this work a detailed simulation model including photovoltaic PV module characteristics and climatic conditions of Cairo Egypt is developed. The model compares fixed PV systems electrical energy output with photovoltaic PV system using concentrators and double axis tracker systems. The comparison includes the energy generated area required as well as the cost per kwh generated. The optimality criterion is the cost per kwh generated. The system that gives the minimum cost per kwh is the optimum system. To verify the developed model the simulation results of fixed PV modules and CPV using tracking system obtained by the model are compared with practical measurements of 40KW peak station erected in Cairo Egypt 30N.Very good agreement between measured values and results obtained from detailed simulation model. For fixed PV system the detailed economic analysis showed that it gives minimum cost perkwh generated Comparisons among these systems are presented. For Cairo results showed that a cost of about 6 to 9 US centskwh is attainable.

  19. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  20. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  1. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  2. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  3. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  4. Urban BIPV in the new residential construction industry

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, D.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban building-integrated photovoltaics (BIPV) in the new residential construction industry. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The report states that different types of building require different approaches to BIPV due to their associated varying dimensions and geometry. Several solutions are proposed to encourage the adoption and diffusion of BIPV by the new home residential building industry. These are divided into PV industry-based approaches and policy-based solutions. The former include end-customer focused policies, the identification of early adopters, the creation of product solutions that meet the needs of the building industry and standards and that the construction industry must be engaged in the design and planning stage of residential developments. Policy questions discussed include the provision of incentives, a planned approach to the demonstration of BIPV and the development of BIPV-specific policy.

  5. Why silicon is and will remain the dominant photovoltaic material

    Science.gov (United States)

    Singh, Rajendra

    2009-07-01

    Rising demands of energy in emerging economies, coupled with the green house gas emissions related problems around the globe have provided a unique opportunity of exploiting the advantages offered by photovoltaic (PV) systems for green energy electricity generation. Similar to cell phones, power generated by PV systems can reach over two billion people worldwide who have no access to clean energy. Only silicon based PV devices meet the low-cost manufacturing criterion of clean energy conversion (abundance of raw material and no environmental health and safety issues). The use of larger size glass substrates and manufacturing techniques similar to the ones used by the liquid crystal display industry and the large scale manufacturing of amorphous silicon thin films based modules (~ GW per year manufacturing at a single location) can lead to installed PV system cost of $3/Wp. This will open a huge market for grid connected PV systems and related markets. With further research and development, this approach can provide $2/Wp installed PV system costs in the next few years. At this cost level, PV electricity generation is competitive with any other technology, and PV power generation can be a dominant electricity generation technology in the 21st century.

  6. The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts

    Directory of Open Access Journals (Sweden)

    Aldo Orioli

    2016-11-01

    Full Text Available In July 2013, the Italian photovoltaic (PV support policies changed the feed-in tariff (FIT mechanism and turned to a tax credits program, which is currently in force. The aim of this paper is to investigate how such a radical change has influenced the electricity demand coverage of the PV systems installed in urban contexts. A methodology, which connects the economic assessment to a detailed architectural and energy suitability analysis, was applied to some case studies to analyse the relationships between the physical parameters related to multi-storey buildings (roof shapes, number of floors and area of flats and the most relevant economic and financial features affecting the viability of rooftop PV systems. The study, which considers only the electricity produced by the PV systems that are economically profitable, highlighted that the tax credits scheme is even more effective in covering the electrical consumption of densely urbanised Italian city districts. The results, which are significantly influenced by the latitude of the analysed districts, underline the opportunity for governments to adopt PV promoting policies that are more sensitive to the amount of solar energy available in the different regions of their national territory.

  7. Isolated high-efficiency DC/DC converter for photovoltaic applications

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Wijnands, C.G.E.; Duarte, J.L.

    2012-01-01

    While an increasing number of photovoltaic (PV) systems is installed, those systems typically use central inverters. In practical cases, output-power differences between PV modules will cause these central-inverter-based systems not to achieve Maximum Power Point (MPP) for each PV module.

  8. Feasibility of photovoltaic: thermoelectric hybrid modules

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526

    2011-01-01

    Outdoor performance of photovoltaic (PV) modules suffers from elevated temperatures. Conversion efficiency losses of up to about 25% can result, depending on the type of integration of the modules in the roof. Cooling of modules would therefore enhance annual PV performance. Instead of module

  9. Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications

    International Nuclear Information System (INIS)

    Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre

    2015-01-01

    This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications

  10. Natural conditions and administrative settings for concentrating photovoltaics in China

    Science.gov (United States)

    Fu, Ling; Chen, Xiaoyuan; Leutz, Ralf

    2012-10-01

    It is an inevitable trend for China to develop green technologies to help the country to produce cleaner energy and to consume it more efficiently, under the pressure of energy security concern, the nation's emissions trajectory and sustainable economic development. The abundant solar resources in West China provide a big potential to utilize the solar energy. Under the promotion of key incentive policies including both feed-in-tariff (FIT) mechanisms and government rebate programs, China has become a major global solar force in photovoltaic (PV) industry both in manufacturing and in the installation of flat-plate products, with 16 GW production and 2.75 GW installation achieved in the year 2011. As a branch of PV technology, concentrating photovoltaics (CPV) technology with several years' development history in China is presently moving from pilot facilities to commercial-scale applications. Several MW-CPV power plants have been installed by both domestic and western companies in China, factories with several hundred-MW production capacity are being planned or built. Sustainable performance and reliability improvement of CPV modules, a vertical integration of supply chain in CPV industry aiming at a cost reduction, a sufficient grid infrastructure for facilitating the West-East and North-South electricity transmission will promote Chinese CPV market to actually initiate, develop and mature.

  11. Artificial neural Network-Based modeling and monitoring of photovoltaic generator

    Directory of Open Access Journals (Sweden)

    H. MEKKI

    2015-03-01

    Full Text Available In this paper, an artificial neural network based-model (ANNBM is introduced for partial shading detection losses in photovoltaic (PV panel. A Multilayer Perceptron (MLP is used to estimate the electrical outputs (current and voltage of the photovoltaic module using the external meteorological data: solar irradiation G (W/m2 and the module temperature T (°C. Firstly, a database of the BP150SX photovoltaic module operating without any defect has been used to train the considered MLP. Subsequently, in the first case of this study, the developed model is used to estimate the output current and voltage of the PV module considering the partial shading effect. Results confirm the good ability of the ANNBM to detect the partial shading effect in the photovoltaic module with logical accuracy. The proposed strategy could also be used for the online monitoring and supervision of PV modules.

  12. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    OpenAIRE

    Yu-Shan Su

    2013-01-01

    The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors...

  13. Values and potentials of grid-connected solar photovoltaic applications in Malaysia

    International Nuclear Information System (INIS)

    Ahmad Hadri Haris; Iszuan Shah Syed Ismail

    2006-01-01

    Since early 1998, TNB Research Sdn Bhd has been conducting a pilot project to evaluate the performance and economics of grid-connected solar photovoltaic (PV) applications in Malaysia. The project is co-funded by Tenaga Nasional Berhad (TNB) and Malaysia Electricity Supply Industry Trust Account (MESITA). Currently, research project is being concluded with many valuable findings that would be able to provide the direction for the next solar PV development in Malaysia. In total, six pilot grid-connected solar PV systems were installed, where five are located within Klang Valley area and one in Port Dickson. The systems installation and commissioning were staggered between August 1998 to November 2001. A variety of building type was also selected for the system installation. In addition, various PV systems technologies and configurations were applied with average PV power capacity of 3 kW. These variances provide a good opportunity to assess the actual performances and economics of the solar PV applications under the Malaysian environment. This paper would discuss some of the findings, but with a focus on the values and potentials of the grid-connected solar PV applications in Malaysia

  14. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  15. Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds

    International Nuclear Information System (INIS)

    Paulescu, Marius; Badescu, Viorel; Brabec, Marek

    2013-01-01

    The response time of a PV (photovoltaic) plant is very short and its output power follows the abrupt change in solar irradiance level due to alternate shadow by clouds. The sunshine number (SSN) is a Boolean quantity stating whether the sun is covered by clouds or not, thus being an appropriate parameter to predict the occurrence of direct solar radiation at ground level. Various ARIMA (Autoregressive Integrated Moving Average) models for SSN nowcasting are inferred and discussed in this paper. Actinometric and meteorological data measured at 15 s lag during June 2010 in Timisoara (Romania) are used. The forecasting accuracy is studied as a function of season, of the procedure used to obtain a binary time series and of the type of white noise distribution, respectively. It is demonstrated that the ARIMA(0,1,0) model forecasts SSN with the same accuracy as higher order ARIMA models. The forecasting accuracy decreases when the instability of the radiative regime increases. - Highlights: • Nowcasting of passing clouds is modeled by using a 15 s lag database. • ARIMA (Autoregressive Integrated Moving Average) (0,1,0) model is mostly recommended for nowcasting of passing clouds. • Models accuracy increases by increasing the radiative regime stability

  16. You're a What? Solar Photovoltaic Installer

    Science.gov (United States)

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  17. Photovoltaic system criteria documents. Volume 3: Environmental issues and evaluation criteria for photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    The environmental issues and evaluation criteria relating to the suitability of sites proposed for photovoltaic (PV) system deployment are identified. The important issues are defined, briefly discussed and then developed into evaluation criteria. System designers are provided with information on the environmental sensitivity of PV systems in realistic applications, background material which indicates the applicability of the siting issues identified, and evaluation criteria are defined to facilitate the selection of sites that maximize PV system operation.

  18. New Analysis Finds Synergistic Relationship Between High PV Penetration and

    Science.gov (United States)

    photovoltaics (PV) to the electric power grid could increase the potential for energy storage to meet peak based on very limited knowledge," said Paul Denholm, NREL senior analyst and lead author of the PV and storage interact will help build the knowledge base for system planners in all states

  19. Environmental, health and safety issues related to commercializing CuInSe{sub 2}-based photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eberspacher, C. [UNISUN, Newbury Park, CA (United States); Fthenakis, V.M.; Moskowtiz, P.D. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    Photovoltaics technology is rapidly evolving towards a new generation of low-cost thin film technologies. One of the most promising materials in this new generation is copper indium selenide (CuInSe{sub 2} or CIS). As with any new material, successful commercialization of CIS photovoltaic (PV) technology will require attention to environmental, health and safety issues, including consideration of the sources, usage, and end-of-product-life disposal and/or recycling of the constituent materials. This work focuses on three specific environmental, health and safety (EH and S) issues related to CIS PV: (1) economics are analyzed to determine their impact on materials use and re-use; (2) Federal and California State environmental disposal and waste handling regulations are analyzed to evaluate their impact on PV module manufacturing and end-of-life module handling; and (3) the logistics and economics of product recycling and waste disposal by industries with comparable EH and S issues are examined to quantify the corresponding options available for handling, disposing of and/or recycling manufacturing by-products and end-of-life modules.

  20. A Practical Optimization Method for Designing Large PV Plants

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Koutroulis, E.; Eyigun, S.

    2011-01-01

    Nowadays Photovoltaic (PV) plants have multi MW sizes, the biggest plants reaching tens of MW of capacity. Such large-scale PV plants are made up of several thousands of PV panels, each panel being in the range of 150-350W. This means that the design of a Large PV power plant is a big challenge...... and configuring such a plant should be implemented taking into consideration not only the cost of the installation, but also the Annual Energy Production, the Performance Ratio and the Levelized Cost Of Energy. In this paper, an algorithm is presented including the most important models of the PV system...