WorldWideScience

Sample records for photogrammetric control measurements

  1. Analysis of accuracy in photogrammetric roughness measurements

    Science.gov (United States)

    Olkowicz, Marcin; Dąbrowski, Marcin; Pluymakers, Anne

    2017-04-01

    Regarding permeability, one of the most important features of shale gas reservoirs is the effective aperture of cracks opened during hydraulic fracturing, both propped and unpropped. In a propped fracture, the aperture is controlled mostly by proppant size and its embedment, and fracture surface roughness only has a minor influence. In contrast, in an unpropped fracture aperture is controlled by the fracture roughness and the wall displacement. To measure fracture surface roughness, we have used the photogrammetric method since it is time- and cost-efficient. To estimate the accuracy of this method we compare the photogrammetric measurements with reference measurements taken with a White Light Interferometer (WLI). Our photogrammetric setup is based on high resolution 50 Mpx camera combined with a focus stacking technique. The first step for photogrammetric measurements is to determine the optimal camera positions and lighting. We compare multiple scans of one sample, taken with different settings of lighting and camera positions, with the reference WLI measurement. The second step is to perform measurements of all studied fractures with the parameters that produced the best results in the first step. To compare photogrammetric and WLI measurements we regrid both data sets onto a regular 10 μm grid and determined the best fit, followed by a calculation of the difference between the measurements. The first results of the comparison show that for 90 % of measured points the absolute vertical distance between WLI and photogrammetry is less than 10 μm, while the mean absolute vertical distance is 5 μm. This proves that our setup can be used for fracture roughness measurements in shales.

  2. Photogrammetric Measurements of Heritage Objects

    Science.gov (United States)

    Tumeliene, E.; Nareiko, V.; Suziedelyte Visockiene, J.

    2017-12-01

    Cultural heritage is an invaluable example of human culture and creativity. The majority of them can become unstable or can be destroyed due to a combination of human and natural disturbances. In order to restore, preserve, and systematize data about architectural heritage objects, it is necessary to have geodetic, photogrammetric measurements of such data and to constantly monitor condition of the objects. The data of immovable cultural objects for many years are stored in photogrammetric data archives. Such archives have Germany, Lithuania, England and other countries. The article gives a brief introduction of the history of data archives formation and presents a photogrammetric and modern methods of modelling the spatial geometric properties of objects currently used to reveal immovable cultural properties and to evaluate geometric sizes. The pilot work was done with the Concept Capture simulation program that was developed by the Bentley company with photos of the Blessed Virgin Mary painting in Pivašiūnai of Trakai district. A shot from the ground with 12.4 MP resolution Pentax K-x camera was done using lenses with different focal lengths. The painting of the Blessed Virgin Mary is coordinated by 4 reference geodesic points and therefore after the modelling work it was possible to evaluate the accuracy of the created model. Based on the results of the spatial (3D) model, photo shooting and modelling recommendations are presented, the advantages of the new technology are distinguished.

  3. Application of stereo photogrammetric techniques for measuring African Elephants

    Directory of Open Access Journals (Sweden)

    A. J Hall-Martin

    1979-12-01

    Full Text Available Measurements of shoulder height and back length of African elephants were obtained by means of stereo photogrammetric techniques. A pair of Zeiss UMK 10/1318 cameras, mounted on a steel frame on the back of a vehicle, were used to photograph the elephants in the Addo Elephant National Park, Republic of South Africa. Several modifications of normal photogrammetry procedure applicable to the field situation (eg. control points and the computation of results (eg. relative orientation are briefly mentioned. Six elephants were immobilised after being photographed and the measurements obtained from them agreed within a range of 1 cm-10 cm with the photogrammetric measurements.

  4. Photogrammetric methods of measurement in industrial applications

    International Nuclear Information System (INIS)

    Godding, R.; Groene, A.; Heinrich, G.; Schneider, C.T.

    1993-01-01

    Methods for 3D measurement are required for very varied applications in the industrial field. This includes tasks of quality assurance and plant monitoring, among others. It should be possible to apply the process flexibly it should require as short interruptions of production as possible and should meet the required accuracies. These requirements can be met by photogrammetric methods of measurement. The article introduces these methods and shows their capabilities from various selected examples (eg: the replacement of large components in a pressurized water reactor, and aircraft measurements (orig./DG) [de

  5. Photogrammetric Measurements in Fixed Wing Uav Imagery

    Science.gov (United States)

    Gülch, E.

    2012-07-01

    Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System) by Germap, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. A comparison is made to results from other open source multi-ray matching software to handle the issue of the described flight conditions. Flights over the same area at different times have been compared to each other. The major objective was here to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration. This clearly requests a usage of GCPs for all

  6. PERFORMANCE EVALUATION OF THERMOGRAPHIC CAMERAS FOR PHOTOGRAMMETRIC MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    N. Yastikli

    2013-05-01

    Full Text Available The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 × 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 × 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was

  7. Performance Evaluation of Thermographic Cameras for Photogrammetric Measurements

    Science.gov (United States)

    Yastikli, N.; Guler, E.

    2013-05-01

    The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 × 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 × 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was modelled efficiently

  8. Highly accurate photogrammetric measurements of the Planck reflectors

    Science.gov (United States)

    Amiri Parian, Jafar; Gruen, Armin; Cozzani, Alessandro

    2017-11-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000'000 and 1:400'000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  9. Using Photogrammetric UAV Measurements as Support for Classical Topographical Measurements in Order to Obtain the Topographic Plan for Urban Areas

    Directory of Open Access Journals (Sweden)

    Elemer Emanuel SUBA

    2017-11-01

    Full Text Available This article aims to highlight the benefits of UAV photogrammetric measurements in addition to classical ones. It will also deal with the processing and integration of the point cloud, respectively the digital elevation model in topo-cadastral works. The main purpose of this paper is to compare the results obtained using the UAV photogrammetric measurements with the results obtained by classical methods. It will briefly present the classical measurements made with the total station. In the present project, the closed-circuit traverse and the supported on the endings traverse were made using known coordinate points. Determining the coordinates of the points used for the traverses was done by GNSS methods. The area on which the measurements were made is 67942m2 and is covered by 31 determined station points. From these points, 13 were used as ground control points, respectively components of the aero-triangulation network and 17 points were used to control the obtained results by comparing their coordinates obtained by classical methods with those obtained by the UAV photogrammetric method. It was intended that the constraint points of the aero triangulation to be uniformly distributed on the studied surface.

  10. Structural Analysis of NASA's ULDB using Photogrammetric Measurements

    Science.gov (United States)

    Young, Leyland; Garde, Gabriel; Cathey, Henry

    The National Aeronautics and Space Administration (NASA) Balloon Program Office (BPO) has been developing a super-pressure Ultra Long Duration Balloon (ULDB) for constant altitude and longer flight times. The development of the ULDB has progressed in many areas that are significant to NASA's desired goals. However, there has been a re-occurring anomaly of the ULDB called a cleft, which prevents the balloon from properly deploying at float altitudes. Over the years, there has been an influx of hypotheses and speculations to the cause of the cleft formation. Significant changes were made to the design paradigm of the ULDB to address the clefting issue. It was hypothesized that the design philosophy of fore-shortening the tendons relative to the polyethylene film was causing the cleft formation, thus the fore-shortened scheme was removed in the design process. The latest design concept removed the fore-shortening and produced a one to one matching of the tendons and film. Consequently, in 2006, a six million cubic foot (MCF) balloon was designed with the new concept of zero fore-shortening and clefted as it reached its float altitude. This 6 MCF cleft proved that the clefting phenomenon was not properly understood and there was more to the problem than just fore-shortening. Most analytical analyses conducted on the ULDB towards the clefting issue focused on pressure stabilities. It was shown through several finite element analyses that the new design concept produces a stable balloon when pressurized; thus, pressurized stability was believed to be a sufficient measure to indicate if a balloon would cleft or not cleft. Eventually, the 6 MCF balloon that clefted in 2006 showed that the pressurized stability analysis is subjective and is not applicable in predicting a cleft formation. Moreover, the analytical pressurized stability is conducted on a fully deployed balloon, whereas, the clefting phenomena occurs as part of the deployment process, and is clearly seen during

  11. The Development of an UAV Borne Direct Georeferenced Photogrammetric Platform for Ground Control Point Free Applications

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Chu

    2012-07-01

    Full Text Available To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. In this study, a fixed-wing Unmanned Aerial Vehicle (UAV-based spatial information acquisition platform that can operate in Ground Control Point (GCP free environments is developed and evaluated. The proposed UAV based photogrammetric platform has a Direct Georeferencing (DG module that includes a low cost Micro Electro Mechanical Systems (MEMS Inertial Navigation System (INS/ Global Positioning System (GPS integrated system. The DG module is able to provide GPS single frequency carrier phase measurements for differential processing to obtain sufficient positioning accuracy. All necessary calibration procedures are implemented. Ultimately, a flight test is performed to verify the positioning accuracy in DG mode without using GCPs. The preliminary results of positioning accuracy in DG mode illustrate that horizontal positioning accuracies in the x and y axes are around 5 m at 300 m flight height above the ground. The positioning accuracy of the z axis is below 10 m. Therefore, the proposed platform is relatively safe and inexpensive for collecting critical spatial information for urgent response such as disaster relief and assessment applications where GCPs are not available.

  12. A Refrigerated Web Camera for Photogrammetric Video Measurement inside Biomass Boilers and Combustion Analysis

    Directory of Open Access Journals (Sweden)

    Enrique Granada

    2011-01-01

    Full Text Available This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  13. A refrigerated web camera for photogrammetric video measurement inside biomass boilers and combustion analysis.

    Science.gov (United States)

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  14. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Science.gov (United States)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  15. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    Science.gov (United States)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune

  16. THE OPTIMIZATION OF TECHNOLOGICAL MINING PARAMETERS IN QUARRY FOR DIMENSION STONE BLOCKS QUALITY IMPROVEMENT BASED ON PHOTOGRAMMETRIC TECHNIQUES OF MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Ruslan Sobolevskyi

    2018-01-01

    Full Text Available This research focuses on patterns of change in the dimension stone commodity blocks quality production on previously identifi ed and measured geometrical parameters of natural cracks, modelling and planning out the fi nal dimension of stone products and fi nished products based on the proposed digital photogrammetric techniques. The optimal parameters of surveying are investigated and the infl uence of surveying distance to length and crack area is estimated. Rational technological parameters of dimension stone blocks production are taken into account.

  17. Combination of three-dimensional laser scanning and digital photogrammetric shoot for fixing and measurement of architectural monuments

    OpenAIRE

    S.V. Tiurin; S.G. Tihonov

    2010-01-01

    Several variants of architectural monument fixing using photogrammetric method are considered: black-and-white and colour three-dimensional point models; black-and-white and colour orthophotomaps in format SPO; black-and-white and colour orthophotomaps in standard raster formats. For different aims authors recommend corresponding data formats.

  18. Uncertainty modelling of real-time observation of a moving object: photogrammetric measurements

    Science.gov (United States)

    Ulrich, Thomas

    2015-04-01

    Photogrametric systems are widely used in the field of industrial metrology to measure kinematic tasks such as tracking robot movements. In order to assess spatiotemporal deviations of a kinematic movement, it is crucial to have a reliable uncertainty of the kinematic measurements. Common methods to evaluate the uncertainty in kinematic measurements include approximations specified by the manufactures, various analytical adjustment methods and Kalman filters. Here a hybrid system estimator in conjunction with a kinematic measurement model is applied. This method can be applied to processes which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. Additionally, it has been shown that the approach is in accordance with GUM (Guide to the Expression of Uncertainty in Measurement). The approach is compared to the Kalman filter using simulated data to achieve an overall error calculation. Furthermore, the new approach is used for the analysis of a rotating system as this system has both a constant and a variable turn rate. As the new approach reduces overshoots it is more appropriate for analysing kinematic processes than the Kalman filter. In comparison with the manufacturer’s approximations, the new approach takes account of kinematic behaviour, with an improved description of the real measurement process. Therefore, this approach is well-suited to the analysis of kinematic processes with unknown changes in kinematic behaviour.

  19. Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures

    Science.gov (United States)

    Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.

    2012-01-01

    Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.

  20. Reprocessing Close Range Terrestrial and Uav Photogrammetric Projects with the Dbat Toolbox for Independent Verification and Quality Control

    Science.gov (United States)

    Murtiyoso, A.; Grussenmeyer, P.; Börlin, N.

    2017-11-01

    Photogrammetry has recently seen a rapid increase in many applications, thanks to developments in computing power and algorithms. Furthermore with the democratisation of UAVs (Unmanned Aerial Vehicles), close range photogrammetry has seen more and more use due to the easier capability to acquire aerial close range images. In terms of photogrammetric processing, many commercial software solutions exist in the market that offer results from user-friendly environments. However, in most commercial solutions, a black-box approach to photogrammetric calculations is often used. This is understandable in light of the proprietary nature of the algorithms, but it may pose a problem if the results need to be validated in an independent manner. In this paper, the Damped Bundle Adjustment Toolbox (DBAT) developed for Matlab was used to reprocess some photogrammetric projects that were processed using the commercial software Agisoft Photoscan. Several scenarios were experimented on in order to see the performance of DBAT in reprocessing terrestrial and UAV close range photogrammetric projects in several configurations of self-calibration setting. Results show that DBAT managed to reprocess PS projects and generate metrics which can be useful for project verification.

  1. REPROCESSING CLOSE RANGE TERRESTRIAL AND UAV PHOTOGRAMMETRIC PROJECTS WITH THE DBAT TOOLBOX FOR INDEPENDENT VERIFICATION AND QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    A. Murtiyoso

    2017-11-01

    Full Text Available Photogrammetry has recently seen a rapid increase in many applications, thanks to developments in computing power and algorithms. Furthermore with the democratisation of UAVs (Unmanned Aerial Vehicles, close range photogrammetry has seen more and more use due to the easier capability to acquire aerial close range images. In terms of photogrammetric processing, many commercial software solutions exist in the market that offer results from user-friendly environments. However, in most commercial solutions, a black-box approach to photogrammetric calculations is often used. This is understandable in light of the proprietary nature of the algorithms, but it may pose a problem if the results need to be validated in an independent manner. In this paper, the Damped Bundle Adjustment Toolbox (DBAT developed for Matlab was used to reprocess some photogrammetric projects that were processed using the commercial software Agisoft Photoscan. Several scenarios were experimented on in order to see the performance of DBAT in reprocessing terrestrial and UAV close range photogrammetric projects in several configurations of self-calibration setting. Results show that DBAT managed to reprocess PS projects and generate metrics which can be useful for project verification.

  2. PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. A. Knyaz

    2016-06-01

    Full Text Available The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  3. CO-REGISTRATION OF PHOTOGRAMMETRIC AND LIDAR DATA: METHODOLOGY AND CASE STUDY

    Directory of Open Access Journals (Sweden)

    Mwafag Ghanma

    2004-07-01

    Full Text Available Registration activities combine data from different sources in order to attain higher accuracy and derive more information than available from one source. The increasing availability of a wide variety of sensors capable of capturing high quality and complementary data requires parallel efforts for developing accurate and robust registration techniques. Currently, photogrammetric and LIDAR systems are being incorporated in a wide spectrum of mapping applica¬tions such as city modeling, surface reconstruction, and object recognition. Photogrammetric processing of overlapping imagery provides accurate information regarding object space break-lines in addition to an explicit semantic description of the photographed objects. On the other hand, LIDAR systems supply dense geometric surface information in the form of non-selective points. Considering the properties of photogrammetric and LIDAR data, it is clear that the two technologies provide complementary information. However, the synergic characteristics of both systems can be fully utilized only after successful registration of the photogrammetric and LIDAR data relative to a common reference frame. The registration methodology has to deal with three issues: registration primitives, transformation function, and similarity measure. This paper presents two methodologies for utilizing straight-line features derived from both datasets as the registration primitives. The first methodology directly incorporates the LIDAR lines as control information in the photogrammetric triangulation. The second methodology starts by generating a photogrammetric model relative to an arbitrary datum. Then, LIDAR features are used as control information for the absolute orientation of the photogram¬metric model. In addition to the registration methodologies, the paper presents a comparative analysis between two approaches for extracting linear features from raw and processed/interpolated LIDAR data. Also, a comparative

  4. Photogrammetric measurement of two-dimensional small-amplitude waves; Hakuso suiryu no nijigen bisho shinpukuha no shashin sokuryoho ni yoru sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, F. [Tottori University, Tottori (Japan). Faculty of Engineering; Urata, K. [Hitachi Zosen Corp., Osaka (Japan); Kishi, H.

    1996-01-25

    A photogrammetric measurement method for two-dimensional small-amplitude waves were proposed where a diffuse reflection spot is used as an index point. An equation used to obtain the still water depth was introduced. This equation was confirmed experimentally by using a laser displacement sensor which is equivalent to a camera-index-point system in principle. To confirm the applicability of this method to waves form measurement, numerical simulations of measurement by this method were carried out for sinusoidal waves and a composed wave. The results of these simulations show that the small-amplitude waves can be measured with sufficient accuracy when the water surface inclination is small. 4 refs., 14 figs., 1 tab.

  5. Dynamic photogrammetric calibration of industrial robots

    Science.gov (United States)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  6. An in vitro comparison of photogrammetric and conventional complete-arch implant impression techniques.

    Science.gov (United States)

    Bergin, Junping Ma; Rubenstein, Jeffrey E; Mancl, Lloyd; Brudvik, James S; Raigrodski, Ariel J

    2013-10-01

    Conventional impression techniques for recording the location and orientation of implant-supported, complete-arch prostheses are time consuming and prone to error. The direct optical recording of the location and orientation of implants, without the need for intermediate transfer steps, could reduce or eliminate those disadvantages. The objective of this study was to assess the feasibility of using a photogrammetric technique to record the location and orientation of multiple implants and to compare the results with those of a conventional complete-arch impression technique. A stone cast of an edentulous mandibular arch containing 5 implant analogs was fabricated to create a master model. The 3-dimensional (3D) spatial orientations of implant analogs on the master model were measured with a coordinate measuring machine (CMM) (control). Five definitive casts were made from the master model with a splinted impression technique. The positions of the implant analogs on the 5 casts were measured with a NobelProcera scanner (conventional method). Prototype optical targets were attached to the master model implant analogs, and 5 sets of images were recorded with a digital camera and a standardized image capture protocol. Dimensional data were imported into commercially available photogrammetry software (photogrammetric method). The precision and accuracy of the 2 methods were compared with a 2-sample t test (α=.05) and a 95% confidence interval. The location precision (standard error of measurement) for CMM was 3.9 µm (95% CI 2.7 to 7.1), for photogrammetry, 5.6 µm (95% CI 3.4 to 16.1), and for the conventional method, 17.2 µm (95% CI 10.3 to 49.4). The average measurement error was 26.2 µm (95% CI 15.9 to 36.6) for the conventional method and 28.8 µm (95% CI 24.8 to 32.9) for the photogrammetric method. The overall measurement accuracy was not significantly different when comparing the conventional to the photogrammetric method (mean difference = -2.6 µm, 95% CI

  7. Photogrammetric fingerprint unwrapping

    Science.gov (United States)

    Paar, Gerhard; del Pilar Caballo Perucha, Maria; Bauer, Arnold; Nauschnegg, Bernhard

    2008-04-01

    Fingerprints are important biometric cues. Compared to conventional fingerprint sensors the use of contact-free stereoscopic image acquisition of the front-most finger segment has a set of advantages: Finger deformation is avoided, the entire relevant area for biometric use is covered, some technical aspects like sensor maintenance and cleaning are facilitated, and access to a three-dimensional reconstruction of the covered area is possible. We describe a photogrammetric workflow for nail-to-nail fingerprint reconstruction: A calibrated sensor setup with typically 5 cameras and dedicated illumination acquires adjacent stereo pairs. Using the silhouettes of the segmented finger a raw cylindrical model is generated. After preprocessing (shading correction, dust removal, lens distortion correction), each individual camera texture is projected onto the model. Image-to-image matching on these pseudo ortho images and dense 3D reconstruction obtains a textured cylindrical digital surface model with radial distances around the major axis and a grid size in the range of 25-50 µm. The model allows for objective fingerprint unwrapping and novel fingerprint matching algorithms since 3D relations between fingerprint features are available as additional cues. Moreover, covering the entire region with relevant fingerprint texture is particularly important for establishing a comprehensive forensic database. The workflow has been implemented in portable C and is ready for industrial exploitation. Further improvement issues are code optimization, unwrapping method, illumination strategy to avoid highlights and to improve the initial segmentation, and the comparison of the unwrapping result to conventional fingerprint acquisition technology.

  8. HIGH PERFORMANCE PHOTOGRAMMETRIC PROCESSING ON COMPUTER CLUSTERS

    Directory of Open Access Journals (Sweden)

    V. N. Adrov

    2012-07-01

    Full Text Available Most cpu consuming tasks in photogrammetric processing can be done in parallel. The algorithms take independent bits as input and produce independent bits as output. The independence of bits comes from the nature of such algorithms since images, stereopairs or small image blocks parts can be processed independently. Many photogrammetric algorithms are fully automatic and do not require human interference. Photogrammetric workstations can perform tie points measurements, DTM calculations, orthophoto construction, mosaicing and many other service operations in parallel using distributed calculations. Distributed calculations save time reducing several days calculations to several hours calculations. Modern trends in computer technology show the increase of cpu cores in workstations, speed increase in local networks, and as a result dropping the price of the supercomputers or computer clusters that can contain hundreds or even thousands of computing nodes. Common distributed processing in DPW is usually targeted for interactive work with a limited number of cpu cores and is not optimized for centralized administration. The bottleneck of common distributed computing in photogrammetry can be in the limited lan throughput and storage performance, since the processing of huge amounts of large raster images is needed.

  9. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view

    Science.gov (United States)

    Percoco, Gianluca; Sánchez Salmerón, Antonio J.

    2015-09-01

    The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features. In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP. At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process. The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques.

  10. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view

    International Nuclear Information System (INIS)

    Percoco, Gianluca; Sánchez Salmerón, Antonio J

    2015-01-01

    The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features.In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP.At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process.The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques. (paper)

  11. Camera Calibration of Stereo Photogrammetric System with One-Dimensional Optical Reference Bar

    International Nuclear Information System (INIS)

    Xu, Q Y; Ye, D; Che, R S; Qi, X; Huang, Y

    2006-01-01

    To carry out the precise measurement of large-scale complex workpieces, accurately calibration of the stereo photogrammetric system has becoming more and more important. This paper proposed a flexible and reliable camera calibration of stereo photogrammetric system based on quaternion with one-dimensional optical reference bar, which has three small collinear infrared LED marks and the lengths between these marks have been precisely calibration. By moving the optical reference bar at a number of locations/orientations over the measurement volume, we calibrate the stereo photogrammetric systems with the geometric constraint of the optical reference bar. The extrinsic parameters calibration process consists of linear parameters estimation based on quaternion and nonlinear refinement based on the maximum likelihood criterion. Firstly, we linear estimate the extrinsic parameters of the stereo photogrameetric systems based on quaternion. Then with the quaternion results as the initial values, we refine the extrinsic parameters through maximum likelihood criterion with the Levenberg-Marquardt Algorithm. In the calibration process, we can automatically control the light intensity and optimize the exposure time to get uniform intensity profile of the image points at different distance and obtain higher S/N ratio. The experiment result proves that the calibration method proposed is flexible, valid and obtains good results in the application

  12. Photogrammetric Documentation of Regions of Interest at Autopsy—A Pilot Study

    DEFF Research Database (Denmark)

    Slot, Liselott Kristina; Larsen, Peter Kastmand; Lynnerup, Niels

    2014-01-01

    In this pilot study, the authors tested whether photogrammetry can replace or supplement physical measurements made during autopsies and, based on such measurements, whether virtual computer models may be applicable in forensic reconstructions. Photogrammetric and physical measurements of markers...... denoting wounds on five volunteers were compared. Virtual models of the volunteers were made, and the precision of the markers' locations on the models was tested. Twelve of 13 mean differences between photogrammetric and physical measurements were below 1 cm, which indicates that the photogrammetric...

  13. Photogrammetric Processing Using ZY-3 Satellite Imagery

    Science.gov (United States)

    Kornus, W.; Magariños, A.; Pla, M.; Soler, E.; Perez, F.

    2015-03-01

    This paper evaluates the stereoscopic capacities of the Chinese sensor ZiYuan-3 (ZY-3) for the generation of photogrammetric products. The satellite was launched on January 9, 2012 and carries three high-resolution panchromatic cameras viewing in forward (22º), nadir (0º) and backward direction (-22º) and an infrared multi-spectral scanner (IRMSS), which is slightly looking forward (6º). The ground sampling distance (GSD) is 2.1m for the nadir image, 3.5m for the two oblique stereo images and 5.8m for the multispectral image. The evaluated ZY-3 imagery consists of a full set of threefold-stereo and a multi-spectral image covering an area of ca. 50km x 50km north-west of Barcelona, Spain. The complete photogrammetric processing chain was executed including image orientation, the generation of a digital surface model (DSM), radiometric image correction, pansharpening, orthoimage generation and digital stereo plotting. All 4 images are oriented by estimating affine transformation parameters between observed and nominal RPC (rational polynomial coefficients) image positions of 17 ground control points (GCP) and a subsequent calculation of refined RPC. From 10 independent check points RMS errors of 2.2m, 2.0m and 2.7m in X, Y and H are obtained. Subsequently, a DSM of 5m grid spacing is generated fully automatically. A comparison with the Lidar data results in an overall DSM accuracy of approximately 3m. In moderate and flat terrain higher accuracies in the order of 2.5m and better are achieved. In a next step orthoimages from the high resolution nadir image and the multispectral image are generated using the refined RPC geometry and the DSM. After radiometric corrections a fused high resolution colour orthoimage with 2.1m pixel size is created using an adaptive HSL method. The pansharpen process is performed after the individual geocorrection due to the different viewing angles between the two images. In a detailed analysis of the colour orthoimage artifacts are

  14. Photogrammetric 3D reconstruction using mobile imaging

    Science.gov (United States)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  15. Comparison of ATLAS Tilecal MODULE No 8 high-precision metrology measurement results obtained by laser (JINR) and photogrammetric (CERN) methods

    CERN Document Server

    Batusov, V; Gayde, J C; Khubua, J I; Lasseur, C; Lyablin, M V; Miralles-Verge, L; Nessi, Marzio; Rusakovitch, N A; Sissakian, A N; Topilin, N D

    2002-01-01

    The high-precision assembly of large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research programme in the TeV-beams. The creation of an adequate survey and control metrology method is an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE No. 8 (6 m, 22 tons) which were obtained by laser and by photogrammetry methods. The comparative data analysis demonstrates the measurements agreement within +or-70 mu m. It means, these two clearly independent methods can be combined and lead to the rise of a new-generation engineering culture: high-precision metrology when precision assembling of large scale massive objects. (3 refs).

  16. Comparison of ATLAS tilecal module No. 8 high-precision metrology measurement results obtained by laser (JINR) and photogrammetric (CERN) methods

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, Yu.; Gayde, J.C.

    2002-01-01

    The high-precision assembly of large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research programme in the TeV-beams. The creation of an adequate survey and control metrology method is an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE No. 8 (6 m, 22 tons) which were obtained by laser and by photogrammetry methods. The comparative data analysis demonstrates the measurements agreement within ± 70 μm. It means, these two clearly independent methods can be combined and lead to the rise of a new-generation engineering culture: high-precision metrology when precision assembling of large scale massive objects

  17. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    Science.gov (United States)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  18. PHOTOGRAMMETRIC MISSION PLANNER FOR RPAS

    Directory of Open Access Journals (Sweden)

    F. Gandor

    2015-08-01

    Full Text Available This paper presents a development of an open-source flight planning tool for Remotely Piloted Aircraft Systems (RPAS that is dedicated to high-precision photogrammetric mapping. This tool contains planning functions that are usually available in professional mapping systems for manned aircrafts as well as new features related to GPS signal masking in complex (e.g. mountainous terrain. The application is based on the open-source Java SDK (Software Development Kit World Wind from NASA that contains the main geospatial components facilitating the development itself. Besides standard planning functions known from other mission planners, we mainly focus on additional features dealing with safety and accuracy, such as GPS quality assessment. The need for the development came as a response for unifying mission planning across different platforms (e.g. rotary or fixed wing operating over terrain of different complexity. A special attention is given to the user interface, that is intuitive to use and cost-effective with respect to computer resources.

  19. Photogrammetric portrayal of Mars topography.

    Science.gov (United States)

    Wu, S.S.C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author

  20. Investigating the Suitability of Mirrorless Cameras in Terrestrial Photogrammetric Applications

    Science.gov (United States)

    Incekara, A. H.; Seker, D. Z.; Delen, A.; Acar, A.

    2017-11-01

    Digital single-lens reflex cameras (DSLR) which are commonly referred as mirrored cameras are preferred for terrestrial photogrammetric applications such as documentation of cultural heritage, archaeological excavations and industrial measurements. Recently, digital cameras which are called as mirrorless systems that can be used with different lens combinations have become available for using similar applications. The main difference between these two camera types is the presence of the mirror mechanism which means that the incoming beam towards the lens is different in the way it reaches the sensor. In this study, two different digital cameras, one with a mirror (Nikon D700) and the other without a mirror (Sony a6000), were used to apply close range photogrammetric application on the rock surface at Istanbul Technical University (ITU) Ayazaga Campus. Accuracy of the 3D models created by means of photographs taken with both cameras were compared with each other using difference values between field and model coordinates which were obtained after the alignment of the photographs. In addition, cross sections were created on the 3D models for both data source and maximum area difference between them is quite small because they are almost overlapping. The mirrored camera has become more consistent in itself with respect to the change of model coordinates for models created with photographs taken at different times, with almost the same ground sample distance. As a result, it has been determined that mirrorless cameras and point cloud produced using photographs obtained from these cameras can be used for terrestrial photogrammetric studies.

  1. PHOTOGRAMMETRIC EVALUATION OF MULTI-TEMPORAL FIXED WING UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    E. Gülch

    2012-09-01

    Full Text Available Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System by Germatics, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. Investigations have been performed to improve the image quality estimates by the PAMS software and extend it to whole images. This gives the user a reliable basis when deciding on rejecting images with low quality for the follow-up process. Flights over the same area at different times have been compared to each other. The major objective was first to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. In a second stage the results are compared to GPS measurements on the ground. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for

  2. Control Measure Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA Control Measure Dataset is a collection of documents describing air pollution control available to regulated facilities for the control and abatement of air...

  3. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    Science.gov (United States)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  4. PC-assisted translation of photogrammetric papers

    Science.gov (United States)

    Güthner, Karlheinz; Peipe, Jürgen

    A PC-based system for machine translation of photogrammetric papers from the English into the German language and vice versa is described. The computer-assisted translating process is not intended to create a perfect interpretation of a text but to produce a rough rendering of the content of a paper. Starting with the original text, a continuous data flow is effected into the translated version by means of hardware (scanner, personal computer, printer) and software (OCR, translation, word processing, DTP). An essential component of the system is a photogrammetric microdictionary which is being established at present. It is based on several sources, including e.g. the ISPRS Multilingual Dictionary.

  5. Photogrammetric Applications of Immersive Video Cameras

    Science.gov (United States)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  6. Precision of a photogrammetric method to perform 3D wound measurements compared to standard 2D photographic techniques in the horse.

    Science.gov (United States)

    Labens, R; Blikslager, A

    2013-01-01

    Methods of 3D wound imaging in man play an important role in monitoring of healing and determination of the prognosis. Standard photographic assessments in equine wound management consist of 2D analyses, which provide little quantitative information on the wound bed. 3D imaging of equine wounds is feasible using principles of stereophotogrammetry. 3D measurements differ significantly and are more precise than results with standard 2D assessments. Repeated specialised photographic imaging of 4 clinical wounds left to heal by second intention was performed. The intraoperator variability in measurements due to imaging and 3D processing was compared to that of a standard 2D technique using descriptive statistics and multivariate repeated measures ANOVA. Using a custom made imaging system, 3D analyses were successfully performed. Area and circumference measurements were significantly different between imaging modalities. The intraoperator variability of 3D measurements was up to 2.8 times less than that of 2D results. On average, the maximum discrepancy between repeated measurements was 5.8% of the mean for 3D and 17.3% of the mean for 2D assessments. The intraoperator repeatability of 3D wound measurements based on principles of stereophotogrammetry is significantly increased compared to that of a standard 2D photographic technique indicating it may be a useful diagnostic and monitoring tool. The equine granulation bed plays an important role in equine wound healing. When compared to 2D analyses 3D monitoring of the equine wound bed allows superior quantitative characterisation, contributing to clinical and experimental investigations by offering potential new parameters. © 2012 EVJ Ltd.

  7. Auditing measurement control programs

    International Nuclear Information System (INIS)

    Roberts, F.P.; Brouns, R.J.

    1979-10-01

    Requirements and a general procedure for auditing measurement control programs used in special nuclear material accounting are discussed. The areas of measurement control that need to be examined are discussed and a suggested checklist is included to assist in the preparation and performance of the audit

  8. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  9. PHOTOGRAMMETRIC ANALYSIS OF HISTORICAL IMAGE REPOSITORIES FOR VIRTUAL RECONSTRUCTION IN THE FIELD OF DIGITAL HUMANITIES

    Directory of Open Access Journals (Sweden)

    F. Maiwald

    2017-02-01

    Full Text Available Historical photographs contain high density of information and are of great importance as sources in humanities research. In addition to the semantic indexing of historical images based on metadata, it is also possible to reconstruct geometric information about the depicted objects or the camera position at the time of the recording by employing photogrammetric methods. The approach presented here is intended to investigate (semi- automated photogrammetric reconstruction methods for heterogeneous collections of historical (city photographs and photographic documentation for the use in the humanities, urban research and history sciences. From a photogrammetric point of view, these images are mostly digitized photographs. For a photogrammetric evaluation, therefore, the characteristics of scanned analog images with mostly unknown camera geometry, missing or minimal object information and low radiometric and geometric resolution have to be considered. In addition, these photographs have not been created specifically for documentation purposes and so the focus of these images is often not on the object to be evaluated. The image repositories must therefore be subjected to a preprocessing analysis of their photogrammetric usability. Investigations are carried out on the basis of a repository containing historical images of the Kronentor ("crown gate" of the Dresden Zwinger. The initial step was to assess the quality and condition of available images determining their appropriateness for generating three-dimensional point clouds from historical photos using a structure-from-motion evaluation (SfM. Then, the generated point clouds were assessed by comparing them with current measurement data of the same object.

  10. Measurement control program

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A measurement control program for the model plant is described. The discussion includes the technical basis for such a program, the application of measurement control principles to each measurement, and the use of special experiments to estimate measurement error parameters for difficult-to-measure materials. The discussion also describes the statistical aspects of the program, and the documentation procedures used to record, maintain, and process the basic data. The purpose of the session is to enable participants to: (1) understand the criteria for this type of a measurement control program; (2) understand the kinds of physical standards required for the various measurement processes, e.g., weighing, analytical, NDA; (3) understand the need for and importance of a measurement control program; (4) understand the need for special experiments to provide an improved basis for the measurement of difficult-to-measure materials; (5) understand the general scope of the program's statistical aspects; and (6) understand the basis and scope of the documentation procedures

  11. Inter-Ethnic/Racial Facial Variations: A Systematic Review and Bayesian Meta-Analysis of Photogrammetric Studies

    OpenAIRE

    Wen, Yi Feng; Wong, Hai Ming; Lin, Ruitao; Yin, Guosheng; McGrath, Colman

    2015-01-01

    Background Numerous facial photogrammetric studies have been published around the world. We aimed to critically review these studies so as to establish population norms for various angular and linear facial measurements; and to determine inter-ethnic/racial facial variations. Methods and Findings A comprehensive and systematic search of PubMed, ISI Web of Science, Embase, and Scopus was conducted to identify facial photogrammetric studies published before December, 2014. Subjects of eligible ...

  12. PHOTOGRAMMETRIC APPROACH IN DETERMINING BEAM-COLUMN CONNECTION DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Ali Koken

    Full Text Available In accordance with the advances in technology, displacement calculation techniques are ever developing. Photogrammetry has become preferable in some new disciplines with the advances in the image processing methods. In this study, the authors have used two different measurement techniques to determine the angles of rotation in beam-column connections that are subjected to reversible cyclic loading. The first of these is the method that is widely used, the conventional method in structural mechanics experiments, where Linear Variable Differential Transformers (LVDTs are utilized; and the second is the photogrammetric measurement technique. The rotation angles were determined using these techniques in a total of ten steel beam-column connection experiments. After discussing the test procedures of the aforementioned methods, the results were presented. It was observed that the rotation angles measured by each method were very close to each other. It was concluded that the photogrammetric measurement technique could be used as an alternative to conventional methods, where electronic LVDTs are used.

  13. Application Possibility of Smartphone as Payload for Photogrammetric Uav System

    Science.gov (United States)

    Yun, M. H.; Kim, J.; Seo, D.; Lee, J.; Choi, C.

    2012-07-01

    Smartphone can not only be operated under 3G network environment anytime and anyplace but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study is aimed to assess the possibility of smartphone as a payload for photogrammetric UAV system. Prior to such assessment, a smartphone-based photogrammetric UAV system application was developed, through which real-time image, location and attitude data was obtained using smartphone under both static and dynamic conditions. Subsequently the accuracy assessment on the location and attitude data obtained and sent by this system was conducted. The smartphone images were converted into ortho-images through image triangulation. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration. In case IO parameters were taken into account in the static experiment, the results from triangulation for any smartphone type were within 1.5 pixel (RMSE), which was improved at least by 35% compared to when IO parameters were not taken into account. On the contrary, the improvement effect of considering IO parameters on accuracy in triangulation for smartphone images in dynamic experiment was not significant compared to the static experiment. It was due to the significant impact of vibration and sudden attitude change of UAV on the actuator for automatic focus control within the camera built in smartphone under the dynamic condition. This cause appears to have a negative impact on the image-based DEM generation. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  14. INVESTIGATING THE SUITABILITY OF MIRRORLESS CAMERAS IN TERRESTRIAL PHOTOGRAMMETRIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. H. Incekara

    2017-11-01

    Full Text Available Digital single-lens reflex cameras (DSLR which are commonly referred as mirrored cameras are preferred for terrestrial photogrammetric applications such as documentation of cultural heritage, archaeological excavations and industrial measurements. Recently, digital cameras which are called as mirrorless systems that can be used with different lens combinations have become available for using similar applications. The main difference between these two camera types is the presence of the mirror mechanism which means that the incoming beam towards the lens is different in the way it reaches the sensor. In this study, two different digital cameras, one with a mirror (Nikon D700 and the other without a mirror (Sony a6000, were used to apply close range photogrammetric application on the rock surface at Istanbul Technical University (ITU Ayazaga Campus. Accuracy of the 3D models created by means of photographs taken with both cameras were compared with each other using difference values between field and model coordinates which were obtained after the alignment of the photographs. In addition, cross sections were created on the 3D models for both data source and maximum area difference between them is quite small because they are almost overlapping. The mirrored camera has become more consistent in itself with respect to the change of model coordinates for models created with photographs taken at different times, with almost the same ground sample distance. As a result, it has been determined that mirrorless cameras and point cloud produced using photographs obtained from these cameras can be used for terrestrial photogrammetric studies.

  15. Object extraction in photogrammetric computer vision

    Science.gov (United States)

    Mayer, Helmut

    This paper discusses state and promising directions of automated object extraction in photogrammetric computer vision considering also practical aspects arising for digital photogrammetric workstations (DPW). A review of the state of the art shows that there are only few practically successful systems on the market. Therefore, important issues for a practical success of automated object extraction are identified. A sound and most important powerful theoretical background is the basis. Here, we particularly point to statistical modeling. Testing makes clear which of the approaches are suited best and how useful they are for praxis. A key for commercial success of a practical system is efficient user interaction. As the means for data acquisition are changing, new promising application areas such as extremely detailed three-dimensional (3D) urban models for virtual television or mission rehearsal evolve.

  16. Photogrammetric approach to automated checking of DTMs

    DEFF Research Database (Denmark)

    Potucková, Marketa

    2005-01-01

    Geometrically accurate digital terrain models (DTMs) are essential for orthoimage production and many other applications. Collecting reference data or visual inspection are reliable but time consuming and therefore expensive methods for finding errors in DTMs. In this paper, a photogrammetric...... approach to automated checking and improving of DTMs is evaluated. Corresponding points in two overlapping orthoimages are found by means of area based matching. Provided the image orientation is correct, discovered displacements correspond to DTM errors. Improvements of the method regarding its...

  17. Study of the Integration of LIDAR and Photogrammetric Datasets by in Situ Camera Calibration and Integrated Sensor Orientation

    Science.gov (United States)

    Mitishita, E.; Costa, F.; Martins, M.

    2017-05-01

    Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  18. STUDY OF THE INTEGRATION OF LIDAR AND PHOTOGRAMMETRIC DATASETS BY IN SITU CAMERA CALIBRATION AND INTEGRATED SENSOR ORIENTATION

    Directory of Open Access Journals (Sweden)

    E. Mitishita

    2017-05-01

    Full Text Available Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO approach was performed using Interior Orientation Parameter (IOP values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  19. Influence of Digital Camera Errors on the Photogrammetric Image Processing

    Science.gov (United States)

    Sužiedelytė-Visockienė, Jūratė; Bručas, Domantas

    2009-01-01

    The paper deals with the calibration of digital camera Canon EOS 350D, often used for the photogrammetric 3D digitalisation and measurements of industrial and construction site objects. During the calibration data on the optical and electronic parameters, influencing the distortion of images, such as correction of the principal point, focal length of the objective, radial symmetrical and non-symmetrical distortions were obtained. The calibration was performed by means of the Tcc software implementing the polynomial of Chebichev and using a special test-field with the marks, coordinates of which are precisely known. The main task of the research - to determine how parameters of the camera calibration influence the processing of images, i. e. the creation of geometric model, the results of triangulation calculations and stereo-digitalisation. Two photogrammetric projects were created for this task. In first project the non-corrected and in the second the corrected ones, considering the optical errors of the camera obtained during the calibration, images were used. The results of analysis of the images processing is shown in the images and tables. The conclusions are given.

  20. Quality control system preparation for photogrammetric and laser scanning missions of Spanish national plan of aerial orthophotogpaphy (PNOA). (Polish Title: Opracowanie systemu kontroli jakości realizacji nalotów fotogrametrycznych i skaningowych dla hiszpańskiego narodowego planu ortofotomapy lotniczej (PNOA))

    Science.gov (United States)

    Rzonca, A.

    2013-12-01

    The paper presents the state of the art of quality control of photogrammetric and laser scanning data captured by airborne sensors. The described subject is very important for photogrammetric and LiDAR project execution, because the data quality a prior decides about the final product quality. On the other hand, precise and effective quality control process allows to execute the missions without wide margin of safety, especially in case of the mountain areas projects. For introduction, the author presents theoretical background of the quality control, basing on his own experience, instructions and technical documentation. He describes several variants of organization solutions. Basically, there are two main approaches: quality control of the captured data and the control of discrepancies of the flight plan and its results of its execution. Both of them are able to use test of control and analysis of the data. The test is an automatic algorithm controlling the data and generating the control report. Analysis is a less complicated process, that is based on documentation, data and metadata manual check. The example of quality control system for large area project was presented. The project is being realized periodically for the territory of all Spain and named National Plan of Aerial Orthophotography (Plan Nacional de Ortofotografía Aérea, PNOA). The system of the internal control guarantees its results soon after the flight and informs the flight team of the company. It allows to correct all the errors shortly after the flight and it might stop transferring the data to another team or company, for further data processing. The described system of data quality control contains geometrical and radiometrical control of photogrammetric data and geometrical control of LiDAR data. According to all specified parameters, it checks all of them and generates the reports. They are very helpful in case of some errors or low quality data. The paper includes the author experience

  1. Photogrammetric mapping using unmanned aerial vehicle

    Science.gov (United States)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  2. Global analytic treatment of terrestrial photogrammetric networks

    CERN Document Server

    Mayoud, M

    1980-01-01

    In order to solve certain special CERN metrology problems, analytical terrestrial photogrammetry may have some advantages which are first discussed along with their drawbacks and limitations. In this application, it is necessary to carry out a rigorous and global adjustment of the observations and simultaneously process all the perspective ray bundles. The basic principles, the least squares solution and the stochastic analysis of the results are presented. However, for the CERN project, one wonders if the production of digital theodolites is going to reduce the advantages of the photogrammetric method. (12 refs).

  3. Calibration of action cameras for photogrammetric purposes.

    Science.gov (United States)

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-09-18

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  4. Calibration of Action Cameras for Photogrammetric Purposes

    Directory of Open Access Journals (Sweden)

    Caterina Balletti

    2014-09-01

    Full Text Available The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a easy to handle, (b capable of performing under extreme conditions and more importantly (c able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  5. Evaluation of terrestrial photogrammetric point clouds derived from thermal imagery

    Science.gov (United States)

    Metcalf, Jeremy P.; Olsen, Richard C.

    2016-05-01

    Computer vision and photogrammetric techniques have been widely applied to digital imagery producing high density 3D point clouds. Using thermal imagery as input, the same techniques can be applied to infrared data to produce point clouds in 3D space, providing surface temperature information. The work presented here is an evaluation of the accuracy of 3D reconstruction of point clouds produced using thermal imagery. An urban scene was imaged over an area at the Naval Postgraduate School, Monterey, CA, viewing from above as with an airborne system. Terrestrial thermal and RGB imagery were collected from a rooftop overlooking the site using a FLIR SC8200 MWIR camera and a Canon T1i DSLR. In order to spatially align each dataset, ground control points were placed throughout the study area using Trimble R10 GNSS receivers operating in RTK mode. Each image dataset is processed to produce a dense point cloud for 3D evaluation.

  6. Toward Automatic Georeferencing of Archival Aerial Photogrammetric Surveys

    Science.gov (United States)

    Giordano, S.; Le Bris, A.; Mallet, C.

    2018-05-01

    Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes over the past 100 years. They provide a relatively dense temporal sampling of the territories with very high spatial resolution. Such time series image analysis is a mandatory baseline for a large variety of long-term environmental monitoring studies. The current bottleneck for accurate comparison between epochs is their fine georeferencing step. No fully automatic method has been proposed yet and existing studies are rather limited in terms of area and number of dates. State-of-the art shows that the major challenge is the identification of ground references: cartographic coordinates and their position in the archival images. This task is manually performed, and extremely time-consuming. This paper proposes to use a photogrammetric approach, and states that the 3D information that can be computed is the key to full automation. Its original idea lies in a 2-step approach: (i) the computation of a coarse absolute image orientation; (ii) the use of the coarse Digital Surface Model (DSM) information for automatic absolute image orientation. It only relies on a recent orthoimage+DSM, used as master reference for all epochs. The coarse orthoimage, compared with such a reference, allows the identification of dense ground references and the coarse DSM provides their position in the archival images. Results on two areas and 5 dates show that this method is compatible with long and dense archival aerial image series. Satisfactory planimetric and altimetric accuracies are reported, with variations depending on the ground sampling distance of the images and the location of the Ground Control Points.

  7. TOWARD AUTOMATIC GEOREFERENCING OF ARCHIVAL AERIAL PHOTOGRAMMETRIC SURVEYS

    Directory of Open Access Journals (Sweden)

    S. Giordano

    2018-05-01

    Full Text Available Images from archival aerial photogrammetric surveys are a unique and relatively unexplored means to chronicle 3D land-cover changes over the past 100 years. They provide a relatively dense temporal sampling of the territories with very high spatial resolution. Such time series image analysis is a mandatory baseline for a large variety of long-term environmental monitoring studies. The current bottleneck for accurate comparison between epochs is their fine georeferencing step. No fully automatic method has been proposed yet and existing studies are rather limited in terms of area and number of dates. State-of-the art shows that the major challenge is the identification of ground references: cartographic coordinates and their position in the archival images. This task is manually performed, and extremely time-consuming. This paper proposes to use a photogrammetric approach, and states that the 3D information that can be computed is the key to full automation. Its original idea lies in a 2-step approach: (i the computation of a coarse absolute image orientation; (ii the use of the coarse Digital Surface Model (DSM information for automatic absolute image orientation. It only relies on a recent orthoimage+DSM, used as master reference for all epochs. The coarse orthoimage, compared with such a reference, allows the identification of dense ground references and the coarse DSM provides their position in the archival images. Results on two areas and 5 dates show that this method is compatible with long and dense archival aerial image series. Satisfactory planimetric and altimetric accuracies are reported, with variations depending on the ground sampling distance of the images and the location of the Ground Control Points.

  8. Community tools for cartographic and photogrammetric processing of Mars Express HRSC images

    Science.gov (United States)

    Kirk, Randolph L.; Howington-Kraus, Elpitha; Edmundson, Kenneth L.; Redding, Bonnie L.; Galuszka, Donna M.; Hare, Trent M.; Gwinner, K.; Wu, B.; Di, K.; Oberst, J.; Karachevtseva, I.

    2017-01-01

    necessary to split observations into blocks of constant exposure time, greatly increasing the effort needed to control the images and collect DTMs. Here, we describe a substantially improved HRSC processing capability that incorporates sensor models with varying line timing in the current ISIS3 system (Sides 2017) and SOCET SET. This enormously reduces the work effort for processing most images and eliminates the artifacts that arose from segmenting them. In addition, the software takes advantage of the continuously evolving capabilities of ISIS3 and the improved image matching module NGATE (Next Generation Automatic Terrain Extraction, incorporating area and feature based algorithms, multi-image and multi-direction matching) of SOCET SET, thus greatly reducing the need for manual editing of DTM errors. We have also developed a procedure for geodetically controlling the images to Mars Orbiter Laser Altimeter (MOLA) data by registering a preliminary stereo topographic model to MOLA by using the point cloud alignment (pc_align) function of the NASA Ames Stereo Pipeline (ASP; Moratto et al. 2010). This effectively converts inter-image tiepoints into ground control points in the MOLA coordinate system. The result is improved absolute accuracy and a significant reduction in work effort relative to manual measurement of ground control. The ISIS and ASP software used are freely available; SOCET SET, is a commercial product. By the end of 2017 we expect to have ported our SOCET SET HRSC sensor model to the Community Sensor Model (CSM; Community Sensor Model Working Group 2010; Hare and Kirk 2017) standard utilized by the successor photogrammetric system SOCET GXP that is currently offered by BAE. In early 2018, we are also working with BAE to release the CSM source code under a BSD or MIT open source license. 

  9. ACCURACY ASSESSMENT OF UNDERWATER PHOTOGRAMMETRIC THREE DIMENSIONAL MODELLING FOR CORAL REEFS

    Directory of Open Access Journals (Sweden)

    T. Guo

    2016-06-01

    Full Text Available Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values. Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  10. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    Science.gov (United States)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  11. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    Science.gov (United States)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  12. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvel, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Clark, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gregg Protection Services, Lynchburg, VA (United States)

    2012-09-01

    An essential element in an effective nuclear materials control and accountability (MC&A) program is the measurement of the nuclear material as it is received, moved, processed and shipped. Quality measurement systems and methodologies determine the accuracy of the accountability values. Implementation of a measurement control program is essential to ensure that the measurement systems and methodologies perform as expected. A measurement control program also allows for a determination of the level of confidence in the accounting values.

  13. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvel, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Clark, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gregg Protection Services, Lynchburg, VA (United States)

    2011-12-01

    An essential element in an effective nuclear materials control and accountability (MC&A) program is the measurement of the nuclear material as it is received, moved, processed and shipped. Quality measurement systems and methodologies determine the accuracy of the accountability values. Implementation of a measurement control program is essential to ensure that the measurement systems and methodologies perform as expected. A measurement control program also allows for a determination of the level of confidence in the ac counting values.

  14. IceBridge DMS L3 Photogrammetric DEM

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge DMS L3 Photogrammetric DEM (IODMS3) data set contains gridded digital elevation models and orthorectified images of Greenland derived from the Digital...

  15. USE OF A LIGHT UAV AND PHOTOGRAMMETRIC TECHNIQUES TO STUDY THE EVOLUTION OF A LANDSLIDE IN JAÉN (SOUTHERN SPAIN

    Directory of Open Access Journals (Sweden)

    T. Fernández

    2015-08-01

    Full Text Available This paper presents a methodology for slope instability monitoring using photogrammetric techniques with very high resolution images from an unmanned aerial vehicle (UAV. An unstable area located in La Guardia (Jaen, Southern Spain, where an active mud flow has been identified, was surveyed between 2012 and 2014 by means of four UAV flights. These surveys were also compared with those data from a previous conventional aerial photogrammetric and LiDAR survey. The UAV was an octocopter equipped with GPS, inertial units and a mirrorless interchangeable-lens camera. The flight height was 90 m, which allowed covering an area of about 250 x 100 m with a ground pixel size of 2.5 cm. The orientation of the UAV flights were carried out by means of ground control points measured with GPS, but the previous aerial photogrammetric/LiDAR flight was oriented by means of direct georeferencing with in flight positioning and inertial data, although some common ground control points were used to adjust all flights in the same reference system. The DSMs of all surveys were obtained by automatic image correlation and then the differential models were calculated, allowing estimate changes in the surface. At the same time, orthophotos were obtained so horizontal and vertical displacements between relevant points were registered. Significant displacements were observed between some campaigns (some centimeters on the vertical and meters on the horizontal. Finally, we have analyzed the relation of displacements to rainfalls in recent years in the area, finding a significant temporal correlation between the two variables.

  16. Use of a Light Uav and Photogrammetric Techniques to Study the Evolution of a Landslide in JAÉN (southern Spain)

    Science.gov (United States)

    Fernández, T.; Pérez, J. L.; Cardenal, F. J.; López, A.; Gómez, J. M.; Colomo, C.; Delgado, J.; Sánchez, M.

    2015-08-01

    This paper presents a methodology for slope instability monitoring using photogrammetric techniques with very high resolution images from an unmanned aerial vehicle (UAV). An unstable area located in La Guardia (Jaen, Southern Spain), where an active mud flow has been identified, was surveyed between 2012 and 2014 by means of four UAV flights. These surveys were also compared with those data from a previous conventional aerial photogrammetric and LiDAR survey. The UAV was an octocopter equipped with GPS, inertial units and a mirrorless interchangeable-lens camera. The flight height was 90 m, which allowed covering an area of about 250 x 100 m with a ground pixel size of 2.5 cm. The orientation of the UAV flights were carried out by means of ground control points measured with GPS, but the previous aerial photogrammetric/LiDAR flight was oriented by means of direct georeferencing with in flight positioning and inertial data, although some common ground control points were used to adjust all flights in the same reference system. The DSMs of all surveys were obtained by automatic image correlation and then the differential models were calculated, allowing estimate changes in the surface. At the same time, orthophotos were obtained so horizontal and vertical displacements between relevant points were registered. Significant displacements were observed between some campaigns (some centimeters on the vertical and meters on the horizontal). Finally, we have analyzed the relation of displacements to rainfalls in recent years in the area, finding a significant temporal correlation between the two variables.

  17. Non-metric close range photogrammetric system for mapping geologic structures in mines

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, V D

    1976-01-01

    A stereographic close-range photogrammetric method of obtaining structural data for mine roof stability analyses is described. Stereo pairs were taken with 70 mm and 35 mm non-metric cameras. Photo co-ordinates were measured with a stereo-comparator and reduced by the direct linear transformation method. Field trials demonstrate that the technique is sufficiently accurate for geological work and is a practical method of mapping.

  18. A generic approach for photogrammetric survey using a six-rotor unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Tahar, K N; Mohd, W M N W; Ahmad, A; Akib, W A A W M

    2014-01-01

    This paper discusses a rapid production of slope mapping using multi-rotor unmanned aerial vehicle (UAV). The objective of this study is to determine the accuracy of the photogrammetric results based on novel method of multi-rotor UAV images as well as to analyze the slope error distribution that are obtained from the UAV images. This study only concentrates on multi-rotor UAV which also known as Hexacopter. An operator can control the speed of multi-rotor UAV during flight mission. Several ground control points and checkpoints were established using Real Time Kinematic Global Positioning System (RTK- GPS) at the slope area. Ground control points were used in exterior orientation during image processing in sequence to transform image coordinates into local coordinate system. Checkpoints were established at the slope area for accuracy assessment. A digital camera, Sony NEX-5N was used for image acquisition of slope area from UAV platforms. The digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. All acquired images went through photogrammetric processing including interior orientation, exterior orientation and bundle adjustment using photogrammetric software. Photogrammetric results such as digital elevation model, and digital orthophoto including slope map were assessed. UAV is able to acquire data within short period of time with low budget compared to the previous methods such as satellite images and airborne laser scanner. Analysis on slope analysis and error distribution analysis are discussed in this paper to determine the quality of slope map in the area of interest. In summary, multi-rotor UAV is suited in slope mapping studies

  19. DISTA: a portable software solution for 3D compilation of photogrammetric image blocks

    Science.gov (United States)

    Boochs, Frank; Mueller, Hartmut; Neifer, Markus

    2001-04-01

    A photogrammetric evaluation system used for the precise determination of 3D-coordinates from blocks of large metric images will be presented. First, the motivation for the development is shown, which is placed in the field of processing tools for photogrammetric evaluation tasks. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing a complete processing chain for all elementary photogrammetric tasks ranging from preparatory steps over the formation of image blocks up to the automatic and interactive 3D-evaluation within digital stereo models. The presented system is based on PC-hardware equipped with off the shelf graphics boards and uses an object oriented design. The specific needs of a flexible measuring system and the corresponding requirements which have to be met by the system are shown. Important aspects as modularity and hardware independence and their value for the solution are shown. The design of the software will be presented and first results with a prototype realised on a powerful PC-hardware configuration will be featured

  20. A Robust Photogrammetric Processing Method of Low-Altitude UAV Images

    Directory of Open Access Journals (Sweden)

    Mingyao Ai

    2015-02-01

    Full Text Available Low-altitude Unmanned Aerial Vehicles (UAV images which include distortion, illumination variance, and large rotation angles are facing multiple challenges of image orientation and image processing. In this paper, a robust and convenient photogrammetric approach is proposed for processing low-altitude UAV images, involving a strip management method to automatically build a standardized regional aerial triangle (AT network, a parallel inner orientation algorithm, a ground control points (GCPs predicting method, and an improved Scale Invariant Feature Transform (SIFT method to produce large number of evenly distributed reliable tie points for bundle adjustment (BA. A multi-view matching approach is improved to produce Digital Surface Models (DSM and Digital Orthophoto Maps (DOM for 3D visualization. Experimental results show that the proposed approach is robust and feasible for photogrammetric processing of low-altitude UAV images and 3D visualization of products.

  1. SCALABLE PHOTOGRAMMETRIC MOTION CAPTURE SYSTEM “MOSCA”: DEVELOPMENT AND APPLICATION

    Directory of Open Access Journals (Sweden)

    V. A. Knyaz

    2015-05-01

    Full Text Available Wide variety of applications (from industrial to entertainment has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  2. THE MEASURABILITY OF CONTROLLING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    V. Laval

    2017-04-01

    Full Text Available The urge to increase the performance of company processes is ongoing. Surveys indicate however, that many companies do not measure the controlling performance with a defined set of key performance indicators. This paper will analyze three categories of controlling key performance indicators based on their degree of measurability and their impact on the financial performance of a company. Potential measures to optimize the performance of the controlling department will be outlined and put in a logical order. The aligning of the controlling activity with the respective management expectation will be discussed as a key success factor of this improvement project.

  3. MODULAR BUNDLE ADJUSTMENT FOR PHOTOGRAMMETRIC COMPUTATIONS

    Directory of Open Access Journals (Sweden)

    N. Börlin

    2018-05-01

    Full Text Available In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013 based on the Photogrammetric and Computer Vision interpretations of Brown (1971 lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  4. Modular Bundle Adjustment for Photogrammetric Computations

    Science.gov (United States)

    Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.

    2018-05-01

    In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  5. Redundant measurements for controlling errors

    International Nuclear Information System (INIS)

    Ehinger, M.H.; Crawford, J.M.; Madeen, M.L.

    1979-07-01

    Current federal regulations for nuclear materials control require consideration of operating data as part of the quality control program and limits of error propagation. Recent work at the BNFP has revealed that operating data are subject to a number of measurement problems which are very difficult to detect and even more difficult to correct in a timely manner. Thus error estimates based on operational data reflect those problems. During the FY 1978 and FY 1979 R and D demonstration runs at the BNFP, redundant measurement techniques were shown to be effective in detecting these problems to allow corrective action. The net effect is a reduction in measurement errors and a significant increase in measurement sensitivity. Results show that normal operation process control measurements, in conjunction with routine accountability measurements, are sensitive problem indicators when incorporated in a redundant measurement program

  6. Optimal control of quantum measurement

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel; Wilhelm, Frank [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany)

    2015-07-01

    Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a measurement pulse for superconducting phase qubits. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.

  7. Radiation measurements and quality control

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1977-01-01

    Accurate measurements are essential to research leading to a successful radiation process and to the commissioning of the process and the facility. On the other hand, once the process is in production, the importance to quality control of measuring radiation quantities (i.e., absorbed dose, dose rate, dose distribution) rather than various other parameters of the process (i.e. conveyor speed, dwell time, radiation field characteristics, product dimensions) is not clearly established. When the safety of the product is determined by the magnitude of the administered dose, as in radiation sterilization, waste control, or food preservation, accuracy and precision of the measurement of the effective dose are vital. Since physical dose measurements are usually simpler, more reliable and reproducible than biological testing of the product, there is a trend toward using standardized dosimetry for quality control of some processes. In many industrial products, however, such as vulcanized rubber, textiles, plastics, coatings, films, wire and cable, the effective dose can be controlled satisfactorily by controlling process variables or by product testing itself. In the measurement of radiation dose profiles by dosimetry, it is necessary to have suitable dose meter calibrations, to account for sources of error and imprecision, and to use correct statistical procedures in specifying dwell times or conveyor speeds and source and product parameters to achieve minimum and maximum doses within specifications. (author)

  8. The analysis of the accuracy of spatial models using photogrammetric software: Agisoft Photoscan and Pix4D

    Directory of Open Access Journals (Sweden)

    Barbasiewicz Adrianna

    2018-01-01

    Full Text Available This article was created as a result of research conducted within the master thesis. The purpose of the measurements was to analyze the accuracy of the positioning of points by computer programs. Selected software was a specialized computer software dedicated to photogrammetric work. For comparative purposes it was decided to use tools with similar functionality. As the basic parameters that affect the results selected the resolution of the photos on which the key points were searched. In order to determine the location of the determined points, it was decided to follow the photogrammetric resection rule. In order to automate the measurement, the measurement session planning was omitted. The coordinates of the points collected by the tachymetric measure were used as a reference system. The resulting deviations and linear displacements oscillate in millimeters. The visual aspects of the cloud points have also been briefly analyzed.

  9. The analysis of the accuracy of spatial models using photogrammetric software: Agisoft Photoscan and Pix4D

    Science.gov (United States)

    Barbasiewicz, Adrianna; Widerski, Tadeusz; Daliga, Karol

    2018-01-01

    This article was created as a result of research conducted within the master thesis. The purpose of the measurements was to analyze the accuracy of the positioning of points by computer programs. Selected software was a specialized computer software dedicated to photogrammetric work. For comparative purposes it was decided to use tools with similar functionality. As the basic parameters that affect the results selected the resolution of the photos on which the key points were searched. In order to determine the location of the determined points, it was decided to follow the photogrammetric resection rule. In order to automate the measurement, the measurement session planning was omitted. The coordinates of the points collected by the tachymetric measure were used as a reference system. The resulting deviations and linear displacements oscillate in millimeters. The visual aspects of the cloud points have also been briefly analyzed.

  10. CALIBRATION OF LOW COST DIGITAL CAMERA USING DATA FROM SIMULTANEOUS LIDAR AND PHOTOGRAMMETRIC SURVEYS

    Directory of Open Access Journals (Sweden)

    E. Mitishita

    2012-07-01

    Full Text Available Digital photogrammetric products from the integration of imagery and lidar datasets are a reality nowadays. When the imagery and lidar surveys are performed together and the camera is connected to the lidar system, a direct georeferencing can be applied to compute the exterior orientation parameters of the images. Direct georeferencing of the images requires accurate interior orientation parameters to perform photogrammetric application. Camera calibration is a procedure applied to compute the interior orientation parameters (IOPs. Calibration researches have established that to obtain accurate IOPs, the calibration must be performed with same or equal condition that the photogrammetric survey is done. This paper shows the methodology and experiments results from in situ self-calibration using a simultaneous images block and lidar dataset. The calibration results are analyzed and discussed. To perform this research a test field was fixed in an urban area. A set of signalized points was implanted on the test field to use as the check points or control points. The photogrammetric images and lidar dataset of the test field were taken simultaneously. Four strips of flight were used to obtain a cross layout. The strips were taken with opposite directions of flight (W-E, E-W, N-S and S-N. The Kodak DSC Pro SLR/c digital camera was connected to the lidar system. The coordinates of the exposition station were computed from the lidar trajectory. Different layouts of vertical control points were used in the calibration experiments. The experiments use vertical coordinates from precise differential GPS survey or computed by an interpolation procedure using the lidar dataset. The positions of the exposition stations are used as control points in the calibration procedure to eliminate the linear dependency of the group of interior and exterior orientation parameters. This linear dependency happens, in the calibration procedure, when the vertical images and

  11. Examination of the Compatibility of the Photogrammetric Method with the Phenomenon of Mora Projection in the Evaluation of Scoliosis

    Directory of Open Access Journals (Sweden)

    Justyna Drzał-Grabiec

    2014-01-01

    Full Text Available Introduction. The aim of this study was to evaluate the compatibility of external measurements of parameters characterizing scoliosis using the photogrammetric method. Material. The study involved 120 children between the ages of 7 and 11 years in Podkarpackie (Poland. Method. Measurements of body posture characteristics were performed using the photogrammetric method with mora projection. Each person was examined twice, once by two different therapists, with a time lapse of 20 minutes in between examinations. Results. High accuracy and no statistical significance were found among different measurements of asymmetry parameters characterizing the shoulder blades and hips. Regularities were also found in the characteristic measurements of curves of scoliosis. The POSTI parameter showed a significant variation and lack of compatibility of results. Conclusions. (1 The photogrammetric method used to assess the pathological changes caused by scoliosis gives significant results in terms of parameters characterizing the position of the shoulder blades and shoulders, as well as pelvis rotation. (2 High compliance measurements are also characterized by the length of the right and left arcs of scoliosis.

  12. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle

    International Nuclear Information System (INIS)

    Udin, W S; Ahmad, A

    2014-01-01

    Photogrammetry is the earliest technique used to collect data for topographic mapping. The recent development in aerial photogrammetry is the used of large format digital aerial camera for producing topographic map. The aerial photograph can be in the form of metric or non-metric imagery. The cost of mapping using aerial photogrammetry is very expensive. In certain application, there is a need to map small area with limited budget. Due to the development of technology, small format aerial photogrammetry technology has been introduced and offers many advantages. Currently, digital map can be extracted from digital aerial imagery of small format camera mounted on light weight platform such as unmanned aerial vehicle (UAV). This study utilizes UAV system for large scale stream mapping. The first objective of this study is to investigate the use of light weight rotary-wing UAV for stream mapping based on different flying height. Aerial photograph were acquired at 60% forward lap and 30% sidelap specifications. Ground control points and check points were established using Total Station technique. The digital camera attached to the UAV was calibrated and the recovered camera calibration parameters were then used in the digital images processing. The second objective is to determine the accuracy of the photogrammetric output. In this study, the photogrammetric output such as stereomodel in three dimensional (3D), contour lines, digital elevation model (DEM) and orthophoto were produced from a small stream of 200m long and 10m width. The research output is evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the finding, sub-meter accuracy is achieved and the RMSE value decreases as the flying height increases. The difference is relatively small. Finally, this study shows that UAV is very useful platform for obtaining aerial photograph and subsequently used for photogrammetric mapping and other applications

  13. Angular photogrammetric analysis of the soft-tissue facial profile of Indian adults

    Directory of Open Access Journals (Sweden)

    K Saravana Pandian

    2018-01-01

    Full Text Available Introduction: Soft-tissue analysis has become an important component of orthodontic diagnosis and treatment planning. Photographic evaluation of an orthodontic patient is a very close representation of the appearance of the person. The previously established norms for soft-tissue analysis will vary for different ethnic groups. Thus, there is a need to develop soft-tissue facial profile norms pertaining to Indian ethnic groups. Aim and Objectives: The aim of this study is to establish the angular photogrammetric standards of soft-tissue facial profile for Indian males and females and also to compare sexual dimorphism present between them. Materials and Methods: The lateral profile photographs of 300 random participants (150 males and 150 females between ages 18 and 25 years were taken and analyzed using FACAD tracing software. Inclusion criteria were angles Class I molar occlusion with acceptable crowding and proclination, normal growth and development with well-aligned dental arches, and full complements of permanent teeth irrespective of third molar status. This study was conducted in Indian population, and samples were taken from various cities across India. Descriptive statistical analysis was carried out, and sexual dimorphism was evaluated by Student's t-test between males and females. Results: The results of the present study showed statistically significant (P < 0.05 gender difference in 5 parameters out of 12 parameters in Indian population. Conclusion: In the present study, soft-tissue facial measurements were established by means of photogrammetric analysis to facilitate orthodontists to carry out more quantitative evaluation and make disciplined decisions. The mean values obtained can be used for comparison with records of participants with the same characteristics by following this photogrammetric technique.

  14. Comparison of parameters characterizing lumbar lordosis in radiograph and photogrammetric examination of adults.

    Science.gov (United States)

    Drzał-Grabiec, Justyna; Truszczyńska, Aleksandra; Tarnowski, Adam; Płaszewski, Maciej

    2015-01-01

    The purpose of this study was to test validity of photogrammetry compared with radiography as a method of measuring the Cobb angle and the size of anterior-posterior spine curvatures in adults. The study included 50 volunteers, 23 men and 27 women whose mean age was 52.6 years. The average weight of the subjects was 81.3 kg, average body height was 172.0 cm, and the average body mass index was 27.4. Based on radiologic examination, the length and depth of lumbar lordosis were determined and the size of the Cobb angle of lumbar scoliosis. After the radiologic examination, a photogrammetric test was performed for each subject with the projection moire phenomenon. The Pearson correlation found statistically significant associations concerning the length of lordosis (P lordosis indicated a strong trend (P = .063). This study found that the moire method of photogrammetric measurement produced similar findings to radiographic measurements in determining size of the Cobb angle and the length of lumbar lordosis. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  15. Community Tools for Cartographic and Photogrammetric Processing of Mars Express HRSC Images

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Edmundson, K.; Redding, B.; Galuszka, D.; Hare, T.; Gwinner, K.

    2017-07-01

    necessary to split observations into blocks of constant exposure time, greatly increasing the effort needed to control the images and collect DTMs. Here, we describe a substantially improved HRSC processing capability that incorporates sensor models with varying line timing in the current ISIS3 system (Sides 2017) and SOCET SET. This enormously reduces the work effort for processing most images and eliminates the artifacts that arose from segmenting them. In addition, the software takes advantage of the continuously evolving capabilities of ISIS3 and the improved image matching module NGATE (Next Generation Automatic Terrain Extraction, incorporating area and feature based algorithms, multi-image and multi-direction matching) of SOCET SET, thus greatly reducing the need for manual editing of DTM errors. We have also developed a procedure for geodetically controlling the images to Mars Orbiter Laser Altimeter (MOLA) data by registering a preliminary stereo topographic model to MOLA by using the point cloud alignment (pc_align) function of the NASA Ames Stereo Pipeline (ASP; Moratto et al. 2010). This effectively converts inter-image tiepoints into ground control points in the MOLA coordinate system. The result is improved absolute accuracy and a significant reduction in work effort relative to manual measurement of ground control. The ISIS and ASP software used are freely available; SOCET SET, is a commercial product. By the end of 2017 we expect to have ported our SOCET SET HRSC sensor model to the Community Sensor Model (CSM; Community Sensor Model Working Group 2010; Hare and Kirk 2017) standard utilized by the successor photogrammetric system SOCET GXP that is currently offered by BAE. In early 2018, we are also working with BAE to release the CSM source code under a BSD or MIT open source license. We illustrate current HRSC processing capabilities with three examples, of which the first two come from the DTM comparison of 2007. Candor Chasma (h1235_0001) was a near

  16. COMMUNITY TOOLS FOR CARTOGRAPHIC AND PHOTOGRAMMETRIC PROCESSING OF MARS EXPRESS HRSC IMAGES

    Directory of Open Access Journals (Sweden)

    R. L. Kirk

    2017-07-01

    , it was necessary to split observations into blocks of constant exposure time, greatly increasing the effort needed to control the images and collect DTMs. Here, we describe a substantially improved HRSC processing capability that incorporates sensor models with varying line timing in the current ISIS3 system (Sides 2017 and SOCET SET. This enormously reduces the work effort for processing most images and eliminates the artifacts that arose from segmenting them. In addition, the software takes advantage of the continuously evolving capabilities of ISIS3 and the improved image matching module NGATE (Next Generation Automatic Terrain Extraction, incorporating area and feature based algorithms, multi-image and multi-direction matching of SOCET SET, thus greatly reducing the need for manual editing of DTM errors. We have also developed a procedure for geodetically controlling the images to Mars Orbiter Laser Altimeter (MOLA data by registering a preliminary stereo topographic model to MOLA by using the point cloud alignment (pc_align function of the NASA Ames Stereo Pipeline (ASP; Moratto et al. 2010. This effectively converts inter-image tiepoints into ground control points in the MOLA coordinate system. The result is improved absolute accuracy and a significant reduction in work effort relative to manual measurement of ground control. The ISIS and ASP software used are freely available; SOCET SET, is a commercial product. By the end of 2017 we expect to have ported our SOCET SET HRSC sensor model to the Community Sensor Model (CSM; Community Sensor Model Working Group 2010; Hare and Kirk 2017 standard utilized by the successor photogrammetric system SOCET GXP that is currently offered by BAE. In early 2018, we are also working with BAE to release the CSM source code under a BSD or MIT open source license. We illustrate current HRSC processing capabilities with three examples, of which the first two come from the DTM comparison of 2007. Candor Chasma (h1235_0001 was a

  17. Preliminary Tests of a New Low-Cost Photogrammetric System

    Science.gov (United States)

    Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S. W.; Giacomini, A.

    2017-11-01

    This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  18. PRELIMINARY TESTS OF A NEW LOW-COST PHOTOGRAMMETRIC SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Santise

    2017-11-01

    Full Text Available This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B single board computer connected to a PiCamera Module V2 (8 MP and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  19. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  20. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos

    Science.gov (United States)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.

    2018-04-01

    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  1. Applications of UAV Photogrammetric Surveys to Natural Hazard Detection and Cultural Heritage Documentation

    Science.gov (United States)

    Trizzino, Rosamaria; Caprioli, Mauro; Mazzone, Francesco; Scarano, Mario

    2017-04-01

    Unmanned Aerial Vehicle (UAV) systems are increasingly seen as an attractive low-cost alternative or supplement to aerial and terrestrial photogrammetry due to their low cost, flexibility, availability and readiness for duty. In addition, UAVs can be operated in hazardous or temporarily inaccessible locations. The combination of photogrammetric aerial and terrestrial recording methods using a mini UAV (also known as "drone") opens a broad range of applications, such as surveillance and monitoring of the environment and infrastructural assets. In particular, these methods and techniques are of paramount interest for the documentation of cultural heritage sites and areas of natural importance, facing threats from natural deterioration and hazards. In order to verify the reliability of these technologies an UAV survey and a LIDAR survey have been carried out along about 1 km of coast in the Salento peninsula, near the towns of San Foca, Torre dell' Orso and SantAndrea ( Lecce, Southern Italy). This area is affected by serious environmental hazards due to the presence of dangerous rocky cliffs named "falesie". The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (Agisoft Photoscan). The point clouds obtained from both the UAV and LIDAR surveys have been processed using Cloud Compare software, with the aim of testing the UAV results with respect to the LIDAR ones. The analysis were done using the C2C algorithm which provides good results in terms of Euclidian distances, highlighting differences between the 3D models obtained from both the survey techiques. The total error obtained was of centimeter-order that is a very satisfactory result. In the the 2nd study area, the opportunities of obtaining more detailed documentation of cultural goods throughout UAV survey have been investigated. The study

  2. Radioactivity measurements and control solutions

    International Nuclear Information System (INIS)

    Bartos, D.; Ciobanu, M.; Constantin, F.; Petcu, M.; Rusu, Al.

    2003-01-01

    In our department, in the last years, a new line of production has been developed devoted to the radioactivity measurements (portal monitor, gamma source detector, neutron monitor). Instruments of different design (hand-held, portals or steady-state) are intended for detection and locating of radioactive sources. Monitors are intended to detect radioactive and special nuclear materials in vehicles, pedestrians, luggage, as well as for illegal traffic prevention of radioactive sources. Monitors provide audio and visual alarm signals when radioactive and/or special nuclear materials are detected. Neutron dosimeters are designed for the determination of dose equivalent rate around neutron generators or sources. All devices can be recommended for use to officers of customs, border guard and emergency services, civil defense, fire brigades, police and military departments, nuclear research or power facilities. Incorporating micro controllers and new design, our products span almost all the spectra of radioactivity detection (gamma, beta, X and neutrons). No special knowledge is needed to operate these instruments as all service functions are performed automatically (self-tests, background updating and threshold calculation). The Portal monitor is intended to be a checkpoint in contamination control or in unauthorized traffic of radioactive materials. The portal monitor can be installed both in open, unprotected to environmental conditions areas or in enclosed areas. It may be used at pedestrian cross border points, at check points of Nuclear Power Plants, enterprises of nuclear industry, weapons manufacturing and storage plants, nuclear waste disposal and storage sites, at the entrances to steel plants, the post-offices and airports, the governmental offices, banks, private companies etc. The monitor provides audio alarming signals when radioactive and/or special nuclear materials are detected. The monitor consists in a portal frame, which sustains 5 detectors. Each

  3. 10 CFR 74.45 - Measurements and measurement control.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Measurements and measurement control. 74.45 Section 74.45 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Moderate Strategic Significance § 74.45 Measurements and measurement...

  4. Measurement control program for nuclear material accounting

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Merrill, J.A.; Brown, W.B.

    1980-06-01

    A measurement control program for nuclear material accounting monitors and controls the quality of the measurments of special nuclear material that are involved in material balances. The quality is monitored by collecting data from which the current precision and accuracy of measurements can be evaluated. The quality is controlled by evaluations, reviews, and other administrative measures for control of selection or design of facilities, equipment and measurement methods and the training and qualification of personnel who perform SNM measurements. This report describes the most important elements of a program by which management can monitor and control measurement quality

  5. Aspects of control measures in occupational hygiene

    NARCIS (Netherlands)

    Lumens, M.

    1997-01-01


    This thesis focuses on two aspects which are of major importance in the broad field of control measures in occupational hygiene: the selection of control measures in a structured way and the impact of factors modifying the effectiveness of these control measures.

    The main

  6. Measuring device for control rod driving time

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiko; Hanabusa, Masatoshi.

    1993-01-01

    The present invention concerns a measuring device for control driving time having a function capable of measuring a selected control rod driving time and measuring an entire control rod driving time simultaneously. A calculation means and a store means for the selected rod control rod driving time, and a calculation means and a store means for the entire control rod driving time are disposed individually. Each of them measures the driving time and stores the data independent of each other based on a selected control rod insert ion signal and an entire control rod insertion signal. Even if insertion of selected and entire control rods overlaps, each of the control rod driving times can be measured reliably to provide an advantageous effect capable of more accurately conducting safety evaluation for the nuclear reactor based on the result of the measurement. (N.H.)

  7. Calibration of high resolution digital camera based on different photogrammetric methods

    International Nuclear Information System (INIS)

    Hamid, N F A; Ahmad, A

    2014-01-01

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  8. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    Science.gov (United States)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  9. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Crawford, Cary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGinnis, Brent [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Insolves LLC, Piketon, OH (United States)

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  10. Measurement Control Workshop Instructional Materials

    International Nuclear Information System (INIS)

    Gibbs, Philip; Crawford, Cary; McGinnis, Brent

    2014-01-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  11. Inter-Ethnic/Racial Facial Variations: A Systematic Review and Bayesian Meta-Analysis of Photogrammetric Studies.

    Science.gov (United States)

    Wen, Yi Feng; Wong, Hai Ming; Lin, Ruitao; Yin, Guosheng; McGrath, Colman

    2015-01-01

    Numerous facial photogrammetric studies have been published around the world. We aimed to critically review these studies so as to establish population norms for various angular and linear facial measurements; and to determine inter-ethnic/racial facial variations. A comprehensive and systematic search of PubMed, ISI Web of Science, Embase, and Scopus was conducted to identify facial photogrammetric studies published before December, 2014. Subjects of eligible studies were either Africans, Asians or Caucasians. A Bayesian hierarchical random effects model was developed to estimate posterior means and 95% credible intervals (CrI) for each measurement by ethnicity/race. Linear contrasts were constructed to explore inter-ethnic/racial facial variations. We identified 38 eligible studies reporting 11 angular and 18 linear facial measurements. Risk of bias of the studies ranged from 0.06 to 0.66. At the significance level of 0.05, African males were found to have smaller nasofrontal angle (posterior mean difference: 8.1°, 95% CrI: 2.2°-13.5°) compared to Caucasian males and larger nasofacial angle (7.4°, 0.1°-13.2°) compared to Asian males. Nasolabial angle was more obtuse in Caucasian females than in African (17.4°, 0.2°-35.3°) and Asian (9.1°, 0.4°-17.3°) females. Additional inter-ethnic/racial variations were revealed when the level of statistical significance was set at 0.10. A comprehensive database for angular and linear facial measurements was established from existing studies using the statistical model and inter-ethnic/racial variations of facial features were observed. The results have implications for clinical practice and highlight the need and value for high quality photogrammetric studies.

  12. Inter-Ethnic/Racial Facial Variations: A Systematic Review and Bayesian Meta-Analysis of Photogrammetric Studies

    Science.gov (United States)

    Wen, Yi Feng; Wong, Hai Ming; Lin, Ruitao; Yin, Guosheng; McGrath, Colman

    2015-01-01

    Background Numerous facial photogrammetric studies have been published around the world. We aimed to critically review these studies so as to establish population norms for various angular and linear facial measurements; and to determine inter-ethnic/racial facial variations. Methods and Findings A comprehensive and systematic search of PubMed, ISI Web of Science, Embase, and Scopus was conducted to identify facial photogrammetric studies published before December, 2014. Subjects of eligible studies were either Africans, Asians or Caucasians. A Bayesian hierarchical random effects model was developed to estimate posterior means and 95% credible intervals (CrI) for each measurement by ethnicity/race. Linear contrasts were constructed to explore inter-ethnic/racial facial variations. We identified 38 eligible studies reporting 11 angular and 18 linear facial measurements. Risk of bias of the studies ranged from 0.06 to 0.66. At the significance level of 0.05, African males were found to have smaller nasofrontal angle (posterior mean difference: 8.1°, 95% CrI: 2.2°–13.5°) compared to Caucasian males and larger nasofacial angle (7.4°, 0.1°–13.2°) compared to Asian males. Nasolabial angle was more obtuse in Caucasian females than in African (17.4°, 0.2°–35.3°) and Asian (9.1°, 0.4°–17.3°) females. Additional inter-ethnic/racial variations were revealed when the level of statistical significance was set at 0.10. Conclusions A comprehensive database for angular and linear facial measurements was established from existing studies using the statistical model and inter-ethnic/racial variations of facial features were observed. The results have implications for clinical practice and highlight the need and value for high quality photogrammetric studies. PMID:26247212

  13. Inter-Ethnic/Racial Facial Variations: A Systematic Review and Bayesian Meta-Analysis of Photogrammetric Studies.

    Directory of Open Access Journals (Sweden)

    Yi Feng Wen

    Full Text Available Numerous facial photogrammetric studies have been published around the world. We aimed to critically review these studies so as to establish population norms for various angular and linear facial measurements; and to determine inter-ethnic/racial facial variations.A comprehensive and systematic search of PubMed, ISI Web of Science, Embase, and Scopus was conducted to identify facial photogrammetric studies published before December, 2014. Subjects of eligible studies were either Africans, Asians or Caucasians. A Bayesian hierarchical random effects model was developed to estimate posterior means and 95% credible intervals (CrI for each measurement by ethnicity/race. Linear contrasts were constructed to explore inter-ethnic/racial facial variations. We identified 38 eligible studies reporting 11 angular and 18 linear facial measurements. Risk of bias of the studies ranged from 0.06 to 0.66. At the significance level of 0.05, African males were found to have smaller nasofrontal angle (posterior mean difference: 8.1°, 95% CrI: 2.2°-13.5° compared to Caucasian males and larger nasofacial angle (7.4°, 0.1°-13.2° compared to Asian males. Nasolabial angle was more obtuse in Caucasian females than in African (17.4°, 0.2°-35.3° and Asian (9.1°, 0.4°-17.3° females. Additional inter-ethnic/racial variations were revealed when the level of statistical significance was set at 0.10.A comprehensive database for angular and linear facial measurements was established from existing studies using the statistical model and inter-ethnic/racial variations of facial features were observed. The results have implications for clinical practice and highlight the need and value for high quality photogrammetric studies.

  14. INFLUENCE OF RAW IMAGE PREPROCESSING AND OTHER SELECTED PROCESSES ON ACCURACY OF CLOSE-RANGE PHOTOGRAMMETRIC SYSTEMS ACCORDING TO VDI 2634

    Directory of Open Access Journals (Sweden)

    J. Reznicek

    2016-06-01

    Full Text Available This paper examines the influence of raw image preprocessing and other selected processes on the accuracy of close-range photogrammetric measurement. The examined processes and features includes: raw image preprocessing, sensor unflatness, distance-dependent lens distortion, extending the input observations (image measurements by incorporating all RGB colour channels, ellipse centre eccentricity and target detecting. The examination of each effect is carried out experimentally by performing the validation procedure proposed in the German VDI guideline 2634/1. The validation procedure is based on performing standard photogrammetric measurements of high-accurate calibrated measuring lines (multi-scale bars with known lengths (typical uncertainty = 5 μm at 2 sigma. The comparison of the measured lengths with the known values gives the maximum length measurement error LME, which characterize the accuracy of the validated photogrammetric system. For higher reliability the VDI test field was photographed ten times independently with the same configuration and camera settings. The images were acquired with the metric ALPA 12WA camera. The tests are performed on all ten measurements which gives the possibility to measure the repeatability of the estimated parameters as well. The influences are examined by comparing the quality characteristics of the reference and tested settings.

  15. Introduction to control system performance measurements

    CERN Document Server

    Garner, K C

    1968-01-01

    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  16. Angular photogrammetric soft tissue facial profile analysis of Bangladeshi young adults

    Directory of Open Access Journals (Sweden)

    Lubna Akter

    2017-01-01

    Full Text Available Introduction: Angular photogrammetric soft tissue facial profile analysis provides a permanent record for the actual appearance of a person, which would also serve to establish an ideal esthetic treatment goal. The aim of the present study was to evaluate the average angular variables that define the soft tissue facial profile of a Bangladeshi sample. Materials and Methods: This cross-sectional study was carried out at Department of Orthodontics and Dentofacial Orthopedics of Dhaka Dental College and Hospital, Bangladesh, from July to December 2015. Soft tissue facial profiles of 200 participants (100 males and 100 females between 18 and 25 years of age, with a dental Class I occlusal relationship and harmonious soft tissue profile, were selected by convenience sampling among students, doctors, and patients of Dhaka Dental College. Standardized photographs of 200 samples were taken in the natural head position. The photographic records were analyzed with the software for Windows, Microsoft Visio 2007, Standard Edition. All data were analyzed through standard methods using Statistical Package for the Statistical Package for Social Science Software (SPSS Version-20, IBM Corp, USA. Results: The average angular measurements for nasofrontal, total facial angle, facial angle, upper lip angle, projection of lower lip to chin, and mentolabial angle were wider in females. The mean value for nose tip angle, nasolabial angle, nasomental angle, and projection of upper lip to chin angle was higher in males compared to females. Nasofrontal angle (G-N-Nd (P = 0.000 and mentolabial angle (Li-Sm-Pg (P = 0.001 showed statistically significant differences. The greatest variability was found for mentolabial angle. Conclusion: The study of angular photogrammetric soft tissue facial profile analysis of Bangladeshi young adults contributes to the establishment of standardized normal values for the population. This study provides data which can be used in treatment

  17. Control measurement system in purex process

    International Nuclear Information System (INIS)

    Mani, V.V.S.

    1985-01-01

    The dependence of a bulk facility handling Purex Process on the control measurement system for evaluating the process performance needs hardly be emphasized. process control, Plant control, inventory control and quality control are the four components of the control measurement system. The scope and requirements of each component are different and the measurement methods are selected accordingly. However, each measurement system has six important elements. These are described in detail. The quality assurance programme carried out by the laboratory as a mechanism through which the quality of measurements is regularly tested and stated in quantitative terms is also explained in terms of internal and external quality assurance, with examples. Suggestions for making the control measurement system more responsive to the operational needs in future are also briefly discussed. (author)

  18. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    Science.gov (United States)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    georeferenced geological field data acquired along mountain trail transects, mainly using the MVE Field Move software application. In our experience, vertical aerophotos were sufficient to generate precise surface models in all but the steepest mountain cliffs. Therefore, using existing vertical photoimagery (where available) is a very cost-effective alternative to organizing shooting campaigns with rented aircraft. For handling reasonably large models (cca 3 x 3 km, up to 10 million triangles), a low-end computer workstation with mid-range professional 3D graphic card is sufficient. The biggest bottleneck is the photogrammetric processing step which is time-consuming (10s of hrs) and has large RAM requirements, although those can be offset by dividing models into smaller parts. The major problem with geological modeling software like Gocad or Move is that it at present does not handle well projecting of phototextures. Whereas Photoscan-generated orthophotos can be vertically projected onto mesh models, this results in unacceptable distortions and gaps in subvertical or overhanging parts of the mountain cliff models. A real 3D UV texture mapping method, such as implemented in Photoscan, would be required to realistically model such areas. This limitations notwithstanding, digital geological mapping of photogrammetric models of mountains is a very promising, cost- and time-effective method for rapid structural interpretation and mapping of barren mountainous terrains, particularly when it is complemented by field measurements and observations.

  19. Measurement control program at model facility

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    A measurement control program for the model plant is described. The discussion includes the technical basis for such a program, the application of measurement control principles to each measurement, and the use of special experiments to estimate measurement error parameters for difficult-to-measure materials. The discussion also describes the statistical aspects of the program, and the documentation procedures used to record, maintain, and process the basic data

  20. Computer controlled quality of analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.; Huff, G.A.

    1979-01-01

    A PDP 11/35 computer system is used in evaluating analytical chemistry measurements quality control data at the Barnwell Nuclear Fuel Plant. This computerized measurement quality control system has several features which are not available in manual systems, such as real-time measurement control, computer calculated bias corrections and standard deviation estimates, surveillance applications, evaluaton of measurement system variables, records storage, immediate analyst recertificaton, and the elimination of routine analysis of known bench standards. The effectiveness of the Barnwell computer system has been demonstrated in gathering and assimilating the measurements of over 1100 quality control samples obtained during a recent plant demonstration run. These data were used to determine equaitons for predicting measurement reliability estimates (bias and precision); to evaluate the measurement system; and to provide direction for modification of chemistry methods. The analytical chemistry measurement quality control activities represented 10% of the total analytical chemistry effort

  1. THE PERFORMANCE OF A TIGHT INS/GNSS/PHOTOGRAMMETRIC INTEGRATION SCHEME FOR LAND BASED MMS APPLICATIONS IN GNSS DENIED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    C. H. Chu

    2012-07-01

    Full Text Available Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include using Global Navigation Satellite System (GNSS as a major positioning sensor and Inertial Navigation System (INS as the major orientation sensor. The integration strategy of the most commercially system is the loosely coupled (LC architecture, that has the simplest architecture using the GNSS solutions to aid the INS navigation information with proper optimization estimator. The LC does combine the two sensors’ solutions when the number of tracked satellite is more than four. In recent year, another commonly integration strategy is known as tightly coupled (TC architecture. Because the TC uses the GNSS measurements to aid INS, it can integrate measurements provided by GNSS receiver and INS unless no GNSS satellite is tracked. Obviously, the TC architecture is a better candidate for land based mobile mapping applications than LC in Taiwan. Unfortunately, there are still many GNSS denied environment in the urban area, therefore the TC architecture is still not robust and stable enough for MMS application. The overall objective of this paper is to provide a scheme that tightly integrates INS/GNSS and Photogrammetric for land based MMS applications with sufficient and stable POS solutions during GNSS outages. In the traditional photogrammetry operation, numerous ground control points are applied to compute those Exterior Orientation Parameters (EOPs of cameras by bundle adjustment. The key opinion is to derive the INS centre position and attitude and reconstruct 3-D tracking and 3-D object space by cameras EOPs. The proposed algorithm is verified using field test data collected in GNSS denied environments and the preliminary results presented in this study illustrated that the proposed algorithm is able to provide 60% improvement in terms of positioning and orientation accuracy in Taipei and Tainan cities.

  2. The Performance of a Tight Ins/gnss/photogrammetric Integration Scheme for Land Based MMS Applications in Gnss Denied Environments

    Science.gov (United States)

    Chu, C. H.; Chiang, K. W.

    2012-07-01

    Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include using Global Navigation Satellite System (GNSS) as a major positioning sensor and Inertial Navigation System (INS) as the major orientation sensor. The integration strategy of the most commercially system is the loosely coupled (LC) architecture, that has the simplest architecture using the GNSS solutions to aid the INS navigation information with proper optimization estimator. The LC does combine the two sensors' solutions when the number of tracked satellite is more than four. In recent year, another commonly integration strategy is known as tightly coupled (TC) architecture. Because the TC uses the GNSS measurements to aid INS, it can integrate measurements provided by GNSS receiver and INS unless no GNSS satellite is tracked. Obviously, the TC architecture is a better candidate for land based mobile mapping applications than LC in Taiwan. Unfortunately, there are still many GNSS denied environment in the urban area, therefore the TC architecture is still not robust and stable enough for MMS application. The overall objective of this paper is to provide a scheme that tightly integrates INS/GNSS and Photogrammetric for land based MMS applications with sufficient and stable POS solutions during GNSS outages. In the traditional photogrammetry operation, numerous ground control points are applied to compute those Exterior Orientation Parameters (EOPs) of cameras by bundle adjustment. The key opinion is to derive the INS centre position and attitude and reconstruct 3-D tracking and 3-D object space by cameras EOPs. The proposed algorithm is verified using field test data collected in GNSS denied environments and the preliminary results presented in this study illustrated that the proposed algorithm is able to provide 60% improvement in terms of positioning and orientation accuracy in Taipei and Tainan cities.

  3. TOWARDS A LOW-COST, REAL-TIME PHOTOGRAMMETRIC LANDSLIDE MONITORING SYSTEM UTILISING MOBILE AND CLOUD COMPUTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Chidburee

    2016-06-01

    Full Text Available Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i the development of an Android mobile application; (ii the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan and a web-based system (Autodesk 123D Catch. Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard

  4. Towards a Low-Cost Real-Time Photogrammetric Landslide Monitoring System Utilising Mobile and Cloud Computing Technology

    Science.gov (United States)

    Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.

    2016-06-01

    Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.

  5. Measurement control program for NDA instruments

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marks, T.

    1983-01-01

    Measurement control checks for nondestructive assay instruments have been a constant and continuing concern at Los Alamos National Laboratory. This paper summarizes the evolution of the measurement control checks in the various high-resolution gamma systems we have developed. In-plant experiences with these systems and checks will be discussed. Based on these experiences, a set of measurement control checks is recommended for high-resolution gamma-ray systems

  6. Evaluation of Co-rich manganese deposits by image analysis and photogrammetric techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R.; Tsurusaki, K.

    Stereo-seabed photographs of Co-rich manganese deposits on a mid-Pacific seamount, were analysed using an image analysis software for coverage estimation and size classification of nodules, and a photogrammetric software for calculation of height...

  7. A study on the sensitivity of photogrammetric camera calibration and stitching

    CSIR Research Space (South Africa)

    De Villiers, J

    2014-11-01

    Full Text Available This paper presents a detailed simulation study of an automated robotic photogrammetric camera calibration system. The system performance was tested for sensitivity with regard to noise in the robot movement, camera mounting and image processing...

  8. Non interacting control by measurement feedback

    NARCIS (Netherlands)

    Woude, van der J.W.

    1987-01-01

    In this paper we shall solve the problem of non interacting control by measurement feedback for systems that in addition to a control input and a measurement output have two exogenous inputs and two exogenous outputs. That is, we shall derive necessary and sufficient conditions that can actually be

  9. Fundamental data analyses for measurement control

    International Nuclear Information System (INIS)

    Campbell, K.; Barlich, G.L.; Fazal, B.; Strittmatter, R.B.

    1989-01-01

    An important aspect of a complete measurement control program for special nuclear materials is the analysis of data from periodic control measurements of known standards. This chapter covers the following topics: basic algorithms including an introduction and terminology, the standard case (known mean and standard deviation), Shewart control charts, and sequential test for bias; modifications for nonstandard cases including modification for changing (decaying) standard value, modifications for deteriorating measurement precision, and modifications when repeated measurements are made; maintenance information including estimation of historical standard deviation (standard case), estimation of historical standard deviation (changing with time), normality and outliners, and other tests of randomness

  10. Fundamental data analyses for measurement control

    International Nuclear Information System (INIS)

    Campbell, K.; Barlich, G.L.; Fazal, B.; Strittmatter, R.B.

    1987-02-01

    A set of measurment control data analyses was selected for use by analysts responsible for maintaining measurement quality of nuclear materials accounting instrumentation. The analyses consist of control charts for bias and precision and statistical tests used as analytic supplements to the control charts. They provide the desired detection sensitivity and yet can be interpreted locally, quickly, and easily. The control charts provide for visual inspection of data and enable an alert reviewer to spot problems possibly before statistical tests detect them. The statistical tests are useful for automating the detection of departures from the controlled state or from the underlying assumptions (such as normality). 8 refs., 3 figs., 5 tabs

  11. Model Predictive Control for Integrating Traffic Control Measures

    NARCIS (Netherlands)

    Hegyi, A.

    2004-01-01

    Dynamic traffic control measures, such as ramp metering and dynamic speed limits, can be used to better utilize the available road capacity. Due to the increasing traffic volumes and the increasing number of traffic jams the interaction between the control measures has increased such that local

  12. Controlling You Watching Me: Measuring Perception Control on Social Media.

    Science.gov (United States)

    Keep, Melanie; Attrill-Smith, Alison

    2017-09-01

    Online self-presentation assumes that individuals intentionally control how others perceive them based on their online behaviors. Existing tools are limited in their ability to measure this notion of perception control and there is little understanding around factors which may affect the desire for perception control. This article reports on the development of a perception control scale and comparisons of perception control across age and between genders. A total of 222 participants completed an online survey with items measuring perception control and participant demographics. A principal component analysis revealed a one-factor, 12-item scale explaining 41.14% of the variance. Perception control was found to increase with age and did not differ between genders. Results are consistent with existing impression management research suggesting that while participants of both genders desire to control how others perceive them, as a person's sense of self stabilizes over time, they are less motivated to change their behaviors to control others' impressions of them.

  13. Quality control of gamma radiation measuring systems

    International Nuclear Information System (INIS)

    Surma, M.J.

    2002-01-01

    The problem of quality control and assurance of gamma radiation measuring systems has been described in detail. The factors deciding of high quality of radiometric measurements as well as statistical testing and calibration of measuring systems have been presented and discussed

  14. Frequency Control Performance Measurement and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Illian, Howard F.

    2010-12-20

    Frequency control is an essential requirement of reliable electric power system operations. Determination of frequency control depends on frequency measurement and the practices based on these measurements that dictate acceptable frequency management. This report chronicles the evolution of these measurements and practices. As technology progresses from analog to digital for calculation, communication, and control, the technical basis for frequency control measurement and practices to determine acceptable performance continues to improve. Before the introduction of digital computing, practices were determined largely by prior experience. In anticipation of mandatory reliability rules, practices evolved from a focus primarily on commercial and equity issues to an increased focus on reliability. This evolution is expected to continue and place increased requirements for more precise measurements and a stronger scientific basis for future frequency management practices in support of reliability.

  15. Photogrammetric analysis of rubble mound breakwaters scale model tests

    Directory of Open Access Journals (Sweden)

    João Rodrigues

    2016-09-01

    Full Text Available The main goal of this paper is to develop a photogrammetric method in order to obtain arobust tool for damage assessment and quantification of rubble-mound armour layers during physicalscale model tests. With the present work, an innovative approach based on a reduced number ofdigital photos is proposed to support the identification of affected areas. This work considers twosimple digital photographs recording the instants before and after the completion of the physicaltest. Mathematical techniques were considered in the development of the procedures, enabling thetracking of image differences between photos. The procedures were developed using an open-sourceapplication, Scilab, nevertheless they are not platform dependent. The procedures developed enablethe location and identity of eroded areas in the breakwater armour layer, as well as the possibilityof quantifying them. This ability is confirmed through the calculation of correlation coefficients ineach step of the search for the more damaged area. It is also possible to make an assessment of themovement of armour layer units.

  16. Photogrammetric Analysis of Rotor Clouds Observed during T-REX

    Science.gov (United States)

    Romatschke, U.; Grubišić, V.

    2017-12-01

    Stereo photogrammetric analysis is a rarely utilized but highly valuable tool for studying smaller, highly ephemeral clouds. In this study, we make use of data that was collected during the Terrain-induced Rotor Experiment (T-REX), which took place in Owens Valley, eastern California, in the spring of 2006. The data set consists of matched digital stereo photographs obtained at high temporal (on the order of seconds) and spatial resolution (limited by the pixel size of the cameras). Using computer vision techniques we have been able to develop algorithms for camera calibration, automatic feature matching, and ultimately reconstruction of 3D cloud scenes. Applying these techniques to images from different T-REX IOPs we capture the motion of clouds in several distinct mountain wave scenarios ranging from short lived lee wave clouds on an otherwise clear sky day to rotor clouds formed in an extreme turbulence environment with strong winds and high cloud coverage. Tracking the clouds in 3D space and time allows us to quantify phenomena such as vertical and horizontal movement of clouds, turbulent motion at the upstream edge of rotor clouds, the structure of the lifting condensation level, extreme wind shear, and the life cycle of clouds in lee waves. When placed into context with the existing literature that originated from the T-REX field campaign, our results complement and expand our understanding of the complex dynamics observed in a variety of different lee wave settings.

  17. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    David, L.

    1998-01-01

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  18. Measuring the Balance Control System – Review

    Directory of Open Access Journals (Sweden)

    Jitka Jančová

    2008-01-01

    Full Text Available Past studies of postural control during standing have employed wide range of procedures including the outcome measures use to quantify postural control, the duration of the sample collected, sampling frequency and methods for data processing. Due to these differences there remains little, if any, common grounds for comparisons between studies to establish a concrete understanding of the features and bouns which characterize normal healthy postural control. This article deals with terms such as reliability and repeatability of stabilometric measurements, stabilometric data quantification and analysis. To clear up those terms is suggested, by the author of this paper, very important. The stabilometric measurements remain, nevertheless, different when dealing with aging adults. Though, we notes some alterations of the aging systems, this article is not entirely dedicated to the seniors population. Measurements of COP and technical notes remain the main axis of present paper.

  19. Performance expectations of measurement control programs

    International Nuclear Information System (INIS)

    Hammond, G.A.

    1985-01-01

    The principal index for designing and assessing the effectiveness of safeguards is the sensitivity and reliability of gauging the true status of material balances involving material flows, transfers, inventories, and process holdup. The measurement system must not only be capable of characterizing the material for gradation or intensity of protection, but also be responsive to needs for detection and localization of losses, provide confirmation that no diversion has occurred, and help meet requirements for process control, health and safety. Consequently, the judicious application of a measurement control and quality assurance program is vital to a complete understanding of the capabilities and limitations of the measurement system including systematic and random components of error for weight, volume, sampling, chemical, isotopic, and nondestructive determinations of material quantities in each material balance area. This paper describes performance expectations or criteria for a measurement control program in terms of ''what'' is desired and ''why'', relative to safeguards and security objectives

  20. Establishing a volumetric measurement control program

    International Nuclear Information System (INIS)

    Holt, S.H.; Jenkins, E.W.

    1993-01-01

    At the Savannah River Site (SRS), several facilities have nearly all their special nuclear material in solution and therefore, volume measurements play a key role in the accountability of these materials. Normally, facilities rely on frequent instrument calibrations, periodic tank calibrations and proper instrument configuration to ensure measurement control. At SRS, methods have been employed that go beyond these basic steps to monitor the volume measurement systems and provide real time indication of measurement control. These methods can be used to indicate if a tank requires recalibration, if there is a sampling problem, or if there is an instrument problem. The methods include: sample density comparison, in-tank to laboratory density comparison, redundant instrument comparison and tank to tank transfer comparison. This paper describes these methods and the generation of control charts to track these comparisons in real time

  1. Measurement control program for new special recovery

    International Nuclear Information System (INIS)

    Hsue, S.T.; Campbell, K.; Barlich, G.

    1987-04-01

    This report summarizes the design of the measurement control (MC) program for the New Special Recovery facility. The MC program is divided into two levels. Level 1 MC checks are performed at the individual instrument computer and will always be functional even when the instrument-control computer is down. The level 1 MCs are divided into statistical checks for both bias and precision, and diagnostic checks. All the instruments are connected on line to an instrument-control computer to which the measurement results can be communicated. Level 2 MC analyses are performed at this computer. The analyses consist of control charts for bias and precision and statistical tests used as analytic supplements to the control charts. They provide the desired detection sensitivity and yet can be interpreted quickly and easily. Recommendations are also made in terms of the frequency of the tests, the standard used, and other operational aspects of the MC program. 16 refs., 11 figs., 10 tabs

  2. A photogrammetric methodology for estimating construction and demolition waste composition

    International Nuclear Information System (INIS)

    Heck, H.H.; Reinhart, D.R.; Townsend, T.; Seibert, S.; Medeiros, S.; Cochran, K.; Chakrabarti, S.

    2002-01-01

    Manual sorting of construction, demolition, and renovation (C and D) waste is difficult and costly. A photogrammetric method has been developed to analyze the composition of C and D waste that eliminates the need for physical contact with the waste. The only field data collected is the weight and volume of the solid waste in the storage container and a photograph of each side of the waste pile, after it is dumped on the tipping floor. The methodology was developed and calibrated based on manual sorting studies at three different landfills in Florida, where the contents of twenty roll-off containers filled with C and D waste were sorted. The component classifications used were wood, concrete, paper products, drywall, metals, insulation, roofing, plastic, flooring, municipal solid waste, land-clearing waste, and other waste. Photographs of each side of the waste pile were taken with a digital camera and the pictures were analyzed on a computer using Photoshop software. Photoshop was used to divide the picture into eighty cells composed of ten columns and eight rows. The component distribution of each cell was estimated and results were summed to get a component distribution for the pile. Two types of distribution factors were developed that allow the component volumes and weights to be estimated. One set of distribution factors was developed to correct the volume distributions and the second set was developed to correct the weight distributions. The bulk density of each of the waste components were determined and used to convert waste volumes to weights. (author)

  3. A photogrammetric methodology for estimating construction and demolition waste composition

    Energy Technology Data Exchange (ETDEWEB)

    Heck, H.H. [Florida Inst. of Technology, Dept. of divil Engineering, Melbourne, Florida (United States); Reinhart, D.R.; Townsend, T.; Seibert, S.; Medeiros, S.; Cochran, K.; Chakrabarti, S

    2002-06-15

    Manual sorting of construction, demolition, and renovation (C and D) waste is difficult and costly. A photogrammetric method has been developed to analyze the composition of C and D waste that eliminates the need for physical contact with the waste. The only field data collected is the weight and volume of the solid waste in the storage container and a photograph of each side of the waste pile, after it is dumped on the tipping floor. The methodology was developed and calibrated based on manual sorting studies at three different landfills in Florida, where the contents of twenty roll-off containers filled with C and D waste were sorted. The component classifications used were wood, concrete, paper products, drywall, metals, insulation, roofing, plastic, flooring, municipal solid waste, land-clearing waste, and other waste. Photographs of each side of the waste pile were taken with a digital camera and the pictures were analyzed on a computer using Photoshop software. Photoshop was used to divide the picture into eighty cells composed of ten columns and eight rows. The component distribution of each cell was estimated and results were summed to get a component distribution for the pile. Two types of distribution factors were developed that allow the component volumes and weights to be estimated. One set of distribution factors was developed to correct the volume distributions and the second set was developed to correct the weight distributions. The bulk density of each of the waste components were determined and used to convert waste volumes to weights. (author)

  4. Measuring strategic control in artificial grammar learning.

    Science.gov (United States)

    Norman, Elisabeth; Price, Mark C; Jones, Emma

    2011-12-01

    In response to concerns with existing procedures for measuring strategic control over implicit knowledge in artificial grammar learning (AGL), we introduce a more stringent measurement procedure. After two separate training blocks which each consisted of letter strings derived from a different grammar, participants either judged the grammaticality of novel letter strings with respect to only one of these two grammars (pure-block condition), or had the target grammar varying randomly from trial to trial (novel mixed-block condition) which required a higher degree of conscious flexible control. Random variation in the colour and font of letters was introduced to disguise the nature of the rule and reduce explicit learning. Strategic control was observed both in the pure-block and mixed-block conditions, and even among participants who did not realise the rule was based on letter identity. This indicated detailed strategic control in the absence of explicit learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. A Photogrammetric Approach for Assessing Positional Accuracy of OpenStreetMap© Roads

    Directory of Open Access Journals (Sweden)

    Peter Doucette

    2013-04-01

    Full Text Available As open source volunteered geographic information continues to gain popularity, the user community and data contributions are expected to grow, e.g., CloudMade, Apple, and Ushahidi now provide OpenStreetMap© (OSM as a base layer for some of their mapping applications. This, coupled with the lack of cartographic standards and the expectation to one day be able to use this vector data for more geopositionally sensitive applications, like GPS navigation, leaves potential users and researchers to question the accuracy of the database. This research takes a photogrammetric approach to determining the positional accuracy of OSM road features using stereo imagery and a vector adjustment model. The method applies rigorous analytical measurement principles to compute accurate real world geolocations of OSM road vectors. The proposed approach was tested on several urban gridded city streets from the OSM database with the results showing that the post adjusted shape points improved positionally by 86%. Furthermore, the vector adjustment was able to recover 95% of the actual positional displacement present in the database. To demonstrate a practical application, a head-to-head positional accuracy assessment between OSM, the USGS National Map (TNM, and United States Census Bureau’s Topologically Integrated Geographic Encoding Referencing (TIGER 2007 roads was conducted.

  6. A keyboard control method for loop measurement

    International Nuclear Information System (INIS)

    Gao, Z.W.

    1994-01-01

    This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation

  7. Volumetric measurement of rock movement using photogrammetry

    Science.gov (United States)

    Benton, Donovan J.; Iverson, Stephen R.; Martin, Lewis A.; Johnson, Jeffrey C.; Raffaldi, Michael J.

    2016-01-01

    NIOSH ground control safety research program at Spokane, Washington, is exploring applications of photogrammetry to rock mass and support monitoring. This paper describes two ways photogrammetric techniques are being used. First, photogrammetric data of laboratory testing is being used to correlate energy input and support deformation. This information can be used to infer remaining support toughness after ground deformation events. This technique is also demonstrated in a field application. Second, field photogrammetric data is compared to crackmeter data from a deep underground mine. Accuracies were found to average 8 mm, but have produced results within 0.2 mm of true displacement, as measured by crackmeters. Application of these techniques consists of monitoring overall fault activity by monitoring multiple points around the crackmeter. A case study is provided in which a crackmeter is clearly shown to have provided insufficient information regarding overall fault ground deformation. Photogrammetry is proving to be a useful ground monitoring tool due to its unobtrusiveness and ease of use. PMID:27110429

  8. A portable nondestructive assay measurement control system

    International Nuclear Information System (INIS)

    Palmer, M.E.

    1984-01-01

    Portable nondestructive assay (NDA) of plutonium processing hoods, solvent extraction columns, glove boxes, filters, and other items is required for both nuclear materials accountability and criticality control purposes. The Plutonium Finishing Plant has hundreds of such items that require routine portable NDA measurement. Previous recordkeeping of NDA measurements consisted of boxes of papers containing results and notebooks containing notes for each item to be measured. If the notes for any item were lost, new measurement parameters had to be calculated for that item. As a result, subsequent measurements could no longer be directly compared with previous results for that item due to possible changes in measurement parameters. The new portable NDA management system keeps all the necessary information in a computerized data base. Technicians are provided with a computer-generated drawing of each item to be measured, which also contains comments, measurement points, measurement parameters, and a form for filling in the raw data. After the measurements are made, the technician uses the computer to calculate and print out the results

  9. Lightweight Hyperspectral Mapping System and a Novel Photogrammetric Processing Chain for UAV-based Sensing

    Science.gov (United States)

    Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert

    2014-05-01

    We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.

  10. Livestock: An alternative mosquito control measure | Yakubu ...

    African Journals Online (AJOL)

    A survey was conducted to investigate the indigenous methods or measures adopted by urban livestock owners in the control of mosquito in Sokoto metropolis. Fifty (50) respondents who were engaged in urban livestock production were conveniently sampled, In addition, five (5) locations (Sidi farm, Kara market, Sokoto ...

  11. Control perceptions and control appraisal: Relation to measures of ...

    African Journals Online (AJOL)

    Objectives: To investigate the relationship between control variables and measures of subjective wellbeing. The primary question asked was “who is happy and well, and why?” Design: A questionnaire survey and the data was analyzed by examining bivariate relationships between variables of interest. Participants: Two ...

  12. Hybrid scatterometry measurement for BEOL process control

    Science.gov (United States)

    Timoney, Padraig; Vaid, Alok; Kang, Byeong Cheol; Liu, Haibo; Isbester, Paul; Cheng, Marjorie; Ng-Emans, Susan; Yellai, Naren; Sendelbach, Matt; Koret, Roy; Gedalia, Oram

    2017-03-01

    Scaling of interconnect design rules in advanced nodes has been accompanied by a reducing metrology budget for BEOL process control. Traditional inline optical metrology measurements of BEOL processes rely on 1-dimensional (1D) film pads to characterize film thickness. Such pads are designed on the assumption that solid copper blocks from previous metallization layers prevent any light from penetrating through the copper, thus simplifying the effective film stack for the 1D optical model. However, the reduction of the copper thickness in each metallization layer and CMP dishing effects within the pad, have introduced undesired noise in the measurement. To resolve this challenge and to measure structures that are more representative of product, scatterometry has been proposed as an alternative measurement. Scatterometry is a diffraction based optical measurement technique using Rigorous Coupled Wave Analysis (RCWA), where light diffracted from a periodic structure is used to characterize the profile. Scatterometry measurements on 3D structures have been shown to demonstrate strong correlation to electrical resistance parameters for BEOL Etch and CMP processes. However, there is significant modeling complexity in such 3D scatterometry models, in particlar due to complexity of front-end-of-line (FEOL) and middle-of-line (MOL) structures. The accompanying measurement noise associated with such structures can contribute significant measurement error. To address the measurement noise of the 3D structures and the impact of incoming process variation, a hybrid scatterometry technique is proposed that utilizes key information from the structure to significantly reduce the measurement uncertainty of the scatterometry measurement. Hybrid metrology combines measurements from two or more metrology techniques to enable or improve the measurement of a critical parameter. In this work, the hybrid scatterometry technique is evaluated for 7nm and 14nm node BEOL measurements of

  13. Measuring and controlling method for organic impurities

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo

    1995-01-01

    The present invention concerns measurement and control for organic impurities contained in ultrapurified water for use in a nuclear power plant. A specimen containing organic impurities leached out of anionic exchange resins and cationic exchange resins is introduced to an organic material decomposing section to decompose organic impurities into organic carbon and other decomposed products. Sulfate ions, nitrate ions, nitrite ions and carbon dioxide are produced by the decomposition of the organic impurities. As a next step, carbon dioxide in the decomposed products is separated by deaerating with a nitrogen gas or an argon gas and then a TOC concentration is measured by a non-dispersion-type infrared spectrometer. Further, a specimen from which carbon dioxide was separated is introduced to a column filled with ion exchange resins and, after concentrating inorganic ion impurities, the inorganic ion impurities are identified by using a measuring theory of an ion chromatographic method of eluting and separating inorganic ion impurities and detecting them based on the change of electroconductivity depending on the kinds of the inorganic ion impurities. Organic impurities can be measured and controlled, to improve the reliability of water quality control. (N.H.)

  14. Making transuranic assay measurements using modern controllers

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Caldwell, J.T.; Medvick, P.A.; Kunz, W.E.; Hastings, R.D.

    1987-01-01

    This paper describes methodology and computer-controlled instrumentation developed at the Los Alamos National Laboratory that accurately performs nondestructive assays of large containers bearing transuranic wastes and nonradioactive matrix materials. These assay systems can measure fissile isotopes with 1-mg sensitivity and spontaneous neutron-emitting isotopes at a 10-mg sensitivity. The assays are performed by neutron interrogation, detection, and counting in a custom assay chamber. An International Business Machines Personal Computer (IBM-PC) is used to control the CAMAC-based instrumentation system that acquires the assay data. 6 refs., 7 figs

  15. Phase measurement and control of bunched beams

    International Nuclear Information System (INIS)

    Lewis, R.N.

    1978-01-01

    An ion bean buncher was developed at ANL for bunching all ion species through a tandem accelerator. Transit time variations through the tandem, caused by ripple and fluctuations in the injection and lens power supplies and terminal voltage, and to varying voltage distributions in the accelerating tube, cause a beam-phase variation at the output of the tandem. A beam-phase measurement and control system was designed and installed in conjunction with the ion beam buncher to control beam phase at the tandem output. That system is described

  16. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  17. Real-time measurement and control at Jet. Experiment Control

    International Nuclear Information System (INIS)

    Felton, R.; Zabeo, L.; Sartori, F.; Piccolo, F.; Farthing, J.; Budd, T.; Dorling, S.; McCullen, P.; Harling, J.; Dalley, S.; Goodyear, A.; Stephen, A.; Card, P.; Bright, M.; Lucock, R.; Jones, E.; Griph, S.; Hogben, C.; Beldishevski, M.; Buckley, M.; Davis, J.; Young, I.; Hemming, O.; Wheatley, M.; Heesterman, P.; Lloyd, G.; Walters, M.; Bridge, R.; Leggate, H.; Howell, D.; Zastrow, K.D.; Giroud, C.; Coffey, I.; Hawkes, N.; Stamp, M.; Barnsley, R.; Edlington, T.; Guenther, K.; Gowers, C.; Popovichef, S.; Huber, A.; Ingesson, C.; Joffrin, E.; Mazon, D.; Moreau, D.; Murari, A.; Riva, M.; Barana, O.; Bolzonella, T.; Valisa, M.; Innocente, P.; Zerbini, M.; Bosak, K.; Blum, J.; Vitale, E.; Crisanti, F.; La Luna, E. de; Sanchez, J.

    2004-01-01

    Over the past few ears, the preparation of ITER-relevant plasma scenarios has been the main focus experimental activity on tokamaks. The development of integrated, simultaneous, real-time controls of plasma shape, current, pressure, temperature, radiation, neutron profiles, and also impurities, ELMs (edge localized modes) and MHD are now seen to be essential for further development of quasi-steady state conditions with feedback, or the stabilisation of transient phenomena with event-driven actions. For this thrust, the EFDA JET Real Time Project has developed a set of real-time plasma measurements, experiment control, and communication facilities. The Plasma Diagnostics used for real-time experiments are Far Infra Red interferometry, polarimetry, visible, UV and X-ray spectroscopy, LIDAR, bolometry, neutron and magnetics. Further analysis systems produce integrated results such as temperature profiles on geometry derived from MHD equilibrium solutions. The Actuators include toroidal, poloidal and divertor coils, gas and pellet fuelling, neutral beam injection, radiofrequency (ICRH) waves and microwaves (LH). The Heating/Fuelling Operators can either define a power or gas request waveform or select the real-time instantaneous power/gas request from the Real Time Experiment Central Control (RTCC) system. The Real Time Experiment Control system provides both a high-level, control-programming environment and interlocks with the actuators. A MATLAB facility is being developed for the development of more complex controllers. The plasma measurement, controller and plant control systems communicate in ATM network. The EFDA Real Time project is essential groundwork for future reactors such as ITER. It involves many staff from several institutions. The facility is now frequently used in experiments. (authors)

  18. Photogrammetric Resection Approach Using Straight Line Features for Estimation of Cartosat-1 Platform Parameters

    Directory of Open Access Journals (Sweden)

    Nita H. Shah

    2008-08-01

    Full Text Available The classical calibration or space resection is the fundamental task in photogrammetry. The lack of sufficient knowledge of interior and exterior orientation parameters lead to unreliable results in the photogrammetric process. There are several other available methods using lines, which consider the determination of exterior orientation parameters, with no mention to the simultaneous determination of inner orientation parameters. Normal space resection methods solve the problem using control points, whose coordinates are known both in image and object reference systems. The non-linearity of the model and the problems, in point location in digital images are the main drawbacks of the classical approaches. The line based approach to overcome these problems includes usage of lines in the number of observations that can be provided, which improve significantly the overall system redundancy. This paper addresses mathematical model relating to both image and object reference system for solving the space resection problem which is generally used for upgrading the exterior orientation parameters. In order to solve the dynamic camera calibration parameters, a sequential estimator (Kalman Filtering is applied; in an iterative process to the image. For dynamic case, e.g. an image sequence of moving objects, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and basic physical sensor model for each instant of time. The proposed approach is tested with three real data sets and the result suggests that highly accurate space resection parameters can be obtained with or without using the control points and progressive processing time reduction.

  19. Automatic control unit for neutron transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Ashry, A.; Mostafa, M.; Hamouda, I. (Atomic Energy Establishment, Inshas (Egypt). Reactor and Neutron Physics Dept.)

    1981-01-01

    An automatic transistorized unit has been designed to control the neutron transmission measurements carried out using the time-of-flight spectrometer. The function of the automatic unit is to control the measurements of the neutron counting rate distribution transmitted through a sample at a selected channel group of the time analyzer for a certain preadjusted time period. At the end of this time, the unit removes the sample out of the neutron beam, selects a second equal channel group of the time analyzer and provides the measurement of the neutron counting rate distribution for the same time period as in the case with the sample on. Such a measuring cycle can be repeated as much as the experiment requires. At the end of these cycles the stored information can be immediately obtained through the analyzer read out unit. It is found that the time of removing the sample out of the neutron beam or returning it back does not exceed 20 seconds instead of the five minutes required in case of manual operation. The most important advantages of using such an automatic unit are saving about 20 percent of the reactor operating time avoidng unnecessary radiation exposure of the experimentalists.

  20. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images

    Directory of Open Access Journals (Sweden)

    Nikolaj Veje

    2009-09-01

    Full Text Available The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.

  1. Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas

    Science.gov (United States)

    Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.

    2016-06-01

    Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically, for the real plot data, 24

  2. Best available control measures for prescribed burning

    International Nuclear Information System (INIS)

    Smith, A.M.; Stoneman, C.S.

    1992-01-01

    Section 190 of the Clean Air Act (CAA) as amended in 1990 requires the US Environmental Protection Agency (EPA) to issue guidance on Best Available Control Measures (BACM) of PM 10 (particulate matter with a nominal aerodynamic diameter less than or equal to 10 micrometers) from urban fugitive dust, residential wood combustion, and prescribed silvicultural and agricultural burning (prescribed burning). The purpose of this guidance is to assist states (especially, but not exclusively, those with PM 10 nonattainment areas which have been classified as serious) in developing a control measure for these three source categories. This guidance is to be issued no later than May 15, 1992 as required under the CAA. The guidance will be issued in the form of a policy guidance generic to all three BACM and in the form of Technical Information Documents (TIDs) for each of the three source categories. The policy guidance will provide the analytical approach for determining BACM and the TID will provide the technical information. The purpose of this paper is to present some insight from the forthcoming TID on what BACM might entail for prescribed burning in a serious PM 10 nonattainment area

  3. Measuring and controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bourrier, Herve; LAFONT, Bruno; Fischer, Severin; Leonard, Damien; Tutenuit, Claire

    2011-05-01

    As providing a reporting of their greenhouse gas emissions has become mandatory for a large number of French companies, this publication proposes a methodology to perform an assessment or measurement, and a control of such emissions. In its first part, it explains why measurements are required: indication of concerned gases, international consensus to limit temperature rise, definition and chronology of the main steps adopted at the international level and which must be considered in the approach adopted by enterprises in this respect. It outlines the benefits of such a measurement for the enterprise in terms of competitiveness, personnel commitment, new markets and products, image, compliance with the law, operational and financial aspects, and so on. It identifies the various stakeholders to be informed: civil society, financial community, public authorities, clients and consumers, personnel, suppliers. It outlines the diversity and evolution of legal frameworks at the international level as well as at national levels. While evoking many examples of French companies (SNCF, EDF, Seche Environnement, RTE, Michelin, Arcelormittal, AREVA, Air France, EADS-Airbus, AXA, Veolia, and so on), the next part addresses how to measure emissions. It outlines the complexity of the methodological landscape with its various criteria, evokes the various existing standards, outlines the distinction between organisation-based, product-based and project-based approaches, and the distinction between direct and indirect emissions in relationship with the notion of scope. It comments the existence of sector-based methodologies and guidelines, and discusses some difficulties and methodological decisions. The third part proposes some lessons learned from the experience which could lead to a harmonisation of methodologies, proposes a synthesis of reporting approaches, outlines risks and opportunities related to communication

  4. Tuning quantum measurements to control chaos.

    Science.gov (United States)

    Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R

    2017-03-20

    Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.

  5. Microneedle Manufacture: Assessing Hazards and Control Measures

    Directory of Open Access Journals (Sweden)

    Alexander Martin

    2017-10-01

    Full Text Available Transdermal microneedles have captured the attention of researchers in relation to a variety of applications, and silicone-based moulds required to produce these systems are now widely available and can be readily manufactured on the lab bench. There is however some concern over the potential for accidental needlestick injuries and, as with any sharp hazard, the potential for blood-borne pathogen transmission must be considered. This follows from recent governmental concerns over the use of microneedle systems in dermabrasion. Despite the piercing nature of the microneedle patch sharing many similarities with conventional hypodermic needles, there are notable factors that mitigate the risk of contamination. A range of microneedle systems has been prepared using micromoulding techniques, and their puncture capability assessed. A critical assessment of the potential for accidental puncture and the control measures needed to ensure safe utilisation of the patch systems is presented.

  6. House dust mite control measures for asthma

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C.; Johansen, Helle Krogh

    2008-01-01

    BACKGROUND: The major allergen in house dust comes from mites. Chemical, physical and combined methods of reducing mite allergen levels are intended to reduce asthma symptoms in people who are sensitive to house dust mites. OBJECTIVES: To assess the effects of reducing exposure to house dust mite...... antigens in the homes of people with mite-sensitive asthma. SEARCH STRATEGY: PubMed and The Cochrane Library (last searches Nov 2007), reference lists. SELECTION CRITERIA: Randomised trials of mite control measures vs placebo or no treatment in people with asthma known to be sensitive to house dust mites......), the standardised mean difference was 0.00 (95% confidence interval (CI) -0.10 to 0.10). There were no statistically significant differences either in number of patients improved (relative risk 1.01, 95% CI 0.80 to 1.27), asthma symptom scores (standardised mean difference -0.04, 95% CI -0.15 to 0...

  7. Cardiac output measurement instruments controlled by microprocessors

    International Nuclear Information System (INIS)

    Spector, M.; Barritault, L.; Boeri, C.; Fauchet, M.; Gambini, D.; Vernejoul, P. de

    The nuclear medicine and biophysics laboratory of the Necker-Enfants malades University Hospital Centre has built a microprocessor controlled Cardiac flowmetre. The principle of the cardiac output measurement from a radiocardiogram is well established. After injection of a radioactive indicator upstream from the heart cavities the dilution curve is obtained by the use of a gamma-ray precordial detector. This curve normally displays two peaks due to passage of the indicator into the right and left sides of the heart respectively. The output is then obtained from the stewart Hamilton principle once recirculation is eliminated. The graphic method used for the calculation however is long and tedious. The decreasing fraction of the dilution curve is projected in logarithmic space in order to eliminate recirculation by determining the mean straight line from which the decreasing exponential is obtained. The principle of the use of microprocessors is explained (electronics, logics) [fr

  8. Measurement and control of occupational noise

    International Nuclear Information System (INIS)

    Elammari, Muftah Faraj

    2007-01-01

    High level of environmental and occupational noise remain a problem all over the world. As problems and complaints increased dramatically by the end of the 19th and beginning of the 20th centuries focusing on the problem was intensified. In this thesis occupational noise levels at different places were measured and compared with the international permissible levels using the integrating sound level meter (Quest 2800). The calibration of the instrument was carried out before and after each measurement using the acoustic calibrator (Quest CA-12B calibrator). The method which was followed was measuring the sound pressure level of the different noise sources over a broad frequency band covering the audible frequency range using the (octave band filter, model OB-100), disregrading variation with time. Since the human ear is most sensitive in the 2-5 khz range of frequencies and least sensitive at extremely high and low frequencies the instrument was adjusted on the A weighting net work which varies with frequencies in a very similar way as that of the human ear. From the obtained results, some noise levels which were recorded were within the permissible levels i.e. below 90 dba and some noise levels were higher than the permissible limit as in janzour textile factory (95 dba), The welding workshop (120 dba), Benghazi Macaroni factory (100 dba), and near the air blowers at Zletin cement factory, Benghazi cement factory (97-10-dba) in these cases suggestions were made to minimize the problem. Concerning the noise control, four methods of noise control were tested, these methods were: reducing noise by sound absorbing material at Sirt local broadcasting radio, reducing noise by keeping a distance from the noise source, at the Boilers hall at REWDC, reducing noise by enclosures, at the compressors room at Zletin cement factory, and finally reducing noise by performing regular maintenance at Garabolli photo development centre. The percentage of noise reduction was 21%, 12

  9. Photogrammetric 3d Reconstruction in Matlab: Development of a Free Tool

    Science.gov (United States)

    Masiero, A.

    2017-11-01

    This paper presents the current state of development of a free Matlab tool for photogrammetric reconstruction developed at the University of Padova, Italy. The goal of this software is mostly educational, i.e. allowing students to have a close look to the specific steps which lead to the computation of a dense point cloud. As most of recently developed photogrammetric softwares, it is based on a Structure from Motion approach. Despite being mainly motivated by educational purposes, certain implementation details are clearly inspired by recent research works, e.g. limiting the computational burden of the feature matching by determining a suboptimal set of features to be considered, using information provided by external sensors to ease the matching process.

  10. Photogrammetric Analysis of the Current Dome-Building Eruption of Mount St. Helens Volcano

    Science.gov (United States)

    Diefenbach, A. K.; Dzurisin, D.; Crider, J. G.; Schilling, S. P.

    2006-12-01

    Beginning in October 2004 and continuing to present day, the eruption of Mount St. Helens has provided a unique opportunity to experiment with new tools and techniques to study the dome-building eruption of a Cascade volcano. At the onset of eruption, a permanent camera station called Sugar Bowl was installed on the northeast rim of the crater about 2 km from the vent. Since that time, four additional cameras have been installed on the rim and crater floor to provide continuous visual observation of dome growth and crater conditions. We have analyzed images from four of the cameras to measure variations in three-dimensional lineal growth rates of lava spines extruding from the growing dome. Using photogrammetric techniques it is possible to obtain quantitative information on the geometry and displacement of a changing topographic model, in this case the evolving dome and glaciers in the crater of Mount St. Helens. The technique is an inexpensive, high-resolution, and efficient method that uses standard commercial software and an off-the-shelf digital camera to determine the x, y, z positions of selected points on the model surface. The model geometry at any given time is defined by the positions of all the points, and displacements are measured by tracking the changing positions of the points through time. Lineal extrusion rates during the first few months of the eruption ranged from 6-11 m/d, and subsequent estimates by other techniques were 4-5 m/d (Dzurisin et. al, 2005). For the past six months the extrusion rate has leveled off at 1 m/d, possibly indicative of steady-state extrusion or an approaching pause in the eruption. Another aspect of the project involves the use of overlapping oblique photos taken from a helicopter in 2004 and 2005 to produce fast and coarse digital elevation models (DEMs), which supplement high resolution DEMs produced by the USGS every 1 - 2 months. Comparing these results with seismicity and ground tilt measured by shallow borehole

  11. AN INTEGRATED PHOTOGRAMMETRIC AND PHOTOCLINOMETRIC APPROACH FOR PIXEL-RESOLUTION 3D MODELLING OF LUNAR SURFACE

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2018-04-01

    Full Text Available High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo. Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this

  12. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Knight, Rosemary

    2008-01-01

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  13. THE EUROSDR PROJECT "RADIOMETRIC ASPECTS OF DIGITAL PHOTOGRAMMETRIC IMAGES" – RESULTS OF THE EMPIRICAL PHASE

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2012-09-01

    Full Text Available This article presents the empirical research carried out in the context of the multi-site EuroSDR project "Radiometric aspects of digital photogrammetric images" and provides highlights of the results. The investigations have considered the vicarious radiometric and spatial resolution validation and calibration of the sensor system, radiometric processing of the image blocks either by performing relative radiometric block equalization or into absolutely reflectance calibrated products, and finally aspects of practical applications on NDVI layer generation and tree species classification. The data sets were provided by Leica Geosystems ADS40 and Intergraph DMC and the participants represented stakeholders in National Mapping Authorities, software development and research. The investigations proved the stability and quality of evaluated imaging systems with respect to radiometry and optical system. The first new-generation methods for reflectance calibration and equalization of photogrammetric image block data provided promising accuracy and were also functional from the productivity and usability points of view. The reflectance calibration methods provided up to 5% accuracy without any ground reference. Application oriented results indicated that automatic interpretation methods will benefit from the optimal use of radiometrically accurate multi-view photogrammetric imagery.

  14. A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    Wenang Anurogo

    2017-06-01

    Full Text Available Aerial photogrammetry is one of the Alternative technologies for more detailed data, real time, fast and cheaper. Nowadays, many photogrammetric mapping methods have used UAV / unmanned drones or drones to retrieve and record data from an object in the earth. The application of drones in the field of geospatial science today is in great demand because of its relatively easy operation and relatively affordable cost compared to satellite systems especially high - resolution satellite imagery.  This research aims to determine the stage or overview of data retrieval process with DJI Phantom 4 (multi - rotor quad - copter drone with processing using third party software. This research also produces 2 - dimensional high resolution image data on the research area. Utilization of third party software (Agisoft PhotoScan making it easier to acquire and process aerial photogrammetric data. The results of aerial photogrammetric recording with a flying altitude of 70 meters obtained high resolution images with a spatial resolution of 2 inches / pixels.

  15. SALE, Quality Control of Analytical Chemical Measurements

    International Nuclear Information System (INIS)

    Bush, W.J.; Gentillon, C.D.

    1985-01-01

    1 - Description of problem or function: The Safeguards Analytical Laboratory Evaluation (SALE) program is a statistical analysis program written to analyze the data received from laboratories participating in the SALE quality control and evaluation program. The system is aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically evaluated and participants are informed of the accuracy and precision of their results. 2 - Method of solution: Various statistical techniques produce the SALE output. Assuming an unbalanced nested design, an analysis of variance is performed, resulting in a test of significance for time and analyst effects. A trend test is performed. Both within- laboratory and between-laboratory standard deviations are calculated. 3 - Restrictions on the complexity of the problem: Up to 1500 pieces of data for each nuclear material sampled by a maximum of 75 laboratories may be analyzed

  16. Measurement and control systems using nuclear radiation

    International Nuclear Information System (INIS)

    Melo, Jose Altino Tupinamba; Madi Filho, Tufic

    2007-01-01

    Non-destructive Assay is applied to machines and components quality tests. These elements would not have a good performance if they were conceived without concern about the mechanical project quality, used materials, manufacture processes and inspection and maintenance methodology. In this work, a measure and control system of non destructive processes was developed, using a radioactive source with a defined energy in function of the material to be analyzed. This system involves: interface of input/output (I/O) (hardware) and graphical interface (software). In the non destructive analysis, it is made the comparison of the signal proceeding from the sensor with a signal preset (set point) or analogical signal of reference (Base Line), which is adjusted in the I/O interface. Analyzed the signal, the system will make the decision: to reject or to accept the analyzed material. The I/O interface is implemented by electronic equipment with a MCS51. The purpose of this interface is to supply conditions to exchange information, using serial RS232, between the sensor and the microcomputer. The graphical interface (software) is written in visual C++ language. (author)

  17. D Recording, Modelling and Visualisation of the Fortification Kristiansten in Trondheim (norway) by Photogrammetric Methods and Terrestrial Laser Scanning in the Framework of Erasmus Programmes

    Science.gov (United States)

    Kersten, T.; Lindstaedt, M.; Maziull, L.; Schreyer, K.; Tschirschwitz, F.; Holm, K.

    2015-02-01

    In this contribution the 3D recording, 3D modelling and 3D visualisation of the fortification Kristiansten in Trondheim (Norway) by digital photogrammetry and terrestrial laser scanning are presented. The fortification Kristiansten was built after the large city fire in the year 1681 above the city and has been a museum since 1997. The recording of the fortress took place in each case at the end of August/at the beginning of September 2010 and 2011 during two two-week summer schools with the topic "Digital Photogrammetry & Terrestrial Laser Scanning for Cultural Heritage Documentation" at NTNU Trondheim with international students in the context of ERASMUS teaching programs. For data acquisition, a terrestrial laser scanner and digital SLR cameras were used. The establishment of a geodetic 3D network, which was later transformed into the Norwegian UTM coordinate system using control points, ensured a consistent registration of the scans and an orientation of the photogrammetric images. The fortress buildings were constructed in detail from photogrammetric photographs and point clouds using AutoCAD, while the fortress area and walls were modelled by triangle meshing in Geomagic. The visualisation of the fortress was carried out 2013 with the software Cinema 4D in the context of a lecture in the Master study programme Geomatics. The 3D model was textured and afterwards presented in a video. This 3D model was finally transferred into the game engine Unity for an interactive 3D visualisation on 3D monitors.

  18. Evaluation of sequential images for photogrammetrically point determination

    Science.gov (United States)

    Kowalczyk, M.

    2011-12-01

    Close range photogrammetry encounters many problems with reconstruction of objects three-dimensional shape. Relative orientation parameters of taken photos makes usually key role leading to right solution of this problem. Automation of technology process is hardly performed due to recorded scene complexity and configuration of camera positions. This configuration makes the process of joining photos into one set usually impossible automatically. Application of camcorder is the solution widely proposed in literature for support in 3D models creation. Main advantages of this tool are connected with large number of recorded images and camera positions. Exterior orientation changes barely between two neighboring frames. Those features of film sequence gives possibilities for creating models with basic algorithms, working faster and more robust, than with remotely taken photos. The first part of this paper presents results of experiments determining interior orientation parameters of some sets of frames, presenting three-dimensional test field. This section describes calibration repeatability of film frames taken from camcorder. It is important due to stability of interior camera geometric parameters. Parametric model of systematical errors was applied for correcting images. Afterwards a short film of the same test field had been taken for determination of check points group. This part has been done for controlling purposes of camera application in measurement tasks. Finally there are presented some results of experiments which compare determination of recorded object points in 3D space. In common digital photogrammetry, where separate photos are used, first levels of image pyramids are taken to connect with feature based matching. This complicated process creates a lot of emergencies, which can produce false detections of image similarities. In case of digital film camera, authors of publications avoid this dangerous step, going straightly to area based matching, aiming

  19. Individual Pitch Control Using LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2012-01-01

    In this work the problem of individual pitch control of a variable-speed variable-pitch wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. However as the plant is nonlinear and time varying, a new approach is proposed to simplify......-of-plane blade root bending moments and a better transient response compared to a benchmark PI individual pitch controller....

  20. Review of measures to control radiation

    International Nuclear Information System (INIS)

    Swindon, T.N.

    1980-03-01

    Methods used in Canada and the U.S.A. to overcome problems in the control of radiation, to prescribe standards and to ensure that compliance with the standards is achieved are reviewed. The relevant Acts and Regulations are outlined. Options which could be applied in Australia for effecting better control of radiation are suggested

  1. Automatization of the radiation control measurements

    International Nuclear Information System (INIS)

    Seki, Akio; Ogata, Harumi; Horikoshi, Yoshinori; Shirai, Kenji

    1988-01-01

    Plutonium Fuel Production Facility (PFPF) was constructed to fabricate the MOX fuels for 'MONJU' and 'JOYO' reactors and to develop the practical fuel fabricating technology. For the fuel fabrication process in this facility, centralized controlling system is being adopted for the mass production of the fuel and reduction of the radiation exposure dose. Also, the radiation control systems are suitable for the large-scale facility and the automatic-remote process of the fuel fabrication. One of the typical radiation control systems is the self moving survey system which has been developed by PNC and adopted for the automatic routine monitoring. (author)

  2. Laser-based measuring equipment controlled by microcomputer

    International Nuclear Information System (INIS)

    Miron, N.; Sporea, D.; Velculescu, V.G.; Petre, M.

    1988-03-01

    Some laser-based measuring equipment controlled by microcomputer developed for industrial and scientific purposes are described. These equipments are intended for dial indicators verification, graduated rules measurement, and for very accurate measurement of the gravitational constant. (authors)

  3. An integrated photogrammetric and spatial database management system for producing fully structured data using aerial and remote sensing images.

    Science.gov (United States)

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented.

  4. An Integrated Photogrammetric and Spatial Database Management System for Producing Fully Structured Data Using Aerial and Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Farshid Farnood Ahmadi

    2009-03-01

    Full Text Available 3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs; direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS is presented.

  5. Photogrammetric techniques for across-scale soil erosion assessment

    OpenAIRE

    Eltner, Anette

    2016-01-01

    Soil erosion is a complex geomorphological process with varying influences of different impacts at different spatio-temporal scales. To date, measurement of soil erosion is predominantly realisable at specific scales, thereby detecting separate processes, e.g. interrill erosion contrary to rill erosion. It is difficult to survey soil surface changes at larger areal coverage such as field scale with high spatial resolution. Either net changes at the system outlet or remaining traces after the ...

  6. Abstract: Implementing Infection Control Measures in Neonatology ...

    African Journals Online (AJOL)

    Abstract. Background Neonatal infection is a primary cause of morbidity and mortality globally. Objective The project's objective is to facilitate quality improvement by reduction of hospital-acquired infection (HAI) in hospitalized neonates. Methods Current infection control practices were surveyed and three main areas were ...

  7. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    Science.gov (United States)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  8. Measuring interactivity on tobacco control websites.

    Science.gov (United States)

    Freeman, Becky; Chapman, Simon

    2012-08-01

    With the increased reach of Web 2.0, Internet users expect webpages to be interactive. No studies have been conducted to assess whether tobacco control-relevant sites have implemented these features. The authors conducted an analysis of an international sample of tobacco control-relevant websites to determine their level of interactivity. The sample included 68 unique websites selected from Google searches in 5 countries, on each country's Google site, using the term smoking. The 68 sites were analyzed for 10 categories of interactive tools. The most common type of interactive content found on 46 (68%) of sites was for multimedia featuring content that was not primarily text based, such as photo galleries, videos, or podcasts. Only 11 (16%) websites-outside of media sites-allowed people to interact and engage with the site owners and other users by allowing posting comments on content and/or hosting forums/discussions. Linkages to social networking sites were low: 17 pages (25%) linked to Twitter, 15 (22%) to Facebook, and 11 (16%) to YouTube. Interactivity and connectedness to online social media appears to still be in its infancy among tobacco control-relevant sites.

  9. Do microbial exudates control EH electrode measurements?

    Science.gov (United States)

    Markelova, E.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2017-12-01

    Redox electrodes are widely used as simple, inexpensive monitoring devices to rapidly measure redox potentials (EH) of waterlogged soils, sediments, and aquifers. While a variety of physicochemical and biogeochemical factors have been involved to explain measured EH values, the role of microorganisms remains comparatively understudied and uncertain. Besides catalyzing many inorganic redox reactions (e.g., nitrate reduction), microorganisms produce a variety of redox-active organic compounds (e.g., NAD+/NADH, GSSG/2GSH, FAD/FADH2), which can be released into the surrounding environment via active secretion, passive diffusion, or cell lysis. To isolate different microbial effects on EH measurements, we performed batch experiments using S. oneidensis MR-I as a model heterotrophic microorganism and flavins as example microbial exudates [1]. We monitored EH and pH along with flavin production (fluorescence measurements) during dissimilatory nitrate reduction to ammonium (DNRA). Dissolved flavins increased to 0.2 mM (riboflavin equivalent) under anoxic conditions during complete consumption of 1 mM nitrate by DNRA at pH 7.4 and 30 °C over 80 hours. The observed redox cascade from +255 to -250 mV did not follow the EH predicted for the reduction of NO3- to NO2- and NO2- to NH4+ by the Nernst equation. However, a set of separate abiotic experiments on the photoreduction of synthetic flavins (LMC, RF, FMN, and FAD, Sigma Aldrich) under the same conditions indicated that measured EH values are buffered at +270 ± 20 mV and -230 ± 50 mV when oxidized and reduced flavin species dominate, respectively. Moreover, based on the temporal changes in EH, we speculate that NO3- reduction by S. oneidensis consumes reduced flavins (i.e., NO3- accepts electrons from reduced flavins) and generates oxidized flavins, thus buffering EH at +255 mV. By contrast, NO2- reduction to NH4+ is independent of flavin speciation, which leads to the accumulation of reduced flavins in the solution and

  10. DTM GENERATION WITH UAV BASED PHOTOGRAMMETRIC POINT CLOUD

    Directory of Open Access Journals (Sweden)

    N. Polat

    2017-11-01

    Full Text Available Nowadays Unmanned Aerial Vehicles (UAVs are widely used in many applications for different purposes. Their benefits however are not entirely detected due to the integration capabilities of other equipment such as; digital camera, GPS, or laser scanner. The main scope of this paper is evaluating performance of cameras integrated UAV for geomatic applications by the way of Digital Terrain Model (DTM generation in a small area. In this purpose, 7 ground control points are surveyed with RTK and 420 photographs are captured. Over 30 million georeferenced points were used in DTM generation process. Accuracy of the DTM was evaluated with 5 check points. The root mean square error is calculated as 17.1 cm for an altitude of 100 m. Besides, a LiDAR derived DTM is used as reference in order to calculate correlation. The UAV based DTM has o 94.5 % correlation with reference DTM. Outcomes of the study show that it is possible to use the UAV Photogrammetry data as map producing, surveying, and some other engineering applications with the advantages of low-cost, time conservation, and minimum field work.

  11. DTM Generation with Uav Based Photogrammetric Point Cloud

    Science.gov (United States)

    Polat, N.; Uysal, M.

    2017-11-01

    Nowadays Unmanned Aerial Vehicles (UAVs) are widely used in many applications for different purposes. Their benefits however are not entirely detected due to the integration capabilities of other equipment such as; digital camera, GPS, or laser scanner. The main scope of this paper is evaluating performance of cameras integrated UAV for geomatic applications by the way of Digital Terrain Model (DTM) generation in a small area. In this purpose, 7 ground control points are surveyed with RTK and 420 photographs are captured. Over 30 million georeferenced points were used in DTM generation process. Accuracy of the DTM was evaluated with 5 check points. The root mean square error is calculated as 17.1 cm for an altitude of 100 m. Besides, a LiDAR derived DTM is used as reference in order to calculate correlation. The UAV based DTM has o 94.5 % correlation with reference DTM. Outcomes of the study show that it is possible to use the UAV Photogrammetry data as map producing, surveying, and some other engineering applications with the advantages of low-cost, time conservation, and minimum field work.

  12. An evaluation of waste control measures in construction industry in ...

    African Journals Online (AJOL)

    UFUOMA

    Key words: Construction processes, waste, factors, effects, control measures. INTRODUCTION ... of construction projects, an optimum material control on site should be .... on site due to mishandling or careless delivery accounted for 20% of.

  13. TOWARDS MEASURES OF INTELLIGENCE BASED ON SEMIOTIC CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    C. JOSLYN

    2000-08-01

    We address the question of how to identify and measure the degree of intelligence in systems. We define the presence of intelligence as equivalent to the presence of a control relation. We contrast the distinct atomic semioic definitions of models and controls, and discuss hierarchical and anticipatory control. We conclude with a suggestion about moving towards quantitative measures of the degree of such control in systems.

  14. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    International Nuclear Information System (INIS)

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-01-01

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied

  15. Operators manual for a computer controlled impedance measurement system

    Science.gov (United States)

    Gordon, J.

    1987-02-01

    Operating instructions of a computer controlled impedance measurement system based in Hewlett Packard instrumentation are given. Hardware details, program listings, flowcharts and a practical application are included.

  16. EVALUATION OF PHOTOGRAMMETRIC BLOCK ORIENTATION USING QUALITY DESCRIPTORS FROM STATISTICALLY FILTERED TIE POINTS

    Directory of Open Access Journals (Sweden)

    A. Calantropio

    2018-05-01

    Full Text Available Due to the increasing number of low-cost sensors, widely accessible on the market, and because of the supposed granted correctness of the semi-automatic workflow for 3D reconstruction, highly implemented in the recent commercial software, more and more users operate nowadays without following the rigorousness of classical photogrammetric methods. This behaviour often naively leads to 3D products that lacks metric quality assessment. This paper proposes and analyses an approach that gives the users the possibility to preserve the trustworthiness of the metric information inherent in the 3D model, without sacrificing the automation offered by modern photogrammetry software. At the beginning, the importance of Data Quality Assessment is outlined, together with some recall of photogrammetry best practices. With the purpose of guiding the user through a correct pipeline for a certified 3D model reconstruction, an operative workflow is proposed, focusing on the first part of the object reconstruction steps (tie-points extraction, camera calibration, and relative orientation. A new GUI (Graphical User Interface developed for the open source MicMac suite is then presented, and a sample dataset is used for the evaluation of the photogrammetric block orientation using statistically obtained quality descriptors. The results and the future directions are then presented and discussed.

  17. SELF-ASSEMBLED ROV AND PHOTOGRAMMETRIC SURVEYS WITH LOW COST TECHNIQUES

    Directory of Open Access Journals (Sweden)

    E. Costa

    2018-05-01

    Full Text Available In last years, ROVs, have been employed to explore underwater environments and have played an important role for documentation and surveys in different fields of scientific application. In 2017, the Laboratorio di Fotogrammetria of Iuav University of Venice has decided to buy an OpenRov, a low cost ROV that could be assembled by ourselves to add some external components for our necessities, to document archaeological sites. The paper is related to the photogrammetric survey for the documentation of underwater environments and to the comparison between different solutions applied on a case studio, five marble columns on a sandy bottom at 5 meters deep. On the lateral sides of the ROV, we have applied two GoPro Hero4 Session, which have documented the items both with a series of images and with a video. The geometric accuracy of the obtained 3D model has been evaluated through comparison with a photogrammetric model realized with a professional reflex camera, Nikon D610. Some targets have been topographically surveyed with a trilateration and have been used to connected in the same reference system the different models, allowing the comparisons of the point clouds. Remote Operating Vehicles offer not only safety for their operators, but are also a relatively low cost alternative. The employment of a low-cost vehicle adapted to the necessities of surveys support a request for safer, cheaper and efficient methods for exploring underwater environments.

  18. Development of Rapid and Low Cost Archaeological Site Mapping Using Photogrammetric Technique

    International Nuclear Information System (INIS)

    Azhar, N A Mohd; Ahmad, Anuar

    2014-01-01

    In digital photogrammetry, unmanned aerial vehicle (UAV) platform is a new technology that can be used to capture digital images for large scale mapping with accuracy down to centimeter level from various waypoints for archaeological site documentation. UAV is one of the great alternatives to replace piloted aircraft and with combination of non -metric camera, thus it can be applied for small area such as cultural heritage building/ archeological site area. With the recent technology of non-metric cameras, this camera is capable of producing high resolution digital images. This study investigates the application of UAV images for documentation and mapping of a simulated archaeological sites. An archaeological site simulation modelwith dimension of 2.4 m × 3.5 m is used in this study. The accuracy for mapping the archeological sites based on the UAV system is evaluated and analyzed by performing the Root Mean Square Error (RMSE) derived from the differences of coordinates between reference value and the coordinates observed from photogrammetric output such as digital terrain model and orthophoto. In this application, a simulation model was used to simulate the archaeological site excavation. The results clearly demonstrate the potential and the capability of UAV and non-metric camera in providing the accuracy of centimetre level for this application. From this study, it can be concluded that the UAV and the photogrammetric technique procedure satisfied the needs of archaeological sites survey and documentation

  19. Cultural Heritage: An example of graphical documentation with automated photogrammetric systems

    Science.gov (United States)

    Giuliano, M. G.

    2014-06-01

    In the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used, in particular for the study and for the documentation of the ancient ruins. This work has been carried out during the PhD cycle that was produced the "Carta Archeologica del territorio intorno al monte Massico". The study suggests the archeological documentation of the mausoleum "Torre del Ballerino" placed in the south-west area of Falciano del Massico, along the Via Appia. The graphic documentation has been achieved by using photogrammetric system (Image Based Modeling) and by the classical survey with total station, Nikon Nivo C. The data acquisition was carried out through digital camera Canon EOS 5D Mark II with Canon EF 17-40 mm f/4L USM @ 20 mm with images snapped in RAW and corrected in Adobe Lightroom. During the data processing, the camera calibration and orientation was carried out by the software Agisoft Photoscans and the final result has allowed to achieve a scaled 3D model of the monument, imported in software MeshLab for the different view. Three orthophotos in jpg format were extracted by the model, and then were imported in AutoCAD obtaining façade's surveys.

  20. Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications

    Directory of Open Access Journals (Sweden)

    Francesco Nex

    2009-05-01

    Full Text Available In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results under extreme geometrical conditions (convergent taking geometry, strong affine transformations, etc. and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A2 SIFT has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems.

  1. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    International Nuclear Information System (INIS)

    2011-01-01

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model was not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.

  2. Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation

    Science.gov (United States)

    Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.

    2018-05-01

    Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.

  3. Role of measurement in feedback-controlled quantum engines

    Science.gov (United States)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  4. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    Science.gov (United States)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  5. The Revised Perceived Environmental Control Measure: A Review and Analysis.

    Science.gov (United States)

    Smith-Sebasto, N. J.

    1992-01-01

    A study reveals the need for extensive refinement of the Revised Perceived Environmental Control Measure purported in the past to be a reliable and valid instrument to measure the relationship between the psychological construct, "locus of control," and environmental action or environmentally responsible behavior. (MCO)

  6. Legal control scenario applied to embedded software in measuring instruments

    International Nuclear Information System (INIS)

    Castro, C.G. de; Brandao, P.C.; Leitao, F.O.

    2013-01-01

    This paper presents a scenario of legal control of software in measuring instruments. Such control is hampered by intrinsic problems related to software analysis and verification. To circumvent these difficulties, several projects are being developed to attack different stages of legal control, such as the model type approval, periodic verifications and metrological expertise. The proposals that will arise from these projects will be discussed among the parts and may be incorporated into the measuring instruments. (author)

  7. Determination of the range of control limits in radioimmunoassay measurements

    International Nuclear Information System (INIS)

    Fiori, A.M.C.

    1981-01-01

    A grouping technique is proposed for control limits in radioimmunoassay measurements. It has the advantage of working with control limits of 99.7% without the inconvenience of the confidence intervals. The method is practical and simple. It provides considerable flexibility for the processing of data. As the number of samples increases, the control limits become better defined. (author) [es

  8. Dynamic pipe control with a multiple digit automatic measuring device

    International Nuclear Information System (INIS)

    Jenzer, P.

    1984-01-01

    With the flow rotating method, thin-walled pipes can be produced with very tight tolerances and high mechanical sturdiness. The measuring device permits a dynamic control of these pipes, the outer diameter of which can lie between 70 and 300 mm, the length between 500 and 2000 mm and the wall thickness between 0,5 and 10 mm. Depending on the pipe type, up to 27 measurements in a maximum of 5 measuring levels are to be controlled. (orig.) [de

  9. Fourier transform and controlling of flux in scalar hysteresis measurement

    International Nuclear Information System (INIS)

    Kuczmann, Miklos

    2008-01-01

    The paper deals with a possible realization of eliminating the effect of noise in scalar hysteresis measurements. The measured signals have been transformed into the frequency domain, and, after applying digital filter, the spectrums of the filtered signals have been transformed back to the time domain. The proposed technique results in an accurate noise-removal algorithm. The paper illustrates a fast controlling algorithm applying the inverse of the actually measured hysteresis loop, and another proportional one to measure distorted flux pattern. By developing the mentioned algorithms, it aims at the controlling of a more complicated phenomena, i.e. measuring the vector hysteresis characteristics

  10. Application of Integrated Photogrammetric and Terrestrial Laser Scanning Data to Cultural Heritage Surveying

    Science.gov (United States)

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    The terrestrial laser scanning technology has a wide spectrum of applications, from land surveying, civil engineering and architecture to archaeology. The technology is capable of obtaining, in a short time, accurate coordinates of points which represent the surface of objects. Scanning of buildings is therefore a process which ensures obtaining information on all structural elements a building. The result is a point cloud consisting of millions of elements which are a perfect source of information on the object and its surrounding. The photogrammetric techniques allow documenting an object in high resolution in the form of orthophoto plans, or are a basis to develop 2D documentation or obtain point clouds for objects and 3D modelling. Integration of photogrammetric data and TLS brings a new quality in surveying historic monuments. Historic monuments play an important cultural and historical role. Centuries-old buildings require constant renovation and preservation of their structural and visual invariability while maintaining safety of people who use them. The full process of surveying allows evaluating the actual condition of monuments and planning repairs and renovations. Huge sizes and specific types of historic monuments cause problems in obtaining reliable and full information on them. The TLS technology allows obtaining such information in a short time and is non-invasive. A point cloud is not only a basis for developing architectural and construction documentation or evaluation of actual condition of a building. It also is a real visualization of monuments and their entire environment. The saved image of object surface can be presented at any time and place. A cyclical TLS survey of historic monuments allows detecting structural changes and evaluating damage and changes that cause deformation of monument’s components. The paper presents application of integrated photogrammetric data and TLS illustrated on an example of historic monuments from southern

  11. Control measures in industrial and medical applications of radiation

    International Nuclear Information System (INIS)

    Akinloye, M. K.

    1999-01-01

    Radiation and radioactive substances are natural and permanent features of the environment; additionally the use of human made radiation is widespread. Sources of radiation are essential to modern health care, disposable medical supplies sterilized by intense radiation have been central to combating disease, radiology is a vital diagnostic tool and radiotherapy is commonly part of the treatment of malignancies. Nuclear techniques are in growing use in industry, agriculture, medicine and many fields of research, benefiting hundreds of millions of people and giving employment to millions of people in the related occupations, Irradiation is used around the world to preserve and reduce wastage and sterilization techniques have been used to eradicate disease carrying insects and pests. Industrial radiography is in routine use, for example to examine welds and detect cracks and help prevent the failure of engineered structures. It is also known that exposure to ionizing radiation can result to injuries that manifest themselves in the individual and his descendants. It is therefore imperative that the use of radiation sources be accompanied with the methods necessary for the prevention of the harmful effects of the radiation. These methods are referred to as control measures. Control measures that have been applied in establishments can be classified into physical control measures and administrative control measures. Physical control measures involve the technical aspects while administrative control measures augment physical measures. The guidelines and recommendations for the safe use of radiation and radioactive materials are provided through legislative and regulatory controls

  12. Role of institutional controls in selection of remedial measures

    International Nuclear Information System (INIS)

    Bakr, A.A.; Agoston, E.N.; McLeod, R.V.; Hicks, H.T.

    1992-01-01

    This paper explores the regulatory intent of CERCLA's definition and applicability of institutional controls at hazardous substance release sites undergoing remedial action and institutional controls that have been defined and implemented at selected CERCLA (Superfund) sites in the United States. Under provisions of CERCLA, institutional controls can be components of, or supplements to, interim or final remedial measures for hazardous substance [as defined under CERCLA 101(14)] releases. The use of institutional controls has been proposed in a number of RODs for large Superfund sites (e.g., Times Beach, Missouri; the Clothier Disposal Site in Oswego County, New York; and the Wildcat Landfill in Kent County, Delaware). In these cases, the selected remedial actions combine active response measures with institutional controls to protect human health and the environment. These RODs provide insight to how widely the concept of institutional controls is used and under what conditions. The use of institutional controls at large federal facilities is also discussed

  13. PHOTOGRAMMETRIC AND LIDAR DOCUMENTATION OF THE ROYAL CHAPEL (CATHEDRAL-MOSQUE OF CORDOBA, SPAIN

    Directory of Open Access Journals (Sweden)

    J. Cardenal

    2012-07-01

    Full Text Available At present, cultural heritage documentation projects use a variety of spatial data acquisition techniques such as conventional surveying, photogrammetry and terrestrial laser scanning. This paper deals with a full documentation project based on all those techniques in the Royal Chapel located in the Cathedral-Mosque of Cordoba in Spain, declared World Heritage Site by UNESCO. At present, the Royal Chapel is under study for a detailed diagnostic analysis in order to evaluate the actual state of the chapel, pathologies, construction phases, previous restoration works, material analysis, etc. So in order to assist the evaluation, a documentation project with photogrammetric and laser scanner techniques (TLS has been carried out. With this purpose, accurate cartographic and 3D products, by means of the integration of both image and laser based techniques, were needed to register all data collected during the diagnostic analysis.

  14. Measuring strategic control in implicit learning: how and why?

    Science.gov (United States)

    Norman, Elisabeth

    2015-01-01

    Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in Serial Reaction Time (SRT) learning (Goschke, 1998; Destrebecqz and Cleeremans, 2001) and 2-grammar classification tasks in Artificial Grammar Learning (AGL; Dienes et al., 1995; Norman et al., 2011). Strategic control has traditionally been used as a criterion for determining whether acquired knowledge is conscious or unconscious, or which properties of knowledge are consciously available. In this paper I first summarize existing methods that have been developed for measuring strategic control in the SRT and AGL tasks. I then address some methodological and theoretical questions. Methodological questions concern choice of task, whether the measurement reflects inhibitory control or task switching, and whether or not strategic control should be measured on a trial-by-trial basis. Theoretical questions concern the rationale for including measurement of strategic control, what form of knowledge is strategically controlled, and how strategic control can be combined with subjective awareness measures.

  15. Measuring strategic control in implicit learning: How and why?

    Directory of Open Access Journals (Sweden)

    Elisabeth eNorman

    2015-09-01

    Full Text Available Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in SRT learning (Destrebecqz & Cleeremans, 2001; Goschke, 1998 and 2-grammar classification tasks in AGL (Dienes, Altmann, Kwan, & Goode, 1995; Norman, Price, & Jones, 2011. Strategic control has traditionally been used as a criterion for determining whether acquired knowledge is conscious or unconscious, or which properties of knowledge is consciously available. In this paper I first summarize existing methods that have been developed for measuring strategic control in the SRT and AGL tasks. I then address some methodologial and theoretical questions. Methodological questions concern choice of task, whether the measurement reflects inhibitory control or task switching, and whether or not strategic control should be measured on a trial-by-trial basis. Theoretical questions concern the rationale for including measurement of strategic control, what form of knowledge is strategically controlled, and how strategic control can be combined with subjective awareness measures.

  16. The possibility of using photogrammetric and remote sensing techniques to model lavaka (gully erosion) development in Madagascar

    Science.gov (United States)

    Raveloson, Andrea; Székely, Balázs; Molnár, Gábor; Rasztovits, Sascha

    2013-04-01

    Gully erosion is a worldwide problem for it has a number of undesirable effects and their development is hard to follow. Madagascar is one of the most affected countries for its highlands are densely covered with gullies named lavakas. Lavaka formation and development seems to be triggered by many regional and local causes but the actual reasons are still poorly understood. Furthermore lavakas differ from normal gullies due to their enormous size and special shape. Field surveys are time consuming and data from two-dimensional measurements and pictures (even aerial) might lack major information for morphologic studies. Therefore close range surveying technologies should be used to get three-dimensional information about these unusual and complex features. This contribution discusses which remote sensing and photogrammetric techniques are adequate to survey the development of lavakas, their volume change and sediment budget. Depending on the types and properties (such as volume, depth, shape, vegetation) of the lavaka different methods will be proposed showing pros and cons of each one of them. Our goal is to review techniques to model, survey and analyze lavakas development to better understand the cause of their formation, special size and shape. Different methods are evaluated and compared from field survey through data processing, analyzing cost-effectiveness, potential errors and accuracy for each one of them. For this purpose we will also consider time- and cost-effectiveness of the softwares able to render the images into 3D model as well as the resolution and accuracy of the outputs. Further studies will concentrate on using the three dimensional models of lavakas which will be later on used for geomorphological studies in order to understand their special shape and size. This is ILARG-contribution #07.

  17. SEMI-AUTOMATIC CO-REGISTRATION OF PHOTOGRAMMETRIC AND LIDAR DATA USING BUILDINGS

    Directory of Open Access Journals (Sweden)

    C. Armenakis

    2012-07-01

    Full Text Available In this work, the co-registration steps between LiDAR and photogrammetric DSM 3Ddata are analyzed and a solution based on automated plane matching is proposed and implemented. For a robust 3D geometric transformation both planes and points are used. Initially planes are chosen as the co-registration primitives. To confine the search space for the plane matching a sequential automatic building matching is performed first. For matching buildings from the LiDAR and the photogrammetric data, a similarity objective function is formed based on the roof height difference (RHD, the 3D histogram of the building attributes, and the building boundary area of a building. A region growing algorithm based on a Triangulated Irregular Network (TIN is implemented to extract planes from both datasets. Next, an automatic successive process for identifying and matching corresponding planes from the two datasets has been developed and implemented. It is based on the building boundary region and determines plane pairs through a robust matching process thus eliminating outlier pairs. The selected correct plane pairs are the input data for the geometric transformation process. The 3D conformal transformation method in conjunction with the attitude quaternion is applied to obtain the transformation parameters using the normal vectors of the corresponding plane pairs. Following the mapping of one dataset onto the coordinate system of the other, the Iterative Closest Point (ICP algorithm is then applied, using the corresponding building point clouds to further refine the transformation solution. The results indicate that the combination of planes and points improve the co-registration outcomes.

  18. Additional considerations regarding the choice of measurement control check frequency

    International Nuclear Information System (INIS)

    Bruckner, L.A.

    1993-01-01

    In a previous paper, factors involved in the choice of frequency of instrument measurement control checks were presented. Unfortunately, some discussions were inadvertently omitted from the paper during the process of review, editing and printing. That material is presented here

  19. Rapid and accurate control rod calibration measurement and analysis

    International Nuclear Information System (INIS)

    Nelson, George W.; Doane, Harry J.

    1990-01-01

    In order to reduce the time needed to perform control rod calibrations and improve the accuracy of the results, a technique for a measurement, analysis, and tabulation of integral rod worths has been developed. A single series of critical rod positions are determined at constant low power to reduce the waiting time between positive period measurements and still assure true stable reactor period data. Reactivity values from positive period measurements and control rod drop measurements are used as input data for a non-linear fit to the expected control rod integral worth shape. With this method, two control rods can be calibrated in about two hours, and integral and differential calibration tables for operator use are printed almost immediately. Listings of the BASIC computer programs for the non-linear fitting and calibration table preparation are provided. (author)

  20. Knowledge and application of infectious diseases control measures ...

    African Journals Online (AJOL)

    International Journal of Basic, Applied and Innovative Research ... control measures among Primary Care workers in Nigeria: The Lassa fever example ... The objective of this study was to investigate the knowledge and practice of Lassa fever ...

  1. Photogrammetric Measurement of Recession Rates of Low Temperature Ablators Subjected to High Speed Flow

    Science.gov (United States)

    2011-06-01

    commonly referred to as retorts . This led to a large number of researchers investigating various liquids and their properties, and in 1834, a French...chemist named Thilorier expanded this research using cast iron retorts and focused on liquid carbon dioxide. In one experiment, he removed the lid to...laser orientations as viewed from above 67 software. PhotoModeler® is a commercially available software package designed to extract

  2. Radiometric densimeter for measuring and automatic control of liquid density

    International Nuclear Information System (INIS)

    Wajs, J.

    1982-01-01

    A performance rule of the radiometric densimeter produced by ''POLON ''Works is presented. A simplified analysis of the correction of density indication changes due to liquid temperature variations is described. A method of replacing the measuring pipe carrying the liquid being measured by suitable standards is given. The method is for automatic systems control. (A.S.)

  3. Adding Shareholder Value through Project Performance Measurement, Monitoring & Control

    NARCIS (Netherlands)

    M.M. Akalu; J.R. Turner (Rodney)

    2002-01-01

    textabstractWe present the various views and methods of measuring and controlling project performance, and factors affecting a project. The review indicates that there is a shift in the type and understanding of factors of project success or failure. However, the presence of various measurement

  4. Cost effectiveness analysis of indoor radon control measures

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The problem of radon 222 in buildings as a contributor to radiation exposure is described. Five different control methods and the dose reductions that would result from each are analysed. The annualized cost for each control measure was evaluated and the cost effectiveness of each control measure was calculated on the basis of dollars per person-sievert dose reduction. The use of unipolar ion generators for particle removal appears to be the most cost effective and the use of ceiling fans to increase air circulation the least cost effective. 3 figs., 1 tab

  5. Remote control and data processing for measurement of radiation dose

    International Nuclear Information System (INIS)

    Zhou Yu; Luo Yisheng; Guo Yong; Ji Gang; Wang Xinggong; Zhang Hong; Zhang Wenzhong

    2004-01-01

    Objective: To protect the workers from the reactor radiation and to improve the accuracy and efficiency of neutron dose measurement. Methods: With the application of remote control technology, a remote control and automatic measurement system for radiation dose measurement(especially for neutron dose) was set up. A Model 6517A electrometer was operated all automatically over RS-232 serial interface using SCPI commands with a computer. Results: The workers could stay far from the reactor and be able to control the portable computer in site though internet or LAN and then to control the 6517A electrometer to implement the dose measurement. After the measurement, the data were transferred to the remote computer near the workers and shared by many experts at the first time through the net. Conclusion: This is the first time that the remote control technology is applied in radiation dose measurement, which has so far been considered can only be performed at a near place. This new system can meet the need of neutron radiobiology researches as well as of the safety and health of the workers. (author)

  6. Personal customizing exercise with a wearable measurement and control unit.

    Science.gov (United States)

    Wang, Zhihui; Kiryu, Tohru; Tamura, Naoki

    2005-06-28

    Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment.

  7. Personal customizing exercise with a wearable measurement and control unit

    Directory of Open Access Journals (Sweden)

    Tamura Naoki

    2005-06-01

    Full Text Available Abstract Background Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. Methods The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. Results We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. Conclusion The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment.

  8. Metrology and process control: dealing with measurement uncertainty

    Science.gov (United States)

    Potzick, James

    2010-03-01

    Metrology is often used in designing and controlling manufacturing processes. A product sample is processed, some relevant property is measured, and the process adjusted to bring the next processed sample closer to its specification. This feedback loop can be remarkably effective for the complex processes used in semiconductor manufacturing, but there is some risk involved because measurements have uncertainty and product specifications have tolerances. There is finite risk that good product will fail testing or that faulty product will pass. Standard methods for quantifying measurement uncertainty have been presented, but the question arises: how much measurement uncertainty is tolerable in a specific case? Or, How does measurement uncertainty relate to manufacturing risk? This paper looks at some of the components inside this process control feedback loop and describes methods to answer these questions.

  9. Automatic control and detector for three-terminal resistance measurement

    Science.gov (United States)

    Fasching, George E.

    1976-10-26

    A device is provided for automatic control and detection in a three-terminal resistance measuring instrument. The invention is useful for the rapid measurement of the resistivity of various bulk material with a three-terminal electrode system. The device maintains the current through the sample at a fixed level while measuring the voltage across the sample to detect the sample resistance. The three-electrode system contacts the bulk material and the current through the sample is held constant by means of a control circuit connected to a first of the three electrodes and works in conjunction with a feedback controlled amplifier to null the voltage between the first electrode and a second electrode connected to the controlled amplifier output. An A.C. oscillator provides a source of sinusoidal reference voltage of the frequency at which the measurement is to be executed. Synchronous reference pulses for synchronous detectors in the control circuit and an output detector circuit are provided by a synchronous pulse generator. The output of the controlled amplifier circuit is sampled by an output detector circuit to develop at an output terminal thereof a D.C. voltage which is proportional to the sample resistance R. The sample resistance is that segment of the sample between the area of the first electrode and the third electrode, which is connected to ground potential.

  10. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    , we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based......The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...... on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, the MPC without error compensation and an MPC with re-linearization at each sample point...

  11. Phase measurement and control of pulsed charged beams

    International Nuclear Information System (INIS)

    Lewis, R.N.

    1978-01-01

    A method and system is described that measures and controls the arrival phase of a pulsed ion beam. The repetitive beam pulse passes through and resonantly excites a high-Q structure, tuned to the beam repetition frequency or to a higher harmonic thereof. A reference signal of the same frequency is phase-flipped from -90 0 to +90 0 at a high audio rate and also coupled to the resonator. The low-level output signal, comprised of the vector sum of the beam-induced signal and the phase-flipped reference, is amplified and processed to obtain phase information. The system is usable for beams with average currents as low as a few picoamperes and can be used in the measurement and control of pulsed beam experiments involving timing, the control of beam phase for rf particle accelerators and the nondestructive measurement of beam energy. (Auth.)

  12. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  13. A 3D photogrammetric reconstruction attempt of specimens of Badenian echinoids

    Science.gov (United States)

    Polonkai, Bálint; Raveloson, Andrea; Görög, Ágnes; Bodor, Emese; Székely, Balázs

    2016-04-01

    photogrammetric technologies have been used as our initial experiments showed that it could be a good tool to get three dimensional information about the collected fossils. This contribution discusses which photogrammetric techniques are adequate to study and compare the studied echinoid specimens. Our goal is to review modern techniques and current software solutions to model the fossils and also to study the resulting 3D point cloud. Different methods are evaluated and compared from taking the pictures (with different camera types and different target tables) through data processing, analyzing potential errors, resolution and accuracy for each one of them. Time- and cost-effectiveness of the software packages were also taken into account in order to render the images into 3D model effectively. Preliminary results show that 3D analysis using photogrammetrical method is a good tool to study the collected echinoid specimens showing more information than the classical morphometry studies, especially in the convex part of the studied fossils. Furthermore, the resulting 3D point clouds of different fossils make it possible to compare and maybe even quantify the differences across the specimens. Balázs Székely contributed as an Alexander von Humboldt Research Fellow.

  14. Control-free control: Manipulating a quantum system using only a limited set of measurements

    International Nuclear Information System (INIS)

    Ashhab, S.; Nori, Franco

    2010-01-01

    We present and discuss different protocols for preparing an arbitrary quantum state of a qubit using only a restricted set of measurements, with no unitary operations at all. We show that an arbitrary state can indeed be prepared, provided that the available measurements satisfy certain requirements. Our results shed light on the role that measurement-induced back-action plays in quantum feedback control and the extent to which this back-action can be exploited in quantum-control protocols.

  15. Complex optimization of radiometric control and measurement systems

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1995-01-01

    Fundamentals of a new approach to increase in the accuracy of radiometric systems of control and measurements are presented in succession. Block diagram of the new concept of radiometric system optimization is provided. The approach involving radical increase in accuracy and envisages ascertaining of controlled parameter by the totality of two intelligence signals closely correlated with each other. The new concept makes use of system analysis as a unified one-piece object, permitting euristic synthesis of the system. 4 refs., 3 figs

  16. The History of Rabies in Trinidad: Epidemiology and Control Measures

    Directory of Open Access Journals (Sweden)

    Janine F. R. Seetahal

    2017-07-01

    Full Text Available Vampire bat-transmitted rabies was first recognized in Trinidad during a major outbreak reported in 1925. Trinidad is the only Caribbean island with vampire bat-transmitted rabies. We conducted a literature review to describe the changing epidemiology of rabies in Trinidad and give a historical perspective to rabies prevention and control measures on the island. The last human case of rabies occurred in 1937 and although no case of canine-transmitted rabies was reported since 1914, sporadic outbreaks of bat-transmitted rabies still occur in livestock to date. Over the last century, seven notable epidemics were recorded in Trinidad with the loss of over 3000 animals. During the 1950s, several measures were effectively adopted for the prevention and control of the disease which led to a significant reduction in the number of cases. These measures include: vampire bat population control, livestock vaccination, and animal surveillance. However, due to lapses in these measures over the years (e.g., periods of limited vampire control and incomplete herd vaccination, epidemics have occurred. In light of the significant negative impact of rabies on animal production and human health, rabies surveillance in Trinidad should be enhanced and cases evaluated towards the design and implementation of more evidence-based prevention and control programs.

  17. Non destructive nuclear measurements for control and characterization purpose

    International Nuclear Information System (INIS)

    Lyoussi, Abdallah

    2002-01-01

    In this report for accreditation to supervise researches, the author proposes a large and rather precise overview of his research works which dealt with the upstream and downstream parts of the nuclear fuel cycle. After having discussed the different needs associated with non destructive nuclear measurements during the fuel cycle, the author describes his past research activities. In the following parts, he discusses control and characterization methods associated with the upstream and downstream parts of the fuel cycle: fuel density variation measurement, non destructive control of uranium-235 content of enriched uranium ingots, examination of induced photo-fissions in radioactive waste parcels, use of electron accelerator for simultaneous neutron and photon examination, measurement of the spatial distribution of the photonic component from the Mini Linatron, association of non destructive measurement techniques

  18. USE OF THE PHOTOGRAMMETRIC DATA FOR VEGETATION INVENTORY ON URBAN A REAS

    Directory of Open Access Journals (Sweden)

    Kubalska Joanna Lucyna

    2014-12-01

    Full Text Available This paper discusses the methodology of the implementation of an inventory of vegetation in an urban area using photogrammetric data in the form of color NIR "true - orthophotomap" (true - ortho and the digital surface model (DSM created with data from airborne laser scanning, or alternatively, with an automatic correlation of images. The vegetation inventory was conducted by classification on the basis of the characteristics contained in pixels of georeferenced true - ortho while taking into account the elevation data in the form of gridded DSM. To carry out the classification Erdas Imagine software was used. The correct classification process was preceded by the creation of the input data for this task. This data was obtained from the processing of digital aerial photos taken by a Vexcel UltraCam camera with the ground resolution GSD = 10cm and point clouds acquired from ALS. This processing included the generation of digital terrain model in the SCOP++ environment and the digital surface model in an Opals and Inpho environment.T he Comparison of DSM created from two different sources of data showed the overall consistency and uniformity and the ability to use both models to generate a true - ortho product from digital aerial photographs. The work was performed on an INPHO photogrammetric workstation. "True - ortho" was generated from both the black and white NIR images and colour images. The classification carried out with the Erdas Imagine software proved that this software is suitable for classification based on the features extracted from the pixels with the simultaneous analysis of elevation data. Simultaneous use of data both from airborne laser scanning and colour infrared images made it possible to make an exact classification of vegetation on very difficult terrain, like built up urban areas. The results of the classification accuracy were evaluated by the visual verification in Google Street View application. At a time when airborne

  19. PILOT STUDIES WITH A PHOTOGRAMMETRIC GLACIER LAKE OUTBURST FLOOD EARLY WARNING SYSTEM

    Directory of Open Access Journals (Sweden)

    H. G. Maas

    2012-07-01

    Full Text Available Glacier Lake Outburst Floods (GLOFs depict an environmental risk with an increasing damage potential in many regions of the world. GLOFs are often caused by glacier margin lakes, which suddenly find a drainage path underneath the bottom of a glacier, which is destabilized and retreating as a consequence of local or global climate changes. In a typical GLOF event, a glacier margin lake may drain completely in 24 hours, causing a large flood wave in the area downstream the glacier. The paper documents some recent GLOF events in the Northern Patagonian Icefield (Chile and presents a terrestrial photogrammetric glacier margin lake monitoring system. The system is based on a camera taking images at regular time intervals. In these images, variations of the water level can be detected by tracking the water-land interface at pre-defined image spots. Due to the drainage mechanism, which is characterized by progressive erosion and melting at the bottom of the glacier, GLOFs are indicated by a progressive water level drop in the lake. Water level changes may be detected with subpixel accuracy by image sequence processing methods. If a 3D model of the lake bottom topography (or at least one height profile through the lake exists, water level changes in monoscopic image sequences may be transformed into volume loss. The basic idea herein is the intersection of a terrain profile with a water level detected in the image and projected into object space. The camera orientation is determined through a GPS-supported photogrammetric network. Camera orientation changes, which may for instance be induced by wind, can be compensated by tracking some fiducial marks in the image. The system has been used in a pilot study at two glacier margin lakes in the Northern Patagonian Icefield. These lakes have a depth of about 80 - 100 meters. The larger one has a length of 5 km and a maximum volume of about 200,000,000 cubic meters. During the pilot study, several GLOF events

  20. IMPLEMENTATION OF A REAL-TIME STACKING ALGORITHM IN A PHOTOGRAMMETRIC DIGITAL CAMERA FOR UAVS

    Directory of Open Access Journals (Sweden)

    A. Audi

    2017-08-01

    Full Text Available In the recent years, unmanned aerial vehicles (UAVs have become an interesting tool in aerial photography and photogrammetry activities. In this context, some applications (like cloudy sky surveys, narrow-spectral imagery and night-vision imagery need a longexposure time where one of the main problems is the motion blur caused by the erratic camera movements during image acquisition. This paper describes an automatic real-time stacking algorithm which produces a high photogrammetric quality final composite image with an equivalent long-exposure time using several images acquired with short-exposure times. Our method is inspired by feature-based image registration technique. The algorithm is implemented on the light-weight IGN camera, which has an IMU sensor and a SoC/FPGA. To obtain the correct parameters for the resampling of images, the presented method accurately estimates the geometrical relation between the first and the Nth image, taking into account the internal parameters and the distortion of the camera. Features are detected in the first image by the FAST detector, than homologous points on other images are obtained by template matching aided by the IMU sensors. The SoC/FPGA in the camera is used to speed up time-consuming parts of the algorithm such as features detection and images resampling in order to achieve a real-time performance as we want to write only the resulting final image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images, as well as block diagrams of the described architecture. The resulting stacked image obtained on real surveys doesn’t seem visually impaired. Timing results demonstrate that our algorithm can be used in real-time since its processing time is less than the writing time of an image in the storage device. An interesting by-product of this algorithm is the 3D rotation

  1. IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL

    Directory of Open Access Journals (Sweden)

    Ömer GÜNDOĞDU

    2001-02-01

    Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.

  2. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery

    Directory of Open Access Journals (Sweden)

    Philippe Lejeune

    2013-11-01

    Full Text Available The recent development of operational small unmanned aerial systems (UASs opens the door for their extensive use in forest mapping, as both the spatial and temporal resolution of UAS imagery better suit local-scale investigation than traditional remote sensing tools. This article focuses on the use of combined photogrammetry and “Structure from Motion” approaches in order to model the forest canopy surface from low-altitude aerial images. An original workflow, using the open source and free photogrammetric toolbox, MICMAC (acronym for Multi Image Matches for Auto Correlation Methods, was set up to create a digital canopy surface model of deciduous stands. In combination with a co-registered light detection and ranging (LiDAR digital terrain model, the elevation of vegetation was determined, and the resulting hybrid photo/LiDAR canopy height model was compared to data from a LiDAR canopy height model and from forest inventory data. Linear regressions predicting dominant height and individual height from plot metrics and crown metrics showed that the photogrammetric canopy height model was of good quality for deciduous stands. Although photogrammetric reconstruction significantly smooths the canopy surface, the use of this workflow has the potential to take full advantage of the flexible revisit period of drones in order to refresh the LiDAR canopy height model and to collect dense multitemporal canopy height series.

  3. Measurement of Temporal Awareness in Air Traffic Control

    Science.gov (United States)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  4. Radio-controlled boat for measuring water velocities and bathymetry

    Science.gov (United States)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  5. Quantification of tomographic PIV uncertainty using controlled experimental measurements.

    Science.gov (United States)

    Liu, Ning; Wu, Yue; Ma, Lin

    2018-01-20

    The goal of this work was to experimentally quantify the uncertainty of three-dimensional (3D) and three-component (3C) velocity measurements using tomographic particle image velocimetry (tomo-PIV). Controlled measurements were designed using tracer particles embedded in a solid sample, and tomo-PIV measurements were performed on the sample while it was moved both translationally and rotationally to simulate various known displacement fields, so the 3D3C displacements measured by tomo-PIV can be directly compared to the known displacements created by the sample. The results illustrated that (1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged error of 0.8-1.4 voxels in terms of magnitude and 1.7°-1.9° in terms of orientation for the velocity fields tested; (2) view registration (VR) plays a significant role in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy can be improved by at least 2.5 times in terms of both magnitude and orientation; and (3) the use of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger volume, while maintaining acceptable accuracy. These results obtained from controlled tests are expected to aid the error analysis and the design of tomo-PIV measurements.

  6. Financial Control Measures and the Enhancement of Administrative ...

    African Journals Online (AJOL)

    This study was focused on the determination of the relationship between financial control measures and enhancement of administrative effectiveness of secondary school Principals in Akwa Ibom State. The choice of this topic was necessitated by the fact that despite the continuous personnel auditing conducted in the ...

  7. Resource management in Diffserv measurement-based admission control PHR

    NARCIS (Netherlands)

    Westberg, L.; Heijenk, Geert; Karagiannis, Georgios; Oosthoek, S.; Partain, D.; Rexhepi, Vlora; Szabo, R.; Wallentin, P.; El Allali, H.

    2002-01-01

    The purpose of this draft is to present the Resource Management in Diffserv (RMD) Measurement-Based Admission Control (RIMA) Per Hop Reservation (PHR) protocol. The RIMA PHR protocol is used on a per-hop basis in a Differentiated Services (Diffserv) domain and extends the Diffserv Per Hop Behavior

  8. How Tobacco Control Measures and Smuggling Influence Demand ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    How Tobacco Control Measures and Smuggling Influence Demand in Panama. Panama's tobacco epidemic demonstrates ... Their goal: establish a new threshold for increasing the luxury tax on tobacco products, including cigarettes, based on the monthly evolution of cigarette sales. The researchers will survey brands in ...

  9. Knowledge and use of asthma control measurement tools in the ...

    African Journals Online (AJOL)

    Objective: To investigate the knowledge and use of asthma control measurement (ACM) tools in the management of asthma among doctors working in family and internal medicine practice in Nigeria. Method: A questionnaire based on the global initiative on asthma (GINA) guideline was self-administered by 194 doctors.

  10. Antibiotic control measures in Dutch secondary care hospitals.

    NARCIS (Netherlands)

    Schouten, J.A.; Hulscher, M.E.J.L.; Natsch, S.S.; Grol, R.P.T.M.; Meer, J.W.M. van der

    2005-01-01

    Control measures for the use of antibiotics are essential because of the potential harmful consequences of side effects. Various methods have been developed to help curb undesirable antibiotic prescription. We performed a survey in Dutch secondary care hospitals (response rate 73%) to make an

  11. Measuring Workload Weak Resilience Signals at a Rail Control Post

    NARCIS (Netherlands)

    Siegel, A.W.; Schraagen, J.M.C.

    2014-01-01

    OCCUPATIONAL APPLICATIONS This article describes an observational study at a rail control post to measure workload weak resilience signals. A weak resilience signal indicates a possible degradation of a system's resilience, which is defined as the ability of a complex socio-technical system to cope

  12. Envelopes of Sets of Measures, Tightness, and Markov Control Processes

    International Nuclear Information System (INIS)

    Gonzalez-Hernandez, J.; Hernandez-Lerma, O.

    1999-01-01

    We introduce upper and lower envelopes for sets of measures on an arbitrary topological space, which are then used to give a tightness criterion. These concepts are applied to show the existence of optimal policies for a class of Markov control processes

  13. An instrumentation for control and measurement of activated mineral samples

    International Nuclear Information System (INIS)

    Skaarup, P.

    1976-01-01

    A description is given of an instrumentation for control of a pneumatic tube system used to transport mineral samples for activation in a reactor and from there to a detector arrangement. A possible content of uranium in the samples can be seen from the radiation measured. The instrumentation includes a PDP-11 computer and a CAMAC crate

  14. Power-over-ethernet for remote measurement and control

    International Nuclear Information System (INIS)

    Behera, Rajendra Prasad; Murali, N.

    2011-01-01

    Power-Over-Ethernet (PoE) technology (IEEE standard 802.3af) allows Remote Measurement and Control in harsh environment where human access is difficult in various nuclear research fields. The terminal measurement and control unit receives power for its operation and communicates data over the same LAN cable, without needing to provide power supplies from different source. Almost all data acquisition systems require both data connectivity and a power supply. In a familiar example, telephones are powered from the telephone exchange through the same twisted pair that carries the voice. Now we can do the same thing with Ethernet devices by combining power and data. Only one set of wires is required to bring to the end measurement and control unit which will simplify installation and save space. Remote unit can be easily moved, to wherever a LAN cable can be laid with minimal disruption to the workplace. It is safer as no mains supply is required. Uninterrupted power supply can be guaranteed to the terminal unit during mains power failure. The terminal unit can be shut down and reset remotely without needing for a reset button and power switch. Simple Network Management Protocol (SNMP) can be used to monitor and control the remote unit. PoE will enable to deploy many more embedded systems in nuclear and other industry like Voice over Internet Protocol (VoIP), Security Camera, Tele-information System, Remote Access Control System, Intruder Detection System, and Tele-Medicine System, etc. (author)

  15. Optimal Load Control via Frequency Measurement and Neighborhood Area Communication

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, CH; Topcu, U; Low, SH

    2013-11-01

    We propose a decentralized optimal load control scheme that provides contingency reserve in the presence of sudden generation drop. The scheme takes advantage of flexibility of frequency responsive loads and neighborhood area communication to solve an optimal load control problem that balances load and generation while minimizing end-use disutility of participating in load control. Local frequency measurements enable individual loads to estimate the total mismatch between load and generation. Neighborhood area communication helps mitigate effects of inconsistencies in the local estimates due to frequency measurement noise. Case studies show that the proposed scheme can balance load with generation and restore the frequency within seconds of time after a generation drop, even when the loads use a highly simplified power system model in their algorithms. We also investigate tradeoffs between the amount of communication and the performance of the proposed scheme through simulation-based experiments.

  16. Control Measures Used during Lymphogranuloma Venereum Outbreak, Europe

    Science.gov (United States)

    Hulscher, Marlies E.J.L.; Vos, Dieuwke; van de Laar, Marita J.W.; Fenton, Kevin A.; van Steenbergen, Jim E.; van der Meer, Jos W.M.; Grol, Richard P.T.M.

    2008-01-01

    To assess the response to the reemergence of lymphogranuloma venereum, we conducted a cross-sectional survey by administering a structured questionnaire to representatives from 26 European countries. Responses were received from 18 countries. The ability to respond quickly and the measures used for outbreak detection and control varied. Evidence-based criteria were not consistently used to develop recommendations. We did not develop criteria to determine the effectiveness of the recommendations. The degree of preparedness for an unexpected outbreak, as well as the ability of countries to respond quickly to alerts, varied, which indicates weaknesses in the ability to control an outbreak. More guidance is needed to implement and evaluate control measures used during international outbreaks. PMID:18394274

  17. D Cultural Heritage Documentation: a Comparison Between Different Photogrammetric Software and Their Products

    Science.gov (United States)

    Gagliolo, S.; Ausonio, E.; Federici, B.; Ferrando, I.; Passoni, D.; Sguerso, D.

    2018-05-01

    The conservation of Cultural Heritage depends on the availability of means and resources and, consequently, on the possibility to make effective operations of data acquisition. In facts, on the one hand the creation of data repositories allows the description of the present state-of-art, in order to preserve the testimonial value and to permit the fruition. On the other hand, data acquisition grants a metrical knowledge, which is particularly useful for a direct restoration of the surveyed objects, through the analysis of their 3D digital models. In the last decades, the continuous increase and improvement of 3D survey techniques and of tools for the geometric and digital data management have represented a great support to the development of documentary activities. In particular, Photogrammetry is a survey technique highly appropriate in the creation of data repositories in the field of Cultural Heritage, thanks to its advantages of cheapness, flexibility, speed, and the opportunity to ensure the operators' safety in hazardous areas too. In order to obtain a complete documentation, the high precision of the on-site operations must be coupled with an effective post-processing phase. Hence, a comparison among some of the photogrammetric software currently available was performed by the authors, with a particular attention to the workflow completeness and the final products quality.

  18. Feasibility of Smartphone Based Photogrammetric Point Clouds for the Generation of Accessibility Maps

    Science.gov (United States)

    Angelats, E.; Parés, M. E.; Kumar, P.

    2018-05-01

    Accessible cities with accessible services are an old claim of people with reduced mobility. But this demand is still far away of becoming a reality as lot of work is required to be done yet. First step towards accessible cities is to know about real situation of the cities and its pavement infrastructure. Detailed maps or databases on street slopes, access to sidewalks, mobility in public parks and gardens, etc. are required. In this paper, we propose to use smartphone based photogrammetric point clouds, as a starting point to create accessible maps or databases. This paper analyses the performance of these point clouds and the complexity of the image acquisition procedure required to obtain them. The paper proves, through two test cases, that smartphone technology is an economical and feasible solution to get the required information, which is quite often seek by city planners to generate accessible maps. The proposed approach paves the way to generate, in a near term, accessibility maps through the use of point clouds derived from crowdsourced smartphone imagery.

  19. Electronic temperature control and measurements reactor fuel rig circuits

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC).

  20. The electronic temperature control and measurements reactor fuel rig circuits

    International Nuclear Information System (INIS)

    Glowacki, S.W.

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC). (author)

  1. Measurements in Concentrated Sun using a Remote Controlled Robot

    Directory of Open Access Journals (Sweden)

    Dan Floroian

    2013-04-01

    Full Text Available Nowdays, using the concentrated sunlight is a big issue because the amount of energy is very high and the light is concentrated in a very small area. The main problem in this situation is the heating, and in order to make safe measurements a remote controlled robot is needed. After that, a remote controlled robot will assume the duty of protect the measured sample and to expose it for a precise time to the concentrated sun in order to reduce heating of the sample. For easy operating, and for automatize the process, all the duties, starting with initial conditions, continuing with triggering the measurements, and conditioning the signals and finalizing with data saving must be assured by the robot.

  2. Measurement control for plutonium isotopic measurements using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Fleissner, J.G.

    1985-01-01

    A measurement control (MC) program should be an integral part of every nondestructive assay measurement system used for the assay of special nuclear materials. This report describes an MC program for plutonium isotopic composition measurements using high-resolution gamma-ray spectroscopy. This MC program emphasizes the standardization of data collection procedures along with the implementation of internal and external measurement control checks to provide the requisite measurement quality assurance. This report also describes the implementation of the MC program in the isotopic analysis code GRPAUT. Recommendations are given concerning the importance and frequency of the various MC checks in order to ensure a successful implementation of the MC procedures for the user's application

  3. Quantifying erosion over timescales of one million years: A photogrammetric approach on the amount of Rhenish erosion in southwestern Germany

    Science.gov (United States)

    Strasser, Annette; Strasser, Marcel; Seyfried, Hartmut

    2010-10-01

    The Lein valley in southwestern Germany possesses well-preserved Pliocene to mid Pleistocene land surfaces featuring a gentle relief and sediments accumulated by former tributaries of the Danube. This ancient Danubian land surface was captured and incised by mid Pleistocene to Holocene tributaries of the River Rhine. In a photogrammetric approach we calculated the volume of material extracted by Rhenish erosion providing a first quantification of the effects of stream piracy on timescales of about 1 Ma. Using stereoscopic surface modelling software a DEM was generated with a resolution of 5 m. From borehole data, literature, geological maps, and own field observations we determined the morphometric parameters of the ancient Danubian Ur-Lein valley. The gradient was imported as a 3D-breakline into the model where it controls the reinterpolation of surrounding data points. The result is a high-resolution DEM of the valley of the Ur-Lein. Subtraction of the DEM of the actual landscape from the DEM of the ancient Ur-Lein valley yields a model representing the rock volume eroded by the Rhenish Lein which totals 1.39 km 3 and converts into a rate of erosion between 63 and 74 mm/ka over a period of 700 to 600 ka, respectively, in accordance with figures obtained elsewhere in Central Europe through cosmogenic nuclides. It reflects the dominance of frequent fluctuations in climate and is considered to be mainly a product of strong changes in temperature and related processes during the transitional times between mid to late Pleistocene warm and cold states. A filtering procedure applied to cold and transitional state erosion rates of the Middle and Late Pleistocene yielded peak values between 66 and 77 mm/ka, up to three times higher than the modern rate or the rate of warm-state episodes. An assessment of the contribution of Rhenish stream piracy on long-term mid Pleistocene denudation under changing climate conditions resulted in a maximum 4.9-fold acceleration.

  4. Benchmarking Measures of Network Controllability on Canonical Graph Models

    Science.gov (United States)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical

  5. Dynamical Behaviors of Rumor Spreading Model with Control Measures

    Directory of Open Access Journals (Sweden)

    Xia-Xia Zhao

    2014-01-01

    Full Text Available Rumor has no basis in fact and flies around. And in general, it is propagated for a certain motivation, either for business, economy, or pleasure. It is found that the web does expose us to more rumor and increase the speed of the rumors spread. Corresponding to these new ways of spreading, the government should carry out some measures, such as issuing message by media, punishing the principal spreader, and enhancing management of the internet. In order to assess these measures, dynamical models without and with control measures are established. Firstly, for two models, equilibria and the basic reproduction number of models are discussed. More importantly, numerical simulation is implemented to assess control measures of rumor spread between individuals-to-individuals and medium-to-individuals. Finally, it is found that the amount of message released by government has the greatest influence on the rumor spread. The reliability of government and the cognizance ability of the public are more important. Besides that, monitoring the internet to prevent the spread of rumor is more important than deleting messages in media which already existed. Moreover, when the minority of people are punished, the control effect is obvious.

  6. Self-control, future orientation, smoking, and the impact of Dutch tobacco control measures.

    Science.gov (United States)

    Daly, Michael; Delaney, Liam; Baumeister, Roy F

    2015-06-01

    The pronounced discrepancy between smokers' intentions to quit and their smoking behavior has led researchers to suggest that many smokers are time inconsistent, have self-control problems, and may benefit from external efforts to constrain their consumption. This study aims to test whether self-control and future orientation predict smoking levels and to identify if these traits modify how cigarette consumption responds to the introduction of tobacco control measures. A sample of Dutch adults (N = 1585) completed a measure of self-control and the Consideration of Future Consequences Scale (CFCS) in 2001 and indicated their tobacco consumption each year from 2001 to 2007. In 2004, a workplace smoking ban and substantial tax increase on tobacco was introduced in the Netherlands. To identify the potential impact of these tobacco control measures we examined whether participants smoked or were heavy smokers (20 + cigarettes per day) each year from 2001 to 2007. Participants with high self-control and CFCS scores showed lower rates of smoking across the seven year period of the study. The 2004 smoking restrictions were linked with a subsequent decline in heavy smoking. This decline was moderated by self-control levels. Those with low self-control showed a large reduction in heavy smoking whereas those with high self-control did not. The effects were, however, temporary: many people with low self-control resumed heavy smoking 2-3 years after the introduction of the tobacco restrictions. The immediate costs which national tobacco control measures impose on smokers may assist smokers with poor self-control in reducing their cigarette consumption.

  7. Sampling and Control Circuit Board for an Inertial Measurement Unit

    Science.gov (United States)

    Chelmins, David T (Inventor); Powis, Richard T., Jr. (Inventor); Sands, Obed (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  8. Control and Data Analysis for Emittance Measuring Devices

    CERN Document Server

    Hoffmann, T

    2001-01-01

    Due to the wide range of heavy ion beam intensities and energies in the GSI linac and the associated transfer channel to the synchrotron, several different types of emittance measurement systems have been established. Many common devices such as slit/grid or dipole-sweep systems are integrated into the GSI control system. Other systems like the single shot pepper pot method using CCD-cameras or stand-alone slit/grid set-ups are connected to personal computers. An overview is given about the various systems and their software integration. Main interest is directed on the software development for emittance front-end control and data analysis such as evaluation algorithms or graphical presentation of the results. In addition, special features for improved usability of the software such as data export, project databases and automatic report generation will be presented. An outlook on a unified evaluation procedure for all different types of emittance measurement is given.

  9. A Feedback Optimal Control Algorithm with Optimal Measurement Time Points

    Directory of Open Access Journals (Sweden)

    Felix Jost

    2017-02-01

    Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

  10. Surveillance and control of containment by means of radioactive measurements

    International Nuclear Information System (INIS)

    Roche, H.; Seveon, J.J.; Rousseau, L.; Delalande, J.

    1983-12-01

    In this paper, the radioactive measurements participating in the surveillance and control of the reactor containment as well as the possible procedures or operating rules related to, especially the ultimate procedures which could be implemented in case of a beyond of design accident, are presented. However, an overall view of the plant radiation monitoring system installed on the French plants is first given. If necessary, difference between 900 MW and 1300 MW units are emphasized

  11. Kinematic control of redundant robots and the motion optimizability measure.

    Science.gov (United States)

    Li, L; Gruver, W A; Zhang, Q; Yang, Z

    2001-01-01

    This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.

  12. Measuring strategic control in implicit learning: how and why?

    OpenAIRE

    Norman, Elisabeth

    2015-01-01

    Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in Serial Reaction Time (SRT) learning (Goschke, 1998; Destrebecqz and Cleeremans, 2001) and 2-grammar classification tasks in Artificial Grammar Learning (AGL; Dienes et al., 1995; Norman et al., 2011). Strategic control has traditionally been used as a criterion for determining whether acquired knowledg...

  13. Optimization of Drilling Resistance Measurement (DRM) user-controlled variables

    OpenAIRE

    Tudor, Dumitrescu; Pesce, Giovanni; Ball, Richard

    2017-01-01

    Drilling Resistance Measurement (DRM) is recognised as an important on-site micro-invasive procedure for assessment of construction materials. This paper presents a detailed investigation of user-controlled variables and their influence on drilling resistance. The study proves that the ratio of penetration rate/rotational speed (PR/RPM) is proportional to drilling resistance. Data from Bath stone and an artificial reference stone demonstrates how different materials can be compared using thei...

  14. Prevalence of tabacco product use in Latvia and control measures

    Directory of Open Access Journals (Sweden)

    Kokarevica A.

    2012-10-01

    Full Text Available The use of tobacco products is a major problem having a serious effect on public health. Deaths from external causes are those that can be prevented by ensuring environmental safety and educating the society about the effect of lifestyle habits and behaviour on health of an individual. Not only research data reveal the prevalence of tobacco use but also the rate of tobacco sales. Tobacco industry marketing includes advertising, sales promotion and sponsorship strategies that are aimed at promotion of tobacco use. Demand for tobacco products is influenced also by changes in legislation relating to ban on tobacco advertising and sponsorship. Therefore it is necessary to introduce an agreed strategy for reducing tobacco use. The countries that have ratified the World Health Organisation (WHO Framework Convention on Tobacco Control (the Convention should develop and implement an effective tobacco control programme. In Latvia the number of daily smokers gradually decreases thanks to the extensive smoking restrictions though tobacco manufacturers use all the available media, radio and television, newspapers, magazines, advertisements and Internet, to advertise their products. Therefore in order to combat the prevalence of smoking first of all it is necessary to limit cigarette marketing and sales and to carry out monitoring and development of tobacco control measures on the state level. The sales of legal cigarettes have decreased in Latvia starting from 2009. However, the increase in tax rates and prices has contributed to the movement of illegal goods therefore it is necessary to take additional restrictive measures concerning the movement of illegal goods. Though amendments to legislation of Latvia relating to tobacco control comply with the requirements of the WHO Convention it is necessary to evaluate the efficiency of control measures and to improve them. Systematic and comprehensive education of the public is required to encourage the change of

  15. Editorial: disarmament, non proliferation, confidence-building measures, armament control

    International Nuclear Information System (INIS)

    Soutou, Georges-Henri

    2015-01-01

    After having described the vicious circle existing between disarmament and security as it appeared before and during the first World War, the author deals with the specific case of nuclear disarmament as it was first addressed just after the Second World War, and was then not accepted by the Russians. He comments the political and strategical approach adopted by the Kennedy administration, notably within the context of severe crises (Berlin and Cuba). This resulted in the re-establishment of a relationship between war and policy as defined by Clausewitz, but based on a trilogy of three inseparable pairs: deterrence and armament control, armament control and non proliferation, armament control and confidence-building measures. The author shows that this trilogy has been somehow operating until the end of Cold War, and that nothing works anymore since the end of Cold War and of the bipolar world

  16. Modified Smith-predictor multirate control utilizing secondary process measurements

    Directory of Open Access Journals (Sweden)

    Rolf Ergon

    2007-01-01

    Full Text Available The Smith-predictor is a well-known control structure for industrial time delay systems, where the basic idea is to estimate the non-delayed process output by use of a process model, and to use this estimate in an inner feedback control loop combined with an outer feedback loop based on the delayed estimation error. The model used may be either mechanistic or identified from input-output data. The paper discusses improvements of the Smith-predictor for systems where also secondary process measurements without time delay are available as a basis for the primary output estimation. The estimator may then be identified also in the common case with primary outputs sampled at a lower rate than the secondary outputs. A simulation example demonstrates the feasibility and advantages of the suggested control structure.

  17. Automatic control system for measuring currents produced by ionization chambers

    International Nuclear Information System (INIS)

    Brancaccio, Franco

    2002-01-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for 18 F and 153 Sm were obtained, making possible to determine activities of these radionuclides. (author)

  18. Measurement model choice influenced randomized controlled trial results.

    Science.gov (United States)

    Gorter, Rosalie; Fox, Jean-Paul; Apeldoorn, Adri; Twisk, Jos

    2016-11-01

    In randomized controlled trials (RCTs), outcome variables are often patient-reported outcomes measured with questionnaires. Ideally, all available item information is used for score construction, which requires an item response theory (IRT) measurement model. However, in practice, the classical test theory measurement model (sum scores) is mostly used, and differences between response patterns leading to the same sum score are ignored. The enhanced differentiation between scores with IRT enables more precise estimation of individual trajectories over time and group effects. The objective of this study was to show the advantages of using IRT scores instead of sum scores when analyzing RCTs. Two studies are presented, a real-life RCT, and a simulation study. Both IRT and sum scores are used to measure the construct and are subsequently used as outcomes for effect calculation. The bias in RCT results is conditional on the measurement model that was used to construct the scores. A bias in estimated trend of around one standard deviation was found when sum scores were used, where IRT showed negligible bias. Accurate statistical inferences are made from an RCT study when using IRT to estimate construct measurements. The use of sum scores leads to incorrect RCT results. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Hitrex Programme: unperturbed HTR lattice and control rod measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beynon, A J; Nunn, D L

    1972-06-15

    Reactivity, power distributions, plutonium production and fast neutron graphite damage are being studied at Berkeley Nuclear Laboratories (BNL) on the HTR 'Hitrex' reactor under cold clean conditions. Rod interactions, important in assessing local criticality hazards, are receiving special attention in the measurements. The proposals for the first two series of measurements on Hitrex are discussed in this note, Hitrex 1a being the unperturbed reactor, and Hitrex 1b the same fuel array but with a number of different control absorber loadings in it. Common to both series will be cross pin, cross block and cross core measurements of power rating, thermal spectrum and damage dose distributions, so that these will be known as functions of the fuel, reflector and absorber environment.

  20. Measurement and control systems for an imaging electromagnetic flow metre.

    Science.gov (United States)

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  1. Observer-based Coal Mill Control using Oxygen Measurements

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; S., Tom

    2006-01-01

    This paper proposes a novel approach to coal flow estimation in pulverized coal mills, which utilizes measurements of oxygen content in the flue gas. Pulverized coal mills are typically not equipped with sensors that detect the amount of coal injected into the furnace. This makes control...... of the coal flow difficult, causing stability problems and limits the plant's load following capabilities. To alleviate this problem without having to rely on expensive flow measurement equipment, a novel observer-based approach is investigated. A Kalman filter based on measurements of combustion air flow led...... into the furnace and oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate, it becomes possible to close an inner loop around the coal mill itself, thus giving a better disturbance rejection capability. The approach is validated against...

  2. Statistical method for quality control in presence of measurement errors

    International Nuclear Information System (INIS)

    Lauer-Peccoud, M.R.

    1998-01-01

    In a quality inspection of a set of items where the measurements of values of a quality characteristic of the item are contaminated by random errors, one can take wrong decisions which are damageable to the quality. So of is important to control the risks in such a way that a final quality level is insured. We consider that an item is defective or not if the value G of its quality characteristic is larger or smaller than a given level g. We assume that, due to the lack of precision of the measurement instrument, the measurement M of this characteristic is expressed by ∫ (G) + ξ where f is an increasing function such that the value ∫ (g 0 ) is known and ξ is a random error with mean zero and given variance. First we study the problem of the determination of a critical measure m such that a specified quality target is reached after the classification of a lot of items where each item is accepted or rejected depending on whether its measurement is smaller or greater than m. Then we analyse the problem of testing the global quality of a lot from the measurements for a example of items taken from the lot. For these two kinds of problems and for different quality targets, we propose solutions emphasizing on the case where the function ∫ is linear and the error ξ and the variable G are Gaussian. Simulation results allow to appreciate the efficiency of the different considered control procedures and their robustness with respect to deviations from the assumptions used in the theoretical derivations. (author)

  3. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    Science.gov (United States)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  4. ASSESSMENT OF RESTORATION METHODS OF X-RAY IMAGES WITH EMPHASIS ON MEDICAL PHOTOGRAMMETRIC USAGE

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2016-06-01

    Full Text Available Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  5. HIERARCHICAL REGULARIZATION OF POLYGONS FOR PHOTOGRAMMETRIC POINT CLOUDS OF OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    L. Xie

    2017-05-01

    Full Text Available Despite the success of multi-view stereo (MVS reconstruction from massive oblique images in city scale, only point clouds and triangulated meshes are available from existing MVS pipelines, which are topologically defect laden, free of semantical information and hard to edit and manipulate interactively in further applications. On the other hand, 2D polygons and polygonal models are still the industrial standard. However, extraction of the 2D polygons from MVS point clouds is still a non-trivial task, given the fact that the boundaries of the detected planes are zigzagged and regularities, such as parallel and orthogonal, cannot preserve. Aiming to solve these issues, this paper proposes a hierarchical polygon regularization method for the photogrammetric point clouds from existing MVS pipelines, which comprises of local and global levels. After boundary points extraction, e.g. using alpha shapes, the local level is used to consolidate the original points, by refining the orientation and position of the points using linear priors. The points are then grouped into local segments by forward searching. In the global level, regularities are enforced through a labeling process, which encourage the segments share the same label and the same label represents segments are parallel or orthogonal. This is formulated as Markov Random Field and solved efficiently. Preliminary results are made with point clouds from aerial oblique images and compared with two classical regularization methods, which have revealed that the proposed method are more powerful in abstracting a single building and is promising for further 3D polygonal model reconstruction and GIS applications.

  6. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    Science.gov (United States)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  7. Human factors measurement for future air traffic control systems.

    Science.gov (United States)

    Langan-Fox, Janice; Sankey, Michael J; Canty, James M

    2009-10-01

    This article provides a critical review of research pertaining to the measurement of human factors (HF) issues in current and future air traffic control (ATC). Growing worldwide air traffic demands call for a radical departure from current ATC systems. Future systems will have a fundamental impact on the roles and responsibilities of ATC officers (ATCOs). Valid and reliable methods of assessing HF issues associated with these changes, such as a potential increase (or decrease) in workload, are of utmost importance for advancing theory and for designing systems, procedures, and training. We outline major aviation changes and how these relate to five key HF issues in ATC. Measures are outlined, compared, and evaluated and are followed by guidelines for assessing these issues in the ATC domain. Recommendations for future research are presented. A review of the literature suggests that situational awareness and workload have been widely researched and assessed using a variety of measures, but researchers have neglected the areas of trust, stress, and boredom. We make recommendations for use of particular measures and the construction of new measures. It is predicted that, given the changing role of ATCOs and profound future airspace requirements and configurations, issues of stress, trust, and boredom will become more significant. Researchers should develop and/or refine existing measures of all five key HF issues to assess their impact on ATCO performance. Furthermore, these issues should be considered in a holistic manner. The current article provides an evaluation of research and measures used in HF research on ATC that will aid research and ATC measurement.

  8. PG-2 photogrammetric plotter: a rapid and accurate means of mapping surface effects produced by subsurface nuclear testing at the Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Van de Werken, M.G.

    1983-01-01

    Since October 1981, the US Geological Survey has been using the Kern PG-2 photogrammetric plotter to map surface effects using post-test aerial photographs. The main goal of this pilot program was to compare the two mapping methods and to determine if field observations are necessary. Preliminary results indicate that only questionable small-scale features need to be field checked. Mapping on the plotter is highly reliable if aerial photographs obtained immediately after detonation are used. If photography is delayed, surface effects may be obliterated by natural processes and construction activities. Disadvantages to the plotter method relate to the quality and coverage of aerial photographs. The main problem concerns the scale of aerial photographs. Because of the large scale, the photographs lack adequate control points to properly orient the photographs to a map base. In addition, the paper print photographs used were often distorted. Once the problems were recognized and corrected, the method was greatly improved. Generally, the PG-2 offers a precise method for determining the distribution of surface effects

  9. Temperature, its measurement and control in industry - ITM '90

    International Nuclear Information System (INIS)

    Fischer, H.; Blieck, L.; Jescheck, M.; Neubert, W.; Kunze, D.

    1990-01-01

    The publication refers to the new VDE/VDI guideline 3511 and explains its practical intentions and implications by thoroughly discussing the applications of temperature sensors and their limits of use. The current state of the art in temperature measuring is fully described by the discussion of the new temperature scale introduced recently, the ITS '90. The authors of the book look in detail at the particular requirements and conditions of infrared measuring techniques using radiation thermometers as defined in DIN 5496, the applications of microprocessors (DIN-measuring-field-bus, etc.), time program emitters, and measuring transducers (EX ib, etc.). A full chapter has been devoted to the subject of surface temperature measurement. Examples referring to practical applications in industry serve as an introduction to thermal control engineering, in particular with infrared sensors, for processes such as thermal forming. New, optical thermometers for the low temperature range have been given much attention. An annex presents comprehensive tables for calculation and conversion of thermal quantities. (orig./HP) With 192 figs., 134 refs [de

  10. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    Science.gov (United States)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  11. Comparison of 3D point clouds obtained by photogrammetric UAVs and TLS to determine the attitude of dolerite outcrops discontinuities.

    Science.gov (United States)

    Duarte, João; Gonçalves, Gil; Duarte, Diogo; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    Photogrammetric Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanners (TLS) are two emerging technologies that allows the production of dense 3D point clouds of the sensed topographic surfaces. Although image-based stereo-photogrammetric point clouds could not, in general, compete on geometric quality over TLS point clouds, fully automated mapping solutions based on ultra-light UAVs (or drones) have recently become commercially available at very reasonable accuracy and cost for engineering and geological applications. The purpose of this paper is to compare the two point clouds generated by these two technologies, in order to automatize the manual process tasks commonly used to detect and represent the attitude of discontinuities (Stereographic projection: Schmidt net - Equal area). To avoid the difficulties of access and guarantee the data survey security conditions, this fundamental step in all geological/geotechnical studies, applied to the extractive industry and engineering works, has to be replaced by a more expeditious and reliable methodology. This methodology will allow, in a more actuated clear way, give answers to the needs of evaluation of rock masses, by mapping the structures present, which will reduce considerably the associated risks (investment, structures dimensioning, security, etc.). A case study of a dolerite outcrop locate in the center of Portugal (the dolerite outcrop is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones) will be used to assess this methodology. The results obtained show that the 3D point cloud produced by the Photogrammetric UAV platform has the appropriate geometric quality for extracting the parameters that define the discontinuities of the dolerite outcrops. Although, they are comparable to the manual extracted parameters, their quality is inferior to parameters extracted from the TLS point cloud.

  12. Creating a measure of portion control self-efficacy.

    Science.gov (United States)

    Fast, Lindsey C; Harman, Jennifer J; Maertens, Julie A; Burnette, Jeni L; Dreith, Francesca

    2015-01-01

    Over the last few decades, food portion sizes have steadily increased by as much as 700% (Young & Nestle, 2002). Food portions are often much larger than dietary guidelines recommend, leaving individuals to manage their food consumption on their own and making it necessary to understand individual factors impacting food consumption. In the current paper, we focus on self-efficacy for portion control. Specifically, across three studies, we developed and validated a new measure of portion control self-efficacy (PCSE). The PCSE measure yielded good fit statistics and had acceptable test-retest reliability using two cross-sectional surveys (Studies 1(a) and 1(b)). Results from Study 2 demonstrated construct and predictive validity of the PCSE using the Food Amount Rating Scale (FARS; Dohm, & Striegel-Moore, 2002). Study 3 offered additional support for reliability and validity with a sample of overweight and obese adults currently trying to lose weight. Overall, findings indicate that the new PCSE measure is reliable and valid. Individuals often make inaccurate food portion estimates (Slawson & Eck, 1997; Yuhas, Bolland, & Bolland, 1989) which can lead to overeating and weight-gain. Thus, the discussion centers on the need to incorporate PCSE in future research and intervention work targeting weight loss, health, and food consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Role of measurements in material control and accountability (abstract)

    International Nuclear Information System (INIS)

    Mahmud, T.

    2011-01-01

    Analytical techniques are widely used for verification and accountancy of nuclear materials. Nuclear Material (NM) inventories are based on sampling followed by Destructive Analysis. Destructive Analyses range from traditional chemical techniques to recent implementations of radiometric methods. These techniques are performed to quantify the amount of nuclear material (elemental assay and isotopic composition) present in a specific item, container, or in some cases facility and resolving shipper-receiver differences. Analytical techniques used for the MC and A of nuclear material normally require more attention than that for process control because the largest contribution to Material Unaccounted For is in measurement uncertainty. Therefore analytical techniques selected for material control and accountability are highly precise and they comply with accepted 'International Target Values 2010'. (author)

  14. Development of an integrated control and measurement system

    International Nuclear Information System (INIS)

    Manges, W.W.

    1984-03-01

    This thesis presents a tutorial on the issues involved in the development of a minicomputer-based, distributed intelligence data acquisition and process control system to support complex experimental facilities. The particular system discussed in this thesis is under development for the Atomic Vapor Laser Isotope Separation (AVLIS) Program at the Oak Ridge Gaseous Diffusion Plant (ORGDP). In the AVLIS program, we were careful to integrate the computer sections of the implementation into the instrumentation system rather than adding them as an appendage. We then addressed the reliability and availability of the system as a separate concern. Thus, our concept of an integrated control and measurement (ICAM) system forms the basis for this thesis. This thesis details the logic and philosophy that went into the development of this system and explains why the commercially available turn-key systems generally are not suitable. Also, the issues involved in the specification of the components for such an integrated system are emphasized

  15. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  16. Observer-Based Fuel Control Using Oxygen Measurement

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Mortensen, Jan Henrik

    is constructed and validated against data obtained at the plant. A Kalman filter based on measurements of combustion air flow led into the furnace and oxygen concentration in the flue gas is designed to estimate the actual coal flow. With this estimate, it becomes possible to close an inner loop around the coal......This report describes an attempt to improve the existing control af coal mills used at the Danish power plant Nordjyllandsværket Unit 3. The coal mills are not equipped with coal flow sensors; thus an observer-based approach is investigated. A nonlinear differential equation model of the boiler...

  17. Social construction of stormwater control measures in Melbourne and Copenhagen:

    DEFF Research Database (Denmark)

    Madsen, Herle Mo; Brown, Rebekah; Elle, Morten

    2017-01-01

    Urban stormwater systems in cities around the world are challenged by urbanization and climate change, and a range of Stormwater Control Measures (SCMs) are being implemented as solutions to these challenges. We developed a conceptual framework of technological stabilization based on Social...... differences in their application due to different physical, organizational and cultural contexts in the two cities, drought being the main driver during the past decade in Melbourne (1997–2010) and pluvial flooding in Copenhagen (2007-). In Melbourne there is currently a strong integrated understanding...

  18. Attosecond physics attosecond measurements and control of physical systems

    CERN Document Server

    Torres, Ricardo; Zaïr, Amelle

    2013-01-01

    Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.

  19. Methodology for performing measurements to release material from radiological control

    International Nuclear Information System (INIS)

    Durham, J.S.; Gardner, D.L.

    1993-09-01

    This report describes the existing and proposed methodologies for performing measurements of contamination prior to releasing material for uncontrolled use at the Hanford Site. The technical basis for the proposed methodology, a modification to the existing contamination survey protocol, is also described. The modified methodology, which includes a large-area swipe followed by a statistical survey, can be used to survey material that is unlikely to be contaminated for release to controlled and uncontrolled areas. The material evaluation procedure that is used to determine the likelihood of contamination is also described

  20. Infectious bronchitis virus variants ? History, current situation and control measures

    OpenAIRE

    2011-01-01

    Abstract Infectious bronchitis virus (IBV) is ubiquitous in most parts of the world where poultry are reared and is able to spread very rapidly in non-protected birds. It is shed via both the respiratory tract and the faeces and can persist in the birds and the intestinal tract for several weeks or months. Outdoors, survival of IBV for 56 days in litter has been reported. Although strict biosecurity and working with a one-age system are essential control measures, normally vaccinat...

  1. Design of triaxial test with controlled suction: measure of strain

    International Nuclear Information System (INIS)

    Gasc-Barbier, M.; Cosenza, Ph.; Ghoreychi, M.; Chanchole, S.; Cosenza, Ph.; Tessier, D.

    2000-01-01

    Experimental study of mechanical behavior of clayey materials under hygrometric condition is usually performed either on unloaded samples or by means of classical odometer tests used in soil mechanics. Such methods are not well adapted to hard deep clayey rocks with little deformability, porosity and permeability. Moreover, stress and strain tensors having a significant effect on hygro-mechanical behaviour and properties cannot be measured and investigated appropriately by classical tests. This is why a specific triaxial test was designed in which the sample is surrounded by a fiber glass tissue allowing air circulation and then by silicon on which confining pressure is applied. Thus, equilibrium between air and sample was reduced. Stress and strain tensors were also measured in time on the sample subjected to a mechanical loading and to a controlled suction. After presentation of the test, preliminary results are given. (authors)

  2. Quality Assurance and Quality Control in TLD Measurement

    International Nuclear Information System (INIS)

    Bhuiyan, S.I.; Qronfla, M.M.; Abulfaraj, W.H.; Kinsara, A.A.; Taha, T.M.; Molla, N.I.; Elmohr, S.M.

    2008-01-01

    TLD technique characterized by high precision and reproducibility of dose measurement is presented by addressing pre-readout annealing, group sorting, dose evaluation, blind tests, internal dose quality audit and external quality control audits. Two hundred and forty TLD chips were annealed for 1 hour at 4000 degree C followed by 2 h at 1000 degree C. After exposure of 1 mGy from 90 Sr irradiator TLDs were subjected to pre-readout annealing at 1000 degree C, then readout, sorted into groups each with nearly equal sensitivity. Upon repeating the procedures, TLDs having response >3.5% from group mean were dropped to assuring group stability. Effect of pre-readout annealing has been studied. Series of repeated measurements were conducted to stabilize calibration procedures and DCF generation using SSDL level 137 Cs calibrator, dose master, ionization chambers. Performed internal dose quality audits, blind tests and validated by external QC tests with King Abdulaziz City of Science and Technology

  3. Simultaneous Authentication and Certification of Arms-Control Measurement Systems

    International Nuclear Information System (INIS)

    MacArthur, Duncan W.; Hauck, Danielle K.; Thron, Jonathan L.

    2012-01-01

    Most arms-control-treaty-monitoring scenarios involve a host party that makes a declaration regarding its nuclear material or items and a monitoring party that verifies that declaration. A verification system developed for such a use needs to be trusted by both parties. The first concern, primarily from the host party's point of view, is that any sensitive information that is collected must be protected without interfering in the efficient operation of the facility being monitored. This concern is addressed in what can be termed a 'certification' process. The second concern, of particular interest to the monitoring party, is that it must be possible to confirm the veracity of both the measurement system and the data produced by this measurement system. The monitoring party addresses these issues during an 'authentication' process. Addressing either one of these concerns independently is relatively straightforward. However, it is more difficult to simultaneously satisfy host party certification concerns and monitoring party authentication concerns. Typically, both parties will want the final access to the measurement system. We will describe an alternative approach that allows both parties to gain confidence simultaneously. This approach starts with (1) joint development of the measurement system followed by (2) host certification of several copies of the system and (3) random selection by the inspecting party of one copy to be use during the monitoring visit and one (or more) copy(s) to be returned to the inspecting party's facilities for (4) further hardware authentication; any remaining copies are stored under joint seal for use as spares. Following this process, the parties will jointly (5) perform functional testing on the selected measurement system and then (6) use this system during the monitoring visit. Steps (1) and (2) assure the host party as to the certification of whichever system is eventually used in the monitoring visit. Steps (1), (3), (4), and (5

  4. Experimental measurements in the BYU controlled profile reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.; Black, D.l.; Rigby, J.R.; McQuay, M.Q.; Webb, B.W. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

    1998-09-01

    Over the past decade the Controlled Profile Reactor (CPR) has been used to obtain extensive combustion data sets. CPR is a small scale (0.2-0.4 MW) combustion facility that has been used to obtain data for model validation, the testing of new combustion concepts, and the development of new combustion instruments. This review of the past ten years of research completed in the CPR includes a description of the reactor and instrumentation used, a summary of three experimental data sets which have been obtained in the reactor, and a description of novel tests and instrumentation. Measurements obtained include gas species, gas temperature, particle velocity, particle size, particle number density, particle-cloud temperature profiles, radiation and total heat flux to the wall, and wall temperatures. Species data include the measurement of CO, CO{sub 2}, NO, NO{sub x}, O{sub 2}, NH{sub 3} and HCN. The three combustion studies included one with natural gas combustion in a swirling flow, and two pulverized-coal combustion studies involving Utah Blind Canyon and Pittsburgh No. 8 coals. Most, but not all of the above measurements were obtained in each study. The second coal study involving the Pittsburgh No. 8 coal contained the most complete set of data and is described in detail. Novel combustion instrumentation includes the use of Coherent Anti-Stokes Raman Spectroscopy (CARS) to measure gas temperature. Novel combustion experiments include the measurement of NO{sub x} and burnout with coal-char blends. The measurements have led to an improved understanding of the combustion process and an understanding of the strengths and weaknesses associated with different aspects of comprehensive combustion models. 67 refs., 26 figs., 9 tabs.

  5. A Computer Controlled Precision High Pressure Measuring System

    Science.gov (United States)

    Sadana, S.; Yadav, S.; Jha, N.; Gupta, V. K.; Agarwal, R.; Bandyopadhyay, A. K.; Saxena, T. K.

    2011-01-01

    A microcontroller (AT89C51) based electronics has been designed and developed for high precision calibrator based on Digiquartz pressure transducer (DQPT) for the measurement of high hydrostatic pressure up to 275 MPa. The input signal from DQPT is converted into a square wave form and multiplied through frequency multiplier circuit over 10 times to input frequency. This input frequency is multiplied by a factor of ten using phased lock loop. Octal buffer is used to store the calculated frequency, which in turn is fed to microcontroller AT89C51 interfaced with a liquid crystal display for the display of frequency as well as corresponding pressure in user friendly units. The electronics developed is interfaced with a computer using RS232 for automatic data acquisition, computation and storage. The data is acquired by programming in Visual Basic 6.0. This system is interfaced with the PC to make it a computer controlled system. The system is capable of measuring the frequency up to 4 MHz with a resolution of 0.01 Hz and the pressure up to 275 MPa with a resolution of 0.001 MPa within measurement uncertainty of 0.025%. The details on the hardware of the pressure measuring system, associated electronics, software and calibration are discussed in this paper.

  6. HB-Line Material Control and Accountability Measurements at SRS

    International Nuclear Information System (INIS)

    Casella, V.R.

    2003-01-01

    Presently, HB-Line work at the Savannah River Site consists primarily of the stabilization and packaging of nuclear materials for storage and the characterization of materials for disposition in H-Area. In order to ensure compliance with Material Control and Accountability (MC and A) Regulations, accountability measurements are performed throughout the HB-Line processes. Accountability measurements are used to keep track of the nuclear material inventory by constantly updating the amount of material in the MBAs (Material Balance Area) and sub-MBAs. This is done by subtracting the amount of accountable material that is added to a process and by adding the amount of accountable material that is put back in storage. A Physical Inventory is taken and compared to the ''Book Value'' listed in the Nuclear Material Accounting System. The difference (BPID) in the Book Inventory minus the Physical Inventory of a sub-account for bulk material must agree within the measurement errors combined in quadrature to provide assurance that nuclear material is accounted for. This work provides an overview of HB-Line processes and accountability measurements. The Scrap Recovery Line and Neptunium-237/Plutonium-239 Oxide Line are described and sampling and analyses for Phase II are provided. Recommendations for improvements are provided to improve efficiency and cost effectiveness

  7. Measurements and simulation of controlled beamfront motion in the Laser Controlled Collective Accelerator

    International Nuclear Information System (INIS)

    Yao, R.L.; Destler, W.W.; Striffler, C.D.; Rodgers, J.; Scgalov, Z.

    1989-01-01

    In the Laser Controlled Collective Accelerator, an intense electron beam is injected at a current above the vacuum space charge limit into an initially evacuated drift tube. A plasma channel, produced by time-sequenced, multiple laser beam ionization of a solid target on the drift tube wall, provides the necessary neutralization to allow for effective beam propagation. By controlling the rate of production of the plasma channel as a function of time down the drift tube, control of the electron beamfront can be achieved. Recent experimental measurements of controlled beamfront motion in this configuration are presented, along with results of ion acceleration experiments conducted using two different accelerating gradients. These results are compared with numerical simulations of the system in which both controlled beamfront motion and ion acceleration is observed consistent with both design expectations and experimental results. 5 refs., 6 figs

  8. Cumulative sum quality control for calibrated breast density measurements

    International Nuclear Information System (INIS)

    Heine, John J.; Cao Ke; Beam, Craig

    2009-01-01

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  9. Cumulative sum quality control for calibrated breast density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heine, John J.; Cao Ke; Beam, Craig [Cancer Prevention and Control Division, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612 (United States); Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, Illinois 60612 (United States)

    2009-12-15

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  10. Validation of Storm Water Management Model Storm Control Measures Modules

    Science.gov (United States)

    Simon, M. A.; Platz, M. C.

    2017-12-01

    EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.

  11. The role of transportation control measures in California's air pollution control strategy

    International Nuclear Information System (INIS)

    Guensler, R.; Burmich, P.; Geraghty, A.

    1992-01-01

    In California, significant progress has been made to control emissions from industrial sources as well as from motor vehicles. Nonetheless, policy analysts still debate over whether it makes sense to control motor vehicle emissions through legislated reductions in vehicle use, especially when new vehicle emission standards are becoming even more stringent in California. In this paper, the emission reduction benefits of California's new low-emission vehicles and clean fuels program are reviewed. The air quality management plans of three major metropolitan areas in California are examined, to identify emission reductions needed to meet federal and state air quality standards. For each of these three areas, emission reductions expected from transportation control measure implementation are presented. Then, the extent to which the reductions are open-quotes significantclose quotes and relied upon in each of the local attainment efforts is analyzed. The emission reductions expected from the stringent exhaust emission standards of California's new low-emission vehicles and clean fuels program will not be sufficient to meet mandated clean air standards in the study areas. Based upon our review, transportation control measures appear to be necessary components of the air quality management plans in California's major metropolitan areas. The paper concludes that cost-effective transportation control measures (TCMs) will be needed as a complementary strategy to California's stringent tail-pipe standards in moderate to extreme nonattainment areas

  12. Evaluation of Intersection Traffic Control Measures through Simulation

    Science.gov (United States)

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  13. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  14. Expanding the Impact of Photogrammetric Topography Through Improved Data Archiving and Access

    Science.gov (United States)

    Crosby, C. J.; Arrowsmith, R.; Nandigam, V.

    2016-12-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds which come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The NSF funded OpenTopography (OT) employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 200 datasets and 12,000 registered users, OT is well positioned to provide curation for community collected photogrammetric topographic data. OT is developing a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community DataSpace will enable wider discovery and utilization of these HRT

  15. Out-of-office blood pressure: from measurement to control

    Directory of Open Access Journals (Sweden)

    Baguet JP

    2012-05-01

    Full Text Available Jean-Philippe Baguet1,21Department of Cardiology, University Hospital, 2Bioclinic Radiopharmaceutics Laboratory, INSERM U1039, Joseph Fourier University, Grenoble, FranceAbstract: Hypertension is an important risk factor for the development of cardiovascular disease, and is a major cause of morbidity and mortality worldwide. Traditionally, hypertension diagnosis and treatment and clinical evaluations of antihypertensive efficacy have been based on office blood pressure (BP measurements; however, there is increasing evidence that office measures may provide inadequate or misleading estimates of a patient’s true BP status and level of cardiovascular risk. The introduction, and endorsement by treatment guidelines, of 24-hour ambulatory BP monitoring and self (or home BP monitoring has facilitated more reliable and reproducible estimations of true BP, including the identification of white-coat and masked hypertension, and evaluation of BP variability. In addition, ambulatory BP monitoring enables accurate assessment of treatment effectiveness over 24 hours and both ambulatory and self BP monitoring may lead to better tailoring of therapy according to BP profile and concomitant disease. This review describes the clinical benefits and limitations of out-of-office assessments and their applications for effective management of hypertension and attainment of BP control.Keywords: ambulatory, ABPM, SBPM, blood pressure measurement, hypertension

  16. A tape-controlled remote automatic diameter measurement machine

    International Nuclear Information System (INIS)

    Jennison, W.; Salmon, A.M.

    1978-01-01

    The machine is designed for the automatic measurement of fuel pins after irradiation in the fast reactors and is a modified version of a machine which has been in use for several years. These modifications consist of mechanical improvements and solid state control circuitry but the design criteria are unchanged. Irradiated fuel pins with diameters up to 0.875 in. are measured at fixed axial positions and angular intervals. Axial stepping of either 1 cm or 1 in. with a standard deviation of 5 x 10 -4 in. and angular rotation by multiples of 18 0 with a non-cumulative error of 1 0 can be selected. Data on axial position to 0.1 in. or 0.1 cm and fuel element diameter to 5 x 10 -5 in. are both punched and printed out for computer evaluation. The standard deviation of a single measurement on cylindrical specimens with an eccentricity of up to at least 0.1 in. should be no worse than 1 x 10 -4 in. No operator attention is required after the pin is positioned in the machine and 40 sets of 10 diameter readings at 36 0 intervals can be performed in an hour. Switches can be set between 1 and 99 to terminate an examination when power is switched off with the machine in its rest position. (author)

  17. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Karina Lebel

    2016-07-01

    Full Text Available Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units—IMUs that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC process to assess the quality of orientation data based on features extracted from the raw inertial sensors’ signals. Joint orientation (trunk, hip, knee, ankle of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning performed under varying conditions (speed, environment. An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients’ mobility.

  18. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    Energy Technology Data Exchange (ETDEWEB)

    Ozana, Stepan, E-mail: stepan.ozana@vsb.cz; Pies, Martin, E-mail: martin.pies@vsb.cz; Docekal, Tomas, E-mail: docekalt@email.cz [VSB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical Engineering, 17. listopadu 15/2172, Ostrava-Poruba, 700 30 (Czech Republic)

    2016-06-08

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  19. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    International Nuclear Information System (INIS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-01-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  20. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    Science.gov (United States)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  1. Control of oral malodour by dentifrices measured by gas chromatography.

    Science.gov (United States)

    Newby, Evelyn E; Hickling, Jenneth M; Hughes, Francis J; Proskin, Howard M; Bosma, Marylynn P

    2008-04-01

    To evaluate the effect of toothpaste treatments on levels of oral volatile sulphur compounds (VSCs) measured by gas chromatography in two clinical studies. These were blinded, randomised, controlled, crossover studies with 16 (study A) or 20 (study B) healthy volunteers between the ages of 19-54. Study A: breath samples were collected at baseline, immediately and lhr after brushing. Four dentifrices (Zinc A, Zinc B, commercially available triclosan dentifrice and zinc free control) were evaluated. Study B: breath samples were collected at baseline, immediately, 1, 2, 3 and 7 hours after treatment. Subjects consumed a light breakfast then provided an additional breath sample between baseline assessment and treatment. Two dentifrices (gel-to-foam and a commercially available triclosan dentrifrice) were evaluated. Breath samples were collected in syringes and analysed for VSCs (hydrogen sulphide, methyl mercaptan and Total VSCs) utilising gas chromatography (GC) with flame photometric detection. Study A: immediately after treatment, a statistically significant reduction in VSCs from baseline was observed for Zinc A product only. A statistically significant reduction in VSCs from baseline was observed after 1 hour for all products. Both zinc products exhibited a significantly greater reduction from baseline VSCs than Colgate Total and Control at all time points. Study B: a statistically significant reduction in VSCs from baseline was observed at all time points for both products. The gel-to-foam product exhibited significantly greater reduction from baseline Total VSC concentration than Colgate Total at all time points from 1 hour post-treatment. Control of oral malodour by toothpaste treatment, evaluated as VSC levels using GC, has been demonstrated. Zinc is effective at reducing VSCs and the efficacy of zinc is formulation dependent. A gel-to-foam dentifrice was more effective at reducing VSCs than Colgate Total up to 7 hours.

  2. Multi-temporal change image inference towards false alarms reduction for an operational photogrammetric rockfall detection system

    Science.gov (United States)

    Partsinevelos, Panagiotis; Kallimani, Christina; Tripolitsiotis, Achilleas

    2015-06-01

    Rockfall incidents affect civil security and hamper the sustainable growth of hard to access mountainous areas due to casualties, injuries and infrastructure loss. Rockfall occurrences cannot be easily prevented, whereas previous studies for rockfall multiple sensor early detection systems have focused on large scale incidents. However, even a single rock may cause the loss of a human life along transportation routes thus, it is highly important to establish methods for the early detection of small-scale rockfall incidents. Terrestrial photogrammetric techniques are prone to a series of errors leading to false alarm incidents, including vegetation, wind, and non relevant change in the scene under consideration. In this study, photogrammetric monitoring of rockfall prone slopes is established and the resulting multi-temporal change imagery is processed in order to minimize false alarm incidents. Integration of remote sensing imagery analysis techniques is hereby applied to enhance early detection of a rockfall. Experimental data demonstrated that an operational system able to identify a 10-cm rock movement within a 10% false alarm rate is technically feasible.

  3. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Mason, Peter, E-mail: peter.mason@ch.doe.gov [New Brunswick Laboratory (DOE/NBL), Argonne, IL (United States)

    2013-07-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards

  4. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Mason, Peter

    2013-01-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards authorities

  5. Measurable Control System Security through Ideal Driven Technical Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based

  6. Simultaneous Authentication and Certification of Arms-Control Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    MacArthur, Duncan W. [Los Alamos National Laboratory; Hauck, Danielle K. [Los Alamos National Laboratory; Thron, Jonathan L. [Los Alamos National Laboratory

    2012-07-09

    Most arms-control-treaty-monitoring scenarios involve a host party that makes a declaration regarding its nuclear material or items and a monitoring party that verifies that declaration. A verification system developed for such a use needs to be trusted by both parties. The first concern, primarily from the host party's point of view, is that any sensitive information that is collected must be protected without interfering in the efficient operation of the facility being monitored. This concern is addressed in what can be termed a 'certification' process. The second concern, of particular interest to the monitoring party, is that it must be possible to confirm the veracity of both the measurement system and the data produced by this measurement system. The monitoring party addresses these issues during an 'authentication' process. Addressing either one of these concerns independently is relatively straightforward. However, it is more difficult to simultaneously satisfy host party certification concerns and monitoring party authentication concerns. Typically, both parties will want the final access to the measurement system. We will describe an alternative approach that allows both parties to gain confidence simultaneously. This approach starts with (1) joint development of the measurement system followed by (2) host certification of several copies of the system and (3) random selection by the inspecting party of one copy to be use during the monitoring visit and one (or more) copy(s) to be returned to the inspecting party's facilities for (4) further hardware authentication; any remaining copies are stored under joint seal for use as spares. Following this process, the parties will jointly (5) perform functional testing on the selected measurement system and then (6) use this system during the monitoring visit. Steps (1) and (2) assure the host party as to the certification of whichever system is eventually used in the monitoring visit

  7. Infectious diseases following natural disasters: prevention and control measures.

    Science.gov (United States)

    Kouadio, Isidore K; Aljunid, Syed; Kamigaki, Taro; Hammad, Karen; Oshitani, Hitoshi

    2012-01-01

    Natural disasters may lead to infectious disease outbreaks when they result in substantial population displacement and exacerbate synergic risk factors (change in the environment, in human conditions and in the vulnerability to existing pathogens) for disease transmission. We reviewed risk factors and potential infectious diseases resulting from prolonged secondary effects of major natural disasters that occurred from 2000 to 2011. Natural disasters including floods, tsunamis, earthquakes, tropical cyclones (e.g., hurricanes and typhoons) and tornadoes have been secondarily described with the following infectious diseases including diarrheal diseases, acute respiratory infections, malaria, leptospirosis, measles, dengue fever, viral hepatitis, typhoid fever, meningitis, as well as tetanus and cutaneous mucormycosis. Risk assessment is essential in post-disaster situations and the rapid implementation of control measures through re-establishment and improvement of primary healthcare delivery should be given high priority, especially in the absence of pre-disaster surveillance data.

  8. Measurement and control system for ITER remote maintenance equipment

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  9. Measurement and control system for ITER remote maintenance equipment

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro

    1998-01-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  10. Temperature measurement and control system for transtibial prostheses: Functional evaluation.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza

    2018-01-01

    The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.

  11. Overview of Zika infection, epidemiology, transmission and control measures

    Directory of Open Access Journals (Sweden)

    Ali A. Rabaan

    2017-03-01

    Full Text Available The current Zika virus outbreak in the Americas and the proposed link to increases in microcephaly and neurological disorders have prompted the World Health Organization to declare a Public Health Emergency of International Concern on February 1, 2016. The virus is transmitted by Aedes mosquitoes and potentially by transfusion, perinatal and sexual transmission. The potential for spread into countries where Aedes mosquitoes are endemic is high. Previously, cases tended to be sporadic and associated with mild, non-specific symptoms. Prior outbreaks occurred in Yap Island in Micronesia in 2007, the first time Zika arose outside of Africa and Asia, and in French Polynesia in 2013. A birth data review has confirmed that the latter outbreak was followed by an increase in microcephaly cases. A coordinated international response is needed to address mosquito control; expedite development of diagnostic tests, vaccines and specific treatments for Zika; and address the proposed link to microcephaly and neurological diseases. Keywords: ZIKV, Zika infection, Epidemiology, Transmission, Control measures, Diagnostic test

  12. [Type 2 diabetes and frecuency of prevention and control measures].

    Science.gov (United States)

    Jiménez-Corona, Aída; Aguilar-Salinas, Carlos A; Rojas-Martínez, Rosalba; Hernández-Ávila, Mauricio

    2013-01-01

    To determine the frequency of application of prevention and control measures for type 2 diabetes in Mexican population. ENSANUT 2012 is a nationally and by-state representative survey. Sample design was probabilistic, multistage, stratified and clustered. The information of 46 277 adults≥20 was used for this analysis. A weighted analysis was performed using Stata 12. Prevalence of diabetes by previous diagnosis was 9.2% (6.4 millions) in ENSANUT 2012, 7.3% (3.7 millions) in 2006 and 4.6% (2.1 millions) in 2000. In 2012, the mean of medical examinations in the previous year related to diabetes control was 7.3. However, the percentage of cases in which preventive actions for chronic complications were performed (such as foot care [14.6%], ophthalmology [8.6%] and determination of HbA1c [9.6%]) was low. Patients with diabetes have frequent access to medical services. However, preventive actions are applied insufficiently both in quality and quantity.

  13. Infectious disease-related laws: prevention and control measures

    Directory of Open Access Journals (Sweden)

    Mijeong Park

    2017-07-01

    Full Text Available OBJECTIVES This study examines recently revised Korean government legislation addressing global infectious disease control for public health emergency situations, with the aim of proposing more rational, effective and realistic interpretations and applications for improvement of law. METHODS The Korea reported its first laboratory-confirmed case of Middle East Respiratory Syndrome (MERS coronavirus on May 20, 2015. Since the first indexed case, Korean public health authorities enforced many public health measures that were not authorized in the law; the scope of the current law was too limited to cover MERS. Korea has three levels of government: the central government, special self-governing provinces, and si/gun/gu. Unfortunately, the Infectious Disease Control and Prevention Act does not designate the specific roles of each level of government, and does not state how these governmental branches should be vertically integrated in a state of emergency. RESULTS When thinking about these policy questions, we should be especially concerned about introducing a new act that deals with all matters relevant to emerging infectious diseases. The aim would be to develop a structure that specifies the roles of each level of government, and facilitates the close collaboration among them, then enacting this in law for the prevention and response of infectious disease. CONCLUSIONS To address this problem, after analyzing the national healthcare infrastructure along with the characteristics of emerging infectious diseases, we propose the revision of the relevant law(s in terms of governance aspects, emergency medical countermeasure aspects, and the human rights aspect.

  14. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  15. Measurement approaches to support future warhead arms control transparency

    International Nuclear Information System (INIS)

    Olinger, C.T.; Frankle, C.M.; Johnson, M.W.; Poths, J.

    1998-01-01

    Transparency on warhead stockpiles, warhead dismantlement, and fissile material stockpiles in nuclear weapons states will become increasingly important in the move beyond START II toward lower quantities of warheads. Congressional support for further warhead reductions will likely depend on the degree of irreversibility, or in other words, the rapidity with which warhead inventories could be reconstituted. Whether irreversibility considerations can be satisfied will depend on monitoring dismantlement as well as constraining the available stockpile of fissile materials for possible refabrication into warheads. Measurement techniques designed to address the above problems will need to consider NPT Article 1 obligations as well as Russian and US classification regulations, which prohibit or restrict the transfer of nuclear warhead design information to other states. Classification considerations currently limit the potential completeness of future inspections of weapons materials. Many conventional international safeguards approaches are not currently viable for arms control applications because they would reveal weapons design information. The authors discuss a variety of technical measures that may help to improve transparence of warhead and fissile material stockpiles and may enable limited warhead dismantlement transparency

  16. Control measurements of low- and intermediate level waste to be disposed of in SFR-1; Measurements of year 1995

    International Nuclear Information System (INIS)

    Westerlind, M.

    1995-11-01

    The Swedish Radiation Protection Institute regularly performs control measurements of waste packages produced by the Swedish nuclear power plants. The report presents the results of the gamma spectrometric measurements made during the fall 1995. The agreement between the nuclear facilities own measurements and the control results is generally good. 4 tabs

  17. Towards integrating control and information theories from information-theoretic measures to control performance limitations

    CERN Document Server

    Fang, Song; Ishii, Hideaki

    2017-01-01

    This book investigates the performance limitation issues in networked feedback systems. The fact that networked feedback systems consist of control and communication devices and systems calls for the integration of control theory and information theory. The primary contributions of this book lie in two aspects: the newly-proposed information-theoretic measures and the newly-discovered control performance limitations. We first propose a number of information notions to facilitate the analysis. Using those notions, classes of performance limitations of networked feedback systems, as well as state estimation systems, are then investigated. In general, the book presents a unique, cohesive treatment of performance limitation issues of networked feedback systems via an information-theoretic approach. This book is believed to be the first to treat the aforementioned subjects systematically and in a unified manner, offering a unique perspective differing from existing books.

  18. Getting ready to use control: Advances in the measurement of young children's use of proactive control.

    Directory of Open Access Journals (Sweden)

    Sabine Doebel

    Full Text Available A key developmental transition in executive function is in the temporal dynamics of its engagement: children shift from reactively calling to mind task-relevant information as needed, to being able to proactively maintain information across time in anticipation of upcoming demands. This transition is important for understanding individual differences and developmental changes in executive function; however, methods targeting its assessment are limited. We tested the possibility that Track-It, a paradigm developed to measure selective sustained attention, also indexes proactive control. In this task children must track a target shape as it moves unpredictably among moving distractors, and identify where it disappears, which may require proactively maintaining information about the target or goal. In two experiments (5-6 year-olds, Ns = 33, 64, children's performance on Track-It predicted proactive control across two established paradigms. These findings suggest Track-It measures proactive control in children. Theoretical possibilities regarding how proactive control and selective sustained attention may be related are also discussed.

  19. Development of an operational digital photogrammetric system for the North Sea oil and gas industry

    Science.gov (United States)

    Turner, John

    1993-02-01

    The Offshore Oil and Gas Industry in the North Sea has many requirements for three- dimensional measurements in air and underwater. A market audit found that use of conventional photogrammetry was being rejected for many applications because the information was not available fast enough. A development project was set up to replace the photographic cameras with a choice of video or high resolution digital electronic cameras, and the analysis system with a personal computer based image processing system. This solution is now in operation. The paper details the in-house development of the high resolution digital electronic camera and the personal computer based measurement hardware and software. It includes a discussion of the technological parameters, including the method for pixel for pixel correlation within the digital system, camera calibration techniques, the system algorithms, sub-pixel measurement and dimensional accuracy. It introduces the work that was carried out to make the final product acceptable to structural engineers, who now use it to transfer three- dimensional measurements to their CAD systems. It also looks at the work that is being carried out to transform the system into a closed loop control system for underwater robotic manipulators, which includes binary conversion, convolution filtering and tracking functions.

  20. Quality control scheme for thyroid related hormones measured by radioimmunoassay

    International Nuclear Information System (INIS)

    Kamel, R.S.

    1989-09-01

    A regional quality control scheme for thyroid related hormones measured by radioimmunoassay is being established in the Middle East. The scheme started in January 1985, with eight laboratories which were all from Iraq. At the present nineteen laboratories from Iraq, Jordan, Kuwait, Saudi Arabia and United Arab Emirates (Dubai) are now participating in the scheme. The scheme was supported by the International Atomic Energy Agency. All participants received monthly three freeze dried quality control samples for assay. Results for T3, T4 and TSH received from participants are analysed statistically batch by batch and returned to the participants. Laboratories reporting quite marked bias results were contacted to check the assay performance for that particular batch and to define the weak points. Clinical interpretation for certain well defined samples were reported. A regular case study report is recently introduced to the scheme and will be distributed regularly as one of the guidelines in establishing a trouble shooting programme throughout the scheme. The overall mean between the laboratory performance showed a good result for the T4, moderate but acceptable for T3 and poor for TSH. The statistical analysis of the results based on the concept of a ''target'' value is derived from the believed correct value the ''Median''. The overall mean bias values (ignoring signs) for respectively low, normal and high concentration samples were for T4 18.0 ± 12.5, 11.2 ± 6.4 and 11.2 ± 6.4, for T3 28.8 ± 23.5, 11.2 ± 8.4 and 13.4 ± 9.0 and for TSH 46.3 ± 50.1, 37.2 ± 28.5 and 19.1 ± 12.1. The scheme proved to be effective not only in improving the overall performance but also it helped to develop awareness of the need for internal quality control programmes and gave confidence in the results of the participants. The scheme will continue and will be expanded to involve more laboratories in the region. Refs, fig and tabs

  1. Measuring and Controlling the Energy Spread in CEBAF

    CERN Document Server

    Krafft, G A; Dickson, R W; Kazimi, R; Lebedev, V A; Tiefenback, M G

    2000-01-01

    As compared to electron storage rings, one advantage of recirculating linear accelerators is that the beam properties at target are no longer dominated by the equilibrium between quantum radiative diffusion and radiation damping because new beam is continually injected into the accelerator. This allows the energy spread from a CEBAF-type machine to be relatively small; the measured energy spread from CEBAF at 4 GeV is less than 100 parts per million accumulated over times of order several days. In this paper, the various subsystems contributing to the energy spread of a CEBAF-type accelerator are reviewed, as well as the machine diagnostics and controls that are used in CEBAF to ensure that a small energy spread is provided during routine running. Examples of relevant developments are (1) stable short bunches emerging from the injector, (2) precision timing and phasing of the linacs with respect to the centroid of the beam bunches on all passes, (3) implementing 2 kHz sampling rate feedback systems for final ...

  2. Control and Measurement of an Xmon with the Quantum Socket

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Earnest, C. T.; McRae, C. R. H.; Rinehart, J. R.; Weides, M.; Mariantoni, M.

    The implementation of superconducting quantum processors is rapidly reaching scalability limitations. Extensible electronics and wiring solutions for superconducting quantum bits (qubits) are among the most imminent issues to be tackled. The necessity to substitute planar electrical interconnects (e.g., wire bonds) with three-dimensional wires is emerging as a fundamental pillar towards scalability. In a previous work, we have shown that three-dimensional wires housed in a suitable package, named the quantum socket, can be utilized to measure high-quality superconducting resonators. In this work, we set out to test the quantum socket with actual superconducting qubits to verify its suitability as a wiring solution in the development of an extensible quantum computing architecture. To this end, we have designed and fabricated a series of Xmon qubits. The qubits range in frequency from about 6 to 7 GHz with anharmonicity of 200 MHz and can be tuned by means of Z pulses. Controlling tunable Xmons will allow us to verify whether the three-dimensional wires contact resistance is low enough for qubit operation. Qubit T1 and T2 times and single qubit gate fidelities are compared against current standards in the field.

  3. Measuring and test equipment control through bar-code technology

    International Nuclear Information System (INIS)

    Crockett, J.D.; Carr, C.C.

    1993-01-01

    Over the past several years, the use, tracking, and documentation of measuring and test equipment (M ampersand TE) has become a major issue. New regulations are forcing companies to develop new policies for providing use history, traceability, and accountability of M ampersand TE. This paper discusses how the Fast Flux Test Facility (FFTF), operated by Westinghouse Hanford Company and located at the Hanford site in Rich- land, Washington, overcame these obstacles by using a computerized system exercising bar-code technology. A data base was developed to identify M ampersand TE containing 33 separate fields, such as manufacturer, model, range, bar-code number, and other pertinent information. A bar-code label was attached to each piece of M ampersand TE. A second data base was created to identify the employee using the M ampersand TE. The fields contained pertinent user information such as name, location, and payroll number. Each employee's payroll number was bar coded and attached to the back of their identification badge. A computer program was developed to automate certain tasks previously performed and tracked by hand. Bar-code technology was combined with this computer program to control the input and distribution of information, eliminate common mistakes, electronically store information, and reduce the time required to check out the M ampersand TE for use

  4. Control, protection and measuring switchboards; Tableros de control, proteccion y medicion

    Energy Technology Data Exchange (ETDEWEB)

    Marron Pena, Gustavo A. [Luz y Fuerza del Centro, Mexico, D. F. (Mexico)

    1997-12-31

    Basically a switchboard is a cabinet or panel that contains equipment for protection of measuring and control high tension electric power components of high tension, such as: transmission power lines, power station generators or power plants, power transformers, and distribution feeders. In this paper the importance of control, Protection and Measuring Switchboards is discussed and the power installations of the national electric system is analyzed and finally, a description is made of the quality system applied in the manufacture of switchboards at Luz y Fuerza del Centro in accordance with ISO-9000 and NMX-CC Standards [Espanol] Un tablero basicamente es un gabinete o panel que contiene equipos que sirven para proteger, medir y controlar componentes electricos de potencia en alta tension, como son: lineas de transmision, generadores de centrales o plantas electricas, transformadores de potencia y alimentadores de distribucion. En este documento se analiza la importancia de los tableros de control, la proteccion y medicion en las instalaciones de potencia del sistema electrico nacional y por ultimo se describe el sistema de calidad aplicado en la fabricacion de tableros de Luz y Fuerza del Centro de acuerdo con las normas ISO-9000 y NMX-CC

  5. Photogrammetric Methodology for the Production of Geomorphologic Maps: Application to the Veleta Rock Glacier (Sierra Nevada, Granada, Spain

    Directory of Open Access Journals (Sweden)

    José Jesús Guerrero

    2009-10-01

    Full Text Available In this paper we present a stereo feature-based method using SIFT (Scale-invariant feature transform descriptors. We use automatic feature extractors, matching algorithms between images and techniques of robust estimation to produce a DTM (Digital Terrain Model using convergent shots of a rock glacier.The geomorphologic structure observed in this study is the Veleta rock glacier (Sierra Nevada, Granada, Spain. This rock glacier is of high scientific interest because it is the southernmost active rock glacier in Europe and it has been analyzed every year since 2001. The research on the Veleta rock glacier is devoted to the study of its displacement and cartography through geodetic and photogrammetric techniques.

  6. Development of digital photogrammetry for measurements of displacements in underground excavation

    International Nuclear Information System (INIS)

    Ohnishi, Yuzo; Ohtsu, Hiroyasu; Nishiyama, Satoshi; Ono, Tetsu; Matsui, Hiroya

    2002-03-01

    Because deformations are important indicators of the degree of stability during construction of rock structures, monitoring of deformation is a key element of construction of tunnels and structures for the underground research laboratory. Especially in the construction and maintenance of underground excavation, monitoring of deformations is needed for obtaining useful information to control its stability. We have been developing the application of digital photogrammetry to monitoring techniques in rock structures. Photogrammetric process has undergone a remarkable evolution with its transformation into digital photogrammetry. Photogrammetry has the advantage of measuring deformation of an object by some photos with easy measurements and excellent cost performance. In this paper, we present that the digital photogrammetry can monitor the displacements of the underground excavation accurately along with a capability of real-time measurement. (author)

  7. A brief measure of social media self-control failure

    NARCIS (Netherlands)

    Du, Jie; van Koningsbruggen, Guido M.; Kerkhof, Peter

    People often fail in controlling their social media use when it conflicts with other goals and obligations. To facilitate research on understanding social media self-control failures, we constructed a brief social media self-control failure (SMSCF)-scale to assess how often social media users give

  8. SPECIES-SPECIFIC FOREST VARIABLE ESTIMATION USING NON-PARAMETRIC MODELING OF MULTI-SPECTRAL PHOTOGRAMMETRIC POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    J. Bohlin

    2012-07-01

    Full Text Available The recent development in software for automatic photogrammetric processing of multispectral aerial imagery, and the growing nation-wide availability of Digital Elevation Model (DEM data, are about to revolutionize data capture for forest management planning in Scandinavia. Using only already available aerial imagery and ALS-assessed DEM data, raster estimates of the forest variables mean tree height, basal area, total stem volume, and species-specific stem volumes were produced and evaluated. The study was conducted at a coniferous hemi-boreal test site in southern Sweden (lat. 58° N, long. 13° E. Digital aerial images from the Zeiss/Intergraph Digital Mapping Camera system were used to produce 3D point-cloud data with spectral information. Metrics were calculated for 696 field plots (10 m radius from point-cloud data and used in k-MSN to estimate forest variables. For these stands, the tree height ranged from 1.4 to 33.0 m (18.1 m mean, stem volume from 0 to 829 m3 ha-1 (249 m3 ha-1 mean and basal area from 0 to 62.2 m2 ha-1 (26.1 m2 ha-1 mean, with mean stand size of 2.8 ha. Estimates made using digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet showed RMSEs (in percent of the surveyed stand mean of 7.5% for tree height, 11.4% for basal area, 13.2% for total stem volume, 90.6% for pine stem volume, 26.4 for spruce stem volume, and 72.6% for deciduous stem volume. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.

  9. Landsliding and sediment flux in the Central Swiss Alps: A photogrammetric study of the Schimbrig landslide, Entlebuch

    Science.gov (United States)

    Schwab, Marco; Rieke-Zapp, Dirk; Schneider, Heinz; Liniger, Markus; Schlunegger, Fritz

    2008-05-01

    This study explores the effects of hillslope mass failure on the sediment flux in the Waldemme drainage basin, Central Swiss Alps, over decadal time scales. This area is characterized by abundant landslides affecting principally flysch units and is therefore an important sediment source. The analysis concentrates on the Schimbrig landslide that potentially contributes up to 15% to the sediment budget of the Waldemme drainage basin. Volumetric changes are quantified using high-resolution elevation models that were extracted using digital photogrammetric techniques. Sediment discharge data were used to constrain the significance of the landslide for sediment flux in the channel network. The temporal extent of the photogrammetric analysis ranges from 1962 to 1998, including an earth slide event in 1994. The analyses reveal that during periods of low slip rates of the landslide, nearly all of the displaced sediments were eroded and supplied to the channel network. In contrast, during active periods, only a fraction of the displaced landslide mass was exported to the trunk stream. Interestingly, the 1994 earth slide event did not disturb the long-term sediment discharge pattern of the channel network, nor did it influence the sediment flux at a weekly scale. However, suspended sediment pulses correlate with higher-than-average precipitation events. This was especially the case in August 2005 when a storm event (> 100 years return period) triggered several debris flows and earth flows in the whole drainage basin and in the Schimbrig area. This storm did not result in a significant increase in the slip rates of the entire landslide's main body. It is therefore proposed that debris flows and earth flows perform the connectivity between hillslope processes (e.g. landsliding) and the trunk stream during and between phases of landslide activity in this particular setting.

  10. Effective tobacco control measures: agreement among medical students

    Directory of Open Access Journals (Sweden)

    Stella Regina Martins

    Full Text Available ABSTRACT Objective: To determine the level of agreement with effective tobacco control measures recommended by the World Health Organization and to assess the attitudes toward, knowledge of, and beliefs regarding smoking among third-year medical students at University of São Paulo School of Medicine, located in the city of São Paulo, Brazil. Methods: Between 2008 and 2012, all third-year medical students were invited to complete a self-administered questionnaire based on the Global Health Professionals Student Survey and its additional modules. Results: The study sample comprised 556 students. The level of agreement with the World Health Organization recommendations was high, except for the components “received smoking cessation training” and “raising taxes is effective to reduce the prevalence of smoking”. Most of the students reported that they agree with banning tobacco product sales to minors (95%, believe that physicians are role models to their patients (84%, and believe that they should advise their patients to quit cigarette smoking (96% and using other tobacco products (94%. Regarding smoking cessation methods, most of the students were found to know more about nicotine replacement therapy than about non-nicotine therapies (93% vs. 53%. Only 37% of the respondents were aware of the importance of educational antismoking materials, and only 31% reported that they believe in the effectiveness of encouraging their patients, during medical visits. In our sample, the prevalence of current cigarette smoking was 5.23%; however, 43.82% of the respondents reported having experimented with water-pipe tobacco smoking. Conclusions: Our results revealed the need to emphasize to third-year medical students the importance of raising the prices of and taxes on tobacco products. We also need to make students aware of the dangers of experimenting with tobacco products other than cigarettes, particularly water-pipe tobacco smoking.

  11. On the control of irrigation through soil moisture measurement using a neutron depth probe in horizontal subsurface measuring circuits

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1977-01-01

    An outline is given of the advantages inherent in soil moisture measurement by means of a neutron probe in horizontal subsurface measuring circuits for irrigation control. Preliminary experience for the setting up of a field calibration curve and for practical measurement are submitted. This technique includes the following advantages: almost complete covering of the upper soil range which is of interest to irrigation control; good measuring density; suitable distribution of measuring points per unit area; possibility of continuous probe passage; optimal repeatability of measurements; exploration of a unit area with but few measuring circuits; no obstacles to tillage, drilling, intercultivation and harvest operations; and complete conservation of crop and plot which is not reached with any other soil moisture measurement technique so far available. Making use of the above advantages, the new technique allows automatic irrigation control with only one neutron depth probe. (author)

  12. Material Control and Accountability Measurements for FB-Line Processes

    International Nuclear Information System (INIS)

    Casella, V.R.

    2002-01-01

    This report provides an overview of FB-Line processes and nuclear material accountability measurements. Flow diagrams for the product, waste, and packaging and stabilization processes are given along with the accountability measurements done before and after each of these processes. Brief descriptions of these measurements are provided. This information provides a better understanding of the general FB-Line processes and how MC and A measurements are used to keep track of the accountable material inventory

  13. A electric parameters measurement and control system for NBIS

    International Nuclear Information System (INIS)

    Tian Zhongjun; Hu Chundong; Liu Sheng

    2010-01-01

    It presents a data acquisition and control system for neutral beam injection system by LabVIEW, PLC, sensors and PXI. Through the RS232, the communication between PLC and IPC, as well as the underlying data acquisition and control was achieved. The system integrated of a variety of techniques, providing a good platform, can also be applied to the industrial field data acquisition and control. (authors)

  14. Quality control measurements for digital x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, N W [Department of Radiology, University Hospitals Leuven, 49 Herenstraat, 3000 Leuven (Belgium); Mackenzie, A [National Co-ordinating Centre for the Physics of Mammography, Medical Physics, Level B, St Luke' s Wing, The Royal Surrey County Hospital NHS Trust, Egerton Road, Guildford, GU2 7XX (United Kingdom); Honey, I D, E-mail: nicholas.marshall@uz.kuleuven.ac.be [Department of Medical Physics, Floor 3, Henriette Raphael House, Guy' s and St Thomas' Hospital, London, SE1 9RT (United Kingdom)

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 {mu}Gy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 {mu}Gy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm{sup -1} {+-} 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 {mu}Gy {+-} 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 x 10{sup -5} mm{sup 2} (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm{sup -1}, with a maximum cov of 10% at 2.9 mm{sup -1}, while the average DQE was 0.56 at 0.5 mm{sup -1} for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found

  15. The development of digital oscilloscope control software in nuclear measurement

    International Nuclear Information System (INIS)

    Pu Minghui; Tian Geng; Li Xianyou

    2004-01-01

    This essay presents the development of an all-purpose digital oscilloscope control software on Windows 95/98 OS. The background and method are discussed in detail, together with the function and characteristics of the software. With the use of this software, a single PC can control several digital oscilloscopes. Solution of main problems encountered in the development is also discussed. (authors)

  16. Power control of water reactors using nitrogen 16 activity measurements

    International Nuclear Information System (INIS)

    Gariod, R.; Merchie, F.; O'byrne, G.

    1964-01-01

    At the Grenoble Nuclear Research Centre, the open-core swimming pool reactors Melusine (2 MW) and Siloe (15 MW) are controlled at a constant overall power using nitrogen-16 channels. The conventional linear control channels react instantaneously to the rapid power fluctuations, this being necessary for the safety of the reactors, but their power indications are erroneous since they are affected by local deformations of the thermal flux caused by the compensation movements of the control rods. The nitrogen-16 channels on the other hand give an indication of the overall power proportional to the mean fission flux and independent of the rod movements, but their response time is 15 seconds, A constant overall power control is thus possible by a slow correction of the reference signal given by the automatic control governed by thu linear channels by means of a correction term given by the 'N-16' channels: This is done automatically in Melusine and manually in Siloe. (authors) [fr

  17. Process control measurements in the SRP fuel separations plants

    International Nuclear Information System (INIS)

    McKibben, J.M.; Pickett, C.E.; Dickert, H.D.

    1982-02-01

    Programs were started to develop new in-line and at-line analytical techniques. Among the more promising techniques being investigated are: (1) an in-line instrument to analyze for percent tributyl phosphate in process solvent, (2) remote laser optrode techniques (using lazer light transmitted to and from the sample cell via light pipes) for a variety of possible analyses, and (3) sonic techniques for concentration analyses in two component systems. A subcommittee was also formed to investigate state-of-the-technology for process control. The final recommendation was to use a distributed control approach to upgrade the process control sytem. The system selected should be modular, easy to expand, and simple to change control strategies. A distributed system using microprocessorbased controllers would allow installation of the control intelligence near the process, thereby simplifying field wiring. Process information collected and stored in the controllers will be transmitted to operating consoles, via a data highway, for process management and display. The overall program has a number of distinct benefits. There are a number of cost savings that will be realized. Excellent annual return on investment - up to 110% - has been predicted for several of the projects in this program that are already funded. In addition, many of the instrument modifications will improve safety performance and production throughput in the specific ways shown

  18. Is There a Correlation Between Infection Control Performance and Other Hospital Quality Measures?

    Science.gov (United States)

    O'Hara, Lyndsay M; Morgan, Daniel J; Pineles, Lisa; Li, Shanshan; Sulis, Carol; Bowling, Jason; Drees, Marci; Jacob, Jesse T; Anderson, Deverick J; Warren, David K; Harris, Anthony D

    2017-06-01

    Quality measures are increasingly reported by hospitals to the Centers for Medicare and Medicaid Services (CMS), yet there may be tradeoffs in performance between infection control (IC) and other quality measures. Hospitals that performed best on IC measures did not perform well on most CMS non-IC quality measures. Infect Control Hosp Epidemiol 2017;38:736-739.

  19. Required accuracy of tune measurement and parametrization of chromaticity control

    International Nuclear Information System (INIS)

    Maas, R.

    1991-02-01

    The betatron tunes v x and v y will be measured by Fourier-analyzing a BPM signal generated by a beam which received a fast ( kick /f rev ) equals the fractional part of the tune, a beam blow-up can be observed. In this note the required accuracy of such a tune measurement is discussed. (author). 6 schemes

  20. Perturbing engine performance measurements to determine optimal engine control settings

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  1. National Management Measures to Control Nonpoint Source Pollution from Forestry

    Science.gov (United States)

    This report helps forest owners protect lakes and streams from polluted runoff that can result from forestry activities. The report will also help states to implement their nonpoint source control programs.

  2. Measuring System for Growth Control of the Spirulina Aquaculture

    Science.gov (United States)

    Ponce S., Claudio; Ponce L., Ernesto; Bernardo S., Barraza

    2008-11-01

    It describes the workings of a data-logging instrument that measures growth levels of the Spirulina aquaculture. The Spirulina is a very delicate algae and its culture may be suddenly lost due to overgrowth. This kind of instrument is not at present available in the market. The transduction is a submergible laser device whose measuring margin of error is near to 0.28%. The advantage of this new instrument is the improvement in the measurement and the low cost. The future application of this work is related to the industrial production of food and fuel from micro algae culture, for the growing world population.

  3. Measurement and control of radioactive material transport in FFTF

    International Nuclear Information System (INIS)

    Maffei, H.P.; Brehm, W.F.; Moore, F.S.; Stinson, W.P.; Bunch, W.L.; Anantatmula, R.P.; McGuire, J.C.

    1984-01-01

    Techniques and equipment have been developed for measuring radionuclide buildup in FFTF. To date, only 54 Mn and 22 Na have been found in significant quantities. Radiation levels of up to 115 mR/h from 54 Mn and 121 mR/h from 22 Na have been measured in the cells, in reasonable agreement with predicted values. No fission products have been found, since no significant operation with breached fuel has yet been experienced. The buildup of corrosion product and fission product radionuclides is not expected to cause severe maintenance problems in FFTF; should problems arise, corrective measures are being developed

  4. Effective tobacco control measures: agreement among medical students.

    Science.gov (United States)

    Martins, Stella Regina; Paceli, Renato Batista; Bussacos, Marco Antônio; Fernandes, Frederico Leon Arrabal; Prado, Gustavo Faibischew; Lombardi, Elisa Maria Siqueira; Terra-Filho, Mário; Santos, Ubiratan Paula

    2017-01-01

    To determine the level of agreement with effective tobacco control measures recommended by the World Health Organization and to assess the attitudes toward, knowledge of, and beliefs regarding smoking among third-year medical students at University of São Paulo School of Medicine, located in the city of São Paulo, Brazil. Between 2008 and 2012, all third-year medical students were invited to complete a self-administered questionnaire based on the Global Health Professionals Student Survey and its additional modules. The study sample comprised 556 students. The level of agreement with the World Health Organization recommendations was high, except for the components "received smoking cessation training" and "raising taxes is effective to reduce the prevalence of smoking". Most of the students reported that they agree with banning tobacco product sales to minors (95%), believe that physicians are role models to their patients (84%), and believe that they should advise their patients to quit cigarette smoking (96%) and using other tobacco products (94%). Regarding smoking cessation methods, most of the students were found to know more about nicotine replacement therapy than about non-nicotine therapies (93% vs. 53%). Only 37% of the respondents were aware of the importance of educational antismoking materials, and only 31% reported that they believe in the effectiveness of encouraging their patients, during medical visits. In our sample, the prevalence of current cigarette smoking was 5.23%; however, 43.82% of the respondents reported having experimented with water-pipe tobacco smoking. Our results revealed the need to emphasize to third-year medical students the importance of raising the prices of and taxes on tobacco products. We also need to make students aware of the dangers of experimenting with tobacco products other than cigarettes, particularly water-pipe tobacco smoking. Determinar o grau de concordância com medidas eficazes de controle do tabaco

  5. Biological control and surveillance measures for hospital radiopharmacy

    International Nuclear Information System (INIS)

    Joshi, S.H.; Mehra, K.S.; Ramamoorthy, N.

    1997-01-01

    The principles and procedures for the surveillance measures and the care required to be observed in hospital radiopharmacy, though much of the aspects are quite valid for centralized and industrial radiopharmacies, are described. 1 tab

  6. Measuring Effectiveness of Persuasive Games Using an Informative Control Condition

    Directory of Open Access Journals (Sweden)

    Mara Soekarjo

    2015-06-01

    Full Text Available Research about the effectiveness of persuasive games is still emerging. This article presents a literature review of studies that empirically evaluate the effectiveness of persuasive games. The review concluded that limited empirical evidence is currently available to prove their effectiveness in attitude change. It further revealed that almost no study employed an informative control condition, making it difficult to conclude that the game was more effective than a control condition. Next, in a pretest-posttest design an empirical study tested whether change in attitude was different for people playing the persuasive game "EnerCities" compared to a control condition where participants read a document with highly similar information. No significant differences in increase of attitude or knowledge between participants that played the game and participants in the informative control condition were found. Based on the results of the literature review and the empirical study presented, it hence cannot be concluded that playing a game leads to a greater change in attitude or knowledge acquisition than experiencing conventional media would. Future work should employ designs with proper control conditions and focus on which game features lead to significant effects.

  7. Calibration and verification of thermographic cameras for geometric measurements

    Science.gov (United States)

    Lagüela, S.; González-Jorge, H.; Armesto, J.; Arias, P.

    2011-03-01

    Infrared thermography is a technique with an increasing degree of development and applications. Quality assessment in the measurements performed with the thermal cameras should be achieved through metrology calibration and verification. Infrared cameras acquire temperature and geometric information, although calibration and verification procedures are only usual for thermal data. Black bodies are used for these purposes. Moreover, the geometric information is important for many fields as architecture, civil engineering and industry. This work presents a calibration procedure that allows the photogrammetric restitution and a portable artefact to verify the geometric accuracy, repeatability and drift of thermographic cameras. These results allow the incorporation of this information into the quality control processes of the companies. A grid based on burning lamps is used for the geometric calibration of thermographic cameras. The artefact designed for the geometric verification consists of five delrin spheres and seven cubes of different sizes. Metrology traceability for the artefact is obtained from a coordinate measuring machine. Two sets of targets with different reflectivity are fixed to the spheres and cubes to make data processing and photogrammetric restitution possible. Reflectivity was the chosen material propriety due to the thermographic and visual cameras ability to detect it. Two thermographic cameras from Flir and Nec manufacturers, and one visible camera from Jai are calibrated, verified and compared using calibration grids and the standard artefact. The calibration system based on burning lamps shows its capability to perform the internal orientation of the thermal cameras. Verification results show repeatability better than 1 mm for all cases, being better than 0.5 mm for the visible one. As it must be expected, also accuracy appears higher in the visible camera, and the geometric comparison between thermographic cameras shows slightly better

  8. Measurements and controls implementation for the WEST project

    International Nuclear Information System (INIS)

    Daniel, Raju; Bhandarkar, Manisha; Moreau, P.

    2015-01-01

    This paper provides an overview of the diagnostics implemented on WEST and gives more details on the infra-red system which is one of the main systems used to analyze the heat loads and ensure the machine protection. The modification of the CODAC and communications networks is also discussed. The new functionalities and architecture of the WEST PCS are detailed; especially it ensures the orchestration of many subsystems such as diagnostics, actuators and allows handling asynchronous off-normal events during the plasma discharge. In correlation the plasma discharge is now seen as a set of elementary pieces (called segments) joints together. Development of new plasma controllers will be addressed. An overview of the first wall monitoring activity and development is provided. Finally preparing the plasma restart requires control oriented modelling and simulations devoted to the control of the plasma shape will be presented

  9. Measuring Instruments Control Methodology Performance for Analog Electronics Remote Labs

    Directory of Open Access Journals (Sweden)

    Unai Hernandez-Jayo

    2012-12-01

    Full Text Available This paper presents the work that has been developed in parallel to the VISIR project. The objective of this paper is to present the results of the validations processes that have been carried out to check the control methodology. This method has been developed with the aim of being independent of the instruments of the labs.

  10. Evaluating transit preferential measures : Priority lanes, boarding and control strategies

    NARCIS (Netherlands)

    West, J.; Cats, O.

    2015-01-01

    Assessment of bus service improvements such as bus lanes, allowing boarding through all doors and headway-based holding control ideally requires a simulation model that combines features of both classical analytical models and microscopic simulation. However, as the usage of such models has been

  11. Impacts of cement industries on environment and control measure

    International Nuclear Information System (INIS)

    Hashmi, H.N.; Malik, H.N.; Naushad, Z.

    2005-01-01

    Utilization of cement as building material is gaining more importance. Cement industries around the world are contributing in global and as well as local pollution. In Pakistan most of the cement industries are constructed in remote areas without any proper environmental impact assessment. Unawareness of peoples toward sustainable environment and due to lack of job opportunities, dwellers are demanding employment rather than clean environment from title-holder of the industry. Air pollution caused by cement industries is harmful to the human's health, spoils and erodes building surface, corrodes metals, weakens textiles, deteriorates atmospheric visibility, affects plant life and leads to ecological imbalances. To investigate environmental impact of cement industries in Pakistan, environmental conditions around and inside the five cement industries in the vicinity of Taxila city are studied. To inspect the whole scenario, air pollution control devices in these industries were also examined in detail. These industries are using Electrostatic Precipitators and Baghouses to control air pollution (dust particulates). Proper caring of these equipment is necessary for better results. Detailed study shows that emissions from their stacks and dust particulates are causing problems. Health consultants in study area are much worry about the health of workers and environmental degradation in the vicinity of these industries. The comparison of air pollution control devices shows that Baghouses are environmental friendly. Considering the field conditions it is also concluded that involvement of government and environmental pollution control agencies is much more necessary. (author)

  12. Mathematical Modelling of Bacterial Meningitis Transmission Dynamics with Control Measures

    Directory of Open Access Journals (Sweden)

    Joshua Kiddy K. Asamoah

    2018-01-01

    Full Text Available Vaccination and treatment are the most effective ways of controlling the transmission of most infectious diseases. While vaccination helps susceptible individuals to build either a long-term immunity or short-term immunity, treatment reduces the number of disease-induced deaths and the number of infectious individuals in a community/nation. In this paper, a nonlinear deterministic model with time-dependent controls has been proposed to describe the dynamics of bacterial meningitis in a population. The model is shown to exhibit a unique globally asymptotically stable disease-free equilibrium E0, when the effective reproduction number RVT≤1, and a globally asymptotically stable endemic equilibrium E1, when RVT>1; and it exhibits a transcritical bifurcation at RVT=1. Carriers have been shown (by Tornado plot to have a higher chance of spreading the infection than those with clinical symptoms who will sometimes be bound to bed during the acute phase of the infection. In order to find the best strategy for minimizing the number of carriers and ill individuals and the cost of control implementation, an optimal control problem is set up by defining a Lagrangian function L to be minimized subject to the proposed model. Numerical simulation of the optimal problem demonstrates that the best strategy to control bacterial meningitis is to combine vaccination with other interventions (such as treatment and public health education. Additionally, this research suggests that stakeholders should press hard for the production of existing/new vaccines and antibiotics and their disbursement to areas that are most affected by bacterial meningitis, especially Sub-Saharan Africa; furthermore, individuals who live in communities where the environment is relatively warm (hot/moisture are advised to go for vaccination against bacterial meningitis.

  13. Computer controlled scanning systems for quantitative track measurements

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Preston, C.C.; Ruddy, F.H.

    1982-01-01

    The status of three computer cntrolled systems for quantitative track measurements is described. Two systems, an automated optical track scanner (AOTS) and an automated scanning electron microscope (ASEM) are used for scanning solid state track recorders (SSTR). The third system, the emulsion scanning processor (ESP), is an interactive system used to measure the length of proton tracks in nuclear research emulsions (NRE). Recent advances achieved with these systems are presented, with emphasis placed upon the current limitation of these systems for reactor neutron dosimetry

  14. Measurement and control in solution mining of copper and uranium

    International Nuclear Information System (INIS)

    Davidson, D.H.; Huff, R.V.; Sonstelie, W.E.

    1978-01-01

    The solution mining of deep-lying mineral deposits requires an integration of oilfield and extractive mineral technology. Although instrumentation is available to measure parameters relating to the oilfield components such as permeability, porosity and flow-logging, only limited services exist for monitoring leaching performance. This paper discusses the history of copper leaching, the need for solution mining development, and solution mining process descriptions. It discusses measurement requirements for deposit evaluation and the injection and production wellfields. It is concluded with a listing of desirable but unavailable instrumentation for further development of this technology

  15. A set of portable radioisotopic control and measuring instruments

    International Nuclear Information System (INIS)

    Pospeev, V.V.; Sidorov, V.N.; Tesnavs, Eh.R.; Uleksin, V.I.

    1979-01-01

    The problems and perspectives are examined of the portable radioisotope instruments application in agriculture, building industry, engeeniring and geological survay and in melioration. Principles are given of creation a series of radioisotopic instruments based on the principle of ganging. The series described consists of radioisotopic densimeters and moisture gages of the portable type, based on the ganging principle. The instruments differ in the measuring converters and have unified information processing and power supply devices. Criteria are stated for the ganging principle estimation, in particular, estimation of the technical means' compatibility. Four different types of compatibility are distinguished: an information compatibility; a metrological compatibility; structural and operational compatibility. Description is given of the unified information processing device - the unified pulse counter of the SIP-1M type and description of a row of radioisotopic measuring converters, which provides a possibility for completing the portable radioisotope densimeter of the RPP-2 type, intended for measuring densities of concrets and soils in the surface layer up to 30 cm and the density range from 1000 to 2500 kg/m 3 ; portable radioisotope densimeter of the RPP-1 type having measuring range from 600 to 1500 kg/m 3 ; surface-depth radioisotopic densimeter of the PPGR-1 type and surface-depth radioisotopic moisture gage of the VPGR-1 type [ru

  16. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  17. Quality control of the concentration measurement of specific radioactive isotopes

    International Nuclear Information System (INIS)

    Loria, Luis Guillermo; Badilla, Mauricio

    2008-01-01

    The counting efficiency of a gamma spectroscopy chain with a Ge (H.p) detector was measured. The Monte Carlo simulation and standard reference materials, in order to calculate the specific activity from 4 reference materials, and from intercomparison samples were used. The purpose was to evaluate the analytical results obtained in the Laboratorio de Espectroscopia Gamma. (author) [es

  18. Measurement and control of cement set times in waste solidification

    International Nuclear Information System (INIS)

    Stone, J.A.; d'Entremont, P.D.

    1976-09-01

    Fixation of radioactive waste in concrete was investigated on laboratory scale. Some cement formulations containing simulated or actual sludges from the Savannah River Plant had set times that would be too short for reliable handling in plant equipment. Set times could be controlled by use of excess water, but the concrete forms produced had inferior strength. A commercial organic retarder was found to be effective for increasing set times of cement-sludge formulations. However, the dosage of retarder required to control set times of high-alumina cement formulations was 1.0 to 1.5 wt percent of dry solids, which is 5 to 10 times the normal dosage for Portland cements. Data were obtained to predict the optimum content of retarder and water

  19. Vector-valued measure and the necessary conditions for the optimal control problems of linear systems

    International Nuclear Information System (INIS)

    Xunjing, L.

    1981-12-01

    The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)

  20. Environmental insecticide residues from tsetse fly control measures in Uganda

    International Nuclear Information System (INIS)

    Sserunjoji-Sebalija, J.

    1976-01-01

    Up to June 1974 areas in Uganda totalling 8600km 2 have been successfully reclaimed from tsetse fly infestation by ground spray of 3% dieldrin water emulsions. A search for equally effective but less persistent and toxic compounds against tsetse flies has been unsuccessful. Fourteen insecticide formulations have been tested for their persistence on tree bark surfaces and, therefore, their availability and toxicity to the target tsetse flies. Only those compounds with a high immediate insecticidal activity (some higher than dieldrin) like endosulfan, Chlorfenvinphos and propoxur could merit further consideration in tsetse control. While some were toxic to tsetse as fresh deposits, they lacked sufficient persistence. A study of the environmental implication from the continued use of the highly persistent and toxic dieldrin has provided useful data on residues likely to be found both in terrestrial and aquatic fauna and flora. These are generally low. Moreover, there is evidence of degradation in some fish species (Protopterus aethiopicus and Clarias). Also, dilution factors and adsorption involving the muddy nature of water run-off, etc., and controlled burning of grasses after tsetse eradication would tend to inactivate the residual insecticide and protect aquatic systems. The general findings have indicated less risk than anticipated of the environmental contamination from tsetse control by application of persistent and toxic insecticides. (author)

  1. A new data-driven controllability measure with application in intelligent buildings

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Lazarova-Molnar, Sanja

    2017-01-01

    and instrumentation within today's intelligent buildings enable collecting high quality data which could be used directly in data-based analysis and control methods. The area of data-based systems analysis and control is concentrating on developing analysis and control methods that rely on data collected from meters...... and sensors, and information obtained by data processing. This differs from the traditional model-based approaches that are based on mathematical models of systems. We propose and describe a data-driven controllability measure for discrete-time linear systems. The concept is developed within a data......-based system analysis and control framework. Therefore, only measured data is used to obtain the proposed controllability measure. The proposed controllability measure not only shows if the system is controllable or not, but also reveals the level of controllability, which is the information its previous...

  2. Radiotomography Based on Monostatic Interference Measurements with Controlled Oscillator

    Directory of Open Access Journals (Sweden)

    Sukhanov Dmitry

    2016-01-01

    Full Text Available The method of three-dimensional tomography based on radioholography measurements with the reference signal transmitted by the transmitter in the near zone and the receiver near zone. We solve the problem of repairing the object signal phase due to the reference signal in the near field in a wide frequency band and the consideration of analytical signals. Here are presented results of experimental studies on application of a tunable YIG (yttrium iron garnet oscillator in the frequency range from 6.5 to 10.7 GHz for radio tomography of metal objects in air. Holographic principle is applied on the basis of measuring of the interference field amplitude by the detector diode. The interference occurs with the direct wave and waves scattered by the object. To restore the radio images the method of aperture synthesis and extraction of quadrature components at all frequencies sensing are applied. Experimental study on test object shows resolution about 15 mm.

  3. Pollution control and environmental management measures in NTPC

    International Nuclear Information System (INIS)

    Dhar, T.K.

    1997-01-01

    Modern industrial activities have severely interfered with the natural environment either through deforestation or through discharge of solid and liquid effluents and gaseous emissions. Power generation, though important in achievement economic self-reliance, has interface with the natural surroundings with serious impacts the world over. National Thermal Power Corporation shares the concern for environmental issues for sustainable growth of power sectors and has been incorporating various environmental protection measures in all its business decisions and activities

  4. LHC train control system for autonomous inspections and measurements

    OpenAIRE

    Di Castro, Mario; Baiguera Tambutti, Maria Laura; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    Intelligent robotic systems are becoming essential for inspection and measurements in harsh environments, such as the European Organization for Nuclear Research (CERN) accelerators complex. Aiming at increasing safety and machine availability, robots can help to perform repetitive or dangerous tasks, reducing the risk for the personnel as the exposure to radiation. The Large Hadron Collider (LHC) tunnel at CERN has been equipped with fail-safe trains on monorail able to perform autonomously d...

  5. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J; Reuter, U [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1996-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  6. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J.; Reuter, U. [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1995-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  7. INDUSTRIAL MEASUREMENT AND CONTROL OF SLURRIES USING RADIOISOTOPE GAGES

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jr., H. L.

    1963-09-15

    Radioactivity gages are available in a variety of configurations to suit the problem of process measurement. The placement of any gage configuration must be selected carefully so that the process material flowing past the gage is representative of actual process conditions. The initial calibration of a gage is relatively simple but when the gage reading is compared with the existing manual sample measurement, confusion can result if the manual measurement is not basically accurate or subject to human error. Routine mechanical and electrical maintenance of the gage is relatively simple, because modern gages use solidstate circuitry with modular plug-in construction. Thus, routine maintenance of the gage is usually limited to restandardization to compensate for source decay. Two types of zero suppression are available, via. fixed and reductionwith-time. If reduction-with-time suppression is used the re-standardization period is about ten times longer than that required for fixed-zero suppression. Routine maintenance of the process piping and machinery is necessary to assure that a representative process material sample continues to flow through the gage. (auth)

  8. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  9. Improved FPGA controlled artificial vascular system for plethysmographic measurements

    Directory of Open Access Journals (Sweden)

    Laqua Daniel

    2016-09-01

    Full Text Available The fetal oxygen saturation is an important parameter to determine the health status of a fetus, which is until now mostly acquired invasively. The transabdominal, fetal pulse oximetry is a promising approach to measure this non-invasively and continuously. The fetal pulse curve has to be extracted from the mixed signal of mother and fetus to determine its oxygen saturation. For this purpose efficient algorithms are necessary, which have to be evaluated under constant and reproducable test conditions. This paper presents the improved version of a phantom which can generate artificial pulse waves in a synthetic tissue phantom. The tissue phantom consists of several layers that mimic the different optical properties of the fetal and maternal tissue layers. Additionally an artificial vascular system and a dome, which mimics the bending of the belly of a pregnant woman, are incorporated. To obtain data on the pulse waves, several measurement methods are included, to help understand the behavior of the signals gained from the pulse waves. Besides pressure sensors and a transmissive method we integrated a capacitive approach, that makes use of the so called “Pin Oscillator” method. Apart from the enhancements in the tissue phantom and the measurements, we also improved the used blood substitute, which reproduces the different absorption characteristics of fetal and maternal blood. The results show that the phantom can generate pulse waves similar to the natural ones. Furthermore, the phantom represents a reference that can be used to evaluate the algorithms for transabdominal, fetal pulse oximetry.

  10. A measurement control program for plutonium isotopic gamma-ray systems at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Fleissner, J.G.

    1986-01-01

    A sound measurement control (MC) program should be an integral part of every nondestructive assay measurement system used for the assay of special nuclear materials. This paper describes a measurement control program for plutonium isotopic composition measurements, using high-resolution gamma-ray spectroscopy, that has been implemented in the Analytical Laboratories and the Chemistry Standards Laboratory at the Rocky Flats Plant. This MC program emphasizes the standardization of data collection procedures along with the implementation of internal and external measurement control checks to provide the requisite measurement quality assurance

  11. Integrated Assessment of Air Pollution Control Measures for Megacities

    Science.gov (United States)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  12. Measurement of supernatural belief: sex differences and locus of control.

    Science.gov (United States)

    Randall, T M; Desrosiers, M

    1980-10-01

    Although we live in an age dominated by science and technology, there exists an increasingly popular anti-science sentiment. This study describes the development of a scale to assess the degree of personal acceptance of supernatural causality versus acceptance of scientific explanation. In addition to the psychometric data concerning validity and reliability of the scale, data are presented which showed the personality factor of supernaturalism to be independent of orthodox religious attitudes. Results indicated a significantly greater supernatural acceptance for women, and a positive relation of supernaturalism with external locus of control.

  13. Measurement and reproduction accuracy of computer-controlled grand pianos

    Science.gov (United States)

    Goebl, Werner; Bresin, Roberto

    2003-10-01

    The recording and reproducing capabilities of a Yamaha Disklavier grand piano and a Bösendorfer SE290 computer-controlled grand piano were tested, with the goal of examining their reliability for performance research. An experimental setup consisting of accelerometers and a calibrated microphone was used to capture key and hammer movements, as well as the acoustic signal. Five selected keys were played by pianists with two types of touch (``staccato'' and ``legato''). Timing and dynamic differences between the original performance, the corresponding MIDI file recorded by the computer-controlled pianos, and its reproduction were analyzed. The two devices performed quite differently with respect to timing and dynamic accuracy. The Disklavier's onset capturing was slightly more precise (+/-10 ms) than its reproduction (-20 to +30 ms); the Bösendorfer performed generally better, but its timing accuracy was slightly less precise for recording (-10 to 3 ms) than for reproduction (+/-2 ms). Both devices exhibited a systematic (linear) error in recording over time. In the dynamic dimension, the Bösendorfer showed higher consistency over the whole dynamic range, while the Disklavier performed well only in a wide middle range. Neither device was able to capture or reproduce different types of touch.

  14. Analytical estimation of control rod shadowing effect for excess reactivity measurement of HTTR

    International Nuclear Information System (INIS)

    Nakano, Masaaki; Fujimoto, Nozomu; Yamashita, Kiyonobu

    1999-01-01

    The fuel addition method is generally used for the excess reactivity measurement of the initial core. The control rod shadowing effect for the excess reactivity measurement has been estimated analytically for High Temperature Engineering Test Reactor (HTTR). 3-dimensional whole core analyses were carried out. The movements of control rods in measurements were simulated in the calculation. It was made clear that the value of excess reactivity strongly depend on combinations of measuring control rods and compensating control rods. The differences in excess reactivity between combinations come from the control rod shadowing effect. The shadowing effect is reduced by the use of plural number of measuring and compensating control rods to prevent deep insertion of them into the core. The measured excess reactivity in the experiments is, however, smaller than the estimated value with shadowing effect. (author)

  15. [Hand hygiene: first measure to control nosocomial infection].

    Science.gov (United States)

    Christiaens, G; Barbier, C; Mutsers, J; Warnotte, J; De Mol, P; Bouffioux, C

    2006-01-01

    Hand hygiene prevents cross infection in hospi tals, however adherence to guidelines is commonly poor. The hand-hygiene promotion programme started on May 2004 at the University Hospital of Liège after a baseline survey of compliance. We attempted to promote hand hygiene and most par ticularly alcohol-based hand disinfection. We measured MRSA transmission rates and consumption of alcohol-based handrub solution and soap in parallel. During the campaign, consump tion of alcohol-based handrub solution and soap increased by 56% and 24% respectively and MRSA transmission rates decreased from 11,04 to 7,07 cases per 1000 admissions.

  16. [Safety evaluation and risk control measures of Cassiae Semen].

    Science.gov (United States)

    Zhao, Yi-Meng; Wu, Li; Zhang, Shuo; Zhang, Li; Gao, Xue-Min; Sun, Xiao-Bo; Wang, Chun

    2017-11-01

    In this study, the authors reviewed domestic and foreign literatures, conducted the textual research on origin and development of Cassia Semen, studied records in ancient books and ancient and modern literatures, clinical adverse reactions and relevant experimental studies in recent years, and summarized the clinical features and influencing factors related to the safety of Cassiae Semen. According to the findings,Cassia Semen's safety risks are mainly liver and kidney system damages, with the main clinical features of fatigue, anorexia, disgusting of oil, yellow urine and gray stool; digestive system injury, with the main clinical features of diarrhea, abdominal distension, nausea and loose stool; reproductive system damage, with the main clinical features of vaginal bleeding. Allergic reactions and clinical adverse events, with the main clinical features for numb mouth, itching skin, nausea and vomiting, diarrhea, wheezing and lip cyanosis were also reported. The toxicological studies on toxic components of Cassiae Semen obtusifolia were carried out through acute toxicity test, subacute toxicity test, subchronic toxicity test and chronic toxicity test. Risk factors might include patients, compatibility and physicians. Physicians should strictly abide by the medication requirements in the Pharmacopoeia, pay attention to rational compatibility, appropriate dosage,correct usage and appropriate processing, control the dosage below 15 g to avoid excessive intake, strictly control the course of treatment to avoid accumulated poisoning caused by long-term administration. At the same time, clinicians should pay attention to the latest research progress, update the knowledge structure, quickly find the latest and useful materials from clinical practice, scientific research and drug information and other literatures, make evaluation and judgment for the materials, establish a traditional Chinese medicine intelligence information library, and strengthen the control over

  17. Measures for regional security and arms control in the South-East Asian area

    International Nuclear Information System (INIS)

    Uren, R.T.

    1992-01-01

    The subject of regional security and arms control in the South-East Asia raises some new and difficult issues. No approach to ensuring regional security could be complete without military dimension including the following categories: regional arms control; global arms control measure; confidence building measures that are designed to enhance the transparency of defense policies; confidence building measures that encourage cooperation among the military forces in the region

  18. Measurement and control of quasiparticle dynamics in a superconducting qubit.

    Science.gov (United States)

    Wang, C; Gao, Y Y; Pop, I M; Vool, U; Axline, C; Brecht, T; Heeres, R W; Frunzio, L; Devoret, M H; Catelani, G; Glazman, L I; Schoelkopf, R J

    2014-12-18

    Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.

  19. Nuclear materials control and accountability criteria for upgrades measures

    Energy Technology Data Exchange (ETDEWEB)

    Erkkila, B.H.; Hatcher, C.R.

    1998-11-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force.

  20. Nuclear materials control and accountability criteria for upgrades measures

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Hatcher, C.R.

    1998-01-01

    As a result of major political and societal changes in the past several years, methods of nuclear material control may no longer be as effective as in the past in Russia, the Newly Independent States (NIS), and the Baltic States (BS). The objective of the Department of Energy (DOE) Material Protection, Control, and Accounting Program (MPC and A) is to reduce the threat of nuclear proliferation by collaborating with Russia, NIS, and BS governments to promote western-style MPC and A. This cooperation will improve the MPC and A on all weapons useable nuclear materials and will establish a sustainable infrastructure to provide future support and maintenance for these technology-based improvements. Nuclear materials of proliferation concern include materials of the types and quantities that can be most easily and directly used in a nuclear weapon. Sabotage of nuclear material is an event of great concern and potentially disastrous consequences to both the US and the host country. However, sabotage is currently beyond the scope of program direction and cannot be used to justify US-funded MPC and A upgrades. Judicious MPC and A upgrades designed to protect against insider and outsider theft scenarios would also provide addition, although not comprehensive, protection against saboteurs. This paper provides some suggestions to establish consistency in prioritizing system-enhancement efforts at nuclear material facilities. The suggestions in this paper are consistent with DOE policy and directions and should be used as a supplement to any policy directives issued by NN-40, DOE Russia/NIS Task Force

  1. Colorimetric measurements as control elements in wood conservation status

    Directory of Open Access Journals (Sweden)

    Ovidia Soto-Martín

    2014-01-01

    Full Text Available This paper is a methodological proposal for the study of altarpieces on wooden supports. The process was implemented to study the altarpiece of San Antonio de Padua in Garachico, Tenerife. For this, we conducted a review of key aspects appropriate to the discipline of wood identification carried out by macroscopic examination and for the characterization of the status of deterioration by colorimetric analysis. For the evaluation of the wood conservation status, the samples were subjected for the first time to colorimetric measurement. As a result we have created an online database to provide information for conservation professionals permitting them to design a proposal for preventive conservation and intervention individually for each object.

  2. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  3. Fact and fiction in ECP measurement and control

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    A review is presented of various electrochemical potentials, including the electrochemical corrosion potential, ECP, and the redox potential (E redox ) that are used in describing corrosion processes that occur in aqueous systems and for controlling and mitigating stress corrosion cracking in the primary coolant circuits of nuclear power reactors (primarily BWRs). Attention is paid to carefully defining each potential in terms of fundamental electrochemical concepts, so as to counter the confusion that has arisen amongst practitioners and theorists alike, due to the misuse of previously accepted terminology. A brief discussion is also included of reference electrodes and it is shown that the use of a platinum redox sensor as a reference electrode in the monitoring of ECP in BWR primary coolant circuits is inappropriate unless it is demonstrated to yield a potential that is invariant with changes in the composition of the medium. Data from laboratory experiments in simulated BWR coolant and model calculations argue that the potential of the Pt redox sensor is not invariant with respect to composition under the conditions that exist in BWR pressure vessels and hence the use of a Pt sensor as a reference electrode is inappropriate. (author)

  4. Traceability and quality control in mammography: measurements and models

    International Nuclear Information System (INIS)

    Peixoto, Jose Guilherme Pereira

    2002-10-01

    The success of a treatment or diagnosis using radiation, depends on the optimization of the dose determination to be administered for the patient and on the beam radiation quality. It is recognized by the international guidelines that it is necessary to improve calibration services for mammography beams in order to improve the quality of clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control program in mammography. The contribution of the radiation metrology network to the mammography services is reviewed in this work. Steps required for the implementation of a mammography calibration system using a constant potential x-ray and a clinical mammography x-ray machine are presented. The various qualities of mammography radiation discussed in this work are in accordance with the IEC 61674 and the AAPM recommendations. This work also presents the methodology and the procedures to maintain and to disseminate the traceability at the x-ray mammography range, describing the interlaboratory comparison performed at LNMRI/IRD/CNEN and at the IPEN/CNEN using the secondary standard ionization chambers traceable with the international standard. It assesses the inter-laboratory comparison consistency and decides whether a questionable value should or not be accepted, using the residual method. This thesis discusses the uncertainties involved in all steps of the calibration chain in accord once with the ISO recommendations. (author)

  5. Comparison of Periorbital Anthropometry Between Beauty Pageant Contestants and Ordinary Young Women with Korean Ethnicity: A Three-Dimensional Photogrammetric Analysis.

    Science.gov (United States)

    Kim, Young Chul; Kwon, Jin Geun; Kim, Sung Chan; Huh, Chang Hun; Kim, Hee Jin; Oh, Tae Suk; Koh, Kyung S; Choi, Jong Woo; Jeong, Woo Shik

    2018-04-01

    The purpose of this study is to investigate the differences in the periorbital anthropometry between national Beauty Pageant Contestants and Ordinary Young Women with Korean ethnicity. Forty-three Beauty Pageant Contestants who were elected for the national beauty contest and forty-eight Ordinary Young Women underwent 3D photography. The authors analyzed 3D photogrammetric measures regarding periorbital soft tissue. The palpebral fissure width was significantly higher in the Beauty Pageant Contestants than the Ordinary Young Women (27.7 ± 1.2 vs. 26.3 ± 1.6 mm) (p Beauty Pageant Contestants (11.5. ± 1.0 vs. 9.1 ± 1.2 mm) (p Beauty Pageant Contestants (intercanthal width, 34.3 ± 1.86 mm vs. 36.7 ± 3.1 mm; upper eyelid height, 11.5 ± 1.4 mm vs. 13.4 ± 2.3 mm) (p Beauty Pageant Contestants (nasal width, 38.0 ± 1.8 vs. 39.5 ± 2.2 mm; midfacial width 144.5 ± 3.9 vs. 146.9 ± 5.2 mm) (p Beauty Pageant Contestants are wide-set eyes, larger palpebral fissure in width and height, relatively small upper eyelid height and intercanthal width, and relatively small nose and facial width compared to normal women. Our anthropometric results can be referable values for Asian eyelid surgery and help surgeons to establish individualized surgical planning. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  6. Numerical simulation of energy efficiency measures: control and operational strategies

    International Nuclear Information System (INIS)

    Ardehali, M. M.

    2006-01-01

    The inherent limitation in performance of building envelop components and heating ventilating and air conditioning (HVAC) equipment necessitates the examination of operational strategies for improvement in energy-efficient operation of buildings. Due to the ease of installation and increasing availability of electronic controllers, operational strategies that could be programmed are of particular interest. The Iowa Energy Center in the US has taken the initiative to conduct the necessary assessment of current HVAC technology and the commonly-used operational strategies for commercial and industrial buildings, as applied to the midwestern part of the country, with weather and energy cost data for Des Moines, Iowa. The first part of this study focused on the energy consumption and cost effectiveness of HVAC systems. The objectives of the second part is concerned with examination of various operational strategies, namely, night purge (NP), fan optimum start and stop (OSS), condenser water reset (CWR), and chilled water reset (CHWR) applied to order and newer-type commercial office buildings. The indoor air quality requirement are met and the latest applicable energy rates from local utility companies are used. The results show that, in general, NP is not an effective strategy in buildings with low thermal mass storage, OSS reduced fan energy, and CWR and CHWR could be effective and require chillers with multi-stage unloading characteristics. The most operationally efficient strategies are the combination of OSS, CWR, and CHWR for the older-type building, and OSS for the newer-type building. Economically, the most effective is the OSS strategy for the older-type building and the CHWR strategy for the newer-type building.(Author)

  7. T92-0045: Interlaboratory quality control on Tpot measurements

    International Nuclear Information System (INIS)

    Coucke, P.A.

    1996-01-01

    Purpose/objective: To assess the reproducibility of Tpot measurement by comparison between three laboratories. Materials and methods: We will report on the intercomparison which contains two arms: a single set of data (disc analysis), stained, processed and analysed in Lab 1 has subsequently been analyzed by the team in the Lab 2 and in Lab 3. This kind of comparison reveals differences in interpretation and region setting. Pieces of the original tumor specimen have been processed, stained and analyzed separately in each centre (meat analysis). This latter reveals variation in dissociation, staining and running the sample, but also illustrates tumor heterogeneity. All three laboratories are equipped with a Becton Dickinson FACScan and are using PC-Lysis for analysis. The procedure for handling the sample has been standardized before starting the comparison; guidelines were elaborated for setting the gates. The mathematical algorithm modified from A. Begg has been used. The study consists of 102 specimens from 97 patients with following breakdown: 25 gynecological, 36 head and neck, 35 rectal and 6 pulmonary cancers. In order to compare Tpot-data the method of Bland and Altman has been used which yields limits of agreement. This method gives a better impression on the true correlation between centers as compared to the correlation coefficients. Moreover, it results in a closer estimate of the variation on an individual specimen. The analysis has been done on the 102 specimens but a second analysis has been performed on 89 biopsies, after having excluded outliers, with obvious aberrant values. Results: The Bland and Altman analysis of log Tpot for all 102 samples yields small mean differences (range of logdata 0.004 to 0.151), but large standard deviations (range 0.286 to 0.407 in logdata). Converting the logdata to days yields a mean difference of 1 - day and a standard deviation ranging from 1.9 to 2.6 days. Restricting the analysis to 89 samples (excluding obvious

  8. Automatic closed-loop stereo-photogrammetric system for the Nuclear Power Station Paks

    International Nuclear Information System (INIS)

    Eoery, K.; Szabados, J.; Szerovay, A.

    1982-01-01

    The geodesic work for the NPS Paks project required an extensive modernization of traditional measuring techniques, besides the development of measuring devices and methods encompassing the complete procedure of data processing. Stereo-photogrammetry based on three-dimensional measuring technique plays an outstanding role in 'bulk work' required for measuring as well as in efficient technical data supply. A detailed analysis of the technical parameters is given concerning the interactive graphic and digital data processing and data base organizing system. After the description of the main types of process equipment system organization problems are discussed. The paper outlines research and testing tasks related to the practical application of the technology system of world standard, representing a unique solution in Hungarian relation. Finally, fields of application for the system in power station design are presented. (author)

  9. Study of a twisted ATLAS SCT Barrel deformation as revealed by a photogrammetric survey

    CERN Document Server

    Dobson, E; Heinemann, F; Karagoz-Unel, M

    2007-01-01

    A photogrammetry survey on the SCT barrels was performed as an engineering check on the structure of the ATLAS Semiconductor Tracker (SCT) shortly after construction. Analysis of the data obtained revealed small scale elliptical deformation as well as a twist of the structure. The results of the survey are presented as well as interpolation of the measured targets to the module positions and a comparison with track based alignment measurements.

  10. Using the SIMGRO regional hydrological model to evaluate salinity control measures in an irrigation area

    NARCIS (Netherlands)

    Kupper, E.; Querner, E.P.; Morábito, J.A.; Menenti, M.

    2002-01-01

    In irrigated areas with drainage and an important interaction with the groundwater system, it is often difficult to predict effects of measures to control salinity. Therefore, in order to evaluate measures to control salinity the SIMGRO integrated regional hydrological model was extended with a

  11. Sex and Self-Control Theory: The Measures and Causal Model May Be Different

    Science.gov (United States)

    Higgins, George E.; Tewksbury, Richard

    2006-01-01

    This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling…

  12. Facing a Problem of Electrical Energy Quality in Ship Networks-measurements, Estimation, Control

    Institute of Scientific and Technical Information of China (English)

    Tomasz Tarasiuk; Janusz Mindykowski; Xiaoyan Xu

    2003-01-01

    In this paper, electrical energy quality and its indices in ship electric networks are introduced, especially the meaning of electrical energy quality terms in voltage and active and reactive power distribution indices. Then methods of measurement of marine electrical energy indices are introduced in details and a microprocessor measurement-diagnosis system with the function of measurement and control is designed. Afterwards, estimation and control of electrical power quality of marine electrical power networks are introduced. And finally, according to the existing method of measurement and control of electrical power quality in ship power networks, the improvement of relative method is proposed.

  13. ACCURACY OF MEASUREMENTS IN OBLIQUE AERIAL IMAGES FOR URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    W. Ostrowski

    2016-10-01

    Full Text Available Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology. To control the accuracy, check points were used (which were also measured with GPS RTK technology. As reference data for the whole study, an area of the city-based map was used

  14. Further development of the Dynamic Control Assemblies Worth Measurement Method for Advanced Reactivity Computers

    International Nuclear Information System (INIS)

    Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.

    2005-01-01

    The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)

  15. Pilot-model measurements of pilot responses in a lateral-directional control task

    Science.gov (United States)

    Adams, J. J.

    1976-01-01

    Pilot response during an aircraft bank-angle compensatory control task was measured by using an adaptive modeling technique. In the main control loop, which is the bank angle to aileron command loop, the pilot response was the same as that measured previously in single-input, single-output systems. The pilot used a rudder to aileron control coordination that canceled up to 80 percent of the vehicle yawing moment due to aileron deflection.

  16. Research progress on influencing factors of hospital infection and prevention and control measures

    Directory of Open Access Journals (Sweden)

    He Wenlong

    2015-03-01

    Full Text Available Hospital infections are associated with the emergence of hospitals. As the understanding of hospital infections deepen and prevention and control measures improve, hospital infections have become manageable. In recent years, affected by the increase in invasive treatment technology, antimicrobial abuse, and other factors, the control of hospital infection has encountered new problems. This paper reviews the influencing factors of hospital infections and their prevention and control measures.

  17. Improving Control System Cyber-State Awareness using Known Secure Sensor Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Miles McQueen

    2012-09-01

    Abstract—This paper presents design and simulation of a low cost and low false alarm rate method for improved cyber-state awareness of critical control systems - the Known Secure Sensor Measurements (KSSM) method. The KSSM concept relies on physical measurements to detect malicious falsification of the control systems state. The KSSM method can be incrementally integrated with already installed control systems for enhanced resilience. This paper reviews the previously developed theoretical KSSM concept and then describes a simulation of the KSSM system. A simulated control system network is integrated with the KSSM components. The effectiveness of detection of various intrusion scenarios is demonstrated on several control system network topologies.

  18. The New Friends Vignettes: Measuring Parental Psychological Control that Confers Risk for Anxious Adjustment in Preschoolers

    Science.gov (United States)

    McShane, Kelly E.; Hastings, Paul D.

    2009-01-01

    This investigation examined the links between preschoolers' internalizing problems and anxiety-related social difficulties and two aspects of maternal and paternal psychological control: overprotection and critical control. Some 115 mothers and 92 fathers completed the New Friends Vignettes (NFV), a new measure of psychological control and…

  19. Combating dephasing decoherence by periodically performing tracking control and projective measurement

    International Nuclear Information System (INIS)

    Zhang Ming; Dai Hongyi; Xi Zairong; Xie Hongwei; Hu Dewen

    2007-01-01

    We propose a scheme to overcome phase damping decoherence by periodically performing open loop tracking control and projective measurement. Although it is impossible to stabilize a qubit subject to Markovian dynamics only by open loop coherent control, one can attain a 'softened' control goal with the help of periodical projective measurement. The 'softened' control objective in our scheme is to keep the state of the controlled qubit to stay near a reference pure state with a high probability for a sufficiently long time. Two suboptimal control problems are given in the sense of trace distance and fidelity, respectively, and they are eventually reduced to the design of a period T. In our scheme, one can choose the period T as long as possible if the 'softened' control goal is attained. This is in contrast to the observation that quantum Zeno effect takes place only if measurements are performed in a very frequent manner, i.e., the period T must be extremely small

  20. Accuracy of the photogrametric measuring system for large size elements

    Directory of Open Access Journals (Sweden)

    M. Grzelka

    2011-04-01

    Full Text Available The aim of this paper is to present methods of estimating and guidelines for verifying the accuracy of optical photogrammetric measuringsystems, using for measurement of large size elements. Measuring systems applied to measure workpieces of a large size which oftenreach more than 10000mm require use of appropriate standards. Those standards provided by the manufacturer of photogrammetricsystems are certified and are inspected annually. To make sure that these systems work properly there was developed a special standardVDI / VDE 2634, "Optical 3D measuring systems. Imaging systems with point - by - point probing. " According to recommendationsdescribed in this standard research on accuracy of photogrametric measuring system was conducted using K class gauge blocks dedicatedto calibrate and test accuracy of classic CMMs. The paper presents results of research of estimation the actual error of indication for sizemeasurement MPEE for photogrammetric coordinate measuring system TRITOP.

  1. Complex Geodetic and Photogrammetric Monitoring of the Kral’ovany Rock Slide

    Directory of Open Access Journals (Sweden)

    Štefan Sokol

    2014-01-01

    Originality/value: The input values for the analysis of theoretically defined surfaces were obtained by the calculation of integral calculus and earth-moving bodies and quarry from an experimental measurement terrestrial laser scanning method and were used in Slovakia for the first time.

  2. Controlled platform for the radiation dose data measured in Radiation controlled area of KOMAC

    International Nuclear Information System (INIS)

    Park, Sung Kyun; Min, Yi Sub; Park, Jeong Min; Cho, Yong Sub

    2016-01-01

    Korea multi-purpose accelerator complex (KOMAC), the branch institute of Korea atomic energy research institute (KAERI), is a multi-user facility to provide a high-intensity proton beam with the energy from 20 MeV to the 100 MeV. This proton beam is accelerated via the proton linear accelerator that is comprised of a 50-keV injector, 3-MeV radio frequency quadrupole (RFQ), and 100-MeV drift tube linac (DTL). The KOMAC site is classified into General public area and Radiation controlled area, according to the dose rate of 0.25 μSv/h. The system for the data made in Radiation controlled area should have the database to save and the data in the database could be expressed on the monitor in the any form which user wants. The control platform to satisfy these conditions will be made on the basis of the Qt program and MYSQL program. The place with the maximum average values about the alpha and beta detected is the entrance of Radiation controlled area. However, their values are very small in comparison to the criteria to decide the contamination area in KOMAC. That is, KOMAC is safe from the radioactive contamination. The reason why the radiation dose value is twice the background value in Klystron gallery is the klystron to generate the radiation. However, actually the klystron gallery is controlled by the control room when the proton beam is accelerated

  3. Controlled platform for the radiation dose data measured in Radiation controlled area of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Kyun; Min, Yi Sub; Park, Jeong Min; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea multi-purpose accelerator complex (KOMAC), the branch institute of Korea atomic energy research institute (KAERI), is a multi-user facility to provide a high-intensity proton beam with the energy from 20 MeV to the 100 MeV. This proton beam is accelerated via the proton linear accelerator that is comprised of a 50-keV injector, 3-MeV radio frequency quadrupole (RFQ), and 100-MeV drift tube linac (DTL). The KOMAC site is classified into General public area and Radiation controlled area, according to the dose rate of 0.25 μSv/h. The system for the data made in Radiation controlled area should have the database to save and the data in the database could be expressed on the monitor in the any form which user wants. The control platform to satisfy these conditions will be made on the basis of the Qt program and MYSQL program. The place with the maximum average values about the alpha and beta detected is the entrance of Radiation controlled area. However, their values are very small in comparison to the criteria to decide the contamination area in KOMAC. That is, KOMAC is safe from the radioactive contamination. The reason why the radiation dose value is twice the background value in Klystron gallery is the klystron to generate the radiation. However, actually the klystron gallery is controlled by the control room when the proton beam is accelerated.

  4. Algal-mediated ecosystem exchanges in the Eel River drainage network: towards photogrammetric mapping of color to function

    Science.gov (United States)

    Power, M. E.; Welter, J.; Furey, P.; Lowe, R.; Finlay, J. C.; Hondzo, M.; Limm, M.; Bode, C.; Dietrich, W. E.

    2009-12-01

    Seasonal algal proliferations in river networks are typically short-lived (weeks-months) but spatially extensive. They mediate important ecological and biogeochemical exchanges within and between ecosystems. We are investigating correspondence of assemblage color with ecosystem function in the nitrogen-limited Eel River of northern California. During summer base flow following winter floods, Eel algal assemblages are dominated by the green macroalga Cladophora glomerata. New growths are green, but blooms turn yellow as Cladophora filaments are colonized by epiphytic diatoms (Cocconeis spp.). Later, proliferations turn rust colored as epiphytic assemblages became dominated by Epithemia spp., diatoms that contain nitrogen-fixing cyanobacterial endosymbionts. Epithemia-encrusted Cladophora occurs at and downstream of reaches draining > 100 km2 (where summer inundated average channel widths > 25 m), coinciding with a threshold increase in concentration of total dissolved nitrogen. Areal nitrogen fixation rates are 14x higher in rusty algal proliferations than in green, and 3-4x higher than in yellow Cladophora mats. Corresponding increases in insect emergence suggest that nitrogen fixed by cyanobacterial endosymbionts is highly edible. Rates of biomass emergence from rusty Cladophora mats are 12-17 times greater than from green mats, and 8-10 times greater from rusty than from yellow Cladophora mats, because larger taxa emerge from rusty mats (Chironominae versus Ceratopogonidae in yellow mats). Photogrammetric detection of spatial coverage and color changes in algal proliferations may help us track nitrogen fluxes they mediate (riverine loading from the atmosphere via fixation, river to the watershed return via insect emergence) that link riverine to aerial, watershed, and potentially nearshore marine ecosystems at reach to basin scales.

  5. Comparing data of terrestrial LiDAR and UAV (photogrammetric) in the context of the project "SedAlp"

    Science.gov (United States)

    Abel, Judith; Wegner, Kerstin; Haas, Florian; Heckmann, Tobias; Becht, Michael

    2014-05-01

    The project "SedAlp" (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower) concentrates on problems and approaches related to sediment transfer in the alpine region and is embedded in the European transnational cooperation program "Alpine Space". The catholic University Eichstätt-Ingolstadt contributes the German part to this project on behalf of the Bavarian Environment Agency and in collaboration with the Authority of Water Resources Weilheim. The area of interest is the river Isar between the Sylvenstein reservoir and the city of Bad Tölz, Bavaria, Germany. The main aim of the activities is to quantify the transfer of sediments from the tributary catchments to the river Isar, specifically in light of the fact that the construction of the Sylvenstein reservoir in the mid 1950ies has created a barrier to longitudinal sediment transfer, thus heavily impacting the sediment budget and morphodynamics of the Isar reaches downstream. Moreover, the further development of artificially inserted gravel deposits and the effect of dismantling reinforcement structures at the river banks need investigation. Therefore, the dynamics of alluvial fans and gravel bars in the areas of confluence of tributary torrents are monitored using multitemporal surveys with terrestrial laserscanners and drone-based imagery. The latter is used both for the generation of high-resolution digital elevation models and for the mapping of changes in comparison to historical aerial photos. This study focuses on a comparison of TLS and UAV-based photogrammetric digital elevation models in order to highlight advantages and disadvantages of the two methods in relation to the SedAlp-specific research problems. It is shown that UAV-based elevation models are highly accurate alternatives to TLS-based models; due to their favourable acquisition geometry with respect to the topography in floodplain areas, and their large areal coverage, their use is seen as

  6. Ejected control rod and rods drop measurements during Mochovce startup physical tests

    International Nuclear Information System (INIS)

    Minarcin, Miroslav; Elko, Marek

    1998-01-01

    Paper deals with measurements of asymmetric reactivity insertion into the reactor core that were carried out during physical startup tests of Mochovce Unit 1 in June 1998. Control rods worth measurements with one and two rods s tucked in upper limit and worth measurement of one control rod from group 6 'ejected' from the reactor core are discussed. During the experiments neutron flux was measured by four ionisation chambers (three of them were placed symmetrically around the reactor core). Results of measurements and influence of asymmetric reactivity influence on ionisation chambers response are presented in the paper. (Authors)

  7. Digitally controlled measurement of sonic elastic moduli and internal friction by phase analysis

    International Nuclear Information System (INIS)

    O'Brien, M.H.; Hunter, O. Jr.; Rasmussen, M.D.; Skank, H.D.

    1983-01-01

    An automated system is described for measuring internal friction and elastic moduli using sonic resonance techniques. This mirocomputer-controlled device does phase angle analysis in addition to traditional decay and peak-width internal friction measurement. The apparatus may be programmed to make measurements at any sequence of temperatures between room temperature and 1600 0 C

  8. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  9. Photogrammetric Recording in a Context of Preventive Archaeology : the "Place des Martyrs" Excavation (Algiers, Algeria)

    OpenAIRE

    SEGUIN, Maxime; Souq, François; Stiti, Kemal

    2014-01-01

    International audience; The construction of the underground station called Place des Martyrs in Algiers required preventive excavation. The context led us to favour recording methods leading to the rapid and exhaustive acquisition of data. Indeed digital photogrammetry made it possible to measure complex elements simply and rapidly. The originality of the solution implemented resided in the use of a free and open-source applications suite dedicated to scientific usage and making it possible t...

  10. MAPEO FOTOGRAMÉTRICO EN ARQUEOLOGÍA: EXPERIENCIAS DESDE EL PROYECTO RAMIS, CUENCA NORTE DEL TITICACA, PERÚ (Photogrammetric Mapping in Archaeology: Experiences from the Ramis Project, Northern Titicaca Basin, Peru

    Directory of Open Access Journals (Sweden)

    Luis A. Flores

    2015-10-01

    Full Text Available El registro arqueológico en tiempo real, desde el propio campo, se ha vuelto una práctica casi común para muchos arqueólogos. Aunque reemplazar el papel por la pantalla táctil aún sigue trayendo dudas y controversias. En este breve reporte queremos compartir una experiencia de registro usando un mapeo digital fotogramétrico en un sistema SIG, que fue practicado en la cuenca del Titicaca, una región altiplánica al sur del Perú, donde demostramos que este método de recolección de datos puede traer no solo rapidez sino también precisión en las mediciones. ENGLISH: The recording of archaeology in real-time, from the field itself, has become common practice for many archaeologists. Still, replacing paper with touch screens continues to raise doubts and cause controversies within the discipline. In this brief report, we want to share an experience recording in the field using digital photogrammetric mapping in GIS. This project was carried out in the Lake Titicaca Basin, a highland region in southern Peru, where we demonstrated that this method of recording data can not only bring faster, but more accurate measurements than older methods.

  11. Connection of control circuits of machine for automatic measurement of radioactive samples

    International Nuclear Information System (INIS)

    Vorlicek, J.

    1984-01-01

    A windowless through-flow gas detector is used for measurement. The automatic machine is controlled by four flip-flops defining the following states: the dish replacement in the measuring space, washing, measurement, measured value print-out, and resetting. The first and second outputs of the first, second and third flip-flops are connected to six inputs of a block whose four outputs provide counter reset and stop-watch reset, washing, measurement, and print-out. Such machine control eliminates measurement errors by disabling sample measurement until air is removed from the measurement space, introduced on an unwashed dish or on several dishes passed under the detector. The elimination of this error is also guaranteed in manual operation. (M.D.)

  12. A Laser-Based Measuring System for Online Quality Control of Car Engine Block

    Directory of Open Access Journals (Sweden)

    Xing-Qiang Li

    2016-11-01

    Full Text Available For online quality control of car engine production, pneumatic measurement instrument plays an unshakeable role in measuring diameters inside engine block because of its portability and high-accuracy. To the limitation of its measuring principle, however, the working space between the pneumatic device and measured surface is too small to require manual operation. This lowers the measuring efficiency and becomes an obstacle to perform automatic measurement. In this article, a high-speed, automatic measuring system is proposed to take the place of pneumatic devices by using a laser-based measuring unit. The measuring unit is considered as a set of several measuring modules, where each of them acts like a single bore gauge and is made of four laser triangulation sensors (LTSs, which are installed on different positions and in opposite directions. The spatial relationship among these LTSs was calibrated before measurements. Sampling points from measured shaft holes can be collected by the measuring unit. A unified mathematical model was established for both calibration and measurement. Based on the established model, the relative pose between the measuring unit and measured workpiece does not impact the measuring accuracy. This frees the measuring unit from accurate positioning or adjustment, and makes it possible to realize fast and automatic measurement. The proposed system and method were finally validated by experiments.

  13. The sanctuary of Punta Stilo at Kaulonia-Monasterace (Rc, Italy): preliminary results of the close range photogrammetric surveys 2012-2013

    Science.gov (United States)

    Taccola, E.; Parra, M. C.; Ampolo, C.

    2014-06-01

    During the 2012-2013 excavations at the Sanctuary of Punta Stilo at Kaulonia, carried out by the University of Pisa and the Scuola Normale Superiore of Pisa, close range aerial and terrestrial photogrammetric surveys were tested for the first time. The aim of the test was to verify the accuracy of the site planimetry currently used, dating back also to a century ago. The 3D data obtained have allowed new data to be acquired for correcting and updating the mapping of the site.

  14. MEASUREMENT ERROR EFFECT ON THE POWER OF CONTROL CHART FOR ZERO-TRUNCATED POISSON DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Ashit Chakraborty

    2013-09-01

    Full Text Available Measurement error is the difference between the true value and the measured value of a quantity that exists in practice and may considerably affect the performance of control charts in some cases. Measurement error variability has uncertainty which can be from several sources. In this paper, we have studied the effect of these sources of variability on the power characteristics of control chart and obtained the values of average run length (ARL for zero-truncated Poisson distribution (ZTPD. Expression of the power of control chart for variable sample size under standardized normal variate for ZTPD is also derived.

  15. Insitu measurement and control of processing properties of composite resins in a production tool

    Science.gov (United States)

    Kranbuehl, D.; Hoff, M.; Haverty, P.; Loos, A.; Freeman, T.

    1988-01-01

    An in situ measuring technique for use in automated composite processing and quality control is discussed. Frequency dependent electromagnetic sensors are used to measure processing parameters at four ply positions inside a thick section 192-ply graphite-epoxy composite during cure in an 8 x 4 in. autoclave. Viscosity measurements obtained using the sensors are compared with the viscosities calculated using the Loos-Springer cure process model. Good overall agreement is obtained. In a subsequent autoclave run, the output from the four sensors was used to control the autoclave temperature. Using the 'closed loop' sensor controlled autoclave temperature resulted in a more uniform and more rapid cure cycle.

  16. Solution standards for quality control of nuclear-material analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.

    1981-01-01

    Analytical chemistry measurement control depends upon reliable solution standards. At the Savannah River Plant Control Laboratory over a thousand analytical measurements are made daily for process control, product specification, accountability, and nuclear safety. Large quantities of solution standards are required for a measurement quality control program covering the many different analytical chemistry methods. Savannah River Plant produced uranium, plutonium, neptunium, and americium metals or oxides are dissolved to prepare stock solutions for working or Quality Control Standards (QCS). Because extensive analytical effort is required to characterize or confirm these solutions, they are prepared in large quantities. These stock solutions are diluted and blended with different chemicals and/or each other to synthesize QCS that match the matrices of different process streams. The target uncertainty of a standard's reference value is 10% of the limit of error of the methods used for routine measurements. Standard Reference Materials from NBS are used according to special procedures to calibrate the methods used in measuring the uranium and plutonium standards so traceability can be established. Special precautions are required to minimize the effects of temperature, radiolysis, and evaporation. Standard reference values are periodically corrected to eliminate systematic errors caused by evaporation or decay products. Measurement control is achieved by requiring analysts to analyze a blind QCS each shift a measurement system is used on plant samples. Computer evaluation determines whether or not a measurement is within the +- 3 sigma control limits. Monthly evaluations of the QCS measurements are made to determine current bias correction factors for accountability measurements and detect significant changes in the bias and precision statistics. The evaluations are also used to plan activities for improving the reliability of the analytical chemistry measurements

  17. Process and device for controlling the operatability of a measuring channel in safety arrangements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1983-01-01

    In addition to the neutron - and temperature - measuring channels, the detectors and thermocouples for active functional testing are also included in the safety circuits. The measuring parameter (neutron flux or coolant outlet temperature) is modulated by the output control system or output and/or coolant flow. This modulation is determined using an auxillary parameter (movement of control rods or neutron flux). To represent the actual value of the measuring parameter to be compared with the previously determined reference value, there is a division of the relative change of the neutron flux or the coolant outlet temperature by the change of control rod position or reactor output caused by it. The effect of the auxiliary parameter on the measured parameter is measured by the cross correlation of both of them and of the auxiliary parameter directly or by auto correlation. The coarse and fine monitoring of the measuring channels takes place with different time constants. (orig./PW)

  18. Nonlinearity measure and internal model control based linearization in anti-windup design

    Energy Technology Data Exchange (ETDEWEB)

    Perev, Kamen [Systems and Control Department, Technical University of Sofia, 8 Cl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2013-12-18

    This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequency ranges.

  19. An Interaction Measure for Control Configuration Selection for Multivariable Bilinear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Stoustrup, Jakob

    2013-01-01

    are needed to be controlled, are nonlinear and linear models are insufficient to describe the behavior of the processes. The focus of this paper is on the problem of control configuration selection for a class of nonlinear systems which is known as bilinear systems. A gramian-based interaction measure...... for control configuration selection of MIMO bilinear processes is described. In general, most of the results on the control configuration selection, which have been proposed so far, can only support linear systems. The proposed gramian-based interaction measure not only supports bilinear processes but also...

  20. Accuracy of typical photogrammetric networks in cultural heritage 3D modeling projects

    Directory of Open Access Journals (Sweden)

    E. Nocerino

    2014-06-01

    Full Text Available The easy generation of 3D geometries (point clouds or polygonal models with fully automated image-based methods poses nontrivial problems on how to check a posteriori the quality of the achieved results. Clear statements and procedures on how to plan the camera network, execute the survey and use automatic tools to achieve the prefixed requirements are still an open issue. Although such issues had been discussed and solved some years ago, the importance of camera network geometry is today often underestimated or neglected in the cultural heritage field. In this paper different camera network geometries, with normal and convergent images, are analyzed and the accuracy of the produced results are compared to ground truth measurements.

  1. The method of measurement and synchronization control for large-scale complex loading system

    International Nuclear Information System (INIS)

    Liao Min; Li Pengyuan; Hou Binglin; Chi Chengfang; Zhang Bo

    2012-01-01

    With the development of modern industrial technology, measurement and control system was widely used in high precision, complex industrial control equipment and large-tonnage loading device. The measurement and control system is often used to analyze the distribution of stress and displacement in the complex bearing load or the complex nature of the mechanical structure itself. In ITER GS mock-up with 5 flexible plates, for each load combination, detect and measure potential slippage between the central flexible plate and the neighboring spacers is necessary as well as the potential slippage between each pre-stressing bar and its neighboring plate. The measurement and control system consists of seven sets of EDC controller and board, computer system, 16-channel quasi-dynamic strain gauge, 25 sets of displacement sensors, 7 sets of load and displacement sensors in the cylinders. This paper demonstrates the principles and methods of EDC220 digital controller to achieve synchronization control, and R and D process of multi-channel loading control software and measurement software. (authors)

  2. Application of prediction of equilibrium to servo-controlled calorimetry measurements

    International Nuclear Information System (INIS)

    Mayer, R.L. II

    1987-01-01

    Research was performed to develop an endpoint prediction algorithm for use with calorimeters operating in the digital servo-controlled mode. The purpose of this work was to reduce calorimetry measurement times while maintaining the high degree of precision and low bias expected from calorimetry measurements. Data from routine operation of two calorimeters were used to test predictive models at each stage of development against time savings, precision, and robustness criteria. The results of the study indicated that calorimetry measurement times can be significantly reduced using this technique. The time savings is, however, dependent on parameters in the digital servo-control algorithm and on packaging characteristics of measured items

  3. Control Method Stretches Suspensions by Measuring the Sag of Strands in Cable-Stayed Bridges

    Science.gov (United States)

    Bętkowski, Piotr

    2017-10-01

    In the article is described the method that allows on evaluation and validation of measurement correctness of dynamometers (strain gauges, tension meters) used in systems of suspensions. Control of monitoring devices such as dynamometers is recommended in inspections of suspension bridges. Control device (dynamometer) works with an anchor, and the degree of this cooperation could have a decisive impact on the correctness of the results. Method, which determines the stress in the strand (cable), depending on the sag of stayed cable, is described. This method can be used to control the accuracy of measuring devices directly on the bridge. By measuring the strand sag, it is possible to obtain information about the strength (force) which occurred in the suspension cable. Digital camera is used for the measurement of cable sag. Control measurement should be made independently from the controlled parameter but should verify this parameter directly (it is the best situation). In many cases in practice the controlled parameter is not designation by direct measurement, but the calculations, i.e. relation measured others parameters, as in the method described in the article. In such cases occurred the problem of overlapping error of measurement of intermediate parameters (data) and the evaluation of the reliability of the results. Method of control calculations made in relation to installed in the bridge measuring devices is doubtful without procedure of uncertainty estimation. Such an assessment of the accuracy can be performed using the interval numbers. With the interval numbers are possible the analysis of parametric relationship accuracy of the designation of individual parameters and uncertainty of results. Method of measurements, relations and analytical formulas, and numerical example can be found in the text of the article.

  4. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    Science.gov (United States)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  5. Index of tobacco control sustainability (ITCS): a tool to measure the sustainability of national tobacco control programmes.

    Science.gov (United States)

    Jackson-Morris, Angela; Latif, Ehsan

    2017-03-01

    To produce a tool to assess and guide sustainability of national tobacco control programmes. A two-stage process adapting the Delphi and Nominal group techniques. A series of indicators of tobacco control sustainability were identified in grantee/country advisor reports to The International Union Against Tuberculosis and Lung Disease under the Bloomberg Initiative to Reduce Tobacco Control (2007-2015). Focus groups and key informant interviews in seven low and middle-income countries (52 government and civil society participants) provided consensus ratings of the indicators' relative importance. Data were reviewed and the indicators were accorded relative weightings to produce the 'Index of Tobacco Control Sustainability' (ITCS). All 31 indicators were considered 'Critical' or 'Important' by the great majority of participants. There was consensus that a tool to measure progress towards tobacco control sustainability was important. The most critical indicators related to financial policies and allocations, a national law, a dedicated national tobacco control unit and civil society tobacco control network, a national policy against tobacco industry 'Corporate Social Responsibility' (CSR), national mortality and morbidity data, and national policy evaluation mechanisms. The 31 indicators were agreed to be 'critical' or 'important' factors for tobacco control sustainability. The Index comprises the weighted indicators as a tool to identify aspects of national tobacco control programmes requiring further development to augment their sustainability and to measure and compare progress over time. The next step is to apply the ITCS and produce tobacco control sustainability assessments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Quinto Tiberio Angelerio and New Measures for Controlling Plague in 16th-Centruy Alghero, Sardinia

    Centers for Disease Control (CDC) Podcasts

    Reginald Tucker reads an abridged version of the Emerging Infectious Diseases’ historical Review, Quinto Tiberio Angelerio and New Measures for Controlling Plague in 16th -Centruy Alghero, Sardinia.

  7. Specification of safety requirements for waste packages with respect to practicable quality control measures

    International Nuclear Information System (INIS)

    Gruendler, D.; Wurtinger, W.

    1987-01-01

    Waste packages for disposal in a repository in the Federal Republic of Germany have to meet safety requirements derived from site specific safety analyses. The examination of the waste packages with regard to compliance with these requirements is the main objective of quality control measures. With respect to quality control the requirements have to be specified in a way that practicable control measures can be applied. This is dealt with for the quality control of the activity inventory and the quality control of the waste form. The paper discusses the determination of the activity of hard-to-measure radionuclides and the specification of safety related requirements for the waste form and the packaging using typical examples

  8. Development and validation of measures to assess prevention and control of AMR in hospitals.

    Science.gov (United States)

    Flanagan, Mindy; Ramanujam, Rangaraj; Sutherland, Jason; Vaughn, Thomas; Diekema, Daniel; Doebbeling, Bradley N

    2007-06-01

    The rapid spread of antimicrobial resistance (AMR) in the US hospitals poses serious quality and safety problems. Expert panels, identifying strategies for optimizing antibiotic use and preventing AMR spread, have recommended hospitals undertake efforts to implement specific evidence-based practices. To develop and validate a measurement scale for assessing hospitals' efforts to implement recommended AMR prevention and control measures. Surveys were mailed to infection control professionals in a national sample of 670 US hospitals stratified by geographic region, bedsize, teaching status, and VA affiliation. : Four hundred forty-eight infection control professionals participated (67% response rate). Survey items measured implementation of guideline recommendations, practices for AMR monitoring and feedback, AMR-related outcomes (methicillin-resistant Staphylococcus aureus prevalence and outbreaks [MRSA]), and organizational features. "Derivation" and "validation" samples were randomly selected. Exploratory factor analysis was performed to identify factors underlying AMR prevention and control efforts. Multiple methods were used for validation. We identified 4 empirically distinct factors in AMR prevention and control: (1) practices for antimicrobial prescription/use, (2) information/resources for AMR control, (3) practices for isolating infected patients, and (4) organizational support for infection control policies. The Prevention and Control of Antimicrobial Resistance scale was reliable and had content and construct validity. MRSA prevalence was significantly lower in hospitals with higher resource/information availability and broader organizational support. The Prevention and Control of Antimicrobial Resistance scale offers a simple yet discriminating assessment of AMR prevention and control efforts. Use should complement assessment methods based exclusively on AMR outcomes.

  9. Negative control exposure studies in the presence of measurement error: implications for attempted effect estimate calibration.

    Science.gov (United States)

    Sanderson, Eleanor; Macdonald-Wallis, Corrie; Davey Smith, George

    2018-04-01

    Negative control exposure studies are increasingly being used in epidemiological studies to strengthen causal inference regarding an exposure-outcome association when unobserved confounding is thought to be present. Negative control exposure studies contrast the magnitude of association of the negative control, which has no causal effect on the outcome but is associated with the unmeasured confounders in the same way as the exposure, with the magnitude of the association of the exposure with the outcome. A markedly larger effect of the exposure on the outcome than the negative control on the outcome strengthens inference that the exposure has a causal effect on the outcome. We investigate the effect of measurement error in the exposure and negative control variables on the results obtained from a negative control exposure study. We do this in models with continuous and binary exposure and negative control variables using analysis of the bias of the estimated coefficients and Monte Carlo simulations. Our results show that measurement error in either the exposure or negative control variables can bias the estimated results from the negative control exposure study. Measurement error is common in the variables used in epidemiological studies; these results show that negative control exposure studies cannot be used to precisely determine the size of the effect of the exposure variable, or adequately adjust for unobserved confounding; however, they can be used as part of a body of evidence to aid inference as to whether a causal effect of the exposure on the outcome is present.

  10. Equipment for measuring torque and diagnostic data on control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Simka, K.; Sneberger, J.; Tater, V.

    1991-01-01

    The equipment comprises an electric drive, a measuring unit and a device securing the movable parts of the drive. It can be used to measure the torque and diagnostic data of the control facility drive with the desired accuracy without having to dismantle the facility during decoupling or coupling the control component to the drive, during programming the movable parts in the transporting position. (Z.S.). 1 fig

  11. Control system of labour safety measures in the higher educational institution

    Directory of Open Access Journals (Sweden)

    O. G. Feoktistova

    2015-01-01

    Full Text Available The article examines a system of labour safety measures control. With the introduction of the integrated system of management the competitive ability of production and organization, the effectiveness of its activity rise, and sinnergicheskiy effect is also reached and the savings of all forms of resources are ensured. Objectives and methods of control system of labour safety measures in enterprises are developed, including in the educational institutions.

  12. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  13. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  14. Do measures of reactive balance control predict falls in people with stroke returning to the community?

    Science.gov (United States)

    Mansfield, A; Wong, J S; McIlroy, W E; Biasin, L; Brunton, K; Bayley, M; Inness, E L

    2015-12-01

    To determine if reactive balance control measures predict falls after discharge from stroke rehabilitation. Prospective cohort study. Rehabilitation hospital and community. Independently ambulatory individuals with stroke who were discharged home after inpatient rehabilitation (n=95). Balance and gait measures were obtained from a clinical assessment at discharge from inpatient stroke rehabilitation. Measures of reactive balance control were obtained: (1) during quiet standing; (2) when walking; and (3) in response to large postural perturbations. Participants reported falls and activity levels up to 6 months post-discharge. Logistic and Poisson regressions were used to identify measures of reactive balance control that were related to falls post-discharge. Decreased paretic limb contribution to standing balance control [rate ratio 0.8, 95% confidence interval (CI) 0.7 to 1.0; P=0.011], reduced between-limb synchronisation of quiet standing balance control (rate ratio 0.9, 95% CI 0.8 to 0.9; Pfall rates when controlling for age, stroke severity, functional balance and daily walking activity. Impaired reactive balance control in standing and walking predicted increased risk of falls post-discharge from stroke rehabilitation. Specifically, measures that revealed the capacity of both limbs to respond to instability were related to increased risk of falls. These results suggest that post-stroke rehabilitation strategies for falls prevention should train responses to instability, and focus on remediating dyscontrol in the more-affected limb. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  15. Drivers Behind Adoption Of Cassava Brown Streak Disease Control Measures In Rwanda

    Directory of Open Access Journals (Sweden)

    Nyirahorana

    2017-11-01

    Full Text Available Cassava Brown Streak Disease CBSD continues to spread and its effect on productivity remains at high level losses 50- 100 in Sub-Saharan Africa. However there is little knowledge about the drivers of adoption on CBSD control measures in Rwanda. Thus this study investigated the drivers to adopt CBSD control measures in Rwanda during 2015-2016 agricultural seasons. A total of 152 households were randomly sampled in Bugesera and Ruhango districts where cassava demonstration plots are established. A multi stage sampling techniques was used. A structured questionnaire was used to collect data from respondents. Logistic regression analysis was employed to estimate drivers behind adoption of CBSD control measures. The key factors that influenced adoption of CBSD control measures was farm size farmers experience access to credit period of plantation access to demonstration plot. In order to increase adoption of CBSD control measures policy makers and implementers in Rwanda should improve farmers social economic and Insistutional characteristics sensitize and mobilize farmers on the importance of adopting the CBSD control measures.

  16. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry

    Science.gov (United States)

    Warrick, Jonathan; Ritchie, Andy; Adelman, Gabrielle; Adelman, Ken; Limber, Patrick W.

    2017-01-01

    Oblique aerial photograph surveys are commonly used to document coastal landscapes. Here it is shown that adequate overlap may exist in these photographic records to develop topographic models with Structure-from-Motion (SfM) photogrammetric techniques. Using photographs of Fort Funston, California, from the California Coastal Records Project, imagery were combined with ground control points in a four-dimensional analysis that produced topographic point clouds of the study area’s cliffs for 5 years spanning 2002 to 2010. Uncertainty was assessed by comparing point clouds with airborne LIDAR data, and these uncertainties were related to the number and spatial distribution of ground control points used in the SfM analyses. With six or more ground control points, the root mean squared errors between the SfM and LIDAR data were less than 0.30 m (minimum 1⁄4 0.18 m), and the mean systematic error was less than 0.10 m. The SfM results had several benefits over traditional airborne LIDAR in that they included point coverage on vertical- to-overhanging sections of the cliff and resulted in 10–100 times greater point densities. Time series of the SfM results revealed topographic changes, including landslides, rock falls, and the erosion of landslide talus along the Fort Funston beach. Thus, it was concluded that SfM photogrammetric techniques with historical oblique photographs allow for the extraction of useful quantitative information for mapping coastal topography and measuring coastal change. The new techniques presented here are likely applicable to many photograph collections and problems in the earth sciences.

  17. High level language for measurement complex control based on the computer E-100I

    Science.gov (United States)

    Zubkov, B. V.

    1980-01-01

    A high level language was designed to control the process of conducting an experiment using the computer "Elektrinika-1001". Program examples are given to control the measuring and actuating devices. The procedure of including these programs in the suggested high level language is described.

  18. Intention of dog owners to participate in rabies control measures in Flores Island, Indonesia

    NARCIS (Netherlands)

    Wera, Ewaldus; Mourits, Monique C.M.; Hogeveen, Henk

    2016-01-01

    The success of a rabies control strategy depends on the commitment and collaboration of dog owners. In this study the theory of planned behaviour (TPB) was used to identify the factors, which are associated with the intention of dog owners to participate in rabies control measures in the

  19. Farmers' intentions to implement foot and mouth disease control measures in Ethiopia

    NARCIS (Netherlands)

    Jemberu, Wudu T.; Mourits, M. C M; Hogeveen, H.

    2015-01-01

    The objectives of this study were to explore farmers' intentions to implement foot and mouth disease (FMD) control in Ethiopia, and to identify perceptions about the disease and its control measures that influence these intentions using the Health Belief Model (HBM) framework. Data were collected

  20. Statistical Process Control Charts for Measuring and Monitoring Temporal Consistency of Ratings

    Science.gov (United States)

    Omar, M. Hafidz

    2010-01-01

    Methods of statistical process control were briefly investigated in the field of educational measurement as early as 1999. However, only the use of a cumulative sum chart was explored. In this article other methods of statistical quality control are introduced and explored. In particular, methods in the form of Shewhart mean and standard deviation…

  1. Model ZD-I paper base weight measuring and controlling system

    International Nuclear Information System (INIS)

    Li Nianzu; Song Debin; Wu Guoliang; Hou Yaoxin; Li Dazhen

    1988-01-01

    Model ZD-I Base Weight Measuring and Controlling System has been developed for the automation process in paper-making industry. A single-board microprocessor is installed in the system. The mass thickness can be controlled within 1 g/m 2 if the changing range of concentration and water content is less than 10%

  2. Public Health Control Measures in Response to Global Pandemics and Drug Resistance.

    Science.gov (United States)

    Price, Polly J

    2015-01-01

    These teaching materials provide problem-based exercises exploring the specific powers of governments to implement control measures in response to communicable disease. Topics include global pandemic disease and, in the United States, legal issues in tuberculosis control. © 2015 American Society of Law, Medicine & Ethics, Inc.

  3. Monitoring and measurement of variables - assurance of observability and controllability of the reactor equipment

    International Nuclear Information System (INIS)

    Durnev, V.N.; Mitelman, M.G.

    2001-01-01

    The presentation presents main conclusions on the basis of analysis of the existing situation with assurance of observability and controllability of the reactor installation. A methodology of classification of variables of the controlled object state and proposals on selection and substantiation of measurement and inspection monitoring techniques is given. Main problems associated with assurance of observability and controllability of the reactor installation are presented for various operation modes. (Authors)

  4. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    Science.gov (United States)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  5. Fuzzy Logic System for Intermixed Biogas and Photovoltaics Measurement and Control

    Directory of Open Access Journals (Sweden)

    Liston Matindife

    2018-01-01

    Full Text Available This study develops a new integrated measurement and control system for intermixed biogas and photovoltaic systems to achieve safe and optimal energy usage. Literature and field studies show that existing control methods on small- to medium-scale systems fall short of comprehensive system optimization and fault diagnosis, hence the need to revisit these control methods. The control strategy developed in this study is intelligent as it is wholly based on fuzzy logic algorithms. Fuzzy logic controllers due to their superior nonlinear problem solving capabilities to classical controllers considerably simplify controller design. The mathematical models that define classical controllers are difficult or impossible to realize in biogas and photovoltaic generation process. A microcontroller centered fuzzy logic measurement and control embedded system is designed and developed on the existing hybrid biogas and photovoltaic installations. The designed system is able to accurately predict digester stability, quantify biogas output, and carry out biogas fault detection and control. Optimized battery charging and photovoltaic fault detection and control are also successfully implemented. The system is able to optimize the operation and performance of biogas and photovoltaic energy generation.

  6. GAE detection for mass measurement for D-T ratio control

    International Nuclear Information System (INIS)

    Lister, J.B.; Villard, L.; Ridder, G. de

    1997-09-01

    This report includes two papers by the authors Lister, Villard and de Ridder: 1) Measurement of the effective plasma ion mass in large tokamaks using Global Alfven Eigenmodes, 2) GAE detection for mass measurement for plasma density control. The second paper represents the final report of JET article 14 contract 950104. figs., tabs., refs

  7. Stability and control of Lur'e-type measure differential inclusions

    NARCIS (Netherlands)

    Wouw, van de N.; Leine, R.I.; Leonov, G.; Nijmeijer, H.; Pogromsky, A.; Fradkov, A.

    2010-01-01

    In this paper we present results on, firstly, the stability analysis for perturbed Lur'e-type measure differential inclusions and, secondly, the tracking control problem for this class of systems. The framework of measure differential inclusions allows us to describe systems with discontinuities in

  8. Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method

    Science.gov (United States)

    Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.

    2018-01-01

    Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.

  9. Quality control of measurements made on fixed-area sample plots

    Science.gov (United States)

    Ola Lindgren

    2000-01-01

    The paper describes results from a large program for quality control of forest measurements. The performance of 87 surveyors was evaluated. Tree heights were usually measured well, whereas the counting of tree-rings on increment cores was a source of considerable bias for many surveyors. During tree count on sample plots, many surveyors had a tendency to forget trees,...

  10. Healthcare workers' challenges in the implementation of tuberculosis infection prevention and control measures in Mozambique

    NARCIS (Netherlands)

    Brouwer, Miranda; Coelho, Eliana; Mosse, Carla das Dores; Brondi, Luciana; Winterton, Laura; van Leth, Frank

    2014-01-01

    Healthcare Workers (HCWs) have a higher frequency of TB exposure than the general population and have therefore an occupational TB risk that infection prevention and control (IPC) measures aim to reduce. HCWs are crucial in the implementation of these measures. The objective of the study was to

  11. Stability Analysis of Wireless Measurement and Control System Based on Dynamic Matrix

    Directory of Open Access Journals (Sweden)

    Yongxian SONG

    2014-01-01

    Full Text Available Focus on data packet loss and time delay problems in wireless greenhouse measurement and control system, and temperature and humidity were taken as the research objects, the model of temperature and humidity information transmission was set up by decoupling technology according to the characteristics of wireless greenhouse measurement and control system. According to related theory of exponential stability in network control system, the stability conditions judgment of temperature and humidity control model was established, the linear matrix inequality that time delay and packet loss should satisfy was obtained when wireless measurement and control system was stable operation. The feasibility analysis of linear matrix inequality (LMI was implemented Using LMI toolbox in MATLAB, and the critical values of time delay and packet loss rate were obtained when the system was stable operation. The wireless sensor network control system simulation model with time delay and packet loss was set up using TrueTime toolbox. The simulation results have shown that the system was in a stable state when time delay and packet loss rate obtained were less than the critical values in wireless greenhouse sensor network measurement and control system; With the increase of time delay and packet loss rate, and stable performance drops; When time delay and packet loss rate obtained were more than the critical values, the measurement and control system would be in a state of flux, and when it was serious, even can lead to collapse of the whole system. As a result, the critical values determination of time delay and packet loss rate provided a theoretical basis for establishing stable greenhouse wireless sensor network (WSN measurement and control system in practical application.

  12. Impacts of temporary traffic control measures on vehicular emissions during the Asian games in Guangzhou, China.

    Science.gov (United States)

    Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Wang, Xintong; Wu, Ye; He, Kebin

    2013-01-01

    To guarantee good traffic and air quality during the 16th Asian Games in Guangzhou, China, the government carried out two traffic control Drills before the Games and adopted traffic control measures during the Games. Vehicle activities before and during the first and second Drills, and during the Games, were surveyed. Based on the data under investigation, the impacts of control measures on traffic volumes and driving characteristics were analyzed during the first and second Drills, and the Games. The emission reduction of traffic control measures was also evaluated during the three stages using the MOBILE-China model. The results show that there were significant effects of implementing temporary traffic control measures on transportation activity and vehicular emissions. During the first and second Drills, and the Games, the average traffic volumes in monitored roads decreased, and the average speed of vehicles increased significantly The co-effects of traffic flow reduction, traffic congestion improvement, and the banning of high-emitting vehicles helped to greatly reduce the estimated emissions from motor vehicles in Guangzhou during the first and second Drills, and the Games. Estimated vehicular emissions were reduced by 38-52% during the first Drill and 28-36% for the second Drill. During the Asian Games, vehicular emissions of carbon monoxide (CO), hydrocarbon (HC), oxides of nitrogen (NO), and particulate matter with an aerodynamic diameter vehicular emissions of CO, HC, NOx, and PM10. Motor vehicles have become the most prevalent source of emissions and subsequently air pollution within Chinese cities. Understanding the impacts that different control measures have on vehicular emissions is very important in order to be able to control vehicle emissions. The results of this study will be very helpful for the further control of vehicle emissions in Guangzhou in the future. In addition, the effects of temporary transportation control measures will provide

  13. Design of automatic control and measurement software for radioactive aerosol continuity monitor

    International Nuclear Information System (INIS)

    Mao Yong; Li Aiwu

    1997-01-01

    The radioactive aerosol continuity measurement is very important for the development of nuclear industry, and it is the major method to measure and find out the leakage of radioactive material. Radioactive aerosol continuity monitor is the advanced method for the radioactive aerosol continuity measurement. With the development of nuclear industry and nuclear power station, it is necessary to design and automatic continuity measurement device. Because of this reason, the authors developed the first unit of radioactive aerosol continuity monitor and adopted the ministry appraisal. The design idea and method of automatic control and measurement for radioactive aerosol continuity monitor are discussed

  14. Account for uncertainties of control measurements in the assessment of design margin factors

    International Nuclear Information System (INIS)

    Dementiev, V. G.; Sidorenko, V. D.; Shishkov, L. K.

    2011-01-01

    The paper discusses the feasibility of accounting for uncertainties of control measurements in estimation of design margin factors. The feasibility is also taken into consideration proceeding from the fact how much the processed measured data were corrected by a priori calculated data of measurable parameters. The possibility and feasibility of such data correction is demonstrated by the authors with the help of Bayes theorem famous in mathematical statistics. (Authors)

  15. Technological measures for controlling the use of copyrighted works of authorship in the information society

    Directory of Open Access Journals (Sweden)

    Spasić Vidoje

    2016-01-01

    Full Text Available Information technology has given rise to the problem of controlling the use of copyrighted works of authorship from their unauthorized use. In this context, one of the effective solutions is the application of technological protection measures, which are aimed at a more efficient application of the protection measures prescribed by the law. Technological protection measures imply the use of any technology, device or component which may be aimed at preventing or restricting an unauthorized use of a protected work of authorship, which has not been approved by the author or holder of some related right. Generally, all these measures may be classified into three basic groups: technological measures aimed at controlling access, technological measured aimed at controlling exploitation, and technological measures aimed at protecting the integrity of the work of authorship. Considering their technical characteristics and mode of application, they may be hardware-based measures, software-based measures, or a combination thereof. Modern technology has enabled the development of digital systems which entail a controlled use of copyrighted works and facilitate obtaining licences for their exploitation. They are commonly known as digital rights management (DRM. The DRM system should provide for a compromise between safeguarding the intellectual property rights of the copyright holder, the end user privacy, and system costs. The envisaged goals are achieved by employing various cryptographic measures. The process of developing technological protection measures is accompanied by concurrent attempts to circumvent the application of these measures. Thus, the effectiveness of these measures primarily depends on their legal protection, which has been recognized by a vast majority of legal systems, we now know the most modern legal system. However, the normative solutions are not uniform. The observed differences actually reflect problems in finding adequate forms

  16. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  17. Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.

    Science.gov (United States)

    Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D

    2017-10-01

    To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Development of Static Balance Measurement and Correction Compound Platform for Single Blade of Controllable Pitch Propeller

    Science.gov (United States)

    Chao, Zhang; Shijie, Su; Yilin, Yang; Guofu, Wang; Chao, Wang

    2017-11-01

    Aiming at the static balance of the controllable pitch propeller (CPP), a high efficiency static balance method based on the double-layer structure of the measuring table and gantry robot is adopted to realize the integration of torque measurement and corrected polish for controllable pitch propeller blade. The control system was developed by Microsoft Visual Studio 2015, and a composite platform prototype was developed. Through this prototype, conduct an experiment on the complete process of torque measurement and corrected polish based on a 300kg class controllable pitch propeller blade. The results show that the composite platform can correct the static balance of blade with a correct, efficient and labor-saving operation, and can replace the traditional method on static balance of the blade.

  19. A Meta-Analysis of the Convergent Validity of Self-Control Measures

    Science.gov (United States)

    Duckworth, Angela Lee; Kern, Margaret L.

    2011-01-01

    There is extraordinary diversity in how the construct of self-control is operationalized in research studies. We meta-analytically examined evidence of convergent validity among executive function, delay of gratification, and self- and informant-report questionnaire measures of self-control. Overall, measures demonstrated moderate convergence (rrandom = .27 [95% CI = .24, .30]; rfixed = .34 [.33, .35], k = 282 samples, N = 33,564 participants), although there was substantial heterogeneity in the observed correlations. Correlations within and across types of self-control measures were strongest for informant-report questionnaires and weakest for executive function tasks. Questionnaires assessing sensation seeking impulses could be distinguished from questionnaires assessing processes of impulse regulation. We conclude that self-control is a coherent but multidimensional construct best assessed using multiple methods. PMID:21643479

  20. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    Science.gov (United States)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  1. Results of film dosemeter control irradiations of German dose measurements services, 1969-1974

    International Nuclear Information System (INIS)

    Gummi, V.; Taubert, R.

    1976-01-01

    The dose measurement services of the FRG have been controlling themselves since 1961 by evaluating film dosimeters irradiated in the PTB under standard conditions. This control method is now embodied in a law by the second decree about the standardization of measuring instruments dt. 6th August 1975. During the time 1969-74 the PTB carried out more than 800 annual control irradiations of film dosimeters. In 30% of the cases the evaluation by the measuring services showed an errory higher than +50%/-30%. The dose measuring services partially diverge considerably concerning the distribution of evaluation errors. Particular difficulties seem to exist in the soft x-ray radiation with effective energies less than 30 keV, in the energy range about 100 keV, and in the evaluation of dosemeter irradiated with two different qualities of radiation (double irradiation). (orig.) [de

  2. Nonlinear control of marine vehicles using only position and attitude measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Marit Johanne

    1996-12-31

    This thesis presents new results on the design and analysis of nonlinear output feedback controllers for auto pilots and dynamic positioning systems for ships and underwater vehicles. Only position and attitude measurements of the vehicle are used in the control design. The underlying idea of the work is to use certain structural properties of the equations of motion in the controller design and analysis. New controllers for regulation and tracking have been developed and the stability of the resulting closed-loop systems has been rigorously established. The results are supported by simulations. The following problems have been investigated covering design of passive controller for regulation, comparison of two auto pilots, nonlinear damping compensation for tracking, tracking control for nonlinear ships, and output tracking control with wave filtering for multivariable models of possibly unstable vehicles. 97 refs., 32 figs.

  3. Remote-controlled flexible pose measurement system and method for a moving target in wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei LIU

    2018-01-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.

  4. Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results

    Science.gov (United States)

    Kassamakov, Ivan; Maconi, Göran; Penttilä, Antti; Helander, Petteri; Gritsevich, Maria; Puranen, Tuomas; Salmi, Ari; Hæggström, Edward; Muinonen, Karri

    2018-02-01

    We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15'. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument's user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically. To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.

  5. A measured-ZMP(Zero-Moment-Point)-referenced control of biped locomotion robots

    International Nuclear Information System (INIS)

    Kume, Etsuo; Akimoto, Masayuki

    1994-01-01

    For the control of biped locomotion, the model-referenced-control or programmed control method is widely used. In this method, the instantaneous torque of actuator equipped at each joint is controlled so as to equalize measured angle to input joint angle based on the prescribed motion. The drawback is that this method can not deal with the dynamic change of walking such as that due to unknown external force. To resolve such the drawback, we propose a new control method as follows: given a prescribed motion as a set of gait, namely gait of starting walk, cyclic walk, and stopping walk including a standard trajectory of the Zero-Moment-Point (ZMP), the trunk motion to compensate the legs' motion is generated in real time using the current ZMP measured by sensing device. The proposed method will be validated through some numerical simulations. (author)

  6. Influence of staff infection control training on infection-related quality measures in US nursing homes.

    Science.gov (United States)

    Kaur, Jasjit; Stone, Patricia W; Travers, Jasmine L; Cohen, Catherine C; Herzig, Carolyn T A

    2017-09-01

    Health care-associated infections are a leading cause of morbidity and mortality in US nursing home residents. Ongoing training of nursing home staff is vital to the implementation of infection prevention and control processes. Our aim was to describe associations between methods, frequency, and timing of staff infection prevention and control training and infection-related quality measures. In this national survey of nursing homes, timing of staff infection prevention and control training was associated with reduced indwelling urinary catheter use. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes

    Directory of Open Access Journals (Sweden)

    Chung-Hsien Kuo

    2017-01-01

    Full Text Available This paper presents an oscillometric blood pressure (BP measurement approach based on the active control schemes of cuff pressure. Compared with conventional electronic BP instruments, the novelty of the proposed BP measurement approach is to utilize a variable volume chamber which actively and stably alters the cuff pressure during inflating or deflating cycles. The variable volume chamber is operated with a closed-loop pressure control scheme, and it is activated by controlling the piston position of a single-acting cylinder driven by a screw motor. Therefore, the variable volume chamber could significantly eliminate the air turbulence disturbance during the air injection stage when compared to an air pump mechanism. Furthermore, the proposed active BP measurement approach is capable of measuring BP characteristics, including systolic blood pressure (SBP and diastolic blood pressure (DBP, during the inflating cycle. Two modes of air injection measurement (AIM and accurate dual-way measurement (ADM were proposed. According to the healthy subject experiment results, AIM reduced 34.21% and ADM reduced 15.78% of the measurement time when compared to a commercial BP monitor. Furthermore, the ADM performed much consistently (i.e., less standard deviation in the measurements when compared to a commercial BP monitor.

  8. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    Science.gov (United States)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  9. Protecting the autonomy of states to enact tobacco control measures under trade and investment agreements.

    Science.gov (United States)

    Mitchell, Andrew; Sheargold, Elizabeth

    2015-06-01

    Since the adoption of the WHO's WHO Framework Convention on Tobacco Control, governments have been pursuing progressively stronger and more wide-reaching tobacco control measures. In response, tobacco companies are frequently using international trade and investment agreements as tools to challenge domestic tobacco control measures. Several significant new trade and investment agreements that some fear may provide new legal avenues to the tobacco industry to challenge health measures are currently under negotiation, including the Trans-Pacific Partnership (a 12 party agreement of Asia-Pacific regional countries) and the Transatlantic Trade and Investment Partnership (an agreement between the USA and the European Union). This commentary examines different options for treaty provisions that the parties could employ in these agreements to minimise legal risks relating to tobacco control measures. It recommends that parties take a comprehensive approach, combining provisions that minimise the potential costs of litigation with provisions that increase the likelihood of a state successfully defending tobacco control measures in such litigation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Measurement of local dose rates in controlled areas of nuclear power plants. Version 6/85

    International Nuclear Information System (INIS)

    1985-01-01

    Local dose rate measurements according to this regulation, serve the following purposes: Development of preventive measures for radiation protection with respect to maintenance and modifications in controlled areas, e.g. determination of individual measures for personnel protection, development of flow charts and dose rate estimates; monitoring of the personnel's location of activity within the controlled area, including determination of time-dependence of local dose rates and determination of immediate radiation protection measures required; limitation and identification of controlled areas. Such measurements are performed to ensure that the principles of radiation protection as stated in Art. 28 (1) of the Radiation Protection Ordinance with respect to external radiation exposure of the personnel, and the requirements of Art. 61 (1) of the Radiation Protection Ordinance relating to controlled areas are met and the limitation and identification of controlled areas as prescribed in Art 57 (1) of the Radiation Protection Ordinance can be performed. They are not used to determine body doses as per Art. 63 of the Radiation Protection Ordinance. (orig./HP) [de

  11. Development of a Computer Program for the Integrated Control of the Fuel Homogeneity Measurement System

    International Nuclear Information System (INIS)

    Shin, H. S.; Jang, J. W.; Lee, Y. H.; Oh, S. J.; Park, H. D.; Kim, C. K.

    2005-11-01

    The computer program is developed based on Visual C++, which is equipped with a user-friendly interface of the input/output(I/O) and a display function for the measuring conditions. This program consists of three parts which are the port communication, PLC(Programmable Logic Controller) and the MCA(Multi Channel Analyzer) control parts. The communication type between the CPU of the PLC module box and the computer is selected as be the Rs-232 asynchronous type and the thread method is adapted in the development of the first part of the program. The PLC-related program has been developed so that the data communication between the PLC CPU and the computer could be harmonized with the unique commands which have already been defined in the PLC. The measuring space and time intervals, the start and end ROI(region of interest) values, and the allowable error limitation are input at each measurement in this program. Finally the controlling MCA program has been developed by using Canberra's programming library which contains several files including the head files in which the variable and the function of C++ are declared according to the MCA function. The performance test has been carried out through an application of the developed computer program to the homogeneity measurement system. The gamma counts at 28 measuring points of a fuel rod of 700 mm in length are measured for 50 sec at each point. It was revealed that the measurement results are better than the previous ones in respects of the measurement accuracy and a measurement time saving could be achieved. It was concluded that the gamma measurement system can be improved through equipping it with the developed control program

  12. [Evaluation on intervention measures of comprehensive control for parasitic diseases in demonstration plot of Xiangyun County].

    Science.gov (United States)

    Wen-Juan, Li; Shao-Rong, Chen; Yan-Hong, Li; Wen, Fang; Chun-Rong, Ke; Li-Bo, Wang

    2011-10-01

    To evaluate the effect of comprehensive intervention measures to control and prevent parasitic diseases in the demonstration plot of Xiangyun County, so as to provide the evidence for establishing appropriate measures of parasitic diseases control and prevention. The baseline data of soil-transmitted nematode infections were obtained in 2006. A series of intervention measures, including health education, deworming, drinking water improvement,latrine improvement, and environment reconstruction, were performed for three years and the effect of the comprehensive intervention measures was evaluated by the national expert group in 2009. The awareness rate of parasitic disease knowledge of residents in 2009 (86.96%) was significantly higher than that in 2006 (35.20%) (Chi2 = 122.95, P transmitted nematode infections, the infection rates of Ascaris lumbricoides in both 2006 and 2009 were the highest and the rates were 18.74% and 2.08%, respectively. In the demonstration plots for parasitic diseases control and prevention of Xiangyun County, the effect of the comprehensive intervention measures which take health education as the forerunner and give priority to control source of parasite infection is remarkable. The measures implemented can achieve the purpose to reduce the infection rates of parasites and improve human health.

  13. Results of dose control and measurement plans applied for SPEAR3 commissioning year (FY04)

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Allan, Jim [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    Dose control and measurement plans for the SPEAR3 Booster and storage ring have taken place during the SPEAR3 commissioning. The initial commissioning period (SPEAR3 start-up) covered the time period from the beginning of November 2003 to the early part of March 2004. The period from the beginning of March to the beginning of August 2004 has been mostly dedicated to the scientific program. The initial commissioning period was characterized with frequent injection and significantly higher losses. In comparison, the scientific program period was characterized with more stable beam operation with limited number of injections per day and lower beam losses. Three types of dose measurements, passive, active and special measurements, were implemented around the SPEAR3 Booster and storage ring. Based on the expected radiation hazards, several dose control measures were adopted at several stages of the commissioning. In the early stages of commissioning, areas within 4.5 m from the walls of the Booster and storage ring were designated as radiation areas (RA). Areas outside RA were classified as radiologically controlled area (RCA). Access to these areas required less training than the RA. A monthly review of the accelerator operation conditions and radiation measurement results were used to determine the changes needed for the RA classification status and associated dose control measures.

  14. Roadside air quality and implications for control measures: A case study of Hong Kong

    Science.gov (United States)

    Ai, Z. T.; Mak, C. M.; Lee, H. C.

    2016-07-01

    Traffic related air pollution is one of major environmental issues in densely populated urban areas including Hong Kong. A series of control measures has been implemented by Hong Kong government to cut traffic related air pollutants, including retrofitting the Euro II and Euro III buses with selective catalytic reduction (SCR) devices to lower nitrogen dioxide (NO2) emissions. In order to reveal the real-life roadside air quality and evaluate the effectiveness of the control measures, this study first analyzed the recent six-year data regarding concentrations of pollutants typically associated with traffic recorded in two governmental roadside monitoring stations and second conducted on-site measurements of concentration of pollutants at pedestrian level near five selected roads. Given that there is a possibility of ammonia leakage as a secondary pollutant from SCR devices, a special attention was paid to the measurements of ammonia level in bus stations and along roadsides. Important influencing factors, such as traffic intensity, street configuration and season, were analyzed. Control measures implemented by the government are effective to decrease the traffic emissions. In 2014, only NO2 cannot achieve the annual air quality objective of Hong Kong. However, it is important to find that particulate matters, rather than NO2, post potentially a short-term exposure risk to passengers and pedestrians. Based on the findings of this study, specific control measures are suggested, which are intended to further improve the roadside air quality.

  15. Measurement and control techniques for electric equipment development; Tecnicas de medicion y control para el desarrollo de equipos electricos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Neblina, Joaquin [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    In broad outlines the measuring and control techniques that are used in the electric equipment development in the short circuit laboratories, are described. In this article the utilization criteria of the traditional and modern (analogical and digital) instruments are described as well as the tendency towards the system`s integration for the automation of the measurement and control processes. Also, mention is made of the systems currently being developed at the Instituto de Investigaciones Electricas (IIE) to be applied at the Short Circuit Laboratories of Comision Federal de Electricidad (CFE) and of the IIE. [Espanol] Se describen a grandes rasgos las tecnicas de medicion y control que se emplean para el desarrollo de equipos electricos en los laboratorios de corto circuito. En este articulo se describen los criterios de utilizacion de los instrumentos tradicionales y modernos (analogicos y digitales), asi como la tendencia hacia la integracion de sistemas para la automatizacion de los procesos de medicion y control. Tambien se mencionan los sistemas que actualmente se desarrollan en el Instituto de Investigaciones Electricas (IIE) para aplicarlos en los Laboratorios de Corto Circuito de la Comision Federal de Electricidad (CFE) y del Instituto.

  16. Measurement and control techniques for electric equipment development; Tecnicas de medicion y control para el desarrollo de equipos electricos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Neblina, Joaquin [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    In broad outlines the measuring and control techniques that are used in the electric equipment development in the short circuit laboratories, are described. In this article the utilization criteria of the traditional and modern (analogical and digital) instruments are described as well as the tendency towards the system`s integration for the automation of the measurement and control processes. Also, mention is made of the systems currently being developed at the Instituto de Investigaciones Electricas (IIE) to be applied at the Short Circuit Laboratories of Comision Federal de Electricidad (CFE) and of the IIE. [Espanol] Se describen a grandes rasgos las tecnicas de medicion y control que se emplean para el desarrollo de equipos electricos en los laboratorios de corto circuito. En este articulo se describen los criterios de utilizacion de los instrumentos tradicionales y modernos (analogicos y digitales), asi como la tendencia hacia la integracion de sistemas para la automatizacion de los procesos de medicion y control. Tambien se mencionan los sistemas que actualmente se desarrollan en el Instituto de Investigaciones Electricas (IIE) para aplicarlos en los Laboratorios de Corto Circuito de la Comision Federal de Electricidad (CFE) y del Instituto.

  17. Assessment of the GPC Control Quality Using Non–Gaussian Statistical Measures

    Directory of Open Access Journals (Sweden)

    Domański Paweł D.

    2017-06-01

    Full Text Available This paper presents an alternative approach to the task of control performance assessment. Various statistical measures based on Gaussian and non-Gaussian distribution functions are evaluated. The analysis starts with the review of control error histograms followed by their statistical analysis using probability distribution functions. Simulation results obtained for a control system with the generalized predictive controller algorithm are considered. The proposed approach using Cauchy and Lévy α-stable distributions shows robustness against disturbances and enables effective control loop quality evaluation. Tests of the predictive algorithm prove its ability to detect the impact of the main controller parameters, such as the model gain, the dynamics or the prediction horizon.

  18. Healthcare workers' challenges in the implementation of tuberculosis infection prevention and control measures in Mozambique.

    Science.gov (United States)

    Brouwer, Miranda; Coelho, Eliana; Mosse, Carla das Dores; Brondi, Luciana; Winterton, Laura; van Leth, Frank

    2014-01-01

    Healthcare Workers (HCWs) have a higher frequency of TB exposure than the general population and have therefore an occupational TB risk that infection prevention and control (IPC) measures aim to reduce. HCWs are crucial in the implementation of these measures. The objective of the study was to investigate Mozambican HCWs' perceptions of their occupational TB risk and the measures they report using to reduce this risk. In addition, we explored the challenges HCWs encounter while using these TBIPC measures. Focus group discussion. Analysis according content method. Four categories of HCWs: auxiliary workers, medical (doctors and clinical officers), nurses and TB program staff. HCWs are aware of their occupational TB risk and use various measures to reduce their risk of infection. HCWs find it challenging to employ measures that minimize such risks and a lack of clear guidelines contributes to these challenges. HCWs' and patient behavior further complicate the use of TBIPC measures. HCWs in Mozambique perceive a high occupational risk of TB infection. They report several challenges using measures to reduce this risk such as shortage of material, lack of clear guidelines, insufficient motivation and inadequate training. Robust training with motivational approaches, alongside supervision and support for HCWs could improve implementation of TBIPC measures. Healthcare management should address the areas for improvement that are beyond the individual HCW's control.

  19. A Novel Method of SIR Measurement for Power Control in CDMA Systems

    International Nuclear Information System (INIS)

    Yu, J; Wu, S B; He, J Z

    2006-01-01

    CDMA is interference limited multiple access system. Power control is an effective way to reduce co-channel interference and solve the near-far problem. Consequently, it can improve the system capacity, and make higher data rate possible. CDMA2000 employs fast closed-loop power control in reverse link to combat channel fading, and the estimation of signal to interference ratio (SIR) is required for closed-loop power control. Transmitting power is adjusted by comparing the SIR estimation with SIR target. So, it is crucial to measure the SIR of received signal accurately. Traditional measurement methods mostly depend on pilot signal strongly, when the pilots are few, there is a greater error brought to the measurement of SIR. In this paper, we discuss the SIR measurement of the received signal under the fewer pilots condition (especially only one pilot symbol) and present a novel SIR measurement method. According to the simulation, the numerical results indicate that the SIR measured by the proposed method is more accurate than the SIR measured by conventional method under fewer pilots condition

  20. Preliminary measurements of the establishment of a quality control programme for the activimeter calibration reference system

    International Nuclear Information System (INIS)

    Martins, Elaine W.; Potiens, Maria da Penha A.

    2009-01-01

    The nuclear medicine techniques efficiency and safety depends on, beside other factors, a quality control programme, mainly regards to the nuclides activimeter utilization. The Calibration Laboratory of IPEN uses as a work standard, a tertiary standard system Capintec, calibrated at the Accredited Dosimetry Calibration Laboratory of the Medical radiation Research Center - University of Wisconsin. In this work, as preliminary measurements to establish a quality control programme for the activimeter calibration procedures, initially the repeatability and reproducibility (long term stability) tests were performed using a sealed check source of 133 Ba. Later on, to complete this quality control programme other check sources ( 137 Cs, 57 Co, 60 Co) will be used to perform the same tests. A series of 80 experiments of 10 measurements each has been carried out. The reference system showed a good behaviour to the repeatability test, considering the tolerance limits of 5%. The percent deviations of all tested sources in the activity measurements were lower 1% to 133 Ba. (author)