WorldWideScience

Sample records for photovoltaic pv powered

  1. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  2. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  3. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    Science.gov (United States)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  4. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method

    International Nuclear Information System (INIS)

    Lin, Chia-Hung; Huang, Cong-Hui; Du, Yi-Chun; Chen, Jian-Liung

    2011-01-01

    Highlights: → The FOICM can shorten the tracking time less than traditional methods. → The proposed method can work under lower solar radiation including thin and heavy clouds. → The FOICM algorithm can achieve MPPT for radiation and temperature changes. → It is easy to implement in a single-chip microcontroller or embedded system. -- Abstract: This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.

  5. Design and Analysis of Photovoltaic (PV) Power Plant at Different Locations in Malaysia

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.

    2018-05-01

    Power generation from sun oriented vitality through a photovoltaic (PV) system is ended up prevalent over the world due to clean innovation. Geographical location of Malaysia is very favorable for PV power generation system. The Malaysian government has also taken different steps to increase the use of solar energy especially by emphasizing on building integrated PV (BIPV) system. Comparative study on the feasibility of BIPV installation at the different location of Malaysia is rarely found. On the other hand, solar cell temperature has a negative impact on the electricity generation. So in this study cost effectiveness and initial investment cost of building integrated grid connected solar PV power plant in different regions of Malaysia have been carried. The effect of PV solar cell temperature on the payback period (PBP) is also investigated. Highest PBP is 12.38 years at Selangor and lowest PBP is 9.70 years at Sabah (Kota Kinabalu). Solar cell temperature significantly increases the PBP of PV plant and highest 14.64% and lowest 13.20% raise of PBP are encountered at Penang and Sarawak respectively.

  6. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  7. Photovoltaics: PV takes off the UK

    International Nuclear Information System (INIS)

    Noble, Ray; Gregory, Jenny

    2000-01-01

    Despite historical ups and downs, there is still ambition to bring increasingly efficient photovoltaic (PV) systems to the market. PV for major remote telecommunications systems is now an established part of the market, many mobile phone systems are powered by PV and there is potential for increased use of home solar systems, especially in developing countries. Over the past few years, building-integrated PV (BIPV) has been on the increase. In 1999, global production from PV exceeded 200 MW and the UK installed capacity was greater than 1 MW. BIPV is a fast growing market and its characteristics and advantages are discussed. PV installations at Nottingham University, Greenwich Pavilion, BP Amoco Sunbury, Baglan Bay, BP filling stations, and Sainsbury's are described

  8. The market for photovoltaic (PV) technology

    International Nuclear Information System (INIS)

    Frantzis, L.; Vejtasa, K.M.

    1993-01-01

    This paper describes a study that was intended to provide the Electric Power Research Institute (EPRI) with a market analysis for photovoltaic (PV) technologies under development by EPRI and others. The analysis was to focus on markets and factors leading to significant incremental growth for PV demand, large enough to support more efficient scale PV manufacturing capacity. EPRI anticipates that PV ultimately could provide grid-connected power, however, the 1995--2010 market dynamics are uncertain. The specific objectives of this study, therefore, were to: determine what major future domestic US markets for PV technologies will emerge and provide enough volume to support significant improvements in manufacturing costs through manufacturing economies of scale; provide insight on what is needed to gain acceptance of PV technologies for electric power generation in those major markets; provide insight on when investments in demonstration and manufacturing facilities should be made and what is needed to be successful in each element of the business that these markets could support (e.g., technology development, manufacturing, sales, installation, and service); and provide key insights on the requirements for commercial success of PV in the utility sector

  9. Photovoltaic module with integrated power conversion and interconnection system - the European project PV-MIPS

    OpenAIRE

    Henze, N.; Engler, A.; Zacharias, P.

    2006-01-01

    Within the 6th framework program funded by the European Commission the project PV-MIPS (Photovoltaic Module with Integrated Power Conversion System) was launched in November 2004. Together with eleven European partners from Germany, Austria, Greece and the Netherlands a solar module with integrated in-verter shall be developed that can feed solar electricity directly into the grid. The challenging objective of the project is to reduce the total costs of a PV system. At the same time lifetime ...

  10. PV Obelisk - Information system with photovoltaics

    International Nuclear Information System (INIS)

    Ruoss, D.; Rasmussen, J.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed

  11. Regional PV power estimation and forecast to mitigate the impact of high photovoltaic penetration on electric grid.

    Science.gov (United States)

    Pierro, Marco; De Felice, Matteo; Maggioni, Enrico; Moser, David; Perotto, Alessandro; Spada, Francesco; Cornaro, Cristina

    2017-04-01

    The growing photovoltaic generation results in a stochastic variability of the electric demand that could compromise the stability of the grid and increase the amount of energy reserve and the energy imbalance cost. On regional scale, solar power estimation and forecast is becoming essential for Distribution System Operators, Transmission System Operator, energy traders, and aggregators of generation. Indeed the estimation of regional PV power can be used for PV power supervision and real time control of residual load. Mid-term PV power forecast can be employed for transmission scheduling to reduce energy imbalance and related cost of penalties, residual load tracking, trading optimization, secondary energy reserve assessment. In this context, a new upscaling method was developed and used for estimation and mid-term forecast of the photovoltaic distributed generation in a small area in the north of Italy under the control of a local DSO. The method was based on spatial clustering of the PV fleet and neural networks models that input satellite or numerical weather prediction data (centered on cluster centroids) to estimate or predict the regional solar generation. It requires a low computational effort and very few input information should be provided by users. The power estimation model achieved a RMSE of 3% of installed capacity. Intra-day forecast (from 1 to 4 hours) obtained a RMSE of 5% - 7% while the one and two days forecast achieve to a RMSE of 7% and 7.5%. A model to estimate the forecast error and the prediction intervals was also developed. The photovoltaic production in the considered region provided the 6.9% of the electric consumption in 2015. Since the PV penetration is very similar to the one observed at national level (7.9%), this is a good case study to analyse the impact of PV generation on the electric grid and the effects of PV power forecast on transmission scheduling and on secondary reserve estimation. It appears that, already with 7% of PV

  12. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    Science.gov (United States)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  13. PV Obelisk - Information system with photovoltaics; PV-Obelisk Orientierungssystem mit Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.; Rasmussen, J.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed.

  14. Photovoltaics for Buildings Cutting-Edge PV

    International Nuclear Information System (INIS)

    Hayter, S. J.; Martin, R. L.

    1998-01-01

    Photovoltaic (PV) technology development for building-integrated applications (commonly called PV for Buildings) is one of the fastest growing areas in the PV industry. Buildings represent a huge potential market for photovoltaics because they consume approximately two-thirds of the electricity consumed in the US. The PV and buildings industries are beginning to work together to address issues including building codes and standards, integration, after-market servicing, education, and building energy efficiency. One of the most notable programs to encourage development of new PV-for-buildings products is the PV:BONUS program, supported by the US Department of Energy. Demand for these products from building designers has escalated since the program was initiated in 1993. This paper presents a range of PV-for-buildings issues and products that are currently influencing today's PV and buildings markets

  15. Overview of Recent Grid Codes for PV Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2012-01-01

    The challenge to bring down the cost of produced photovoltaic (PV) power had a major impact on the PV market and in consequence the grid operators experienced higher and higher PV power penetration. The growing share of this decentralized generation plants started to affect the grid stability...

  16. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  17. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  18. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  19. Power electronics and control techniques for maximum energy harvesting in photovoltaic systems

    CERN Document Server

    Femia, Nicola

    2012-01-01

    Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) so

  20. National survey report on PV power applications in Switzerland 2006

    International Nuclear Information System (INIS)

    Huesser, P.; Hostettler, T.

    2007-01-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  1. National survey report on PV power applications in Switzerland 2006

    Energy Technology Data Exchange (ETDEWEB)

    Huesser, P. [Nova Energie GmbH, Aarau (Switzerland); Hostettler, T. [Ingenieurbuero Hostettler, Berne (Switzerland)

    2007-07-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  2. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  3. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  4. Simulation and Modeling of a Five -Level (NPC Inverter Fed by a Photovoltaic Generator and Integrated in a Hybrid Wind-PV Power System

    Directory of Open Access Journals (Sweden)

    M. Rezki,

    2017-08-01

    Full Text Available A distributed hybrid coordinated wind photovoltaic (PV power system was proposed in this paper. As oil and coal reserves are being depleted whilst at the same time the energy demand is growing, it is important to consider alternative energy generating techniques. Today, the five-level (NPC inverter represents a good alternative for several industrial applications. To take advantage of the five-level inverter topology and the benefits of renewable energy represented by a photovoltaic generator, a new scheme of these controllers is proposed in this work. This paper outlines the design of a hybrid power system consisting of a solar photovoltaic (PV and a wind power system. The system is modeled in Matlab Simulink and tested for various conditions. The model and results are discussed in this paper.

  5. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  6. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  7. National Survey Report of PV Power Applications in France 2014

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Durand, Yvonnick

    2015-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual Trends in photovoltaic applications report. In parallel, National Survey Reports are produced annually by each Task 1 participant. The PVPS web site www.iea-pvps.org also plays an important role in disseminating information arising from the program, including national information. This document is the French National Survey Report on photovoltaics for the year 2014

  8. The prospects for cost competitive solar PV power

    International Nuclear Information System (INIS)

    Reichelstein, Stefan; Yorston, Michael

    2013-01-01

    New solar Photovoltaic (PV) installations have grown globally at a rapid pace in recent years. We provide a comprehensive assessment of the cost competitiveness of this electric power source. Based on data available for the second half of 2011, we conclude that utility-scale PV installations are not yet cost competitive with fossil fuel power plants. In contrast, commercial-scale installations have already attained cost parity in the sense that the generating cost of power from solar PV is comparable to the retail electricity prices that commercial users pay, at least in certain parts of the U.S. This conclusion is shown to depend crucially on both the current federal tax subsidies for solar power and an ideal geographic location for the solar installation. Projecting recent industry trends into the future, we estimate that utility-scale solar PV facilities are on track to become cost competitive by the end of this decade. Furthermore, commercial-scale installations could reach “grid parity” in about ten years, if the current federal tax incentives for solar power were to expire at that point. - Highlights: ► Assessment of the cost competitiveness of new solar Photovoltaic (PV) installations. ► Utility-scale PV installations are not yet cost competitive with fossil fuel power plants. ► Commercial-scale installations have already attained cost parity in certain parts of the U.S. ► Utility-scale solar PV facilities are on track to become cost competitive by the end of this decade

  9. Relay Protection Coordination for Photovoltaic Power Plant Connected on Distribution Network

    OpenAIRE

    Nikolovski, Srete; Papuga, Vanja; Knežević, Goran

    2014-01-01

    This paper presents a procedure and computation of relay protection coordination for a PV power plant connected to the distribution network. In recent years, the growing concern for environment preservation has caused expansion of photovoltaic PV power plants in distribution networks. Numerical computer simulation is an indispensable tool for studying photovoltaic (PV) systems protection coordination. In this paper, EasyPower computer program is used with the module Power Protector. Time-curr...

  10. National Survey Report of PV Power Applications in France 2012. Photovoltaic Power Applications in France - National Survey Report 2012

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2013-05-01

    The PV power of all grid-connected photovoltaic systems installed in 2012 stood at 1 079 MW. This represented a 38 % fall compared with 2011. New grid-connected distributed systems, the majority of which were building-integrated, represented a total power of 756 MW, while grid-connected centralised ground-based power plants accounted for 323 MW. New PV installations in mainland France accounted for 35 % of total new electricity production capacity commissioned in 2012. The off-grid stand-alone photovoltaic system sector remains marginal with around 0,2 MW installed. The cumulative power capacity of all photovoltaic systems in operation at the end of 2012 stood at 4 003 MW (281 724 systems) representing an increase of 37% compared with 2011. Residential systems less than or equal to 3 kW accounted for 86% of all installations and 16 % of total power capacity, while systems exceeding 250 kW accounted for 0,3% of all installations and 44% of total capacity. In 2012, photovoltaic electricity production accounted for 0,7% of France's total electricity production. In France, the estimated average price of European-manufactured photovoltaic modules stood at 0,72 EUR/W in 2012. The fall in prices observed over the last two years has led to substantial growth in the medium-power and high-power systems sector. The turnkey price stood at around 3,7 EUR/W in 2012 for building-integrated residential systems (IAB) using European modules. The price of simplified building-integrated systems (ISB) on commercial and industrial buildings stood at 2,0 EUR/W, and at 1,6 EUR/W for high-power grid-connected ground-mounted systems (all prices mentioned are exclusive of VAT). The French photovoltaic component industry faced stiff international competition in 2012. The industrial value chain has, on the whole, remained relatively unscathed, but small installation companies have been the worst affected. Upstream of the PV sector, photovoltaic-grade silicon manufacturing is currently at

  11. Photovoltaic energy in power market

    NARCIS (Netherlands)

    Ho, D.T.; Frunt, J.; Myrzik, J.M.A.

    2009-01-01

    Photovoltaic (PV) penetration in the grid connected power system has been growing. Currently, PV electricity is usually directly sold back to the energy supplier at a fixed price and subsidy. However, subsidies should always be a temporary policy, and will eventually be terminated. A question is

  12. Adaptive reactive power control of PV power plants for improved power transfer capability under ultra-weak grid conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2017-01-01

    The Photovoltaic (PV) power plants are usually deployed in remote areas with the high solar irradiance, and their power transfer capabilities can be greatly limited by the large impedance of long-distance transmission lines. This paper investigates first the power transfer limit of the PV power p...

  13. Simulation of Distributed PV Power Output in Oahu Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-08-01

    Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presented by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.

  14. Low-voltage grid-connection of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A.; Thornycroft, J.

    1999-07-01

    This report summarises the results of a project aimed at developing technical guidelines concerning grid connected photovoltaic (PV) inverter generators which are to be published in draft form as the {sup U}K Technical Guidelines for Inverter Connected Single Phase Photovoltaic (PV) Generators up to 5kVA{sup .} The background to the use of PV in the UK is traced, and the technical criteria for electrical integration of PV systems, and UK guidelines for grid connected PV systems are examined. The findings of the working group of the International Energy Agency (IEA) Implementing Agreement on Photovoltaic Power Systems are also presented in this report. Appendices discuss the UK technical guidelines, the IEA Task V activities,, utility aspects of grid-connected PV systems, and demonstration tests on grid-connected PV systems, and lists Task V reports.

  15. Towards photovoltaic powered artificial retina

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2011-11-01

    Full Text Available The aim of this article is to provide an overview of current and future concepts in the field of retinal prostheses, and is focused on the power supply based on solar energy conversion; we introduce the possibility of using PV minimodules as power supply for a new concept of retinal prostheses: Photovoltaic Powered Artificial Retina (PVAR. Main characteristics of these PV modules are presented showing its potential for this application.

  16. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  17. Flexible Power Control of Photovoltaic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Sangwongwanich, Ariya; Yang, Yongheng

    2018-01-01

    With a still increasing penetration level of grid-connected photovoltaic (PV) systems, more advanced and flexible control functionalities are demanded. To ensure a smooth and friendly integration between the PV systems and the grid, the power generated by the PV system needs to be flexible...

  18. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  19. An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhou

    2017-12-01

    Full Text Available This paper provides a review on various PV simulator technologies as well as presents a novel equivalent photovoltaic (PV source that was constructed by using un-illuminated solar panels and a DC power supply that operates in current source mode. The constructed PV source was used for testing photovoltaic converters and various maximum power point tracking (MPPT algorithms required for capturing the maximum possible output power. The mathematical model and electrical characteristics of the constructed PV source were defined and analyzed in detail in the paper. The constructed PV source has the advantages of high bandwidth over the switching circuit based PV simulators. The constructed PV source has been used for testing various power electronics converters and various control techniques effectively in laboratory environments for researchers and university students.

  20. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-Cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarrett; Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-01

    This presentation summarizes the findings from the report 'SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future.' This presentation was given as a webinar on September 26, 2017.

  1. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  2. Development and design of photovoltaic power prediction system

    Science.gov (United States)

    Wang, Zhijia; Zhou, Hai; Cheng, Xu

    2018-02-01

    In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.

  3. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  4. Photovoltaic power production figures in 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Worldwide figures of photovoltaic power production (in Mw) along 1992 are presented. Worldwide production of modules per manufacturing technology and per manufacturing companies in Europe, USA and Japan are provided as well. The review has used the following sources: ''PV News'', ''PV insider's report'' and ''systems solars''. (Author)

  5. A short-term spatio-temporal approach for Photovoltaic power forecasting

    NARCIS (Netherlands)

    Tascikaraoglu, A.; Sanandaji, B.M.; Chicco, G.; Cocina, V.; Spertino, F.; Erdinc, Ozan; Paterakis, N.G.; Catalão, J.P.S.

    2016-01-01

    This paper presents a Photovoltaic (PV) power conversion model and a forecasting approach which uses spatial dependency of variables along with their temporal information. The power produced by a PV plant is forecasted by a PV conversion model using the predictions of three weather variables,

  6. National Survey Report of Photovoltaic Power Applications in France 2016

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Mehl, Celine; Carrere, Tristan

    2017-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual 'Trends in photovoltaic applications' report. In parallel, National Survey Reports are produced annually by each Task 1 participant. This document is France National Survey Report for the year 2016. Information from this document will be used as input to IEA's annual Trends in photovoltaic applications report

  7. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  8. MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car

    OpenAIRE

    Aji, Seno; Ajiatmo, Dwi; Robandi, Imam; Suryoatmojo, Heri

    2013-01-01

    This paper presents a control called Maximum Power Point Tracking (MPPT) for photovoltaic (PV) system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC) is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cy...

  9. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  10. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Mastromauro, R. A.

    2009-01-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. Also low power PV systems can be designed to improve the power quality. This paper presents a single-phase photovoltaic system that provides grid voltage support and compensation o...

  11. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance......Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...

  12. A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation

    Directory of Open Access Journals (Sweden)

    Yuan-Kang Wu

    2014-01-01

    Full Text Available The increasing use of solar power as a source of electricity has led to increased interest in forecasting its power output over short-time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, reserve usage, and peak load matching. However, the output of a photovoltaic (PV system is influenced by irradiation, cloud cover, and other weather conditions. These factors make it difficult to conduct short-term PV output forecasting. In this paper, an experimental database of solar power output, solar irradiance, air, and module temperature data has been utilized. It includes data from the Green Energy Office Building in Malaysia, the Taichung Thermal Plant of Taipower, and National Penghu University. Based on the historical PV power and weather data provided in the experiment, all factors that influence photovoltaic-generated energy are discussed. Moreover, five types of forecasting modules were developed and utilized to predict the one-hour-ahead PV output. They include the ARIMA, SVM, ANN, ANFIS, and the combination models using GA algorithm. Forecasting results show the high precision and efficiency of this combination model. Therefore, the proposed model is suitable for ensuring the stable operation of a photovoltaic generation system.

  13. Comparative Study Between Wind and Photovoltaic (PV) Systems

    Science.gov (United States)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  14. A general algorithm for flexible active power control of photovoltaic systems

    DEFF Research Database (Denmark)

    Tafti, H. Dehghani; Sangwongwanich, A.; Yang, Y.

    2018-01-01

    The maximum power point tracking (MPPT) is generally implemented in grid-connected photovoltaic (PV) power plants to maximize the energy yield. However, as the penetration level increases, challenging issues such as overloading and over-voltage arise in PV applications. Accordingly, a constant po...... dynamics and low-power oscillations can be obtained. The performance of the proposed strategy is evaluated through simulations and experiments under different irradiance and power reference profiles.......The maximum power point tracking (MPPT) is generally implemented in grid-connected photovoltaic (PV) power plants to maximize the energy yield. However, as the penetration level increases, challenging issues such as overloading and over-voltage arise in PV applications. Accordingly, a constant...... power generation (CPG) operation, in which the PV output power is limited to a specific value, has been imposed by some grid regulators to alleviate the integration challenges. In that case, the combined operation of MPPT and CPG is required, which increases the complexity of the controller design...

  15. National Survey Report of Photovoltaic Power Applications in France 2015

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Durand, Yvonnick

    2016-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual report Trends in Photovoltaic Applications. In parallel, National Survey Reports are produced annually by each Task 1 participant. The PVPS web site www.iea-pvps.org also plays an important role in disseminating information arising from the program, including national information. This document is the French National Survey Report on photovoltaics for the year 2015

  16. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  17. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  18. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  19. Household photovoltaic market in Xining, Qingha province, China: the role of local PV business

    International Nuclear Information System (INIS)

    Ling, S.; Boardman, B.

    2002-01-01

    This paper assesses the present and future market for household photovoltaic (PV) systems in rural Northwest China, especially from the PV commerce at Xining, Qinghai Province. This unsubsidised free market is now met by the emerging PV industry in China, which includes cell and module manufacturers, and PV system distributors and assemblers. For widespread deployment of such a renewable energy technology, the development of a local free market seems more successful than donor- or 'government subsidy'-driven programmes. Presently, there is a thriving infant PV industry in Northwest China, mostly centred in Xining. Xining-based PV sales companies have extensive networks for selling, marketing and servicing household PV systems for rural farmers and nomads. Small systems are now ordinary items on sale in local shops. Based on interviews and fieldwork observations with seven major PV sales companies in Xining, the household PV market is assessed from the present business operations of these companies. Detail of primary sources is given with the aim of archiving seminal progress in the history of photovoltaic power. The results suggest that although the household PV market will continue to grow, current government and international sponsored PV programmes can create both opportunities and barriers for the infant PV market an industry in China. (author)

  20. Practical design considerations for photovoltaic power station

    Science.gov (United States)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  1. Generation of large-scale PV scenarios using aggregated power curves

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2017-01-01

    The contribution of solar photovoltaic (PV) power to the generation is becoming more relevant in modern power system. Therefore, there is a need to model the variability large-scale PV generation accurately. This paper presents a novel methodology to generate regional PV scenarios based...... on aggregated power curves rather than traditional physical PV conversion models. Our approach is based on hourly mesoscale reanalysis irradiation data and power measurements and do not require additional variables such as ambient temperature or wind speed. It was used to simulate the PV generation...... on the German system between 2012 and 2015 showing high levels of correlation with actual measurements (93.02–97.60%) and small deviations from the expected capacity factors (0.02–1.80%). Therefore, we are confident about the ability of the proposed model to accurately generate realistic large-scale PV...

  2. Grid Support in Large Scale PV Power Plants using Active Power Reserves

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut

    to validate the performance of the frequency support functions, a flexible grid model with IEEE 12 bus system characteristics has been developed and implemented in RTDS. A power hardware-in-the-loop (PHIL) system composed by 20 kW plant (2 x 10 kW inverters and PV linear simulator) and grid simulator (RTDS......Photovoltaic (PV) systems are in the 3rd place in the renewable energy market, after hydro and wind power. The increased penetration of PV within the electrical power system has led to stability issues of the entire grid in terms of its reliability, availability and security of the supply....... As a consequence, Large scale PV Power Plants (LPVPPs) operating in Maximum Power Point (MPP) are not supporting the electrical network, since several grid triggering events or the increased number of downward regulation procedures have forced European Network of Transmission System Operators for Electricity...

  3. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  4. Probability of islanding in utility networks due to grid connected photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, B.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the probability of islanding in utility networks due to grid-connected photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the results on a study on the probability of islanding in power networks with a high penetration level of grid connected PV-systems. The results are based on measurements performed during one year in a Dutch utility network. The measurements of active and reactive power were taken every second for two years and stored in a computer for off-line analysis. The area examined and its characteristics are described, as are the test set-up and the equipment used. The ratios between load and PV-power are discussed. The general conclusion is that the probability of islanding is virtually zero for low, medium and high penetration levels of PV-systems.

  5. Economics of PV power supply for Libyan remote areas

    International Nuclear Information System (INIS)

    La-azebi, I.F.; Kagilik, A.S.; Bara, M.F.

    2000-01-01

    The electrical power supplies of remote and isolated areas has been and is still an issue for electric power companies worldwide. Usually there are three ways of supplying these remote areas mainly, the general grid, the Diesel generators, and photovoltaic power supply. The use of one of these systems instead of the other depend, on the availability, reliability, and cost. There are some isolated areas, which can t be supplied from the general grid as they are far away from it and economically not visible, so the electric power is needed of such isolated areas will be supplied either by Diesel generators or photovoltaics. The use of diesel generator demands a constant fuel supply, and maintenance staff, which also may not be available in small villages. Therefore the PV generators in such cases are considered an ideal solution of supplying these areas. In Libya, a national program has been started to supply small villages and other loads in remote and isolated areas, with electricity using PV power supply. This paper presents an economical comparison between the two different alternatives of electric supply systems to be used in remote areas: Diesel generators and PV systems. (Author)

  6. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  7. MPPT Based on Fuzzy Logic Controller (FLC for Photovoltaic (PV System in Solar Car

    Directory of Open Access Journals (Sweden)

    Seno Aji

    2013-12-01

    Full Text Available This paper presents a control called Maximum Power Point Tracking (MPPT for photovoltaic (PV system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cycle value is used to adjust the angle of ignition switch (MOSFET gate on the Boost converter. The proposed method was shown through simulation performed using PSIM and MATLAB software. Simulation results show that the system is able to improve the PV power extraction efficiency significantly by approximately 98% of PV’s power.

  8. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Track...

  9. Estimation of Maximum Allowable PV Connection to LV Residential Power Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    Maximum photovoltaic (PV) hosting capacity of low voltage (LV) power networks is mainly restricted by either thermal limits of network components or grid voltage quality resulted from high penetration of distributed PV systems. This maximum hosting capacity may be lower than the available solar...... potential of geographic area due to power network limitations even though all rooftops are fully occupied with PV modules. Therefore, it becomes more of an issue to know what exactly limits higher PV penetration level and which solutions should be engaged efficiently such as over sizing distribution...

  10. DSP control of photovoltaic power generation system adding the function of shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Seo, H.-R.; Kim, K.-H.; Park, Y.-G.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    The growing number of power electronics-based equipment has created a problem on the quality of electric power supply since both high power industrial loads and domestic loads cause harmonics in the network voltage. Power quality problems can occur in the system or can be caused by the consumer. Active filter (AF) is widely used to compensate current harmonics and/or current imbalance of harmonic-producing loads. The power output of a photovoltaic (PV) system is directly affected by weather conditions. When alternating current (AC) power supply is required, power conversion by an inverter and an MPPT control is necessary. The proliferation of nonlinear loads such as inverter of PV power generation system can be treated as a harmonic source for the power distribution system. As such, the PV system combined with the function of the active filter system can be useful for the application in power distribution systems. This paper described a PV-AF system using DSP to prove that it is possible to combine AF theory to the three phase PV system connected to utility and verify it through experimental results. The paper described the control method of the PV-AF system, with reference to the photovoltaic power generation system, shunt active filter and PV-AF system. The experimental set-up was also presented. A laboratory system was designed and constructed to confirm the viability of the proposed PV-AF system. The test results revealed the stability and effectiveness of the proposed PV-AF system. 12 refs., 1 tabs., 12 figs.

  11. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  12. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Science.gov (United States)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  13. Compressive spatio-temporal forecasting of meteorological quantities and photovoltaic power

    NARCIS (Netherlands)

    Tascikaraoglu, A.; Sanandaji, B.M.; Chicco, G.; Cocina, V.; Spertino, F.; Erdinç, O.; Paterakis, N.G.; Catalaõ, J.P.S.

    2016-01-01

    This paper presents a solar power forecasting scheme, which uses spatial and temporal time series data along with a photovoltaic (PV) power conversion model. The PV conversion model uses the forecast of three different variables, namely, irradiance on the tilted plane, ambient temperature, and wind

  14. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  15. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... performed on a 3-kW two-stage single-phase grid-connected PV system, where the power reserve control is achieved upon demands....

  16. Solar photovoltaic power forecasting using optimized modified extreme learning machine technique

    Directory of Open Access Journals (Sweden)

    Manoja Kumar Behera

    2018-06-01

    Full Text Available Prediction of photovoltaic power is a significant research area using different forecasting techniques mitigating the effects of the uncertainty of the photovoltaic generation. Increasingly high penetration level of photovoltaic (PV generation arises in smart grid and microgrid concept. Solar source is irregular in nature as a result PV power is intermittent and is highly dependent on irradiance, temperature level and other atmospheric parameters. Large scale photovoltaic generation and penetration to the conventional power system introduces the significant challenges to microgrid a smart grid energy management. It is very critical to do exact forecasting of solar power/irradiance in order to secure the economic operation of the microgrid and smart grid. In this paper an extreme learning machine (ELM technique is used for PV power forecasting of a real time model whose location is given in the Table 1. Here the model is associated with the incremental conductance (IC maximum power point tracking (MPPT technique that is based on proportional integral (PI controller which is simulated in MATLAB/SIMULINK software. To train single layer feed-forward network (SLFN, ELM algorithm is implemented whose weights are updated by different particle swarm optimization (PSO techniques and their performance are compared with existing models like back propagation (BP forecasting model. Keywords: PV array, Extreme learning machine, Maximum power point tracking, Particle swarm optimization, Craziness particle swarm optimization, Accelerate particle swarm optimization, Single layer feed-forward network

  17. Maximum power point tracking of partially shaded solar photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Shubhajit; Saha, Hiranmay [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University (India)

    2010-09-15

    The paper presents the simulation and hardware implementation of maximum power point (MPP) tracking of a partially shaded solar photovoltaic (PV) array using a variant of Particle Swarm Optimization known as Adaptive Perceptive Particle Swarm Optimization (APPSO). Under partially shaded conditions, the photovoltaic (PV) array characteristics get more complex with multiple maxima in the power-voltage characteristic. The paper presents an algorithmic technique to accurately track the maximum power point (MPP) of a PV array using an APPSO. The APPSO algorithm has also been validated in the current work. The proposed technique uses only one pair of sensors to control multiple PV arrays. This result in lower cost and higher accuracy of 97.7% compared to earlier obtained accuracy of 96.41% using Particle Swarm Optimization. The proposed tracking technique has been mapped onto a MSP430FG4618 microcontroller for tracking and control purposes. The whole system based on the proposed has been realized on a standard two stage power electronic system configuration. (author)

  18. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  19. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  20. Impact Analysis of Peng-Hu Power System Connected with a Photovoltaic System

    DEFF Research Database (Denmark)

    Wang, Li; Nguyen, Ha Thi; Yan, Chih-Hao

    2014-01-01

    With the rapid increase of photovoltaic (PV) systems installed in power systems in the recent years, the negative impacts on power quality of distribution networks due to highpenetration PV systems can be increased. This paper presents the system-impact analyzed results of a 0.6-MW PV system conn...

  1. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2012-12-01

    Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  2. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  3. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  4. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  5. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  6. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  7. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  8. Robust Controller to Extract the Maximum Power of a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    OULD CHERCHALI Noureddine

    2014-05-01

    Full Text Available This paper proposes a technique of intelligent control to track the maximum power point (MPPT of a photovoltaic system . The PV system is non-linear and it is exposed to external perturbations like temperature and solar irradiation. Fuzzy logic control is known for its stability and robustness. FLC is adopted in this work for the improvement and optimization of control performance of a photovoltaic system. Another technique called perturb and observe (P & O is studied and compared with the FLC technique. The PV system is constituted of a photovoltaic panel (PV, a DC-DC converter (Boost and a battery like a load. The simulation results are developed in MATLAB / Simulink software. The results show that the controller based on fuzzy logic is better and faster than the conventional controller perturb and observe (P & O and gives a good maximum power of a photovoltaic generator under different changes of weather conditions.

  9. An algorithm for reduction of extracted power from photovoltaic strings in grid-tied photovoltaic power plants during voltage sags

    DEFF Research Database (Denmark)

    Tafti, Hossein Dehghani; Maswood, Ali Iftekhar; Pou, Josep

    2016-01-01

    strings should be reduced during voltage sags. In this paper, an algorithm is proposed for determining the reference voltage of the PV string which results in a reduction of the output power to a certain amount. The proposed algorithm calculates the reference voltage for the dc/dc converter controller......, based on the characteristics of the power-voltage curve of the PV string and therefore, no modification is required in the the controller of the dc/dc converter. Simulation results on a 50-kW PV string verified the effectiveness of the proposed algorithm in reducing the power from PV strings under......Due to the high penetration of the installed distributed generation units in the power system, the injection of reactive power is required for the medium-scale and large-scale grid-connected photovoltaic power plants (PVPPs). Because of the current limitation of the grid-connected inverter...

  10. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  11. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  12. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-01-01

    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  13. Evaluation of nodal reliability risk in a deregulated power system with photovoltaic power penetration

    DEFF Research Database (Denmark)

    Zhao, Qian; Wang, Peng; Goel, Lalit

    2014-01-01

    Owing to the intermittent characteristic of solar radiation, power system reliability may be affected with high photovoltaic (PV) power penetration. To reduce large variation of PV power, additional system balancing reserve would be needed. In deregulated power systems, deployment of reserves...... and customer reliability requirements are correlated with energy and reserve prices. Therefore a new method should be developed to evaluate the impacts of PV power on customer reliability and system reserve deployment in the new environment. In this study, a method based on the pseudo-sequential Monte Carlo...... simulation technique has been proposed to evaluate the reserve deployment and customers' nodal reliability with high PV power penetration. The proposed method can effectively model the chronological aspects and stochastic characteristics of PV power and system operation with high computation efficiency...

  14. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  15. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  16. Data on Support Vector Machines (SVM model to forecast photovoltaic power

    Directory of Open Access Journals (Sweden)

    M. Malvoni

    2016-12-01

    Full Text Available The data concern the photovoltaic (PV power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015 [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA are applied to the Least Squares Support Vector Machines (LS-SVM to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  17. Canadian PV [photovoltaic] commercial activity report for 1989

    International Nuclear Information System (INIS)

    1992-01-01

    The Canadian Photovoltaic Industries Association (CPIA) conducted a survey among 65 Canadian firms involved in the photovoltaic industry and technology to determine the degree of commercial activity. Overall revenue for these firms in 1989 increased nearly 15% to ca $15 million. Actual reported sales of photovoltaic (PV) modules totalled 400 kW for use in Canada and abroad, of which communications applications accounted for ca 40% of these sales. Export sales were significant, with 59% of reported sales sold as packages being exported. Sales of systems within Canada were fairly evenly distributed between Quebec, Ontario, the Prairies, and British Columbia. The private sector share of reported sales was 42% or greater in terms of both dollar or peak wattage. Residential-use and water-pumping segments of the market reported increased activity. Internationally, annual PV module sales in 1989 were reported to be 42 MW peak, a 20% increase from 1988. The USA has the world market share with 36%, followed by Japan at 30%. Survey respondents made suggestions for more equitable tax treatment for PV products, and saw environmental issues as having a major impact on marketing strategies. 27 refs., 11 tabs

  18. Power Ramp Limitation capabilities of Large PV Power Plants with Active Power Reserves

    DEFF Research Database (Denmark)

    Bogdan, Craciun; Kerekes, Tamas; Sera, Dezso

    2017-01-01

    Power Ramp Limitation (PRL) is likely to become a requirement for large scale photovoltaic power plants (LPVPPs) in order to allow the increase of PV penetration levels. Especially in islands with reduced inertia capability, this problem is more stringent: high power ramp can be caused by either...... fast irradiance changes or other participant generators for example wind power, or loads. In order to compensate for the power mismatch, LPVPPs must use Active Power Reserve (APR), by either curtailment or auxiliary storage. The paper proposes a PRL control structure for dynamic APR sizing...... and deployment. The selected test case is the power system of Puerto Rico (PREPA), modeled using the modified IEEE 12 bus benchmark system, with different levels of PV penetration. It is shown that LPVPP with PRL can effectively reduce the ramping rate of the participating generators. Considering that the large...

  19. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  20. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    Science.gov (United States)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of

  1. Analysis of the influences of grid-connected PV power system on distribution grids

    Directory of Open Access Journals (Sweden)

    Dumitru Popandron

    2013-12-01

    Full Text Available This paper presents the analysis of producing an electric power of 2.8 MW using a solar photovoltaic plant. The PV will be grid connected to the distribution network. The study is focused on the influences of connecting to the grid of a photovoltaic system, using modern software for analysis, modeling and simulation in power systems.

  2. Use of appliances in stand-alone PV power supply systems: problems and solutions. Task 3 use of photovoltaic power systems in stand-alone and island applications

    Energy Technology Data Exchange (ETDEWEB)

    Vallve, X.; Gafas, G. [IEA PVPS, Task 3 (Spain); Villoz, M. [IEA PVPS, Task 3 (Switzerland); Wilshaw, A. [IEA PVPS, Task 3 (United Kingdom); Jacquin, P. [IEA PVPS, Task 3 (France)

    2002-09-15

    In Stand-Alone Photovoltaic Systems (SAPV systems), special attention must be paid to the used appliances and loads. Inappropriate loads are very often the origin of PV system malfunction or failure. Start-up power peaks, or reactive power and harmonic distortion can cause system signal instability and protective devices will close the system down. A well-matched load together with a carefully selected choice of appliances can lead to significant savings in terms of reduced need for PV and electricity storage capacity. Conversely, inefficient appliances and processes, standby loads and inappropriate loads will increase the requirement for expensive PV and storage capacity. This paper presents a survey of real cases with load related problems in worldwide applications, their effect on quality and cost of the service and the solutions that were adopted and suggested alternative solutions. One of the main conclusions of the work is the importance to integrate the choice of the appliance while designing the SAPV system. (author)

  3. Computer Drawing Method for Operating Characteristic Curve of PV Power Plant Array Unit

    Science.gov (United States)

    Tan, Jianbin

    2018-02-01

    According to the engineering design of large-scale grid-connected photovoltaic power stations and the research and development of many simulation and analysis systems, it is necessary to draw a good computer graphics of the operating characteristic curves of photovoltaic array elements and to propose a good segmentation non-linear interpolation algorithm. In the calculation method, Component performance parameters as the main design basis, the computer can get 5 PV module performances. At the same time, combined with the PV array series and parallel connection, the computer drawing of the performance curve of the PV array unit can be realized. At the same time, the specific data onto the module of PV development software can be calculated, and the good operation of PV array unit can be improved on practical application.

  4. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  5. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  6. Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies

    NARCIS (Netherlands)

    Samadi, A.

    2014-01-01

    Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load

  7. Grid-connected photovoltaic power systems: survey of inverter and related protection equipments

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T

    2002-12-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme reports on a survey made on inverter and related protection equipment. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the data obtained from survey of recent inverter technology and inverter protection equipment for grid interconnected PV systems. The results are based on the surveys using a questionnaire to identify the current status of grid-interconnection inverters. This report is to serve as a reference for those interested in installing grid-connected PV systems, electric utility company personnel, manufacturers and researchers. The results of the survey are presented and discussed. Technical and financial data is reviewed and two appendices provide details on the results obtained and those institutions involved in the survey.

  8. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  9. PV-BUK: Operating and maintenance costs of photovoltaic installations; PV-BUK - Betriebs- und Unterhaltskosten von PV-Anlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P. [Enecolo AG, Moenchaltorf (Switzerland); Ruoss, D.; Schudel, P. [Envision, Lucerne (Switzerland); Kottmann, A.; Steinle, F. [BE Netz AG, Lucerne (Switzerland)

    2008-03-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out to determine the costs for facility management, to estimate future cost development and to propose activities for the further reduction of the operation and maintenance costs of photovoltaic systems. Information on the cost situation was collected by literature study, as well as in interviews and surveys with photovoltaic (PV) experts and the owners of PV installations. The discussion of the results at a workshop with about 20 Swiss PV experts is noted. The results are presented and discussed. These show that operating costs per kWh decrease with the size of the PV system. Figures are quoted. The major part of the costs are quoted as being those for spare parts, especially for the inverter. The authors are of the opinion that, in future, costs for facility management will further decrease, as they are partly linked to capital and insurance costs. Potential for optimisation is said to exist in several areas of facility management such as, for example, in system monitoring and fast reaction in the case of malfunctions.

  10. Simulation of regional day-ahead PV power forecast scenarios

    DEFF Research Database (Denmark)

    Nuno, Edgar; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio

    2017-01-01

    Uncertainty associated with Photovoltaic (PV) generation can have a significant impact on real-time planning and operation of power systems. This obstacle is commonly handled using multiple forecast realizations, obtained using for example forecast ensembles and/or probabilistic forecasts, often...... at the expense of a high computational burden. Alternatively, some power system applications may require realistic forecasts rather than actual estimates; able to capture the uncertainty of weatherdriven generation. To this end, we propose a novel methodology to generate day-ahead forecast scenarios of regional...... PV production matching the spatio-temporal characteristics while preserving the statistical properties of actual records....

  11. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  12. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN)

    Energy Technology Data Exchange (ETDEWEB)

    Karlis, A.D. [Electrical Machines Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece); Kottas, T.L.; Boutalis, Y.S. [Automatic Control Systems Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece)

    2007-03-15

    Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. This paper presents a novel MPPT method based on fuzzy cognitive networks (FCN). The new method gives a good maximum power operation of any PV array under different conditions such as changing insolation and temperature. The numerical results show the effectiveness of the proposed algorithm. (author)

  13. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  14. PVSOFT99 - Photovoltaic (PV) System Sizing And Simulation Software

    African Journals Online (AJOL)

    A computer program (PVSOFT99) has been developed for sizing and simulation of stand-alone photovoltaic (PV) systems. Two distinct PV sizing algorithms, one based on the worst case and the other on the reliability concept, have been incorporated in the program. The reliability concept is generalized in that variation of ...

  15. Re-considering the Economics of Photovoltaic Power

    Energy Technology Data Exchange (ETDEWEB)

    Bazilian, M. [International Institute for Applied Systems Analysis IIASA, Laxenburg (Austria); Onyeji, I. [United Nations Industrial Development Organization UNIDO, Vienna (Austria); Liebreich, M.; Chase, J. [Bloomberg New Energy Finance BNEF, London (United Kingdom); MacGill, I. [University of New South Wales, Sydney (Australia); Shah, J. [KMR Infrastructure, Washington DC (United States); Gielen, D. [International Renewable Energy Agency IRENA, IITC, Bonn (Germany); Arent, D. [Joint Institute for Strategic Energy Analysis, Colorado (United States); Landfear, D. [AGL Energy Limited, Sydney (Australia); Zhengrong, S. [Suntech Power Holdings, Wuxi (China)

    2012-05-15

    We briefly consider the recent dramatic reductions in the underlying costs and market prices of solar photovoltaic (PV) systems, and their implications for decision-makers. In many cases, current PV costs and the associated market and technological shifts witnessed in the industry have not been fully noted by decision-makers. The perception persists that PV is prohibitively expensive, and still has not reached competitiveness? We find that the commonly used analytical comparators for PV vis a vis other power generation options may add further confusion. In order to help dispel existing misconceptions, we provide some level of transparency on the assumptions, inputs and parameters in calculations relating to the economics of PV. The paper is aimed at informing policy makers, utility decision-makers, investors and advisory services, in particular in high-growth developing countries, as they weigh the suite of power generation options available to them.

  16. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  17. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  18. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  19. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increase of grid-connected Photovoltaic (PV) systems, challenges have been imposed on the grid due to the continuous injection of a large amount of fluctuating PV power, like overloading the grid infrastructure (e.g., transformers) during peak power production periods. Hence, advanced...

  20. PV Status Report 2010. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2010-08-01

    Photovoltaics is a solar power technology to generate Electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report combines international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last decade were on average more than 40 %, thus making Photovoltaics one of the fastest growing industries at present. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  1. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  2. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    Science.gov (United States)

    Steingass, H.; Asmon, I.

    1981-01-01

    Results of a month-long study in Morocco aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications are presented. The following applications, requiring less than 15 kW of power, are described: irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications, descriptions of power and energy use profiles, assessments of business environment, government and private sector attitudes towards photovoltaics, and financing were also considered. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages of the Moroccan market are: a limited grid, interest in and present use of PV in communications applications, attractive investment incentives, and a stated policy favoring American investment. Disadvantages include: lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. The market for PV in Morocco (1981-1986), will be relatively small, about 340 kwp. The market for PV is likely to be more favorable in telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  3. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  4. Photovoltaic electricity industry and markets Status and trends in France 1992-2002 - Technical report. Survey report of photovoltaic power applications in France 2002

    International Nuclear Information System (INIS)

    Claverie, Andre; Juquois, Fabrice

    2003-01-01

    The report provides a picture of the photovoltaic industry and its applications in France covering the years 1992 to end 2002. The main stream of photovoltaic (PV) activity in France is that of off-grid power systems. Nevertheless, the ADEME and other public authority partners decided in 1999 to contribute to the funding of grid-connected distributed photovoltaic power systems. During the year 2002, 3,4 MW of photovoltaic power systems were installed in France and its overseas departments. The annual off-grid PV power system market remains stable at around 2,4 MW per year and that of grid-connected distributed power systems reached almost 1 MW in 2002. The total cumulative installed PV power in France is 17 MW of which 15 MW are off-grid systems and 2 MW are grid-connected distributed PV power systems. This installed capacity represents the annual production of 15 GWh of electricity. The PV cell/module industry remains very active. The annual production of photovoltaic multi-crystalline silicon cells increased by 25 % during the year 2002 to reach 17 MW while the production of amorphous silicon thin film modules increased slightly to go over half a megawatt. Two French companies started introducing on the market photovoltaic modules specifically designed for building integration. Price of photovoltaic power systems is decreasing towards 20 euros per watt for off-grid systems under public funding and turnkey prices for grid-connected distributed PV power systems vary from 6 to 8 euros per watt according to the level of building integration. Business turnover of main companies covering the whole field of cell/module manufacturing and PV power system developers/installers, increased 18 % in 2002 to reach 130 million euros. Due to a Governmental decision taken in 1998, the ADEME increased its annual public budget for the promotion of PV in France to reach around 10 MEUR per year. This new measure allowed a) to reactivate the ADEME's research and technological

  5. Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions

    DEFF Research Database (Denmark)

    Babu, Thanikanti Sudhakar; Ram, J. Prasanth; Dragicevic, Tomislav

    2018-01-01

    For large photovoltaic power generation plants, number of panels are interconnected in series and parallel to form a photovoltaic (PV) array. In this configuration, partial shade will result in decrease in power output and introduce multiple peaks in the P–V curve. As a consequence, the modules...... in the array will deliver different row currents. Therefore, to maximize the power extraction from PV array, the panels need to be reconfigured for row current difference minimization. Row current minimization via Su Do Ku game theory do physical relocation of panels may cause laborious work and lengthy...

  6. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  7. Tracking the global maximum power point of PV arrays under partial shading conditions

    Science.gov (United States)

    Fennich, Meryem

    This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.

  8. Key technical and non-technical challenges for mass deployment of photovoltaic solar energy (PV)

    International Nuclear Information System (INIS)

    Sinke, W.C.

    2001-12-01

    Photovoltaic solar energy (PV) is used for direct conversion of sunlight into electricity. It is not to be confused with low-temperature thermal solar energy (e.g. solar domestic hot water systems) and with solar electricity production using a conventional high-temperature steam cycle (using parabolic troughs or 'power towers'). Important features of PV are: inherently renewable; sustainable if well designed, manufactured, used, and disposed; no moving parts, quiet; reliable if well designed and engineered; modular (from milliwatts to multi-megawatts); suitable for a wide variety of applications (stand-alone and grid-connected); large potential (regionally and globally); intermittent; capacity factor (ratio of average system power to installed (=peak) power) =0.08-0.24. PV is among the major renewable energy technologies in all well known energy scenarios, although a substantial role in % of the total energy production can only be achieved on the long term (typically 40-60 years years). Fortunately, long before that the PV market may be a rapidly growing, multi-billion euro business, providing enormous economic opportunities and many jobs

  9. An MPC Based ESS Control Method for PV Power Smoothing Applications

    DEFF Research Database (Denmark)

    Lei, Mingyu; Yang, Zilong; Wang, Yibo

    2018-01-01

    Random fluctuation in photovoltaic (PV) power plants is becoming a serious problem affecting the power quality and stability of the grid along with the increasing penetration of PVs. In order to solve this problem, by the adding of energy storage systems (ESS), a grid-connected microgrid system c...

  10. Simulation of Photovoltaic Power Output for Solar Integration Studies in the Southeast US

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.; Martin, Curtis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.; Tuohy, Aidan P. [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2016-06-01

    We describe the method used to simulate one year of AC power at one-minute intervals for a large collection of hypothetical utility-scale photovoltaic plants of varying size, employing either fixed-tilt PV modules or single-axis tracking, and for distribution-connected photovoltaic (DPV) power systems assumed for a number of metropolitan areas. We also describe the simulation of an accompanying day-ahead forecast of hourly AC power for utility-scale plants and DPV systems such that forecast errors are consistent with errors reported for current forecasting methods. The results of these simulations are intended for use in a study that examines the possible effects of increased levels of photovoltaic (PV) generation bulk on power variability within the Tennessee Valley Authority (TVA) and Southern Company service territories.

  11. Photovoltaic (PV) energy in the Netherlands and Switzerland. A comparison

    International Nuclear Information System (INIS)

    Van der Loo, F.; Spiessens, P.

    1995-01-01

    The development of photovoltaic (PV) energy in Switzerland and the Netherlands is compared for a number of aspects. The Swiss have realized more PV capacity. Also the economic conditions to develop PV are better in Switzerland than in the Netherlands. In Switzerland the public support is mobilized for solar energy while in the Netherlands a social basis is created for wind energy. 3 ills., 3 tabs

  12. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-30

    The installed capacity of global and U.S. photovoltaic (PV) systems has soared in recent years, driven by declining PV prices and government incentives. The U.S. Department of Energy’s (DOE) SunShot Initiative aims to make PV cost competitive without incentives by reducing the cost of PV-generated electricity by about 75% between 2010 and 2020. This summary report—based on research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL)—examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices.

  13. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    International Nuclear Information System (INIS)

    Abdoulaye, D; Koalaga, Z; Zougmore, F

    2012-01-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  14. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  15. A Simple PV Inverter Power Factor Control Method Based on Solar Irradiance Variation

    DEFF Research Database (Denmark)

    Gökmen, Nuri; Hu, Weihao; Chen, Zhe

    2017-01-01

    There has been a significant rise in photovoltaic (PV) system installations throughout the last decade. This has posed some technical challenges to the distribution grid operators. Unfamiliar impacts of these relatively new energy sources now should be handled more comprehensively. The rigidity...... of these impacts mostly depends on PV penetration level, grid and weather characteristics as well as the interaction of load and generation. In this study, a reactive power control method is proposed benefitting from solar irradiance measurements in weather stations. Accordingly, power factors of PV inverters...

  16. Energy Storage Requirements for PV Power Ramp Rate Control in Northern Europe

    Directory of Open Access Journals (Sweden)

    Julius Schnabel

    2016-01-01

    Full Text Available Photovoltaic (PV generators suffer from fluctuating output power due to the highly fluctuating primary energy source. With significant PV penetration, these fluctuations can lead to power system instability and power quality problems. The use of energy storage systems as fluctuation compensators has been proposed as means to mitigate these problems. In this paper, the behavior of PV power fluctuations in Northern European climatic conditions and requirements for sizing the energy storage systems to compensate them have been investigated and compared to similar studies done in Southern European climate. These investigations have been performed through simulations that utilize measurements from the Tampere University of Technology solar PV power station research plant in Finland. An enhanced energy storage charging control strategy has been developed and tested. Energy storage capacity, power, and cycling requirements have been derived for different PV generator sizes and power ramp rate requirements. The developed control strategy leads to lesser performance requirements for the energy storage systems compared to the methods presented earlier. Further, some differences on the operation of PV generators in Northern and Southern European climates have been detected.

  17. Intelligent PV Power Smoothing Control Using Probabilistic Fuzzy Neural Network with Asymmetric Membership Function

    Directory of Open Access Journals (Sweden)

    Faa-Jeng Lin

    2017-01-01

    Full Text Available An intelligent PV power smoothing control using probabilistic fuzzy neural network with asymmetric membership function (PFNN-AMF is proposed in this study. First, a photovoltaic (PV power plant with a battery energy storage system (BESS is introduced. The BESS consisted of a bidirectional DC/AC 3-phase inverter and LiFePO4 batteries. Then, the difference of the actual PV power and smoothed power is supplied by the BESS. Moreover, the network structure of the PFNN-AMF and its online learning algorithms are described in detail. Furthermore, the three-phase output currents of the PV power plant are converted to the dq-axis current components. The resulted q-axis current is the input of the PFNN-AMF power smoothing control, and the output is a smoothing PV power curve to achieve the effect of PV power smoothing. Comparing to the other smoothing methods, a minimum energy capacity of the BESS with a small fluctuation of the grid power can be achieved by the PV power smoothing control using PFNN-AMF. In addition, a personal computer- (PC- based PV power plant emulator and BESS are built for the experimentation. From the experimental results of various irradiance variation conditions, the effectiveness of the proposed intelligent PV power smoothing control can be verified.

  18. Enhanced power quality based single phase photovoltaic distributed generation system

    Science.gov (United States)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  19. Three-level grid-connected photovoltaic inverter with maximum power point tracking

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2013-01-01

    Highlight: ► This paper reports a novel 3-level grid connected photovoltaic inverter. ► The inverter features maximum power point tracking and grid current shaping. ► The inverter can be acted as an active filter and a renewable power source. - Abstract: This paper presents a systematic way of designing control scheme for a grid-connected photovoltaic (PV) inverter featuring maximum power point tracking (MPPT) and grid current shaping. Unlike conventional design, only four power switches are required to achieve three output levels and it is not necessary to use any phase-locked-loop circuitry. For the proposed scheme, a simple integral controller has been designed for the tracking of the maximum power point of a PV array based on an improved extremum seeking control method. For the grid-connected inverter, a current loop controller and a voltage loop controller have been designed. The current loop controller is designed to shape the inverter output current while the voltage loop controller can maintain the capacitor voltage at a certain level and provide a reference inverter output current for the PV inverter without affecting the maximum power point of the PV array. Experimental results are included to demonstrate the effectiveness of the tracking and control scheme.

  20. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  1. Solar photovoltaic projects in the mainstream power market

    CERN Document Server

    Wolfe, Philip

    2012-01-01

    Develop large-scale solar photovoltaic projects with this book, to feed power into a grid. Contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and what will be the world's largest PV plant, the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry.Contents cover:planning and structuring projectssiting, planning and connection issuesbuilding and operating projectstechnology basicseconomies of PVhistory and business of PVfinancing and regulationtechnical aspects of system design.Supported by figures and photographs, this is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing mega-watt solar PV projects in a mainstream power market.

  2. Sensorless Reserved Power Control Strategy for Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Due to still increasing penetration level of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A reserved power control, where the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the reserved power control for grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... to achieve the power reserve. In this method, the irradiance measurements that have been used in conventional control schemes to estimate the available PV power are not required, and thereby being a sensorless solution. Simulations and experimental tests have been performed on a 3-kW two-stage single...

  3. Effect of Thermoelectric Cooling (TEC module and the water flow heatsink on Photovoltaic (PV panel performance

    Directory of Open Access Journals (Sweden)

    Amelia A.R.

    2017-01-01

    Full Text Available Photovoltaic (PV panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  4. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    Science.gov (United States)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  5. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2013-07-01

    Full Text Available Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT method is applied to the traffic light system. MPPT is intended to catch up the maximum power at daytime in order to charge the battery at the maximum rate in which the power from the battery is intended to be used at night time or cloudy day. MPPT is actually a DC-DC converter that can step up or down voltage in order to achieve the maximum power using Pulse Width Modulation (PWM control. From experiment, we obtained the voltage of operation using MPPT is at 16.454 V, this value has error of 2.6%, if we compared with maximum power point voltage of PV module that is 16.9 V. Based on this result it can be said that this MPPT control works successfully to deliver the power from PV module to battery maximally.

  6. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  7. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  8. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  9. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John [High Performance PV, Phoenix, AZ (United States)

    2015-11-01

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how the reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.

  10. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    OpenAIRE

    Muhida, Riza; Mohamad, Nor Hilmi; Legowo, Ari; Irawan, Rudi; Astuti, Winda

    2013-01-01

    Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV) modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT) method is applied to the traffic light system. MPPT is intended to catch up th...

  11. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  12. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  13. Scheduled Operation of PV Power Station Considering Solar Radiation Forecast Error

    Science.gov (United States)

    Takayama, Satoshi; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka; Takitani, Katsuyuki; Yamaguchi, Koji

    Massive penetration of photovoltaic generation (PV) power stations may cause some serious impacts on a power system operation due to their volatile and unpredictable output. Growth of uncertainty may require larger operating reserve capacity and regulating capacity. Therefore, in order to utilize a PV power station as an alternative for an existing power plant, improvement in controllability and adjustability of station output become very important factor. Purpose of this paper is to develop the scheduled operation technique using a battery system (NAS battery) and the meteorological forecast. The performance of scheduled operation strongly depends on the accuracy of solar radiation forecast. However, the solar radiation forecast contains error. This paper proposes scheduling method and rescheduling method considering the trend of forecast error. More specifically, the forecast error scenario is modeled by means of the clustering analysis of the past actual forecast error. Validity and effectiveness of the proposed method is ascertained through computational simulations using the actual PV generation data monitored at the Wakkanai PV power station and solar radiation forecast data provided by the Japan Weather Association.

  14. Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China

    Institute of Scientific and Technical Information of China (English)

    Hu Xuehao; Zhou Xiaoxin; Bai Xiaomin; Zhang Wentao

    2005-01-01

    Solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21century, the pictures of VLS-PV power generation is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.

  15. The energy roof - Photovoltaics and solar collectors combined; PV und Kollektoren schoen kombiniert. Das Energiedach

    Energy Technology Data Exchange (ETDEWEB)

    Niederhaeusern, A.

    2008-07-01

    In this Interview with Giorgio Hefti, CEO of the Swiss Tritec group, the company's aims and the products offered are discussed. These include mains-connected and island-operated photovoltaic (PV) systems. The history of the company is briefly discussed, as is co-operation with local installers and the company's function as a general contractor for large installations. These include, amongst others, the PV-installation on the 'Stade de Suisse' football stadium in Berne. PV systems for single-family homes and their costs are examined. Also, mounting systems for combining PV and solar collectors (combined power and heat generation) are discussed, as are combinations of PV and heat-pumps. Hybrid PV-solar-collectors and their disadvantages are discussed as is the future of the Tritec group, which has grown continuously over the years and is active in several European countries.

  16. A New Technique for Tracking the Global Maximum Power Point of PV Arrays Operating Under Partial-Shading Conditions

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    The power-voltage characteristic of photovoltaic (PV) arrays operating under partial-shading conditions exhibits multiple local maximum power points (MPPs). In this paper, a new method to track the global MPP is presented, which is based on controlling a dc/dc converter connected at the PV array...

  17. Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical power

    International Nuclear Information System (INIS)

    Ben Ammar, Majed; Chaabene, Maher; Chtourou, Zied

    2013-01-01

    Highlights: ► We establish a state model of PV/T panel. ► We study the effect of mass flow rate on PV/T efficiency. ► A real time PV/T control algorithm is proposed. ► A model based optimal thermal and electrical power operation point is tracked. - Abstract: As solar energy is intermittent, many algorithms and electronics have been developed to track the maximum power generation from photovoltaic and thermal panels. Following technological advances, these panels are gathered into one unit: PV/T system. PV/T delivers simultaneously two kinds of power: electrical power and thermal power. Nevertheless, no control systems have been developed in order to track maximum power generation from PV/T system. This paper suggests a PV/T control algorithm based on Artificial Neural Network (ANN) to detect the optimal power operating point (OPOP) by considering PV/T model behavior. The OPOP computes the optimum mass flow rate of PV/T for a considered irradiation and ambient temperature. Simulation results demonstrate great concordance between OPOP model based calculation and ANN outputs.

  18. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    Science.gov (United States)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  19. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  20. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2017-02-01

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015, testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.

  1. Comparison of the Energy Conversion Efficiency of a Solar Chimney and a Solar PV-Powered Fan for Ventilation Applications

    Directory of Open Access Journals (Sweden)

    Lubomír Klimeš

    2018-04-01

    Full Text Available A study into the performance of a solar chimney and a solar photovoltaic (PV-powered fan for ventilation applications was carried out using numerical simulations. The performance of the solar chimney was compared with that of a direct current (DC fan powered by a solar PV panel. The comparison was carried out using the same area of the irradiated surface—the area of the solar absorber plate in the case of the solar chimney and the area of the solar panel in the case of the photovoltaic-powered fan. The two studied cases were compared under various solar radiation intensities of incident solar radiation. The results indicate that the PV-powered fans significantly outperform solar chimneys in terms of converting solar energy into the kinetic energy of air motion. Moreover, ventilation with PV-powered fans offers more flexibility in the arrangement of the ventilation system and also better control of the air flow rates in the case of battery storage.

  2. Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system

    International Nuclear Information System (INIS)

    Nishimura, A.; Hayashi, Y.; Tanaka, K.; Hirota, M.; Kato, S.; Ito, M.; Araki, K.; Hu, E.J.

    2010-01-01

    In this study, the environmental load of photovoltaic power generation system (PV) during its life cycle and energy payback time (EPT) are evaluated by LCA scheme. Two hypothetical case studies in Toyohashi, Japan and Gobi dessert in China have been carried out to investigate the influence of installation location and PV type on environmental load and EPT. The environmental load and EPT of a high-concentration photovoltaic power generation system (hcpV) and a multi-crystalline silicon photovoltaic power generation system (mc-Si PV) are studied. The study shows for a PV of 100 MW size, the total impacts of the hcpV installed in Toyohashi is larger than that of the hcpV installed in Gobi desert by 5% without consideration of recycling stage. The EPT of the hcpV assumed to be installed in Gobi desert is shorter than EPT of the hcpV assumed to be installed in Toyohashi by 0.64 year. From these results, the superiority to install PV in Gobi desert is certificated. Comparing with hcpV and mc-Si PV, the ratio of the total impacts of mc-Si PV to that of hcpV is 0.34 without consideration of recycling stage. The EPT of hcpV is longer than EPT of mc-Si PV by 0.27 year. The amount of global solar radiation contributing to the amount of power generation of mc-Si PV is larger than the amount of direct solar radiation contributing to the amount of power generation of hcpV by about 188 kW h/(m 2 year) in Gobi desert. Consequently, it appears that using mc-Si PV in Gobi desert is the best option.

  3. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  4. Maximum power analysis of photovoltaic module in Ramadi city

    Energy Technology Data Exchange (ETDEWEB)

    Shahatha Salim, Majid; Mohammed Najim, Jassim [College of Science, University of Anbar (Iraq); Mohammed Salih, Salih [Renewable Energy Research Center, University of Anbar (Iraq)

    2013-07-01

    Performance of photovoltaic (PV) module is greatly dependent on the solar irradiance, operating temperature, and shading. Solar irradiance can have a significant impact on power output of PV module and energy yield. In this paper, a maximum PV power which can be obtain in Ramadi city (100km west of Baghdad) is practically analyzed. The analysis is based on real irradiance values obtained as the first time by using Soly2 sun tracker device. Proper and adequate information on solar radiation and its components at a given location is very essential in the design of solar energy systems. The solar irradiance data in Ramadi city were analyzed based on the first three months of 2013. The solar irradiance data are measured on earth's surface in the campus area of Anbar University. Actual average data readings were taken from the data logger of sun tracker system, which sets to save the average readings for each two minutes and based on reading in each one second. The data are analyzed from January to the end of March-2013. Maximum daily readings and monthly average readings of solar irradiance have been analyzed to optimize the output of photovoltaic solar modules. The results show that the system sizing of PV can be reduced by 12.5% if a tracking system is used instead of fixed orientation of PV modules.

  5. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  6. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  7. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  8. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  9. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  10. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  11. An Optimized Prediction Intervals Approach for Short Term PV Power Forecasting

    Directory of Open Access Journals (Sweden)

    Qiang Ni

    2017-10-01

    Full Text Available High quality photovoltaic (PV power prediction intervals (PIs are essential to power system operation and planning. To improve the reliability and sharpness of PIs, in this paper, a new method is proposed, which involves the model uncertainties and noise uncertainties, and PIs are constructed with a two-step formulation. In the first step, the variance of model uncertainties is obtained by using extreme learning machine to make deterministic forecasts of PV power. In the second stage, innovative PI-based cost function is developed to optimize the parameters of ELM and noise uncertainties are quantization in terms of variance. The performance of the proposed approach is examined by using the PV power and meteorological data measured from 1kW rooftop DC micro-grid system. The validity of the proposed method is verified by comparing the experimental analysis with other benchmarking methods, and the results exhibit a superior performance.

  12. Energy metrics analysis of hybrid - photovoltaic (PV) modules

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Electronics and Communication, Krishna Institute of Engineering and Technology, 13 k.m. stone, Ghaziabad - Meerut Road, Ghaziabad 201 206, UP (India); Barnwal, P.; Sandhu, G.S.; Sodha, M.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2009-12-15

    In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected. (author)

  13. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  14. Environmental aspects of PV power systems. Report on the IEA PVPS Task 1 Workshop

    International Nuclear Information System (INIS)

    Nieuwlaar, E.; Alsema, E.

    1997-12-01

    During normal operation, photovoltaic (PV) power systems do not emit substances that may threaten human health or the environment. In fact, through the savings in conventional electricity production they can lead to significant emission reductions. There are, however, several indirect environmental impacts related to PV power systems that require further consideration. The production of present generation PV power systems is relatively energy intensive, involves the use of large quantities of bulk materials and (smaller) quantities of substances that are scarce and/or toxic. During operation, damaged modules or a fire may lead to the release of hazardous substances. Finally, at the end of their useful life time PV power systems have to be decommissioned, and resulting waste flows have to be managed. An expert workshop was held as part of the International Energy Agency Photovoltaic Power Systems Implementing Agreement Programme, to address these environmental aspects of PV power systems. The objectives of the workshop were: (a) review/overview of issues and approaches regarding environmental aspects of PV power systems; (b) enhanced clarity and consensus regarding e.g. Energy Pay-Back Time; (c) identification of issues of environmental importance regarding PV power systems ('hot spots'); (d) identification of issues requiring further attention ('white spots'); and (e) establish a network of researchers working on PV environmental issues. 25 participants from Europe, the United States, Japan, and Australia attended the workshop, representing the researchers in the field of environmental aspects of PV systems, R ampersand D managers, industry and utilities. The environmental issues that are considered most relevant for PV power systems were identified in the workshop as well as the approaches that may be used to investigate them. The main environmental issues discussed at the workshop were: energy use; resource depletion (e.g. the resource availability for indium

  15. A wide-gap a-SiC:H PV-powered electrochromic window coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao, W.; Lee, S.H.; Xu, Y.; Benson, D.K.; Deb, S.K.; Branz, H.M. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors report on the first monolithic, amorphous-silicon-based, photovoltaic-powered electrochromic window coating. The coating employs a wide bandgap a-Si{sub 1{minus}x}C{sub x}:H n-i-p photovoltaic (PV) cell as a semitransparent power supply, and a Li{sub y}WO{sub 3}/LiAlF{sub 4}/V{sub 2}O{sub 5} electrochromic (EC) device as an optical-transmittance modulator. The EC device is deposited directly on top of a PV cell that coats a glass substrate. The a-Si{sub 1{minus}x}C{sub x}:H PV cell has a Tauc gap of 2.2 eV and a transmittance of 60--80% over a large portion of the visible light spectrum. The authors reduced the thickness of the device to about 600 {angstrom} while maintaining a 1-sun open-circuit voltage of 0.9 V and short-circuit current of 2 mA/cm{sup 2}. The prototype 16 cm{sup 2} PV/EC device modulates the transmittance by more than 60% over a large portion of the visible spectrum. The coloring and bleaching times of the EC device are approximately 1 minute under normal operating conditions ({+-} 1 volt). A brief description of photoelectrochromic windows study is also given.

  16. EMISSIONS REDUCTION DATA FOR GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS

    Science.gov (United States)

    This study measured the pollutant emission reduction potential of 29 photovoltaic (PV) systems installed on residential and commercial building rooftops across the U.S. from 1993 through 1997. The U.S. Environmental Protection Agency (EPA) and 21 electric power companies sponsor...

  17. Basic study on dynamic reactive-power control method with PV output prediction for solar inverter

    Directory of Open Access Journals (Sweden)

    Ryunosuke Miyoshi

    2016-01-01

    Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.

  18. Distributed photovoltaic architecture powering a DC bus: Impact of duty cycle and load variations on the efficiency of the generator

    Science.gov (United States)

    Allouache, Hadj; Zegaoui, Abdallah; Boutoubat, Mohamed; Bokhtache, Aicha Aissa; Kessaissia, Fatma Zohra; Charles, Jean-Pierre; Aillerie, Michel

    2018-05-01

    This paper focuses on a photovoltaic generator feeding a load via a boost converter in a distributed PV architecture. The principal target is the evaluation of the efficiency of a distributed photovoltaic architecture powering a direct current (DC) PV bus. This task is achieved by outlining an original way for tracking the Maximum Power Point (MPP) taking into account load variations and duty cycle on the electrical quantities of the boost converter and on the PV generator output apparent impedance. Thereafter, in a given sized PV system, we analyze the influence of the load variations on the behavior of the boost converter and we deduce the limits imposed by the load on the DC PV bus. The simultaneous influences of 1- the variation of the duty cycle of the boost converter and 2- the load power on the parameters of the various components of the photovoltaic chain and on the boost performances are clearly presented as deduced by simulation.

  19. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  20. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  1. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  2. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  3. Photovoltaic Hosting Capacity of Feeders with Reactive Power Control and Tap Changers

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Oğuzhan; Paudyal, Sumit; Bhattarai, Bishnu P.; Myers, Kurt S.

    2017-06-01

    This paper proposes an algorithm to determine photovoltaic (PV) hosting capacity of power distribution networks as a function of number of PV injection nodes, reactive power support from the PVs, and the sub-station load tap changers (LTCs). In the proposed method, several minute by minute simulations are run based on randomly chosen PV injection nodes, daily PV output profiles, and daily load profiles from a pool of high-resolution realistic data set. The simulation setup is built using OpenDSS and MATLAB. The performance of the proposed method is investigated in the IEEE 123-node distribution feeder for multiple scenarios. The case studies are performed particularly for one, two, five and ten PV injection nodes, and looking at the maximum voltage deviations. Case studies show that the PV hosting capacity of the 123-node feeder greatly differs with the number of PV injection nodes. We have also observed that the PV hosting capacity increases with reactive power support and higher tap position of sub-station LTC.

  4. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  5. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    Science.gov (United States)

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  6. Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption

    International Nuclear Information System (INIS)

    Lazaroiu, George Cristian; Longo, Michela; Roscia, Mariacristina; Pagano, Mario

    2015-01-01

    Highlights: • Photovoltaic system prototype with sun tracking. • Energy analysis of fixed and sun tracking built prototypes. • Experimental tests in different environmental conditions. • Theoretical and experimental validation of the prototype. - Abstract: Photovoltaic technology allows to directly convert solar energy into electrical energy with clear advantages: no environmental impact during operation, reliability and durability of the systems, reduced operating costs and maintenance, ability to both supply remote customers and simply connect to the electrical network. This paper evaluates the performance of two photovoltaic systems: one fixed and one equipped with a sun tracker. The objective of this research is to analyze the increase of daily produced energy by using the sun tracking system. The analysis accounts also the energy consumption of the sun tracker. An analytical approach is proposed. To validate the results through experimental tests, two alternative low power PV systems were built. Each system consists of a PV source, a MPPT (Maximum Power Point Tracker) power converter and a 12 V–40 A h electrochemical battery, which is used as electric load. The sun tracker system evidenced an important growth of power production during morning and evening

  7. Multi-objective optimization for integrated hydro–photovoltaic power system

    International Nuclear Information System (INIS)

    Li, Fang-Fang; Qiu, Jun

    2016-01-01

    Highlights: • A model optimizing both quality and quantity of hydro/PV power was proposed. • The dimension was reduced by decoupling hydropower and PV power in time scales. • Reservoir operations have been optimized for different typical hydrological years. • Hydropower was proved to be an ideal compensating resource for PV power in nature. - Abstract: The most striking feature of the solar energy is its intermittency and instability resulting from environmental influence. Hydropower can be an ideal choice to compensate photovoltaic (PV) power since it is easy to adjust and responds rapidly with low cost. This study proposed a long-term multi-objective optimization model for integrated hydro/PV power system considering the smoothness of power output process and the total amount of annual power generation of the system simultaneously. The PV power output is firstly calculated by hourly solar radiation and temperature data, which is then taken as the boundary condition for reservoir optimization. For hydropower, due to its great adjustable capability, a month is taken as the time step to balance the simulation cost. The problem dimension is thus reduced by decoupling hydropower and PV power in time scales. The modified version of Non-dominated Sorting Genetic Algorithm (NSGA-II) is adopted to optimize the multi-objective problem. The proposed model was applied to the Longyangxia hydro/PV hybrid power system in Qinghai province of China, which is supposed to be the largest hydro/PV hydropower station in the world. The results verified that the hydropower is an ideal compensation resource for the PV power in nature, especially in wet years, when the solar radiation decreases due to rainfalls while the water resource is abundant to be allocated. The power generation potential is provided for different hydrologic years, which can be taken to evaluate the actual operations. The proposed methodology is general in that it can be used for other hydro/PV power systems

  8. Utility-Scale Solar Photovoltaic Power Plants : A Project Developer’s Guide

    OpenAIRE

    International Finance Corporation

    2015-01-01

    With an installed capacity greater than 137 gigawatts (GWs) worldwide and annual additions of about 40 GWs in recent years, solar photovoltaic (PV) technology has become an increasingly important energy supply option. A substantial decline in the cost of solar PV power plants (80 percent reduction since 2008) has improved solar PV’s competitiveness, reducing the needs for subsidies and ena...

  9. Design for Reliability of Power Electronics for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Blaabjerg, Frede

    2016-01-01

    Power electronics is the enabling technology for optimizing energy harvesting from renewable systems like Photovoltaic (PV) and wind power systems, and also for interfacing grid-friendly energy systems. Advancements in the power semiconductor technology (e.g., wide band-gap devices) have pushed...... the conversion efficiency of power electronics to above 98%, where however te reliability of power electronics is becoming of high concern. Therefore, it is important to design for reliable power electronic systems to lower the risks of many failures during operation; otherwise will increase the cost...... for maintenance and reputation, thus affecting the cost of PV energy. Today's PV power conversion applications require the power electronic systems with low failure rates during a service life of 20 years or even more. To achieve so, it is vital to know the main life-limiting factors of power electronic systems...

  10. Intermediate-sized photovoltaic plants to supply power villages: Future developments

    International Nuclear Information System (INIS)

    Previ, A.

    1990-01-01

    The activity promoted by the European Communities, aimed at demonstrating the feasibility of supplying both active and passive power distribution networks by means of photovoltaic plants (PV) has been highly successful. The PV plants at Aghia Roumeli, Pellworm, Rondulinu, and Vulcano are stand-alone plants that can supply small isolated communities. The plant at Kytnos supplies power to the grid with the help of electrochemical storage; the plants at Pellworm, and Vulcano can also supply power to the grid, the first with e.c. storage and the second without such storage. This paper gives an overview of the activity promoted by the Communities EEC-DGXII research group aimed at demonstrating the feasibility of supplying both active and passive power distribution networks by means of PV plants. Possible improvements of the power conditioning sub-system are presented

  11. Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Fernando Lessa Tofoli

    2015-01-01

    Full Text Available The generation of electricity from photovoltaic (PV arrays has been increasingly considered as a prominent alternative to fossil fuels. However, the conversion efficiency is typically low and the initial cost is still appreciable. A required feature of a PV system is the ability to track the maximum power point (MPP of the PV array. Besides, MPP tracking (MPPT is desirable in both grid-connected and stand-alone photovoltaic systems because the solar irradiance and temperature change throughout the day, as well as along seasons and geographical conditions, also leading to the modification of the I×V (current versus voltage and P×V (power versus voltage curves of the PV module. MPPT is also justified by the relatively high cost of the energy generated by PV systems if compared with other sources. Since there are various MPPT approaches available in the literature, this work presents a comparative study among four popular techniques, which are the fixed duty cycle method, constant voltage (CV, perturb and observe (P&O, and incremental conductance (IC. It considers different operational climatic conditions (i.e., irradiance and temperature, since the MPP is nonlinear with the environment status. PSIM software is used to validate the assumptions, while relevant results are discussed in detail.

  12. Novel concept of a PV power generation system adding the function of shunt active filter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.G.; Park, M.; Yu, I.K. [Changwon National Univ., Changwon City (Korea, Republic of). Dept. of Electrical Engineering

    2005-07-01

    A new photovoltaics (PV) power generation system that used an active filter (AF) function was proposed. The AF was installed to condition reactive power and harmonic compensation as well as flicker and voltage regulation. A maximum point power tracking (MPPT) control system was used to stabilize the voltage source inverter (VSI) output current. A general dq transformation was used to compensate the negative components and the harmonics component. The output terminal of the PV array was connected to a smoothing capacitor interfacing the PV-AF inverter. A voltage source PWM converter was controlled with feedback loops of the output current of the inverter. Optimal values of the power inverter gains and filter constants were tuned to obtain responses. The PV system was simulated using real weather conditions. Results of the study demonstrated the stability and effectiveness of the proposed system. It was concluded that the PV-AF can also be used to provide harmonic damping throughout power distribution systems. 12 refs., 3 tabs., 9 figs.

  13. A Cost-Effective Power Ramp-Rate Control Strategy for Single-Phase Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    In the case of a wide-scale adoption of grid-connected Photovoltaic (PV) systems, more fluctuated power will be injected into the grid due to the intermittency of solar PV energy. A sudden change in the PV power can potentially induce grid voltage fluctuations, and thus challenge the stability......-point. Experiments conducted on a 3-kW single-phase two-stage grid-connected PV system have verified that the proposed solution can accomplish fast dynamics, high accuracy, and high robustness in the power ramp-rate control for PV systems....

  14. Novel TPPO Based Maximum Power Point Method for Photovoltaic System

    Directory of Open Access Journals (Sweden)

    ABBASI, M. A.

    2017-08-01

    Full Text Available Photovoltaic (PV system has a great potential and it is installed more when compared with other renewable energy sources nowadays. However, the PV system cannot perform optimally due to its solid reliance on climate conditions. Due to this dependency, PV system does not operate at its maximum power point (MPP. Many MPP tracking methods have been proposed for this purpose. One of these is the Perturb and Observe Method (P&O which is the most famous due to its simplicity, less cost and fast track. But it deviates from MPP in continuously changing weather conditions, especially in rapidly changing irradiance conditions. A new Maximum Power Point Tracking (MPPT method, Tetra Point Perturb and Observe (TPPO, has been proposed to improve PV system performance in changing irradiance conditions and the effects on characteristic curves of PV array module due to varying irradiance are delineated. The Proposed MPPT method has shown better results in increasing the efficiency of a PV system.

  15. Improvement of maximum power point tracking perturb and observe algorithm for a standalone solar photovoltaic system

    International Nuclear Information System (INIS)

    Awan, M.M.A.; Awan, F.G.

    2017-01-01

    Extraction of maximum power from PV (Photovoltaic) cell is necessary to make the PV system efficient. Maximum power can be achieved by operating the system at MPP (Maximum Power Point) (taking the operating point of PV panel to MPP) and for this purpose MPPT (Maximum Power Point Trackers) are used. There are many tracking algorithms/methods used by these trackers which includes incremental conductance, constant voltage method, constant current method, short circuit current method, PAO (Perturb and Observe) method, and open circuit voltage method but PAO is the mostly used algorithm because it is simple and easy to implement. PAO algorithm has some drawbacks, one is low tracking speed under rapid changing weather conditions and second is oscillations of PV systems operating point around MPP. Little improvement is achieved in past papers regarding these issues. In this paper, a new method named 'Decrease and Fix' method is successfully introduced as improvement in PAO algorithm to overcome these issues of tracking speed and oscillations. Decrease and fix method is the first successful attempt with PAO algorithm for stability achievement and speeding up of tracking process in photovoltaic system. Complete standalone photovoltaic system's model with improved perturb and observe algorithm is simulated in MATLAB Simulink. (author)

  16. Data book on new energy technology development in FY 1997. Photovoltaic (PV) power generation; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Taiyoko hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of understanding the present status of photovoltaic power system (PVPS) and supporting its promotion, various data were collected. The significance of adopting PV power technology was specified for customers of various levels, such as nation, local communities, industries and individual households, to clarify the CO2 reduction effect and energy pay-back time. Data illustrate the solar cell production according to region, cell types, industries, applications, production value, and market price. Policies for PVPS in industrial countries were compared with those in Japan. Distribution of PVPS in various countries was compared with that in Japan in respect to installations and purposes of the introduction of PVPS. Financial aid programs such as subsidies, tax benefits and loans for the installation of PVPS in Japan were listed. The trend of PV-related budget of MITI was shown with every project`s description. Steps of introducing PVPS from plan to installation were depicted in the form of flow chart. Were shown measures sponsored by the government or local organizations to promote PVPS. Domestic and foreign firms related to PVPS including PV module suppliers, and PV installation contractors were listed

  17. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    Science.gov (United States)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  18. Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study

    International Nuclear Information System (INIS)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Heaney, Mike

    2015-01-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with sub-hourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. - Highlights: • We propose an analytical framework to estimate grid integration costs for solar PV. • Increased operating costs from variability and uncertainty in solar PV are computed. • A case study of a utility in Arizona is conducted. • Grid integration costs are found in the $1.0–4.4/MWh range for a 17% PV penetration. • Increased system flexibility is essential for minimizing grid integration costs

  19. Energy harvesting using TEG and PV cell for low power application

    Science.gov (United States)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  20. Design description of the Tangaye Village photovoltaic power system

    Science.gov (United States)

    Martz, J. E.; Ratajczak, A. F.

    1982-01-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  1. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  2. Rooftop photovoltaic (PV) systems : a cost–benefit analysis study of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2013-01-01

    Rooftop photovoltaic (PV) systems can be readily deployed on industrial halls with relatively large rooftop area. Feed-in tariff above the base price of electricity is offered in many countries to subsidize the high initial investment of PV systems. In order to fully capitalize the benefit of the

  3. Reliability Analysis of Single-Phase PV Inverters with Reactive Power Injection at Night Considering Mission Profiles

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    loading, considering the operation outside active feed-in hours. An analytical lifetime model is then employed for lifetime quantization based on the Palgrem Miner rule. Thereafter, considering the lifetime reduction of the PV inverter under different mission profiles with reactive power injection......The widespread adoption of mixed renewables urgently require reactive power exchange at various feed-in points of the utility grid. Photovoltaic (PV) inverters are able to provide reactive power in a decentralized manner at the grid-connection points even outside active power feed-in operation......, especially at night when there is no solar irradiance. This serves as a motivation for utilizing the PV inverters at night for reactive power compensation. Thus, an analysis on the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance and the reliability has...

  4. Lighting rural and peri-urban homes of the Gambia using solar photovoltaics (PV)

    Energy Technology Data Exchange (ETDEWEB)

    Sanneh, E.S.; Hu, A.H. [National Taipei Univ. of Technology, Taiwan (China). Inst. of Environmental Engineering Technology

    2009-07-01

    The main fuel supplies of Gambia are fuel woods, petroleum products, and liquefied petroleum gas (LPG). This study considered the use of solar photovoltaic (PV) as a principal source of power for rural and peri-urban communities in Gambia. The country currently has high rates of poverty and malnutrition, and it is expected that the provision of electricity to communities will encourage economic growth. Gambia is also heavily dependent on foreign imports of oil. To date, PV systems have been used for water pumping, refrigeration, and telecommunications projects. The study showed that better access to sustainable energy services is needed at the micro-level to stimulate businesses and income-generating activities, as well as at the macro level to foster economic growth. Financing methods for developing solar energy in Gambia include credit financing; PV market transformative initiatives; revolving loan funds; and government-granted renewable energy concessions for institutionally-owned and maintained systems. A pilot program has been established to investigate the acceptability of PV lighting systems for rural populations. 46 refs., 2 tabs., 7 figs.

  5. Experimental Learning of Digital Power Controller for Photovoltaic Module Using Proteus VSM

    Directory of Open Access Journals (Sweden)

    Abhijit V. Padgavhankar

    2014-01-01

    Full Text Available The electric power supplied by photovoltaic module depends on light intensity and temperature. It is necessary to control the operating point to draw the maximum power of photovoltaic module. This paper presents the design and implementation of digital power converters using Proteus software. Its aim is to enhance student’s learning for virtual system modeling and to simulate in software for PIC microcontroller along with the hardware design. The buck and boost converters are designed to interface with the renewable energy source that is PV module. PIC microcontroller is used as a digital controller, which senses the PV electric signal for maximum power using sensors and output voltage of the dc-dc converter and according to that switching pulse is generated for the switching of MOSFET. The implementation of proposed system is based on learning platform of Proteus virtual system modeling (VSM and the experimental results are presented.

  6. Experimental grid connected PV system power analysis

    Science.gov (United States)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  7. Diamond encapsulated photovoltaics for transdermal power delivery.

    Science.gov (United States)

    Ahnood, A; Fox, K E; Apollo, N V; Lohrmann, A; Garrett, D J; Nayagam, D A X; Karle, T; Stacey, A; Abberton, K M; Morrison, W A; Blakers, A; Prawer, S

    2016-03-15

    A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980 nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7 W/cm(2), a peak output power of 2.7 mW is delivered to the implant with an active PV cell dimension of 1.5 × 1.5 × 0.06 mm(3). This corresponds to a volumetric power output density of ~20 mW/mm(3), significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Photovoltaic power: the inadequate purchase price

    International Nuclear Information System (INIS)

    Finon, D.

    2009-01-01

    The current policy of guaranteed purchase prices applied to photovoltaic power lacks rationality: prices are not graduated, commitment times are too long, there is no capping to capacity developed, subsidies (tax credit, direct subsidy, etc) are complex and give too favourable a return time. The lack of differentiation between products may also delay the emergence of new PV technologies. As a result, it is legitimate to envisage a cost/benefit analysis of future subsidies and to wonder about Frances ability, as a second rank player, to catch up with the leaders (Germany, Japan, United States). The report does not criticize policy based on purchase prices in itself: this is suitable or technology close to commercial operation in that it guarantees stable terms close to wholesale electricity market prices. It does, however, criticize adequacy in terms of less advanced PV technology, which results in purchase prices five times that of wind power. The report proposes re-targeting the system to take account of the significant stakes in PV power. Costly incentives for installing land PV cells and units should be quickly reduced, while industrial demonstration budgets deserve increases to further the development of new technologies (improved crystal silicon and thin layers). The demonstration phase and industrial development should be the primary focus, where a large part of potentially promising reductions in costs are likely to be achieved. (author)

  9. Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia

    International Nuclear Information System (INIS)

    Sivaraman, Deepak; Horne, Ralph E.

    2011-01-01

    The last decade has seen significant innovation and change in regulatory incentives to support photovoltaic deployment globally. With high fossil fuel dependency and abundant solar resource availability in Australia, grid connected photovoltaics are a viable low carbon technology option in existing electricity grids. Drawing on international examples, the potential to increase grid PV deployment through government response and regulation is explored. For each renewable energy certificate (REC) earned by small scale photovoltaics until 2012, the market provides four additional certificates under the current banded renewable targets. Our analysis indicates that REC eligibility is not accurately estimated currently, and an energy model is developed to calculate the variance. The energy model estimates as much as 26% additional REC's to be obtained by a 3 kWp PV system, when compared to the currently used regulatory method. Moreover, the provision of REC's increases benefits to PV technologies, in the process distorting CO 2 abatement (0.21 tonne/REC) by 68%, when PV displaces peaking natural gas plants. Consideration of the secondary effects of a banded structure on emissions trading market is important in the context of designing a range of initiatives intended to support a transition to a low carbon electricity sector. - Research Highlights: →Grid connected photovoltaics hedge spikes in peak demand summer electricity prices. →Nationwide feed in tariff and new building regulations needed to increase PV deployment. →Australia has transitioned from a solar rebate to a banded solar credit structure. →The currently used regulatory deeming method underestimates REC eligibility by 27%. →The banded structure can potentially distort CO 2 abatement by as much as 68%.

  10. Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions

    OpenAIRE

    P. Selvam; S. Senthil Kumar

    2016-01-01

    Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit c...

  11. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, N. [Freelance Consultant, Hillside House, Swindon SN1 3QA (United Kingdom); Thornycroft, J. [Halcrow Group Ltd, Burderop Park, Swindon SN4 0QD (United Kingdom); Collinson, A. [EA Technology, Capenhurst Technology Park, Chester CH1 6ES (United Kingdom)

    2002-03-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents the results of a risk analysis concerning photovoltaic power systems islanding in low-voltage distribution networks. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. The purpose of this study was to apply formal risk analysis techniques to the issue of islanding of photovoltaic power systems within low voltage distribution networks. The aim was to determine the additional level of risk that islanding could present to the safety of customers and network maintenance staff. The study identified the reliability required for islanding detection and control systems based on standard procedures for developing a safety assurance strategy. The main conclusions are presented and discussed and recommendations are made. The report is concluded with an appendix that lists the relative risks involved.

  12. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    Science.gov (United States)

    Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.

    2016-11-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.

  13. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    International Nuclear Information System (INIS)

    Gabderakhmanova, T S; Frid, S E; Tarasenko, A B; Kiseleva, S V

    2016-01-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed. (paper)

  14. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  15. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    OpenAIRE

    Markku Järvelä; Seppo Valkealahti

    2017-01-01

    There is no natural inertia in a photovoltaic (PV) generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive fee...

  16. Photovoltaic Power Applications in France. National Survey Report 2011

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2012-01-01

    According to the French observation and statistics office (SOeS, 2012-02), the grid-connected installed photovoltaic (PV) power in France during 2011 was 1 634 MW compared with 817 MW in 2010. The installed grid-connected PV power doubled but the total number of systems decreased by 26 %. The 100 % annual power increase comes mainly from medium power systems (36 kW to 250 kW) contributing to 36 % and large power systems (> 250 kW) representing 46 % of annual installed power. Ground-mounted centralised systems connected to the electricity grid during 2011 are estimated at 402 MW and distributed systems (mainly building applications) reached 1 232 MW. Grid-connected cumulative PV power capacity at the end of 2011 was 2 802 MW (242 295 systems), compared with the 1 168 MW (163 004 systems) at the end of 2010. Building integrated residential systems of less than 3 kW represented 89 % of the total number of installations and 20 % of total cumulative power while systems of power greater than 36 kW represented 3 % of the number of installations and 69 % of total cumulative power capacity. By a decree dated 4 March 2011, a new support system was proposed with a target of 500 MW per year of new projects over the next few years. The government's policy confirmed its priority to focus on building-integrated photovoltaic applications. The new support system introduces two separate mechanisms, based on the power of the installations. Under the first mechanism, for installations on buildings of less than 100 kW, feed-in tariffs are adjusted each quarter based on the total volume of projects submitted during the previous quarter. The second support mechanism involves a bidding system for large roof installations and photovoltaic ground-mounted power plants greater than 100 kW. Market incentives and budget There are three kinds of market incentive: enhanced feed-in tariffs, income tax credits and direct financial subsidies from local authorities. The cost of promotion through

  17. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  18. Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ben Salah, Chokri; Ouali, Mohamed [Research Unit on Intelligent Control, Optimization, Design and Optimization of Complex Systems (ICOS), Department of Electrical Engineering, National School of Engineers of Sfax, BP. W, 3038, Sfax (Tunisia)

    2011-01-15

    This paper proposes two methods of maximum power point tracking using a fuzzy logic and a neural network controllers for photovoltaic systems. The two maximum power point tracking controllers receive solar radiation and photovoltaic cell temperature as inputs, and estimated the optimum duty cycle corresponding to maximum power as output. The approach is validated on a 100 Wp PVP (two parallels SM50-H panel) connected to a 24 V dc load. The new method gives a good maximum power operation of any photovoltaic array under different conditions such as changing solar radiation and PV cell temperature. From the simulation and experimental results, the fuzzy logic controller can deliver more power than the neural network controller and can give more power than other different methods in literature. (author)

  19. A Novel Generation Method for the PV Power Time Series Combining the Decomposition Technique and Markov Chain Theory

    DEFF Research Database (Denmark)

    Xu, Shenzhi; Ai, Xiaomeng; Fang, Jiakun

    2017-01-01

    Photovoltaic (PV) power generation has made considerable developments in recent years. But its intermittent and volatility of its output has seriously affected the security operation of the power system. In order to better understand the PV generation and provide sufficient data support...... for analysis the impacts, a novel generation method for PV power time series combining decomposition technique and Markov chain theory is presented in this paper. It digs important factors from historical data from existing PV plants and then reproduce new data with similar patterns. In detail, the proposed...... method first decomposes the PV power time series into ideal output curve, amplitude parameter series and random fluctuating component three parts. Then generating daily ideal output curve by the extraction of typical daily data, amplitude parameter series based on the Markov chain Monte Carlo (MCMC...

  20. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  1. Efficiency of Photovoltaic Maximum Power Point Tracking Controller Based on a Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Ammar Al-Gizi

    2017-07-01

    Full Text Available This paper examines the efficiency of a fuzzy logic control (FLC based maximum power point tracking (MPPT of a photovoltaic (PV system under variable climate conditions and connected load requirements. The PV system including a PV module BP SX150S, buck-boost DC-DC converter, MPPT, and a resistive load is modeled and simulated using Matlab/Simulink package. In order to compare the performance of FLC-based MPPT controller with the conventional perturb and observe (P&O method at different irradiation (G, temperature (T and connected load (RL variations – rising time (tr, recovering time, total average power and MPPT efficiency topics are calculated. The simulation results show that the FLC-based MPPT method can quickly track the maximum power point (MPP of the PV module at the transient state and effectively eliminates the power oscillation around the MPP of the PV module at steady state, hence more average power can be extracted, in comparison with the conventional P&O method.

  2. Prospects and strategy for large scale utility applications of photovoltaic power systems

    International Nuclear Information System (INIS)

    Vigotti, R.; Lysen, E.; Cole, A.

    1996-01-01

    The status and prospects of photovoltaic (PV) power systems are reviewed. The market diffusion strategy for the application of PV systems by utilities is described, and the mission, objectives and thoughts of the collaboration programme launched among 18 industrialized countries under the framework of the International Energy Agency are highly with particular reference to technology transfer to developing countries. Future sales of PV systems are expected to grow in the short and medium term mainly in the sector of isolated systems. (R.P.)

  3. Impacts of Voltage Control Methods on Distribution Circuit’s Photovoltaic (PV Integration Limits

    Directory of Open Access Journals (Sweden)

    Anamika Dubey

    2017-10-01

    Full Text Available The widespread integration of photovoltaic (PV units may result in a number of operational issues for the utility distribution system. The advances in smart-grid technologies with better communication and control capabilities may help to mitigate these challenges. The objective of this paper is to evaluate multiple voltage control methods and compare their effectiveness in mitigating the impacts of high levels of PV penetrations on distribution system voltages. A Monte Carlo based stochastic analysis framework is used to evaluate the impacts of PV integration, with and without voltage control. Both snapshot power flow and time-series analysis are conducted for the feeder with varying levels of PV penetrations. The methods are compared for their impacts on (1 the feeder’s PV hosting capacity; (2 the number of voltage violations and the magnitude of the largest bus voltage; (3 the net reactive power demand from the substation; and (4 the number of switching operations of feeder’s legacy voltage support devices i.e., capacitor banks and load tap changers (LTCs. The simulation results show that voltage control help in mitigating overvoltage concerns and increasing the feeder’s hosting capacity. Although, the legacy control solves the voltage concerns for primary feeders, a smart inverter control is required to mitigate both primary and secondary feeder voltage regulation issues. The smart inverter control, however, increases the feeder’s reactive power demand and the number of LTC and capacitor switching operations. For the 34.5-kV test circuit, it is observed that the reactive power demand increases from 0 to 6.8 MVAR on enabling Volt-VAR control for PV inverters. The total number of capacitor and LTC operations over a 1-year period also increases from 455 operations to 1991 operations with Volt-VAR control mode. It is also demonstrated that by simply changing the control mode of capacitor banks, a significant reduction in the unnecessary

  4. Maximum power point tracking for PV systems under partial shading conditions using current sweeping

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • A novel approach for tracking the maximum power point of photovoltaic systems. • Able to handle both the uniform insolation and partial shading conditions. • Maximum power point tracking based on current sweeping. - Abstract: Partial shading on photovoltaic (PV) arrays causes multiple peaks on the output power–voltage characteristic curve and local searching technique such as perturb and observe (P&O) method could easily fail in searching for the global maximum. Moreover, existing global searching techniques are still not very satisfactory in terms of speed and implementation complexity. In this paper, a fast global maximum power point (MPPT) tracking method which is using current sweeping for photovoltaic arrays under partial shading conditions is proposed. Unlike conventional approach, the proposed method is current based rather than voltage based. The initial maximum power point will be derived based on a current sweeping test and the maximum power point can be enhanced by a finer local search. The speed of the global search is mainly governed by the apparent time constant of the PV array and the generation of a fast current sweeping test. The fast current sweeping test can easily be realized by a DC/DC boost converter with a very fast current control loop. Experimental results are included to demonstrate the effectiveness of the proposed global searching scheme

  5. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....

  6. Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2014-01-01

    Full Text Available Feed-in-Tariff (FiT mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i briefly reviews the mechanisms, advantages, and evolution of FiT; (ii describes the developments of PV, (iii applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium; and finally (iv predicts the levelized cost of energy (LCOE in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future.

  7. Power of design - the future of building-integrated PV

    International Nuclear Information System (INIS)

    Abbate, Cinzia

    2001-01-01

    This paper discusses strategies to make building integrated photovoltaic (PV) systems more acceptable and to allow PV material to compete with conventional construction material. The history of developments in building integration and difficulties encountered by architects wishing to use PV products are explored, and the Dutch Amersfoot project in Utrecht involving a new suburb of 501 house covered with PV panels is described. Questions raised regarding architectural integration of PV systems, and PV systems and the construction market are discussed. The Italian PV programme, financial and political constraints, and the positioning of PV on existing structures are reported

  8. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  9. Modeling Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2016-10-01

    Full Text Available A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV facilities the beam and the diffuse solar irradiances are not recorded. The airmass, the angle of incidence and the efficiency drop due to low values of solar irradiance are taken into account. Currently, the model is validated through the use of high quality data available from the National Renewable Energy Laboratory (USA. The data were acquired with IV tracers while the meteorological conditions were also recorded. Several modules of different technologies were deployed but here we present results from a single crystalline module. The performance of the model is acceptable at a level of 5% despite the assumptions made. The dependence of the residuals upon solar irradiance temperature, airmass and angle of incidence is also explored and future work is described.

  10. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  11. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid...

  12. Electrocoagulation of a synthetic textile effluent powered by photovoltaic energy without batteries: Direct connection behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Valero, David; Ortiz, Juan M.; Exposito, Eduardo; Montiel, Vicente; Aldaz, Antonio [Grupo de Electroquimica Aplicada y Electrocatalisis, Departamento de Quimica Fisica, Instituto Universitario de Electroquimica, Universidad de Alicante, Ap 99, Alicante 03080 (Spain)

    2008-03-15

    The feasibility of the use of an electrocoagulation system (EC) directly powered by a photovoltaic (PV) array has been demonstrated. The model pollutant used was a reactive textile dye Remazol Red RB 133. It has been proved that PV array configuration is a factor of great influence on the use of the generated power. The optimum PV array configuration must be reshaped depending on the instantaneous solar irradiation. A useful and effective methodology to adjust the EC-PV system operation conditions depending on solar irradiation has been proposed. The current flow ratio, J{sub v}, is established as the control parameter. (author)

  13. Observer-Based Load Frequency Control for Island Microgrid with Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    Chaoxu Mu

    2017-01-01

    Full Text Available As renewable energy is widely integrated into the power system, the stochastic and intermittent power generation from renewable energy may cause system frequency deviating from the prescribed level, especially for a microgrid. In this paper, the load frequency control (LFC of an island microgrid with photovoltaic (PV power and electric vehicles (EVs is investigated, where the EVs can be treated as distributed energy storages. Considering the disturbances from load change and PV power, an observer-based integral sliding mode (OISM controller is designed to regulate the frequency back to the prescribed value, where the neural network observer is used to online estimate the PV power. Simulation studies on a benchmark microgrid system are presented to illustrate the effectiveness of OISM controller, and comparative results also demonstrate that the proposed method has a superior performance for stabilizing the frequency over the PID control.

  14. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  15. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  16. Economic viability of photovoltaic power for development assistance applications

    Science.gov (United States)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  17. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system

    Directory of Open Access Journals (Sweden)

    S. Shabaan

    2018-05-01

    Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump

  18. Rapid Active Power Control of Photovoltaic Systems for Grid Frequency Support

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta; Muljadi, Eduard; Maksimovic, Dragan

    2017-01-01

    As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events, including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).

  19. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, F.L.; Moraes, A.J.; Guimaraes, G.C.; Sanhueza, S.M.R.; Vaz, A.R. [Federal University of Uberlandia (UFU), MG (Brazil)

    2009-07-01

    In the case of photovoltaic solar systems (PV) acting as a distributed generation (DG), the DC energy obtained is fed through the power-conditioning unit (inverter) to the grid. The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can be utilized instead of CSI, we can generate reactive power commensurate with the remaining unused capacity at any given point in time. According to the theory of instantaneous power, the reactive and active power of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the inverter. The MATLAB simulation results validate the feasibility of the method. (author)

  20. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Olama, Mohammed M. [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-09-01

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed to estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.

  1. An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Chau, K.T.

    2011-01-01

    In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.

  2. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  3. A New MPPT Control for Photovoltaic Panels by Instantaneous Maximum Power Point Tracking

    Science.gov (United States)

    Tokushima, Daiki; Uchida, Masato; Kanbei, Satoshi; Ishikawa, Hiroki; Naitoh, Haruo

    This paper presents a new maximum power point tracking control for photovoltaic (PV) panels. The control can be categorized into the Perturb and Observe (P & O) method. It utilizes instantaneous voltage ripples at PV panel output terminals caused by the switching of a chopper connected to the panel in order to identify the direction for the maximum power point (MPP). The tracking for the MPP is achieved by a feedback control of the average terminal voltage of the panel. Appropriate use of the instantaneous and the average values of the PV voltage for the separate purposes enables both the quick transient response and the good convergence with almost no ripples simultaneously. The tracking capability is verified experimentally with a 2.8 W PV panel under a controlled experimental setup. A numerical comparison with a conventional P & O confirms that the proposed control extracts much more power from the PV panel.

  4. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index

    Directory of Open Access Journals (Sweden)

    Idris Khan

    2017-01-01

    Full Text Available High concentration of greenhouse gases in the atmosphere has increased dependency on photovoltaic (PV power, but its random nature poses a challenge for system operators to precisely predict and forecast PV power. The conventional forecasting methods were accurate for clean weather. But when the PV plants worked under heavy haze, the radiation is negatively impacted and thus reducing PV power; therefore, to deal with haze weather, Air Quality Index (AQI is introduced as a parameter to predict PV power. AQI, which is an indication of how polluted the air is, has been known to have a strong correlation with power generated by the PV panels. In this paper, a hybrid method based on the model of conventional back propagation (BP neural network for clear weather and BP AQI model for haze weather is used to forecast PV power with conventional parameters like temperature, wind speed, humidity, solar radiation, and an extra parameter of AQI as input. The results show that the proposed method has less error under haze condition as compared to conventional model of neural network.

  5. PHOTOVOLTAIC BASED SHUNT ACTIVE FILTER FOR POWER QUALITY IMPROVEMENT USING ICOSΦ THEORY

    Directory of Open Access Journals (Sweden)

    VIJAYAKUMAR G.

    2015-11-01

    Full Text Available This paper presents an optimal operation of Photovoltaic based Shunt Active Filter as (PV-SAF for significant energy conservation, harmonic mitigation and reactive power compensation. When the PV system generates excessive or equal power required to the load demand, then the coordinating logic disconnects the service grid from the load and with a consequent reduction of panel tariff and global warming gasses. The PV module is connected to the DC side of SAF through the DC-DC converter. Converter switch is controlled by fuzzy based Perturb & Observe (P&O Maximum Power Point Tracking (MPPT algorithm and it eliminates the drawback in the conventional PV system. The reference currents are extracted by the Fuzzy logic controller based ICosΦ control strategy. This proposed PV-SAF, if connected at the terminals of a small industry or a home or a small enlightening institution can avoid the use of interruptible power supply and individual stabilizer. An emulation using MATLAB Simulink is presented to validate the advantage of the proposed system.

  6. Three-Phase PV CHB Inverter for a Distributed Power Generation System

    Directory of Open Access Journals (Sweden)

    Pierluigi Guerriero

    2016-10-01

    Full Text Available This work deals with the design of a three-phase grid-tied photovoltaic (PV cascade H-bridge inverter for distributed power conversion. The power balancing among the phases must be properly addressed. In fact, an intra-phase power imbalance—arising from uneven irradiance and temperature conditions—generates a per-phase power imbalance. This latter can be compensated by the injection of a proper zero-sequence voltage, while the intra-phase balance is ensured by means of a hybrid modulation method which is able to guarantee the handling of unequal DC (Direct Current sources, stable circuit operation, and maximization of PV power production. The digital controller is developed and tested in Matlab/Simulink environment integrated with XSG (Xilinx System Generator, thus allowing an easy transfer on a field-programmable gate array (FPGA platform and accurately describing the behavior of a real hardware implementation. Thus, numerical results have been considered to prove the effectiveness of the proposed approach.

  7. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  8. Super short term forecasting of photovoltaic power generation output in micro grid

    Science.gov (United States)

    Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang

    2017-01-01

    The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.

  9. Economic and environmental impacts of a PV powered workplace parking garage charging station

    International Nuclear Information System (INIS)

    Tulpule, Pinak J.; Marano, Vincenzo; Yurkovich, Stephen; Rizzoni, Giorgio

    2013-01-01

    Highlights: • Photovoltaic (PV) based, plug-in electric vehicle (PEV) charging station located in a workplace parking garage. • Emissions from the power grid. • Economic analysis. • Parametric analysis for parking rates, installed capacities to show benefits to vehicle and garage owner. - Abstract: Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) have high potential for reducing fuel consumption and emissions, and for providing a way to utilize renewable energy sources for the transportation sector. On the other hand, charging millions of PEVs could overload the power grid, increase emissions and significantly alter economic characteristics. A day-time photovoltaic (PV) based, plug-in electric vehicle charging station located in a workplace parking garage is considered in this research. The results show the impact of PV based workplace charging on the economics and emissions from the power grid. An optimal charge scheduling strategy is compared with an uncontrolled charging case to perform the economics and emissions analysis. Two locations (Columbus, OH and Los Angeles, CA) are selected such that the analysis includes different scenarios of yearly variation of solar radiation and finance structure. A high fidelity hourly simulation model for energy economic analysis is developed considering different types of vehicles, statistical data for driving distances, parking time, installation cost, tax rebates and incentives. An incremental parking rate for accessing the charging facility is considered for economic analysis for the garage owner and the vehicle owner. The analysis is extended to consider the impact of carbon tax implementation on the driver economics and shows the feasibility of such PV based charging stations. Parametric analysis for different parking rates and installed capacities show (i) the feasibility of a PV based workplace charging facility, (ii) benefits to the vehicle owner and the garage owner, and (iii) the need for

  10. Overcoming PV grid issues in the urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Ehara, T.

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at grid issues in urban photovoltaic electricity and how to overcome them. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The paper discusses the goal of mainstreaming PV systems in the urban environment. In this report, PV grid interconnection issues and countermeasures based on the latest studies are identified and summarised. Appropriate and understandable information is provided for all possible stakeholders. Possible impacts and benefits of PV grid interconnection are identified, technical measures designed to eliminate negative impacts and enhance possible benefits are presented. The status of research and demonstration projects is introduced and the latest outcomes are summarised. Recommendations and conclusions based on the review process are summarised and presented.

  11. A maximum power point tracking for photovoltaic-SPE system using a maximum current controller

    Energy Technology Data Exchange (ETDEWEB)

    Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)

    2003-02-01

    Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)

  12. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  13. Evaluation of the Photovoltaic System Installation Impact to an Electric Power Grid Part 1: Simulation of photovoltaic generation by applying a meteorological model

    Directory of Open Access Journals (Sweden)

    Juan Ernesto Wyss Porras

    2015-12-01

    Full Text Available The impact of the installation of a large-scale photovoltaic (PV system to the electric power grid management is analyzed numerically in this series of works. In this part 1, the solar irradiance at the target country, Guatemala, is evaluated with a weather forecasting model, and PV energy potential is estimated. From the computed potential distribution, the appropriate area for installation of a large-scale PV system is selected. This area is where the solar irradiance is large and the energy consumption regions are close by. The optimal tilted angle of the PV panels is proposed as well from the PV output simulation. The time series data of the PV output is also evaluated in this part, and it will be applied to the analysis of the impact of the PV installation to the electric power grid management in the following part of this series of works.

  14. Analysis on PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive by 2030 in Japan

    International Nuclear Information System (INIS)

    Endo, E.; Ichinohe, M.

    2004-01-01

    The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive against other energy technologies and make the target for PV capacity achievable by 2030 in Japan under expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. According to the results of analysis, under 6000 JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120 JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost need not in 2030, if we can reduce it less than 170 JPY/W. The total subsidy meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue of the assumed carbon tax can afford enough the annual total subsidy. This means if photovoltaics can attain the PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently. (authors)

  15. Recent Developments in Maximum Power Point Tracking Technologies for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Nevzat Onat

    2010-01-01

    Full Text Available In photovoltaic (PV system applications, it is very important to design a system for operating of the solar cells (SCs under best conditions and highest efficiency. Maximum power point (MPP varies depending on the angle of sunlight on the surface of the panel and cell temperature. Hence, the operating point of the load is not always MPP of PV system. Therefore, in order to supply reliable energy to the load, PV systems are designed to include more than the required number of modules. The solution to this problem is that switching power converters are used, that is called maximum power point tracker (MPPT. In this study, the various aspects of these algorithms have been analyzed in detail. Classifications, definitions, and basic equations of the most widely used MPPT technologies are given. Moreover, a comparison was made in the conclusion.

  16. Effects of partial shading conditions on maximum power points and mismatch losses in silicon-based photovoltaic power generators

    Energy Technology Data Exchange (ETDEWEB)

    Maki, A.

    2013-11-01

    Photovoltaic (PV) power generators can be used for converting the energy of solar radiation directly into electrical energy without any moving parts. The operation of the generators is highly affected by operating conditions, most importantly irradiances and temperatures of PV cells. PV power generators are prone to electrical losses if the operating conditions are non-uniform such as in a case where part of the modules of a generator are shaded while the rest are receiving the global solar radiation. These conditions are called partial shading conditions and they have been recognized as a major cause of energy losses in PV power generators. In this thesis, the operation of silicon-based PV power generators under partial shading conditions is studied using Matlab Simulink simulation model. The operation of the model has been verified by measurements of electrical characteristics of a PV module under several different operating conditions and also under partial shading conditions. A systematic approach to study the effects of partial shading conditions has been developed and used. In addition to the systematic approach, a vast amount of data measured from the Tampere University of Technology (TUT) Solar Photovoltaic Power Station Research Plant are analyzed and used as input for the simulation model to study operation of PV power generators under actual operating conditions. Partial shading conditions have severe effects on the electrical characteristics of PV power generators and can cause multiple maximum power points (MPPs) to the power-voltage curve of the generators. In most cases, partial shading conditions lead to the occurrence of multiple MPPs, but also only one MPP can be present despite of partial shading. Reasons for this phenomenon are presented and analyzed in this thesis. Because of multiple MPPs, a considerable amount of available electrical energy may be lost when the generator is operating at a local MPP with low power instead of the global MPP. In

  17. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  18. How do users interact with photovoltaic-powered products? Investigating 100 'lead-users' and 6 PV products

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, Angelina H.M.E.

    2016-01-01

    In order to better understand how 'lead-users' interact with PV-powered products, the behaviour of 100 people interacting with six different PV-powered products in their daily life was analysed. The sample of respondents to be observed consisted of 20 groups, each one formed by five students of

  19. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  20. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 5th European PV-hybrid and mini-grid conference 29th and 30th April, 2010 in Tarragona (Spain) the following lectures were held: (1) Overview of IEA PVPS Task 11 PV-hybrid systems within mini grids; (2) Photovoltaic revolution for deployment in developing countries; (3) Legal and financial conditions for the sustainable operation of mini-grids; (4) EU instruments to promote renewable energies in developing countries; (5) PV hybridization of diesel electricity generators: Conditions of profitability and examples in differential power and storage size ranges; (6) Education suit of designing PV hybrid systems; (7) Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam; (8) Techno-economic feasibility of energy supply of remote villages in Palestine by PV systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages); (9) Technical, economical and sustainability considerations of a solar PV mini grid as a tool for rural electrification in Uganda; (10) Can we rate inverters for rural electrification on the basis of energy efficiency?; (11) Test procedures for MPPT charge controllers characterization; (12) Energy storage for mini-grid stabilization; (13) Redox flow batteries - Already an alternative storage solution for hybrid PV mini-grids?; (14) Control methods for PV hybrid mini-grids; (15) Partial AC-coupling in mini-grids; (15) Normative issues of small wind turbines in PV hybrid systems; (16) Communication solutions for PV hybrid systems; (17) Towards flexible control and communication of mini-grids; (18) PV/methanol fuel cell hybrid system for powering a highway security variable message board; (19) Polygeneration smartgrids: A solution for the supply of electricity, potable water and hydrogen as fuel for transportation in remote Areas; (20) Implementation of the Bronsbergen micro grid using FACDS; (21) A revisited approach for the design of PV wind hybrid systems; (22

  1. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    Science.gov (United States)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  2. Grid-connected photovoltaic power systems. Technical and potential problems. A review

    International Nuclear Information System (INIS)

    Eltawil, Mohamed A.; Zhao, Zhengming

    2010-01-01

    Traditional electric power systems are designed in large part to utilize large baseload power plants, with limited ability to rapidly ramp output or reduce output below a certain level. The increase in demand variability created by intermittent sources such as photovoltaic (PV) presents new challenges to increase system flexibility. This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The investigation was conducted to critically review the literature on expected potential problems associated with high penetration levels and islanding prevention methods of grid tied PV. According to the survey, PV grid connection inverters have fairly good performance. They have high conversion efficiency and power factor exceeding 90% for wide operating range, while maintaining current harmonics THD less than 5%. Numerous large-scale projects are currently being commissioned, with more planned for the near future. Prices of both PV and balance of system components (BOS) are decreasing which will lead to further increase in use. The technical requirements from the utility power system side need to be satisfied to ensure the safety of the PV installer and the reliability of the utility grid. Identifying the technical requirements for grid interconnection and solving the interconnect problems such as islanding detection, harmonic distortion requirements and electromagnetic interference are therefore very important issues for widespread application of PV systems. The control circuit also provides sufficient control and protection functions like maximum power tracking, inverter current control and power factor control. Reliability, life span and maintenance needs should be certified through the long-term operation of PV system. Further reduction of cost, size and weight is required for more utilization of PV

  3. Final Technical Report for Photovoltaic Power Electronics Research Initiative (PERI)

    Energy Technology Data Exchange (ETDEWEB)

    Amirahmadi, Ahmadreza [Univ. of Central Florida, Orlando, FL (United States); Jordan, Charlie [Univ. of Central Florida, Orlando, FL (United States); batarseh, Issa [Univ. of Central Florida, Orlando, FL (United States)

    2015-08-31

    The Power Electronics team at the University of Central Florida (UCF) has developed a novel three-phase micro-inverter for photovoltaic (PV) distributed applications. Based on a new advanced topology and control methodology, the developed inverter is small in size, and achieved DoE targeted power density, cost and efficiency specifications. Today’s inverters are widely used in PV based energy harvesting systems, but are based on single-phase design with limited application to large installations. These micro-inverters have been shown to have advantageous over their string inverter counterparts in both grid-tied PV energy harvesting and standalone micro-grid systems with energy storage. Some of these are simplified installation, no high voltage DC wiring, no single point of failure and improved energy harvesting. Several patents have been issued and this new solar conversion technology has been licensed to the private sector.

  4. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM System through Temperature Regulation and Performance Enhancement of Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2014-03-01

    Full Text Available The current research seeks to maintain high photovoltaic (PV efficiency and increased operating PV life by maintaining them at a lower temperature. Solid-liquid phase change materials (PCM are integrated into PV panels to absorb excess heat by latent heat absorption mechanism and regulate PV temperature. Electrical and thermal energy efficiency analysis of PV-PCM systems is conducted to evaluate their effectiveness in two different climates. Finally costs incurred due to inclusion of PCM into PV system and the resulting benefits are discussed in this paper. The results show that such systems are financially viable in higher temperature and higher solar radiation environment.

  5. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  6. Optimal design of PV and HP system

    DEFF Research Database (Denmark)

    Nepper-Rasmussen, Bjarke Christian; Rasmussen, Theis Bo

    2015-01-01

    Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution is descr...... that the thermal storage with a BT is a better investment than a PV system without HP or no investment. Furthermore, it showed that the optimization model developed in this project is capable of finding the optimal combination of component sizes based on our data.......Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution...... is described, where the thermal energy is stored in a buffer tank (BT) capable of dispersing heat to either the heating system of a house or a hot water tank, for later use. The thermal storage solution including a BT can increase the self-consumption of residentially produced PV power and thereby shift...

  7. Impact of Reactive Power Injection Outside Feed-In Hours on the Reliability of Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    , the analysis enables the translation from long-term mission profiles to device thermal loading, considering the operation at night. An analytical lifetime model is then used for lifetime quantization based on the Palgrem Miner rule. Thereafter, considering the lifetime reduction of the PV inverter......Current energy paradigm of mixed renewables seems to urgently require reactive power provision at various feed-in points of the utility grid. Photovoltaic (PV) inverters are able to provide reactive power in a decentralized manner at the grid-connection point even outside active power feed......-in operation, especially at night. This serves as a motivation for utilizing the PV inverters at night for reactive power compensation. Thus, a detailed analysis on the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance and also the reliability is performed...

  8. Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices

    International Nuclear Information System (INIS)

    Jallouli, Rihab; Krichen, Lotfi

    2012-01-01

    Due to the mismatch between the load demand and the intermittent solar energy, a stand-alone photovoltaic-hydrogen system and an optimal control scheme are designed to maintain the high system efficiency. Based on meteorological and the load demand data, a system sizing technique is proposed to establish the minimum capacity of the system components, which are a photovoltaic (PV) panel, a proton exchange membrane fuel cell (PEMFC), a battery bank and an alkaline electrolyzer (Elz). An accurate energy management scheme that is utilized during power transfer is proposed to meet the economic requirements. Case studies are used to verify the efficiency of the energy management strategy and system sizing technique. Simulation results illustrate a simple solution to the design and processing of stand-alone PV-hydrogen (PV-H 2 ) systems. -- Highlights: ► We study a stand alone PV-hydrogen system comprising renewable devices. ► A PV generator, a battery bank, a fuel cell and an electrolyzer are modeled. ► Power management taking into account the economic arrangement and the operating conditions to ensure energy availability is proposed.

  9. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  10. A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems

    International Nuclear Information System (INIS)

    Tan, Chee Wei; Green, Tim C.; Hernandez-Aramburo, Carlos A.

    2010-01-01

    This paper presents a stochastic simulation using Monte Carlo technique to size a battery to meet dual objectives of demand shift at peak electricity cost times and outage protection in BIPV (building integrated photovoltaic) systems. Both functions require battery storage and the sizing of battery using numerical optimization is popularly used. However, the weather conditions, outage events and demand peaks are not deterministic in nature. Therefore, the sizing of battery storage capacity should also be based on a probabilistic approach. The Monte Carlo simulation is a rigorous method to sizing BIPV system as it takes into account a real building load profiles, the weather information and the local historical outage distribution. The simulation is split into seasonal basis for the analysis of demand shifting and outage events in order to match the seasonal weather conditions and load profiles. Five configurations of PV (photovoltaic) are assessed that cover different areas and orientations. The simulation output includes the predicted PV energy yield, the amount of energy required for demand management and outage event. Therefore, consumers can base sizing decisions on the historical data and local risk of outage statistics and the success rate of meeting the demand shift required. Finally, the economic evaluations together with the sensitivity analysis and the assessment of customers' outage cost are discussed.

  11. Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; MacAlpine, S.

    2013-10-01

    No consensus standard exists for estimating annual conversion efficiency of DC-DC converters or power optimizers in photovoltaic (PV) applications. The performance benefits of PV power electronics including per-panel DC-DC converters depend in large part on the operating conditions of the PV system, along with the performance characteristics of the power optimizer itself. This work presents acase study of three system configurations that take advantage of the capabilities of DC power optimizers. Measured conversion efficiencies of DC-DC converters are applied to these scenarios to determine the annual weighted operating efficiency. A simplified general method of reporting weighted efficiency is given, based on the California Energy Commission's CEC efficiency rating and severalinput / output voltage ratios. Efficiency measurements of commercial power optimizer products are presented using the new performance metric, along with a description of the limitations of the approach.

  12. Summary of third international executive conference on photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W.

    2001-07-01

    towards sustainable buildings fully into account. A further aim was to share the lessons learned from recent market experience on the full range of additional values that arise from the use of photovoltaic power systems and how those values impact on customer choice. Further, the promotion of international co-operation between the private and public sectors on policies for the removal of key constraints and for the promotion, financing and implementation of solar photovoltaic electricity projects was discussed. The conference was expected to achieve the following outcomes: Stronger relationships and networks between the participants and, through them, also between the sectors represented; A better definition of the added values of PV which influence customer choice; Recommendations which can be implemented by each of the business sectors represented at the conference for the orderly future development of the most important future PV markets; Recommendations to the IEA for ways in which it could enhance collaboration with both governments and industry, using its unique position to assist the future development of PV markets.

  13. A control strategy for PV stand-alone applications

    International Nuclear Information System (INIS)

    Slouma, S; Baccar, H

    2015-01-01

    This paper proposes a stand-alone photovoltaic (PV) system study in domestic applications. Because of the decrease in power of photovoltaic module as a consequence of changes in solar radiation and temperature which affect the photovoltaic module performance, the design and control of DC-DC buck converter was proposed for providing power to the load from a photovoltaic source.In fact, the control of this converter is carried out with integrated MPPT (Maximum Power Point Tracking) algorithm which ensures a maximum energy generated by the PV arrays. Moreover, the output stage is composed by a battery energy storage system, dc-ac inverter, LCL filter which enables higher efficiency, low distortion ac waveforms and low leakage currents. The control strategy adopted is cascade control composed by two regulation loops.Simulations performed with PSIM software were able to validate the control system.The realization and testing of the photovoltaic system were achieved in the Photovoltaic laboratory of the Centre for Research and Energy Technologies at the Technopark Borj Cedria. Experimental results verify the effeciency of the proposed system

  14. A control strategy for PV stand-alone applications

    Science.gov (United States)

    Slouma, S.; Baccar, H.

    2015-04-01

    This paper proposes a stand-alone photovoltaic (PV) system study in domestic applications. Because of the decrease in power of photovoltaic module as a consequence of changes in solar radiation and temperature which affect the photovoltaic module performance, the design and control of DC-DC buck converter was proposed for providing power to the load from a photovoltaic source.In fact, the control of this converter is carried out with integrated MPPT (Maximum Power Point Tracking) algorithm which ensures a maximum energy generated by the PV arrays. Moreover, the output stage is composed by a battery energy storage system, dc-ac inverter, LCL filter which enables higher efficiency, low distortion ac waveforms and low leakage currents. The control strategy adopted is cascade control composed by two regulation loops.Simulations performed with PSIM software were able to validate the control system.The realization and testing of the photovoltaic system were achieved in the Photovoltaic laboratory of the Centre for Research and Energy Technologies at the Technopark Borj Cedria. Experimental results verify the effeciency of the proposed system.

  15. Comparison of Different MPPT Algorithms with a Proposed One Using a Power Estimator for Grid Connected PV Systems

    Directory of Open Access Journals (Sweden)

    Manel Hlaili

    2016-01-01

    Full Text Available Photovoltaic (PV energy is one of the most important energy sources since it is clean and inexhaustible. It is important to operate PV energy conversion systems in the maximum power point (MPP to maximize the output energy of PV arrays. An MPPT control is necessary to extract maximum power from the PV arrays. In recent years, a large number of techniques have been proposed for tracking the maximum power point. This paper presents a comparison of different MPPT methods and proposes one which used a power estimator and also analyses their suitability for systems which experience a wide range of operating conditions. The classic analysed methods, the incremental conductance (IncCond, perturbation and observation (P&O, ripple correlation (RC algorithms, are suitable and practical. Simulation results of a single phase NPC grid connected PV system operating with the aforementioned methods are presented to confirm effectiveness of the scheme and algorithms. Simulation results verify the correct operation of the different MPPT and the proposed algorithm.

  16. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  17. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  18. Suggested Grid Code Modifications to Ensure Wide-Scale Adoption of Photovoltaic Energy in Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Enjeti, Prasad; Blaabjerg, Frede

    2013-01-01

    Current grid standards seem to largely require low power (e.g. several kilowatts) single-phase photovoltaic (PV) systems to operate at unity power factor with maximum power point tracking, and disconnect from the grid under grid faults. However, in case of a wide-scale penetration of single......-phase PV systems in the distributed grid, the disconnection under grid faults can contribute to: a) voltage flickers, b) power outages, and c) system instability. In this paper, grid code modifications are explored for wide-scale adoption of PV systems in the distribution grid. More recently, Italy...... and Japan, have undertaken a major review of standards for PV power conversion systems connected to low voltage networks. In view of this, the importance of low voltage ride-through for single-phase PV power systems under grid faults along with reactive power injection is studied in this paper. Three...

  19. Space and industrial markets for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, C.R.; Hardingham, C.M.

    2000-07-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  20. Space and industrial markets for photovoltaics

    International Nuclear Information System (INIS)

    Huggins, C.R.; Hardingham, C.M.

    2000-01-01

    This report presents a review of applications, technologies and markets for photovoltaic power (PV) supplies. A brief history of PV and PV principles is presented, and an overview of the satellite industry is given. Space arrays, space PV, terrestrial PV, and thermo photovoltaics are examined. Targets and constraints in space and terrestrial solar cells are compared, and details of commercial market sizes for given technologies in space and terrestrial PV in 1999, and technical barriers to be overcome towards development of existing products are tabulated. The scope for cross-culture interaction in all aspects of manufacturing, testing and evaluation in the PV devices are considered. (UK)

  1. Power Quality Improvement Utilizing Photovoltaic Generation Connected to a Weak Grid

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tumbelaka, Hanny H. [Petra Christian University; Gao, Wenzhong [UNiversity of Denver

    2017-11-07

    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtained.

  2. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  3. REVIEW ON GRID INTERFACING OF MULTIMEGAWATT PHOTOVOLTAIC INVERTERS

    OpenAIRE

    Mr. Vilas S. Solanke*; Mr. Naveen Kumar

    2016-01-01

    This paper presents review on the latest development of control of grid connected photovoltaic energy conversion system. Also this paper present existing systems control algorithm for three-phase and single phase grid-connected photovoltaic (PV) system. This paper focuses on one aspect of solar energy, namely grid interfacing of large-scale PV farms. This Grid-connected photovoltaic i.e. PV systems can provide a number of benefits to electric utilities, such as power loss reduction, improve...

  4. Design and Analysis of Grid Connected Photovoltaic Fed Unified Power Quality Conditioner

    Science.gov (United States)

    Dash, Santanu Kumar; Ray, Pravat Kumar

    2016-06-01

    This paper proposes the integration scheme and operation of the Unified Power Quality conditioner (UPQC) with Photovoltaic source as distributed generations for power quality improvement. Thus, it provides a novel PV-grid integration configuration and prevents any adverse situation related to current or voltage in power system. Voltage related issues are maintained by the series part of UPQC and the current related issues are handles by shunt part of the UPQC. The various operation modes of PV-UPQC schemes are broadly classified according to the direction of power flow, (i) Interconnected mode, (ii) Islanding mode. PV-UPQC has advantage over the conventional UPQC scheme as it has developed the capability to compensate the voltage interruption problems Control algorithms for shunt and series part of the UPQC is implemented. Development of the proposed configuration has been designed in the laboratory with control algorithm implemented in dSPACE and results are discussed.

  5. Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds

    Czech Academy of Sciences Publication Activity Database

    Paulescu, M.; Badescu, V.; Brabec, Marek

    2013-01-01

    Roč. 54, č. 1 (2013), s. 104-112 ISSN 0360-5442 R&D Projects: GA MŠk LD12009 Institutional support: RVO:67985807 Keywords : PV (photovoltaic) plants * Sunshine number * Nowcasting * ARIMA (Autoregressive Integrated Moving Average ) modeling Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 4.159, year: 2013

  6. Status and Needs of Power Electronics for Photovoltaic Inverters

    Science.gov (United States)

    Qin, Y. C.; Mohan, N.; West, R.; Bonn, R.

    2002-06-01

    Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals.

  7. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  8. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  9. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Isabel M. Moreno-Garcia

    2016-05-01

    Full Text Available There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  10. Optimizing economic benefit of rooftop photovoltaic (PV) systems through lowering energy demand of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of photovoltaic (PV) systems on the rooftop. To promote deployment of PV systems, feed-in tariff (FIT) higher than the electricity rate is available in many countries to subsidize

  11. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    Science.gov (United States)

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  12. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    G. Rohini

    2016-01-01

    Full Text Available This work aims at improving the dynamic performance of the available photovoltaic (PV system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  13. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  14. Analysis of PV system's values beyond energy - by country and stakeholder

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Polo, A.; Hass, R.; Suna, D.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme and PV-Up-Scale analyses, identifies, evaluates and quantifies the major values and benefits of urban scale photovoltaics (PV) based on country and stakeholder specifics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The values evaluated and quantified in this report are categorised under the following groups: Avoiding fossil fuels, environmental benefits, benefits for electric utilities, industry development and employment benefits and the customer's individual benefits. The relevance of PV to meeting peak demand is discussed, as are the benefits for architects and building developers.

  15. Update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.; Bruhns, H.

    1999-07-01

    The article describes an updated database of photovoltaic (PV) installations in the UK. The database contains more than 300 records representing over 40,000 photovoltaic installations with more than 100 buildings that use photovoltaic arrays. Figures show: (i) a chart of cumulative PV applications to date; (ii) a chart of cumulative installations in the database; (iii) the growth of Building Integrated PV installed to date; (iv) the cumulative growth of peak power of PV for buildings installed every year since 1985; (v) the distribution by application of all PV installations in the database and (vi) the various applications of PV installations.

  16. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  17. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  18. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. International cooperation project (Collection of the information on the IEA photovoltaic power generation program); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai jigyo kyoryoku (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Based on 'the Implementing agreement for a research cooperation project on the photovoltaic power system' being promoted by IEA, collection of the information on the photovoltaic power system was made, and the FY 2000 results were summarized. In Task I: Exchange of the information on the photovoltaic power system and the spread, the final report on 'the study on added values of PV system' was made. In Task II: Operational performance and design of the photovoltaic power system and subsystem, specifications for new database were determined, and the existing data were checked/revised/added. In Task III: Design and operation of the stand-alone type and remote island use photovoltaic power plant, survey was conducted of the present situation of technical standards and quality guarantee. In Task 7: Photovoltaic power system integrated with construction materials, work was done for making a book of installation samples of the PV system integrated with construction materials in each country. In Task 8: Investigative study of possibilities of the large-scale photovoltaic power generation using the unused land such as desert, a report making of the secondary survey was started. (NEDO)

  19. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. International cooperation project (Collection of the information on the IEA photovoltaic power generation program); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai jigyo kyoryoku (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Based on 'the Implementing agreement for a research cooperation project on the photovoltaic power system' being promoted by IEA, collection of the information on the photovoltaic power system was made, and the FY 2000 results were summarized. In Task I: Exchange of the information on the photovoltaic power system and the spread, the final report on 'the study on added values of PV system' was made. In Task II: Operational performance and design of the photovoltaic power system and subsystem, specifications for new database were determined, and the existing data were checked/revised/added. In Task III: Design and operation of the stand-alone type and remote island use photovoltaic power plant, survey was conducted of the present situation of technical standards and quality guarantee. In Task 7: Photovoltaic power system integrated with construction materials, work was done for making a book of installation samples of the PV system integrated with construction materials in each country. In Task 8: Investigative study of possibilities of the large-scale photovoltaic power generation using the unused land such as desert, a report making of the secondary survey was started. (NEDO)

  20. Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands

    International Nuclear Information System (INIS)

    Trapani, Kim; Millar, Dean L.

    2013-01-01

    Highlights: ► Significant cost and carbon savings for offshore PV integration. ► Maximum savings at circa 315 MW for thin film PV integration. ► Minimum generating capacity of turbines significant in cost of electricity. ► Part-load efficiencies of current system could hugely limit the integration of renewables. - Abstract: The islands of Malta are located in the Mediterranean basin enjoying 5.3 kW h/m 2 /day of solar insolation, at a latitude of 35°50N. Electricity generation for the islands is dependent upon imported fossil fuels for combustion. The available solar resource could be exploited to offset the current generation of electricity using solar photovoltaic technology (PV). Due to the limited land availability onshore, the offshore environment surrounding the Maltese islands were considered for the installation of PV floating on the sea surface. The output from such an installation would have to be integrated with the existing conventional electricity generation infrastructure, which currently relies on gas and steam turbine technology. To assess the feasibility of floating PV being integrated with the existing fossil plant, monthly trend consumption data for Malta were analysed. The change in gasoil and heavy fuel oil (HFO) consumption resulting from the part load efficiency variation and the displacement of electricity generation from the PVs were estimated. A cost analysis was prepared for the system integration analysis specifically accounting for the reduction in combustion of fossil fuels at the power station and the capital expenditures and operating costs due to the floating PV installation. Aside from the basic cost-benefit of a floating PV installation, CO 2 savings are also considered

  1. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  2. Optimal Placement and Sizing of PV-STATCOM in Power Systems Using Empirical Data and Adaptive Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Reza Sirjani

    2018-03-01

    Full Text Available Solar energy is a source of free, clean energy which avoids the destructive effects on the environment that have long been caused by power generation. Solar energy technology rivals fossil fuels, and its development has increased recently. Photovoltaic (PV solar farms can only produce active power during the day, while at night, they are completely idle. At the same time, though, active power should be supported by reactive power. Reactive power compensation in power systems improves power quality and stability. The use during the night of a PV solar farm inverter as a static synchronous compensator (or PV-STATCOM device has recently been proposed which can improve system performance and increase the utility of a PV solar farm. In this paper, a method for optimal PV-STATCOM placement and sizing is proposed using empirical data. Considering the objectives of power loss and cost minimization as well as voltage improvement, two sub-problems of placement and sizing, respectively, are solved by a power loss index and adaptive particle swarm optimization (APSO. Test results show that APSO not only performs better in finding optimal solutions but also converges faster compared with bee colony optimization (BCO and lightening search algorithm (LSA. Installation of a PV solar farm, STATCOM, and PV-STATCOM in a system are each evaluated in terms of efficiency and cost.

  3. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    Science.gov (United States)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  4. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  5. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    International Nuclear Information System (INIS)

    Chel, Arvind; Tiwari, G.N.

    2010-01-01

    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW P photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO 2 emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems.

  6. A High Performance PSO-Based Global MPP Tracker for a PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2015-07-01

    Full Text Available This paper aims to present an improved version of a typical particle swarm optimization (PSO algorithm, such that the global maximum power point (MPP on a P-V characteristic curve with multiple peaks can be located in an efficient and precise manner for a photovoltaic module array. A series of instrumental measurements are conducted on variously configured arrays built with SANYO HIP2717 PV modules, either unshaded, partially shaded, or malfunctioning, as the building blocks. There appear two, triple and quadruple peaks on the corresponding P-V characteristic curves. Subsequently, the tracking performance comparisons, made by some practical experiments, indicate the superiority of this improved MPP tracking algorithm over the typical one.

  7. On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory

    International Nuclear Information System (INIS)

    Jiang, Joe-Air; Su, Yu-Li; Shieh, Jyh-Cherng; Kuo, Kun-Chang; Lin, Tzu-Shiang; Lin, Ta-Te; Fang, Wei; Chou, Jui-Jen; Wang, Jen-Cheng

    2014-01-01

    Highlights: • Hybrid MPPT method was developed and utilized in a PV system of closed plant factory. • The tracking of the maximum power output of PV system can be achieved in real time. • Hybrid MPPT method not only decreases energy loss but increases power utilization. • The feasibility of applying PV system to the closed plant factory has been examined. • The PV system significantly reduced CO 2 emissions and curtailed the fossil fuels. - Abstract: Photovoltaic (PV) generation systems have been shown to have a promising role for use in high electric-load buildings, such as the closed plant factory which is dependent upon artificial lighting. The power generated by the PV systems can be either directly supplied to the buildings or fed back into the electrical grid to reduce the high economic costs and environmental impact associated with the traditional energy sources such as nuclear power and fossil fuels. However, PV systems usually suffer from low energy-conversion efficiency, and it is therefore necessary to improve their performance by tackling the energy loss issues. The maximum power point tracking (MPPT) control technique is essential to the PV-assisted generation systems in order to achieve the maximum power output in real time. In this study, we integrate the previously proposed direct-prediction MPP method with a perturbation and observation (P and O) method to develop a new hybrid MPPT method. The proposed MPPT method is further utilized in the PV inverters in a PV system installed on the roof of a closed plant factory at National Taiwan University. The tested PV system is constructed as a two-stage grid-connected photovoltaic power conditioning (PVPC) system with a boost-buck full bridge design configuration. A control scheme based on the hybrid MPPT method is also developed and implemented in the PV inverters of the PVPC system to achieve tracking of the maximum power output of the PV system in real time. Based on experimental results

  8. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra [Portland State Univ., Portland, OR (United States); Ingle, Aaron [Portland State Univ., Portland, OR (United States); Lutzenhiser, Loren [Portland State Univ., Portland, OR (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their ways of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.

  9. PSCAD Modules Representing PV Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  10. Probabilistic Forecasting of Photovoltaic Generation: An Efficient Statistical Approach

    DEFF Research Database (Denmark)

    Wan, Can; Lin, Jin; Song, Yonghua

    2017-01-01

    This letter proposes a novel efficient probabilistic forecasting approach to accurately quantify the variability and uncertainty of the power production from photovoltaic (PV) systems. Distinguished from most existing models, a linear programming based prediction interval construction model for P...... power generation is proposed based on extreme learning machine and quantile regression, featuring high reliability and computational efficiency. The proposed approach is validated through the numerical studies on PV data from Denmark.......This letter proposes a novel efficient probabilistic forecasting approach to accurately quantify the variability and uncertainty of the power production from photovoltaic (PV) systems. Distinguished from most existing models, a linear programming based prediction interval construction model for PV...

  11. PV Status Report 2009. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2009-08-01

    Photovoltaics is a key technology option to realise the shift to a decarbonised energy supply. The solar resources in Europe and world wide are abundant and cannot be monopolised by one country. Regardless for what reasons and how fast the oil price and energy prices increase in the future, Photovoltaics and other renewable energies are the only ones to offer a reduction of prices rather than an increase in the future. As a response to the economic crisis, most of the G20 countries have designed economic recovery packages which include 'green stimulus' measures. However, compared to the new Chinese Energy Revitalisation Plan under discussion, the pledged investments in green energy are marginal. If no changes are made, China which now strongly supports its renewable energy industry, will emerge even stronger after the current financial crisis. In 2008, the Photovoltaic industry production almost doubled and reached a world-wide production volume of 7.3 GWp of Photovoltaic modules. Yearly growth rates over the last decade were in average more than 40%, which makes Photovoltaics one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect lower prices for consumers. The trend that thin-film Photovoltaics grew faster than the overall PV market continued in 2008. The Eighth Edition of the 'PV Status Report' tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation.

  12. Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable

  13. Enhanced Particle Swarm Optimization-Based Feeder Reconfiguration Considering Uncertain Large Photovoltaic Powers and Demands

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-01-01

    Full Text Available The Kyoto protocol recommended that industrialized countries limit their green gas emissions in 2012 to 5.2% below 1990 levels. Photovoltaic (PV arrays provide clear and sustainable renewable energy to electric power systems. Solar PV arrays can be installed in distribution systems of rural and urban areas, as opposed to wind-turbine generators, which cause noise in surrounding environments. However, a large PV array (several MW may incur several operation problems, for example, low power quality and reverse power. This work presents a novel method to reconfigure the distribution feeders in order to prevent the injection of reverse power into a substation connected to the transmission level. Moreover, a two-stage algorithm is developed, in which the uncertain bus loads and PV powers are clustered by fuzzy-c-means to gain representative scenarios; optimal reconfiguration is then achieved by a novel mean-variance-based particle swarm optimization. The system loss is minimized while the operational constraints, including reverse power and voltage variation, are satisfied due to the optimal feeder reconfiguration. Simulation results obtained from a 70-bus distribution system with 4 large PV arrays validate the proposed method.

  14. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO{sub 2} on generation, and awareness of energy environmental concerns. (author)

  15. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    2014-01-01

    Full Text Available BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1 the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2 the electricity generation capacity is effective and stable during this seismic simulation test.

  16. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  17. PV Module Reliability Workshop | Photovoltaic Research | NREL

    Science.gov (United States)

    Gok, Cara Fagerholm, David M. Burns, Timothy J. Peshek, Laura S. Bruckman, Roger H. French Backsheet Chen, C. H. Hsueh, W. J. Hsieh Accurately Measuring PV Power Loss Due to Soiling-Michael Gostein and Walters, Stephen Barkaszi Tracking PV Changes: Bridging Between Thin-Film Cells and Modules-Russell

  18. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    Directory of Open Access Journals (Sweden)

    Markku Järvelä

    2017-07-01

    Full Text Available There is no natural inertia in a photovoltaic (PV generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive feed-in tariffs that ensure a certain price for the energy. On the other hand, electricity markets operate on a supply-demand principle and a typical imbalance settlement period is one hour. This paper presents the energy, power and corresponding requirements for an energy storage system in a solar PV power plant to feed the power to the grid meeting the electricity spot markets practices. An ideal PV energy production forecast is assumed to be available to define reference powers of the system for the studied imbalance settlement periods. The analysis is done for three different PV system sizes using the existing irradiance measurements of the Tampere University of Technology solar PV power station research plant.

  19. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    Science.gov (United States)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  20. Estimation of PV output power in moving and rocking hybrid energy marine ships

    International Nuclear Information System (INIS)

    Liu, Hongda; Zhang, Qing; Qi, Xiaoxia; Han, Yang; Lu, Fang

    2017-01-01

    Highlights: •A mathematical model for characterizing the ship PV output power is developed. •The impacts of the sea condition and ship type on the PV output power are analyzed. •The hybrid energy storage system is used to stabilize the PV fluctuation powers. •A SC configuration method based on maximum half period is applied. -- Abstract: In recent years, the application of solar energy and energy storage to ship power systems has shown promise as a method for both reducing annual carbon and nitrogen oxide emissions and improving ship energy efficiency in the maritime shipping industry. When a ship navigates at sea, it encounters a constant rocking motion that is affected by both the surrounding sea conditions and the ship’s navigation parameters. This motion increases the uncertainty involved in using solar energy and accelerates the aging of the ship’s energy storage battery to some extent. In this study, a universal mathematical model is established for the power generation by photovoltaic (PV) modules in which both the sea conditions and the ship’s integrated motion, including its basic movement along with the motion caused by rocking, are taken into account. Based on this model, the fluctuation characteristics of a ship’s PV output power are studied and determined using three different simulation scenarios. A binary energy storage scheme based on a decoupled PV output power is proposed in order to both stabilize the small-period PV power fluctuations and slow the aging of the actual battery caused by rocking. In addition, a super-capacitor (SC) configuration is constructed based on a maximum half cycle. Finally, the optimal energy storage capacities for this green ship are compared under both rocking and moving motion. In the case of rocking motion, the SCs are able to achieve an approximately 24.8–35.0% reduction in battery replacement. A shipping route between Shanghai, China and Sydney, Australia is considered to validate the practicality

  1. Thermal Performance and Reliability Analysis of Single-Phase PV Inverters with Reactive Power Injection Outside Feed-In Operating Hours

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    Reactive power support by photovoltaic (PV) systems is of increasingly interest, when compared to the conventional reactive power compensation devices. PV inverters can exchange reactive power with the utility grid in a decentralized manner even outside feed-in operation, especially at nights when...... there is no solar irradiance. However, reactive power injection causes additional power losses in the switching components leading to a temperature rise in the devices. Thus, this paper analyses the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance...... of their power switching components. A thermal analysis based on the mission profile (i.e., solar irradiance and ambient temperature) has been incorporated, so as to determine the additional temperature rise in the components induced by the operation outside feed-in hours. An analytical lifetime model has been...

  2. Models for a stand-alone PV system[Photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Hansen, L.H.; Bindner, H.

    2000-12-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risoe National Laboratory. The work has been supported by the Danish Ministry of Energy, as a part of the activities in the Solar Energy Centre Denmark. The study is carried out at Risoe National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery, controller, inverter and load. The models for PV module and battery are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model (KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program that provides a graphical interface for building models as modular block diagrams. The non-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements. The performance of the best linear Black box model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risoe. (au)

  3. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  4. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    Science.gov (United States)

    Cen, Zhaohui

    2017-09-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  5. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    Directory of Open Access Journals (Sweden)

    Cen Zhaohui

    2017-09-01

    Full Text Available Gird-connected Photo-Voltaic (PV systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  6. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  7. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  8. Isolated high-efficiency DC/DC converter for photovoltaic applications

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Wijnands, C.G.E.; Duarte, J.L.

    2012-01-01

    While an increasing number of photovoltaic (PV) systems is installed, those systems typically use central inverters. In practical cases, output-power differences between PV modules will cause these central-inverter-based systems not to achieve Maximum Power Point (MPP) for each PV module.

  9. A New Controller to Enhance PV System Performance Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Roshdy A AbdelRassoul

    2017-06-01

    Full Text Available In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.

  10. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  11. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  12. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  13. Error Assessment of Solar Irradiance Forecasts and AC Power from Energy Conversion Model in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Gianfranco Chicco

    2015-12-01

    Full Text Available Availability of effective estimation of the power profiles of photovoltaic systems is essential for studying how to increase the share of intermittent renewable sources in the electricity mix of many countries. For this purpose, weather forecasts, together with historical data of the meteorological quantities, provide fundamental information. The weak point of the forecasts depends on variable sky conditions, when the clouds successively cover and uncover the solar disc. This causes remarkable positive and negative variations in the irradiance pattern measured at the photovoltaic (PV site location. This paper starts from 1 to 3 days-ahead solar irradiance forecasts available during one year, with a few points for each day. These forecasts are interpolated to obtain more irradiance estimations per day. The estimated irradiance data are used to classify the sky conditions into clear, variable or cloudy. The results are compared with the outcomes of the same classification carried out with the irradiance measured in meteorological stations at two real PV sites. The occurrence of irradiance spikes in “broken cloud” conditions is identified and discussed. From the measured irradiance, the Alternating Current (AC power injected into the grid at two PV sites is estimated by using a PV energy conversion model. The AC power errors resulting from the PV model with respect to on-site AC power measurements are shown and discussed.

  14. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  15. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ...... in different grid codes are first investigated. On this basis, the future advocacy is concluded. Finally, several evaluation indices are proposed to quantify the grid code compliance so that the system operators can validate all these requirements by simulation....

  16. Three-Phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2017-01-01

    Photovoltaic (PV) technology has experienced an unprecedented growth in the last two decades, transforming from mainly an off-grid niche generation to a major renewable energy technology, reaching approximately 227 GW of capacity worldwide at the end of 2015 with a predicted extra 50 GW of new...... a hardware point of view, detailing the different PV inverter structures and topologies and discussing the different control layers within a grid-connected PV plant. Modulation schemes for various PV inverter topologies, grid synchronization, current control, active and reactive power control, maximum power...

  17. Overview of design issues in product-integrated Photovoltaics

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, Angelina H.M.E.

    2014-01-01

    This paper presents an overview of the design features and characteristics of photovoltaic (PV)-powered products based on a literature study on product-integrated PV and an analysis of 90 PV-powered products executed during 2011–2013. The aim of this paper is to provide insight into the current

  18. Impact of Rural Grid-Connected Photovoltaic Generation Systems on Power Quality

    Directory of Open Access Journals (Sweden)

    Rita Pinto

    2016-09-01

    Full Text Available Photovoltaic (PV generation systems have been increasingly used to generate electricity from renewable sources, attracting a growing interest. Recently, grid connected PV micro-generation facilities in individual homes have increased due to governmental policies as well as greater attention by industry. As low voltage (LV distribution systems were built to make energy flow in one direction, the power feed-in of PV generation in rural low-voltage grids can influence power quality (PQ as well as facility operation and reliability. This paper presents results on PQ analysis of a real PV generation facility connected to a rural low-voltage grid. Voltage fluctuations and voltage harmonic contents were observed. Statistical analysis shows a negative impact on PQ produced by this PV facility and also that only a small fraction of the energy available during a sunny day is converted, provoking losses of revenue and forcing the converter to work in an undesirable operating mode. We discuss the disturbances imposed upon the grid and their outcome regarding technical and economic viability of the PV system, as well as possible solutions. A low-voltage grid strengthening has been suggested and implemented. After that a new PQ analysis shows an improvement in the impact upon PQ, making this facility economically viable.

  19. Controllable Photovoltaic Grid Power Injection with an Assistance of Energy Storage System

    DEFF Research Database (Denmark)

    Morvaj, Boran; Dragicevic, Tomislav; Krajcar, Slavko

    2013-01-01

    This paper focuses on modeling and simulation of controllable Photovoltaic Battery Power System (PV BPS) interconnected to the electrical utility. After elaboration of modeling principles for different components appearing in the system, simulations of two types of PV plants connected to one branch...... of distribution network have been carried out. First one is connected through a three-phase inverter with battery string connected to a DC-link and the second string is connected to the grid in single phase configuration. In this proposed configuration unpredictable variations of irradiation and temperature...

  20. Photovoltaic conference on system services

    International Nuclear Information System (INIS)

    Burges, Karsten; Freier, Karin; Vincent, Jeremy; Montigny, Marie; Engel, Bernd; Konstanciak, Wilhelm; Makdessi, Georges; Acres, Adrien; Schlaaff, Torsten; Defaix, Christophe

    2015-01-01

    The French-German office for Renewable energies (OFAEnR) organised a photovoltaic conference on system services and photovoltaic facilities. In the framework of this French-German exchange of experience, about 100 participants have analysed and discussed the regulatory, technical and economical context of system services, their evolution and implementation in the framework of an accelerated development of photovoltaic conversion in both countries. This document brings together the available presentations (slides) made during this event: 1 - Technical Introduction to system services: principles, actors and perspectives (Karsten Burges); 2 - Legal guidelines of EEG (Renewable energy Sources Act) and the System Stability Ordinance as well as future measures for PV grid integration (Karin Freier); 3 - evolution of ancillary services regulation; opening the possibility for new market players to participate in maintaining the system stability (Jeremy Vincent, Marie Montigny); 4 - Paradigm shift for ancillary services: PV as a new stakeholder (Bernd Engel); 5 - Challenges of RES integration (Wilhelm Konstanciak 6 - System services supplied by PV inverters, solutions for frequency and active/reactive power control at the injection point (Georges Makdessi); 7 - Grid disturbance abatement and voltage stability control by monitoring local scale PV production (Adrien Acres); 8 - Flexibly Adaptable Power Plant Controller - The Answer to Various Grid Requirements (Torsten Schlaaff); 9 - ENR-pool project: What kind of business model for ancillary services by PV power plants? (Christophe Defaix)

  1. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  2. Adoption of photovoltaic power supply systems: A study of key determinants in India

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Raja [Department of Management and Enterprise Development, Massey University, Private Box 756, Wellington (New Zealand); Dickie, Laurence [Teaching and Learning, Research, CBS - International Programs, Curtin Business School, Curtin University of Technology, Western Australia (Australia); Peter, Vasanthi M. [Whitireia Polytechnic, Wellington (New Zealand)

    2006-11-15

    This paper examines the key determinants that foster the adoption of photovoltaic (PV) power supply systems. The authors provide empirical evidence which suggest that 'government initiatives' and institutional 'finance' are important influencers of the decision to adopt PV power supply systems in developing countries. In order to diffuse PV technology it is also necessary to provide decision-makers with opportunities for direct and vicarious experience of PV systems through 'demonstration sites'. These factors have been ignored in earlier models of the innovation-decision process formulated by Rogers and the new innovation-decision framework proposed by Kaplan. Governments need to play a leadership role, and this coupled with the availability of Finance and Demonstration Sites will result in an increased interest leading to the adoption of PV technology in India. This research has led to the identification of variables such as the government initiatives, demonstration sites and finance, which are critical to the adoption of PV systems in developing countries like India. The research provided empirical evidence that is currently lacking in the area of adoption of PV technology in developing countries. (author)

  3. Effect of wind speed on performance of a solar-pv array

    Science.gov (United States)

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  4. Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications

    OpenAIRE

    James Dunia; Bakari M. M. Mwinyiwiwa

    2013-01-01

    Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converter...

  5. Photovoltaic projects for decentralized power supply in India: A financial evaluation

    International Nuclear Information System (INIS)

    Nouni, M.R.; Mullick, S.C.; Kandpal, T.C.

    2006-01-01

    The present study concentrates on photovoltaic (PV) projects for providing decentralized power supply in remote locations in India. Results of a techno-economic evaluation are presented. Some PV projects in the capacity range 1-110 kW p , that have either been implemented or are under implementation, have been considered. An analysis of the capital cost of the PV projects and sub-systems has been undertaken. Levelized unit cost of electricity (LUCE) has been estimated for eighteen select locations situated in different geographical regions of the country. The LUCE is found to vary in the range of Rs. 28.31-59.16/kW h (US$ 0.65-1.35/k Wh) for PV projects in the capacity range 1-25 kW p . In view of high unit cost of electricity from PV projects, need for financial incentives has been examined from the perspective of users. A sensitivity analysis has also been undertaken

  6. Photovoltaic projects for decentralized power supply in India: A financial evaluation

    International Nuclear Information System (INIS)

    Nouni, M.R.; Mullick, S.C.; Kandpal, T.C.

    2006-01-01

    The present study concentrates on photovoltaic (PV) projects for providing decentralized power supply in remote locations in India. Results of a techno-economic evaluation are presented. Some PV projects in the capacity range 1-110 kW p , that have either been implemented or are under implementation, have been considered. An analysis of the capital cost of the PV projects and sub-systems has been undertaken. Levelized unit cost of electricity (LUCE) has been estimated for eighteen select locations situated in different geographical regions of the country. The LUCE is found to vary in the range of Rs. 28.31-59.16/kW h (US$ 0.65-1.35/k Wh) for PV projects in the capacity range 1-25 kW p . In view of high unit cost of electricity from PV projects, need for financial incentives has been examined from the perspective of users. A sensitivity analysis has also been undertaken. (Author)

  7. Luminescent solar concentrators with a bottom-mounted photovoltaic cell: performance optimization and power gain analysis

    Institute of Scientific and Technical Information of China (English)

    Ningning Zhang; Yi Zhang; Jun Bao; Feng Zhang; Sen Yan; Song Sun; Chen Gao

    2017-01-01

    Polymethyl methacrylate (PMMA) plate luminescent solar concentrators with a bottom-mounted (BM-LSCs) photovoltaic (PV) cell are fabricated by using a mixture of Lumogen Red 305 and Yellow 083 fluorescent dyes and a commercial monocrystalline silicon cell.The fabricated LSC with dye concentrations of 40 ppm has the highest power gain of 1.50,which is the highest value reported for the dye-doped PMMA plate LSCs.The power gain of the LSC comes from three parts:the waveguide light,the transmitted light,and the reflected light from a white reflector,and their contributions are analyzed quantitatively.The results suggest that the BM-LSCs have great potential for future low-cost PV devices in building integrated PV applications.

  8. A Consensus-Based Cooperative Control of PEV Battery and PV Active Power Curtailment for Voltage Regulation in Distribution Networks

    DEFF Research Database (Denmark)

    Zeraati, Mehdi; Golshan, Mohamad Esmail Hamedani; Guerrero, Josep M.

    2018-01-01

    The rapid growth of rooftop photovoltaic (PV) arrays installed in residential houses leads to serious voltage quality problems in low voltage distribution networks (LVDNs). In this paper, a combined method using the battery energy management of plug-in electric vehicles (PEVs) and the active power....... The effectiveness of the proposed control scheme is investigated on a typical three-phase four-wire LVDN in presence of PV resources and PEVs....

  9. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2017-01-01

    production of PV sources, despite the stochastically varying solar irradiation and ambient temperature conditions. Thereby, the overall efficiency of the PV energy production system is increased. Numerous techniques have been presented during the last decades for implementing the MPPT process in a PV system......A substantial growth of the installed photovoltaic (PV) systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking (MPPT) technique enables to maximize the energy....... This chapter provides an overview of the operating principles of these techniques, which are suited for either uniform or nonuniform solar irradiation conditions. The operational characteristics and implementation requirements of these MPPT methods are also analyzed in order to demonstrate their performance...

  10. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  11. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    International Nuclear Information System (INIS)

    Minyard, G.

    1998-01-01

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redisgn of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products

  12. Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module

    International Nuclear Information System (INIS)

    Docimo, D.J.; Ghanaatpishe, M.; Mamun, A.

    2017-01-01

    This paper develops an algorithm for estimating photovoltaic (PV) module temperature and effective irradiation level. The power output of a PV system depends directly on both of these states. Estimating the temperature and irradiation allows for improved state-based control methods while eliminating the need of additional sensors. Thermal models and irradiation estimators have been developed in the literature, but none incorporate feedback for estimation. This paper outlines an Extended Kalman Filter for temperature and irradiation estimation. These estimates are, in turn, used within a novel state-based controller that tracks the maximum power point of the PV system. Simulation results indicate this state-based controller provides up to an 8.5% increase in energy produced per day as compared to an impedance matching controller. A sensitivity analysis is provided to examine the impact state estimate errors have on the ability to find the optimal operating point of the PV system. - Highlights: • Developed a temperature and irradiation estimator for photovoltaic systems. • Designed an Extended Kalman Filter to handle model and measurement uncertainty. • Developed a state-based controller for maximum power point tracking (MPPT). • Validated combined estimator/controller algorithm for different weather conditions. • Algorithm increases energy captured up to 8.5% over traditional MPPT algorithms.

  13. A Comparative case study of remote area power supply systems using photovoltaic-battery vs thermoelectric-battery configuration

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Zhang, Bingjie; Singh, Baljit; Ganguly, Sayantan

    The paper presents a comparative study of two types of remote area power supply (RAPS) systems, which are the existing photovoltaic-based (PV) configuration and the proposed thermoelectric-based (TE) configuration. Both RAPS systems are solar-based power generators and sized according to Melbourne

  14. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    Science.gov (United States)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  15. A strategic research agenda for photovoltaic solar energy technology : report of the EU PV technology platform

    NARCIS (Netherlands)

    Sinke, W.C.; Zolingen, van R.J.C.; Ballif, C.; Bett, A.; Dimmler, B.; Dimova-Malinovska, D.; Fath, P.; Ferrazza, F.; Gabler, H.-J.; Hall, M.; Marti, A.; Mason, N.; Mellikov, E.; Milner, A.; Mogensen, P.; Panhuber, C.; Pearsall, N.; Poortmans, J.; Protogeropoulos, C.; Sarre, G.; Sarti, D.; Strauss, P.; Topic, M.; Zdanowicz, T.

    2007-01-01

    The EU PV Technology Platform [1] aims at joining forces on a European level to contribute to the further development of photovoltaic solar energy into a competitive technology that can be applied on a large scale and to the strengthening of the position of the European PV industry on the global

  16. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  17. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  18. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. PV for rural electrification in developing countries - Programme design, planning and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W. [Institute for Sustainable Power, Highlands Ranch, CO (United States); Oldach, R.; Wilshaw, A. [IT Power Ltd, The Manor house, Chineham (United Kingdom)

    2003-09-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the design, planning and implementation of PV programmes. The guide contains details on the preparation for PV programmes, including the assessment of needs, stakeholder consultation, social context analysis, supply options and national policy considerations. The establishment of goals, delivery modes, timelines, logistics and quality assurance are discussed. Further, the implementation, monitoring and evaluation of PV programmes is discussed, as are a number of methodologies that have been developed with the aim of improving programme design and implementation. The guide highlights issues pertinent to rural energy programmes in developing countries and leads programme administrators through the process of planning, implementing and evaluating a PV programme.

  19. Optimal stochastic management of renewable MG (micro-grids) considering electro-thermal model of PV (photovoltaic)

    International Nuclear Information System (INIS)

    Najibi, Fatemeh; Niknam, Taher; Kavousi-Fard, Abdollah

    2016-01-01

    This paper aims to report the results of the research conducted to one thermal and electrical model for photovoltaic. Moreover, one probabilistic framework is introduced for considering all uncertainties in the optimal energy management of Micro-Grid problem. It should be noted that one typical Micro-Grid is being studied as a case, including different renewable energy sources, such as Photovoltaic, Micro Turbine, Wind Turbine, and one battery as a storage device for storing energy. The uncertainties of market price variation, photovoltaic and wind turbine output power change and load demand error are covered by the suggested probabilistic framework. The Micro-Grid problem is of nonlinear nature because of the stochastic behavior of the renewable energy sources such as Photovoltaic and Wind Turbine units, and hence there is need for a powerful tool to solve the problem. Therefore, in addition to the simulated thermal model and suggested probabilistic framework, a new algorithm is also introduced. The Backtracking Search Optimization Algorithm is described as a useful method to optimize the MG (micro-grids) problem. This algorithm has the benefit of escaping from the local optima while converging fast, too. The proposed algorithm is also tested on the typical Micro-Grid. - Highlights: • Proposing an electro-thermal model for PV. • Proposing a new stochastic formulation for optimal operation of renewable MGs. • Introduction of a new optimization method based on BSO to explore the problem search space.

  20. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  1. Index-Based Assessment of Voltage Rise and Reverse Power Flow Phenomena in a Distribution Feeder Under High PV Penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios G.; Salehi, Vahid

    2015-01-01

    -based methodology for assessing the impact of high solar PV generation, considering the reverse power flow and voltage rise phenomena. Indices are defined that link these two phenomena and their impact on the voltage profile across the feeder. This assessment relies on detailed modeling of the network and the solar......The proliferation of photovoltaic (PV) generation in low- and medium-voltage distribution networks is expected to continue. Qualified studies can quantify adverse impacts of high PV penetration on distribution networks and assist utilities in decision making. This paper proposes an index...

  2. Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes

    International Nuclear Information System (INIS)

    Peng, Jinqing; Lu, Lin; Yang, Hongxing; Ma, Tao

    2015-01-01

    Highlights: • A ventilated photovoltaic double-skin façade (PV-DSF) using semi-transparent a-Si was reported. • The impact of different ventilation modes on the power performance of PV-DSF was studied experimentally. • The SHGCs and U-values of PV-DSFs under different ventilation modes were calculated and compared. • An optimum operating strategy was proposed for this PV-DSF to achieve the best energy efficiency. - Abstract: This paper studied the thermal and power performances of a ventilated photovoltaic façade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin façade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum

  3. Modeling the frequency response of photovoltaic inverters

    NARCIS (Netherlands)

    Ernauli Christine Aprilia, A.; Cuk, V.; Cobben, J.F.G.; Ribeiro, P.F.; Kling, W.L.

    2012-01-01

    The increased presence of photovoltaic (PV) systems inevitably affects the power quality in the grid. This new reality demands grid power quality studies involving PV inverters. This paper proposes several frequency response models in the form of equivalent circuits. Models are based on laboratory

  4. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  5. Control scheme towards enhancing power quality and operational efficiency of single-phase two-stage grid-connected photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Salem

    2015-12-01

    Full Text Available Achieving high reliable grid-connected photovoltaic (PV systems with high power quality and high operation efficiency is highly required for distributed generation units. A double grid-frequency voltage ripple is found on the dc-link voltage in single-phase photovoltaic grid-connected systems due to the unbalance of the instantaneous dc input and ac output powers. This voltage ripple has undesirable effects on the power quality and operational efficiency of the whole system. Harmonic distortion in the injected current to the grid is one of the problems caused by this double grid-frequency voltage ripple. The double grid frequency ripple propagates to the PV voltage and current which disturb the extracted maximum power from the PV array. This paper introduces intelligent solutions towards mitigate the side effects of the double grid-frequency voltage ripple on the transferred power quality and the operational efficiency of single-phase two-stage grid-connected PV system. The proposed system has three control loops: MPPT control loop, dc-link voltage control loop and inverter current control loop. Solutions are introduced for all the three control loops in the system. The current controller cancels the dc-link voltage effect on the total harmonic distortion of the output current. The dc-link voltage controller is designed to generate a ripple free reference current signal that leads to enhance the quality of the output power. Also a modified MPPT controller is proposed to optimize the extracted power from the PV array. Simulation results show that higher injected power quality is achieved and higher efficiency of the overall system is realized.

  6. Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Irwanto, M.; Leow, W. Z.; Amelia, A. R.

    2017-09-01

    A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.

  7. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  8. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  9. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    OpenAIRE

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics converters. In order to achieve a reliable and efficient power generation from PV systems, stringent demands have been imposed on the entire PV system. It in return advances the development of powe...

  10. Autonomous Active Power Control for Islanded AC Microgrids with Photovoltaic Generation and Energy Storage System

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Dragicevic, Tomislav

    2014-01-01

    In an islanded AC microgrid with distributed energy storage system (ESS), photovoltaic (PV) generation and loads, a coordinated active power regulation is required to ensure efficient utilization of renewable energy, while keeping the ESS from overcharge and over discharge conditions. In this paper...

  11. Advances in integration of photovoltaic power and energy production in practical systems

    Science.gov (United States)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  12. Power Prediction and Technoeconomic Analysis of a Solar PV Power Plant by MLP-ABC and COMFAR III, considering Cloudy Weather Conditions

    Directory of Open Access Journals (Sweden)

    M. Khademi

    2016-01-01

    Full Text Available The prediction of power generated by photovoltaic (PV panels in different climates is of great importance. The aim of this paper is to predict the output power of a 3.2 kW PV power plant using the MLP-ABC (multilayer perceptron-artificial bee colony algorithm. Experimental data (ambient temperature, solar radiation, and relative humidity was gathered at five-minute intervals from Tehran University’s PV Power Plant from September 22nd, 2012, to January 14th, 2013. Following data validation, 10665 data sets, equivalent to 35 days, were used in the analysis. The output power was predicted using the MLP-ABC algorithm with the mean absolute percentage error (MAPE, the mean bias error (MBE, and correlation coefficient (R2, of 3.7, 3.1, and 94.7%, respectively. The optimized configuration of the network consisted of two hidden layers. The first layer had four neurons and the second had two neurons. A detailed economic analysis is also presented for sunny and cloudy weather conditions using COMFAR III software. A detailed cost analysis indicated that the total investment’s payback period would be 3.83 years in sunny periods and 4.08 years in cloudy periods. The results showed that the solar PV power plant is feasible from an economic point of view in both cloudy and sunny weather conditions.

  13. Artificial Neural Networks to Predict the Power Output of a PV Panel

    Directory of Open Access Journals (Sweden)

    Valerio Lo Brano

    2014-01-01

    Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.

  14. Performance Evaluation of Photovoltaic Solar System with Different Cooling Methods and a Bi-Reflector PV System (BRPVS: An Experimental Study and Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Khan

    2017-06-01

    Full Text Available Reducing the price of solar photovoltaic (PV systems has been a constant challenge. Despite recent advances, solar PV systems are still more costly than conventional energy resources. For the first time, this study examines the effectiveness of three different structures/materials: (i silvered glass plane mirror; (ii convex spherical mirrors; and (iii aluminum (Al foil as reflector. Comparative analysis of four different cooling techniques, i.e., water sprinkling system, passive heat sink method, active air fan method, and closed loop method, for enhancement of output power was performed. A novel Bi reflector solar PV system (BRPVS was suggested to control the working of the reflectors. The Al foil enhanced the power output compared to the others. In addition, the effect of using a reflector on the temperature of a solar PV system was studied. High operating temperatures resulted in a decrease in the maximum output power under the same solar radiation conditions. The combined enhancement of the output power by both Al foil BRPVS system and cooling system was almost 22.75–38.55%. An optimal control algorithm to use cooling and BRPVS in an efficient manner is described.

  15. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  16. Valence of wind power, photovoltaic and peak-load power plants as a part of the entire electricity system

    International Nuclear Information System (INIS)

    Schüppel, A.

    2014-01-01

    The transition to a higher share of renewable energy sources in the electricity sector leads to a multitude of challenges for the current electricity system. Within this thesis, the development of wind power and photovoltaics generation capacities in Germany is analysed based on the evaluation of technical and economic criteria. In order to derive those criteria, different scenarios with a separated and combined increase of wind and photovoltaics capacity are simulated using the model ATLANTIS. The results are compared to a reference scenario without additional wind and PV capacities. Furthermore, the value and functionality of the energy only market based on economic methods, as well as the value of peak load power plants based on opportunity costs are determined. The results of this thesis show, that the current market system is able to gain an additional annual welfare of four to six billion Euro at the best. This result shows that the task of optimising the power plant dispatch is well fulfilled by the current market design. However, the effects, e.g. fuel costs, which may influence this margin. The value of wind power and photovoltaics within the overall electricity system can be derived from the effort which is necessary to integrate these generation technologies into the existing system, and the changes in total costs of electricity generation. Based on the evaluation of time dependencies (seasonality of energy yield from wind and PV) as well as the development of total generation costs, the conclusion can be drawn that wind power is the more suitable RES generation technology for Germany. However, when it comes to grid integration measures, PV shows better results due to a higher generation potential in Southern Germany, which leads to a higher degree of utilisation. Therefore, there is no need to transport electricity from Northern to Southern Germany as it is the case with wind power. A common expansion of wind power and photovoltaics even shows slight

  17. Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Guerrero, Josep M.; Oraee, Hashem

    2016-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method takes into account the available PV power...... and battery conditions of the units to share the load among them and power flow among different phases is performed automatically through three-phase units. Modified active power-frequency droop functions are used according to operating states of each unit and the frequency level is used as trigger...... for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  18. Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2013-01-01

    years) has been set as a main target and an emerging demand from the customers, which imposes a new challenge on grid-connected transformerless inverters. In order to reduce maintenance cost, it is essential to predict the lifetime of the transformerless PV inverter and its components based......The popularity of transformerless photovoltaic (PV) inverters in Europe proves that these topologies can achieve higher efficiency (e.g., ≥ 98% has been reported). Along with the advanced power electronics technology and the booming development of PV power systems, a long service time (e.g. 25...... on the mission profiles — solar irradiance and ambient temperature. In this paper, a mission profile based analysis approach is proposed and it is demonstrated by three main single-phase transformerless PV inverters — Full-Bridge (FB) with bipolar modulation scheme, the FB inverter with DC bypass (FB...

  19. Comparison of a three-phase single-stage PV system in PSCAD and PowerFactory

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Afshin; Eriksson, Robert; Della, Jose; Mahmood, Farhan; Ghandhari, Mehrdad; Soeder, Lennart [KTH Royal Institute of Technology, Stockholm (Sweden). Dept. of Electric Power Systems

    2012-07-01

    Accommodating more and more distributed PhotoVoltaic (PV) systems within load pockets has changed the shape of distribution grids. It is not, therefore, accurate anymore to address distribution grids just only as a lumped load. So it will be crucial in the near future to have an aggregate model of PV systems in distribution grids. By doing so, it is important to develop models for PV systems in different simulation platforms to study their behavior in order to derive an aggregate model of them. Although, there have been several detailed-switching model of a PV system in EMTDC/PSCAD simulation platform in literature, these non-proprietary switching models are slow in simulation, particularly when the number of the PV systems increases on the grounds that in PSCAD the simulation is based on time domain instantaneous values and requires more mathematical details of components. Therefore, in this paper a model of the PV system in DIgSILENT/Power Factory is developed, which is a proper environment to run rms simulation and works based on the phasors, and, moreover, from mathematical perspective is more simplified. The performance of the stemming model is compared with the switching model in PSCAD. Comparing the simulation results of the proposed model in PowerFactory with the model in PSCAD shows the credibility and accuracy of the proposed model. (orig.)

  20. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations

    International Nuclear Information System (INIS)

    Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E.

    2013-01-01

    Highlights: ► Life cycle was assessed for both concentrated solar power and photovoltaic systems. ► The PV plant has a higher environmental impact than the CSP plant. ► The Global Warming Potential is lower for the CSP than for the PV plant. ► The energy payback time is lower for the CSP than for the PV plant. -- Abstract: Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500 °C) and high temperatures (about 1000 °C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: •to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; •to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of

  1. Photovoltaic sources modeling

    CERN Document Server

    Petrone, Giovanni; Spagnuolo, Giovanni

    2016-01-01

    This comprehensive guide surveys all available models for simulating a photovoltaic (PV) generator at different levels of granularity, from cell to system level, in uniform as well as in mismatched conditions. Providing a thorough comparison among the models, engineers have all the elements needed to choose the right PV array model for specific applications or environmental conditions matched with the model of the electronic circuit used to maximize the PV power production.

  2. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    This report presents a description of the status of photovoltaic (PV) power systems in the 20 participating countries of the IEA Photovoltaic Power Systems Programme. A survey of the status of PV power systems applications and markets in each country has been conducted every two years for the past six years and biennial reports published. The decision has now been taken to move to shorter annual reports and this is the first such report. This report presents an overview of PV power systems applications and markets at the end of 1998 and analyses the trends in PV power systems implemented between 1992 and 1998. (author)

  3. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 1998

    International Nuclear Information System (INIS)

    1999-10-01

    This report presents a description of the status of photovoltaic (PV) power systems in the 20 participating countries of the IEA Photovoltaic Power Systems Programme. A survey of the status of PV power systems applications and markets in each country has been conducted every two years for the past six years and biennial reports published. The decision has now been taken to move to shorter annual reports and this is the first such report. This report presents an overview of PV power systems applications and markets at the end of 1998 and analyses the trends in PV power systems implemented between 1992 and 1998. (author)

  4. Voltage variation due to solar photovoltaic in distribution network

    International Nuclear Information System (INIS)

    Azad, H I; Ramachandaramurthy, V K; Maleki, Hesamaldin

    2013-01-01

    Grid integration of solar photovoltaic (PV) plant offers reduction in greenhouse emissions and independence from fossil fuels for power generation. The integration of such forms of power generation also brings with it a variety of policy and technical issues. One of the technical issues is the variation in grid voltages in the presence of solar photovoltaic (PV) plant, resulting in degradation of power quality. In this paper, the application of a dq current controller to limit the voltage variation at the point of common coupling (PCC) due to a 2 MW solar photovoltaic (PV) plant will be discussed. The controller's goal is to ensure that the voltage variation meets the momentary voltage change limits specified in TNB's Technical Guidebook for the connection of distributed generation. The proposed dq current controller is shown to be able to limit the voltage variation.

  5. Isolated high-efficiency grid-connected de-central inverter for photovoltaic modules

    NARCIS (Netherlands)

    Vermulst, B.J.D.

    2012-01-01

    While an increasing number of photovoltaic (PV) systems is installed, those systems typically use central inverters. In practical cases, output-power differences between PV modules will cause these central-inverter-based systems not to achieve Maximum Power Point (MPP) for each PV module.

  6. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    Science.gov (United States)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  7. Quantification, challenges and outlook of PV integration in the power system: a review by the European PV Technology Platform

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo

    2015-01-01

    Integration in the power system has become a limiting factor to the further development of photovoltaics. Proper quantification is needed to evaluate both issues and solutions; the share of annual electricity demand is widely used but we found that some of the metrics which are related to power...... rather than energy better reflect the impact on networks. Barriers to wider deployment of PV into power grids can be split between local technical issues (voltage levels, harmonics distortion, reverse power flows and transformer loading) and system-wide issues (intermittency, reduction of system...... resilience). Many of the technical solutions to these issues rely on the inverters as actuators (e.g., for control of active and reactive power) or as interfaces (e.g., for local storage). This role requires further technical standardisation and needs to be taken into account in the planning of power...

  8. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-12-01

    Full Text Available Accurate solar photovoltaic (PV power forecasting is an essential tool for mitigating the negative effects caused by the uncertainty of PV output power in systems with high penetration levels of solar PV generation. Weather classification based modeling is an effective way to increase the accuracy of day-ahead short-term (DAST solar PV power forecasting because PV output power is strongly dependent on the specific weather conditions in a given time period. However, the accuracy of daily weather classification relies on both the applied classifiers and the training data. This paper aims to reveal how these two factors impact the classification performance and to delineate the relation between classification accuracy and sample dataset scale. Two commonly used classification methods, K-nearest neighbors (KNN and support vector machines (SVM are applied to classify the daily local weather types for DAST solar PV power forecasting using the operation data from a grid-connected PV plant in Hohhot, Inner Mongolia, China. We assessed the performance of SVM and KNN approaches, and then investigated the influences of sample scale, the number of categories, and the data distribution in different categories on the daily weather classification results. The simulation results illustrate that SVM performs well with small sample scale, while KNN is more sensitive to the length of the training dataset and can achieve higher accuracy than SVM with sufficient samples.

  9. Public Willingness to Pay for Increasing Photovoltaic Power Generation: The Case of Korea

    Directory of Open Access Journals (Sweden)

    Min-Kyu Lee

    2018-04-01

    Full Text Available Renewable energy receives particular attention in Korea because of concerns about climate change and scarce traditional energy resources. The government plans to enhance photovoltaic (PV power’s share of total power generation from 0.5% in 2014 to 10.1% in 2029. The present study tries to look into the public willingness to pay (WTP for increasing PV power generation, applying the contingent valuation approach. A survey of 1000 interviewees was carried out in Korea. The observations of the WTP responses were gathered using a dichotomous choice question and analyzed employing the mixture model. The mean household WTP estimate is obtained as KRW 2183 (USD 1.9 per month, which possesses statistical significance. The total yearly WTP expanded to the population is worth KRW 476.9 billion (USD 423.1 million. These values can provide a useful basis for policy-making and decision-making about the economic feasibility of increasing PV power generation.

  10. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2014-01-01

    An increasing amount of single-phase photovoltaic (PV) systems on the distribution network requires more advanced synchronization methods in order to meet the grid codes with respect to power quality and fault ride through capability. The response of the synchronization technique selected...... is crucial for the performance of PV inverters. In this paper, a new synchronization method with good dynamics and accurate response under highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which cancels out the oscillations on the synchronization signals due...

  11. Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power

    Science.gov (United States)

    Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison

    2018-04-01

    Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.

  12. Consumer loss in Czech photovoltaic power plants in 2010–2011

    International Nuclear Information System (INIS)

    Průša, Jan; Klimešova, Andrea; Janda, Karel

    2013-01-01

    This paper provides a financial survey of a small sample of Czech photovoltaic (PV) plants. To evaluate the extent of market losses, we calculate the shadow market price of solar electricity. From the profit and loss accounts of the PV plants and the shadow market price we estimate the total economic loss generated by PV electricity sector in the Czech Republic. The presented microeconomic approach has two main advantages: firstly, we work with real observed data, which offsets the drawback of a limited sample. Secondly, the profit accounting calculation enables sensitivity analysis with respect to key variables of the plants. We show that money invested in PV plants would generate an annual loss of 8%. Given the estimated solar assets of CZK 165.6 billion (EUR 6.6 billion) as of December 2011, this translates in at least CZK 12.6 billion lost in the Czech solar sector in 2012. About 43% of this loss is due to high technology costs and corresponds to pure dead weight loss, while the remaining 57% constitute the redistributive profit component of subsidies. Finally, we calculate that unless electricity prices increase or technology costs decrease approximately sevenfold, PV plants will remain loss making. - Highlights: • We calculate economic losses generated by Czech photovoltaic power plants. • Without subsidies estimated loss is CZK 12.6 billion in 2012 (8% of invested assets). • 43% is the dead weight loss due to high technology costs. • 57% is the profit redistributed out of subsidies as interest payments to banks. • Only a 7-fold change in parameters of the model would make PV plants profitable

  13. Operational characteristic analysis of PV generation system for grid connection by using a senseless MPPT control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-J.; Kim, K.-H.; Park, H.-Y.; Seo, H.-R.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    In photovoltaics, the sun's light energy is captured to create electricity. One of the key issues about a photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional maximum power point tracking (MPPT) control method, both voltage and current coming out from PV array require feedback. The system may fail to track the MPP of a PV array when unexpected weather conditions happen. This paper proposed a novel PV output senseless (POS) control method to solve the problem. The proposed POS MPPT control method only had one factor to consider, the load current. To verify this theory, a POS MPPT control was applied to a manufactured PV generation system, and the results of the the simulated and experimental data under real weather conditions were compared and analyzed. Several tables and diagrams were presented, including the circuit diagram of a manufactured PV generation system connected to grid as well as the the specifications of the PV array and PCS used for the experiment. Reasonable results were obtained in this study. In addition, the scheme was found to be very useful in maximizing power from PV array to load with feedback of only the load current. 8 refs., 3 tabs., 15 figs.

  14. Distribution System Augmented by DC Links for Increasing the Hosting Capacity of PV Generation

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Demirok, Erhan; Teodorescu, Remus

    2012-01-01

    This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further, they are cha......This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further......, they are characterized by long radial feeders. Such feeders suffer from voltage rise and transformer overloading problems as the total number and capacity of the PV installations increase. The distribution network can be augmented by dc distribution links with power electronic converter interfaces to the traditional ac...... distribution systems. It is shown here that the dc links can be used to interconnect the different radial feeders and the excess power thus could be transferred to the nearby industrial load-center....

  15. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics...

  16. Practical issues for testing thin film PV modules at standard test conditions.

    OpenAIRE

    Marín González, Omar; Raga Arroyo, Manuela Pilar; Alonso Garcia, M. Carmen; Muñoz-García, Miguel Angel

    2013-01-01

    Thin film photovoltaic (TF) modules have gained importance in the photovoltaic (PV) market. New PV plants increasingly use TF technologies. In order to have a reliable sample of a PV module population, a huge number of modules must be measured. There is a big variety of materials used in TF technology. Some of these modules are made of amorphous or microcrystalline silicon. Other are made of CIS or CdTe. Not all these materials respond the same under standard test conditions (STC) of power...

  17. Photovoltaic High-Frequency Pulse Charger for Lead-Acid Battery under Maximum Power Point Tracking

    Directory of Open Access Journals (Sweden)

    Hung-I. Hsieh

    2013-01-01

    Full Text Available A photovoltaic pulse charger (PV-PC using high-frequency pulse train for charging lead-acid battery (LAB is proposed not only to explore the charging behavior with maximum power point tracking (MPPT but also to delay sulfating crystallization on the electrode pores of the LAB to prolong the battery life, which is achieved due to a brief pulse break between adjacent pulses that refreshes the discharging of LAB. Maximum energy transfer between the PV module and a boost current converter (BCC is modeled to maximize the charging energy for LAB under different solar insolation. A duty control, guided by a power-increment-aided incremental-conductance MPPT (PI-INC MPPT, is implemented to the BCC that operates at maximum power point (MPP against the random insolation. A 250 W PV-PC system for charging a four-in-series LAB (48 Vdc is examined. The charging behavior of the PV-PC system in comparison with that of CC-CV charger is studied. Four scenarios of charging statuses of PV-BC system under different solar insolation changes are investigated and compared with that using INC MPPT.

  18. Task 9: deployment of photovoltaic technologies: co-operation with developing countries. Sources of financing for PV-based rural electrification in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W. [Institute for Sustainable Power, Highlands Ranch, CO (United States); Syngellakis, K. [IT Power Ltd, The Manor house, Chineham (United Kingdom); Shanker, A. [Innovation Energie Developpement, IED, Francheville (France)

    2004-05-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at how PV-based rural electrification in developing countries can be financed. The objective of Task 9 is to increase the overall rate of successful deployment of PV systems in developing countries through increased co-operation and information exchange. This document provides an introduction to PV project financing, including funding sources available, strategies and planning needed to secure the necessary financial resources for the deployment of PV technologies in developing and transitional economies. Topics discussed include risk analysis and the barriers to financing, sources of financing, considerations and variables that influence financing decisions and the process for securing financing. Various forms of international and national financing are looked at, as are the factors influencing financing decisions.

  19. Evaluating the effect placement capacitor and distributed photovoltaic generation for power system losses minimization in radial distribution system

    Science.gov (United States)

    Rahman, Yuli Asmi; Manjang, Salama; Yusran, Ilham, Amil Ahmad

    2018-03-01

    Power loss minimization have many advantagess to the distribution system radial among others reduction of power flow in feeder lines, freeing stress on feeder loading, deterrence of power procurement from the grid and also the cost of loss compensating instruments. This paper, presents capacitor and photovoltaic (PV) placement as alternative means to decrease power system losses. The paper aims to evaluate the best alternative for decreasing power system losses and improving voltage profile in the radial distribution system. To achieve the objectives of paper, they are used three cases tested by Electric Transient and Analysis Program (ETAP) simulation. Firstly, it performs simulation of placement capacitor. Secondly, simulated placement of PV. Lastly, it runs simulation of placement capacitor and PV simultaneously. The simulations were validated using the IEEE 34-bus test system. As a result, they proved that the installation of capacitor and PV integration simultaneously leading to voltage profile correction and power losses minimization significantly.

  20. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  1. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh; Nepal, Shaili; Hoke, Anderson; Asano, Marc; Ueda, Reid; Ifuku, Earle

    2017-05-08

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  2. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    Science.gov (United States)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  3. Design and development of high performance solar photovoltaic inverter with advanced modulation techniques to improve power quality

    Science.gov (United States)

    Alexander Stonier, Albert

    2017-02-01

    In addition to the focus towards growing demand on electrical energy due to the increase in population, industries, consumer loads, etc., the need for improving the quality of electrical power also needs to be considered. The design and development of solar photovoltaic (PV) inverter with reduced harmonic distortions is proposed. Unlike the conventional solar PV inverters, the proposed inverter provides the advantages of reduced harmonic distortions thereby intend towards the improvement in power quality. This inverter comprises of multiple stages which provides the required 230VRMS, 50 Hz in spite of variations in solar PV due to temperature and irradiance. The reduction of harmonics is governed by applying proper switching sequences required for the inverter switches. The detailed analysis is carried out by employing different switching techniques and observing its performance. With a separate mathematical model for a solar PV, simulations are performed in MATLAB software. To show the advantage of the system proposed, a 3 kWp photovoltaic plant coupled with multilevel inverter is demonstrated in hardware. The novelty resides in the design of a single chip controller which can provide the switching sequence based on the requirement and application. As per the results obtained, the solar-fed multistage inverter improves the quality of power which makes this inverter suitable for both stand-alone and grid-connected systems.

  4. Analytical Investigation and Control System Set-up of Medium Scale PV Plants for Power Flow Management

    Directory of Open Access Journals (Sweden)

    Rosario Miceli

    2012-11-01

    Full Text Available In the field of photovoltaic (PV plants and energy conversion from renewable sources, a large part of the technical literature is more devoted to practical aspects (new solar cells, electrically driven PV panels, safety, reduction of parasitic currents, etc. than to theoretical investigations. Despite this tendency, this paper presents a mathematical analysis of a medium scale photovoltaic power generation system connected to the distribution network and of its control system. In such a system, the conversion stage is unique due to the absence of a boost chopper. The conducted analysis leads to the interesting conclusion that the inverter used in the plant presents two degrees of freedom, easy to exploit in a control system in which the inverter simultaneously realizes the interconnection to the grid and the MPPT control. The structure of the control system is then presented, discussed and validated by means of numerical simulations.

  5. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. Copyright © 2016. Published by Elsevier Inc.

  6. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Syafaruddin; Hiyama, Takashi [Department of Computer Science and Electrical Engineering of Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Karatepe, Engin [Department of Electrical and Electronics Engineering of Ege University, 35100 Bornova-Izmir (Turkey)

    2009-12-15

    It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. There are two ways to increase the efficiency of PV power generation system. The first is to develop materials offering high conversion efficiency at low cost. The second is to operate PV systems optimally. However, the PV system can be optimally operated only at a specific output voltage and its output power fluctuates under intermittent weather conditions. Moreover, it is very difficult to test the performance of a maximum-power point tracking (MPPT) controller under the same weather condition during the development process and also the field testing is costly and time consuming. This paper presents a novel real-time simulation technique of PV generation system by using dSPACE real-time interface system. The proposed system includes Artificial Neural Network (ANN) and fuzzy logic controller scheme using polar information. This type of fuzzy logic rules is implemented for the first time to operate the PV module at optimum operating point. ANN is utilized to determine the optimum operating voltage for monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. (author)

  7. Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System

    Directory of Open Access Journals (Sweden)

    Shan Zhong

    2017-06-01

    Full Text Available The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA filament or 2.5 days for the extrusion of an acrylonitrile butadiene styrene (ABS filament. A mono-crystalline silicon solar PV system is about 2.6 years alone. However, this can be reduced by over 96% if the solar PV system powers the recyclebot to produce a PLA filament from waste plastic (EPBT is only 0.10 year or about a month. Likewise, if an ABS filament is produced from a recyclebot powered by the solar PV system, the energy saved is 90.6–99.9 MJ/kg and 26.33–29.43 kg of the ABS filament needs to be produced in about half a month for the system to pay for itself. The results clearly show that the solar PV system powered recyclebot is already an excellent way to save energy for sustainable development.

  8. Active and reactive power neurocontroller for grid-connected photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    I. Abadlia

    2016-03-01

    Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.

  9. Prioritized rule based load management technique for residential building powered by PV/battery system

    Directory of Open Access Journals (Sweden)

    T.R. Ayodele

    2017-06-01

    Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.

  10. Forecasting and observability: critical technologies for system operations with high PV penetration

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Photovoltaics (ETIP PV) reviews the different use cases for these technologies, their current status, and the need for future developments. Power system operations require a real-time view of PV production for managing power reserves and for feeding shortterm forecasts. They also require forecasts on all......Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform...... timescales from the short (for dispatching purposes), where statistical models work best, to the very long (for infrastructure planning), where physics-based models are more accurate. Power system regulations are driving the development of these techniques. This application also provides a good basis...

  11. A Standalone PV System with a Hybrid P&O MPPT Optimization Technique

    Directory of Open Access Journals (Sweden)

    S. Hota

    2017-12-01

    Full Text Available In this paper a maximum power point tracking (MPPT design for a photovoltaic (PV system using a hybrid optimization technique is proposed. For maximum power transfer, maximum harvestable power from a PV cell in a dynamically changing surrounding should be known. The proposed technique is compared with the conventional Perturb and Observe (P&O technique. A comparative analysis of power-voltage and current-voltage characteristics of a PV cell with and without the MPPT module when connected to the grid was performed in SIMULINK, to demonstrate the increment in the efficiency of the PV module after using the MPPT module.

  12. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  13. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  14. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  15. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  16. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  17. Short-Term Optimal Operation of a Wind-PV-Hydro Complementary Installation: Yalong River, Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Xinshuo Zhang

    2018-04-01

    Full Text Available How to effectively use clean renewable energy to improve the capacity of the power grid to absorb new energy and optimize the power grid structure has become one of China’s current issues. The Yalong River Wind-PV-Hydro complementary clean energy base was chosen as the research object from which to analyze the output complementarity principle and characteristics of wind farms, photovoltaic power plants, and hydropower stations. Then, an optimization scheduling model was established with the objective of minimizing the amount of abandoned wind and photovoltaic power and maximizing the stored energy in cascade hydropower stations. A Progress Optimality Algorithm (POA was used for the short-term optimal operation of Wind-PV-Hydro combinations. The results show that use of cascaded hydropower storage capacity can compensate for large-scale wind power and photovoltaic power, provide a relatively sustained and stable power supply for the grid. Wind-PV-Hydro complementary operation not only promotes wind power and photovoltaic power consumption but also improves the efficiency of using the original transmission channel of hydropower. This is of great significance to many developing countries in formatting a new green approach, realizing low-carbon power dispatch and trade and promoting regional economic development.

  18. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    International Nuclear Information System (INIS)

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  19. Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL

    2017-01-01

    In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.

  20. The Geography of Solar Photovoltaics (PV and a New Low Carbon Urban Transition Theory

    Directory of Open Access Journals (Sweden)

    Peter Newton

    2013-06-01

    Full Text Available This paper examines the early phases of a 21st century energy transition that involves distributed generation technologies employing low or zero carbon emission power sources and their take-up within Australia, with particular reference to the major cities and solar photovoltaics (PV. This transition is occurring in a nation with significant path dependency to overcome in relation to fossil fuel use. Tracking the diffusion of solar PV technology within Australia over the past decade provides a basis for assessing those factors underpinning its exponential growth and its associated geography of diffusion. Positive evidence that there are pathways for cities to decarbonise is apparent but there appear to be different pathways for different city forms with lower density suburban areas showing the biggest take-up of household-based energy technologies. This suggests a model for the low carbon urban transition involving combinations of simple technological changes and harder structural changes, depending upon which parts of the urban fabric are in focus. This is being called a New Low Carbon Urban Transition Theory.

  1. Practical roadmap and limits to nanostructured photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Richard R. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Osedach, Timothy P. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Brown, Patrick R. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Rowehl, Jill A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bulovic, Vladimir [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-12-22

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power conversion efficiency (PCE). With the emergence of a multitude of nanostructured photovoltaic (nano-PV) device architectures, the question has arisen of where both the practical and the fundamental limits of performance reside in these new systems. Here, the former is addressed a posteriori. The specific challenges associated with improving the electrical power conversion efficiency of various nano-PV technologies are discussed and several approaches to reduce their thermal losses beyond the single bandgap limit are reviewed. Critical considerations related to the module lifetime and cost that are unique to nano-PV architectures are also addressed. The analysis suggests that a practical single-junction laboratory power conversion efficiency limit of 17% and a two-cell tandem power conversion efficiency limit of 24% are possible for nano-PVs, which, when combined with operating lifetimes of 10 to 15 years, could position them as a transformational technology for solar energy markets. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  3. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System

    Directory of Open Access Journals (Sweden)

    Shivashankar Sukumar

    2017-10-01

    Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.

  4. Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Paula Andrea Ortiz Valencia

    2015-11-01

    Full Text Available The maximum power point tracking (MPPT of photovoltaic systems must be as fast and accurate as possible to increase the power production, which eventually increases the PV system profitability. This paper proposes and mathematically analyses a sliding-mode controller to provide a fast and accurate maximum power point tracking in grid-connected photovoltaic systems using a single control stage. This approach avoids the circular dependency in the design of classical cascade controllers used to optimize the photovoltaic system operation, and at the same time, it reduces the number of controllers and avoids the use of linearized models to provide global stability in all the operation range. Such a compact solution also reduces the system cost and implementation complexity. To ensure the stability of the proposed solution, detailed mathematical analyses are performed to demonstrate the fulfillment of the transversality, reachability and equivalent control conditions. Finally, the performance of the proposed solution is validated using detailed simulations, executed in the power electronics simulator PSIM, accounting for both environmental and load perturbations.

  5. Analysis and comparison between a concentrating solar and a photovoltaic power plant

    International Nuclear Information System (INIS)

    Desideri, Umberto; Campana, Pietro Elia

    2014-01-01

    Highlights: • The performance of CSP and PV plants were compared with similar assumptions. • The influence of the site on the performance of CSP and PV plants is determined. • CSP plants performance is always higher in locations where DNI is prevailing. • CSP levelized electricity costs are generally lower than those from PV plants. • PV plants may produce larger amounts of electricity where the DNI is not prevailing. - Abstract: Solar energy is a source, which can be exploited in two main ways to generate power: direct conversion into electric energy using photovoltaic panels and by means of a thermodynamic cycle. In both cases the amount of energy, which can be converted, is changing daily and seasonally, causing a discontinuous electricity production. In order to limit this drawback, concentrated solar power plants (CSP) and photovoltaic plants (PV) can be equipped with a storage system that can be configured not only for covering peak-loads but also for the base-load after the sunset or before the sunrise. In CSP plants it is the sun’s thermal energy to be stored, whereas in PV applications it is the electrical energy to be stored in batteries, although this is not economically and environmentally feasible in large-scale power plants. The main aim of this paper is to study the performance of concentrated solar power plants equipped with molten salts thermal storage to cover a base load of 3 MW el . In order to verify the possibility of storing effectively the thermal energy and to design a plant for base load operation, two locations were chosen for the study: Gela in southern Italy, and Luxor in Egypt. The electricity production of the CSP facilities has been analyzed and then compared with the electricity production of PV plants. Two different comparisons were done, one by sizing the PV plant to provide the same peak power and one using the same collectors surface. This paper has also highlighted some important issues in site selection and in

  6. Efficient Photovoltaic System Maximum Power Point Tracking Using a New Technique

    Directory of Open Access Journals (Sweden)

    Mehdi Seyedmahmoudian

    2016-03-01

    Full Text Available Partial shading is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV system. When partial shading occurs the system has multiple-peak output power characteristics. In order to track the global maximum power point (GMPP within an appropriate period a reliable technique is required. Conventional techniques such as hill climbing and perturbation and observation (P&O are inadequate in tracking the GMPP subject to this condition resulting in a dramatic reduction in the efficiency of the PV system. Recent artificial intelligence methods have been proposed, however they have a higher computational cost, slower processing time and increased oscillations which results in further instability at the output of the PV system. This paper proposes a fast and efficient technique based on Radial Movement Optimization (RMO for detecting the GMPP under partial shading conditions. The paper begins with a brief description of the behavior of PV systems under partial shading conditions followed by the introduction of the new RMO-based technique for GMPP tracking. Finally, results are presented to demonstration the performance of the proposed technique under different partial shading conditions. The results are compared with those of the PSO method, one of the most widely used methods in the literature. Four factors, namely convergence speed, efficiency (power loss reduction, stability (oscillation reduction and computational cost, are considered in the comparison with the PSO technique.

  7. Rooftop photovoltaic (PV) systems for industrial halls: Achieving economic benefit via lowering energy demand

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote deployment of renewable energy generation, feed-in tariff (FIT) higher than the

  8. Photovoltaic energy potential of Quebec

    International Nuclear Information System (INIS)

    Royer, J.; Thomas, R.

    1993-01-01

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  9. Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Belhamadia

    2017-03-01

    Full Text Available This paper presents a cost analysis study of a hybrid diesel and Photovoltaic (PV system in Kuala Terengganu, Malaysia. It first presents the climate conditions of the city followed by the load profile of a 2MVA network; the system was evaluated as a standalone system. Diesel generator rating was considered such that it follows ISO 8528. The maximum size of the PV system was selected such that its penetration would not exceed 25%. Several sizes were considered but the 400kWp system was found to be the most cost efficient. Cost estimation was done using Hybrid Optimization Model for Electric Renewable (HOMER. Based on the simulation results, the climate conditions and the NEC 960, the numbers of the maximum and minimum series modules were suggested as well as the maximum number of the parallel strings.

  10. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  11. Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level

    International Nuclear Information System (INIS)

    Nawaz, I.; Tiwari, G.N.

    2006-01-01

    In this paper the energy payback time and CO 2 emissions of photovoltaic (PV) system have been analyzed. The embodied energy for production of PV module based on single crystal silicon, as well as for the manufacturing of other system components have been computed at macro- and micro-level assuming irradiation of 800-1200 W/m 2 in different climatic zones in India for inclined surface. The energy payback time with and without balance-of-system for open field and rooftop has been evaluated. It is found that the embodied energy at micro-level is significantly higher than embodied energy at macro-level. The effect of insolation, overall efficiency, lifetime of PV system on energy pay back time and CO 2 emissions have been studied with and without balance of system. A 1.2 kW p PV system of SIEMENS for mudhouse at IIT, Delhi based on macro- and micro-level has been evaluated. The CO 2 mitigation potential, the importance and role of PV system for sustainable development are also highlighted

  12. Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC

    International Nuclear Information System (INIS)

    El-Garhy, M. Abd Al-Alim; Mubarak, R.I.; El-Bably, M.

    2017-01-01

    Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.

  13. Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC

    Science.gov (United States)

    Al-Alim El-Garhy, M. Abd; Mubarak, R. I.; El-Bably, M.

    2017-08-01

    Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.

  14. New Analysis Finds Synergistic Relationship Between High PV Penetration and

    Science.gov (United States)

    photovoltaics (PV) to the electric power grid could increase the potential for energy storage to meet peak based on very limited knowledge," said Paul Denholm, NREL senior analyst and lead author of the PV and storage interact will help build the knowledge base for system planners in all states

  15. Stand alone photovoltaic systems: guarantee of results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This study aims to provide a guarantee of results for system performance for users of stand-alone photovoltaic (PV) systems, which have no back-up generator. The appropriate main performance criterion for PV systems is that a specified load is supplied with power either continuously or intermittently whenever the load requires power. A methodology to evaluate the power availability of stand-alone PV systems has been developed as part of the project, which encompasses power losses due to weather variations. The guarantee of results produced allows users to compare system designs from different manufacturers. (UK)

  16. MPPT algorithm test on a photovoltaic emulating system constructed by a DC power supply and an indoor solar panel

    International Nuclear Information System (INIS)

    Zhou, Z.; Holland, P.M.; Igic, P.

    2014-01-01

    Highlights: • A novel PV emulator is constructed by using conventional solar panels with a DC power supply. • The proposed PV emulator is cost-effectiveness, relatively easy implementation. • The proposed PV emulator avoids the bandwidth problem associated with electronics PV emulators. • Indoor testing of MPPT algorithms and power converters avoids the dependency on solar irradiation. • The PV emulating system has been used for testing a P and O MPPT algorithm and a boost dc converter. - Abstract: In this paper a novel photovoltaic (PV) emulating scheme for testing maximum power point tracking (MPPT) algorithms and PV inverters has been proposed. It is constructed by the parallel connection of conventional solar panels with a DC power supply operating in current source mode. The advantages of the proposed scheme are cost-effectiveness, relatively easy implementation and indoor testing of MPPT algorithms and power converters avoiding weather and time of day dependency on solar irradiation levels. Furthermore, the proposed PV emulator avoids the bandwidth problem associated with the dc converter based PV emulating systems. Detailed circuit connection, parameters, electrical characteristics and mathematical model of the PV emulator are presented and discussed. Proposed PV emulating system has been used to test a boost DC/DC converter controlled by Perturb and Observe (P and O) MPPT algorithm. Test results confirmed the effectiveness of the proposed PV emulation system and all achieved results correspond well to the original designed values

  17. Technoeconomic Evaluation for an Installed Small-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Bulent Yaniktepe

    2017-01-01

    Full Text Available Solar energy production and economic evaluation are analyzed, in this study, by using daily solar radiation and average temperature data which are measured for 3 years in the Osmaniye province in Turkey. Besides, this study utilizes the photovoltaic- (PV- based grid connected to a power plant which has an installed capacity of 1 MW investment in electricity production. Economic values show that the net present value (NPV, the first economic method in the research, is about 111941 USD, which is greater than zero. Therefore, the payback year of this investment is approximately 8.3. The second one of these methods, the payback period of the simple payback period (PBP, is 6.27 years. The last method, which is the mean value of the internal rate of return (IRR, is 10.36%. The results of this study show that Osmaniye is a considerable region for the PV investment in electricity production. As a result, investment of a PV system in Osmaniye can be applicable.

  18. Study on an optimum ratio of PV output energy to WG output energy in PV/WG hybrid system; Taiyoko/furyoku hybrid hatsuden system no saiteki yoryohi ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S [Kandenko Co. Ltd., Tokyo (Japan)

    1996-10-27

    A photovoltaic power (PV) and wind generated power (WG) are an unlimited clean energy source, yet their output is unstable depending on the fluctuation of weather conditions such as solar radiation and wind velocity. Consequently, a large-scale power storage equipment is necessitated leading to a high cost especially in an independent system. As a solution, a method is available in which PV and WG are combined so that the effect may be utilized for stabilizing the output of a system as a whole, at a site where a fluctuation pattern is different between photovoltaic energy and wind energy. In building a hybrid system by PV and WG, sites with such supplementary effect existing were selected from the viewpoint of stabilizing the fluctuation of the power generation in the long run; and then, an examination was made on the optimum PV capacity ratio (%Ppo) in each site. As a result, it revealed that the %Ppo had great bearing on a ratio of PV energy fluctuation to WG, which was converted to a numerical formula. A comparatively simple examination by means of meteorological data also indicated that the share ratio was possibly optimized between the quantities of PV and WG energy. 4 refs., 2 figs., 2 tabs.

  19. Operation of TUT Solar PV Power Station Research Plant under Partial Shading Caused by Snow and Buildings

    Directory of Open Access Journals (Sweden)

    Diego Torres Lobera

    2013-01-01

    Full Text Available A grid connected solar photovoltaic (PV research facility equipped with comprehensive climatic and electric measuring systems has been designed and built in the Department of Electrical Engineering of the Tampere University of Technology (TUT. The climatic measuring system is composed of an accurate weather station, solar radiation measurements, and a mesh of irradiance and PV module temperature measurements located throughout the solar PV facility. Furthermore, electrical measurements can be taken from single PV modules and strings of modules synchronized with the climatic data. All measured parameters are sampled continuously at 10 Hz with a data-acquisition system based on swappable I/O card technology and stored in a database for later analysis. The used sampling frequency was defined by thorough analyses of the PV system time dependence. Climatic and electrical measurements of the first operation year of the research facility are analyzed in this paper. Moreover, operation of PV systems under partial shading conditions caused by snow and building structures is studied by means of the measured current and power characteristics of PV modules and strings.

  20. Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    Mashud Rana

    2016-10-01

    Full Text Available Solar energy generated from PhotoVoltaic (PV systems is one of the most promising types of renewable energy. However, it is highly variable as it depends on the solar irradiance and other meteorological factors. This variability creates difficulties for the large-scale integration of PV power in the electricity grid and requires accurate forecasting of the electricity generated by PV systems. In this paper we consider 2D-interval forecasts, where the goal is to predict summary statistics for the distribution of the PV power values in a future time interval. 2D-interval forecasts have been recently introduced, and they are more suitable than point forecasts for applications where the predicted variable has a high variability. We propose a method called NNE2D that combines variable selection based on mutual information and an ensemble of neural networks, to compute 2D-interval forecasts, where the two interval boundaries are expressed in terms of percentiles. NNE2D was evaluated for univariate prediction of Australian solar PV power data for two years. The results show that it is a promising method, outperforming persistence baselines and other methods used for comparison in terms of accuracy and coverage probability.

  1. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  2. Optimization of a single stage inverter with one cycle control for photovoltaic power generation

    Energy Technology Data Exchange (ETDEWEB)

    Egiziano, L.; Femia, N.; Granozio, D.; Petrone, G.; Spagnuolo, G. [Salermo Univ., Salermo (Italy); Vitelli, M. [Seconda Univ. di Napoli, Napoli (Italy)

    2006-07-01

    An optimized one-cycle control (OCC) for maximum power point tracking and power factor correction in grid-connected photovoltaic (PV) applications was described. OCC is a nonlinear control technique that rejects line perturbations and allows both output power factor co-reaction and tracking of input PV fields. An OCC system was analyzed in order to select optimal design parameters. Parameters were refined through the selection of suitable design constraints. A stochastic search was then performed. Criteria were then developed to distinguish appropriate design parameters for the optimized OCC. The optimization was based on advanced heuristic techniques for non-linear constrained optimization. Performance indices were calculated for each feasible set of parameters. A customized perturb and observe control was then applied to the single-stage inverter. Results of the optimization process were validated by a series of time-domain simulations conducted under heavy, varying irradiance conditions. Results of the simulations showed that the optimized controllers showed improved performance in terms of power drawn from the PV field. 7 refs., 1 tab., 5 figs.

  3. Final Technical Report - Photovoltaics for You (PV4You) Program

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J. M. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Sherwood, L. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Pulaski, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Cook, C. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Kalland, S. [Interstate Renewable Energy Council (IREC), New York, NY (United States); Haynes, J. [Interstate Renewable Energy Council (IREC), New York, NY (United States)

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership

  4. Spatio-temporal analysis of regional PV generation

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2016-01-01

    Photovoltaic (PV) power is growing in importance worldwide and hence needs to be represented in operation and planning of power system. As opposed to traditional generation technologies, it is characterized by exhibiting both a high variability and a significant spatial dependence. This paper...... presents a fundamental analysis of regional solar generation time series, aiming to potentially facilitate large-scale solar integration. It will focus on characterizing the underlying dependence structure at the system level as well as describing both statistical and temporal properties of regional PV...

  5. You're a What? Solar Photovoltaic Installer

    Science.gov (United States)

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  6. Impact of Balance Of System (BOS) costs on photovoltaic power systems

    Science.gov (United States)

    Hein, G. F.; Cusick, J. P.; Poley, W. A.

    1978-01-01

    The Department of Energy has developed a program to effect a large reduction in the price of photovoltaic modules, with significant progress already achieved toward the 1986 goal of 50 cents/watt (1975 dollars). Remaining elements of a P/V power system (structure, battery storage, regulation, control, and wiring) are also significant cost items. The costs of these remaining elements are commonly referred to as Balance-of-System (BOS) costs. The BOS costs are less well defined and documented than module costs. The Lewis Research Center (LeRC) in 1976/77 and with two village power experiments that will be installed in 1978. The costs were divided into five categories and analyzed. A regression analysis was performed to determine correlations of BOS Costs per peak watt, with power size for these photovoltaic systems. The statistical relationship may be used for flat-plate, DC systems ranging from 100 to 4,000 peak watts. A survey of suppliers was conducted for comparison with the predicted BOS cost relationship.

  7. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    OpenAIRE

    Zhang, Hongmei; Dong, Jinzhi; Duan, Yuanfeng; Lu, Xilin; Peng, Jinqing

    2014-01-01

    BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV) modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedd...

  8. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  9. Measuring campaign on an autonomous photovoltaic installation of 3 kW peak power; Campagne de mesures de l'installation autonome de 3,0 kWp a Soyhieres (JU)

    Energy Technology Data Exchange (ETDEWEB)

    Affolter, P.; Bezencon, B. [Solstis / SGI, Lausanne (Switzerland)

    2005-07-01

    The autonomous hybrid power generation system located at Soyhieres, northwestern Switzerland, comprises a photovoltaic array made of solar slates (SunslatesTM) and a diesel generator. The 3.0 kWp photovoltaic (PV) system is completely integrated into the roof annex of a farm producing wine according to the rules of organic agriculture. The system has been in operation since 1999 and its performance has been monitored between July 2003 and October 2004. The main results are as follows: a) the PV system operates well since its setting up and is correctly sized; b) the PV system delivers about 76% of the total annual energy demand; this sizing of the PV array leads to very seldom excess PV power generation; c) the losses of the system are mainly due to the necessity of cycling the battery (daily partial charging and discharging, that cause its warming up) and to its limited life-span, the latter resulting in a constantly decreasing efficiency for energy storage; d) the maximum power point (MPP) tracker installed on one part of the PV array does not significantly improve the power generation efficiency.

  10. Simulation, measurement, and emulation of photovoltaic modules using high frequency and high power density power electronic circuits

    Science.gov (United States)

    Erkaya, Yunus

    The number of solar photovoltaic (PV) installations is growing exponentially, and to improve the energy yield and the efficiency of PV systems, it is necessary to have correct methods for simulation, measurement, and emulation. PV systems can be simulated using PV models for different configurations and technologies of PV modules. Additionally, different environmental conditions of solar irradiance, temperature, and partial shading can be incorporated in the model to accurately simulate PV systems for any given condition. The electrical measurement of PV systems both prior to and after making electrical connections is important for attaining high efficiency and reliability. Measuring PV modules using a current-voltage (I-V) curve tracer allows the installer to know whether the PV modules are 100% operational. The installed modules can be properly matched to maximize performance. Once installed, the whole system needs to be characterized similarly to detect mismatches, partial shading, or installation damage before energizing the system. This will prevent any reliability issues from the onset and ensure the system efficiency will remain high. A capacitive load is implemented in making I-V curve measurements with the goal of minimizing the curve tracer volume and cost. Additionally, the increase of measurement resolution and accuracy is possible via the use of accurate voltage and current measurement methods and accurate PV models to translate the curves to standard testing conditions. A move from mechanical relays to solid-state MOSFETs improved system reliability while significantly reducing device volume and costs. Finally, emulating PV modules is necessary for testing electrical components of a PV system. PV emulation simplifies and standardizes the tests allowing for different irradiance, temperature and partial shading levels to be easily tested. Proper emulation of PV modules requires an accurate and mathematically simple PV model that incorporates all known

  11. Design Features of Product-Integrated PV: An Evaluation of Various Factors under Indoor Irradiance Conditions

    OpenAIRE

    Apostolou, G.

    2016-01-01

    This thesis explores the field of product-integrated photovoltaics (PIPV), a term which is used for all types of products that contain solar cells in one or more of their surfaces, aiming at providing power during the product’s use. Product-integrated photovoltaics (PIPV) began to be widely introduced around 2000, although the use of PV systems in products dates back to the 70s. PIPV includes products such as PV-powered boats, aircrafts, cars, bicycles, camping tents, street lights, recycling...

  12. Conference on the new models of photovoltaic consumption and commercialization

    International Nuclear Information System (INIS)

    Gastiger, Michaela; Persem, Melanie; Joly, Jean-Pierre; Freier, Karin; Fontaine, Pierre; Mueth, Thierry; Marliave, Luc de; Woerlen, Christine; Gerdung, Anja; Jedliczka, Marc; Mayer, Joerg; Jimenez, Julien; Richard, Pascal; Vogtmann, Michael; Schaefer, Felix; Martin, Nicolas; Blanc, Francois; Ostermann, Christoph; Borghese, Francois; Nykamp, Stefan; Von Appen, Jan; Buis, Sabine; Gossement, Arnaud

    2014-01-01

    This document gathers contributions (Power Point presentations) of a conference on new models of consumption and commercialisation in the solar photovoltaic sector in France and in Germany. These contributions address the following topics: Stimulating self-consumption and direct selling within the EEG; Development of PV self-consumption in France; Experience from applying the new support program for solar energy storage systems; Call for solar photovoltaic projects for own consumption in the Aquitaine region; The SMA flexible storage system (technical solutions for a PV system in a smart home); PV own consumption in industry and commerce, examples and operating concepts; Supplying tenants in multiple-family housing with solar power in the 'Neue Heimat' project; How to manage PV-storage self-consumption from a grid point of view

  13. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nepal, Shaili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Asano, Marc [Hawaiian Electric Company; Ueda, Reid [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-10-03

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  14. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  15. Performance evaluation of an off-grid photovoltaic system in Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; El-Amin, Ibrahim

    2012-01-01

    The paper presents the performance evaluation analysis of a 5.28 kW installed capacity isolated grid photovoltaic power plant installed at King Fahd University of Petroleum and Minerals, Dhahran Saudi Arabia in June 2010. The plant was equipped with temperature, solar radiation intensity, and PV (Photovoltaic) panel power output recording sensors for performance evaluation of the plant. The analysis presented the effect of PV surface temperature and dust collected on the panels on the power output of individual arrays and total power from complete plant. Furthermore, the PV panel performance was studied by DC (Direct current) performance ratio variation with PV panel backside surface temperature. Hourly mean energy yield was found to be decreasing with increasing PV panel surface temperature during the months of July and August 2010. The daily energy yield showed a decreasing trend with days of the month which could be accounted for dust accumulation on the PV panel surface. The DC performance ratio also showed a decreasing trend with increasing PV panel surface temperature. -- Highlights: ► The study presents the effect of local weather conditions on the performance of a 5.28 kW isolated grid photovoltaic system. ► Local weather conditions effect was studied based on energy yield on diurnal and daily basis DC performance ratio. ► Hourly mean energy yield was found to be decreasing with increasing PV panel surface temperature. ► Daily energy yield decreased with days which could be accounted for dust accumulation on the PV panel surface. ► The DC performance ratio also showed a decreasing trend with increasing PV panel surface temperature.

  16. A Novel Supervisory Control Algorithm to Improve the Performance of a Real-Time PV Power-Hardware-In-Loop Simulator with Non-RTDS

    Directory of Open Access Journals (Sweden)

    Dae-Jin Kim

    2017-10-01

    Full Text Available A programmable direct current (DC power supply with Real-time Digital Simulator (RTDS-based photovoltaic (PV Power Hardware-In-the-Loop (PHIL simulators has been used to improve the control algorithm and reliability of a PV inverter. This paper proposes a supervisory control algorithm for a PV PHIL simulator with a non-RTDS device that is an alternative solution to a high-cost PHIL simulator. However, when such a simulator with the conventional algorithm which is used in an RTDS is connected to a PV inverter, the output is in the transient state and it makes it impossible to evaluate the performance of the PV inverter. Therefore, the proposed algorithm controls the voltage and current target values according to constant voltage (CV and constant current (CC modes to overcome the limitation of the Computing Unit and DC power supply, and it also uses a multi-rate system to account for the characteristics of each component of the simulator. A mathematical model of a PV system, programmable DC power supply, isolated DC measurement device, and Computing Unit are integrated to form a real-time processing simulator. Performance tests are carried out with a commercial PV inverter and prove the superiority of this proposed algorithm against the conventional algorithm.

  17. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  18. Performance Parameters for Grid-Connected PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  19. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  20. The AC photovoltaic module is here!

    Science.gov (United States)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  1. Analysis on the MPPT control of PV generation system using SPRW

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Won [Osaka University (Japan); Kim, Bong Tae; Lee, Jae Deuk; Yu, In Keun [Changwon National University (Korea)

    2001-07-01

    Photovoltaic (PV) system has been studied and watch with keen interest due to a clean and renewable power source. But, because the output power of PV system is not only unstable but also uncontrollable, the MPPT control of PV power system is still hard to be optimized with the tracking failure under the sudden fluctuation of irradiance. Authors proposed a novel transient phenomenon simulation method for PV power generation system under the real field weather condition(SPRW), and the research and development of PV power generation system is expected to be able to analyze easily and cheaply under various conditions with considering the sort of cell, the capacity of system and the used converter system. In this paper, a PV array was simulated to confirm the availability of SPRW. And, several real weather conditions were used with various MPPT controls. (author). 6 refs., 9 figs., 3 tabs.

  2. Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry

    DEFF Research Database (Denmark)

    Zou, Hongyang; Du, Huibin; Ren, Jingzheng

    2017-01-01

    development from the perspective of technological innovation. By incorporating a Technological Innovation System (TIS) approach, the analysis performed here complements the previous literature, which has not provided agrounded itself in a theoretical framework for associated analyses. In addition......China’s photovoltaic (PV) industry has undergone dramatic development in recent years and is now the global market leader in terms of newly added capacity. However, market diffusion and adoption in China is not ideal. This paper examines the blocking and inducement mechanisms of China’s PV industry......, to determine the current market dynamics, we closely examine the market concentration trends as well as the vertical and horizontal integration of upstream and downstream actors and calculate the market concentration of the upstream and downstream integration (74.8% and 36.3%). The results of applying the TIS...

  3. Design and performance test of CPC-PV/TE hybrid power generation system in greenhouse.%温室聚光光伏/温差联合发电系统的设计与性能试验

    Institute of Scientific and Technical Information of China (English)

    王立舒; 李琳; 梁秋艳; 丁修增; 王博林

    2015-01-01

    With the rapid development of agricultural science and technology, various types of environmental testing equipments and production facilities consume a lot of energy in greenhouse. Therefore, it is important to design a high-efficiency greenhouse power supply device. At the same time, the energy crisis in the 21st century and the air pollution caused by burning of fossil fuels become serious. It can not wait to solve the environmental pollution. Therefore, increasing the development and utilization of solar energy is imminent. Solar energy is a kind of clean and renewable energy, and the study of solar energy development and utilization has become a hot issue nowadays, but in general, its efficiency is low. In order to solve the problem of large fossil energy consumption in the greenhouse and the current inefficient use of solar energy, compound parabolic concentrator-photovoltaic / thermoelectric hybrid power generation system (CPC-PV/TE) based on the characteristics of greenhouse in Northeast China is proposed in the present paper. A system contains CPC, PV/TE hybrid system and flat heat pipe. CPC converges light to the surface of photovoltaic cells. It enhances light irradiation intensity. Photovoltaic cells use the photovoltaic effect principle to generate electricity. Attached to photovoltaic cells, thermoelectric power generator modules convert the excess heat generated by photovoltaic cells power generation to electricity power simultaneously. Flat heat pipe is used as heat transfer element, and then a certain amount of water is used to effectively transfer the rest of the heat. In order to express the performance of CPC-PV/TE hybrid power generation system accurately, a comprehensive energy transfer model has been established, and the efficiency of CPC-PV/TE hybrid system and PV or TE module alone under different levels of irradiation and various water flows has been discussed. The results show that the faster the cooling water flows, the higher the

  4. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    As the development and installation of photovoltaic (PV) systems are still growing at an exceptionally rapid pace, relevant grid integration policies are going to change consequently in order to accept more PV systems in the grid. The next generation PV systems will play an even more active role...

  5. PV-HYBRID and MINI-GRID. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 3rd European Conference at the Centre de Congres in Aix en Provence (France) between 11th and 12th May, 2006, the following lessons were held: (1) Small electric networks: European drivers and projects for the integration of RES and DG into the electricity grids of the future (Manuel Sanchez-Jimenez); (2) PV hybrid system within mini grids - IEA PVPS programme (Meuch Konraf); (3) Renewables for the developing world (Alvaro Ponce Plaza); (4) Rural electicity supply using photovoltaic / - Diesel hybrid systems: Attractive for investors in the renewable energy sector? (Andreas Hahn); (5) Economic analysis of stand-alone and grid-connected photovoltaic systems under current tariff structure of Taiwan (Yaw-Juen Wang); (6) Using wind-PV-diesel hybrid system for electrification of remote village in Western Libya (N.M. Kreama); (7) Venezuela's renewable energy program for small towns and rural areas ''Sembrando Luz'' (Jorge Torres); (8) AeroSmart5, the professional, sysem-compatible small-scale wind energy converter will be tested in field tests (Fabian Jochem); (9) Lifetime, test procedures and recommendations for optimal operating strategies for lead-acid-batteries in renewable energy systems - A survey on results from European projects from the 5th framework programme (Rudi Kaiser); (10) Prototype of a reversible fuel cell system for autonomous power supplies (Tom Smolinska); (11) Interconnection management in microgrids (Michel Vandenbergh); (12) Control strategy for a small-scale stand-alone power system based on renewable energy and hydrogen (Harald Miland); (13) Standard renewable electricity supply for people in rural areas - mini-grids in western provinces of China (Michael Wollny); (14) The Brava island a ''100% renewable energy'' project (Jean-Christian Marcel); (15) Breakthrough to a new era of PV-hybrid systems with the help of standardised components communication? (Michael Mueller); (16) Standardized

  6. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    Science.gov (United States)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  7. PV-WEB: internet-based PV information tool

    International Nuclear Information System (INIS)

    Cowley, P.

    2003-01-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members

  8. PV-WEB: internet-based PV information tool

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, P

    2003-07-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members.

  9. Wide-Scale Adoption of Photovoltaic Energy

    DEFF Research Database (Denmark)

    Yang, Yongheng; Enjeti, Prasad; Blaabjerg, Frede

    2015-01-01

    Current grid standards largely require that low-power (e.g., several kilowatts) single-phase photovoltaic (PV) systems operate at unity power factor (PF) with maximum power point tracking (MPPT), and disconnect from the grid under grid faults by means of islanding detection. However, in the case...... of wide-scale penetration of single-phase PV systems in the distributed grid, disconnection under grid faults can contribute to 1) voltage flickers, 2) power outages, and 3) system instability. This article explores grid code modifications for a wide-scale adoption of PV systems in the distribution grid....... In addition, based on the fact that Italy and Japan have recently undertaken a major review of standards for PV power conversion systems connected to low-voltage networks, the importance of low voltage ride-through (LVRT) for single-phase PV power systems under grid faults is considered, along with three...

  10. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  11. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  12. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen models project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.

  13. Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The integrated power generation system of wind, photovoltaic (PV) and energy storage is composed of several wind turbines, PV units and energy storage units. The detailed model of integrated generation is not suitable for the large-scale powe.r system simulation because of the model's complexity and long computation time. An equivalent method for power flow calculation and transient simulation of the integrated generation system is proposed based on actual projects, so as to establish the foundation of such integrated system simulation and analysis.

  14. Study on the optimization of stand-alone type photovoltaic systems. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Geun; Song, Jin Soo; Kim, Boo ho; Park, I June; Jung, Meung Woong; Yoo, Kyun Joung; Kim, Hong Woo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The objectives of this study are to make a maximization of the operating efficiency of photovoltaic power systems, to improve stand- align PV systems design, technical operation and system analysis, and to promote technical cooperation of mutual interest in the area of IEA/PVPS program. This study aims to investigating the problems of applied photovoltaic power systems currently in operation to improve a system design, seeking remedies of individual PVPS applications to improve the system efficiency and reliability and to raise the system economics, and reporting the international movements of PV system dissemination and technical cooperation for developing countries. For the purpose of this works 1) Investigations of applications of existing photovoltaic power systems: - Photovoltaic electric sources used for expressway lamps - Optimum design of solar light with low pressure sodium lamps under 8 hours lighting a day at night by program-able electronic timer. 2) Comparative analyses of Marado PV system and propose a new reliable PV-diesel hybrid system and high efficiency operations. 3) Overall review of Hahwado 60 KWp PV system extending from 25 KWp and the remote monitoring systems for measurement of its operating results. 4) Introduction of IEA/PVPS international cooperating program, especially in task III for stand- alone PV systems and isolated islands and Exco meeting. As results, investigative findings of PVPS currently in operation and the work for improvement - Propose a prescription of Marado PV systems being blocked up by explosion of electrical demands from residence, parallel operational dual inverter with a big capacity. - There are shortage of solar generated power due to shortage of solar cell capacity that results in an increased operating time of diesel generator. Hence the insolation capacity of solar cell per household is continuously increased from the 0.5 KWp to 2 KWp in Hanwado island electrification.

  15. Investigation of the behavior of a three phase grid-connected photovoltaic system to control active and reactive power

    Energy Technology Data Exchange (ETDEWEB)

    Tsengenes, Georgios; Adamidis, Georgios [Department of Electrical Engineering and Computer Engineering, Democritus University of Thrace, University Campus Kimmeria, 67100 Xanthi (Greece)

    2011-01-15

    In this paper, a photovoltaic (PV) system, with maximum power point tracking (MPPT), connected to a three phase grid is presented. The connection of photovoltaic system on the grid takes place in one stage using voltage source inverter (VSI). For a better utilization of the photovoltaic system, the control strategy applied is based on p-q theory. According to this strategy during sunlight the system sends active power to the grid and at the same time compensates the reactive power of the load. In case there is no sunlight (during the night for instance), the inverter only compensates the reactive power of the load. In this paper the use of p-q theory to supply the grid with active power and compensate the reactive power of the load is investigated. The advantage of this control strategy is that the photovoltaic system is operated the whole day. Furthermore, the p-q theory uses simple algebraic calculations without demanding the use of PLL to synchronize the inverter with the grid. (author)

  16. Short-Term Photovoltaic Power Generation Forecasting Based on Multivariable Grey Theory Model with Parameter Optimization

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhong

    2017-01-01

    Full Text Available Owing to the environment, temperature, and so forth, photovoltaic power generation volume is always fluctuating and subsequently impacts power grid planning and operation seriously. Therefore, it is of great importance to make accurate prediction of the power generation of photovoltaic (PV system in advance. In order to improve the prediction accuracy, in this paper, a novel particle swarm optimization algorithm based multivariable grey theory model is proposed for short-term photovoltaic power generation volume forecasting. It is highlighted that, by integrating particle swarm optimization algorithm, the prediction accuracy of grey theory model is expected to be highly improved. In addition, large amounts of real data from two separate power stations in China are being employed for model verification. The experimental results indicate that, compared with the conventional grey model, the mean relative error in the proposed model has been reduced from 7.14% to 3.53%. The real practice demonstrates that the proposed optimization model outperforms the conventional grey model from both theoretical and practical perspectives.

  17. Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems

    International Nuclear Information System (INIS)

    Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung

    2012-01-01

    Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.

  18. Maximum Power Point Tracking Control of Photovoltaic Systems: A Polynomial Fuzzy Model-Based Approach

    DEFF Research Database (Denmark)

    Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan

    2018-01-01

    This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...

  19. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integration of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be

  20. Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

    DEFF Research Database (Denmark)

    Kohsri, Sompol; Meechai, Apichart; Prapainainar, Chaiwat

    2018-01-01

    , in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can......Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on a 24/7 demand basis, especially with increasing regional population in developing countries such as Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing....... Furthermore, the generator has to be always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) connecting with syngas is greater than solar PV and the charging time appears significantly shorter than that one. All possible combinations between an innovation and existing...

  1. Voltage stability issues in a distribution grid with large scale PV plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Alvaro Ruiz; Marinopoulos, Antonios; Reza, Muhamad; Srivastava, Kailash [ABB AB, Vaesteraas (Sweden). Corporate Research Center; Hertem, Dirk van [Katholieke Univ. Leuven, Heverlee (Belgium). ESAT-ELECTA

    2011-07-01

    Solar photovoltaics (PV) has become a competitive renewable energy source. The production of solar PV cells and panels has increased significantly, while the cost is reduced due to economics of scale and technological achievements in the field. At the same time, the increase in efficiency of PV power systems and high energy prices are expected to lead PV systems to grid parity in the coming decade. This is expected to boost even more the large scale implementation of PV power plants (utility scale PV) and therefore the impact of such large scale PV plants to power system needs to be studies. This paper investigates the voltage stability issues arising from the connection of a large PV power plant to the power grid. For this purpose, a 15 MW PV power plant was implemented into a distribution grid, modeled and simulated using DIgSILENT Power Factory. Two scenarios were developed: in the first scenario, active power injected into the grid by the PV power plants was varied and the resulted U-Q curve was analyzed. In the second scenario, the impact of connecting PV power plants to different points in the grid - resulting in different strength of the connection - was investigated. (orig.)

  2. Maximun power point tracker of photovoltaic s panels for stand alone systems

    International Nuclear Information System (INIS)

    Stoll, R; Manno, R

    2005-01-01

    The low energetic efficiency of photovoltaic s panels is known, in addition, due to the use of linear regulators, which dissipate an important bit of the generated energy, the efficiency of the photovoltaic systems is still smaller.Also, the I-V characteristic curve of the photovoltaic modules depends on the solar radiation and the own temperature; consequently, the maximum power point (Wp) changes permanently.In conclusion, to produce electricity with photovoltaic panels is very expensive. However due to preserve the environment this technology is widely used.With the purpose of optimizing the amount of energy produced by the photovoltaic system, two complementary methods are used.One is the Maximum Power Point Tracker (MPPT) system and the other one is the Solar Tracker system.The objective of this project is to reduce that cost increasing the amount of energy produced by the solar panels using a Maximum Power Point Tracker system.This device consists of a DC/DC buck converter of high performance, controlled by a PIC 16F873 micro controller; which carries out the conversions of the analogical signals of the solar array to digital signals (ADC), the PIC output digital signals to the PWM control of the power FET (DAC), and calculates the Duty Cycle (D) for the point of I-V curve where this product becomes maximum.Measurements for different loads and battery charges were made.With the obtained results, the comparisons with a conventional system were made, a greater cession of energy to the load is observed.The main conclusion of this work is: Using a MPPT device to making work the PV module during the greater possible time near the maximum power point, the efficiency of the photovoltaic systems can be increased

  3. Design of boat powered photovoltaic systems

    International Nuclear Information System (INIS)

    Syafaruddin; Galla, D; Ajami, W.A.F.A.

    2014-01-01

    The solar energy has high potential applications in Indonesia since the country is located close to the equatorial region that makes the sun is almost bright along the day. In this paper, the boat power photovoltaic system is proposed. Such design may promote new innovations technically and economically in water transportation system since the country demography is almost 75% surrounded by water. The electricity energy is harvested from the sun through the PV panel then stored in the battery by solar charge control mechanism in order to rotate the prime mover of the boat by means the DC motor. The shaft of the DC motor is directly connected to the boat propeller and the speed motor is regulated by the pulse width modulation (PWM) technique generated from the AVR microcontroller ATmega16. The final design is obtained that for the boat with the total weight of 531.1758 kg, it may operate for 1.26 hours with the knot speed of 3.11 when 2 PV panels of 50 W, 2 DC motor of 0.3 kW and battery of 100 Ah capacity are used with the overall efficiency performance not less than 87.4%. (author)

  4. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  5. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    Science.gov (United States)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  6. Practical load management - Peak shaving using photovoltaics

    International Nuclear Information System (INIS)

    Berger, W.

    2009-01-01

    This article takes a look at how photovoltaic (PV) power generation can be used in a practical way to meet peak demands for electricity. Advice is provided on how photovoltaics can provide peak load 'shaving' through the correlation between its production and the peak loads encountered during the day. The situation regarding feed-in tariffs in Italy is discussed, as are further examples of installations in Germany and Austria. Further, an initiative of the American Southern California Edison utility is discussed which foresees the installation of large PV plant on the roofs of commercial premises to provide local generation of peak energy and thus relieve demands on their power transportation network.

  7. Influence of demand patterns on the optimal orientation of photovoltaic systems

    NARCIS (Netherlands)

    Litjens, G. B.M.A.; Worrell, E.; van Sark, W. G.J.H.M.

    2017-01-01

    Photovoltaic (PV) systems are usually orientated to maximize annual energy yield. This may not optimize other system indicators, specifically: direct consumption of self-generated PV power, reduced feed-in power and annual revenue. Also, these indicators are influenced by the energy demand of a

  8. Explore the performance limit of a solar PV – thermochemical power generation system

    International Nuclear Information System (INIS)

    Li, Wenjia; Hao, Yong

    2017-01-01

    Highlights: •Theoretical net solar-to-electric efficiency of 51.5% is attainable. •Design of efficient PVT systems is governed by at least 5 key considerations. •Concentration ratio has the most pronounced influence on PVT system efficiency. •Efficient PV, low emissivity and high concentration deliver the best performance. -- Abstract: Performance limit of a solar hybrid power generation system integrating efficient photovoltaic (PV) cells and methanol thermal (T) decomposition is explored from a thermodynamic perspective within the capability of state-of-the-art technologies. This type of PVT system features potentially high “net solar-to-electric efficiency” in general, primarily resulting from a key difference in the design of the thermal part compared with conventional PVT systems, i.e. replacing heat engines by a thermochemical power generation module for thermal energy utilization. Key design parameters of the system, including PV cell type, emissivity, solar concentration ratio and solar concentrator type, are individually studied. A system combining all such optimized aspects is projected to achieve net solar-to-electric efficiencies up to 51.5%, after taking all major (e.g. optical, radiative) losses into consideration. This study reveals important insights and enriches understanding on design principles of efficient PVT systems aimed at comprehensive and effective utilization of solar energy.

  9. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  10. Second-Order Harmonic Reduction Technique for Photovoltaic Power Conditioning Systems Using a Proportional-Resonant Controller

    Directory of Open Access Journals (Sweden)

    Hae-Gwang Jeong

    2013-01-01

    Full Text Available This paper proposes a second-order harmonic reduction technique using a proportional-resonant (PR controller for a photovoltaic (PV power conditioning system (PCS. In a grid-connected single-phase system, inverters create a second-order harmonic at twice the fundamental frequency. A ripple component unsettles the operating points of the PV array and deteriorates the operation of the maximum power point tracking (MPPT technique. The second-order harmonic component in PV PCS is analyzed using an equivalent circuit of the DC/DC converter and the DC/AC inverter. A new feed-forward compensation technique using a PR controller for ripple reduction is proposed. The proposed algorithm is advantageous in that additional devices are not required and complex calculations are unnecessary. Therefore, this method is cost-effective and simple to implement. The proposed feed-forward compensation technique is verified by simulation and experimental results.

  11. An improved control method of battery energy storage system for hourly dispatch of photovoltaic power sources

    International Nuclear Information System (INIS)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M.A.

    2013-01-01

    Highlights: • Control of BES for smoothing and hourly dispatch of a PV farm output is developed. • Optimal control strategy for SOC and size of BES are evaluated using GA. • Effectiveness of the control system has been investigated for the case of Malaysia. • The proposed optimal SOC feedback controller has been found effective. • Payback calculations of BES investment is given to highlight the economic benefits. - Abstract: The effects of intermittent cloud and changes in temperature cause a randomly fluctuated output of a photovoltaic (PV) system. To mitigate the PV system impacts particularly on a weak electricity network, battery energy storage (BES) system is an effective means to smooth out the power fluctuations. Consequently, the net power injected to the electricity grid by PV and BES (PV/BES) systems can be dispatched smoothly such as on an hourly basis. This paper presents an improved control strategy for a grid-connected hybrid PV/BES systems for mitigating PV farm output power fluctuations. A feedback controller for BES state of charge is proposed, where the control parameters are optimized using genetic algorithm (GA). GA-based multi objective optimization utilizes the daily average PV farm output power profile which was obtained from simulation using the historical PV system input data of Malaysia. In this way, the optimal size for the BES is also determined to hourly dispatch a 1.2 MW PV farm. A case study for Malaysia is carried out to evaluate the effectiveness of the proposed control scheme using PSCAD/EMTDC software package. Furthermore, the validation of results of the proposed controller and BES size on the actual PV system output data are also given. Finally, a simple payback calculation is presented to study the economical aspects of the BES investment on the proposed mitigation strategy under Malaysian Feed-in Tariff program

  12. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  13. Photovoltaic module parameters acquisition model

    Energy Technology Data Exchange (ETDEWEB)

    Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk

    2014-09-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  14. Photovoltaic module parameters acquisition model

    International Nuclear Information System (INIS)

    Cibira, Gabriel; Koščová, Marcela

    2014-01-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model

  15. Photovoltaic materials: An analysis of emerging technology and markets

    International Nuclear Information System (INIS)

    1999-01-01

    Solar power has been around for more than a century, and photovoltaic cells have supplied power to US space flights and satellites since Vanguard I. Innovative materials, new processes, and new manufacturing techniques are bringing the price of PV power down to earth--opening up substantial opportunities to profit from this environmentally friendly energy source. This report from Technical Insights, takes a hard look at this rapidly emerging field. It discusses the current state-of-the-art in photovoltaic materials; what new processes and applications are showing the greatest commercial promise; what new markets are opening up; and who the key players are in the growing PV industry

  16. Photovoltaic systems in Indonesia

    International Nuclear Information System (INIS)

    Tjaroko, T.; Bakker, P. de

    2001-01-01

    The article discusses the reasons for the slow growth of the photovoltaic industry in Indonesia where more than 100 million people have no access to electricity, but there is an abundance of solar power. There should be considerable scope for solar home systems in particular. Barriers to expansion of the PV market have included the devaluation of the rupee and the failure of many government-initiated projects. It is concluded that at present, the purchasing power of individuals is insufficient for the potential PV market to expand

  17. Implementation of a PV lighting system based on DC-DC converter with intelligent controlled approach

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.-C.; Chuang, D.-J. [National Yunlin Univ. of Science and Technology, Douliou, Yunlin, Taiwan (China). Dept. of Electrical Engineering; Chuang, C.-W. [National Yunlin Univ. of Science and Technology, Douliou, Yunlin, Taiwan (China). Graduate School of Engineering Science and Technology

    2007-07-01

    Photovoltaic (PV) lighting systems for municipalities represent one of the largest cost effective markets for PVs. The installation cost of just one or two utility power poles can justify the initial cost of a PV lighting system. However, many previous PV lighting systems have experienced a number of component failures including premature charge controller, battery, and ballast illumination failures. This paper presented the design and implementation of a digital high performance photovoltaic lighting system based on a microcontroller. A high brightness light-emitting diode (HBLED), was used as it can work at very high efficiency with a specially designed lighting power module. The proposed system consisted of a photovoltaic module, a light emitting diode (LED) lighting module, a bi-directional buck-boost converter and a battery. The paper analysed battery charging methods and proposed a control strategy and hardware implementation. The dimming control methods for LED were also discussed and compared. The experimental results were also provided to verify the theoretical analysis and design procedure of a digital controlled photovoltaic lighting system. It was concluded that the experimental results verified the performance of the proposed photovoltaic lighting system. 8 refs., 1 tab., 18 figs.

  18. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  19. PV/T slates - Pilot project in Steinhausen; PV/T-Schiefer. Pilotprojekt Steinhausen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with a ventilated PV-tile system (PV/T-Slates) mounted on a garden shed in Steinhausen, Switzerland. The installation provides power and heat to the main house. The report describes the construction and operation of this pilot project and the results of measurements made on its electrical and thermal performance. The results of measurements made are presented in detail in graphical form and compared with the results of simulation. Suggestions are made for the optimisation of the system. Figures are presented on energy production and energy flows in graphical form.

  20. Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Konno, Daisuke; Utsugi, Yuta; Morel, Jorge

    2014-01-01

    Highlights: • Characteristics of a large-scale power plant using bifacial solar cell is described. • Conversion efficiency of bifacial photovoltaics obtained using 3D-CAD modeling. • Power supply of bifacial PV can be matched with demand by adjusting the orientation. - Abstract: Bifacial photovoltaics are widely investigated with the aim of reducing the amount of silicon used and increasing conversion efficiencies. The output power of bifacial photovoltaics depends on the quantity of solar radiation incident on the reverse face. Furthermore, controlling the orientation can distribute the times of peak power output in the morning and afternoon to better match the demand. In this study, the demand patterns of individual houses or the whole Hokkaido region were analyzed assuming the substitution of a conventional large-scale electric power system with one using bifacial photovoltaics. The supply–demand balances and electrical storage capacities were investigated. When comparing a large scale solar power plant (mega-solar power plant) using monofacial photovoltaics or vertical bifacial photovoltaics (in which the orientation could be adjusted), the supply–demand could be better balanced for individual houses in the latter case, thereby allowing the storage capacity to be reduced. A bifacial solar module was modeled by 3D-CAD (three dimensional computer aided design) and thermal fluid analysis. The module temperature distribution of bifacial photovoltaics was calculated with respect to the environmental conditions (wind flow, direct and diffuse solar radiation, etc.) and internal heat generation, as well as the orientation of the solar panels. Furthermore, the output power of bifacial photovoltaics can be easily obtained from the analysis result of modular temperature distribution and the relation between temperature and output power