WorldWideScience

Sample records for photocurrent spectroscopy applied

  1. Photocurrent Spectroscopy of Perovskite Layers and Solar Cells: A Sensitive Probe of Material Degradation

    KAUST Repository

    Holovský , Jakub; De Wolf, Stefaan; Werner, Jé ré mie; Remeš, Zdeněk; Mü ller, Martin; Neykova, Neda; Ledinský , Martin; Černá , Ladislava; Hrzina, Pavel; Lö per, Philipp; Niesen, Bjoern; Ballif, Christophe

    2017-01-01

    Optical absorptance spectroscopy of polycrystalline CHNHPbI films usually indicates the presence of a PbI phase, either as a preparation residue or due to film degradation, but gives no insight on how this may affect electrical properties. Here, we apply photocurrent spectroscopy to both perovskite solar cells and coplanar-contacted layers at various stages of degradation. In both cases, we find that the presence of a PbI phase restricts charge-carrier transport, suggesting that PbI encapsulates CHNHPbI grains. We also find that PbI injects holes into the CHNHPbI grains, increasing the apparent photosensitivity of PbI. This phenomenon, known as modulation doping, is absent in the photocurrent spectra of solar cells, where holes and electrons have to be collected in pairs. This interpretation provides insights into the photogeneration and carrier transport in dual-phase perovskites.

  2. Photocurrent Spectroscopy of Perovskite Layers and Solar Cells: A Sensitive Probe of Material Degradation

    KAUST Repository

    Holovský, Jakub

    2017-01-25

    Optical absorptance spectroscopy of polycrystalline CHNHPbI films usually indicates the presence of a PbI phase, either as a preparation residue or due to film degradation, but gives no insight on how this may affect electrical properties. Here, we apply photocurrent spectroscopy to both perovskite solar cells and coplanar-contacted layers at various stages of degradation. In both cases, we find that the presence of a PbI phase restricts charge-carrier transport, suggesting that PbI encapsulates CHNHPbI grains. We also find that PbI injects holes into the CHNHPbI grains, increasing the apparent photosensitivity of PbI. This phenomenon, known as modulation doping, is absent in the photocurrent spectra of solar cells, where holes and electrons have to be collected in pairs. This interpretation provides insights into the photogeneration and carrier transport in dual-phase perovskites.

  3. Femtosecond upconverted photocurrent spectroscopy of InAs quantum nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tex, David M.; Kanemitsu, Yoshihiko, E-mail: kanemitu@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency, CREST, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kamiya, Itaru [Toyota Technological Institute, Nagoya, Aichi 468-8511 (Japan)

    2015-07-06

    The carrier upconversion dynamics in InAs quantum nanostructures are studied for intermediate-band solar-cell applications via ultrafast photoluminescence and photocurrent (PC) spectroscopy based on femtosecond excitation correlation (FEC) techniques. Strong upconverted PC-FEC signals are observed under resonant excitation of quantum well islands (QWIs), which are a few monolayer-thick InAs quantum nanostructures. The PC-FEC signal typically decays within a few hundred picoseconds at room temperature, which corresponds to the carrier lifetime in QWIs. The photoexcited electron and hole lifetimes in InAs QWIs are evaluated as functions of temperature and laser fluence. Our results provide solid evidence for electron–hole–hole Auger process, dominating the carrier upconversion in InAs QWIs at room temperature.

  4. Photocurrent spectroscopy of perovskite layers and solar cells: a sensitive probe of material degradation

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; De Wolf, S.; Werner, J.; Remeš, Zdeněk; Müller, Martin; Neykova, Neda; Ledinský, Martin; Černá, L.; Hrzina, P.; Löper, P.; Niesen, B.; Ballif, C.

    2017-01-01

    Roč. 8, č. 4 (2017), s. 838-843 ISSN 1948-7185 R&D Projects: GA ČR GJ17-26041Y; GA MŠk LM2015087 Grant - others:AV ČR(CZ) KONNECT-007 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : photocurrent spectroscopy * perovskite layers * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 9.353, year: 2016

  5. Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS)

    International Nuclear Information System (INIS)

    Santamaria, M.; Di Quarto, F.; Zanna, S.; Marcus, P.

    2007-01-01

    A detailed investigation of the initial film grown on mechanically polished Mg electrodes has been carried out by ex situ X-ray Photoelectron Spectroscopy (XPS) and in situ Photocurrent Spectroscopy (PCS), allowing to reach a detailed picture of the passive layer structure. The XPS data show that the films formed soon after mechanical treatment and immersion in aqueous electrolyte have a bilayer structure, consisting of an ultra-thin MgO inner layer (∼2.5 nm) and a Mg(OH) 2 external layer. The thickness of the Mg(OH) 2 layer is a function of immersion time and solution temperature. After mechanical treatment and immersion in aqueous solution at room temperature, the MgO/Mg(OH) 2 layer in some area of electrodes is so thin to allow an electron photoemission process from the Mg Fermi level to the electrolyte conduction band. Only internal photoemission processes are evidenced for Mg electrodes aged in NaOH at 80 deg. C, due the formation of a thicker Mg(OH) 2 layer. From anodic photocurrent spectra an optical band gap of ∼4.25 eV has been estimated for Mg(OH) 2 , lower with respect to the optical gap of the corresponding anhydrous counterpart

  6. Anode engineering for photocurrent enhancement in a polymer solar cell and applied on plastic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsing-Wang; Li, Pei-Wen [Department of Electrical Engineering, National Central University, Chungli 32001 (China); Pei, Zingway; Cheng, Shor-Jeng; Hsieh, Wei-Shung [Graduate Institute of Optoelectronic Engineering, Department of Electrical Engineering, National Chung Hsing University, Taichung 40227 (China); Chen, Chun-Chao; Chan, Yi-Jen [Electronics and Optoelectronics Research Laboratories (EOL), Industrial Technology Research Institute (ITRI), Hsinchu 31040 (China)

    2011-02-15

    In this work, a multilayer structure, PEDOT:PSS/insulator/PEDOT:PSS (CIC), was designed and used as the anode in a polymer solar cell (PSC) to enhance the efficiency at low annealing temperature. The efficiency for PSC with CIC multilayers could increase around 22% as compared to the reference cell. The internal electrical field enhancement due to the effective work function increase by CIC multilayer was assumed and responded to efficiency enhancement. The work function of the multilayer anode structure was explored by an electrostatic force microscopy (EFM) analysis. The EFM result shows that the surface potential of PEDPT:PSS in CIC structure is around 0.6 V higher than PEDOT:PSS in reference structure, indicating a higher work function for PEDOT:PSS in multilayer structure. By the input photon-to-current conversion efficiency (IPCE) study, the major enhancement in photocurrent occurred at solar spectrum range of 400-650 nm. Further applied to plastic substrate, the PSC exhibits 9.2% enhancement in efficiency. (author)

  7. Analysis of electrical and thermal stress effects on PCBM:P3HT solar cells by photocurrent and impedance spectroscopy modeling

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Rizzo, Antonio; Cester, Andrea

    2017-01-01

    We investigated the effects of electrical stress and thermal storage by means of photocurrent, Impedance Spectroscopy and Open Circuit Voltage Decay models. The electrical stress damages only the active layer, by reducing the generation rate, the polaron separation probability and the carrier...... lifetime. The thermal stress also degrades the anode interface. This reflects on the appearance of an inflection in the I-V photocurrent shape close to the operative region....

  8. Photocurrent of Photovoltaic Cells

    Science.gov (United States)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  9. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577 (Japan); Xu, Z., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kvashnin, D. G. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Tang, D.-M.; Xue, Y. M.; Bando, Y. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sorokin, P. B. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700 (Russian Federation)

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  10. Persistent photocurrent and deep level traps in PLD-grown In-Ga-Zn-O thin films studied by thermally stimulated current spectroscopy

    Science.gov (United States)

    Wang, Buguo; Anders, Jason; Leedy, Kevin; Schuette, Michael; Look, David

    2018-02-01

    InGaZnO (IGZO) is a promising semiconductor material for thin-film transistors (TFTs) used in DC and RF switching applications, especially since it can be grown at low temperatures on a wide variety of substrates. Enhancement-mode TFTs based on IGZO thin films grown by pulsed laser deposition (PLD) have been recently fabricated and these transistors show excellent performance; however, compositional variations and defects can adversely affect film quality, especially in regard to electrical properties. In this study, we use thermally stimulated current (TSC) spectroscopy to characterize the electrical properties and the deep traps in PLD-grown IGZO thin films. It was found that the as-grown sample has a DC activation energy of 0.62 eV, and two major traps with activation energies at 0.16-0.26 eV and at 0.90 eV. However, a strong persistent photocurrent (PPC) sometimes exists in the as-grown sample, so we carry out post-growth annealing in an attempt to mitigate the effect. It was found that annealing in argon increases the conduction, produces more PPC and also makes more traps observable. Annealing in air makes the film more resistive, and removes PPC and all traps but one. This work demonstrates that current-based trap emission, such as that associated with the TSC, can effectively reveal electronic defects in highlyresistive semiconductor materials, especially those are not amenable to capacitance-based techniques, such as deeplevel transient spectroscopy (DLTS).

  11. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  12. Applied spectroscopy and the science of nanomaterials

    CERN Document Server

    2015-01-01

    This book focuses on several areas of intense topical interest related to applied spectroscopy and the science of nanomaterials. The eleven chapters in the book cover the following areas of interest relating to applied spectroscopy and nanoscience: ·         Raman spectroscopic characterization, modeling and simulation studies of carbon nanotubes, ·         Characterization of plasma discharges using laser optogalvanic spectroscopy, ·         Fluorescence anisotropy in understanding protein conformational disorder and aggregation, ·         Nuclear magnetic resonance spectroscopy in nanomedicine, ·         Calculation of Van der Waals interactions at the nanoscale, ·         Theory and simulation associated with adsorption of gases in nanomaterials, ·         Atom-precise metal nanoclusters, ·         Plasmonic properties of metallic nanostructures, two-dimensional materials, and their composites, ·         Applications of graphe...

  13. Terahertz spectroscopy applied to food model systems

    DEFF Research Database (Denmark)

    Møller, Uffe

    Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult...... to differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles....

  14. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  15. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  16. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  17. Advances in Molecular Rotational Spectroscopy for Applied Science

    Science.gov (United States)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  18. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  19. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  20. Application of Photocurrent Model on Polymer Solar Cells Under Forward Bias Stress

    DEFF Research Database (Denmark)

    Rizzo, Antonio; Torto, Lorenzo; Wrachien, Nicola

    2017-01-01

    We performed a constant current stress at forward bias on organic heterojunction solar cells. We measured current voltage curves in both dark and light at each stress step to calculate the photocurrent. An existing model applied to photocurrent experimental data allows the estimation of several...

  1. Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization

    DEFF Research Database (Denmark)

    Jacobsen, R. H.; Birkelund, Karen; Holst, T.

    1996-01-01

    of the switch. By using both photocurrent measurements and terahertz spectroscopy we verify the importance of space-charge effects on the carrier dynamics. Photocurrent nonlinearities and coherent effects are discussed as they appear in the correlation signals. An analysis based on a simple model allows......Photocurrent correlation measurements used for the characterization of ultrafast photoconductive switches based on GaAs and silicon-on-sapphire are demonstrated. The correlation signal arises from the interplay of the photoexcited carriers, the dynamics of the bias field and a subsequent recharging...

  2. Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics

    Directory of Open Access Journals (Sweden)

    Jürgen Röpcke

    2016-07-01

    Full Text Available The considerably higher power and wider frequency coverage available from quantum cascade lasers (QCLs in comparison to lead salt diode lasers has led to substantial advances when QCLs are used in pure and applied infrared spectroscopy. Furthermore, they can be used in both pulsed and continuous wave (cw operation, opening up new possibilities in quantitative time resolved applications in plasmas both in the laboratory and in industry as shown in this article. However, in order to determine absolute concentrations accurately using pulsed QCLs, careful attention has to be paid to features like power saturation phenomena. Hence, we begin with a discussion of the non-linear effects which must be considered when using short or long pulse mode operation. More recently, cw QCLs have been introduced which have the advantage of higher power, better spectral resolution and lower fluctuations in light intensity compared to pulsed devices. They have proved particularly useful in sensing applications in plasmas when very low concentrations have to be monitored. Finally, the use of cw external cavity QCLs (EC-QCLs for multi species detection is described, using a diagnostics study of a methane/nitrogen plasma as an example. The wide frequency coverage of this type of QCL laser, which is significantly broader than from a distributed feedback QCL (DFB-QCL, is a substantial advantage for multi species detection. Therefore, cw EC-QCLs are state of the art devices and have enormous potential for future plasma diagnostic studies.

  3. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    Science.gov (United States)

    2010-03-01

    Positron Annihilation Ratio Spectroscopy (PsARS). These experimental techniques have been used for a variety of military and civilian applications ... POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES THESIS...of Defense, or the United States Government. AFIT/GNE/ENP/10-M07 POSITRON ANNIHILATION RATIO SPECTROSCOPY

  4. Application of photoconductivity decay and photocurrent generation ...

    Indian Academy of Sciences (India)

    Unknown

    ... (PCD) and photocurrent generation (PCG) methods are simple and low cost methods of ... flection based detection of the change in photoconductivity .... 2.2 Photoconductivity decay behaviour .... con solar cell of known spectral response. 4.

  5. UV spectroscopy applied to stratospheric chemistry, methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    The publication from the Norwegian Institute for Air Research (NILU) deals with an investigation done on stratospheric chemistry by UV spectroscopy. The scientific goals are briefly discussed, and it gives the results from the measuring and analysing techniques used in the investigation. 6 refs., 11 figs.

  6. Positron Annihilation Ratio Spectroscopy Study of Electric Fields Applied to Positronium at Material Interfaces

    Science.gov (United States)

    2011-03-01

    from 142 ns to a few ns [3:3]. Through the application of positron annihilation lifetime spectroscopy (PALS) on a material, the o-Ps lifetime can be...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO...protection in the United States. AFIT/GNE/ENP/11-M19 POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO POSITRONIUM AT

  7. Kinoform optics applied to X-ray photon correlation spectroscopy.

    Science.gov (United States)

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  8. Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell

    Czech Academy of Sciences Publication Activity Database

    Schrauben, J. N.; Zhao, Y.; Mercado, C.; Dron, P. I.; Ryerson, J. L.; Michl, Josef; Zhu, K.; Johnson, J. C.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 2286-2293 ISSN 1944-8244 Institutional support: RVO:61388963 Keywords : photovoltaics * singlet fission * triplet * spectroscopy * charge transfer * photocurrent Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.145, year: 2015

  9. [Advances of NIR spectroscopy technology applied in seed quality detection].

    Science.gov (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min

    2015-02-01

    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  10. Diffusing wave spectroscopy applied to material analysis and process control

    International Nuclear Information System (INIS)

    Lloyd, Christopher James

    1997-01-01

    Diffusing Wave Spectroscopy (DWS) was studied as a method of laboratory analysis of sub-micron particles, and developed as a prospective in-line, industrial, process control sensor, capable of near real-time feedback. No sample pre-treatment was required and measurement was via a non-invasive, flexible, dip in probe. DWS relies on the concept of the diffusive migration of light, as opposed to the ballistic scatter model used in conventional dynamic light scattering. The specific requirements of the optoelectronic hardware, data analysis methods and light scattering model were studied experimentally and, where practical, theoretically resulting in a novel technique of analysis of particle suspensions and emulsions of volume fractions between 0.01 and 0.4. Operation at high concentrations made the technique oblivious to dust and contamination. A pure homodyne (autodyne) experimental arrangement described was resilient to environmental disturbances, unlike many other systems which utilise optical fibres or heterodyne operation. Pilot and subsequent prototype development led to a highly accurate method of size ranking, suitable for analysis of a wide range of suspensions and emulsions. The technique was shown to operate on real industrial samples with statistical variance as low as 0.3% with minimal software processing. Whilst the application studied was the analysis of TiO 2 suspensions, a diverse range of materials including polystyrene beads, cell pastes and industrial cutting fluid emulsions were tested. Results suggest that, whilst all sizing should be comparative to suitable standards, concentration effects may be minimised and even completely modelled-out in many applications. Adhesion to the optical probe was initially a significant problem but was minimised after the evaluation and use of suitable non stick coating materials. Unexpected behaviour in the correlation in the region of short decay times led to consideration of the effects of rotational diffusion

  11. Small-angle scattering theory revisited: Photocurrent and spatial localization

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Michelsen, Poul

    2005-01-01

    In this paper theory on collective scattering measurements of electron density fluctuations in fusion plasmas is revisited. We present the first full derivation of the expression for the photocurrent beginning at the basic scattering concepts. Thereafter we derive detailed expressions for the auto......- and crosspower spectra obtained from measurements. These are discussed and simple simulations made to elucidate the physical meaning of the findings. In this context, the known methods of obtaining spatial localization are discussed and appraised. Where actual numbers are applied, we utilize quantities from two...

  12. Modeling photocurrent transients in organic solar cells

    International Nuclear Information System (INIS)

    Hwang, I; Greenham, N C

    2008-01-01

    We investigate the transient photocurrents of organic photovoltaic devices in response to a sharp turn-on of illumination, by numerical modeling of the drift-diffusion equations. We show that the photocurrent turn-on dynamics are determined not only by the transport dynamics of free charges, but also by the time required for the population of geminate charge pairs to reach its steady-state value. The dissociation probability of a geminate charge pair is found to be a key parameter in determining the device performance, not only by controlling the efficiency at low intensities, but also in determining the fate of charge pairs formed by bimolecular recombination at high intensities. Bimolecular recombination is shown to reduce the turn-on time at high intensities, since the typical distance traveled by a charge pair is reduced.

  13. Ultrafast photocurrents in monolayer MoS2

    Science.gov (United States)

    Parzinger, Eric; Wurstbauer, Ursula; Holleitner, Alexander W.

    Two-dimensional transition metal dichalcogenides such as MoS2 have emerged as interesting materials for optoelectronic devices. In particular, the ultrafast dynamics and lifetimes of photoexcited charge carriers have attracted great interest during the last years. We investigate the photocurrent response of monolayer MoS2 on a picosecond time scale utilizing a recently developed pump-probe spectroscopy technique based on coplanar striplines. We discuss the ultrafast dynamics within MoS2 including photo-thermoelectric currents and the impact of built-in fields due to Schottky barriers as well as the Fermi level pinning at the contact region. We acknowledge support by the ERC via Project 'NanoREAL', the DFG via excellence cluster 'Nanosystems Initiative Munich' (NIM), and through the TUM International Graduate School of Science and Engineering (IGSSE) and BaCaTeC.

  14. Effect of photocurrent enhancement in porphyrin–graphene covalent hybrids

    International Nuclear Information System (INIS)

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A.

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH 2 TPP) by an amidation reaction between the amino group in NH 2 TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH 2 TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH 2 TPP-graphene-NH 2 TPP. Its UV–visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH 2 TPP and graphene oxide, because a 59 nm red shift of the strong graphene oxide absorption is observed from 238 to 297 nm, with significant spectral broadening between 300 and 700 nm. Fluorescence emission spectroscopy indicates efficient quenching of NH 2 TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH 2 TPP and GO. A reversible on/off photo-current density of 47 mA/cm 2 is observed when NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈ 1 eV, according to UV–visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84 eV for NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching. - Highlights: • Porphyrins are covalently bound to sheets of graphene oxide via an amidation reaction. • The formed hetero-junction interface decreases the optical band gap of graphene oxide. • Cyclic voltammetry predicts a graphene oxide band gap of 0.84 eV, which is easily photo-excited. • Its on/off photo-current density of 46 μA/cm 2 is 5-fold larger than that for physically stacked hybrid

  15. New enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection

    NARCIS (Netherlands)

    Welzel, S.

    2009-01-01

    Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell

  16. Electrodeposition of gold nanoparticles on mesoporous TiO{sub 2} photoelectrode to enhance visible region photocurrent

    Energy Technology Data Exchange (ETDEWEB)

    Supriyono,; Krisnandi, Yuni Krisyuningsih; Gunlazuardi, Jarnuzi, E-mail: jarnuzi@ui.ac.id [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    Electrodeposition of gold nanoparticles (Au NPs) on the mesoporous TiO{sub 2} photoelectrode to enchance visible region photocurrent have been investigated. Mesoporous TiO{sub 2} was prepared by a sol gel method and immobilized to the fluorine doped tin oxide (FTO) substrate by dip coating technique. Gold nanoparticles were electrodeposited on the TiO{sub 2} surface and the result FTO/TiO{sub 2}/Au was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray diffraction (XRD). The generated photocurrent was evaluated with an electrochemical workstation (e-DAQ/e-recorder 401) using 60 W wolfram lamp as visible light source. The photoelectrochemical evaluation indicated that the presence of gold nanoparticles on TiO{sub 2} photoelectrode shall enhance the photocurrent up to 50%.

  17. Photocurrent and photothermal current of polypyrrole (PPy) film

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Chongjun; Wang Haihong; Jiang Zhiyu

    2003-02-28

    The photoelectrochemical properties of polypyrrole (PPy) film in aqueous solutions in the potential region of -0.7 to 0.5 V (versus Ag/AgCl) were investigated by using photocurrent, photothermal and photothermal current methods under the irradiation of laser beams with wavelength of 532 and 632.8 nm, respectively. It was found that the photocurrent at more negative potential was caused by the p-type semiconductor properties, while the photocurrent at more positive potential was caused by the local temperature rather than the semiconductor properties of the films. The effect of the film thickness on the photocurrent of PPy films was studied in detail.

  18. Photocurrent and photothermal current of polypyrrole (PPy) film

    International Nuclear Information System (INIS)

    Zhao Chongjun; Wang Haihong; Jiang Zhiyu

    2003-01-01

    The photoelectrochemical properties of polypyrrole (PPy) film in aqueous solutions in the potential region of -0.7 to 0.5 V (versus Ag/AgCl) were investigated by using photocurrent, photothermal and photothermal current methods under the irradiation of laser beams with wavelength of 532 and 632.8 nm, respectively. It was found that the photocurrent at more negative potential was caused by the p-type semiconductor properties, while the photocurrent at more positive potential was caused by the local temperature rather than the semiconductor properties of the films. The effect of the film thickness on the photocurrent of PPy films was studied in detail

  19. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    CERN Document Server

    Krieger, A.; Catherall, R.; Hochschulz, F.; Kramer, J.; Neugart, R.; Rosendahl, S.; Schipper, J.; Siesling, E.; Weinheimer, Ch.; Yordanov, D.T.; Nortershauser, W.

    2011-01-01

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  20. Photocurrent spectra of semi-insulating GaAs M-S-M diodes: role of the contacts

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Oswald, Jiří; Kindl, Dobroslav; Hubík, Pavel; Dubecký, M.; Gombia, E.; Šagátová, A.; Boháček, P.; Sekáčová, M.; Nečas, V.

    2016-01-01

    Roč. 118, Apr (2016), 30-35 ISSN 0038-1101 Institutional support: RVO:68378271 Keywords : photocurrent spectroscopy * semi-insulating GaAs * detectors * contacts Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.580, year: 2016

  1. Enhanced photocurrent in engineered bacteriorhodopsin monolayer.

    Science.gov (United States)

    Patil, Amol V; Premaruban, Thenhuan; Berthoumieu, Olivia; Watts, Anthony; Davis, Jason J

    2012-01-12

    The integration of the transmembrane protein bacteriorhodopsin (BR) with man-made electrode surfaces has attracted a great deal of interest for some two decades or more and holds significant promise from the perspective of derived photoresponse or energy capture interfaces. Here we demonstrate that a novel and strategically engineered cysteine site (M163C) can be used to intimately and effectively couple delipidated BR to supporting metallic electrode surfaces. By virtue of the combined effects of the greater surface molecular density afforded by delipidation, and the vicinity of the electrostatic changes associated with proton pumping to the transducing metallic continuum, the resulting films generate a considerably greater photocurrent density on wavelength-selective illumination than previously achievable with monolayers of BR. Given the uniquely photoresponsive, wavelength-selective, and photostable characteristics of this protein, the work has implications for utilization in solar energy capture and photodetector devices.

  2. Dielectric spectroscopy technique applied to study the behaviour of irradiated polymer

    International Nuclear Information System (INIS)

    Saoud, R.; Soualmia, A.; Guerbi, C.A.; Benrekaa, N.

    2006-01-01

    Relaxation spectroscopy provides an excellent method for the study of motional processes in materials and has been widely applied to macromolecules and polymers. The technique is potentially of most interest when applied to irradiated systems. Application to the study of the structure beam-irradiated Teflon is thus an outstanding opportunity for the dielectric relaxation technique, particularly as this material exhibits clamping problems when subjected to dynamic mechanical relaxation studies. A very wide frequency range is necessary to resolve dipolar effects. In this paper, we discuss some significant results about the behavior and the modification of the structure of Teflon submitted to weak energy radiations

  3. Improve photocurrent quantum efficiency of carbon nanotube by chemical treatment

    International Nuclear Information System (INIS)

    Wang Hongguang; Wei Jinquan; Jia Yi; Li Zhen; Zhu Hongwei; Wang Kunlin; Wu Dehai

    2012-01-01

    Highlights: ► The QE of photocurrent for the H 2 O 2 -treated CNTs reaches to 5.28% at U bias = 0.1 V. ► Moderate chemical treatment can enhance the QE of photocurrent of CNTs. ► Excessive chemical treatment decreases the photocurrent quantum efficiency of CNTs. - Abstract: High photocurrent quantum efficiency (QE) of carbon nanotubes (CNTs) is important to their photovoltaic applications. The ability of photocurrent generation of CNTs depends on their band structure and surface state. For given CNTs, it is possible to improve the QE of photocurrent by chemical modification. Here, we study the effects of simple chemical treatment on the QE of CNTs by measuring the photocurrent of macroscopic CNT bundles. The QE of the H 2 O 2 -treated CNT bundle reaches 5.28% at 0.1 V bias voltage at a laser (λ = 473 nm) illumination, which is 85% higher than that of the pristine sample. But the QE of the CNTs treated in concentrated HNO 3 is lower than that of the pristine sample. It shows that moderate chemical treatment can enhance the photocurrent QE and excessive chemical treatment will decrease the QE because of introducing lots of structural defects.

  4. Ultrafast photocurrents and terahertz radiation in gallium arsenide and carbon based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prechtel, Hans Leonhard

    2011-08-15

    In this thesis we developed a measurement technique based on a common pump-probe scheme and coplanar stripline circuits that enables time-resolved photocurrent measurements of contacted nanosystems with a micrometer spatial and a picosecond time resolution. The measurement technique was applied to lowtemperature grown gallium arsenide (LT-GaAs), carbon nanotubes (CNTs), graphene, and p-doped gallium arsenide (GaAs) nanowires. The various mechanisms responsible for the generation of current pulses by pulsed laser excitation were reviewed. Furthermore the propagation of the resulting electromagnetic radiation along a coplanar stripline circuit was theoretically and numerically treated. The ultrafast photocurrent response of low-temperature grown GaAs was investigated. We found two photocurrent pulses in the time-resolved response. We showed that the first pulse is consistent with a displacement current pulse. We interpreted the second pulse to result from a transport current process. We further determined the velocity of the photo-generated charge carriers to exceed the drift, thermal and quantum velocities of single charge carriers. Hereby, we interpreted the transport current pulse to stem from an electron-hole plasma excitation. We demonstrated that the photocurrent response of CNTs comprises an ultrafast displacement current and a transport current. The data suggested that the photocurrent is finally terminated by the recombination lifetime of the charge carriers. To the best of our knowledge, we presented in this thesis the first recombination lifetime measurements of contacted, suspended, CVD grown CNT networks. In addition, we studied the ultrafast photocurrent dynamics of freely suspended graphene contacted by metal electrodes. At the graphene-metal interface, we demonstrated that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of a few picoseconds and that a photo-thermoelectric effect generates a current with a decay time

  5. Noise-spectroscopy of multiqubit systems: Determining all their parameters by applying an external classical noise

    Energy Technology Data Exchange (ETDEWEB)

    Savel' ev, S., E-mail: S.Saveliev@lboro.ac.uk [Department of Physics, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Zagoskin, A.M. [Department of Physics, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Omelyanchouk, A.N. [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); B. Verkin Institute for Low Temperature Physics and Engineering, 61103 Kharkov (Ukraine); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2010-10-05

    Imagine that you have several sets of two coupled qubits, but you do not know the parameters of their Hamitonians. How to determine these without resorting to the usual spectroscopy approach to the problem? Based on numerical modeling, we show that all the parameters of a system of two coupled qubits can be determined by applying to it an external classical noise and analyzing the Fourier spectrum of the elements of the system's density matrix. In particular, the interlevel spacings as well as the strength and sign of the qubit-qubit coupling can be determined this way.

  6. Mediator-assisted photocurrent extraction from the thylakoids

    International Nuclear Information System (INIS)

    Yu, Yue; Zuo, Fulin; Li, Chen-Zhong

    2014-01-01

    Photocurrent extracted from the thylakoids has been studied as a function of electron mediator concentration. Phenazine methosulfate is used to facilitate the charge transfer from the thylakoid's charge transport chain to the outside medium. The photocurrent has been shown to originate from the photosynthesis on the thylakoid membranes. Comparing with a previous study using para-Benzoquinone as the mediator, a similar peak effect in the photocurrent as a function of concentration is observed, but the magnitude of the current is nearly a thousand times greater. A semi-quantitative analysis is presented to explain the data found in those systems

  7. Raman spectroscopy and capillary electrophoresis applied to forensic colour inkjet printer inks analysis.

    Science.gov (United States)

    Król, Małgorzata; Karoly, Agnes; Kościelniak, Paweł

    2014-09-01

    Forensic laboratories are increasingly engaged in the examination of fraudulent documents, and what is important, in many cases these are inkjet-printed documents. That is why systematic approaches to inkjet printer inks comparison and identification have been carried out by both non-destructive and destructive methods. In this study, micro-Raman spectroscopy and capillary electrophoresis (CE) were applied to the analysis of colour inkjet printer inks. Micro-Raman spectroscopy was used to study the chemical composition of colour inks in situ on a paper surface. It helps to characterize and differentiate inkjet inks, and can be used to create a spectra database of inks taken from different cartridge brands and cartridge numbers. Capillary electrophoresis in micellar electrophoretic capillary chromatography mode was applied to separate colour and colourless components of inks, enabling group identification of those components which occur in a sufficient concentration (giving intensive peaks). Finally, on the basis of the obtained results, differentiation of the analysed inks was performed. Twenty-three samples of inkjet printer inks were examined and the discriminating power (DP) values for both presented methods were established in the routine work of experts during the result interpretation step. DP was found to be 94.0% (Raman) and 95.6% (CE) when all the analysed ink samples were taken into account, and it was 96.7% (Raman) and 98.4% (CE), when only cartridges with different index numbers were considered. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  9. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  10. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Cui, Jin [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Li, Junpeng [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); Cao, Kun; Yuan, Shuai [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Cheng, Yibing [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Wang, Mingkui, E-mail: mingkui.wang@mail.hust.edu.cn [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China)

    2015-09-15

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO{sub 2} on p-type dye-sensitized solar cells. Au nanorod@SiO{sub 2} works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO{sub 2} shows overall power conversion efficiencies of about 0.2% in combination with I{sup −}/I{sub 3}{sup −} electrolyte, and 0.29% with T{sup −}/T{sub 2} electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO{sub 2} contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent.

  11. Imaging of Polarization-dependent Photocurrent in Graphene Photodevices

    Science.gov (United States)

    Kim, Minjung; Yoon, Duhee; Ang Yoon, Ho; Lee, Sang Wook; Cheong, Hyeonsik

    2012-02-01

    Recently, a metal-graphene-metal photodetector for high-speed optical communications was reported. In addition, a graphene-based photodetector was reported to be able to absorb broadband light owing to the unique band structure of graphene [Mueller et al., Nature Photonics 4, 297 (2010)]. We investigated the polarization dependence of the photocurrent generated in metal-graphene-metal junctions. The graphene photodevice was fabricated by depositing Pd/Au and Ti/Au electrodes on single-layer graphene samples. When the polarization of incident laser beam is rotated with respect to the metal-graphene-metal junction, the photocurrent is significantly modulated. In addition, we measured the exact positions where the photocurrent is generated by measuring the photocurrent and Raman images of the graphene photodevices simultaneously.

  12. Photocurrent analysis of AgIn5S8 crystal

    Indian Academy of Sciences (India)

    Similarly, the dark current–voltage characteristics consisted of a single ... Photocurrent; spectral distribution; trapping; temperature dependence; .... powder was analysed by using XRD system (Rigaku Ultima- ... then drop and fill these holes.

  13. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings

    Science.gov (United States)

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.

    2018-04-01

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  14. A new method for determining the transient photocurrent in an irradiated diode

    International Nuclear Information System (INIS)

    Bruguier, G.; Pelanchon, F.; Sudre, C.; Moreau, Y.; De la Rochette, H.; Baggio, J.; Gasiot, J.; Azais, B.

    1994-01-01

    An analytical expression of the photocurrent in a n-p junction exposed to an ionizing radiation pulse is derived by using a specific decomposition of the minority carrier density. Modeling can be applied to any shape of actual radiation pulses, in particular with significant rise times. Comparisons with experiments and numerical resolutions have shown the validity of the modeling. (author). 8 refs., 2 figs., Appendix (calculations)

  15. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, A., E-mail: kriegea@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Geppert, Ch. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Catherall, R. [CERN, CH-1211 Geneve 23 (Switzerland); Hochschulz, F. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Kraemer, J.; Neugart, R. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Rosendahl, S. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Schipper, J.; Siesling, E. [CERN, CH-1211 Geneve 23 (Switzerland); Weinheimer, Ch. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Yordanov, D.T. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany)

    2011-03-11

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the high-voltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequency-comb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  16. Effect of iodine doping of phthalocyanine on the photocurrent generation in a phthalocyanine/C{sub 60} heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Shinsei; Iyota, Masatoshi; Tanaka, Senku; Hiromitsu, Ichiro, E-mail: hiromitu@riko.shimane-u.ac.jp

    2012-06-30

    Photocurrent generation in an indium-tin oxide (ITO)/iodine-doped Ni-phthalocyanine (NiPc-I{sub x})/C{sub 60}/In/Al heterojunction device with x {approx} 1 was studied. By keeping the device in air after preparation, the device slowly reached a stationary state in which the sign of the photocurrent is opposite to that of a non-doped ITO/NiPc/C{sub 60}/In/Al device although the rectification direction for the dark current is the same. By a simulation of incident photon-to-current conversion efficiency spectra and a measurement of internal electric field by electroabsorption spectroscopy, it was elucidated that, in the doped device, the band bending near the phthalocyanine/C{sub 60} interface is absent and the photocurrent is generated by a weak Schottky barrier at the C{sub 60}/In interface. It is also shown that the C{sub 60} film encapsulates the doped iodine into the NiPc-I{sub x} layer to stabilize the doping level and prevent the reaction of iodine with In. - Highlights: Black-Right-Pointing-Pointer The C{sub 60} film deposited on a NiPc-I{sub x} film encapsulates the doped iodine. Black-Right-Pointing-Pointer An iodine-doped device generates a photocurrent of inverted direction. Black-Right-Pointing-Pointer The internal electric field is also inverted. Black-Right-Pointing-Pointer The activity of photocurrent generation at the heterojunction is quenched. Black-Right-Pointing-Pointer Photocurrent is generated at the C{sub 60}/In interface.

  17. Laser induced photoacoustic spectroscopy applied to a study on coagulation processes of Tc(IV) colloid

    International Nuclear Information System (INIS)

    Sekine, T.; Kino, S.; Kino, Y.; Kudo, H.

    2001-01-01

    Quantitative determination of size and concentration of colloid particles in aqueous solutions was performed by laser induced photoacoustic spectroscopy (LPAS), and this technique was applied to a study on coagulation processes of Tc(IV) colloids. The intensity of photoacoustic signals from colloid particles (polystyrene, gold sols) was successfully calculated as a product of the number of particles and the absorption cross section per particle based on the Mie's light scattering theory. With this technique, the coagulation of Tc(IV) colloids prepared by the reduction of TcO 4 with Sn(II) was observed. The observed growth rate of colloid particles was successfully analyzed by a newly developed collision model, in which both the distribution of the kinetic energy of particles and the potential barrier between the two particles played significant roles. (author)

  18. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    International Nuclear Information System (INIS)

    Lademann, J; Richter, H; Patzelt, A; Darvin, M; Sterry, W; Fluhr, J W; Caspers, P J; Van der Pol, A; Zastrow, L

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC

  19. Enhanced photocurrent in RuL2(NCS)2/di-(3-aminopropyl)-viologen/SnO2/ITO system

    International Nuclear Information System (INIS)

    Lee, Wonjoo; Kwak, Chang Gon; Mane, R.S.; Min, Sun Ki; Cai, Gangri; Ganesh, T.; Koo, Gumae; Chang, Jinho; Cho, Byung Won; Kim, Sei-Ki; Han, Sung-Hwan

    2008-01-01

    A Ru(2,2'-bipyridine-4,4'-dicarboxylic acid) 2 (NCS) 2 [RuL 2 (NCS) 2 ]/di-(3-aminopropyl)-viologen (DAPV)/tin oxide (SnO 2 ) system was prepared and applied to extensive photocurrent generation with its maximum surface area. The SnO 2 thin films on tin-doped indium oxide (ITO) were prepared using the chemical bath deposition method. Then, RuL 2 (NCS) 2 /DAPV on SnO 2 /ITO was easily prepared using self-assembled monolayers (SAMs). The photocurrent measurement of the system showed an excellent photocurrent of 20 nA cm -2 under the air mass 1.5 conditions (100 mW cm -2 ), which was increased by a factor of four compared to ones without SnO 2 layers

  20. Radiation-Induced Prompt Photocurrents in Microelectronics Physics

    CERN Document Server

    Dodd, P E; Buller, D L; Doyle, B L; Vizkelethy, G; Walsh, D S

    2003-01-01

    The effects of photocurrents in nuclear weapons induced by proximal nuclear detonations are well known and remain a serious hostile environment threat for the US stockpile. This report describes the final results of an LDRD study of the physical phenomena underlying prompt photocurrents in microelectronic devices and circuits. The goals of this project were to obtain an improved understanding of these phenomena, and to incorporate improved models of photocurrent effects into simulation codes to assist designers in meeting hostile radiation requirements with minimum build and test cycles. We have also developed a new capability on the ion microbeam accelerator in Sandia's Ion Beam Materials Research Laboratory (the Transient Radiation Microscope, or TRM) to supply ionizing radiation in selected micro-regions of a device. The dose rates achieved in this new facility approach those possible with conventional large-scale dose-rate sources at Sandia such as HERMES III and Saturn. It is now possible to test the phy...

  1. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  2. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  3. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics

    KAUST Repository

    Kemp, K. W.; Wong, C. T. O.; Hoogland, S. H.; Sargent, E. H.

    2013-01-01

    The efficiency of photocurrent extraction was studied directly inside operating Colloidal Quantum Dot (CQD) photovoltaic devices. A model was derived from first principles for a thin film p-n junction with a linearly spatially dependent electric field. Using this model, we were able to clarify the origins of recent improvement in CQD solar cell performance. From current-voltage diode characteristics under 1 sun conditions, we extracted transport lengths ranging from 39 nm to 86 nm for these materials. Characterization of the intensity dependence of photocurrent extraction revealed that the dominant loss mechanism limiting the transport length is trap-mediated recombination. © 2013 AIP Publishing LLC.

  4. Photoacoustic spectroscopy applied to the optical characterization of calcium phosphates for biomedical use

    Energy Technology Data Exchange (ETDEWEB)

    Mendez G, M. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Cruz O, A. [CINVESTAV, Dept. of Physics, 07360 Mexico D.F. (Mexico)

    2007-07-01

    Full text: Photoacoustic Spectroscopy (PAS), based on the Rosencwaig and Gersho model, has been used for thermal and optical characterization of diverse materials. The use of PAS has become an important tool because is a nondestructive and no contact analytical technique. Furthermore its use to measure optical absorption spectra has advantages over the usual transmission measurements due to important features as the fact that scattered light does not disturb the measurements significantly and also the sample don't need to be prepared to have good quality surfaces. Then the optical properties of biological samples can be easily investigated with this technique. In the present study PAS is applied to obtain the optical absorption spectra of hydroxyapatite (HAp) [Ca{sub 10} (PO{sub 4} ){sub 6} (OH ){sub 2}] and bioactive calcium phosphates. The spectra of these samples ranged from 300 to 800 nm. All samples were prepared in a power form with particle size < 741m. Complementary studies X-ray diffraction and EDC were performed. (Author)

  5. Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone

    Science.gov (United States)

    Muller, Marie; Sutin, Alexander; Guyer, Robert; Talmant, Maryline; Laugier, Pascal; Johnson, Paul A.

    2005-12-01

    Nonlinear resonant ultrasound spectroscopy (NRUS) is a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency(ies) of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity is manifest by a shift in the resonance frequency. This study shows the feasibility of this technique for application to damage assessment in bone. Two samples of bovine cortical bone were subjected to progressive damage induced by application of mechanical cycling. Before cycling commenced, and at each step in the cycling process, NRUS was applied for damage assessment. For independent assessment of damage, high-energy x-ray computed tomography imaging was performed but was only useful in identifying the prominent cracks. As the integral quantity of damage increased, NRUS revealed a corresponding increase in the nonlinear response. The measured change in nonlinear response is much more sensitive than the change in linear modulus. The results suggest that NRUS could be a potential tool for micro-damage assessment in bone. Further work must be carried out for a better understanding of the physical nature of damaged bone and for the ultimate goal of the challenging in vivo implementation of the technique.

  6. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages

    International Nuclear Information System (INIS)

    Brai, Maria; Gennaro, Gaetano; Schillaci, Tiziano; Tranchina, Luigi

    2009-01-01

    The laser-induced breakdown spectroscopy (LIBS) is an applied physical technique that has shown in recent years its great potential for rapid qualitative analysis of materials. Thanks to the possibility to implement a portable instrument that perform LIBS analysis, this technique is revealed to be particularly useful for in situ analysis in the field of cultural heritages. The purpose of this work is to evaluate the potentiality of LIBS technique in the field of cultural heritages, with respect to the chemical characterization of complex matrix as calcareous and refractory materials for further quantitative analyses on cultural heritages. X-Ray Fluorescence (XRF) analyses were used as reference. Calibration curves of certified materials used as standards were obtained by XRF analyses. The LIBS measurements were performed with a new mobile instrument called Modi (Mobile Double pulse Instrument for LIBS Analysis). The XRF analyses were performed with a portable instrument ArtTAX. LIBS and XRF measurement were performed on both reference materials and samples (bricks and mortars) sampled in the ancient Greek-Roman Theatre of Taormina. Although LIBS measurements performed on reference materials have shown non linear response to concentrations, and so we were not able to obtain quantitative results, an integrated study of XRF and LIBS signals permitted us to distinguish among chemical features and degradation state of measured building materials.

  7. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages

    Energy Technology Data Exchange (ETDEWEB)

    Brai, Maria; Gennaro, Gaetano [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy); Schillaci, Tiziano, E-mail: tschillaci@unipa.i [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy); Tranchina, Luigi [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy)

    2009-10-15

    The laser-induced breakdown spectroscopy (LIBS) is an applied physical technique that has shown in recent years its great potential for rapid qualitative analysis of materials. Thanks to the possibility to implement a portable instrument that perform LIBS analysis, this technique is revealed to be particularly useful for in situ analysis in the field of cultural heritages. The purpose of this work is to evaluate the potentiality of LIBS technique in the field of cultural heritages, with respect to the chemical characterization of complex matrix as calcareous and refractory materials for further quantitative analyses on cultural heritages. X-Ray Fluorescence (XRF) analyses were used as reference. Calibration curves of certified materials used as standards were obtained by XRF analyses. The LIBS measurements were performed with a new mobile instrument called Modi (Mobile Double pulse Instrument for LIBS Analysis). The XRF analyses were performed with a portable instrument ArtTAX. LIBS and XRF measurement were performed on both reference materials and samples (bricks and mortars) sampled in the ancient Greek-Roman Theatre of Taormina. Although LIBS measurements performed on reference materials have shown non linear response to concentrations, and so we were not able to obtain quantitative results, an integrated study of XRF and LIBS signals permitted us to distinguish among chemical features and degradation state of measured building materials.

  8. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Material characterization may be carried out by the attenuated total reflectance (ATR Fourier transform infrared (FTIR radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Thus ATR saves time and enables the study of materials in a pristine condition, that is, the comprehensive sample preparation by pressing thin KBr pellets in traditional FTIR transmittance spectroscopy is hence avoided. Materials and their ageing processes, both ageing by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect wood rot decay and mould fungi growth on various building material substrates. An experimental challenge and aim is to be able to detect the wood rot decay and mould fungi growth at early stages when it is barely visible to the naked eye. Another goal is to be able to distinguish between various species of fungi and wood rot.

  9. Chemometric methods and near-infrared spectroscopy applied to bioenergy production

    International Nuclear Information System (INIS)

    Liebmann, B.

    2010-01-01

    The present work examines bioenergy production from different viewpoints. The three main objectives are: (1) to reveal the relation of technology, sustainability and economy in bioenergy processes; (2) to investigate spectroscopic methods as a tool for analytical monitoring of bioenergy processes; and (3) to develop new chemometric methods for advanced analysis of spectroscopic data. At the first stage, this thesis investigates the technological, ecological, and economic features of renewable-resource-based and de-centralized bioenergy production systems. In different scenarios, small-scale bioethanol production is combined with other technologies that provide renewable energy from residuals of the bioethanol process. The general aim is to substitute fossil energy conventionally used within the bioethanol process. The investigated technologies are biogas production and straw incineration. Agricultural aspects are introduced by sustainable crop rotation concepts that reconcile food, feed, and biofuel production. The sustainability of small-scale bioethanol production in the different scenarios is quantified by an ecological footprint method, the sustainable process index, SPI, and compared to conventional fuels. The main findings are: (i) small-scaled bioethanol production can be operated with 100 % renewable energy supply, (ii) the SPI of bioethanol can be reduced up to 92 % compared to conventional fuels, (iii) a complex trade-off between ecology-of-scale and economy-of-scale is necessary. At the second stage, this thesis approaches bioenergy production processes from an analytical perspective, and presents near-infrared spectroscopy (NIR) as promising method for fast process monitoring of bioethanol production and biomass characterization. In addition, new analytical methods are presented for a fast determination of the heating value of solid biomass fuel, based on IR and NIR spectroscopy. The main findings are that NIR spectroscopy and appropriate chemometric

  10. Characterization of Campylobacter jejuni applying flaA short variable region sequencing, multilocus sequencing and Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas

    flaA short variable region sequencing and phenetic Fourier transform infrared (FTIR) spectroscopy was applied on a collection of 102 Campylobacter jejuni isolated from continuous sampling of organic, free range geese and chickens. FTIR has been shown to serve as a valuable tool in typing...

  11. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  12. Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.

    Science.gov (United States)

    Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina

    2016-03-21

    Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development.

  13. Comparison of electroluminescence intensity and photocurrent of polymer based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Ulrich; Swonke, Thomas; Auer, Richard [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); Pinna, Luigi; Brabec, Christoph J. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); I-MEET, University Erlangen (Germany); Stubhan, Tobias; Li, Ning [I-MEET, University Erlangen (Germany)

    2011-11-15

    The reciprocity theorem for solar cell predicts a linear relation between electroluminescence emission and photovoltaic quantum efficiency and an exponential dependence of the electroluminescence signal on the applied voltage. Both dependencies are experimentally verified for polymer based solar cells in this paper. Furthermore it is shown, that electroluminescence imaging of organic solar cells has the potential to visualize the photocurrent distribution significantly faster than standard laser beam induced current mapping (LBIC) techniques. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Knut, Ronny; Lindblad, Rebecka [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Gorgoi, Mihaela [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Rensmo, Håkan [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Karis, Olof, E-mail: olof.karis@physics.uu.se [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden)

    2013-10-15

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems.

  15. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    International Nuclear Information System (INIS)

    Knut, Ronny; Lindblad, Rebecka; Gorgoi, Mihaela; Rensmo, Håkan; Karis, Olof

    2013-01-01

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems

  16. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  17. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  18. Laser spectroscopy: Assessment of research needs for laser technologies applied to advanced spectroscopic methods

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1990-05-01

    This report is organized as follows. Section 2 summarizes the current program of DOE's Office of Health and Environmental Research (OHER) and provides some remarks on low laser science and technology could beneficially impact most of the research programs. Section 3 provides a brief global perspective on laser technology and attempts to define important trends in the field. Similarly, Section 4 provides a global perspective on laser spectroscopy and addresses important trends. Thus, Section 5 focuses on the trends in laser technology and spectroscopy which could impact the OHER mission in significant ways and contains the basis for recommendations made in the executive summary. For those with limited familiarity with laser technology and laser spectroscopy, reference is made to Appendix 1 for a list of abbreviations and acronyms. Appendix 2 can serve a useful review or tutorial for those who are not deeply involved with laser spectroscopy. Even those familiar with laser spectroscopy and laser technology may find it useful to know precisely what the authors of this document mean by certain specialized terms and expressions. Finally, a note on the style of referencing may be appropriate. Whenever possible a book or review articles is referenced as the preferred citation. However, we frequently found it useful to reference a number of individual papers of recent origin or those which were not conveniently found in the review articles

  19. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing.

    Science.gov (United States)

    Quintelas, Cristina; Ferreira, Eugénio C; Lopes, João A; Sousa, Clara

    2018-01-01

    The sustained emergence of new declared bacterial species makes typing a continuous challenge for microbiologists. Molecular biology techniques have a very significant role in the context of bacterial typing, but they are often very laborious, time consuming, and eventually fail when dealing with very closely related species. Spectroscopic-based techniques appear in some situations as a viable alternative to molecular methods with advantages in terms of analysis time and cost. Infrared and mass spectrometry are among the most exploited techniques in this context: particularly, infrared spectroscopy emerged as a very promising method with multiple reported successful applications. This article presents a systematic review on infrared spectroscopy applications for bacterial typing, highlighting fundamental aspects of infrared spectroscopy, a detailed literature review (covering different taxonomic levels and bacterial species), advantages, and limitations of the technique over molecular biology methods and a comparison with other competing spectroscopic techniques such as MALDI-TOF MS, Raman, and intrinsic fluorescence. Infrared spectroscopy possesses a high potential for bacterial typing at distinct taxonomic levels and worthy of further developments and systematization. The development of databases appears fundamental toward the establishment of infrared spectroscopy as a viable method for bacterial typing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Açikgöz, Güneş; Hamamci, Berna; Yildiz, Abdulkadir

    2018-04-01

    Alcohol consumption triggers toxic effect to organs and tissues in the human body. The risks are essentially thought to be related to ethanol content in alcoholic beverages. The identification of ethanol in blood samples requires rapid, minimal sample handling, and non-destructive analysis, such as Raman Spectroscopy. This study aims to apply Raman Spectroscopy for identification of ethanol in blood samples. Silver nanoparticles were synthesized to obtain Surface Enhanced Raman Spectroscopy (SERS) spectra of blood samples. The SERS spectra were used for Partial Least Square (PLS) for determining ethanol quantitatively. To apply PLS method, 920~820 cm -1 band interval was chosen and the spectral changes of the observed concentrations statistically associated with each other. The blood samples were examined according to this model and the quantity of ethanol was determined as that: first a calibration method was established. A strong relationship was observed between known concentration values and the values obtained by PLS method (R 2 = 1). Second instead of then, quantities of ethanol in 40 blood samples were predicted according to the calibration method. Quantitative analysis of the ethanol in the blood was done by analyzing the data obtained by Raman spectroscopy and the PLS method.

  1. Non-equilibrium umbrella sampling applied to force spectroscopy of soft matter.

    Science.gov (United States)

    Gao, Y X; Wang, G M; Williams, D R M; Williams, Stephen R; Evans, Denis J; Sevick, E M

    2012-02-07

    Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane.

  2. SPIN-POLARIZED PHOTOCURRENT THROUGH QUANTUM DOT PHOTODETECTOR

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The theory of the photocurrent through the photodetector based on a two-level semiconductor quantum dot (QD is presented. The analytical expressions of the matrix elements of the electronic transitions generated by the absorption of the circularly polarized photons are derived in the lowest order of the perturbation theory with respect to the electron tunneling interaction as well as the electron-photon interaction. From these expressions the mechanism of the generation of the spin-polarized of electrons in the photocurrent is evident. It follows that the photodetector based on the two-level semiconductor QD can be used as the model of a source of highly spinpolarized electrons.

  3. Raman spectroscopy applied to identify metabolites in urine of physically active subjects.

    Science.gov (United States)

    Moreira, Letícia Parada; Silveira, Landulfo; da Silva, Alexandre Galvão; Fernandes, Adriana Barrinha; Pacheco, Marcos Tadeu Tavares; Rocco, Débora Dias Ferraretto Moura

    2017-11-01

    Raman spectroscopy is a rapid and non-destructive technique suitable for biological fluids analysis. In this work, dispersive Raman spectroscopy has been employed as a rapid and nondestructive technique to detect the metabolites in urine of physically active subjects before and after vigorous 30min pedaling or running compared to sedentary subjects. For so, urine samples from 9 subjects were obtained before and immediately after physical activities and submitted to Raman spectroscopy (830nm excitation, 250mW laser power, 20s integration time) and compared to urine from 5 sedentary subjects. The Raman spectra of urine from sedentary showed peaks related to urea, creatinine, ketone bodies, phosphate and other nitrogenous compounds. These metabolic biomarkers presented peaks with different intensities in the urine of physically active individuals after exercises compared to before, measured by the intensity of selected peaks the Raman spectra, which means different concentrations after training. These peaks presented different intensity values for each subject before physical activity, also behaving differently compared to the post-training: some subjects presented increase while others decrease the intensity. Raman spectroscopy may allow the development of a rapid and non-destructive test for metabolic evaluation of the physical training in active and trained subjects using urine samples, allowing nutrition adjustment with the sport's performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  5. Two-dimensional optical correlation spectroscopy applied to liquid/glass dynamics

    OpenAIRE

    Lazonder, Kees; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2007-01-01

    Correlation spectroscopy was used to study the effects of temperature and phase changes on liquid and glass solvent dynamics. By assessing the eccentricity of the elliptic shape of a 2D optical correlation spectrum the value of the underlying frequency-frequency correlation function can be retrieved through a very simple relationship. This method yielded both intuitive clues and a quantitative measure of the dynamics of the system.

  6. Electron spin resonance (ESR) spectroscopy applied to radiation dosimetry and other fields

    International Nuclear Information System (INIS)

    Schneider, C.C.J.

    1994-12-01

    A short introduction to the theory and practice of ESR spectroscopy is given. ESR alanine dosimetry for low and high LET (linear energy transfer) ionising radiation is described, indicating its advantages over traditional methods. Problems arising in the therapy dose range (below 5 Gy), and possible future developments, are mentioned. The application of ESR to the radiation processing of materials and foodstuffs, to geological dating, biology, molecular chemistry and to medicine is discussed. Some examples of chemical analyses are also presented. (orig.)

  7. Design and construction of prompt-gamma spectroscopy facility applied to the boron determination

    International Nuclear Information System (INIS)

    Poblete, Victor; Henriquez, Carlos; Klein, Juan; Navarro, Gustavo

    1996-01-01

    A prompt-gamma spectroscopy facility was developed using the south tangential neutron beam of the RECH-1 research reactor for boron determination. The implementation of a thermal neutron beam was performed considering different aspects such as biological protection of working area and the beam collimation for a Ge detector, design and sample holder selection, standards and sample preparation. One ppm of Boron in different samples with counting-rate of 20 minutes and a good accuracy were determined. (author)

  8. Trasmission and Reflection (ATR)Far-Infrared Spectroscopy Applied in the Analysis of Cultural Heritage Materials

    OpenAIRE

    Kendix, Elsebeth Langholz

    2009-01-01

    FIR spectroscopy is an alternative way of collecting spectra of many inorganic pigments and corrosion products found on art objects, which is not normally observed in the MIR region. Most FIR spectra are traditionally collected in transmission mode but as a real novelty it is now also possible to record FIR spectra in ATR (Attenuated Total Reflectance) mode. In FIR transmission we employ polyethylene (PE) for preparation of pellets by embedding the sample in PE. Unfortunately, ...

  9. From dating to biophysics -- 20 years of progress in applied ESR spectroscopy

    International Nuclear Information System (INIS)

    Regulla, Dieter

    2000-01-01

    ESR spectroscopy represents a tool for quantitative radiation analysis that was developed somehow simultaneously for dating purposes in Japan and in Germany for high-level standardization, in the mid-seventies. Meanwhile, ESR dosimetry has reached an established metrology level. Present research fields of ESR dosimetry consider post-accident dose reconstruction in the environment, and biophysical dosimetry using human tissues. The latter promises a re-definition of radiation risk for chronicle exposure to be derived from individuals of the early nuclear facilities in Russia, and hopefully United States in the future. An attempt is made to sketch development and potential future of the ESR technique

  10. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys

    Science.gov (United States)

    Liu, Wen; Zhang, Yuying; Yang, Si; Han, Donghai

    2018-05-01

    A new technique to identify the floral resources of honeys is demanded. Terahertz time-domain attenuated total reflection spectroscopy combined with chemometrics methods was applied to discriminate different categorizes (Medlar honey, Vitex honey, and Acacia honey). Principal component analysis (PCA), cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) have been used to find information of the botanical origins of honeys. Spectral range also was discussed to increase the precision of PLS-DA model. The accuracy of 88.46% for validation set was obtained, using PLS-DA model in 0.5-1.5 THz. This work indicated terahertz time-domain attenuated total reflection spectroscopy was an available approach to evaluate the quality of honey rapidly.

  11. Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements

    Science.gov (United States)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Okur, Serdal; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2014-02-01

    Carrier transport in double heterostructure (DH) InGaN light emitting diodes (LEDs) was investigated using photocurrent measurements performed under CW HeCd laser (325 nm wavelength) excitation. The effect of electron injector thicknesses was investigated by monitoring the excitation density and applied bias dependent escape of photogenerated carriers from the active region and through energy band structure and carrier transport simulations using Silvaco Atlas. For quad (4x) 3-nm DH LED structures incorporating staircase electron injectors (SEIs), photocurrent increased with SEI thickness due to reduced effective barrier opposing carrier escape from the active region as confirmed by simulations. The carrier leakage percentile at -3V bias and 280 Wcm-2 optical excitation density increased from 24 % to 55 % when In 0.04Ga0.96N + In0.08Ga0.92N SEI thickness was increased from 4 nm + 4 nm to 30 nm + 30 nm. The increased leakage with thicker SEI correlates with increased carrier overflow under forward bias.

  12. Time dependent rise and decay of photocurrent in zinc oxide nanoparticles in ambient and vacuum medium

    Science.gov (United States)

    C, Rajkumar; Srivastava, Rajneesh K.

    2018-05-01

    Zinc oxide (ZnO) nanoparticle has been synthesized by cost effective Co-precipitation method and studied its photo-response activity. The synthesized ZnO nanomaterial was characterized by using various analytical techniques such as x-ray diffraction (XRD), UV–visible spectroscopy, FTIR spectroscopy, photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). From the XRD results, it is confirmed that synthesized ZnO nanomaterial possess hexagonal wurtzite phase structure with an average crystallite size of ∼16–17 nm. The UV-Visible absorption spectrum shows that it has blue shift compared to their bulk counterparts. Photoluminescence spectra of ZnO nanoparticles have a strong violet band at 423 nm and three weak bands at 485 nm (blue), 506 nm (green), and 529 nm (green). The presence of hydroxyl group was confirmed by FTIR. The photo-response analysis was studied by the time-dependent rise and decay photocurrent of ZnO nanoparticle was tested in the air as well as vacuum medium.

  13. Spectroscopy applied to feed additives of the European Union Reference Laboratory: a valuable tool for traceability.

    Science.gov (United States)

    Omar, Jone; Slowikowski, Boleslaw; Boix, Ana; von Holst, Christoph

    2017-08-01

    Feed additives need to be authorised to be placed on the market according to Regulation (EU) No. 1831/2003. Next to laying down the procedural requirements, the regulation creates the European Union Reference Laboratory for Feed Additives (EURL-FA) and requires that applicants send samples to the EURL-FA. Once authorised, the characteristics of the marketed feed additives should correspond to those deposited in the sample bank of the EURL-FA. For this purpose, the submitted samples were subjected to near-infrared (NIR) and Raman spectroscopy for spectral characterisation. These techniques have the valuable potential of characterising the feed additives in a non-destructive manner without any complicated sample preparation. This paper describes the capability of spectroscopy for a rapid characterisation of products to establish whether specific authorisation criteria are met. This study is based on the analysis of feed additive samples from different categories and functional groups, namely products containing (1) selenium, (2) zinc and manganese, (3) vitamins and (4) essential oils such as oregano and thyme oil. The use of chemometrics turned out to be crucial, especially in cases where the differentiation of spectra by visual inspection was very difficult.

  14. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    International Nuclear Information System (INIS)

    Yoon, Sangcheol; Hwang, Inchan; Park, Byoungchoo

    2015-01-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole–Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers. (paper)

  15. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  16. Degree of dissociation measured by FTIR absorption spectroscopy applied to VHF silane plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.

    1997-10-01

    In situ Fourier transform infrared (FTIR) absorption spectroscopy has been used to determine the fractional depletion of silane in a radio-frequency (rf) glow discharge. The technique used a simple single pass arrangement and was implemented in a large area industrial reactor for deposition of amorphous silicon. Measurements were made on silane plasmas for a range of excitation frequencies. It was observed that at constant plasma power, the fractional depletion increased from 35% at 13.56 MHz to 70% at 70 MHz. With a simple model based on the density continuity equations in the gas phase, it was shown that this increase is due to a higher dissociation rate and is largely responsible for the observed increase in the deposition rate with the frequency. (author) 5 figs., 30 refs

  17. Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Aguilar, C.; Michtchenko, A. [Instituto Politecnico Nacional (Mexico); Carballo, A. [Colegio de Postgraduados, Programa de Semillas (IREGEP) (Mexico); Cruz-Orea, A. [Centro de Investigacion y de Estudios Avanzados-IPN (Mexico); Ivanov, R. [Universidad Autonoma de Zacatecas, Unidad Academia de Fisica (Mexico); San Martin Martinez, E. [Centro de Investigacion en ciencia Aplicada y Tecnologia Avanzada-IPN (Mexico)

    2005-06-01

    In the present study we were interested in the effects of low intensity laser irradiation on hybrid corn seeds CL{sub 1} x CL{sub 4} when these seeds were exposed to different laser intensities and irradiation times. In order to observe qualitative differences in chlorophyll a and b optical absorption spectra of seedling's leaves, whose seeds were irradiated and non irradiated, were obtained by using photoacoustic spectroscopy (PAS). A randomized complete blocks experimental design with three replications was used. The experimental unit included 10 seeds, from which we randomly choose three seedlings. The variance analysis (ANOVA) for both chlorophylls revealed significant (P < 0.05) differences among treatments. (authors)

  18. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses.

    Science.gov (United States)

    Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques

    2018-01-01

    The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2), about 49%, and the oleic monounsaturated (18  :  1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  19. Experimental study by infrared spectroscopy of irradiation effects in silicates and ices, applied to astrophysics

    International Nuclear Information System (INIS)

    Rocard, F.

    1986-05-01

    This thesis presents the study of the radiation effects (erosion and synthesis) with ions of low energy (a few KeV/u) in silicates and ices. The erosion of the H 2 O ice is analysed by infrared spectroscopy versus different parameters: ion beam flux, mass and energy of the ions, and the thickness of the samples. The interpretation is that the erosion of the ice comes mainly from the dissociation, along the ion range, of the H 2 O molecules. A study of the synthesis in SiO 2 and H 2 O by carbon, nitrogen and hydrogen implantation leads to the characterization of the synthesized molecules and the determination of the yields. The irradiation of ices mixtures (H 2 O, CO 2 and NH 3 ) leads to the synthesis of a great variety of molecules which are identified. The experimental results are extrapolated to different astrophysical situations in the solar cavity (Moon, satellites of giant planets, comets) and in the interstellar medium (molecular clouds) [fr

  20. Muon level crossing resonance spectroscopy applied to free-radical formation

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Barnabas, M.V.; Walker, D.C.

    1989-01-01

    Muon Level Crossing Resonance Spectroscopy has been used to explore two aspects of muonium chemistry: unique free radicals and muonated radical yields. (1) A variety of new free-radicals have been seen by LCR. For instance, in thioacetamide the only radical produced from muonium is the S sm-bullet radical formed when Mu adds to the C of the C=S bond. In allylbenzene a whole range of radicals form with substantial yields (two side-chain and three ring additions); whereas in styrene, 85% of the radicals have Mu bonded to the end C of the side-chain and there is no meta-adduct at all. (2) Absolute yields of the radicals formed by interaction of muonium atoms in water with acrylamide as a solute (and with benzene in n-hexane) have shown that all muons not directly incorporated into diamagnetic molecules (such as MuH) appear as muonated free radicals. i.e. the missing fraction is found

  1. Applying Fourier Transform Mid Infrared Spectroscopy to Detect the Adulteration of Salmo salar with Oncorhynchus mykiss

    Science.gov (United States)

    Moreira, Maria João

    2018-01-01

    The aim of this study was to evaluate the potential of Fourier transform infrared (FTIR) spectroscopy coupled with chemometric methods to detect fish adulteration. Muscles of Atlantic salmon (Salmo salar) (SS) and Salmon trout (Onconrhynchus mykiss) (OM) muscles were mixed in different percentages and transformed into mini-burgers. These were stored at 3 °C, then examined at 0, 72, 160, and 240 h for deteriorative microorganisms. Mini-burgers was submitted to Soxhlet extraction, following which lipid extracts were analyzed by FTIR. The principal component analysis (PCA) described the studied adulteration using four principal components with an explained variance of 95.60%. PCA showed that the absorbance in the spectral region from 721, 1097, 1370, 1464, 1655, 2805, to 2935, 3009 cm−1 may be attributed to biochemical fingerprints related to differences between SS and OM. The partial least squares regression (PLS-R) predicted the presence/absence of adulteration in fish samples of an external set with high accuracy. The proposed methods have the advantage of allowing quick measurements, despite the storage time of the adulterated fish. FTIR combined with chemometrics showed that a methodology to identify the adulteration of SS with OM can be established, even when stored for different periods of time. PMID:29621135

  2. AO–MW–PLS method applied to rapid quantification of teicoplanin with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiemei Chen

    2017-01-01

    Full Text Available Teicoplanin (TCP is an important lipoglycopeptide antibiotic produced by fermenting Actinoplanes teichomyceticus. The change in TCP concentration is important to measure in the fermentation process. In this study, a reagent-free and rapid quantification method for TCP in the TCP–Tris–HCl mixture samples was developed using near-infrared (NIR spectroscopy by focusing our attention on the fermentation process for TCP. The absorbance optimization (AO partial least squares (PLS was proposed and integrated with the moving window (MW PLS, which is called AO–MW–PLS method, to select appropriate wavebands. A model set that includes various wavebands that were equivalent to the optimal AO–MW–PLS waveband was proposed based on statistical considerations. The public region of all equivalent wavebands was just one of the equivalent wavebands. The obtained public regions were 1540–1868nm for TCP and 1114–1310nm for Tris. The root-mean-square error and correlation coefficient for leave-one-out cross validation were 0.046mg mL−1 and 0.9998mg mL−1 for TCP, and 0.235mg mL−1 and 0.9986mg mL−1 for Tris, respectively. All the models achieved highly accurate prediction effects, and the selected wavebands provided valuable references for designing specialized spectrometers. This study provided a valuable reference for further application of the proposed methods to TCP fermentation broth and to other spectroscopic analysis fields.

  3. Cavity Ring Down and Thermal Lens Techniques Applied to Vibrational Spectroscopy of Gases and Liquids

    Science.gov (United States)

    Nyaupane, Parashu Ram

    Infrared (IR) and near-infrared (NIR) region gas temperature sensors have been used in the past because of its non-intrusive character and fast time response. In this dissertation cavity ring down (CRD) absorption of oxygen around the region 760 nm has been used to measure the temperature of flowing air in an open optical cavity. This sensor could be a convenient method for measuring the temperature at the input (cold air) and output (hot air) after cooling the blades of a gas turbine. The results could contribute to improvements in turbine blade cooling designs. Additionally, it could be helpful for high temperature measurement in harsh conditions like flames, boilers, and industrial pyrolysis ovens as well as remote sensing. We are interested in experiments that simulate the liquid methane and ethane lakes on Titan which is around the temperature of 94 K. Our specific goal is to quantify the solubility of unsaturated hydrocarbons in liquid ethane and methane. However, it is rather complicated to do so because of the low temperatures, low solubility and solvent effects. So, it is wise to do the experiments at higher temperature and test the suitability of the techniques. In these projects, we were trying to explore if our existing laboratory techniques were sensitive enough to obtain the solubility of unsaturated hydrocarbons in liquid ethane. First, we studied the thermal lens spectroscopy (TLS) of the (Deltav = 6) C-H overtone of benzene and naphthalene in hexane and CCl4 at room temperature.

  4. Statistical methods applied to gamma-ray spectroscopy algorithms in nuclear security missions.

    Science.gov (United States)

    Fagan, Deborah K; Robinson, Sean M; Runkle, Robert C

    2012-10-01

    Gamma-ray spectroscopy is a critical research and development priority to a range of nuclear security missions, specifically the interdiction of special nuclear material involving the detection and identification of gamma-ray sources. We categorize existing methods by the statistical methods on which they rely and identify methods that have yet to be considered. Current methods estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty, which may be significantly more complex. Thus, significantly improving algorithm performance may require greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods, could reduce decision uncertainty by rigorously and comprehensively incorporating all sources of uncertainty. Application of such methods should further meet the needs of nuclear security missions by improving upon the existing numerical infrastructure for which these analyses have not been conducted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  6. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; Rosa, M. I. de la

    2014-01-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  7. UV-VIS Spectroscopy Applied to Stratospheric Chemistry, Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Numerous observations and modeling have shown with a very high degree of certainty that the man-made emissions of chlorofluorocarbons (CFC) and halons are responsible for the Antarctica ozone hole. It is also evident that the ozone layer of the Northern Hemisphere has suffered a certain decline over the last 10-15 years, possibly because of CFC and halons. 20-30% of the observed reduction is ascribed to coupled chlorine and bromine chemistry via a catalytic cycle resulting in the net conversion of 2O{sub 3} to 3O{sub 2}. But the details are not fully understood. The author plans to assemble a UV-VIS spectrometer for measuring the species OClO and BrO and to compare and discuss measured diurnal variations of OClO and BrO with model calculations. The use of Differential Optical Absorption Spectroscopy (DOAS) is discussed and some results from late 1995 presented. 6 refs., 2 figs.

  8. Characterization system for Germanium detectors dedicated to gamma spectroscopy applied to nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J.; Portella, C.; Saurel, N. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2009-07-01

    CEA-Valduc produces some radioactive waste (mainly alpha emitters). Legislation requires producers to sort their waste by activity and type of isotopes, and to package them in order to forward them to the appropriate reprocessing or storage facility. Our lab LMDE (laboratory for measurements on nuclear wastes and valuation) is in charge of the characterization of the majority of waste produced by CEA-Valduc. Among non-destructive methods to characterize a radioactive object, gamma-spectroscopy is one of the most efficient. We present to this conference the method we use to characterize nuclear waste and the system we developed to characterize our germanium detectors. The goal of this system is to obtain reliable numerical models of our detectors and calculate their efficiency curves. Measurements are necessary to checks models and improve them. These measurements are made on a bench using pinpoint sources ({sup 133}Ba, {sup 152}Eu) from 60 keV to 1500 keV, with distances from 'on contact' to a few meters from the diode and variable angles between the source and the detector axis. We have demonstrated that we are able to obtain efficiency curves

  9. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses

    Directory of Open Access Journals (Sweden)

    Maydla dos Santos Vasconcelos

    2018-01-01

    Full Text Available The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.. The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB and ∼90% (RSLB. The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2, about 49%, and the oleic monounsaturated (18  :  1, ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3, ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  10. Experimental and theoretical investigations of photocurrents in non-centrosymmetric semiconductor quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Huynh Thanh; Foerstner, Jens; Meier, Torsten [Department of Physics and CeOPP, University Paderborn (Germany); Priyadarshi, Shekar; Racu, Ana Maria; Pierz, Klaus; Siegner, Uwe; Bieler, Mark [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2010-07-01

    We compute photocurrents generated by femtosecond single-color laser pulses in non-centrosymmetric semiconductor quantum wells by combining a 14 x 14 k.p band structure theory with multi-band semiconductor Bloch equations. The transient photocurrents are investigated experimentally by measuring the associated Terahertz emission. The dependencies of the photocurrent and the Terahertz emission on the excitation conditions are discussed for (110)-oriented GaAs quantum wells. The comparison between theory and experiment shows a good agreement.

  11. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    OpenAIRE

    Jelle, Bjørn Petter; Hovde, Per Jostein

    2012-01-01

    Material characterization may be carried out by the attenuated total reflectance (ATR) Fourier transform infrared (FTIR) radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for exa...

  12. Electrospun photosensitive nanofibers: potential for photocurrent therapy in skin regeneration.

    Science.gov (United States)

    Jin, Guorui; Prabhakaran, Molamma P; Kai, Dan; Kotaki, Masaya; Ramakrishna, Seeram

    2013-01-01

    Poly(3-hexylthiophene) (P3HT) is one of the most promising photovoltaic (PV) polymers in photocurrent therapy. A novel photosensitive scaffold for skin tissue engineering was fabricated by blending P3HT with polycaprolactone (PCL) and electrospun to obtain composite PCL/P3HT nanofibers with three different weight ratios of PCL : P3HT (w/w) of 150 : 2 [PCL/P3HT(2)], 150 : 10 [PCL/P3HT(10)] and 150 : 20 [PCL/P3HT(20)]. The photosensitive properties of the blend solutions and the composite nanofibers of PCL/P3HT were investigated. The incident photon-to-electron conversion efficiencies of the PCL/P3HT(2), PCL/P3HT(10), PCL/P3HT(20) were identified as 2.0 × 10(-6), 1.6 × 10(-5) and 2.9 × 10(-5), respectively, which confirm the photosensitive ability of the P3HT-containing scaffolds. The biocompatibility of the scaffold was evaluated by culturing human dermal fibroblasts and the results showed that the proliferation of HDFs under light stimulation on PCL/P3HT(10) was 12.8%, 11.9%, and 11.6% (p ≤ 0.05) higher than the cell growth on PCL, PCL/P3HT(2) and PCL/P3HT(20), respectively. Human dermal fibroblasts cultured under light stimulation on PCL/P3HT(10) not only showed better cell proliferation but also retained cell morphology similar to the phenotype observed on tissue culture plates (control). Our experimental results suggest novel and potential application of an optimized amount of P3HT-containing scaffold, especially PCL/P3HT(10) nanofibrous scaffold in photocurrent therapy for skin regeneration.

  13. Resonating group method as applied to the spectroscopy of α-transfer reactions

    Science.gov (United States)

    Subbotin, V. B.; Semjonov, V. M.; Gridnev, K. A.; Hefter, E. F.

    1983-10-01

    In the conventional approach to α-transfer reactions the finite- and/or zero-range distorted-wave Born approximation is used in liaison with a macroscopic description of the captured α particle in the residual nucleus. Here the specific example of 16O(6Li,d)20Ne reactions at different projectile energies is taken to present a microscopic resonating group method analysis of the α particle in the final nucleus (for the reaction part the simple zero-range distorted-wave Born approximation is employed). In the discussion of suitable nucleon-nucleon interactions, force number one of the effective interactions presented by Volkov is shown to be most appropriate for the system considered. Application of the continuous analog of Newton's method to the evaluation of the resonating group method equations yields an increased accuracy with respect to traditional methods. The resonating group method description induces only minor changes in the structures of the angular distributions, but it does serve its purpose in yielding reliable and consistent spectroscopic information. NUCLEAR STRUCTURE 16O(6Li,d)20Ne; E=20 to 32 MeV; calculated B(E2); reduced widths, dσdΩ extracted α-spectroscopic factors. ZRDWBA with microscope RGM description of residual α particle in 20Ne; application of continuous analog of Newton's method; tested and applied Volkov force No. 1; direct mechanism.

  14. Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis

    International Nuclear Information System (INIS)

    Yang Hong-Xing; Fu Hong-Bo; Wang Hua-Dong; Jia Jun-Wei; Dong Feng-Zhong; Sigrist, Markus W

    2016-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a versatile tool for both qualitative and quantitative analysis. In this paper, LIBS combined with principal component analysis (PCA) and support vector machine (SVM) is applied to rock analysis. Fourteen emission lines including Fe, Mg, Ca, Al, Si, and Ti are selected as analysis lines. A good accuracy (91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA. It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program, but also solve the problem of linear inseparability by combining PCA and SVM. By this method, the ability of LIBS to classify rock is validated. (paper)

  15. Space-resolved characterization of high frequency atmospheric-pressure plasma in nitrogen, applying optical emission spectroscopy and numerical simulation

    International Nuclear Information System (INIS)

    Rajasekaran, Priyadarshini; Ruhrmann, Cornelia; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Averaged plasma parameters such as electron distribution function and electron density are determined by characterization of high frequency (2.4 GHz) nitrogen plasma using both experimental methods, namely optical emission spectroscopy (OES) and microphotography, and numerical simulation. Both direct and step-wise electron-impact excitation of nitrogen emissions are considered. The determination of space-resolved electron distribution function, electron density, rate constant for electron-impact dissociation of nitrogen molecule and the production of nitrogen atoms, applying the same methods, is discussed. Spatial distribution of intensities of neutral nitrogen molecule and nitrogen molecular ion from the microplasma is imaged by a CCD camera. The CCD images are calibrated using the corresponding emissions measured by absolutely calibrated OES, and are then subjected to inverse Abel transformation to determine space-resolved intensities and other parameters. The space-resolved parameters are compared, respectively, with the averaged parameters, and an agreement between them is established. (paper)

  16. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells.

    Science.gov (United States)

    Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2016-12-01

    An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

  17. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    Science.gov (United States)

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-04

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.

  18. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-01-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  19. Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor

    International Nuclear Information System (INIS)

    Davis, Jonathan T; Esposito, Daniel V

    2017-01-01

    The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal–insulator–semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime. (paper)

  20. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.

    2011-08-21

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  1. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  2. The Effect of Electron versus Hole Photocurrent on Optoelectric Properties of p+-p-n-n+ Wz-GaN Reach-Through Avalanche Photodiodes

    Directory of Open Access Journals (Sweden)

    Moumita Ghosh

    2013-01-01

    Full Text Available The authors have made an attempt to investigate the effect of electron versus hole photocurrent on the optoelectric properties of p+-p-n-n+ structured Wurtzite-GaN (Wz-GaN reach-through avalanche photodiodes (RAPDs. The photo responsivity and optical gain of the devices are obtained within the wavelength range of 300 to 450 nm using a novel modeling and simulation technique developed by the authors. Two optical illumination configurations of the device such as Top Mounted (TM and Flip Chip (FC are considered for the present study to investigate the optoelectric performance of the device separately due to electron dominated and hole dominated photocurrents, respectively, in the visible-blind ultraviolet (UV spectrum. The results show that the peak unity gain responsivity and corresponding optical gain of the device are 555.78 mA W−1 and 9.4144×103, respectively, due to hole dominated photocurrent (i.e., in FC structure; while those are 480.56 mA W−1 and 7.8800×103, respectively, due to electron dominated photocurrent (i.e., in TM structure at the wavelength of 365 nm and for applied reverse bias of 85 V. Thus, better optoelectric performance of Wz-GaN RAPDs can be achieved when the photocurrent is made hole dominated by allowing the UV light to be shined on the n+-layer instead of p+-layer of the device.

  3. Effect of the electrolyte cations and anions on the photocurrent of dodecylsulphate doped polypyrrole films

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Milena; De Paoli, Marco-A. [Laboratorio de Poliimeros Condutores, Instituto de Quimica-UNICAMP, Universidade de Campinas, Cx Postal 6154, 13081-970 , SP Campinas (Brazil)

    2002-07-01

    Photoelectrochemical and UV-Vis spectroelectrochemical measurements were performed in a three-electrode cell containing dodecylsulphate-doped polypyrrole films as active layers in contact with different aqueous electrolytes. The effect of both cations and anions of the electrolyte on the photocurrent generation and on the absorption spectra of the system was studied. Dynamic photocurrent and absorption spectra measurements performed during the redox cycles of the films show that both cation and anion insertion and deinsertion occurs during the cycles. These results are in agreement with the previously reported redox mechanism proposed for amphiphilic anion doped polypyrrole. Reduced films show cathodic photocurrent at -0.4>E>-0.8V vs. Ag|AgCl. Photocurrent voltammograms are reproducible after the conditioning of the films and the higher cathodic currents were observed in films with thickness of =0.05-0.5{mu}m.

  4. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  5. Photocurrent enhancement of graphene photodetectors by photon tunneling of light into surface plasmons

    Science.gov (United States)

    Maleki, Alireza; Cumming, Benjamin P.; Gu, Min; Downes, James E.; Coutts, David W.; Dawes, Judith M.

    2017-10-01

    We demonstrate that surface plasmon resonances excited by photon tunneling through an adjacent dielectric medium enhance the photocurrent detected by a graphene photodetector. The device is created by overlaying a graphene sheet over an etched gap in a gold film deposited on glass. The detected photocurrents are compared for five different excitation wavelengths, ranging from {λ }0=570 {{nm}} to {λ }0=730 {{nm}}. Although the device is not optimized, the photocurrent excited with incident p-polarized light (which excites resonant surface plasmons) is significantly amplified in comparison with that for s-polarized light (without surface plasmon resonances). We observe that the photocurrent is greater for shorter wavelengths (for both s- and p-polarizations) with increased photothermal current. Position-dependent Raman spectroscopic analysis of the optically-excited graphene photodetector indicates the presence of charge carriers in the graphene near the metallic edge. In addition, we show that the polarity of the photocurrent reverses across the gap as the incident light spot moves across the gap. Graphene-based photodetectors offer a simple architecture which can be fabricated on dielectric waveguides to exploit the plasmonic photocurrent enhancement of the evanescent field. Applications for these devices include photodetection, optical sensing and direct plasmonic detection.

  6. Direct and inverse problems in dispersive time-of-flight photocurrent revisited

    Science.gov (United States)

    Sagues, Francesc; Sokolov, Igor M.

    2017-10-01

    Using the fact that the continuous time random walk (CTRW) scheme is a random process subordinated to a simple random walk under the operational time given by the number of steps taken by the walker up to a given time, we revisit the problem of strongly dispersive transport in disordered media, which first lead Scher and Montroll to introducing the power law waiting time distributions. Using a subordination approach permits to disentangle the complexity of the problem, separating the solution of the boundary value problem (which is solved on the level of normal diffusive transport) from the influence of the waiting times, which allows for the solution of the direct problem in the whole time domain (including short times, out of reach of the initial approach), and simplifying strongly the analysis of the inverse problem. This analysis shows that the current traces do not contain information sufficient for unique restoration of the waiting time probability densities, but define a single-parametric family of functions that can be restored, all leading to the same photocurrent forms. The members of the family have the power-law tails which differ only by a prefactor, but may look astonishingly different at their body. The same applies to the multiple trapping model, mathematically equivalent to a special limiting case of CTRW. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  7. Photon wavelength dependent valley photocurrent in multilayer MoS2

    Science.gov (United States)

    Guan, Hongming; Tang, Ning; Xu, Xiaolong; Shang, LiangLiang; Huang, Wei; Fu, Lei; Fang, Xianfa; Yu, Jiachen; Zhang, Caifeng; Zhang, Xiaoyue; Dai, Lun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2017-12-01

    The degree of freedom (DOF) of the K (K') valley in transition-metal dichalcogenides, especially molybdenum disulfide (MoS2), offers an opportunity for next-generation valleytronics devices. In this work, the K (K') valley DOF of multilayer MoS2 is studied by means of the photon wavelength dependent circular photogalvanic effect (CPGE) at room temperature upon a strong external out-of-plane electric field induced by an ionic liquid (IL) gate, which breaks the spatial-inversion symmetry. It is demonstrated that only on resonant excitations in the K (K') valley can the valley-related CPGE signals in multilayer MoS2 with an IL gate be detected, indicating that the valley contrast is indeed regenerated between the K and K' valleys when the electric field is applied. As expected, it can also be seen that the K (K') valley DOF in multilayer MoS2 can be modulated by the external electric field. The observation of photon wavelength dependent valley photocurrent in multilayer MoS2, with the help of better Ohmic contacts, may pave a way for optoelectronic applications of valleytronics in the future.

  8. Hotspot related plasmon assisted multiphoton photocurrents in metal-insulator-metal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Differt, Dominik; Pfeiffer, Walter [Universitaet Bielefeld, Universitaetsstr. 25, 33615 Bielefeld (Germany); Diesing, Detlef [Universitaet Duisburg-Essen, Universitaetsstr. 5, 45117 Essen (Germany)

    2011-07-01

    Scanning photocurrent microscopy of metal-insulator-metal junctions (MIM) is used to investigate the mechanisms of femtosecond multiphoton photocurrent injection at liquid nitrogen temperature. The locally induced multiphoton photocurrent in a Ag-TaO-Ta MIM junction is measured in a scanning microscope cryostat under focused illumination (5{mu}m focus diameter, 800 nm, 30 fs, 80 MHz repetition rate). The intensity dependence reveals a mixture of two-photon and three-photon processes that are responsible for the photocurrent. Its lateral variation shows hotspot-like behaviour with significant magnitude variations on a 100 to 200 nm length scale. Assuming an injection current duration of 40fs the peak injection current density of about 10{sup 4} A cm{sup -2} is estimated - 10{sup 6} times higher than that for 400 nm continuous wave illumination slightly below the damage threshold. The simultaneously measured extinction of the incident radiation reveals a 20 to 30% increased absorption at the hotspots. We attribute the local photocurrent enhancement to the defect-assisted excitation of surface plasmon polaritons at the silver electrode leading to an enhanced local excitation.

  9. Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Z. M., E-mail: zaki.saleh@aauj.edu, E-mail: zakimsaleh@yahoo.com; Nasser, H.; Özkol, E.; Günöven, M.; Abak, K. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey); Canli, S. [Middle East Technical University, Central Laboratory (Turkey); Bek, A.; Turan, R. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey)

    2015-10-15

    Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.

  10. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives

    Science.gov (United States)

    Shang, Aixue; An, Yidan; Ma, Dong; Li, Xiaofeng

    2017-08-01

    Photocurrent and voltage losses are the fundamental limitations for improving the efficiency of photovoltaic devices. It is indeed that a comprehensive and quantitative differentiation of the performance degradation in solar cells will promote the understanding of photovoltaic physics as well as provide a useful guidance to design highly-efficient and cost-effective solar cells. Based on optoelectronic simulation that addresses electromagnetic and carrier-transport responses in a coupled finite-element method, we report a detailed quantitative analysis of photocurrent and voltage losses in solar cells. We not only concentrate on the wavelength-dependent photocurrent loss, but also quantify the variations of photocurrent and operating voltage under different forward electrical biases. Further, the device output power and power losses due to carrier recombination, thermalization, Joule heat, and Peltier heat are studied through the optoelectronic simulation. The deep insight into the gains and losses of the photocurrent, voltage, and energy will contribute to the accurate clarifications of the performance degradation of photovoltaic devices, enabling a better control of the photovoltaic behaviors for high performance.

  11. The development of photoemission spectroscopy and its application to the study of semiconductor interfaces Observations on the interplay between basic and applied research (Welch Memorial Lecture)

    Science.gov (United States)

    Spicer, W. E.

    1985-01-01

    A sketch is given of the development of photoemission electron spectroscopy (PES) with emphasis on the author's own experience. Emphasis is placed: (1) on the period between 1958-1970; (2) on the various developments which were required for PES to emerge; and (3) on the strong interactions between applied/fundamental and knowledge/empirically based research. A more detailed discussion is given of the recent (1975-present) application of PES to study the interfaces of III-V semiconductors.

  12. Light-gated single CdSe nanowire transistor: photocurrent saturation and band gap extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: yangzh08@gmail.com; Chakraborty, Ritun; Kudera, Stefan; Krahne, Roman, E-mail: roman.krahne@iit.it [Istituto Italiano di Tecnologia, Nanochemistry department (Italy)

    2015-11-15

    CdSe nanowires are popular building blocks for many optoelectronic devices mainly owing to their direct band gap in the visible range of the spectrum. Here we investigate the optoelectronic properties of single CdSe nanowires fabricated by colloidal synthesis, in terms of their photocurrent–voltage characteristics and photoconductivity spectra recorded at 300 and 18 K. The photocurrent is identified as the secondary photocurrent, which gives rise to a photoconductive gain of ∼35. We observe a saturation of the photocurrent beyond a certain voltage bias that can be related to the finite drift velocity of electrons. From the photoconductivity spectra, we determine the band gap energy of the nanowires as ∼1.728 eV, and we resolve low-energy peaks that can be associated with sub-bandgap states.Graphical Abstract.

  13. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires

    KAUST Repository

    Chakraborty, Ritun; Greullet, Fanny; George, Chandramohan; Baranov, Dmitry; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    Metal-semiconductor hybrid nanostructures promise improved photoconductive performance due to plasmonic properties of the metal portions and intrinsic electric fields at the metal-semiconductor interface that possibly enhance charge separation. Here we report gold decorated CdSe nanowires as a novel functional material and investigate the influence of gold decoration on the lateral facets on the photoconductive properties. Gold decorated nanowires show typically an at least ten-fold higher photocurrent as compared to their bare counterparts. Interestingly, the photocurrent enhancement is wavelength independent, although the plasmon resonance related to the gold particles appears in the absorption spectra. Our experiments show that light scattering and Schottky fields associated with the metal-semiconductor interface are at the origin of the photocurrent enhancement. © 2013 The Royal Society of Chemistry.

  14. Development of system for automatic measurement of transient photocurrent and thermally stimulated current

    Directory of Open Access Journals (Sweden)

    Asdrubal Antonio Ramirez Botero

    2017-01-01

    Full Text Available This paper presents details of the design and implementation of a system for measuring of thermally stimulated current (TSC and transient photocurrent (Iph, developed using the Virtual Instrumentation concept. For that we have used National Instrument hardware and the LabView® package as software. The system is controlled by a virtual instrument (VI which includes facilities to perform measurements of photocurrent keeping the temperature of the sample and the pressure of the chamber of measurement controlled as well as  real time display of the Iph vs t and TSC vs T curves. The system was tested by performing transient photocurrent and TSC measurements on CH3NH3PbI3 thin films that are generally used as absorbent layer of solar cells. This type of characterization is very useful to get information of the  trapping and recombination processes that affect the transport properties of the devices.

  15. On the origin of the photocurrent of electrochemically passivated p-InP(100) photoelectrodes.

    Science.gov (United States)

    Goryachev, Andrey; Gao, Lu; van Veldhoven, René P J; Haverkort, Jos E M; Hofmann, Jan P; Hensen, Emiel J M

    2018-05-15

    III-V semiconductors such as InP are highly efficient light absorbers for photoelectrochemical (PEC) water splitting devices. Yet, their cathodic stability is limited due to photocorrosion and the measured photocurrents do not necessarily originate from H2 evolution only. We evaluated the PEC stability and activation of model p-InP(100) photocathodes upon photoelectrochemical passivation (i.e. repeated surface oxidation/reduction). The electrode was subjected to a sequence of linear potential scans with or without intermittent passivation steps (repeated passivation and continuous reduction, respectively). The evolution of H2 and PH3 gases was monitored by online electrochemical mass spectrometry (OLEMS) and the Faradaic efficiencies of these processes were determined. Repeated passivation led to an increase of the photocurrent in 0.5 M H2SO4, while continuous reduction did not affect the photocurrent of p-InP(100). Neither H2 nor PH3 formation increased to the same extent as the photocurrent during the repeated passivation treatment. Surface analysis of the spent electrodes revealed substantial roughening of the electrode surface by repeated passivation, while continuous reduction left the surface unaltered. On the other hand, photocathodic conditioning performed in 0.5 M HCl led to the expected correlation between photocurrent increase and H2 formation. Ultimately, the H2 evolution rates of the photoelectrodes in H2SO4 and HCl are comparable. The much higher photocurrent in H2SO4 is due to competing side-reactions. The results emphasize the need for a detailed evaluation of the Faradaic efficiencies of all the involved processes using a chemical-specific technique like OLEMS. Photo-OLEMS can be beneficial in the study of photoelectrochemical reactions enabling the instantaneous detection of small amounts of reaction by-products.

  16. Generation and control of spin-polarized photocurrents in GaMnAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Anibal T., E-mail: anibal@df.ufscar.br; Farinas, Paulo F.; Studart, Nelson [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil); Castelano, Leonardo K. [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Degani, Marcos H.; Maialle, Marcelo Z. [Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, 13484-350 Limeira, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil)

    2014-01-13

    Photocurrents are calculated for a specially designed GaMnAs semiconductor heterostructure. The results reveal regions in the infrared range of the energy spectrum, in which the proposed structure is remarkably spin-selective. For such photon energies, the generated photocurrents are strongly spin-polarized. Application of a relatively small static bias in the growth direction of the structure is predicted to efficiently reverse the spin-polarization for some photon energies. This behavior suggests the possibility of conveniently simple switching mechanisms. The physics underlying the results is studied and understood in terms of the spin-dependent properties emerging from the particular potential profile of the structure.

  17. Insulator photocurrents: Application to dose rate hardening of CMOS/SOI integrated circuits

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.; Coiec, Y.M.; Flament, O.; Tinel, F.

    1998-01-01

    Irradiation of insulators with a pulse of high energy x-rays can induce photocurrents in the interconnections of integrated circuits. The authors present, here, a new method to measure and analyze this effect together with a simple model. They also demonstrate that these insulator photocurrents have to be taken into account to obtain high levels of dose-rate hardness with CMOS on SOI integrated circuits, especially flip-flops or memory blocks of ASICs. They show that it explains some of the upsets observed in a SRAM embedded in an ASIC

  18. Motion Correction of Single-Voxel Spectroscopy by Independent Component Analysis Applied to Spectra From Nonanesthetized Pediatric Subjects

    DEFF Research Database (Denmark)

    de Nijs, Robin; Miranda, Maria J.; Hansen, Lars Kai

    2009-01-01

    For single-voxel spectroscopy, the acquisition of the spectrum is typically repeated n times and then combined with a factor in order to improve the signal-to-noise ratio. In practice, the acquisitions are not only affected by random noise but also by physiologic motion and subject movements. Since...... the influence of physiologic motion such as cardiac and respiratory motion on the data is limited, it can be compensated for without data loss. Individual acquisitions hampered by subject movements, on the other hand, need to be rejected if no correction or compensation is possible. If the individual...

  19. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages.

    Science.gov (United States)

    Gouvinhas, Irene; Machado, Nelson; Carvalho, Teresa; de Almeida, José M M M; Barros, Ana I R N A

    2015-01-01

    Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination (>0.933). Both the R(2), and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

    2003-02-01

    Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. Copyright 2003 Wiley-Liss, Inc.

  1. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    DEFF Research Database (Denmark)

    Zhu, Nan; Zheng, Kaibo; J. Karki, Khadga

    2015-01-01

    matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets...

  2. Low-frequency photocurrent oscillations in InP in magnetic field

    International Nuclear Information System (INIS)

    Slobodchikov, S.V.; Salikhov, Kh.M.; Kovalevskaya, G.G.

    1994-01-01

    Results of investigations of magnetic field effect on the oscillating photocurrent in InP crytals are presented. It is shown that the magnetic field plays the part of an additional source of photocarrier injection in the sample bulk. 3 refs., 2 figs

  3. Influence of injected charge carriers on photocurrents in polymer solar cells

    NARCIS (Netherlands)

    Wehenkel, D.J.; Koster, L.J.A.; Wienk, M.M.; Janssen, R.A.J.

    2012-01-01

    We determine and analyze the photocurrent Jph in polymer solar cells under conditions where, no, one, or two different charge carriers can be injected by choosing appropriate electrodes and compare the experimental results to simulations based on a drift-diffusion device model that accounts for

  4. Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Mendonça Sales

    2005-09-01

    Full Text Available This work involved the application of luminescence spectroscopy under steady-state conditions to study the curing process of the epoxy resin diglycidyl-ether of bisphenol-A (DGEBA using the curing agents 4,4'-diaminodiphenylmethane (DDM and 4,4'-diaminodiphenylsulfone (DDS. Two fluorescence methods were employed: the intrinsic method related to the polymeric matrix and the extrinsic method, using the molecular probe 9-anthroic acid (9-AA. Stoichiometric mixtures, with and without 9-AA, were heated to 120 °C at a 5 °C/min heating rate. These samples were then cured at 120 °C for a further 2 hours and allowed to cool to room temperature for 20 minutes. The results obtained by the two methods indicate that the cross-linking reaction can be monitored by analyzing the spectral changes of the emission bands of DGEBA, curing agents and 9-AA.

  5. Two-dimensional correlation infrared spectroscopy applied to analyzing and identifying the extracts of Baeckea frutescens medicinal materials.

    Science.gov (United States)

    Adib, Adiana Mohamed; Jamaludin, Fadzureena; Kiong, Ling Sui; Hashim, Nuziah; Abdullah, Zunoliza

    2014-08-05

    Baeckea frutescens or locally known as Cucur atap is used as antibacterial, antidysentery, antipyretic and diuretic agent. In Malaysia and Indonesia, they are used as an ingredient of the traditional medicine given to mothers during confinement. A three-steps infra-red (IR) macro-fingerprinting method combining conventional IR spectra, and the secondary derivative spectra with two dimensional infrared correlation spectroscopy (2D-IR) have been proved to be effective methods to examine a complicated mixture such as herbal medicines. This study investigated the feasibility of employing multi-steps IR spectroscopy in order to study the main constituents of B. frutescens and its different extracts (extracted by chloroform, ethyl acetate, methanol and aqueous in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. The structural information of the samples indicated that B. frutescens and its extracts contain a large amount of flavonoids, since some characteristic absorption peaks of flavonoids, such as ∼1600cm(-1), ∼1500cm(-1), ∼1450cm(-1), and ∼1270cm(-1) can be observed. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Validation of Fluorescence Spectroscopy to Detect Adulteration of Edible Oil in Extra Virgin Olive Oil (EVOO) by Applying Chemometrics.

    Science.gov (United States)

    Ali, Hina; Saleem, Muhammad; Anser, Muhammad Ramzan; Khan, Saranjam; Ullah, Rahat; Bilal, Muhammad

    2018-01-01

    Due to high price and nutritional values of extra virgin olive oil (EVOO), it is vulnerable to adulteration internationally. Refined oil or other vegetable oils are commonly blended with EVOO and to unmask such fraud, quick, and reliable technique needs to be standardized and developed. Therefore, in this study, adulteration of edible oil (sunflower oil) is made with pure EVOO and analyzed using fluorescence spectroscopy (excitation wavelength at 350 nm) in conjunction with principal component analysis (PCA) and partial least squares (PLS) regression. Fluorescent spectra contain fingerprints of chlorophyll and carotenoids that are characteristics of EVOO and differentiated it from sunflower oil. A broad intense hump corresponding to conjugated hydroperoxides is seen in sunflower oil in the range of 441-489 nm with the maximum at 469 nm whereas pure EVOO has low intensity doublet peaks in this region at 441 nm and 469 nm. Visible changes in spectra are observed in adulterated EVOO by increasing the concentration of sunflower oil, with an increase in doublet peak and correspondingly decrease in chlorophyll peak intensity. Principal component analysis showed a distinct clustering of adulterated samples of different concentrations. Subsequently, the PLS regression model was best fitted over the complete data set on the basis of coefficient of determination (R 2 ), standard error of calibration (SEC), and standard error of prediction (SEP) of values 0.99, 0.617, and 0.623 respectively. In addition to adulterant, test samples and imported commercial brands of EVOO were also used for prediction and validation of the models. Fluorescence spectroscopy combined with chemometrics showed its robustness to identify and quantify the specified adulterant in pure EVOO.

  7. Fast label-free detection of Legionella spp. in biofilms by applying immunomagnetic beads and Raman spectroscopy.

    Science.gov (United States)

    Kusić, Dragana; Rösch, Petra; Popp, Jürgen

    2016-03-01

    Legionellae colonize biofilms, can form a biofilm by itself and multiply intracellularly within the protozoa commonly found in water distribution systems. Approximately half of the known species are pathogenic and have been connected to severe multisystem Legionnaires' disease. The detection methods for Legionella spp. in water samples are still based on cultivation, which is time consuming due to the slow growth of this bacterium. Here, we developed a cultivation-independent, label-free and fast detection method for legionellae in a biofilm matrix based on the Raman spectroscopic analysis of isolated single cells via immunomagnetic separation (IMS). A database comprising the Raman spectra of single bacterial cells captured and separated from the biofilms formed by each species was used to build the identification method based on a support vector machine (SVM) discriminative classifier. The complete method allows the detection of Legionella spp. in 100 min. Cross-reactivity of Legionella spp. specific immunomagnetic beads to the other studied genera was tested, where only small cell amounts of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli compared to the initial number of cells were isolated by the immunobeads. Nevertheless, the Raman spectra collected from isolated non-targeted bacteria were well-discriminated from the Raman spectra collected from isolated Legionella cells, whereby the Raman spectra of the independent dataset of Legionella strains were assigned with an accuracy of 98.6%. In addition, Raman spectroscopy was also used to differentiate between isolated Legionella species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit

    2017-01-01

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm"2 is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  9. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit [Sardar Vallabhbhai National Institute of Technology, Chemical Engineering Department, Surat, Gujarat (India)

    2017-08-15

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm{sup 2} is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  10. Evaluation of the standard normal variate method for Laser-Induced Breakdown Spectroscopy data treatment applied to the discrimination of painting layers

    Science.gov (United States)

    Syvilay, D.; Wilkie-Chancellier, N.; Trichereau, B.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V.

    2015-12-01

    Nowadays, Laser-Induced Breakdown Spectroscopy (LIBS) is frequently used for in situ analyses to identify pigments from mural paintings. Nonetheless, in situ analyses require a robust instrumentation in order to face to hard experimental conditions. This may imply variation of fluencies and thus inducing variation of LIBS signal, which degrades spectra and then results. Usually, to overcome these experimental errors, LIBS signal is processed. Signal processing methods most commonly used are the baseline subtraction and the normalization by using a spectral line. However, the latter suggests that this chosen element is a constant component of the material, which may not be the case in paint layers organized in stratigraphic layers. For this reason, it is sometimes difficult to apply this normalization. In this study, another normalization will be carried out to throw off these signal variations. Standard normal variate (SNV) is a normalization designed for these conditions. It is sometimes implemented in Diffuse Reflectance Infrared Fourier Transform Spectroscopy and in Raman Spectroscopy but rarely in LIBS. The SNV transformation is not newly applied on LIBS data, but for the first time the effect of SNV on LIBS spectra was evaluated in details (energy of laser, shot by shot, quantification). The aim of this paper is the quick visualization of the different layers of a stratigraphic painting sample by simple data representations (3D or 2D) after SNV normalization. In this investigation, we showed the potential power of SNV transformation to overcome undesired LIBS signal variations but also its limit of application. This method appears as a promising way to normalize LIBS data, which may be interesting for in-situ depth analyses.

  11. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Science.gov (United States)

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  12. X-ray photoelectron spectroscopy applied to the characterization of surfaces at pressures of up to 0.1 mbar

    International Nuclear Information System (INIS)

    Kong, C.W.

    1987-01-01

    The thesis describes the design principles, operation and an X-Ray Photoelectron Spectrometer capable of analyzing surfaces under in situ conditions in the pressure range of 10 -11 to 1 mbar. Measurements at pressures exceeding 10 -5 mbar are carried out by placing a differentially pumped aperture system between sample surface and the hemispherical electron energy analyzer. The reduction of signal intensity due to the aperture is, depending on the operating mode and resolution of the analyzer, between a factor of 5-12. Measurements at pressures as high as 6 x 10 -1 mbar show that the sensitivity of the apparatus is sufficient to detect coverages as low as ∼.1 monolayers. The experimental work described in this thesis relates to the interaction of sulfur dioxide with metallic copper and CuO and Cu 2 O surfaces. Adsorption and reaction of SO 2 with these surfaces comprise one of the elemental steps in the flue gas cleanup process from a duct stream using copper oxide particles. The adsorption and reaction of SO 2 with copper and copper oxide surfaces was studied by in situ x-ray photoelectron spectroscopy between 173 K-473 K and pressures ranging from UHV to 10 -1 mbar. It was found that a Cu 2 SO 3 species acts as an intermediate in the formation of CuSO 4 at T 300 K, in the formation of copper sulfide. The presence of gas phase oxygen was found to accelerate the surface reaction between SO 2 and the substrates. Contrary to previous suggestions, the author finds that a copper sulfate is found only under conditions which are far removed form the conditions in a duct-pipe. Under temperature and partial pressure conditions resembling the industrial process, a copper sulfide is formed

  13. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    Science.gov (United States)

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  14. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Directory of Open Access Journals (Sweden)

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  15. Single-Molecule Photocurrent at a Metal-Molecule-Semiconductor Junction.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-11-08

    We demonstrate here a new concept for a metal-molecule-semiconductor nanodevice employing Au and GaAs contacts that acts as a photodiode. Current-voltage traces for such junctions are recorded using a STM, and the "blinking" or "I(t)" method is used to record electrical behavior at the single-molecule level in the dark and under illumination, with both low and highly doped GaAs samples and with two different types of molecular bridge: nonconjugated pentanedithiol and the more conjugated 1,4-phenylene(dimethanethiol). Junctions with highly doped GaAs show poor rectification in the dark and a low photocurrent, while junctions with low doped GaAs show particularly high rectification ratios in the dark (>10 3 for a 1.5 V bias potential) and a high photocurrent in reverse bias. In low doped GaAs, the greater thickness of the depletion layer not only reduces the reverse bias leakage current, but also increases the volume that contributes to the photocurrent, an effect amplified by the point contact geometry of the junction. Furthermore, since photogenerated holes tunnel to the metal electrode assisted by the HOMO of the molecular bridge, the choice of the latter has a strong influence on both the steady state and transient metal-molecule-semiconductor photodiode response. The control of junction current via photogenerated charge carriers adds new functionality to single-molecule nanodevices.

  16. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    Science.gov (United States)

    Bellotti, Mariela I.; Giana, Fabián E.; Bonetto, Fabián J.

    2015-08-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities.

  17. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    International Nuclear Information System (INIS)

    Bellotti, Mariela I; Giana, Fabián E; Bonetto, Fabián J

    2015-01-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities. (paper)

  18. Optical spectroscopy applied to the analysis of medieval and post-medieval plain flat glass fragments excavated in Belgium

    Science.gov (United States)

    Meulebroeck, W.; Wouters, H.; Baert, K.; Ceglia, A.; Terryn, H.; Nys, K.; Thienpont, H.

    2010-04-01

    Window glass fragments from four Belgian sites were studied and for a set of eighty-five samples the UV-VIS-NIR transmission spectra were analyzed. This collection contains historical and archaeological finds originating from religious buildings namely the Basilica of Our Lady of Hanswijk in Mechelen (17th-20thc) and the Church of Our Lady in Bruges (16th-20thc) as well as from secular buildings as a private house/Antwerp (18th-1948) and the castle of Middelburg-in-Flanders (1448-17thc). All sites contain material on the hinge point between the medieval and the industrial tradition. The variation in composition of the analyzed samples can be explained by the use of different glassmaking recipes, more specifically the use of different raw materials. The composition of window glass differs essentially in the type of flux, using a potash rich fluxing agent until the post-medieval times and industrial soda from the 19th century onwards. A second difference concerns the iron impurities in the glass. For all fragments a clear compositional classification could be made based on the iron concentration. These conclusions were based on archaeological research and drawn after submitting samples to expensive, complex, time-consuming and destructive chemical analyzing methods. Our study indicates that similar conclusions could be made applying the proposed optical based methodology for plain window glass. As a whole, the obtained results make it possible to cluster the fragments for a particular site based on three different sensing parameters: the UV absorption edge, the color and the presence of characteristic absorption bands. This information helps in identifying trends to date window glass collections and indicating the use of different raw materials, production technologies and/or provenance.

  19. Applying graphene oxide nano-film over a polycarbonate nanoporous membrane to monitor E. coli by infrared spectroscopy.

    Science.gov (United States)

    Singh, Krishna Pal; Dhek, Neeraj Singh; Nehra, Anuj; Ahlawat, Sweeti; Puri, Anu

    2017-01-05

    Nano-biosensors are excellent monitoring tools for rapid, specific, sensitive, inexpensive, in-field, on-line, and/or real-time detection of pathogens in foods, soil, air, and water samples. A variety of nano-materials (metallic, polymeric, and/or carbon-based) were employed to enhance the efficacy, efficiency, and sensitivity of these nano-biosensors, including graphene-based materials, especially graphene oxide (GO)-based materials. GO bears many oxygen-bearing groups, enabling ligand conjugation at the high density critical for sensitive detection. We have fabricated GO-modified nano-porous polycarbonate track-etched (PCTE) membranes that were conjugated to an Escherichia coli-specific antibody (Ab) and used to detect E. coli. The random distribution of nanopores on the PCTE membrane surface and the bright coating of the GO onto the membrane were confirmed by scanning electron microscope. Anti-E. coli β-gal Abs were conjugated to the GO surface via 1-ethyl-3,3-dimethylaminopropyl carbodiimide hydrochloride-N-hydroxysuccinimide chemistry; antibody coating was confirmed by the presence of a characteristic IR peak near 1600cm(-1). A non-corresponding Ab (anti-Pseudomonas) was used as a negative control under identical conditions. When E. coli interacted anti-E.coli β-gal with Ab-coated GO-nano-biosensor units, we observed a clear shift in the IR peak from 3373.14 to 3315cm(-1); in contrast, we did not observe any shift in IR peaks when the GO unit was coated with the non-corresponding Ab (anti-Pseudomonas). Therefore, the detection of E. coli using the described GO-nano-sensor unit is highly specific, is highly selective and can be applied for real-time monitoring of E. coli with a detection limit between 100μg/mL and 10μg/mL, similar to existing detection systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films.

    Science.gov (United States)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Kawazumi, Hirofumi; Yamada, Sunao

    2009-04-09

    The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.

  1. Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Chen Chong

    2011-01-01

    Full Text Available Abstract The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. Bilayer polymer/TiO2 cells consisting of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV and TiO2, with different thicknesses of the polymer and TiO2 films, were prepared for experimental purposes. The experimental results for the prepared bilayer MEH-PPV/TiO2 cells under different conditions are satisfactorily fitted to the model. Results show that increasing TiO2 or the polymer layer in thickness will reduce the exciton dissociation efficiency in the device and further the photocurrent. It is found that the photocurrent is determined by the competition between the exciton dissociation and charge recombination at the donor/acceptor interface, and the increase in photocurrent under a higher incident light intensity is due to the increased exciton density rather than the increase in the exciton dissociation efficiency.

  2. Improved instrumentation for intensity-, wavelength-, temperature-, and magnetic field-resolved photoconductivity spectroscopy

    International Nuclear Information System (INIS)

    Cottingham, Patrick; Morey, Jennifer R.; Lemire, Amanda; Lemire, Penny; McQueen, Tyrel M.

    2016-01-01

    We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe a rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.

  3. p-doped multiwall carbon nanotube/perylene diimide derivative photoelectrochemical cells for photocurrent generation

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, Anna; Ledendecker, Marc; Margraf, Johannes T.; Sgobba, Vito; Guldi, Dirk M. [Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich Alexander University Erlangen-Nuremberg, Erlangen (Germany); Vieweg, Benito F.; Spiecker, Erdmann [Center for Nanoanalysis and Electron Microscopy (CENEM) and Department Werkstoffwissenschaften/VII, Friedrich Alexander University Erlangen-Nuremberg, Erlangen (Germany); Suraru, Sabin-Lucian; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Wuerzburg (Germany)

    2012-05-15

    A perylene diimide (PDI) derivative bearing four chlorine substituents in the bay area is deposited together with pristine multiwall carbon nanotubes (MWNTs) and/or Nafion p-doped MWNTs (p-MWNTs) onto indium tin oxide (ITO) solid substrates by means of air-brushing. The resulting photoanodes are studied in photoelectrochemical cells and reveal highest photocurrent efficiencies when PDI and p-MWNT are combined as photoactive materials, indicating the beneficial effect of Nafion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: Key information from ultrafast electronic spectroscopy

    KAUST Repository

    Kar, Prasenjit; Sardar, Samim; Alarousu, Erkki; Sun, Jingya; Seddigi, Zaki Shakir Abdullah; Ahmed, Saleh Abdel Mgeed; Danish, Ekram Yousif; Mohammed, Omar F.; Pal, Samir Kumar

    2014-01-01

    ProtoporphyrinIX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: Key information from ultrafast electronic spectroscopy

    KAUST Repository

    Kar, Prasenjit

    2014-07-10

    ProtoporphyrinIX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  7. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-01-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO 2 in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO 2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices

  8. Identification of nickel-vacancy defects by combining experimental and ab initio simulated photocurrent spectra

    Science.gov (United States)

    Londero, E.; Bourgeois, E.; Nesladek, M.; Gali, A.

    2018-06-01

    There is a continuous search for solid state spin qubits operating at room temperature with excitation in the infrared communication bandwidth. Recently, we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin state of nitrogen-vacancy (NV) centers in diamond, a technique which is promising for applications in quantum information technology. By measuring the photoionization spectra on a diamond crystal, we found two ionization thresholds of unknown origin. On the same sample we also observed absorption and photoluminescence signatures that were identified in the literature as Ni-associated defects. We performed ab initio calculations of the photoionization cross section of the nickel split-vacancy complex (NiV) and N-related defects in their relevant charge states and fitted the concentration of these defects to the measured photocurrent spectrum, which led to a surprising match between experimental and calculated spectra. This study enabled us to identify the two unknown ionization thresholds with the two acceptor levels of NiV. Because the excitation of NiV is in the infrared, the photocurrent detected from the paramagnetic NiV color centers is a promising way towards the design of electrically readout qubits.

  9. Characterization of the photocurrents generated by the laser of atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Iglesias, Vanessa [International Iberian Nanotechnology Laboratory, 4715-330 Braga (Portugal); Lewis, David [Nanonics Imaging, Har Hotzvim, Jerusalem 91487 (Israel); Niu, Jiebin; Long, Shibing; Liu, Ming [Laboratory of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Hofer, Alexander; Frammelsberger, Werner; Benstetter, Guenther [Deggendorf Institute of Technology, Edlmairstr. 6+8, 94469 Deggendorf (Germany); Scheuermann, Andrew; McIntyre, Paul C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-08-15

    The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.

  10. Photocurrent and photovoltage induced in a 2DEG under intense, pulsed THz radiation

    International Nuclear Information System (INIS)

    Lewis, R.A.; Xu, W.; Pellemans, H.P.M.; Langerak, C.J.G.M.

    1999-01-01

    Full text: Intense THz radiation emitted by FELIX (Free Electron Laser for Infrared eXperiments) induces both photovoltage and photocurrent signals in a high-mobility (μ = 2 x 10 6 cm 2 /V s), low-density (n e = 2 x 10 11 cm -2 ) GaAs/AlGaAs-based 2DEG. Within the ∼5 μs FELIX macropulse, there is a rapid response in the longitudinal voltage of a Hall-bar sample, reproducible between pulses. A large response continues well after the pulse; this long-time-scale behaviour varies between pulses if the current exceeds a critical value (which decreases with radiation intensity and magnetic field). Within the macropulse, the photovoltage varies with magnetic field, saturating at low field (<100 mT). The photocurrent shows a rapid, non-resonant response, evident at integral filling factors in both longitudinal and transverse data, and a slower, cyclotron resonant response, peaking at ∼390 μs after the FELIX pulse. No anisotropy in the resistivity under polarised radiation was found

  11. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes.

    Science.gov (United States)

    Patel, Malkeshkumar; Kumar, Mohit; Kim, Joondong; Kim, Yu Kwon

    2017-12-21

    Photocathodes made from the earth-abundant, ecofriendly mineral tin monosulfide (SnS) can be promising candidates for p/n-type photoelectrochemical cells because they meet the strict requirements of energy band edges for each individual photoelectrode. Herein we fabricated SnS-based cell that exhibited a prolonged photocurrent for 3 h at -0.3 V vs the reversible hydrogen electrode (RHE) in a 0.1 M HCl electrolyte. An enhancement of the cathodic photocurrent from 2 to 6 mA cm -2 is observed through a rapid thermal treatment. Mott-Schottky analysis of SnS samples revealed an anodic shift of 0.7 V in the flat band potential under light illumination. Incident photon-to-current conversion efficiency (IPCE) analysis indicates that an efficient charge transfer appropriate for solar hydrogen generation occurs at the -0.3 V vs RHE potential. This work shows that SnS is a promising material for photocathode in PEC cells and its performance can be enhanced via simple postannealing.

  12. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.

    Science.gov (United States)

    Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee

    2017-09-01

    Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination

    International Nuclear Information System (INIS)

    Elghniji, Kais; Atyaoui, Atef; Livraghi, Stefano; Bousselmi, Latifa; Giamello, Elio; Ksibi, Mohamed

    2012-01-01

    Graphical abstract: Schematic diagram illustrating the charge transfer from excited TiO 2 to the different states of Fe 3+ ions; C B and V B refer to the energy levels of the conduction and valence bands of TiO 2 , respectively. Highlights: ► In this study we examine the Iron as catalyst precursor to synthesize the Fe 3+ doped TiO 2 nanoparticles. ► The Fe 3+ doped TiO 2 catalysts show the presence of a mixed phase of anatase. ► The iron is completely absent in the XRD pattern of the doped iron TiO 2 powder. ► The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . ► Fe 3+ doping can efficiently separate the photo-generated electrons and holes. - Abstract: Undoped TiO 2 and Fe 3+ doped (0.1, 0.3, 0.6 and 1 wt.%) TiO 2 nanoparticles have been synthesized by the acid-catalyzed sol–gel method. Iron cations are introduced in the initial solution, before gelification, what promotes their lattice localization. The Fe 3+ doped TiO 2 films have been fabricated using a dip-coating technique. The effect of iron content on the crystalline structure, phase transformation and grain growth were determined by X-ray diffraction (XRD), Raman spectroscopy, UV–visible diffused reflectance spectroscopy (DRS) and Electron paramagnetic resonance (EPR) spectroscopy. It has demonstrated that all catalysts are composed of mixed-phase crystals of anatase and brookite with anatase as dominant phase. The crystallinity of the brookite and anatase phases decreased with increasing the iron content. The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . It was demonstrated that Fe 3+ ion in the TiO 2 films plays a role as the intermediate for the efficient separation of photogenerated hole–electron pairs and increases the photocurrent response of the film under UV light irradiation. The maximum photocurrent is obtained on the Fe 3+ doped Ti

  14. Synthesis and characterization of Fe{sup 3+} doped TiO{sub 2} nanoparticles and films and their performance for photocurrent response under UV illumination

    Energy Technology Data Exchange (ETDEWEB)

    Elghniji, Kais [University of Sfax, Laboratoire Eau, Energie et Environnement (LR3E), Ecole Nationale d' Ingenieurs de Sfax, B.P. 1173, 3038 Sfax (Tunisia); Atyaoui, Atef [Centre de Recherches et des Technologies des Eaux, Technopole de Borj Cedria B.P. 273, 8020 Soliman (Tunisia); Livraghi, Stefano [Dipartimento di Chimica I.F.M and NIS, Universita degli Studi di Torino, Via P. Giuria, 7 10125 Torino (Italy); Bousselmi, Latifa [Centre de Recherches et des Technologies des Eaux, Technopole de Borj Cedria B.P. 273, 8020 Soliman (Tunisia); Giamello, Elio [Dipartimento di Chimica I.F.M and NIS, Universita degli Studi di Torino, Via P. Giuria, 7 10125 Torino (Italy); Ksibi, Mohamed, E-mail: Mohamed.Ksibi@tunet.tn [University of Sfax, Laboratoire Eau, Energie et Environnement (LR3E), Ecole Nationale d' Ingenieurs de Sfax, B.P. 1173, 3038 Sfax (Tunisia)

    2012-11-15

    Graphical abstract: Schematic diagram illustrating the charge transfer from excited TiO{sub 2} to the different states of Fe{sup 3+} ions; C{sub B} and V{sub B} refer to the energy levels of the conduction and valence bands of TiO{sub 2}, respectively. Highlights: Black-Right-Pointing-Pointer In this study we examine the Iron as catalyst precursor to synthesize the Fe{sup 3+} doped TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The Fe{sup 3+} doped TiO{sub 2} catalysts show the presence of a mixed phase of anatase. Black-Right-Pointing-Pointer The iron is completely absent in the XRD pattern of the doped iron TiO{sub 2} powder. Black-Right-Pointing-Pointer The analysis of EPR result further confirms that Fe{sup 3+} ion are successfully doped in the TiO{sub 2} lattice by substituting Ti{sup 4+}. Black-Right-Pointing-Pointer Fe{sup 3+} doping can efficiently separate the photo-generated electrons and holes. - Abstract: Undoped TiO{sub 2} and Fe{sup 3+} doped (0.1, 0.3, 0.6 and 1 wt.%) TiO{sub 2} nanoparticles have been synthesized by the acid-catalyzed sol-gel method. Iron cations are introduced in the initial solution, before gelification, what promotes their lattice localization. The Fe{sup 3+} doped TiO{sub 2} films have been fabricated using a dip-coating technique. The effect of iron content on the crystalline structure, phase transformation and grain growth were determined by X-ray diffraction (XRD), Raman spectroscopy, UV-visible diffused reflectance spectroscopy (DRS) and Electron paramagnetic resonance (EPR) spectroscopy. It has demonstrated that all catalysts are composed of mixed-phase crystals of anatase and brookite with anatase as dominant phase. The crystallinity of the brookite and anatase phases decreased with increasing the iron content. The analysis of EPR result further confirms that Fe{sup 3+} ion are successfully doped in the TiO{sub 2} lattice by substituting Ti{sup 4+}. It was demonstrated that Fe{sup 3+} ion in the TiO{sub 2} films

  15. High photocurrent gain in NiO thin film/M-doped ZnO nanorods (M=Ag, Cd and Ni) heterojunction based ultraviolet photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Echresh, Ahmad, E-mail: ahmadechresh@gmail.com [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden); Echresh, Mohammad [Department of Physics, Sanati Hoveizeh University, Ahvaz (Iran, Islamic Republic of); Khranovskyy, Volodymyr [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-5818358183 Linköping (Sweden); Nur, Omer; Willander, Magnus [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden)

    2016-10-15

    The thermal evaporation method has been used to deposit p-type NiO thin film, which was combined with hydrothermally grown n-type pure and M-doped ZnO nanorods (M=Ag, Cd and Ni) to fabricate a high performance p-n heterojunction ultraviolet photodiodes. The fabricated photodiodes show high rectification ratio and relatively low leakage current. The p-NiO/n-Zn{sub 0.94}Ag{sub 0.06}O heterojunction photodiode displays the highest photocurrent gain (~1.52×10{sup 4}), a photoresponsivity of ~4.48×10{sup 3} AW{sup −1} and a photosensitivity of ~13.56 compared with the other fabricated photodiodes. The predominated transport mechanisms of the p-n heterojunction ultraviolet photodiodes at low and high applied forward bias may be recombination-tunneling and space charge limited current, respectively.

  16. Effect of iodine doping of phthalocyanine on the photocurrent generation in a phthalocyanine/C_<60> heterojunction

    OpenAIRE

    Mizuta, Shinsei; Iyota, Masatoshi; Tanaka, Senku; Hiromitsu, Ichiro

    2012-01-01

    Photocurrent generation in an indium?tin oxide (ITO)/iodine-doped Ni-phthalocyanine (NiPc-I_x)/C_/In/Al heterojunction device with x~1 was studied. By keeping the device in air after preparation, the device slowly reached a stationary state in which the sign of the photocurrent is opposite to that of a non-doped ITO/NiPc/C_/In/Al device although the rectification direction for the dark current is the same. By a simulation of incident photon-to-current conversion efficiency spectra and a measu...

  17. Effect of photocurrent amplification in In sub 2 O sub 3 -GaSe heterostructure

    CERN Document Server

    Drapak, S I

    2001-01-01

    The experimentally determined effects of originating the photocurrent amplification in the In sub 2 O sub 3 -GaSe heterostructure with localization of the barrier plane perpendicular to the semiconductor layers are described. The value of the amplification coefficient by the reverse displacement U = 10 V reached M approx = 82 and the absolute value of the current sensitivity - 30-32 A/W. The mechanism of the current transfer through the dielectric, inevitable originating on the gallium monoselenide surface, is determined on the basis of the volt-ampere characteristics study. The supposition is made on the change in the conductivity mechanisms by transferring the barrier plane from the parallel to the perpendicular one to the GaSe layers

  18. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    DEFF Research Database (Denmark)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo

    2016-01-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow......-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light...... within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au...

  19. Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Heiskanen, Arto R.; Pankratova, Galina

    2018-01-01

    Harvesting the energy generated by photosynthetic organisms through light-dependent reactions is a significant step towards a sustainable future energy supply. Thylakoid membranes are the site of photosynthesis, and thus particularly suited for developing photo-bioelectrochemical cells. Novel ele......]+/2+) are used for evaluating photocurrent generation from thylakoid membranes with different electrode geometries. Current densities up to 71 µA cm-2 are measured upon illumination through the transparent electrode chip with solar simulated irradiance (1000 W m-2)....... electrode materials and geometries could potentially improve the efficiency of energy harvesting using thylakoid membranes. For commercial applications, electrodes with large surface areas are needed. Photolithographic patterning of a photoresist, followed by pyrolysis, is a flexible and fast approach...

  20. Modulating light propagation in ZnO-Cu₂O-inverse opal solar cells for enhanced photocurrents.

    Science.gov (United States)

    Yantara, Natalia; Pham, Thi Thu Trang; Boix, Pablo P; Mathews, Nripan

    2015-09-07

    The advantages of employing an interconnected periodic ZnO morphology, i.e. an inverse opal structure, in electrodeposited ZnO/Cu2O devices are presented. The solar cells are fabricated using low cost solution based methods such as spin coating and electrodeposition. The impact of inverse opal geometry, mainly the diameter and thickness, is scrutinized. By employing 3 layers of an inverse opal structure with a 300 nm pore diameter, higher short circuit photocurrents (∼84% improvement) are observed; however the open circuit voltages decrease with increasing interfacial area. Optical simulation using a finite difference time domain method shows that the inverse opal structure modulates light propagation within the devices such that more photons are absorbed close to the ZnO/Cu2O junction. This increases the collection probability resulting in improved short circuit currents.

  1. {Ni4O4} Cluster Complex to Enhance the Reductive Photocurrent Response on Silicon Nanowire Photocathodes

    Directory of Open Access Journals (Sweden)

    Yatin J. Mange

    2017-02-01

    Full Text Available Metal organic {Ni4O4} clusters, known oxidation catalysts, have been shown to provide a valuable route in increasing the photocurrent response on silicon nanowire (SiNW photocathodes. {Ni4O4} clusters have been paired with SiNWs to form a new photocathode composite for water splitting. Under AM1.5 conditions, the combination of {Ni4O4} clusters with SiNWs gave a current density of −16 mA/cm2, which corresponds to an increase in current density of 60% when compared to bare SiNWs. The composite electrode was fully characterised and shown to be an efficient and stable photocathode for water splitting.

  2. Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells

    Science.gov (United States)

    Rimal, Gaurab; Pimachev, Artem K.; Yost, Andrew J.; Poudyal, Uma; Maloney, Scott; Wang, Wenyong; Chien, TeYu; Dahnovsky, Yuri; Tang, Jinke

    2016-09-01

    A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the Zn2SnO4 (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The ab initio calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.

  3. Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rimal, Gaurab; Pimachev, Artem K.; Yost, Andrew J.; Poudyal, Uma; Maloney, Scott; Wang, Wenyong; Chien, TeYu; Dahnovsky, Yuri, E-mail: yurid@uwyo.edu, E-mail: jtang2@uwyo.edu; Tang, Jinke, E-mail: yurid@uwyo.edu, E-mail: jtang2@uwyo.edu [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-09-05

    A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the Zn{sub 2}SnO{sub 4} (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The ab initio calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.

  4. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells

    KAUST Repository

    Song, Zhaoning

    2016-11-23

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  5. Correlation of morphology with photocurrent generation in a polymer blend photovoltaic device.

    Science.gov (United States)

    Ostrowski, David P; Vanden Bout, David A

    2014-05-14

    Morphological effects on photovoltaic (PV) properties are studied through scanning photocurrent (PC) and photoluminescence (PL) microscopy of a solution processed, polymer blend PV device composed of PFB [poly(9,9'-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine] and F8BT [poly(9,9'-dioctylfluorene-co-benzothiadiazole]. As PFB and F8BT have unique absorbance bands, it is possible to selectively excite only F8BT (488 nm) or both PFB and F8BT (408 nm). Local voltage-dependent photocurrent (LVPC) measurements from particular regions of interest in the PV show that the diode characteristics between different morphologies are essentially the same, except in regard to the magnitude of PC generated. A local PL spectrum is measured simultaneously with PC generation at each pixel in the image maps. Through integration of the local PL spectrum over particular wavelength ranges, PL image maps are created of PFB-PL (435 to 475 nm), F8BT-PL (530 to 570 nm), exciplex-PL (620 to 685 nm) and total-PL (entire spectrum). These data allow direct correlation of PC generation with local chemical composition variations within the PV device. PL image maps show morphological variations on the order of 0.5 to 1 µm of alternating PFB-rich and F8BT-rich phases. While illuminating only F8BT (488 nm light), the PFB-rich phases produce the most PC, however, while illuminating both polymers but mostly PFB (408 nm light), the F8BT-rich phases produce the most PC. These results show that in the morphology where the light absorbing material is less concentrated, the PC generation is increased. Additionally, the exciplex-PL is found to not be a significant radiative loss mechanism of charge carriers for PC generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Study of the passivation mechanisms of boron doped diamond using the Amplitude Modulated Step Scan Fourier Transform Photocurrent Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kociniewski, T.; Remeš, Zdeněk; Mer, C.; Nesládek, Miloš; Habka, N.; Barjon, J.; Jomard, F.; Chevallier, J.; Omnès, F.; Tromson, D.; Bergonzo, P.

    2009-01-01

    Roč. 18, 5-8 (2009), s. 827-830 ISSN 0925-9635 Institutional research plan: CEZ:AV0Z10100521 Keywords : AMFTPS * DBP * boron doped diamond * passivation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  7. Model of Organic Solar Cell Photocurrent Including the Effect of Charge Accumulation at Interfaces and Non-Uniform Carrier Generation

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Cester, Andrea; Rizzo, Antonio

    2017-01-01

    We developed an improved model to fit the photocurrent density versus voltage in organic solar cells. The model has been validated by fitting data from P3HT:PCBM solar cells. Our model quantitatively accounts for the band bending near the electrodes caused by charge accumulation in the active layer...

  8. Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy

    NARCIS (Netherlands)

    Buchs, G.; Barkelid, K.M.; Bagiante, S.; Steele, G.A.; Zwiller, V.

    2011-01-01

    We use scanning photocurrent microscopy (SPCM) to investigate individual suspended semiconducting carbon nanotube devices where the potential profile is engineered by means of local gates. In situ tunable p-n junctions can be generated at any position along the nanotube axis. Combining SPCM with

  9. The study of amplification circuit characteristics of photocurrent signal of high-energy industrial CT detection system

    International Nuclear Information System (INIS)

    Wang Jue; Tan Hui; Wang Xin; Chen Jiaoze

    2011-01-01

    According to characteristics of the Photocurrent signal from detection system of high energy industrial CT, sets up the integral amplifier circuit test platform based ACF2101, through the study of this amplifier circuit, a integral capacitor using air as dielectric is proposed in order to get high-gain. After experimental tests, results are good. (authors)

  10. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  11. Nuclear resonance vibrational spectroscopy applied to [Fe(OEP)(NO)]: the vibrational assignments of five-coordinate ferrous heme-nitrosyls and implications for electronic structure.

    Science.gov (United States)

    Lehnert, Nicolai; Galinato, Mary Grace I; Paulat, Florian; Richter-Addo, George B; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong

    2010-05-03

    This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N

  12. Potential and pH dependence of photocurrent transients for boron-doped diamond electrodes in aqueous electrolyte

    International Nuclear Information System (INIS)

    Green, S.J.; Mahe, L.S.A.; Rosseinsky, D.R.; Winlove, C.P.

    2013-01-01

    Using illumination at energies below the intrinsic diamond energy gap, photocurrent transients have been recorded for boron-doped diamond (BDD) as an electrode in an aqueous electrolyte of 0.1 M KH 2 PO 4 . The commercially-supplied BDD was in the form of a free-standing, polycrystalline film grown by chemical vapour deposition (CVD), with a boron acceptor concentration of ≥10 20 cm −3 . The effects of mechanical polishing of the BDD, of electrochemical hydrogen evolution and of electrochemical oxygen evolution (in 0.1 M KH 2 PO 4 ), on the potential dependence of the photocurrent transients have been examined. Measurements of the cathodic photocurrent at light switch-on have been used to determine the photocurrent onset potential as a measure of the flatband potential. Comparison with and between related literature observations has shown broad agreement across considerably varying BDD/electrolyte systems. The flatband potential shifted positively following electrochemical oxygen evolution, indicating the formation of oxygen-containing groups on the diamond surface, these increasing the potential drop across the Helmholtz layer. For the electrochemically oxidised electrode, the cathodic photocurrent transient at a fixed potential changed reproducibly with changing solution pH, owing to the participation of the oxygen-containing surface groups in acid–base equilibrium with the solution. This clear demonstration of BDD as a photoelectrochemical pH sensor is in principle extendable to mapping the spatial variation in pH across a BDD surface by use of a focussed light spot

  13. Optical spectroscopy of the density of gap states in ETP-deposited a-Si:H

    NARCIS (Netherlands)

    Willekens, J.; Brinza, M.; Güngör, T.; Adriaenssens, G.J.; Nesladek, M.; Kessels, W.M.M.; Smets, A.H.M.; Sanden, van de M.C.M.

    2004-01-01

    The distribution and density of localized states in the band gap of hydrogenated amorphous silicon, as deposited by the expanding thermal plasma technique, were studied by means of a combined use of the constant photocurrent method (CPM), photothermal deflection spectroscopy (PDS) and time-of-flight

  14. Photocurrents in retinal rods of pigeons (Columba livia): kinetics and spectral sensitivity.

    Science.gov (United States)

    Palacios, A G; Goldsmith, T H

    1993-01-01

    1. Membrane photocurrents were recorded from outer segments of isolated retinal rods of pigeons (Columba livia), the first such measurements on the photoreceptors of a bird. The amplitude of the response to 20 ms flashes of narrow wavelength bands of light increases linearly with intensity at low photon fluxes and saturates at higher intensities. The maximum (saturating) photocurrent observed in forty-nine rod cells was 50 pA. Larger responses with less variability in the intensity for half-maximal responses were observed when the physiological saline contained 20 mM bicarbonate (in addition to Hepes buffer). 2. The dependence of peak amplitude on intensity is well fitted by an exponential function; it is usually less well fitted by the Michaelis-Menten (Naka-Rushton) equation. 3. In the presence of bicarbonate, the average sensitivity of pigeon rods to dim flashes was 0.56 pA photon-1 microns -2. The effective collecting area per photon was 1.8 microns 2. About 83 +/- 26 (mean +/- S.D.) photoisomerizations were required for a half-saturating response. 4. The response kinetics of rods to dim flashes can be reasonably well described by a series of four to five either Poisson or independent filters. The time to peak, measured from the mid-point of a 20 ms flash, was 319 +/- 83 ms (mean +/- S.D.). The integration time of the response was 851 +/- 86 ms (mean +/- S.D.) with bicarbonate present and 572 +/- 126 ms in the absence of bicarbonate. The responses of pigeon rods appear to be slower than those of mammals at the same temperature. The fraction of current suppressed by a single photoisomerization is smaller in pigeon than in mammalian rods by a factor of at least two. 5. The spectral sensitivity function was measured between 680 and 330 nm. The maximum at about 505 nm (range 497-508 nm) corresponds to the alpha-band of a vertebrate rhodopsin and agrees with previous behavioural measurements of scotopic sensitivity of pigeons as well as the absorption spectrum of

  15. High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets

    Science.gov (United States)

    Ghorban Shiravizadeh, A.; Elahi, S. M.; Sebt, S. A.; Yousefi, Ramin

    2018-02-01

    In this work, the photoresponse performance of monodisperse PbSe nanocubes in the range of visible and near-infrared (NIR) (400-1500 nm) regions was enhanced by reduced graphene oxide (rGO). A simple cost-effective method is presented to synthesize monodisperse PbSe nanocubes (NCs) that are decorated on the rGO sheets. By the addition of PbSe/rGO nanocomposites with different rGO concentrations, pristine PbSe NCs were synthesized with the same method. Microscopy images showed that the size of NCs was smaller than the exciton Bohr radius (46 nm) of PbSe bulk. Therefore, the UV-Vis-IR spectroscopy result revealed that the PbSe/rGO samples had absorption peaks in the NIR region around 1650 nm and showed a blue shift compared to the absorption peak of the PbSe bulk. J-V measurements of the samples indicated that monodisperse PbSe/rGO nanocomposites had a higher resistance than the other samples under dark condition. On the other hand, the resistance of the monodisperse PbSe/rGO nanocomposites decreased under different light source illuminations while the resistance of the other samples was increased under illumination. Photodetector measurements indicated that the monodisperse morphology of the PbSe NCs enhanced the photoresponse speed and photocurrent intensity. In addition, responsivity (R) and detectivity (D*) of the samples were higher in the NIR region.

  16. The relationship between the electric field induced dissociation of charge transfer (CT) excitons and the photocurrent in novel hybrid small molecular/polymeric solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Neher, Dieter [Universitaet Potsdam (Germany). Institut fuer Physik und Astronomie; Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (China)

    2010-07-01

    Complete dissociation of coulombically bound interfacial states is an ultimate step accounting for photovoltaic performance. Recent work has proposed that the emission of CT-exciton, i.e. an exciplex, is a competing process to the generation of free charges. Here, we investigated the photophysical processes in a bulk heterojunction system using a soluble poly(p-phenylenevinylene) donor and a novel small molecular electron acceptor based on Vinazene (2-vinyl-4,5-dicyanoimidazole). Recent work has shown that this blend exhibits a featureless emission, prominent at long wavelengths of the spectrum, which was attributed to a CT-exciton. We monitored the field induced dissociation of these CT-excitons by means of steady state and time resolved PL spectroscopy. Shortened decay times and reduced PL emission in blend film evidence the dissociation of the emissive intermolecular pair by the external electric field. Analyzing the dependence of the photocurrent and external quantum efficiency on the external field, the fate of the separated exciplex pairs is tackled. It is suggested that the formation of free carriers involves channels other than CT-excitons in such blends.

  17. Determination of Carrier Lifetimes in Organic-Inorganic Hybrid Solar Cells Based on Sb2S3 by Using the Time-Resolved Photocurrent

    Science.gov (United States)

    Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Kim, Seung Hyun; Lee, Sang-Ju; Sung, Shi-Joon; Kim, Dae-Hwan

    2018-03-01

    This paper presents organic-inorganic hybrid solar cells (SCs) based on ZnO/Sb2S3/P3HT heterojunctions. The ZnO and the Sb2S3 layers were grown using atomic layer deposition (ALD). Although four cells were fabricated on one substrate by using the same process, their open-circuit voltages ( V OC ) and short-circuit current densities ( J SC ) were different. The SC with a high V OC has a low J SC . The causes of the changes in the V OC and the JSC were investigated by using photoluminescence (PL) spectroscopy and optically-biased time-resolved photocurrent (TRPC) measurements. The PL results at 300 K showed that the emission positions of the Sb2S3 layers in all cells were similar at approximately 1.71 eV. The carrier lifetime of the SCs was calculated from the TRPC results. The lifetime of cell 4 with the highest J SC decreased drastically with increasing intensity of the continuous-wave optical bias beam. Therefore, the defect states in the ZnO layer contribute to the J SC , but degrade the V OC .

  18. Evidence for surface-generated photocurrent in (Bi,Sb)2Se3and(Bi,Sb)2Te3 thin films

    Science.gov (United States)

    Pan, Yu; Richardella, Anthony; Yao, Bing; Lee, Joon Sue; Flanagan, Thomas; Kandala, Abhinav; Samarth, Nitin; Yeats, Andrew; Mintun, Peter; Awschalom, David

    2015-03-01

    Illumination with circularly polarized light is known produce a helicity-dependent photocurrent in topological insulators such as Bi2Se3 [e.g. Nature Nanotech. 7, 96 (2012)]. However, the exact origin of this effect is still unclear since it is observed with photons well above the bulk band gap. We report measurements of the polarization-dependent photocurrent in a series of (Bi,Sb)2Se3 thin films with different carrier concentrations and find that the photocurrent is enhanced as we increase the population of the surface states. This finding is supported by a study of helicity-dependent photocurrents in back-gated (Bi,Sb)2Te3 thin films, where the chemical potential is varied electrostatically. By illuminating our samples at different wavelengths, we show that the helicity-dependent photocurrent is enhanced when the photon energy approaches the energy difference between the lowest and first excited (unoccupied) topological surface states. This leads us to attribute the helicity-dependent photocurrent in topological insulators to optical excitations between these two spin-textured surface states. We will also discuss experiments imaging the spatial variation of these helicity-dependent photocurrents. This work is supported by ONR.

  19. FY 1998 annual report on the research and development of superhigh-sensitivity photocurrent conversion devices; 1998 nendo chokokando koden henkan soshi ni kansuru kenkyu kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are research and development of superhigh-sensitivity photocurrent conversion devices. The huge photocurrent multiplication effect exhibited by a thin film of organic pigment semiconductor is expected to be applicable to various new devices, e.g., superhigh-sensitivity, intelligent optical sensor families and photocurrent devices. Photocurrent multiplier thin films of perylene is prepared by an ionized cluster beam method, to evaluate their structures and photocurrent characteristics as the basic knowledge for controlling their characteristics by the ion engineering procedures. Photocurrent multiplier thin films of new, two-layer structure are developed, and improvement and stabilization of their characteristics are studied. Increasing sensing sensitivity by, e.g., introduction of p-n junction and reducing dark current resulting from the light memory effect are found to be effective to improve the S/N ratio. An organic EL light-emitting layer capable of positive/negative feedback, as one of the elementary techniques for realizing intelligent devices, is made on a trial basis and evaluated for its characteristics, and studied for its application to photocurrent multiplier thin films. Functional devices in which the arithmetic and controlling functions of the thin films are utilized are also studied. (NEDO)

  20. New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements

    Science.gov (United States)

    Aivazian, Grant; Sun, Dong; Jones, Aaron; Ross, Jason; Yao, Wang; Cobden, David; Xu, Xiaodong

    2012-02-01

    The remarkable electrical and optical properties of graphene make it a promising material for new optoelectronic applications. However, one important, but so far unexplored, property is the role of hot carriers in charge and energy transport at graphene interfaces. Here we investigate the photocurrent (PC) dynamics at a tunable graphene pn junction using ultrafast scanning PC microscopy. Pump-probe measurements show a temperature dependent relaxation time of photogenerated carriers that increases from 1.5ps at 290K to 4ps at 20K; while the amplitude of the PC is independent of the lattice temperature. These observations imply that it is hot carriers, not phonons, which dominate ultrafast energy transport. Gate dependent measurements show many interesting features such as pump induced saturation, enhancement, and sign reversal of probe generated PC. These observations reveal that the underlying PC mechanism is a combination of the thermoelectric and built-in electric field effects. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (˜500 GHz) for graphene-based photodetectors.

  1. Enhanced Photocurrent Efficiency of a Carbon Nanotube Embedded in a Photonic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bryan M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Science

    2008-08-01

    One of the most rapidly-growing areas in nanoscience is the ability to artificially manipulate optical and electrical properties at the nanoscale. In particular, nanomaterials such as single-wall carbon nanotubes offer enhanced methods for converting infrared light to electrical energy due to their unique one-dimensional electronic properties. However, in order for this energy conversion to occur, a realistic nanotube device would require high-intensity light to be confined on a nanometer scale. This arises from the fact that the diameter of a single nanotube is on the order of a nanometer, and infrared light from an external source must be tightly focused on the narrow nanotube for efficient energy conversion. To address this problem, I calculate the theoretical photocurrent of a nanotube p-n junction illuminated by a highly-efficient photonic structure. These results demonstrate the utility of using a photonic structure to couple large-scale infrared sources with carbon nanotubes while still retaining all the unique optoelectronic properties found at the nanoscale.

  2. Nonlinear photocurrent-intensity behavior of amorphous InZnO thin film transistors

    Science.gov (United States)

    Lu, Huiling; Zhou, Xiaoliang; Liang, Ting; Zhang, Letao; Zhang, Shengdong

    2018-01-01

    The photocurrent (IPH) of amorphous InZnO thin film transistors in the off-state is investigated as a function of incident optical power (P). The results show that IPH exhibits a nonlinear dependence on P. Additionally, the dependence of IPH on P exhibits a strong photon energy (hυ)-dependent feature. When P is relatively low, IPH is shown to be proportional to Pγ, where γ is greater than 1. The γ > 1 behavior may be ascribed to the source-barrier-lowering effect due to the accumulation of photo-induced positive charges at the source side. When P is relatively high, while IPH remains proportional to Pγ under the incident light with hυ larger than the optical bandgap (Eg) of a-IZO, it turns to increase at an exponential rate with P if hυ of the incident light is smaller than the Eg. The exponential increase in IPH is attributed to the source-barrier-thinning effect, which leads to a significantly enhanced tunneling current.

  3. Biexcitonic photocurrent induced by two-photon process at a telecommunication band

    International Nuclear Information System (INIS)

    Kodera, Tetsuo; Miyazawa, Toshiyuki; Kumagai, Naoto; Watanabe, Katsuyuki; Suzuki, Ayako; Takagi, Hiroyuki; Nakaoka, Toshihiro; Arakawa, Yasuhiko

    2009-01-01

    We report on photocurrent (PC) measurements of biexciton in a single self-assembled InAs quantum dot (QD) at a telecommunication wavelength of 1.3μm. We use shadow mask technique on an n-i Schottky photodiode structure with QDs to excite a single QD resonantly. Coherent pulse excitation is realized in two types of setups utilizing (i) an optical parametric oscillator and (ii) a stable semiconductor laser diode. In both setups we observe the biexcitonic PC peaks induced by a coherent two-photon process. Especially in the latter setups, the narrower pulse linewidth in energy provides a clearer biexcitonic PC peak because of reduced unwanted excitation. We estimate the binding energy ΔE B of our telecom-band biexciton to be 0.9 meV from the splitting between excitonic and biexcitonic resonances. The result suggests our telecom-band exciton-biexciton system is a good candidate for the building block of fiber-based controlled-rotation quantum logic operation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Configurations, band structures and photocurrent responses of 4-(4-oxopyridin-1(4H)-yl)phthalic acid and its metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo; Li, Hongjiang [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Gong, Yun, E-mail: gongyun7211@cqu.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Lin, Jianhua, E-mail: jhlin@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2016-05-15

    4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H{sub 2}L) and three H{sub 2}L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H{sub 2}O)·H{sub 2}O (DPE=(E)-1, 2-di(pyridine −4-yl)ethene) (1), CdL(H{sub 2}O){sub 2} (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H{sub 2}L ligand shows an enol-form and the L{sup 2−} ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H{sub 2}L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower than those of H{sub 2}L. And MOF 1 yielded much larger photocurrent density than H{sub 2}L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L{sup 2−}, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1. - Graphical abstract: The free ligand, 4-(4-oxopyridin-1(4H)-yl)phthalic acid (H{sub 2}L) shows different configuration from its three MOFs, and they possess different band structures. MOF 1 yielded much larger visible-light-driven photocurrent density than H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 can be transformed to each other, and they have larger band gaps than MOF 1.

  5. A Low-Power CMOS Front-End for Photoplethysmographic Signal Acquisition With Robust DC Photocurrent Rejection.

    Science.gov (United States)

    Wong, A K Y; Kong-Pang Pun; Yuan-Ting Zhang; Ka Nang Leung

    2008-12-01

    A micro-power CMOS front-end, consisting of a transimpedance amplifier (TIA) and an ultralow cutoff frequency lowpass filter for the acquisition of photoplethysmographic signal (PPG) is presented. Robust DC photocurrent rejection for the pulsed signal source is achieved through a sample-and-hold stage in the feed-forward signal path and an error amplifier in the feedback path. Ultra-low cutoff frequency of the filter is achieved with a proposed technique that incorporates a pair of current-steering transistors that increases the effective filter capacitance. The design was realized in a 0.35-mum CMOS technology. It consumes 600 muW at 2.5 V, rejects DC photocurrent ranged from 100 nA to 53.6 muA, and achieves lower-band and upper-band - 3-dB cutoff frequencies of 0.46 and 2.8 Hz, respectively.

  6. A new time-dependent analytic model for radiation-induced photocurrent in finite 1D epitaxial diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Verley, Jason C.; Axness, Carl L.; Hembree, Charles Edward; Keiter, Eric Richard; Kerr, Bert (New Mexico Institute of Mining and Technology, Socorro, NM)

    2012-04-01

    Photocurrent generated by ionizing radiation represents a threat to microelectronics in radiation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these threats, and typically rely on compact models for individual electrical components such as transistors and diodes. Compact models consist of a handful of differential and/or algebraic equations, and are derived by making simplifying assumptions to any of the many semiconductor transport equations. Historically, many photocurrent compact models have suffered from accuracy issues due to the use of qualitative approximation, rather than mathematically correct solutions to the ambipolar diffusion equation. A practical consequence of this inaccuracy is that a given model calibration is trustworthy over only a narrow range of operating conditions. This report describes work to produce improved compact models for photocurrent. Specifically, an analytic model is developed for epitaxial diode structures that have a highly doped subcollector. The analytic model is compared with both numerical TCAD calculations, as well as the compact model described in reference [2]. The new analytic model compares well against TCAD over a wide range of operating conditions, and is shown to be superior to the compact model from reference [2].

  7. Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Antolin, E.; Marti, A.; Stanley, C.R.; Farmer, C.D.; Canovas, E.; Lopez, N.; Linares, P.G.; Luque, A.

    2008-01-01

    Conceived to exceed the conversion efficiency of conventional photovoltaic devices, the intermediate band solar cell bases its operation on exploiting, besides the usual band-to-band optical transitions, the absorption of two sub-bandgap photons. For the present, the only technology used to implement an intermediate band in real devices has been the growth of an InAs/GaAs quantum dot superlattice. In practice, the obtained material shows two limitations: the narrow energy gap between conduction and intermediate band and the appearance of growth defects due to the lattice stress. The consequences are the presence of non-radiative recombination mechanisms and the thermal escape of electrons from the intermediate to the conduction band, hindering the splitting of the quasi-Fermi levels associated with the intermediate and conduction bands and the observation of photocurrent associated with the two-photon absorption. By reducing the temperature at which the devices are characterised we have suppressed the parasitic thermal mechanisms and have succeeded in measuring the photocurrent caused by the absorption of two below bandgap photons. In this work, the characterization of this photocurrent at low temperature is presented and discussed

  8. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.

    Science.gov (United States)

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su

    2015-04-01

    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  9. Photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes induced by GaN interband excitation

    Science.gov (United States)

    Tang, Xi; Li, Baikui; Chen, Kevin J.; Wang, Jiannong

    2018-05-01

    The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.

  10. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  11. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging.

    Science.gov (United States)

    Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S

    2016-06-08

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  12. Observation of Switchable Photoresponse of a Monolayer WSe 2 –MoS 2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging

    KAUST Repository

    Son, Youngwoo

    2016-04-27

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  13. Enhanced Photocurrent in BiFeO3 Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System.

    Science.gov (United States)

    Qi, Jia; Ma, Nan; Ma, Xiaochen; Adelung, Rainer; Yang, Ya

    2018-04-25

    Ferroelectric materials can be utilized for fabricating photodetectors because of the photovoltaic effect. Enhancing the photovoltaic performance of ferroelectric materials is still a challenge. Here, a self-powered ultraviolet (UV) photodetector is designed based on the ferroelectric BiFeO 3 (BFO) material, exhibiting a high current/voltage response to 365 nm light in heating/cooling states. The photovoltaic performance of the BFO-based device can be well modulated by applying different temperature variations, where the output current and voltage can be enhanced by 60 and 75% in heating and cooling states, respectively. The enhancement mechanism of the photocurrent is associated with both temperature effect and thermo-phototronic effect in the photovoltaic process. Moreover, a 4 × 4 matrix photodetector array has been designed for detecting the 365 nm light distribution in the cooling state by utilizing photovoltage signals. This study clarifies the role of the temperature effect and the thermo-phototronic effect in the photovoltaic process of the BFO material and provides a feasible route for pushing forward practical applications of self-powered UV photodetectors.

  14. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    Science.gov (United States)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  15. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    OpenAIRE

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-01-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNT...

  16. Graphene controlled H- and J-stacking of perylene dyes into highly stable supramolecular nanostructures for enhanced photocurrent generation

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Engelbrekt, Christian

    2014-01-01

    We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J......-stacking and two-dimensional branched nanobuds through H-stacking. Graphene integrated supramolecular nanocomposites are highly stable and show significant enhancement of photocurrent generation in these two configurations of photosensing devices, i.e. solid-state optoelectronic constructs and liquid...

  17. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bricklemyer, Ross S; Brown, David J; Turk, Philip J; Clegg, Sam M

    2013-10-01

    Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 nm) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 nm) core-scanning LIBS instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIBS were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIBS for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIBS. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIBS is superior to UV spectrum LIBS for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification.

  18. [Raman spectroscopy applied to analytical quality control of injectable drugs: analytical evaluation and comparative economic versus HPLC and UV / visible-FTIR].

    Science.gov (United States)

    Bourget, P; Amin, A; Vidal, F; Merlette, C; Troude, P; Corriol, O

    2013-09-01

    In France, central IV admixture of chemotherapy (CT) treatments at the hospital is now required by law. We have previously shown that the shaping of Therapeutic Objects (TOs) could profit from an Analytical Quality Assurance (AQA), closely linked to the batch release, for the three key parameters: identity, purity, and initial concentration of the compound of interest. In the course of recent and diversified works, we showed the technical superiority of non-intrusive Raman Spectroscopy (RS) vs. any other analytical option and, especially for both HPLC and vibrational method using a UV/visible-FTIR coupling. An interconnected qualitative and economic assessment strongly helps to enrich these relevant works. The study compares in operational situation, the performance of three analytical methods used for the AQC of TOs. We used: a) a set of evaluation criteria, b) the depreciation tables of the machinery, c) the cost of disposables, d) the weight of equipment and technical installations, e) the basic accounting unit (unit of work) and its composite costs (Euros), which vary according to the technical options, the weight of both human resources and disposables; finally, different combinations are described. So, the unit of work can take 12 different values between 1 and 5.5 Euros, and we provide various recommendations. A qualitative evaluation grid constantly places the SR technology as superior or equal to the 2 other techniques currently available. Our results demonstrated: a) the major interest of the non-intrusive AQC performed by RS, especially when it is not possible to analyze a TO with existing methods e.g. elastomeric portable pumps, and b) the high potential for this technique to be a strong contributor to the security of the medication circuit, and to fight the iatrogenic effects of drugs especially in the hospital. It also contributes to the protection of all actors in healthcare and of their working environment.

  19. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  20. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  1. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells

    International Nuclear Information System (INIS)

    Fernando, C A N; Liyanaarachchi, U S; AARajapaksha, R D

    2013-01-01

    Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C 18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu 2 O/M-C 18 /p-CuI are studied by controlling the formation of dye aggregates of M-C 18 Langmuir–Blodgett (LB) films on the p-CuI layer. LB films of M-C 18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu 2 O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10 −2 M) Fe 2+ + Fe 3+ (10 −2 M) and (10 −2 M) NaH 2 PO 4 –Na 2 HPO 4 , pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (φmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C 18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, φ = AD 0 –BD 0 2 , where A = k 1 k 2 /F, B = I k 1 2 k 2 [2k 6 /F 3 + k 2 k 4 /k 3 2 X 2 F 2 ], F = k 2 + k 5 Y + k 7 + k 1 I [1 + k 2 /k 3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C 18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, V oc ≈750 mV and I sc ≈ 5.8 mA cm −2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C 18 LB films. (paper)

  2. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells

    Science.gov (United States)

    Fernando, C. A. N.; Liyanaarachchi, U. S.; AARajapaksha, R. D.

    2013-04-01

    Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu2O/M-C18/p-CuI are studied by controlling the formation of dye aggregates of M-C18 Langmuir-Blodgett (LB) films on the p-CuI layer. LB films of M-C18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu2O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10-2 M) Fe2+ + Fe3+ (10-2 M) and (10-2 M) NaH2PO4-Na2HPO4, pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (Фmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, Ф = AD0-BD02, where A = k1k2/F, B = I k12 k2[2k6/F3 + k2k4/k32 X2F2], F = k2 + k5Y + k7 + k1 I [1 + k2/k3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, Voc ≈750 mV and Isc ≈ 5.8 mA cm-2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C18 LB films.

  3. Two Ti13-oxo-clusters showing non-compact structures, film electrode preparation and photocurrent properties.

    Science.gov (United States)

    Hou, Jin-Le; Luo, Wen; Wu, Yin-Yin; Su, Hu-Chao; Zhang, Guang-Lin; Zhu, Qin-Yu; Dai, Jie

    2015-12-14

    Two benzene dicarboxylate (BDC) and salicylate (SAL) substituted titanium-oxo-clusters, Ti13O10(o-BDC)4(SAL)4(O(i)Pr)16 (1) and Ti13O10(o-BDC)4(SAL-Cl)4(O(i)Pr)16 (2), are prepared by one step in situ solvothermal synthesis. Single crystal analysis shows that the two Ti13 clusters take a paddle arrangement with an S4 symmetry. The non-compact (non-sphere) structure is stabilized by the coordination of BDC and SAL. Film photoelectrodes are prepared by the wet coating process using the solution of the clusters and the photocurrent response properties of the electrodes are studied. It is found that the photocurrent density and photoresponsiveness of the electrodes are related to the number of coating layers and the annealing temperature. Using ligand coordinated titanium-oxo-clusters as the molecular precursors of TiO2 anatase films is found to be effective due to their high solubility, appropriate stability in solution and hence the easy controllability.

  4. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Hilali, Mohamed M; Banerjee, Sanjay; Sreenivasan, S V; Yang Shuqiang; Miller, Mike; Xu, Frank

    2012-01-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent. (paper)

  5. Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells.

    Science.gov (United States)

    Pimachev, Artem; Poudyal, Uma; Proshchenko, Vitaly; Wang, Wenyong; Dahnovsky, Yuri

    2016-09-29

    We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn 2 SnO 4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.

  6. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  7. Effect of the polymeric coating thickness on the photocurrent performance of titanium dioxide nanorod arrays-polyaniline composite-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Othman, , N.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a one-step immersion method in a glass container. The effect of the polymeric coating thickness of p-type polyaniline (PANI) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated photosensor demonstrated an increased photocurrent under UV irradiation in correlation with the thickness layer of PANI. The measured UV response showed the highest photocurrent of 0.014 µA at 1.0 V of reverse bias with low dark current under the UV radiation (365 nm, 750 µW/cm2). The thickness of the PANI film improved the photocurrent of the fabricated TNAs/PANI composite-based UV photosensor.

  8. Role of photocurrent in low-temperature photoemission studies of Schottky-barrier formation

    International Nuclear Information System (INIS)

    Hecht, M.H.

    1990-01-01

    Photoelectron spectroscopy is frequently used to study band bending in semiconductors due to charge stored in surface or interface states. This paper examines how such experimental results are modified by photovoltages generated within the band-bending region not only by ambient light sources, but by the incident x rays themselves. Recent experiments which have suggested dopant-dependent and reversible temperature-dependent band bending in the initial stages of formation of the metal-GaAs(110) interface are used as an example. It is shown here that the reported dependence derives from a photovoltaic effect

  9. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  10. Development of a transient photocurrent response method for non-destructive analysis of defects in solar cells; Entwicklung einer Transient Photocurrent Response-Methode zur zerstoerungsfreien Untersuchung von Stoerstellen in Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, A

    1995-01-01

    A new measuring method for the destruction-free characterisation of impurities in basically large-surface [(20x20) mm{sup 2}]solar cells or photo detectors is explained. During this TPCR measuring method the transient photocurrent signal, generated by a repeating, rectangular, monochromatic irradiation, is recorded in dependence on the darkness between the irradiation pulses and on the temperature of the cells. (orig.) [Deutsch] Es wird ein neues Messverfahren zur zerstoerungsfreien Charakterisierung von Verunreinigungen in der Basis grossflaechiger [(20x20) mm{sup 2}] Solarzellen bzw. Photodetektoren vorgestellt. Bei diesem TPCR-Messverfahren wird das durch eine repetierende, rechteckfoermige, monochromatische Bestrahlung erzeugte transiente Photostrom-Signal in Abhaengigkeit von der Dunkelzeit zwischen den Bestrahlungspulsen und von der Tempeatur der Zelle aufgenommen. (orig./HW)

  11. Photoacoustic and photothermal spectroscopies

    International Nuclear Information System (INIS)

    Sawada, Tsuguo; Kitamori, Takehiko; Nakamura, Masato

    1995-01-01

    Photoacoustic and photothermal spectroscopy methods can be effectively applied to the analysis of microparticles in condensed matter. A more violent photothermal conversion phenomenon of a particle, laser breakdown and accompanying plasma and acoustic emission, was applied to individual detection and analysis of ultrafine particles in ultrapure water. Laser-like nonlinear emission from the plasma was observed. (author)

  12. Physical Properties of Macroporous Tungsten Oxide Thin Films and Their Impact on the Photocurrent Density

    Directory of Open Access Journals (Sweden)

    I. Riech

    2013-01-01

    Full Text Available Tungsten trioxide (WO3 films were prepared using polystyrene spheres of two different diameters as a template in order to create porous layers. X-ray diffraction data and electron microscopy images show that annealed films exhibit polycrystalline structure with monoclinic phase and pore size of approximately hundred nanometers. The optical band gap energies have been determined by photoacoustic spectroscopy as 3.17 eV, and this value was not affected by sample morphology. Low temperature photoluminescence spectra exhibit broad band in the blue region. Deconvolutions of PL spectra show that there are two transitions which intensity depends on thin film pore size. We discuss the possible origin of this emissions associated with oxygen vacancies and surface states. A comparative study of the WO3 films used as photoanodes is presented and correlated with PL results.

  13. Electric field dependent photocurrent generation in a thin-film organic photovoltaic device with a [70]fullerene-benzodifuranone dyad.

    Science.gov (United States)

    Ulmann, Pirmin A; Tanaka, Hideyuki; Matsuo, Yutaka; Xiao, Zuo; Soga, Iwao; Nakamura, Eiichi

    2011-12-21

    A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag⁺-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.

  14. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  15. Sub-bandgap response of graphene/SiC Schottky emitter bipolar phototransistor examined by scanning photocurrent microscopy

    Science.gov (United States)

    Barker, Bobby G., Jr.; Chava, Venkata Surya N.; Daniels, Kevin M.; Chandrashekhar, M. V. S.; Greytak, Andrew B.

    2018-01-01

    Graphene layers grown epitaxially on SiC substrates are attractive for a variety of sensing and optoelectronic applications because the graphene acts as a transparent, conductive, and chemically responsive layer that is mated to a wide-bandgap semiconductor with large breakdown voltage. Recent advances in control of epitaxial growth and doping of SiC epilayers have increased the range of electronic device architectures that are accessible with this system. In particular, a recently-introduced Schottky-emitter bipolar phototransistor (SEPT) based on an epitaxial graphene (EG) emitter grown on a p-SiC base epilayer has been found to exhibit a maximum common emitter current gain of 113 and a UV responsivity of 7.1 A W-1. The behavior of this device, formed on an n +-SiC substrate that serves as the collector, was attributed to a very large minority carrier injection efficiency at the EG/p-SiC Schottky contact. This large minority carrier injection efficiency is in turn related to the large built-in potential found at a EG/p-SiC Schottky junction. The high performance of this device makes it critically important to analyze the sub bandgap visible response of the device, which provides information on impurity states and polytype inclusions in the crystal. Here, we employ scanning photocurrent microscopy (SPCM) with sub-bandgap light as well as a variety of other techniques to clearly demonstrate a localized response based on the graphene transparent electrode and an approximately 1000-fold difference in responsivity between 365 nm and 444 nm excitation. A stacking fault propagating from the substrate/epilayer interface, assigned as a single layer of the 8H-SiC polytype within the 4H-SiC matrix, is found to locally increase the photocurrent substantially. The discovery of this polytype heterojunction opens the potential for further development of heteropolytype devices based on the SEPT architecture.

  16. Photocurrent response of B12As2 crystals to blue light, and its temperature- dependent electrical characterizations

    Directory of Open Access Journals (Sweden)

    R. Gul

    2016-02-01

    Full Text Available With the global shortage of 3He gas, researchers worldwide are looking for alternative materials for detecting neutrons. Among the candidate materials, semiconductors are attractive because of their light weight and ease in handling. Currently, we are looking into the suitability of boron arsenide (B12As2 for this specific application. As the first step in evaluating the material qualitatively, the photo-response of B12As2 bulk crystals to light with different wavelengths was examined. The crystals showed photocurrent response to a band of 407- and 470- nm blue light. The maximum measured photoresponsivity and the photocurrent density at 0.7 V for 470 nm blue light at room temperature were 0.25 A ⋅ W−1 and 2.47 mA ⋅ cm−2, respectively. In addition to photo current measurements, the electrical properties as a function of temperature (range: 50-320 K were measured. Reliable data were obtained for the low-temperature I-V characteristics, the temperature dependence of dark current and its density, and the resistivity variations with temperature in B12As2 bulk crystals. The experiments showed an exponential dependence on temperature for the dark current, current density, and resistivity; these three electrical parameters, respectively, had a variation of a few nA to μA, 1-100 μA ⋅ cm−2 and 7.6x105-7.7x103 Ω ⋅ cm, for temperature increasing from 50 K to 320 K. The results from this study reported the first photoresponse and demonstrated that B12As2 is a potential candidate for thermal-neutron detectors.

  17. Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    DEFF Research Database (Denmark)

    DiCarlo, L.; M. Marcus, C.; Harris jr, J.

    2003-01-01

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current...... that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic...

  18. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  19. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  20. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  1. Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2

    Directory of Open Access Journals (Sweden)

    Gardelis Spiros

    2011-01-01

    Full Text Available Abstract In this study we investigate the electronic transport, the optical properties, and photocurrent in two-dimensional arrays of silicon nanocrystals (Si NCs embedded in silicon dioxide, grown on quartz and having sizes in the range between less than 2 and 20 nm. Electronic transport is determined by the collective effect of Coulomb blockade gaps in the Si NCs. Absorption spectra show the well-known upshift of the energy bandgap with decreasing NC size. Photocurrent follows the absorption spectra confirming that it is composed of photo-generated carriers within the Si NCs. In films containing Si NCs with sizes less than 2 nm, strong quantum confinement and exciton localization are observed, resulting in light emission and absence of photocurrent. Our results show that Si NCs are useful building blocks of photovoltaic devices for use as better absorbers than bulk Si in the visible and ultraviolet spectral range. However, when strong quantum confinement effects come into play, carrier transport is significantly reduced due to strong exciton localization and Coulomb blockade effects, thus leading to limited photocurrent.

  2. Observation of Switchable Photoresponse of a Monolayer WSe 2 –MoS 2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging

    KAUST Repository

    Son, Youngwoo; Li, Ming-yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S.

    2016-01-01

    spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic

  3. Scanning Tunneling Spectroscopy on polycrystalline Cu(In,Ga)(S,Se){sub 2} thin-film solar cells; Rastertunnelspektroskopie an polykristallinen Cu(In,Ga)(S,Se){sub 2}-Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Herber, U.

    2006-12-21

    In case of the investigated multinary Cu(In;Ga)Se{sub 2} system with its polycrystalline structure, the question for the lateral homogeneity of its electronic properties arises. By means of the here presented method, a photo-assisted tunneling spectroscopy, such lateral inhomogeneities of the Surface Photo Voltage (SPV) and the Photo-Induced Tunneling Current (PITC) are to be detected. Modulations of the bias voltage and/or the illumination intensity have been applied to a greater number of materials in tunneling spectroscopy. Within these field, disturbing current contributions, coupled via the tip-sample-capacitance, is a known problem. Electronic compensation by using an appropriate compensating circuit is a possible solution. As will be shown in this work, such procedure is very adequate to compensate stray signals generated by bias modulation. After the introduction and careful analysis of our technique in the first part the second part of the thesis deals with its application to a series of different CIGS samples. What becomes apparent is the aforementioned inhomogeneities in PITC signal to be an immanent property of these polycrystalline semiconductor systems. Besides lateral variations in the photocurrent amplitude, also inhomogeneities within its complex phase can be demonstrated. As becomes clear, it is impossible to draw conclusions about the participating capacity of the depletion region because of the dominating admittance of the tunneling junction. However, it is possible to gain a statistical distribution of the PITC by investigating a large number of positions on the sample. For small numbers of weak diodes, the distribution exhibits a distinct maximum at higher photocurrents. Metastable effects are observed by tracking PITC values over a longer period of time. (orig.)

  4. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  5. Correlation of heterojunction luminescence quenching and photocurrent in polymer-blend photovoltaic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rabade, Astrid; Morteani, Arne C.; Friend, Richard H. [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-10-19

    Charge generation in organic solar cells proceeds via photogeneration of excitons in the bulk that form geminate electron-hole pairs at the heterojunction formed between electron donor and acceptors. It is shown that an externally applied electric field increases the number of free charges formed from the geminate pair, and quenches the luminescence from the relaxed exciplex with one-to-one correspondence. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  7. Valorization of onion waste and by-products: MCR-ALS applied to reveal the compositional profiles of alcoholic fermentations of onion juice monitored by near-infrared spectroscopy.

    Science.gov (United States)

    González-Sáiz, José-María; Esteban-Díez, Isabel; Rodríguez-Tecedor, Sofía; Pizarro, Consuelo

    2008-11-01

    The overall purpose of the project, of which this study is a part, was to examine the feasibility of onion waste as a support-substrate for the profitable production of food-grade products. This study focused on the efficient production of ethanol from worthless onions by transforming the onion juice into onion liquor via alcoholic fermentation with the yeast Saccharomyces cerevisiae. The onion bioethanol produced could be later used as a favorable substrate for acetic fermentation to finally obtain onion vinegar. Near-infrared spectroscopy (NIRS), coupled with the multivariate curve resolution-alternating least squares (MCR-ALS) method, has been used to reveal the compositional and spectral profiles for both substrates and products of alcoholic fermentation runs, that is, total sugars, ethanol, and biomass concentration. The ambiguity associated with the ALS calculation was resolved by applying suitable inequality and equality constraints. The quality of the results provided by the NIR-based MCR-ALS methodology adopted was evaluated by several performance indicators, including the variance explained by the model, the lack of fit and the agreement between the MCR-ALS achieved solution and the results computed by applying previously validated PLS reference models. An additional fermentation run was employed to test the actual predictive ability of the ALS model developed. For all the components resolved in the fermentation system studied (i.e., total sugars, ethanol, and biomass), the final model obtained showed a high predictive ability and suitable accuracy and precision, both in calibration and external validation, confirmed by the very good agreement between the ALS responses and the reference values (the coefficient of determination was, in all cases, very close to 1, and the statistics confirmed that no significant difference was found between PLS reference models and the MCR-ALS methodology applied). Thus, the proven reliability of the MCR-ALS model presented

  8. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  9. Spectroscopy of Deep Traps in Cu2S-CdS Junction Structures

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2012-12-01

    Full Text Available Cu2S-CdS junctions of the polycrystalline material layers have been examined by combining the capacitance deep level transient spectroscopy technique together with white LED light additional illumination (C-DLTS-WL and the photo-ionization spectroscopy (PIS implemented by the photocurrent probing. Three types of junction structures, separated by using the barrier capacitance characteristics of the junctions and correlated with XRD distinguished precipitates of the polycrystalline layers, exhibit different deep trap spectra within CdS substrates.

  10. Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation

    KAUST Repository

    Yu, Xuechao

    2015-07-08

    Graphene has been considered as an attractive material for optoelectronic applications such as photodetectors owing to its extraordinary properties, e.g. broadband absorption and ultrahigh mobility. However, challenges still remain in fundamental and practical aspects of the conventional graphene photodetectors which normally rely on the photoconductive mode of operation which has the drawback of e.g. high dark current. Here, we demonstrated the photovoltaic mode operation in graphene p-n junctions fabricated by a simple but effective electron irradiation method that induces n-type doping in intrinsic p-type graphene. The physical mechanism of the junction formation is owing to the substrate gating effect caused by electron irradiation. Photoresponse was obtained for this type of photodetector because the photoexcited electron-hole pairs can be separated in the graphene p-n junction by the built-in potential. The fabricated graphene p-n junction photodetectors exhibit a high detectivity up to ~3 × 1010 Jones (cm Hz1/2 W−1) at room temperature, which is on a par with that of the traditional III–V photodetectors. The demonstrated novel and simple scheme for obtaining graphene p-n junctions can be used for other optoelectronic devices such as solar cells and be applied to other two dimensional materials based devices.

  11. Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation

    KAUST Repository

    Yu, Xuechao; Shen, Youde; Liu, Tao; Wu, Tao; Jie Wang, Qi

    2015-01-01

    Graphene has been considered as an attractive material for optoelectronic applications such as photodetectors owing to its extraordinary properties, e.g. broadband absorption and ultrahigh mobility. However, challenges still remain in fundamental and practical aspects of the conventional graphene photodetectors which normally rely on the photoconductive mode of operation which has the drawback of e.g. high dark current. Here, we demonstrated the photovoltaic mode operation in graphene p-n junctions fabricated by a simple but effective electron irradiation method that induces n-type doping in intrinsic p-type graphene. The physical mechanism of the junction formation is owing to the substrate gating effect caused by electron irradiation. Photoresponse was obtained for this type of photodetector because the photoexcited electron-hole pairs can be separated in the graphene p-n junction by the built-in potential. The fabricated graphene p-n junction photodetectors exhibit a high detectivity up to ~3 × 1010 Jones (cm Hz1/2 W−1) at room temperature, which is on a par with that of the traditional III–V photodetectors. The demonstrated novel and simple scheme for obtaining graphene p-n junctions can be used for other optoelectronic devices such as solar cells and be applied to other two dimensional materials based devices.

  12. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    Science.gov (United States)

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  13. Characteristics of photocurrent generation in the near-ultraviolet region in Si quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    Uchida, Giichiro; Sato, Muneharu; Seo, Hyunwoong; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2013-01-01

    We have studied photocurrent generation in Si quantum-dot (QD) sensitized solar cells, where QD thin films composed of Si nanoparticles were deposited using the double multi-hollow discharge plasma chemical vapor deposition process in an SiH 4 /H 2 and CH 4 or N 2 gas mixture. The short-circuit current density of the Si QD sensitized solar cells increases by a factor of 2.5 by using Si nanoparticles prepared by irradiation of CH 4 or N 2 plasma onto the Si nanoparticle surface. We have measured incident photon-to-current conversion efficiency (IPCE) in the near-ultraviolet range using quartz-glass front panels of the QD sensitized solar cells. With decreasing the wavelength of irradiation light, IPCE gradually increases upon light irradiation in a wavelength range less than about 600 nm, and then steeply increases below 300 nm, corresponding to 2.2 times the optical band-gap energy of Si QD film. - Highlights: • We have developed on Si quantum-dot sensitized solar cells using Si particles. • Current of solar cells increases by surface-termination of Si particles. • Incident photo-to-current conversion efficiency increases below 300 nm

  14. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo

    2018-05-03

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.

  15. A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells

    Science.gov (United States)

    Kipp, Dylan; Ganesan, Venkat

    2013-06-01

    We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.

  16. Characteristics of photocurrent generation in the near-ultraviolet region in Si quantum-dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Giichiro, E-mail: uchida@ed.kyushu-u.ac.jp [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Sato, Muneharu; Seo, Hyunwoong [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Kamataki, Kunihiro [Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395 (Japan); Itagaki, Naho [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); PRESTO, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2013-10-01

    We have studied photocurrent generation in Si quantum-dot (QD) sensitized solar cells, where QD thin films composed of Si nanoparticles were deposited using the double multi-hollow discharge plasma chemical vapor deposition process in an SiH{sub 4}/H{sub 2} and CH{sub 4} or N{sub 2} gas mixture. The short-circuit current density of the Si QD sensitized solar cells increases by a factor of 2.5 by using Si nanoparticles prepared by irradiation of CH{sub 4} or N{sub 2} plasma onto the Si nanoparticle surface. We have measured incident photon-to-current conversion efficiency (IPCE) in the near-ultraviolet range using quartz-glass front panels of the QD sensitized solar cells. With decreasing the wavelength of irradiation light, IPCE gradually increases upon light irradiation in a wavelength range less than about 600 nm, and then steeply increases below 300 nm, corresponding to 2.2 times the optical band-gap energy of Si QD film. - Highlights: • We have developed on Si quantum-dot sensitized solar cells using Si particles. • Current of solar cells increases by surface-termination of Si particles. • Incident photo-to-current conversion efficiency increases below 300 nm.

  17. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation

    International Nuclear Information System (INIS)

    Huang, Hongwei; Liu, Liyuan; Zhang, Yihe; Tian, Na

    2015-01-01

    Graphical abstract: The efficient charge transfer occurred at the interface of BiIO 4 /Bi 2 MoO 6 heterojunction results in the efficient separation of photoexcited electron–hole pairs and promotes the photocatalytic activity. - Highlights: • BiIO 4 /Bi 2 MoO 6 composites were synthesized by a one-step hydrothermal method. • The BiIO 4 /Bi 2 MoO 6 composite exhibits much better photoelectrochemical performance. • The highly improved photocatalytic activity is attributed to heterojunction structure. • Holes (h + ) are the main active species in the photodegradation process of RhB. - Abstract: A novel BiIO 4 /Bi 2 MoO 6 heterojunction photocatalyst has been successfully developed by a one-step hydrothermal method for the first time. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). Compared to pure BiIO 4 and Bi 2 MoO 6 , the BiIO 4 /Bi 2 MoO 6 composite exhibits the much better photoelectrochemical performance for Rhodamine B (RhB) degradation and photocurrent (PC) generation under visible light irradiation (λ > 420 nm). This enhancement on visible-light-responsive photocatalytic activity should be attributed to the fabrication of a BiIO 4 /Bi 2 MoO 6 heterojunction, thus resulting in the high separation and transfer efficiency of photogenerated charge carriers. The supposed photocatalytic mechanism dominated by holes (h + ) was verified by the photoluminescence (PL) spectroscopy, electrochemical impedance spectra (EIS) and active species trapping experiments

  18. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-12-07

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{sub O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.

  19. Study on photocurrent of bilayers photoanodes using different combination of WO{sub 3} and Fe{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Memar, Amir; Daud, Wan Ramli Wan; Eftekhari, Ehsan; Minggu, Lorna Jeffery [Institute of Fuel Cell, University Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Hosseini, Soraya [Department Chemical and Environmental Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2010-08-15

    Bilayer photoanodes were prepared onto glass substrates (FTO) in order to improve generated photocurrents using UV-vis light by water splitting process. A comparative study of photocatalytic was performed over the films surface using Fe{sub 2}O{sub 3,} WO{sub 3} and mixture of bicomponents (Fe{sub 2}O{sub 3}:WO{sub 3}). Different types of films were prepared using Fe{sub 2}O{sub 3,} WO{sub 3} and bicomponents (mixture) on FTO substrates. The films were grown by sol gel method with the PEG-300 as the structure-directing agent. The photo-generated of the samples were determined by measuring the currents and voltages under illumination of UV-vis light. The morphology, structure and related composition distribution of the films have been characterized by SEM, XRD and EDX respectively. Photocurrent measurements indicated surface roughness as the effective parameter in this study. The deposited surfaces by bicomponents or mixture are flat without any feature on the surface while the deposited surfaces by WO{sub 3} appears rough surface as small round (egg-shaped particles) and cauliflower-like. The surface deposited by Fe{sub 2}O{sub 3} show rough no as well as WO{sub 3} surface. The deposited surfaces by WO{sub 3} reveal the higher value of photocurrent measurement due to surface roughness. Indeed, the roughness can be effective in increasing contact surface area between film and electrolyte and diffuse reflection (light scattering effect). The solution (Fe{sub 2}O{sub 3}:WO{sub 3}) shows the low photocurrent value in compare to WO{sub 3} and Fe{sub 2}O{sub 3} hat it may be due to decomposition the compound at 450 {+-} 1 C to iron-tungstate Fe{sub 2}(WO{sub 4}){sub 3}. (author)

  20. Photocurrent increase by metal modification of Fe{sub 2}O{sub 3} photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Iervolino, Giuseppina [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Tantis, Iosif [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece); Sygellou, Lamprini [FORTH/ICE-HT, P.O. Box 1414, 26504, Patras (Greece); Vaiano, Vincenzo, E-mail: vvaiano@unisa.it [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Sannino, Diana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy, (Italy); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, 26500, Patras (Greece)

    2017-04-01

    Highlights: • Metals-modified hematite photoanodes prepared by electrodeposition method. • Ti and Ni-modified hematite thin films showed the higher photocurrents values. • The optimal loading of modifier was found at nominal 1% for Ni and 3% for Ti. • The highest H2 production was obtained on 3%Ti-Fe2O3 in the presence of glucose. - Abstract: The present work reports the investigation of photocurrent increase by metal modification of Fe{sub 2}O{sub 3} photoanodes and its effect on photoelectrocatalytic hydrogen production using aqueous solutions containing various organic compounds. Fe{sub 2}O{sub 3} photoanodes were prepared by the electrodeposition method. The efficiency of various metal modifiers of the hematite structure (Ti, Ni, Sn, Co and Cu) has been tested by monitoring the photoelectrochemical behavior of the ensuing photoanodes. Hydrogen production was monitored in an H-shaped reactor using pure and metal-modified hematite films deposited on FTO electrodes as photocatalyst while a combination of commercial carbon paste with dispersed Pt nanoparticles was used as electrocatalyst. In all cases, hydrogen production was obtained by application of a small external electric bias (in the range 0.5- 0.7 V vs Ag/AgCl electrode). Highest photocurrent production has been achieved with a Ti-modified Fe{sub 2}O{sub 3} photoanode in the presence of glucose as sacrificial agent.

  1. Photoinduced FT-IR spectroscopy and CW-photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix

    NARCIS (Netherlands)

    Brabec, C.J.; Johannson, H.; Padinger, F.; Neugebauer, H.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    In this work we present an investigation of the photoexcited states in conjugated polymer (donor) - fullerene (acceptor) interpenetrating networks embedded into conventional polymer hosts like polystyrene (PS), polyvinylcarbazole (PVK) or polyvinylbenzylchloride (PVBC) (guest - host approach), using

  2. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  3. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  4. Improvement in the photocurrent collection due to enhanced absorption of light by synthesizing staggered layers of silver nanoclusters in silicon

    International Nuclear Information System (INIS)

    Dhoubhadel, Mangal S.; Lakshantha, Wickramaarachchige J.; Rout, Bibhudutta; McDaniel, Floyd D.; Lightbourne, Sherard; D’Souza, Francis

    2015-01-01

    The quest for increased efficiency of solar cells has driven the research in synthesizing photovoltaic cells involving Si based materials. The efficiency of solar cells involving crystalline Si is stalled around 25% for the last decade. Recently Shi et al. had shown that light trapping can be enhanced by fabricating double layers of Ag nanoparticles in silicon based materials. The light trapping is critically important in a photo devices such as solar cells in order to increase light absorption and efficiency. In the present work, we report enhancement in the absorption of light in Ag ion implanted Si substrates. Multiple low energies Ag ions, ranging from ∼80 keV to ∼30 keV, with different fluences ranging from ∼1 × 10 16 to ∼1 × 10 17 atoms/cm 2 were sequentially implanted into commercially available Si (100) substrates followed by post-thermal annealing to create different sizes of Ag nanoclusters (NC) at different depths in the top 100 nm of the Si. The absorbance of light is increased in Ag implanted Si with a significant increase in the current collection in I-V (current-voltage) photo switching measurements. The experimental photovoltaic cells fabricated with the Ag-implanted Si samples were optically characterized under AM (air mass) 1.5 solar radiation conditions (∼1.0 kW/m 2 ). An enhancement in the charge collection were measured in the annealed samples, where prominent Ag NCs were formed in the Si matrix compared to the as-implanted samples with amorphous layers. We believe the enhancement of the photo-current density from the samples with Ag NC is due to the improvement of efficiency of charge collection of e − -h + pairs produced by the incident light

  5. Laser spectroscopy

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  6. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  7. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Gonser, U.

    1975-01-01

    This book is addressed to persons interested in learning about what has been done and what can be done with Moessbauer spectroscopy. In an introductory chapter the basic principle is explained and the general parameters governing Moessbauer spectroscopy are tabulated. For the following chapters various disciplines are chosen and the wide applicability of this measuring technique is demonstrated. The second chapter discusses a few representative examples of chemical interesting information being reflected by isomer shifts and quadrupole splittings, particularly with respect to bonding and structural properties. The third chapter deals with some applications of Moessbauer spectroscopy for characterizing magnetic compounds and its use for magnetic structure investigations, particularly by making use of polarized radiation. The fourth chapter describes the use of the Moessbauer spectroscopy for studying iron in biological molecules. As an example of recent applications to mineralogy and geology the results of the studies of lunar samples are reviewed in the fifth chapter. Finally, in the last chapter, work is described on the use of Moessbauer spectroscopy in physical metallurgy, particularly quantitative analyses which have enabled metallurgists to solve many old problems. (orig./FW) [de

  8. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  9. Applied physics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Physics Division research program that is dedicated primarily to applied research goals involves the interaction of energetic particles with solids. This applied research is carried out in conjunction with the basic research studies from which it evolved

  10. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  11. Fabrication and high visible-light-driven photocurrent response of g-C{sub 3}N{sub 4} film: The role of thiourea

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Lijuan; Chen, Shijian, E-mail: sjchen@cqu.edu.cn

    2016-12-15

    Highlights: • Thiourea promotes the growth and crystalline of the g-C{sub 3}N{sub 4} films on ITO. • Thiourea introduces S dopants into the g-C{sub 3}N{sub 4} films. • The obtained S-doped g-C{sub 3}N{sub 4} thin films show high VLD photocurrent response. • Three heterojunction structure types based on the g-C{sub 3}N{sub 4} films are proposed. - Abstract: We report on a convenient CVD fabrication of the uniform, compact and reproducible g-C{sub 3}N{sub 4} solid films on indium-tin oxide substrates. It is found that mixing quantitative thiourea into melamine as co-precursor prompts the deposition of greenish-yellow, transparent and smooth g-C{sub 3}N{sub 4} thin films. The thiourea apparently affects the crystalline, the surface morphologies and the energy band structures of g-C{sub 3}N{sub 4} films by modulating the polymerization process of the precursors, and simultaneously introduces S dopants into the g-C{sub 3}N{sub 4} films. Due to these roles of thiourea, the obtained S-doped g-C{sub 3}N{sub 4} films as a photoelectrode show a high and stable visible-light-driven photocurrent response. To further improve the photocurrent, the construction of three heterojunction structure types based on g-C{sub 3}N{sub 4} films is proposed and the corresponding charge transfer mechanisms are well discussed. The successful fabrication of high quality g-C{sub 3}N{sub 4} films in this work provides a footstone to construct the heterojunction film structures based on the carbon nitrides for the photoelectrochemical overall water splitting.

  12. pH-induced photocurrent switching based on a highly stable drop-casting film of imidazole moiety-containing dinuclear Ru(II) Complex

    International Nuclear Information System (INIS)

    Xue, Long-Xin; Duan, Zhi-Ming; Jia, Jia; Wang, Ke-Zhi; Haga, Masa-aki

    2014-01-01

    Graphical abstract: > Solvent-casting Ru(II) complex modified electrode. > Positive shifting of half-wave potentials of Ru(III)/Ru(II) by pH decreases. > Greatly enhanced cathodic photocurrents by pH decreases. - Highlights: • Solvent-casting Ru(II) complex modified electrode. • Positive shifting of half-wave potentials of Ru(III)/Ru(II) by pH decreases. • Greatly enhanced cathodic photocurrents by pH decreases. - Abstract: A new dinuclear Ru(II) complex of [(H 2 L 1 )Ru(H 2 L 2 )Ru(H 2 L 1 )](ClO 4 ) 4 {H 2 L 1 = 2,6-bis(2-benzimidazolyl)pyridine; H 2 L 2 = 2,6-bis(4-([2,2′:6′,2″-terpyridin]-4′-yl)phenyl)-1,5- dihydrobenzo[1,2-d:4,5-d’]diimidazole} is synthesized and characterized. The Ru(II) complex modified indium-tin oxide electrode prepared using a drop-casting method, exhibited a couple of stable surface-confined Ru(III)/Ru(II)-based redox waves centered at +0.65 V vs saturated calomel electrode that were almost unchanged after 50 consecutive cyclic voltammetry scanning. The modified electrode showed pH-dependent redox behaviors with the formal potential being decreased by 430 mV due to the occurrance of the proton-coupled redox reactions. The cathodic photocurrent generation of the modified electrode was also found to be highly pH-dependent, switching from an “off” state at pH ∼11.0 to an “on” state at pH = 2.20 with an enhancement factor of 18. The modified electrode was shown to have promising applications as photoelectrochemical pH sensing and switching devices

  13. Charge Transport and Photocurrent Generation Characteristics in Dye Solar Cells Containing Thermally Degraded N719 Dye Molecules

    DEFF Research Database (Denmark)

    Andersen, A. R.; Halme, J.; Lund, T.

    2011-01-01

    product (N719-TBP) on the performance parameters of the cells. Two types of dyed solar cells, based on either N719 or N719-TBP, have been characterized employing standard current-voltage (I-V) performance test, UV-vis optical spectroscopy, incident photon to current efficiency (IPCE), and electrochemical...

  14. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  15. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  16. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front

    DEFF Research Database (Denmark)

    Uhrenfeldt, C.; Villesen, T. F.; Tetu, A.

    2015-01-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed...... on the front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array cause a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations...

  17. Kinetics of photocurrent generation and an efficient charge separation of a dye-sensitized n-Cu2O/p-CuSCN junction photoelectrode in a solid-state photovoltaic cell

    International Nuclear Information System (INIS)

    Fernando, C A N; Kumara, N T R N; Gamage, T N

    2010-01-01

    A Cu/n-Cu 2 O/dye/p-CuSCN junction photoelectrode is fabricated to produce a solid-state dye-sensitized photovoltaic cell. Samples are characterized by XRD, SEM and surface resistivity measurements. Photocurrent generation is found due to light absorption of n-Cu 2 O thin film and dye sensitization between p-CuSCN and the dye. Kinetics of the photocurrent generation of the dye sensitization is studied solving the rate equations by the iteration method obtaining a relationship for the photocurrent quantum efficiency (Φ) depending on the surface concentration (D o ) of the dye and the rate constants of the reactions with connection to the dye sensitization process. The solution obtained in the steady state by iteration is found to be of the form Φ = AD o −BD o 2 (A and B are constants related to the reaction rates of the photocurrent generation process and the concentration of the n-Cu 2 O film). The variation of the n-Cu 2 O concentration with photocurrent is presented. A photocurrent enhancement is observed for the Cu/n-Cu 2 O/dye/p-CuSCN photovoltaic cell compared to that of Cu/n-Cu 2 O, Cu/p-CuSCN/dye and Cu/n-Cu 2 O/p-CuSCN photovoltaic cells. Good rectification characteristics are observed for the Cu/n-Cu 2 O/p-CuSCN photoelectrode compared to that of Cu/n-Cu 2 O and Cu/p-CuSCN photoelectrodes. Photocurrent enhancement is found due to the efficient charge separation process at the n–p junction. Energy band structures of the n–p junction are proposed according to the onset potentials which are used to discuss the mechanism of the efficient charge separation suppressing the recombination process

  18. Design and construction of prompt-gamma spectroscopy facility applied to the boron determination; Diseno y construccion de una facilidad de espectrometria prompt-gamma aplicada a la determinacion de boro

    Energy Technology Data Exchange (ETDEWEB)

    Poblete, Victor; Henriquez, Carlos; Klein, Juan; Navarro, Gustavo [Comision Chilena de Energia Nuclear, Santiago (Chile). Centro de Estudios Nucleares La Reina, Comision Chis Nucleares La Reina, Comision Chi Reina

    1997-12-31

    A prompt-gamma spectroscopy facility was developed using the south tangential neutron beam of the RECH-1 research reactor for boron determination. The implementation of a thermal neutron beam was performed considering different aspects such as biological protection of working area and the beam collimation for a Ge detector, design and sample holder selection, standards and sample preparation. One ppm of Boron in different samples with counting-rate of 20 minutes and a good accuracy were determined. (author). 5 refs.

  19. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  20. THz spectroscopy of liquids – applications and future challenges

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Cooke, David; Møller, Uffe

    2009-01-01

    transmission spectroscopy of pressed pellets for the investigation of powder materials and wafer-like samples for spectroscopy of bulk and nanostructured semiconductor materials. Reflection-type spectroscopy is applied using plane interfaces for the study of liquids [1,2,3]. However, quantitative spectroscopy...

  1. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  2. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  3. Band gaps and photocurrent responses of two novel alkaline earth metal(II) complexes based on 4,5-di(4′-carboxylphenyl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Gong, Yun, E-mail: gongyun7211@cqu.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Lin, Jian Hua, E-mail: jhlin@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2017-01-15

    By using a rigid dicarboxylate ligand, 4,5-di(4′-carboxylphenyl)benzene (H{sub 2}L), two complexes formulated as SrL(DMF)(H{sub 2}O)·(CH{sub 3}CN) (DMF=N,N′-dimethylformamide) (1) and BaL(H{sub 2}O){sub 2} (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV–vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density than complex 1. The Mott–Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations. - Graphical abstract: Two alkaline earth metal(II) complexes with 2D layer structures are p-type semiconductors, they possess different band structures and density of states. And the Ba(II) complex 2 exhibits much higher photocurrent density than the Sr(II) complex 1.

  4. Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent of bacteriorhodopsin upon continuous photoexcitation

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Wei; Chu, Li-Kang, E-mail: lkchu@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Ho, Ching-Hwa [Interdisplinary Program of Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)

    2014-10-14

    The proton pump activity of bacteriorhodopsin in aqueous solution upon excitation with modulated continuous light was monitored electrochemically and analyzed by superimposing a series of transient proton translocation events Hᵢ⁺(t). An evolution function f(t)=(he{sup –lt}+k)/(h+k) , including a decay and a stationary offset, was introduced to weight the contribution of the individual transient events evolving with time in the envelope of the steady-state event. The evolution of the total proton concentration can be treated as an ensemble of weighted sequential transient events, H{sub total}⁺(t)=Σ{{sub i=0}sup n}Hᵢ⁺(t)∙f(t), and the temporal profile of the photocurrent is derived by differentiating the proton concentration with respect to time, (table) . The temporal profiles of the bacteriorhodopsin photocurrent in pH range of 6.3–8.1 were analyzed using a well-defined kinetics model and restricted mathematical formulization, and fitted temporal behaviors agreed with the observations. This successful proof-of-concept study on analyzing a steady-state phenomenon using an ensemble of sequential transient events can be generalized to quantify other phenomena upon continuous stimulation, such as estimation of the light-driven ion pump activities of the photosynthetic proteins upon illumination.

  5. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  6. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  7. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  8. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  9. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Igi, K.

    1979-01-01

    This paper is related to mini-rapporteur talk on baryonium spectroscopy. First of all, the models of baryonium, namely the diquark model, the string picture, the linear baryonium and the bag model, are described. All of these models so far discussed are highly suggestive. In this paper, discussions are confined to the spectroscopy of the string and the bag models. Because of the color degree of freedom, the bag model has mock diquonium and mock mesonium besides true baryonium. It might be possible that the string model takes into account only a part of them. The constraints among baryonium, baryon and boson trajectories using duality and unitarity were proposed as a guide for classifying various spectra. Inequalities were derived as the modest and reliable constraints on baryonium intercepts from baryon and boson intercepts by imposing unitarity and Regge behaviors on scattering amplitudes. As a consequence of residue factorization and duality, the baryonium slopes were derived. The spin of S (1936) was also obtained. The baryonium containing s or c quarks can also be studied. Topics such as the EXD patterns of baryons, linear baryons, linear Regge trajectories for all Q-anti Q families, and the Al and two Q mesons, are presented in this paper. Comments on di-baryon are described. (Kato, T.)

  10. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  11. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  12. Applied Enzymology.

    Science.gov (United States)

    Manoharan, Asha; Dreisbach, Joseph H.

    1988-01-01

    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  13. Dye-Sensitized Solar Cells Based on the Principles and Materials of Photosynthesis: Mechanisms of Suppression and Enhancement of Photocurrent and Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Hiroyoshi Nagae

    2009-10-01

    Full Text Available Attempts have been made to develop dye-sensitized solar cells based on the principles and materials of photosynthesis: We first tested photosynthetic pigments, carotenoids (Cars, chlorophylls (Chls and their derivatives, to find sensitizers showing reasonable performance (photocurrent and conversion efficiency. We then tried to introduce the principles of photosynthesis, including electron transfer and energy transfer from Car to Phe a. Also, we tried co-sensitization using the pheophorbide (Phe a and Chl c2 pair which further enhanced the performance of the component sensitizers as follows: Jsc = 9.0 + 13.8 → 14.0 mA cm–2 and η = 3.4 + 4.6 → 5.4%.

  14. Dye-sensitized solar cells based on the principles and materials of photosynthesis: mechanisms of suppression and enhancement of photocurrent and conversion efficiency.

    Science.gov (United States)

    Koyama, Yasushi; Miki, Takeshi; Wang, Xiao-Feng; Nagae, Hiroyoshi

    2009-10-27

    Attempts have been made to develop dye-sensitized solar cells based on the principles and materials of photosynthesis: We first tested photosynthetic pigments, carotenoids (Cars), chlorophylls (Chls) and their derivatives, to find sensitizers showing reasonable performance (photocurrent and conversion efficiency). We then tried to introduce the principles of photosynthesis, including electron transfer and energy transfer from Car to Phe a. Also, we tried co-sensitization using the pheophorbide (Phe) a and Chl c(2) pair which further enhanced the performance of the component sensitizers as follows: J(sc) = 9.0 + 13.8 --> 14.0 mA cm(-2) and eta = 3.4 + 4.6 --> 5.4%.

  15. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    Science.gov (United States)

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  16. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Zemcik, T.

    1984-01-01

    The emission and absorption of photons taking place without changes in the frequency spectrum of the crystal lattice are known as the Moessbauer effect. It takes place in the low energy levels of heavy nuclei in solid lattices at low temperatures. On the basis of the hyperfine structure of Moessbauer spectra the notions are explained of isomer shift, quadrupole splitting and magnetic splitting. The principle and function are explained of Moessbauer spectrometers and the methods of graphical processing of spectra, also the use of the least square fit. Moessbauer spectroscopy is nondestructive, highly sensitive and selective and makes structural resolution possible. It is used for quantitative and qualitative analysis of compounds. Examples are given of the use of this method for mineralogical and crystallo-chemical analysis of lunar minerals and rocks, for analysis of corrosion products of iron and for phase analysis of alloys. (M.D.)

  17. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  18. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Jing; Liu, Ching-Fang; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw; Kuo, Jen-Hou; Boddula, Rajender

    2017-03-01

    In this work, we demonstrate that vertically grown ZnO nanowire (NW) arrays of the wurzite phase were successfully fabricated on fluorine doped tin oxide (FTO) substrates via a hydrothermal method. The coating of a seed layer onto the FTO substrates was found to favor the growth of a uniform ZnO NWs array which shows saturation in the photocurrent density with a relatively low potential bias. Furthermore, prolonging the calcination time of the seed layer makes the ZnO NWs behave the better charge separation and improve the photo-electrochemical performance. Under the irradiation at a 75 mW cm{sup −2} from a simulated sunlight source, the ZnO NWs array electrode prepared from the seed layer with calcination at 350 °C for 5 h shows a saturated photocurrent density of 514 μA cm{sup −2} and a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at 0.6 V versus reversible hydrogen electrode (RHE) in neutral electrolyte. - Highlights: • The seed layer annealing time strongly influences the textural and photo-activity of ZnO NWs. • The average diameter and density of ZnO NWs were controlled to 47–70 nm and 46–70 NWs μm{sup −2}, respectively. • ZnO NWs show promising application potential in solar-electrocatalytic water splitting under potential bias. • The ZnO NWs with SL annealing time = 5 h achieve the highest HC-STH efficiency of 0.26% at 0.6 V.

  19. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  20. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  1. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  2. Enhancement of photocurrents due to the oxidation of water and organic compounds at BiZn2VO6 particulate thin film electrodes by treatment with a TiCl4 solution

    International Nuclear Information System (INIS)

    Liu Haimei; Imanishi, Akihito; Yang Wensheng; Nakato, Yoshihiro

    2010-01-01

    Photocurrents due to water oxidation at BiZn 2 VO 6 (E g 2.4 eV) particulate thin film electrodes were largely enhanced by pre-treatment with an aqueous TiCl 4 solution. Photocurrents for BiZn 2 VO 6 electrodes with no TiCl 4 treatment were also enhanced by the addition of organic compounds such as methanol and trimethyl amine to the aqueous electrolyte. Interestingly, such enhanced photocurrents by organic compounds were further enhanced by the TiCl 4 pre-treatment. EDAX and SEM investigations showed the formation of a flock-like TiO 2 overlayer on BiZn 2 VO 6 particles after the TiCl 4 treatment. The photocurrent enhancement by the TiCl 4 pre-treatment is thus mainly attributed to the necking effect of the flock-like TiO 2 overlayer, which facilitates the transport of photogenerated electrons within the BiZn 2 VO 6 particulate thin film electrode.

  3. An analytical study of the minority carrier distribution and photocurrent of a p-i-n quantum dot solar cell based on the InAs/GaAs system

    Science.gov (United States)

    Biswas, Sayantan; Sinha, Amitabha

    2017-10-01

    An analytical study has been carried out on the InAs/GaAs p+-i-n+ quantum dot solar cell, taking into consideration the contributions of each region of the cell to the total photocurrent. The expressions for the excess minority carrier concentration and photocurrent from the front and the rear regions of the device have been obtained and their variations with different device parameters have been studied. Also, based on the investigations reported by some researchers earlier, the photocurrent contribution from the intrinsic region of the solar has been studied, taking into account the quantum dot ensemble absorption coefficient, which depends significantly on the quantum dot size and size dispersion. It is observed that all the three regions of the cell contribute to the overall internal quantum efficiency (IQE) of the cell. The contribution of each region of the solar cell to the total IQE has been shown graphically. From these studies it is observed that the incorporation of the quantum dots in the intrinsic region enhance the photocurrent density and hence the IQE of such solar cell, as it absorbs low energy photons, which are beyond the absorption range of GaAs. Finally, the fill factor of the solar cell has been calculated.

  4. SIMP spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kuflik, Eric [Department of Physics, LEPP, Cornell University,Ithaca NY 14853 (United States); Murayama, Hitoshi [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Center for Japanese Studies, University of California,Berkeley, CA 94720 (United States)

    2016-05-16

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e{sup +}e{sup −} colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  5. SIMP spectroscopy

    International Nuclear Information System (INIS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2016-01-01

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e − colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  6. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  7. Intermolecular spectroscopy

    International Nuclear Information System (INIS)

    Gelbart, W.M.

    1980-01-01

    In this article some of the theoretical background is presented for the following papers on 'Intermolecular Spectroscopy and Dynamical Properties of Dense Systems'. In Section 1 we outline a simple semi-classical description of the interaction between optical radiation and matter. The motion of a many-body polarizability is introduced; limiting forms of this complicated quantity lead to the familiar cases of light scattering spectra. In Section 2 we consider the linear response approximation, and the equation of motion for the many-body density matrix is solved to first order in the matter-radiation interaction. The often quoted fluctuation-dissipation theorem and the time-dependent, equilibrium correlation functions are discussed. Section 3 treats the problem of the local field. In Section 4 we consider the special case of collision-induced light scattering by atomic fluids in the low-density limit. This allows us to focus on determining the interaction polarizability for simple gases. Finally, in Section 5 we distinguish between collision-induced and multiple light scattering, and discuss the double-light-scattering analyses which provide new information about critical and thermodynamically unstable fluids. (KBE)

  8. Applied geodesy

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc

  9. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  10. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  11. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  12. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  13. Applying radiation

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.; Uecker, R.L.; Muckerheide, M.C.

    1979-01-01

    The invention discloses a method and apparatus for applying radiation by producing X-rays of a selected spectrum and intensity and directing them to a desired location. Radiant energy is directed from a laser onto a target to produce such X-rays at the target, which is so positioned adjacent to the desired location as to emit the X-rays toward the desired location; or such X-rays are produced in a region away from the desired location, and are channeled to the desired location. The radiant energy directing means may be shaped (as with bends; adjustable, if desired) to circumvent any obstruction between the laser and the target. Similarly, the X-ray channeling means may be shaped (as with fixed or adjustable bends) to circumvent any obstruction between the region where the X-rays are produced and the desired location. For producing a radiograph in a living organism the X-rays are provided in a short pulse to avoid any blurring of the radiograph from movement of or in the organism. For altering tissue in a living organism the selected spectrum and intensity are such as to affect substantially the tissue in a preselected volume without injuring nearby tissue. Typically, the selected spectrum comprises the range of about 0.1 to 100 keV, and the intensity is selected to provide about 100 to 1000 rads at the desired location. The X-rays may be produced by stimulated emission thereof, typically in a single direction

  14. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  15. On the investigation of electronic defect states in ZnO thin films by space charge spectroscopy with optical excitation

    Science.gov (United States)

    Schmidt, Matthias; Wenckstern, Holger von; Pickenhain, Rainer; Grundmann, Marius

    2012-09-01

    Electronic defect states in a n-type conducting zinc oxide thin film sample were investigated by means of space charge spectroscopy focussing on levels in the midgap region as well as on hole traps. To overcome the experimental difficulties arising from the wide bandgap and the lack of p-type conduction, optical excitation was employed to measure the emission of trapped charge carriers from these levels. Therefore - besides deep-level transient spectroscopy measurements - photo-capacitance, optically chopped photo-current, minority carrier transient spectroscopy, and optical capacitance-voltage experiments were conducted. In doing so, a midgap level labelled T4, and hole traps labelled TH1 and TH2 were detected. In the case of T4 and TH1 the photo-ionisation cross-section spectra were determined.

  16. Laser induced photocurrent and photovoltage transient measurements of dye-sensitized solar cells based on TiO_2 nanosheets and TiO_2 nanoparticles

    International Nuclear Information System (INIS)

    Ghaithan, Hamid M.; Qaid, Saif M.H.; Hezam, Mahmoud; Labis, Joselito P.; Alduraibi, Mohammad; Bedja, Idriss M.; Aldwayyan, Abdullah S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) based on TiO_2 nanoparticles and TiO_2 nanosheets with exposed {001} facets are investigated using laser-induced photovoltage and photocurrent transient decay (LIPVCD) measurements. We adopted a simplified version of LIPVCD technique, in which a single illumination light source and a laboratory oscilloscope could be conveniently used for the measurements. Although the {001} surface of TiO_2 nanosheets allowed a noticeably slower recombination with the electrolyte, this was counterpoised by a slower electron transport probably due to its planar morphology, resulting in a shorter diffusion length in TiO_2 nanosheets. The nanosheet morphology also resulted in less surface area and therefore reduced short circuit current density in the fabricated devices. Our work highlights the fact that the morphological parameters of TiO_2 nanosheets finally resulting after electrode film deposition is of no less importance than the reported efficient dye adsorption and slow electron recombination at the surface of individual nanosheets.

  17. Magnetically tunable photocurrent in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaSnO{sub 3} heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Bingcheng; Hu, Junbiao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an (China); Wang, Jing [Department of Applied Physics, Northwestern Polytechnical University, Xi' an (China); Department of Physics, Pennsylvania State University, University Park, PA (United States)

    2017-12-15

    Artificially constructed oxide heterointerfaces have attracted much attention. Herein, the novel all-perovskite p-n heterojunction composed of a colossal magnetoresistive manganite La{sub 0.7}Sr{sub 0.3} MnO{sub 3} (LSMO) and an n-type transparent semiconducting BaSnO{sub 3} (BSO) is designed via optimizing the growth condition. This LSMO/BSO p-n junction exhibits good rectification with a forward-to-reverse ratio of 275 at 1 V, high photo detection capability with a photo-to-dark current of 581.9 at -0.5 V, high ultraviolet light sensitivity with a UV (360 nm)-to-visible (532 nm) ratio of ∝2.4 x 10{sup 3}, and a significantly magneto-tunable photocurrent with a variation ratio of ∝1.25 % under 532 nm illumination and 0.5 T magnetic field. As a result, combining synergistically the functionality of diode and magnetically tunable photo detector, the LSMO/BSO p-n junction is a promising candidate for advanced magneto-optoelectronic devices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Analytic 1D pn junction diode photocurrent solutions following ionizing radiation and including time-dependent changes in the carrier lifetime.

    Energy Technology Data Exchange (ETDEWEB)

    Axness, Carl L.; Keiter, Eric Richard; Kerr, Bert (New Mexico Tech, Socorro, NM)

    2011-04-01

    Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits in radiation environments. These codes are often employed to study the effect of many thousands of devices under transient current conditions. Device-scale simulation tools (e.g., MEDICI) are commonly used in the design of individual semiconductor components, but require computing resources that make their incorporation into a circuit code impossible for large-scale circuits. Analytic solutions to the ambipolar diffusion equation, an approximation to the carrier transport equations, may be used to characterize the transient currents at nodes within a circuit simulator. We present new transient 1D excess carrier density and photocurrent density solutions to the ambipolar diffusion equation for low-level radiation pulses that take into account a finite device geometry, ohmic fields outside the depleted region, and an arbitrary change in the carrier lifetime due to neutron irradiation or other effects. The solutions are specifically evaluated for the case of an abrupt change in the carrier lifetime during or after, a step, square, or piecewise linear radiation pulse. Noting slow convergence of the raw Fourier series for certain parameter sets, we use closed-form formulas for some of the infinite sums to produce 'partial closed-form' solutions for the above three cases. These 'partial closed-form' solutions converge with only a few tens of terms, which enables efficient large-scale circuit simulations.

  19. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  20. Baryon spectroscopy in COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Austregesilo, Alexander; Chung, Suh-Urk; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan [Technische Universitaet Muenchen, Physik Department E18, D-85748 Garching (Germany)

    2010-07-01

    COMPASS is a fixed-target experiment at CERN SPS which investigates the structure and spectroscopy of hadrons. During in total 9 weeks in 2008 and 2009, a 190 GeV/c proton beam impinging on a liquid hydrogen target has been used primarily to study the production of exotic mesons and glueball candidates at central rapidities. As no bias on the rapidity was introduced by the trigger system, the data also yield the unique possibility to study diffractive dissociation of the beam proton while an inert target is assumed. To this end exclusive events with three charged particles including one proton in the final state have been extracted. We report on the status of the event selection studies and discuss the prospect of using partial wave analysis techniques, which have been successfully applied for diffractive dissociation reactions of pions in COMPASS.

  1. Analytical applications of spectroscopy

    International Nuclear Information System (INIS)

    Creaser, C.S.

    1988-01-01

    This book provides an up to date overview of recent developments in analytical spectroscopy, with a particular emphasis on the common themes of chromatography - spectroscopy combinations, Fourier transform methods, and data handling techniques, which have played an increasingly important part in the development of all spectroscopic techniques. The book contains papers originally presented at a conference entitled 'Spectroscopy Across The Spectrum' held jointly with the first 'International Near Infrared Spectroscopy Conference' at the University of East Anglia, Norwich, UK, in July 1987, which have been edited and rearranged with some additional material. Each section includes reviews of key areas of current research as well as short reports of new developments. The fields covered are: Near Infrared Spectroscopy; Infrared Spectroscopy; Mass Spectroscopy; NMR Spectroscopy; Atomic and UV/Visible Spectroscopy; Chemometrics and Data Analysis. (author)

  2. Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: Enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid

    Science.gov (United States)

    Wang, Xiao-Feng; Matsuda, Arihiro; Koyama, Yasushi; Nagae, Hiroyoshi; Sasaki, Shin-ichi; Tamiaki, Hitoshi; Wada, Yuji

    2006-06-01

    Plant carotenoids (Cars) with 8-10 conjugated double bonds, having higher singlet energies than those of bacterial Cars with 9-13 conjugated double bonds, were added (by 20%) as redox spacers to a titania-based Grätzel-type solar cell using a chlorophyll derivative (PPB a) as the sensitizer. No clear indication of singlet-energy transfer from Car to PPB a was seen, but clear enhancement of photocurrent with the decreasing one electron-oxidation potential of Car was observed. An empirical equation correlating the increase in photocurrent to difference in one electron-oxidation potentials (PPB a minus Car) and the oscillator strength of Car is proposed.

  3. Spectroscopy, scattering, and KK molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J. [Univ. of Mississippi, University, MS (United States)

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  4. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  5. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  6. Influence of double- and triple-layer antireflection coatings on the formation of photocurrents in multijunction III–V solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Musalinov, S. B.; Anzulevich, A. P.; Bychkov, I. V. [Chelyabinsk State University (Russian Federation); Gudovskikh, A. S. [Russian Academy of Sciences, St. Petersburg Academic University (Russian Federation); Shvarts, M. Z., E-mail: shvarts@scell.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The results of simulation by the transfer-matrix method of TiO{sub 2}/SiO{sub 2} double-layer and TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coatings for multijunction InGaP/GaAs/Ge heterostructure solar cells are presented. The TiO{sub 2}/SiO{sub 2} double-layer antireflection coating is experimentally developed and optimized. The experimental spectral dependences of the external quantum yield of the InGaP/GaAs/Ge heterostructure solar cell and optical characteristics of antireflection coatings, obtained in the simulation, are used to determine the photogenerated current densities of each subcell in the InGaP/GaAs/Ge solar cell under AM1.5D irradiation conditions (1000 W/m{sup 2}) and for the case of zero reflection loss. It is shown in the simulation that the optimized TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coating provides a 2.3 mA/cm{sup 2} gain in the photocurrent density for the Ge subcell under AM1.5D conditions in comparison with the TiO{sub 2}/SiO{sub 2} double-layer antireflection coating under consideration. This thereby provides an increase in the fill factor of the current–voltage curve and in the output electric power of the multijunction solar cell.

  7. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  8. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  9. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis [Columbia Univ., New York, NY (United States)

    2017-01-31

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are going to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I3- and I5- , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.

  10. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  11. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  12. Spectroscopy in catalysis : an introduction

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.

    2000-01-01

    Spectroscopy in Catalysis describes the most important modern analytical techniques used to investigate catalytic surfaces. These include electron spectroscopy (XPS, UPS, AES, EELS), ion spectroscopy (SIMS, SNMS, RBS, LEIS), vibrational spectroscopy (infrared, Raman, EELS), temperature-programmed

  13. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    Science.gov (United States)

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  14. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  15. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  16. Investigation of photoelectronic processes in CdIn2S4 by photoinduced current transient spectroscopy

    International Nuclear Information System (INIS)

    Serpi, A.

    1986-01-01

    Photoelectronic processes in CdIn 2 S 4 are investigated by four-gate photoinduced current transient spectroscopy. In general the photocurrent decay transients are non-exponential because of a nonlinear multichannel recombination mechanism. Nevertheless suitable extrinsic excitation allows to open one recombination channel only and so to evidence a purely exponential relaxation. The detailed analysis of this process leads to the interpretation that the defects associated with the energy levels continuously distributed below the conduction band act as relay centres for radiative recombination of photoelectrons rather than as thermal emitting traps. An electron trapping level located at about 0.6 eV from the bottom of the conduction band is also evidenced. (author)

  17. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  18. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  19. New Hadronic Spectroscopy

    International Nuclear Information System (INIS)

    Faccini, R.

    2010-01-01

    In the past few years the field of hadron spectroscopy has seen renewed interest due to the publication, initially mostly from B-Factories, of evidences of states that do not match regular spectroscopy, but are rather candidates for bound states with additional quarks or gluons (four quarks for tetraquarks and molecules and two quarks and gluons for hybrids). A huge effort in understanding the nature of this new states and in building a new spectroscopy is ongoing. This paper reviews the experimental and theoretical state of the art on heavy quarkonium exotic spectroscopy, with particular attention on the steps towards a global picture.

  20. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  1. Spectroscopy for Dummies

    DEFF Research Database (Denmark)

    Lindvold, Lars René

    This presentation will give short introduction to the most pertinent topics of optical spectroscopy. The following topics will be discussed: • The origin of spectra in UV, VIS and IR spectral range • Spectroscopic methods like absorption, luminescence and Raman • Wavelength dispersive optical...... components • Materials for use optical spectroscopy • Spectrometer geometries • Detectors for use in spectrometer • Practical examples of optical spectroscopy The objective of this presentation is to give the audience a good feel for the range of possibilities that optical spectroscopy can provide....

  2. Two-colour dip spectroscopy of jet-cooled molecules

    Science.gov (United States)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  3. Laser excitation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1976-01-01

    Laser excitation spectroscopy, recently applied to uranium enrichment research at LLL, has produced a wealth of new and vitally needed information about the uranium atom and its excited states. Among the data amassed were a large number of cross sections, almost a hundred radiative lifetimes, and many level assignments. Rydberg states, never before observed in uranium or any of the actinides, have been measured and cataloged. This work puts a firm experimental base under laser isotope separation, and permits a choice of the laser frequencies most appropriate for practical uranium enrichment

  4. Study of clusters using negative ion photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuexing [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs-. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  5. Molecular spectroscopy in biodiagnostics (from Hippocrates to Herschel and beyond)

    Science.gov (United States)

    Mantsch, Henry; Jackson, Michael

    1995-03-01

    After two decades of intense research on the spectroscopic properties of biological molecules in isolated systems, infrared spectroscopy is now being applied to the study of human tissues. Extending this approach, it is possible to use the sensitivity of infrared spectroscopy to probe the biochemical events underlying transformation from normal to a diseased state within tissues, and so develop novel diagnostic methods. We highlight some of the areas of research within our group aimed at developing clinically useful methodologies based upon infrared spectroscopy.

  6. Study of clusters using negative ion photodetachment spectroscopy

    International Nuclear Information System (INIS)

    Zhao, Yuexing.

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs - . In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy

  7. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  8. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  9. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  10. EBIT spectroscopy of Pm-like tungsten

    International Nuclear Information System (INIS)

    Hutton, R.; Zou, Y.; Reyna Almandos, J.; Biedermann, C.; Radtke, R.; Greier, A.; Neu, R.

    2003-01-01

    Methods of VUV electron beam ion trap (EBIT) spectroscopy are applied to the study of Pm-like tungsten (W 13+ ). These data show that theory appears well capable of dealing with these multi-electron (61) ions, at least for high ionization stages. A comparison of other spectroscopic methods applied to the study of other ions of the Pm I sequence is also given, and finally a search for the Pm-like W lines at the ASDEX Upgrade Tokamak is mentioned

  11. Deep-ultraviolet cavity ringdown spectroscopy

    NARCIS (Netherlands)

    Sneep, M.C.; Hannemann, S.; van Duijn, E.J.; Ubachs, W.M.G.

    2004-01-01

    The sensitive optical detection technique of cavity ringdown spectroscopy is extended to the wavelength range 197-204 nm. A novel design narrowband Fourier-transform-limited laser is used, and the technique is applied to gas-phase extinction measurements in CO

  12. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  13. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    International Nuclear Information System (INIS)

    Franco-Villafañe, J A; Méndez-Sánchez, R A; Flores-Olmedo, E; Báez, G; Gandarilla-Carrillo, O

    2012-01-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results. (paper)

  14. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  15. Developments in inverse photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sheils, W.; Leckey, R.C.G.; Riley, J.D.

    1996-01-01

    In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented

  16. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  17. Homogeneity spoil spectroscopy

    International Nuclear Information System (INIS)

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  18. Baryon spectroscopy at KAON

    Energy Technology Data Exchange (ETDEWEB)

    Comyn, Martin

    1992-07-01

    The unique opportunities for the study of baryon spectroscopy at the TRIUMF KAON Factory are outlined. Related issues in other areas of hadron spectroscopy are discussed. The complex of accelerators that comprise the TRIUMF KAON Factory, and the properties of the separated beams that will be available to experimenters, are described. Initial design considerations for detectors to be used in the study of hadron spectroscopy are presented, along with a proposed detector configuration. The progress towards realization of the TRIUMF KAON Factory is examined, and the timetable for the determination of the initial experimental programme and facilities is explained. 23 refs., 4 figs., 5 tabs.

  19. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    Science.gov (United States)

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  20. IR Spectroscopy. An introduction

    International Nuclear Information System (INIS)

    Guenzler, H.; Gremlich, H.U.

    2002-01-01

    The following topics are dealt with: absorption and molecular design, spectrometers, sample preparation, qualitative spectral interpretation and assertions, near-infrared and far-infrared spectroscopy, reference spectra and expert systems

  1. Charmonium spectroscopy, 1987

    International Nuclear Information System (INIS)

    Cahn, R.N.

    1987-01-01

    The state of charmonium spectroscopy is reviewed. All analyses proceed from a spin-dependent, non-relativistic Schroedinger equation. Many of the possible branching ratios for charm like states are investigated. 17 refs

  2. Dual THz comb spectroscopy

    Science.gov (United States)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  3. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  4. Surface vibrational spectroscopy (EELS)

    International Nuclear Information System (INIS)

    Okuyama, Hiroshi

    2006-01-01

    Adsorbed states of hydrogen on metal surfaces have been studied by means of electron energy loss spectroscopy (EELS). In this article, typical spectra and analysis as well as recent development are introduced. (author)

  5. Method Validation Procedure in Gamma Spectroscopy Laboratory

    International Nuclear Information System (INIS)

    El Samad, O.; Baydoun, R.

    2008-01-01

    The present work describes the methodology followed for the application of ISO 17025 standards in gamma spectroscopy laboratory at the Lebanese Atomic Energy Commission including the management and technical requirements. A set of documents, written procedures and records were prepared to achieve the management part. The technical requirements, internal method validation was applied through the estimation of trueness, repeatability , minimum detectable activity and combined uncertainty, participation in IAEA proficiency tests assure the external method validation, specially that the gamma spectroscopy lab is a member of ALMERA network (Analytical Laboratories for the Measurements of Environmental Radioactivity). Some of these results are presented in this paper. (author)

  6. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  7. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  8. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  9. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  10. Fast antihydrogen beam spectroscopy

    International Nuclear Information System (INIS)

    Neumann, R.

    1989-01-01

    The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydrogen beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described. (orig.)

  11. Laser spectroscopy used in nuclear physics; La spectroscopie laser appliquee a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, F

    2001-04-05

    The study of nuclear shapes is a basic topic since it constitutes an excellent ground for testing and validating nuclear models. Measurements of the electron quadrupolar moment, of the nuclear charge radius and of the magnetic dipolar moment shed light on the nuclear deformation. Laser spectroscopy is a specific tool for such measurements, it is based on the interaction of the nucleus with the surrounding electron cloud (hyperfine structure), it is then an external approach of the shape of the nucleus whereas the classical nuclear spectroscopy ({alpha}, {beta} or {gamma}) gives information on the deformation from the inside of the nucleus. The author describes 2 techniques of laser spectroscopy: the colinear spectroscopy directly applied to a beam issued from an isotope separator and the resonant ionization spectroscopy linked with atom desorption that allows the study of particular nuclei. In order to illustrate both methods some effective measurements are presented: - the colinear spectroscopy has allowed the achievement of the complete description of the isomeric state (T = 31 years) of hafnium-178; - The experiment Complis has revealed an unexpected even-odd zigzag effect on very neutron-deficient platinum isotopes; and - the comparison of 2 isotopes of gold and platinum with their isomers has shown that the inversion of 2 levels of neutron, that was found out by nuclear spectroscopy, is in fact a consequence of a change in the nuclear shape. (A.C.)

  12. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    2014-06-11

    Failloux, N., Bonnet, 1., Baron, M. H., & Perrier, E. (2003). Quantitative analysis of vitamin A degradation by raman spectroscopy. Applied Spectroscopy...analysis of the Raman-active modes of the anti-tumor agent 6- mercaptopurine . Journal of Raman Spectroscopy, 32(1), 1-8. doi: Doi 10.1002/1097- 4555

  13. The semiclassical way to dynamics and spectroscopy

    CERN Document Server

    Heller, Eric

    2018-01-01

    Physical systems have been traditionally described in terms of either classical or quantum mechanics. But in recent years, semiclassical methods have developed rapidly, providing deep physical insight and computational tools for quantum dynamics and spectroscopy. In this book, Eric Heller introduces and develops this subject, demonstrating its power with many examples. In the first half of the book, Heller covers relevant aspects of classical mechanics, building from them the semiclassical way through the semiclassical limit of the Feynman path integral. The second half of the book applies this approach to various kinds of spectroscopy, such as molecular spectroscopy and electron imaging and quantum dynamical systems with an emphasis on tunneling. Adopting a distinctly time-dependent viewpoint, Heller argues for semiclassical theories from experimental and theoretical vantage points valuable to research in physics and chemistry. Featuring more than two hundred figures, the book provides a geometric, phase-sp...

  14. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  15. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy

    DEFF Research Database (Denmark)

    Arredondo, B.; Romero, B.; Beliatis, M. J.

    2018-01-01

    In this work we study the degradation of roll-coated flexible inverted organic solar cells in different atmospheres. We demonstrate that impedance spectroscopy is a powerful tool for elucidating degradation mechanisms; it is used here to distinguish the different degradation mechanisms due to water...... and oxygen. Identical cells were exposed to different accelerated degradation environments using water only, oxygen only, and both water and oxygen simultaneously, all of them enhanced with UV light. The photocurrent is dramatically reduced in the oxygen-degraded samples. Impedance measurements indicate...... of degradation differs for the water and oxygen degraded samples. While oxygen + UV light decreases the conductivity of the PEDOT:PSS layer, water + UV light changes the PEDOT:PSS work function inducing a depletion region at the anode....

  16. In vivo spectroscopy

    International Nuclear Information System (INIS)

    Williams, S.R.; Cady, E.B.

    1987-01-01

    The technique which the authors describe in this chapter provides alternative information to imaging, although based upon the same physical principles. The experiments are carried out differently and have instrumental requirements which are not met by a standard imaging system. Furthermore, although the clinical efficacy of NMR imaging has been proven, clinical spectroscopy is very much in its infancy. With the exception of some specific /sup 31/P applications not is not even clear how spectroscopic investigations will be performed. This is particularly true with regard to localization techniques for investigating other than superficial organs and and in the use of /sup 1/H spectroscopy. They attempt to show what information spectroscopy can provide in principle and point out some of the problems associated with such investigations. NMR has come to the notice of the clinical community mainly through its use as an imaging technique, and many may consider spectroscopy as a secondary discipline. NMR spectroscopy, however, has a longer history than imaging and has been a standard technique in chemistry laboratories for more than two decades. It is a technique without peer for structural analysis of molecules and no new chemical compound is discovered or synthesized without an NMR spectrum being taken. The influence of molecular structure on resonant frequency has been termed the chemical shift

  17. Moessbauer spectroscopy. Tutorial book

    International Nuclear Information System (INIS)

    Yoshida, Yutaka; Langouche, Guido

    2013-01-01

    First textbook on Moessbauer Spectroscopy covering the complete field. Offers a concise introduction to all aspects of Moessbauer spectroscopy by the leading experts in the field. Tutorials on Moessbauer Spectroscopy. Since the discovery of the Moessbauer Effect many excellent books have been published for researchers and for doctoral and master level students. However, there appears to be no textbook available for final year bachelor students, nor for people working in industry who have received only basic courses in classical mechanics, electromagnetism, quantum mechanics, chemistry and materials science. The challenge of this book is to give an introduction to Moessbauer Spectroscopy for this level. The ultimate goal of this book is to give this audience not only a scientific introduction to the technique, but also to demonstrate in an attractive way the power of Moessbauer Spectroscopy in many fields of science, in order to create interest among the readers in joining the community of Moessbauer spectroscopists. This is particularly important at times where in many Moessbauer laboratories succession is at stake.

  18. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.

    Science.gov (United States)

    Kim, Hye-Na; Yoo, Haemin; Moon, Jun Hyuk

    2013-05-21

    We demonstrated the preparation of graphene-embedded 3D inverse opal electrodes for use in DSSCs. The graphene was incorporated locally into the top layers of the inverse opal structures and was embedded into the TiO2 matrix via post-treatment of the TiO2 precursors. DSSCs comprising the bare and 1-5 wt% graphene-incorporated TiO2 inverse opal electrodes were compared. We observed that the local arrangement of graphene sheets effectively enhanced electron transport without significantly reducing light harvesting by the dye molecules. A high efficiency of 7.5% was achieved in DSSCs prepared with the 3 wt% graphene-incorporated TiO2 inverse opal electrodes, constituting a 50% increase over the efficiencies of DSSCs prepared without graphene. The increase in efficiency was mainly attributed to an increase in J(SC), as determined by the photovoltaic parameters and the electrochemical impedance spectroscopy analysis.

  19. Photoacoustic spectroscopy for analytical measurements

    International Nuclear Information System (INIS)

    Haisch, Christoph

    2012-01-01

    Many different techniques, such as UV/vis absorption, IR spectroscopy, fluorescence and Raman spectroscopy are routinely applied in chemical (micro-)analysis and chemical imaging, and a large variety of instruments is commercially available. Up to now, opto- or photoacoustic (PA) and other optothermal (OT) methods are less common and only a limited number of instruments reached a level of application beyond prototypes in research laboratories. The underlying principle of all these techniques is the detection of local heating due to the conversion of light into heat by optical absorption. Considering the versatility, robustness and instrumental simplicity of many PA techniques, it is surprising that the number of commercial instruments based on such approaches is so sparse. The impetus of this review is to summarize basic principles and possible applications described in the literature, in order to foster routine application of these techniques in industry, process analysis and environmental screening. While the terms OT and PA methods cover a very wide range of methods and physical phenomena, this review will concentrate on techniques with applications for analytical measurements. (topical review)

  20. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2000-01-01

    Full text: The contributions given hereafter to this Annual Report cover a broad activity of the Department in 1999 both in the pure nuclear spectroscopy and in the applied spectroscopy investigations. That activity is then assembled in the two main groups: the nuclear structure studies with the application of the multidetector systems such as GASP, GAMMASPHERE, EUROBALL and the RFD - as its ancillary device, and investigations of condensed matter properties with the use of nuclear methods. In addition, non-nuclear methods such as the atomic force microscopy provided several new encouraging results. The nice data obtained are due to the great skill and hard work of all members of the staff, and a vast cooperation both with international and national institutes and institutions. When anticipated for calling the attractive results of the past year, I would rather admit that all data given here pretend to be those. To meet with, I refer directly to the short presentations given in the next pages. (author)

  1. Nonlinear spectroscopy of trapped ions

    Science.gov (United States)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  2. General Remarks about mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Mirzababayev, R.M.

    2001-01-01

    More than forty years have passed since the discovery of Mossbauer effect; one of the most brilliant findings in modern physics. This effect proved itself to be the powerful tool in almost all disciplines of the natural sciences and technology. Its unique feature is that it gives the possibility to get the results which cannot be obtained by any other physical methods. Mossbauer effect has been used as a key to unlock some basic physical, chemical and biological phenomena, as a guide for finding the new ways of solving applied scientific and technical problems of electronics, metallurgy, civil engineering, and even fine arts and archaeology. Very few scientific techniques can claim entry into as many countries as Mossbauer spectroscopy. Due to its wide application in an education and research processes the community of Mossbauer spectroscopists extends to almost 100 different countries. Laboratory equipment necessary for conducting gamma resonance spectroscopy, do not require large investments, premises, personnel. The spectrometer is rather small in size and could be installed on the ordinary laboratory table. That is why Mossbauer effect is widely used at numerous Universities all over the world as an universal instrument for tuition and research

  3. Temperature dependence of spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect at inter-band excitation in InGaAs/AlGaAs quantum wells.

    Science.gov (United States)

    Yu, Jinling; Cheng, Shuying; Lai, Yunfeng; Zheng, Qiao; Zhu, Laipan; Chen, Yonghai; Ren, Jun

    2015-10-19

    Spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect (CPGE) at inter-band excitation have been experimentally investigated in InGaAs/AlGaAs quantum wells at a temperature range of 80 to 290 K. It is found that, the sign of Rashba-type current reverses at low temperatures, while that of Dresselhaus-type remains unchanged. The temperature dependence of ratio of Rashba and Dresselhaus spin-orbit coupling parameters, increasing from -6.7 to 17.9, is obtained, and the possible reasons are discussed. We also develop a model to extract the Rashba-type effective electric field at different temperatures. It is demonstrated that excitonic effect will significantly influence the Rashba-type CPGE, while it has little effect on Dresselhaus-type CPGE.

  4. Toward practical terahertz time-domain spectroscopy

    Science.gov (United States)

    Brigada, David J.

    Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.

  5. Autobalanced Ramsey Spectroscopy

    Science.gov (United States)

    Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard

    2018-01-01

    We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone Yb+ 171 electric octupole optical clock transition and show that interrogation defects are not turned into clock errors. This opens up frequency accuracy perspectives below the 10-18 level for the Yb+ system and for other types of optical clocks.

  6. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  7. Overview. Department of Nuclear Spectroscopy. Section 2

    Energy Technology Data Exchange (ETDEWEB)

    Styczen, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The 1994 year activity in the Nuclear Spectroscopy Department was like in previous years spread over large variety of subjects concerned with the in-beam nuclear spectroscopy and many nucleon transfer reactions, properties of high excited nuclear states, and the applied nuclear spectroscopy. The studies in the first two groups were mostly carried out in a vast international collaboration which enabled us to carry out experiments on highly sophisticated experimental facilities abroad like EUROGAM, GASP, HECTOR or OSIRIS, and others. Some preparations for `home` experiments have been carried out on the very much looked forward and recently obtained heavy ion beam from the cyclotron at the Warsaw University. The applied nuclear spectroscopy works, on the other hand, were based on using our own installations: an elaborated set-up for perturbed angular correlations, the RBS and PIXE set-ups at the Van de Graaff accelerator, the implanter, an atomic force microscope and several others. Much of the effort manifests itself in several valuable results which are summarized in the following pages. It is to be underlined that those results, as well as some new instrumentation developments were possible due to additional support via special grants and the promotion of the international cooperation by the State Committee for Scientific Research (KBN). (author).

  8. Overview. Department of Nuclear Spectroscopy. Section 2

    Energy Technology Data Exchange (ETDEWEB)

    Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The 1994 year activity in the Nuclear Spectroscopy Department was like in previous years spread over large variety of subjects concerned with the in-beam nuclear spectroscopy and many nucleon transfer reactions, properties of high excited nuclear states, and the applied nuclear spectroscopy. The studies in the first two groups were mostly carried out in a vast international collaboration which enabled us to carry out experiments on highly sophisticated experimental facilities abroad like EUROGAM, GASP, HECTOR or OSIRIS, and others. Some preparations for `home` experiments have been carried out on the very much looked forward and recently obtained heavy ion beam from the cyclotron at the Warsaw University. The applied nuclear spectroscopy works, on the other hand, were based on using our own installations: an elaborated set-up for perturbed angular correlations, the RBS and PIXE set-ups at the Van de Graaff accelerator, the implanter, an atomic force microscope and several others. Much of the effort manifests itself in several valuable results which are summarized in the following pages. It is to be underlined that those results, as well as some new instrumentation developments were possible due to additional support via special grants and the promotion of the international cooperation by the State Committee for Scientific Research (KBN). (author).

  9. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    Kuijers, F.J.

    1978-01-01

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  10. Journal of applied mathematics

    National Research Council Canada - National Science Library

    2001-01-01

    "[The] Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics...

  11. Mesothelioma Applied Research Foundation

    Science.gov (United States)

    ... Foundation Experts Can Answer Your Questions! The Mesothelioma Applied Research Foundation's team of experts is available to answer ... a law firm. Read more about the Mesothelioma Applied Research Foundation . TO GET HELP CALL: (877) End-Meso ...

  12. Applied Energy Program

    Science.gov (United States)

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research » Applied Energy Program Applied Energy Program Los Alamos is using its world-class scientific capabilities to enhance national energy security by developing energy sources with limited environmental impact

  13. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  14. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  15. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  17. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Perspectives in hadron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Richard, J.M. [Universite Joseph Fourier-IN2P3-CNRS, Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (France)

    2005-07-01

    A brief survey is presented of selected recent results on hadron spectroscopy and related theoretical studies. Among the new hadron states, some of them are good candidates for exotic structures: chiral partners of ground-states, hybrid mesons (quark, antiquark and constituent gluon), four-quark states, or meson-meson molecules.

  19. Outlook for baryon spectroscopy

    International Nuclear Information System (INIS)

    Tripp, R.D.

    1976-09-01

    The review of baryon spectroscopy includes a number of new generation experiments with greatly improved statistics which have emerged and are enhancing experimental knowledge of baryon resonances. The future research directions are pointed out, and some problems and deficiencies which can be resolved with contemporary techniques are mentioned

  20. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  1. Astronomical Spectroscopy -24 ...

    Indian Academy of Sciences (India)

    growth of spectroscopy and its application to the study of .... Cesium was discovered ten years earlier, in 1859; it is the ... Kirchhoff and Bunsen's discovery; he was spared the pain of seeing ... We will have to go back about twenty years.

  2. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  3. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  4. Spectroscopy of new particles

    International Nuclear Information System (INIS)

    Goldhaber, G.

    1977-08-01

    A review of the spectroscopy of the ''psions'' with hidden charm or charm quantum number ch = o is followed by a discussion of charmed mesons and baryons. The anomalous C-μ events and the heavy lepton hypothesis are briefly considered

  5. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  6. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  7. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  8. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  9. Ultrabroadband spectroscopy for security applications

    DEFF Research Database (Denmark)

    Engelbrecht, Sunniva; Berge, Luc; Skupin, Stefan

    2015-01-01

    Ultrabroadband spectroscopy is a promising novel approach to overcome two major hurdles which have so far limited the application of THz spectroscopy for security applications: the increased bandwidth enables to record several characteristic spectroscopic features and the technique allows...

  10. Advances in Applied Mechanics

    OpenAIRE

    2013-01-01

    Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...

  11. Perspectives on Applied Ethics

    OpenAIRE

    2007-01-01

    Applied ethics is a growing, interdisciplinary field dealing with ethical problems in different areas of society. It includes for instance social and political ethics, computer ethics, medical ethics, bioethics, envi-ronmental ethics, business ethics, and it also relates to different forms of professional ethics. From the perspective of ethics, applied ethics is a specialisation in one area of ethics. From the perspective of social practice applying eth-ics is to focus on ethical aspects and ...

  12. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  13. Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy

    OpenAIRE

    ?anda, Franti?ek; Perl?k, V?clav; Lincoln, Craig N.; Hauer, J?rgen

    2015-01-01

    Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency?frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and...

  14. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  15. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  16. Sensing of phase transition in medium with terahertz pulsed spectroscopy

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Fokina, Irina N; Fedorov, Aleksey K; Yurchenko, Stanislav O

    2014-01-01

    Phase state identification and phase transition registration in condensed matter are significant applications of terahertz spectroscopy. A set of fundamental and applied problems are associated with the phase state problem. Our report is devoted to the experimental analysis of the spectral characteristics of water and water solution during the phase transition from the solid state to the liquid state via the method of terahertz pulsed spectroscopy. In this work transformation of the sample spectral characteristics during the phase transition were observed and discussed. Possible application of terahertz pulsed spectroscopy as an effective instrument for phase transition sensing was considered

  17. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  18. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  19. Visible spectroscopy on ASDEX

    International Nuclear Information System (INIS)

    Hofmann, J.V.

    1991-12-01

    In this report visible spectroscopy and impurity investigations on ASDEX are reviewed and several sets of visible spectra are presented. As a basis for identification of metallic impurity lines during plasma discharges spectra from a stainless steel - Cu arc have been recorded. In a next step a spectrum overview of ASDEX discharges is shown which reveals the dominating role of lines from light impurities like carbon and oxygen throughout the UV and visible range (2000 A ≤ λ ≤ 8000 A). Metallic impurity lines of neutrals or single ionized atoms are observed near localized surfaces. The dramatic effect of impurity reduction by boronization of the vessel walls is demonstrated in a few examples. In extension to some ivesti-gations already published, further diagnostic applications of visible spectroscopy are presented. Finally, the hardware and software system used on ASDEX are described in detail. (orig.)

  20. Hadron spectroscopy in LHCb

    CERN Document Server

    Palano, Antimo

    2018-01-01

    The LHCb experiment is designed to study the properties and decays of heavy flavored hadrons produced in pp collisions at the LHC. The data collected in the LHC Run I enables precision spectroscopy studies of beauty and charm hadrons. The latest results on spectroscopy of conventional and exotic hadrons are reviewed. In particular the discovery of the first charmonium pentaquark states in the $J/\\psi p$ system, the possible existence of four-quark states decaying to $J/\\psi \\phi$ and the confirmation of resonant nature of the $Z_c(4430)^−$ mesonic state are discussed. In the sector of charmed baryons, the observation of five new $\\Omega_c$ states, the observation of the $\\Xi^+_{cc}$ and the study of charmed baryons decaying to $D^0 p$ are presented.

  1. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  2. Magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  3. Precision muonium spectroscopy

    International Nuclear Information System (INIS)

    Jungmann, Klaus P.

    2016-01-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s–2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium–antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter. (author)

  4. Basic Principles of Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.

  5. Mössbauer spectroscopy.

    Science.gov (United States)

    Huynh, Boi Hanh

    2011-01-01

    Mössbauer spectroscopy has contributed significantly to the studies of Fe-containing proteins. Early applications yielded detailed electronic characterizations of hemeproteins, and thus enhanced our understanding of the chemical properties of this important class of proteins. The next stage of the applications was marked by major discoveries of several novel Fe clusters of complex structures, including the 8Fe7S P cluster and the mixed metal 1Mo7Fe M center in nitrogenase. Since early 1990 s, rapid kinetic techniques have been used to arrest enzymatic reactions for Mössbauer studies. A number of reaction intermediates were discovered and characterized, both spectroscopically and kinetically, providing unprecedented detailed molecular-level mechanistic information. This chapter gives a brief summary of the historical accounts and a concise description of some experimental and theoretical elements in Mössbauer spectroscopy that are essential for understanding Mössbauer spectra. Major biological applications are summarized at the end.

  6. Spectroscopy of neutral radium

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Aran; De, Subhadeep; Jungmann, Klaus; Wilschut, Hans; Willmann, Lorenz [KVI, University of Groningen, Groningen (Netherlands)

    2008-07-01

    The heavy alkaline earth atoms radium is uniquely sensitive towards parity and time reversal symmetry violations due to a large enhancement of an intrinsic permanent electric dipole moment of the nucleous or the electron. Furthermore, radium is sensitive to atomic parity violation and the nuclear anapole moment. To prepare such experiments spectroscopy of relevant atomic states need to be done. At a later stage we will build a neutral atom trap for radium. We have built an atomic beam of the short lived isotope {sup 225}Ra with a flux of several 10{sup 4} atoms/sec. We are preparing the laser spectroscopy using this beam setup. In the preparation for efficient laser cooling and trapping we have successfully trapped barium, which is similar in it's requirements for laser cooling. The techniques which we have developed with barium can be used to trap rare radium isotopes. We report on the progress of the experiments.

  7. Theory and spectroscopy

    Science.gov (United States)

    Stanton, John F.

    2015-05-01

    The interaction between quantum-mechanical theory and spectroscopy is one of the most fertile interfaces in all of science, and has a richly storied history. Of course it was spectroscopy that provided essentially all of the evidence that not all was well (or, perhaps more correctly put, complete) with the world of 19th century classical physics. From the discoveries of the dark lines in the solar spectrum by Fraunhöfer in 1814 to the curiously simple geometric formula discovered seventy years later that described the hydrogen atom spectrum, spectroscopy and spectroscopists have consistently identified the areas of atomic and molecular science that are most in need of hard thinking by theoreticians. The rest of the story, of course, is well-known: spectroscopic results were used to understand and motivate the theory of radioactivity and ultimately the quantum theory, first in its immature form that was roughly contemporaneous with the first World War, and then the Heisenberg-Schrödinger-Dirac version that has withstood the test of time. Since the basic principles of quantum mechanics ware first understood, the subject has been successfully used to understand the patterns found in spectra, and how these relate to molecular structure, symmetry, energy levels, and dynamics. But further understanding required to attain these intellectual achievements has often come only as a result of vital and productive interactions between theoreticians and spectroscopists (of course, many people have strengths in both areas). And indeed, a field that might be termed "theoretical spectroscopy" was cultivated and is now an important part of modern molecular science.

  8. NEUROFEEDBACK USING FUNCTIONAL SPECTROSCOPY

    OpenAIRE

    Hinds, Oliver; Wighton, Paul; Tisdall, M. Dylan; Hess, Aaron; Breiter, Hans; van der Kouwe, André

    2014-01-01

    Neurofeedback based on real-time measurement of the blood oxygenation level-dependent (BOLD) signal has potential for treatment of neurological disorders and behavioral enhancement. Commonly employed methods are based on functional magnetic resonance imaging (fMRI) sequences that sacrifice speed and accuracy for whole-brain coverage, which is unnecessary in most applications. We present multi-voxel functional spectroscopy (MVFS): a system for computing the BOLD signal from multiple volumes of...

  9. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  10. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  11. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  12. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2002-01-01

    Full text: The Nuclear Spectroscopy Department is the largest department of the Institute. It merges a variety of research groups having been performing investigations with a rich diversity of methods: from pure studies of the structure of nucleus and of nuclear properties through applied nuclear spectroscopy in condensed matter research, to the complex biophysical investigations of biological tissues. The nuclear structure experiments were performed mainly in European Large Scale Facilities (ALPIINFN-Legnaro, VIVITRON-IReS-Strasbourg, JYFL-K100-Cyclotron) with the use of the GASP, EUROBALL IV, RITU systems and with application of ancillary detectors - HECTOR+HELENA, RFD. Some data were obtained with the GAMMASPHERE in USA. Other research has been based on our own instrumentation - VdG, AFM, Dual-Beam-Implanter, PAC, Moessbauer spectrometers etc., in a strong co-operation with Polish and European institutions, of course. The atomic studies were done on the ESR at GSI in Darmastadt. In several pages which follow, some important results of the investigations in the Department are presented. In 2001, Dr hab. Jerzy Dryzek and Dr hab. Adam Maj were granted the Associated Professor positions, and Miss Agnieszka Kulinska and Mrs Maria Kmiecik - the Ph.D. degrees. Dr Kmiecik was also awarded the Henryk Niewodniczanski prize for studies of 147 Eu compound nucleus shape evolution. Some of us became (continued to be) members of International Committees - the PHINUFY (R. Broda), the Steering Committee of RISING at GSI (J. Styczen), the PAC of the VIVITRON at Strasbourg (J. Styczen). We organized an International Conference on Condensed Matter Studies (100 participants), which belonged to the well known series of Zakopane School of Physics. It's Proceedings appeared as a volume of the Acta Physica Polonica A journal. (author)

  13. Layman friendly spectroscopy

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    Affordable consumer grade spectroscopes (e.g. SCiO, Qualcomm Tricorder XPRIZE) are becoming more available to the general public. We introduce the concepts of spectroscopy to the public and K12 students and motivate them to delve deeper into spectroscopy in a dramatic participatory presentation and play. We use diffraction gratings, lasers, and light sources of different spectral properties to provide a direct experience of spectroscopy techniques. Finally, we invite the audience to build their own spectroscope--utilizing the APS SpectraSnapp cell phone application--and study light sources surrounding them in everyday life. We recontextualize the stigma that science is hard (e.g. ``Math, Science Popular Until Students Realize They're Hard,'' The Wall Street Journal) by presenting the material in such a way that it demonstrates the scientific method, and aiming to make failure an impersonal scientific tool--rather than a measure of one's ability, which is often a reason for shying away from science. We will present lessons we have learned in doing our outreach to audiences of different ages. This work is funded by the APS Outreach Grant ``Captain, we have matter matters!'' We thank New Mexico Tech Physics Department and Physics Club for help and technical equipment.

  14. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  15. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  16. Statistical process control for alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, W; Majoras, R E [Oxford Instruments, Inc. P.O. Box 2560, Oak Ridge TN 37830 (United States); Joo, I O; Seymour, R S [Accu-Labs Research, Inc. 4663 Table Mountain Drive, Golden CO 80403 (United States)

    1995-10-01

    Statistical process control(SPC) allows for the identification of problems in alpha spectroscopy processes before they occur, unlike standard laboratory Q C which only identifies problems after a process fails. SPC tools that are directly applicable to alpha spectroscopy include individual X-charts and X-bar charts, process capability plots, and scatter plots. Most scientists are familiar with the concepts the and methods employed by SPC. These tools allow analysis of process bias, precision, accuracy and reproducibility as well as process capability. Parameters affecting instrument performance are monitored and analyzed using SPC methods. These instrument parameters can also be compared to sampling, preparation, measurement, and analysis Q C parameters permitting the evaluation of cause effect relationships. Three examples of SPC, as applied to alpha spectroscopy , are presented. The first example investigates background contamination using averaging to show trends quickly. A second example demonstrates how SPC can identify sample processing problems, analyzing both how and why this problem occurred. A third example illustrates how SPC can predict when an alpha spectroscopy process is going to fail. This allows for an orderly and timely shutdown of the process to perform preventative maintenance, avoiding the need to repeat costly sample analyses. 7 figs., 2 tabs.

  17. Statistical process control for alpha spectroscopy

    International Nuclear Information System (INIS)

    Richardson, W.; Majoras, R.E.; Joo, I.O.; Seymour, R.S.

    1995-01-01

    Statistical process control(SPC) allows for the identification of problems in alpha spectroscopy processes before they occur, unlike standard laboratory Q C which only identifies problems after a process fails. SPC tools that are directly applicable to alpha spectroscopy include individual X-charts and X-bar charts, process capability plots, and scatter plots. Most scientists are familiar with the concepts the and methods employed by SPC. These tools allow analysis of process bias, precision, accuracy and reproducibility as well as process capability. Parameters affecting instrument performance are monitored and analyzed using SPC methods. These instrument parameters can also be compared to sampling, preparation, measurement, and analysis Q C parameters permitting the evaluation of cause effect relationships. Three examples of SPC, as applied to alpha spectroscopy , are presented. The first example investigates background contamination using averaging to show trends quickly. A second example demonstrates how SPC can identify sample processing problems, analyzing both how and why this problem occurred. A third example illustrates how SPC can predict when an alpha spectroscopy process is going to fail. This allows for an orderly and timely shutdown of the process to perform preventative maintenance, avoiding the need to repeat costly sample analyses. 7 figs., 2 tabs

  18. What Is Applied Linguistics?

    Science.gov (United States)

    James, Carl

    1993-01-01

    Ostensive and expository definitions of applied linguistics are assessed. It is suggested that the key to a meaningful definition lies in the dual articulation of applied linguistics: it is an interface between linguistics and practicality. Its role as an "expert system" is suggested. (45 references) (Author/LB)

  19. Applied social geography

    OpenAIRE

    Hilpert, Markus

    2002-01-01

    Applied social geography : management of spatial planning in reflective discourse ; research perspectives towards a ‚Theory of Practice‘. - In: Geografija in njene aplikativne moˆznosti = Prospects of applied geography. - Ljubljana : Oddelek za Geografijo, Filozofska Fakulteta, 2002. S. 29-39. - (Dela / Oddelek za geografijo Filozofske fakultete v Ljubljani ; 18)

  20. What are applied ethics?

    Science.gov (United States)

    Allhoff, Fritz

    2011-03-01

    This paper explores the relationships that various applied ethics bear to each other, both in particular disciplines and more generally. The introductory section lays out the challenge of coming up with such an account and, drawing a parallel with the philosophy of science, offers that applied ethics may either be unified or disunified. The second section develops one simple account through which applied ethics are unified, vis-à-vis ethical theory. However, this is not taken to be a satisfying answer, for reasons explained. In the third section, specific applied ethics are explored: biomedical ethics; business ethics; environmental ethics; and neuroethics. These are chosen not to be comprehensive, but rather for their traditions or other illustrative purposes. The final section draws together the results of the preceding analysis and defends a disunity conception of applied ethics.

  1. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  2. Applied Mathematics Seminar 1982

    International Nuclear Information System (INIS)

    1983-01-01

    This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author) [pt

  3. Handbook of Applied Analysis

    CERN Document Server

    Papageorgiou, Nikolaos S

    2009-01-01

    Offers an examination of important theoretical methods and procedures in applied analysis. This book details the important theoretical trends in nonlinear analysis and applications to different fields. It is suitable for those working on nonlinear analysis.

  4. Applying contemporary statistical techniques

    CERN Document Server

    Wilcox, Rand R

    2003-01-01

    Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc

  5. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  6. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  7. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.

  8. Nanosecond fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs

  9. Theory overview on spectroscopy

    International Nuclear Information System (INIS)

    Ali, Ahmed

    2011-08-01

    A theoretical overview of the exotic spectroscopy in the charm and beauty quark sector is presented. These states are unexpected harvest from the e + e - and hadron colliders and a permanent abode for the majority of them has yet to be found. We argue that some of these states, in particular the Y b (10890) and the recently discovered states Z b (10610) and Z b (10650), discovered by the Belle collaboration are excellent candidates for tetraquark states [bq][ anti b anti q], with q=u,d light quarks. Theoretical analyses of the Belle data carried out in the tetraquark context is reviewed. (orig.)

  10. Hadron spectroscopy 1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk

  11. Hadron spectroscopy 1987

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk.

  12. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  13. Spectroscopy of 212Rn

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Dracoulis, G.D.; Byrne, A.P.; Poletti, A.R.

    1988-01-01

    Excited states of 212 Rn have been studied using γ-ray and electron spectroscopy following the reactions 208 Pb( 9 Be, 5n) and 204 Hg( 13 C,5n). With the exception of the energy of the yrast 8 + → 6 + transition, the previously proposed level scheme has been verified. New transitions have been placed in the level scheme and new lifetime and g-factor results obtained. The level scheme and electromagnetic properties of selected isomeric states are compared with the results of shell model and semi-empirical shell-model calculations, including coupling to octupole vibrations. (orig.)

  14. Spectroscopy of 212Rn

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Dracoulis, G.D.; Byrne, A.P.; Poletti, A.R.

    1988-06-01

    Excited states of 212 Rn have been studied using γ-ray and electron spectroscopy following the reactions 208 Pb ( 9 Be,5n) and 204 Hg( 13 C,5n). With the exception of the energy of the yrast 8 + → 6 + transition, the previously proposed level scheme has been verified. New transitions have been placed in the level scheme and new lifetime and g-factor results obtained. The level scheme and electromagnetic properties of selected isomeric states are compared with the results of shell model and semi-empirical shell-model calculations, including coupling to octupole vibrations

  15. MR spectroscopy in dementia

    International Nuclear Information System (INIS)

    Hauser, T.; Gerigk, L.; Giesel, F.; Schuster, L.; Essig, M.

    2010-01-01

    With an increasingly aging population we are faced with the problem of an increasing number of dementia patients. In addition to clinical, neuropsychological and laboratory procedures, MRI plays an important role in the early diagnosis of dementia. In addition to various morphological changes functional changes can also help in the diagnosis and differential diagnosis of dementia. Overall the diagnosis of dementia can be improved by using parameters from MR spectroscopy. This article focuses on MR spectroscopic changes in the physiological aging process as well as on changes in mild cognitive impairment a precursor of Alzheimer's dementia, in Alzheimer's dementia, frontotemporal dementia, vascular dementia and Lewy body dementia. (orig.) [de

  16. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  17. Statistical nuclear spectroscopy

    International Nuclear Information System (INIS)

    Parikh, J.C.

    1985-01-01

    The aim of nuclear spectroscopy is to study properties of nuclear energy levels and transitions (electromagnetic, particle transfer, etc.) between these levels. Traditionally, the properties that involve a single level or a few levels have theoretically been investigated using models e.g. shell model, self-consistent field approximation, collective model (RPA, Generator Coordinate) and so on. Basically from these models, one obtains eigenvalues and eigenfunctions (or expectation values and transfer strengths) which can be compared with data. The choice of the model depends upon the properties that one wants to examine and the usefulness of the model depends upon its ability to explain observations and make predictions

  18. Spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect at inter-band excitation in InGaAs/GaAs/AlGaAs step quantum wells.

    Science.gov (United States)

    Yu, Jinling; Cheng, Shuying; Lai, Yunfeng; Zheng, Qiao; Chen, Yonghai

    2014-03-19

    : Spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect (CPGE) at inter-band excitation have been experimentally investigated in InGaAs/GaAs/AlGaAs step quantum wells (QWs) at room temperature. The Rashba- and Dresselhaus-induced CPGE spectra are quite similar with each other during the spectral region corresponding to the transition of the excitonic state 1H1E (the first valence subband of heavy hole to the first conduction subband of electrons). The ratio of Rashba- and Dresselhaus-induced CPGE current for the transition 1H1E is estimated to be 8.8±0.1, much larger than that obtained in symmetric QWs (4.95). Compared to symmetric QWs, the reduced well width enhances the Dresselhaus-type spin splitting, but the Rashba-type spin splitting increases more rapidly in the step QWs. Since the degree of the segregation effect of indium atoms and the intensity of build-in field in the step QWs are comparable to those in symmetric QWs, as proved by reflectance difference and photoreflectance spectra, respectively, the larger Rashba-type spin splitting is mainly induced by the additional interface introduced by step structures.

  19. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  20. Resonance ionization spectroscopy 1990

    International Nuclear Information System (INIS)

    Parks, J.E.; Omenetto, N.

    1991-01-01

    The Fifth International Symposium on Resonance Ionization Spectroscopy (RIS) and its Applications was held in Varese, Italy, 16-21 September 1990. Interest in RIS and its applications continues to grow, and RIS is expanding into a more diverse and mature field of study. This maturity was evident in this meeting both in the basic science and understanding of RIS processes and in the number of new and improved applications and techniques. The application of RIS techniques to molecular detection problems made remarkable progress since the last meeting two years ago. Subtle effects pertaining to isotopic discrimination received more theoretical attention, and there now seems to be good understanding of these effects, which can lead to correction procedures and/or methods to avoid isotopic effects. RIS applications were presented in which significant, real world problems were addressed, demonstrating its capability to solve problems that previously could not be accurately solved by other more traditional techniques. The contributions to the conference are grouped under the following major topic headings: physics applications of rare atoms; laser ionization mechanisms - spectroscopy; atomic, molecular and ion sources; molecular RIS; atomic RIS - Rydberg states; environmental trace analysis; biological and medical applications; state selected chemistry; new laser sources and techniques; ultra-high resolution and isotopic selectivity; surface and bulk analysis. (Author)

  1. Charmonium(like) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiqing [Johannes Gutenberg University Mainz, Mainz (Germany)

    2016-07-01

    Since its discovery in 1974, charmonium spectroscopy has always been an important probe to study strong interactions and the structure of hadronic matter. Below open-charm threshold, the charmonium spectrum is well established now. Also our understanding of charmonium states above the open-charm threshold has seen a big progress during recent years. However, the most surprising was the discovery of charmonium-like states, which have a similar mass scale as charmonium states but can not be classified as conventional states easily. Indeed, charmonium-like states are good candidates for the so-called exotic hadron states, i.e. particles with a quark content different from normal mesons and baryons, such as multi-quark states, hybrid states or molecule states. Although neutral charmonium-like states are more difficult to be identified, the observation of charged states provide us a convincing evidence. In this talk, I review the recent progress on charmonium and charmonium-like spectroscopy from BESIII, Belle, BABAR, CLEO-c and LHCb and the prospect for future experiments at Belle II and PANDA.

  2. Neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Gunsing, F.

    2005-06-01

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  3. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  4. Photothermal spectroscopy of aerosols

    International Nuclear Information System (INIS)

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 μm were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO 2 laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m 2 /g at 1087 cm -1 . The absorption coefficient sensitivity of this scheme was less than or equal to 10 -8 cm -1 . The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations

  5. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  6. Wave mixing spectroscopy

    International Nuclear Information System (INIS)

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr +3 :LaF 3 verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the 3 H 4 , 3 H 6 , and 3 P 0 levels of the praseodymium ions

  7. Problems of applied geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, L N

    1983-01-01

    The concept of applied geochemistry was introduced for the first time by A. Ye. Fersman. He linked the branched and complicated questions of geochemistry with specific problems of developing the mineral and raw material base of our country. Geochemical prospecting and geochemistry of mineral raw materials are the most important sections of applied geochemistry. This now allows us the right to view applied geochemistry as a sector of science which applies geochemical methodology, set of geochemical methods of analysis, synthesis, geological interpretation of data based on laws governing theoretical geochemistry to the solution of different tasks of geology, petrology, tectonics, stratigraphy, science of minerals and other geological sciences, and also the technology of mineral raw materials, interrelationships of man and nature (ecogeochemistry, technogeochemistry, agrogeochemistry). The main problem of applied geochemistry, geochemistry of ore fields is the prehistory of ore formation. This is especially important for metallogenic and forecasting constructions, for an understanding of the reasons for the development of fields and the detection of laws governing their distribution, their genetic links with the general geological processes and the products of these processes.

  8. Fourier Spectroscopy: A Bayesian Way

    Directory of Open Access Journals (Sweden)

    Stefan Schmuck

    2017-01-01

    Full Text Available The concepts of standard analysis techniques applied in the field of Fourier spectroscopy treat fundamental aspects insufficiently. For example, the spectra to be inferred are influenced by the noise contribution to the interferometric data, by nonprobed spatial domains which are linked to Fourier coefficients above a certain order, by the spectral limits which are in general not given by the Nyquist assumptions, and by additional parameters of the problem at hand like the zero-path difference. To consider these fundamentals, a probabilistic approach based on Bayes’ theorem is introduced which exploits multivariate normal distributions. For the example application, we model the spectra by the Gaussian process of a Brownian bridge stated by a prior covariance. The spectra themselves are represented by a number of parameters which map linearly to the data domain. The posterior for these linear parameters is analytically obtained, and the marginalisation over these parameters is trivial. This allows the straightforward investigation of the posterior for the involved nonlinear parameters, like the zero-path difference location and the spectral limits, and hyperparameters, like the scaling of the Gaussian process. With respect to the linear problem, this can be interpreted as an implementation of Ockham’s razor principle.

  9. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  10. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  11. PSYCHOANALYSIS AS APPLIED AESTHETICS.

    Science.gov (United States)

    Richmond, Stephen H

    2016-07-01

    The question of how to place psychoanalysis in relation to science has been debated since the beginning of psychoanalysis and continues to this day. The author argues that psychoanalysis is best viewed as a form of applied art (also termed applied aesthetics) in parallel to medicine as applied science. This postulate draws on a functional definition of modernity as involving the differentiation of the value spheres of science, art, and religion. The validity criteria for each of the value spheres are discussed. Freud is examined, drawing on Habermas, and seen to have erred by claiming that the psychoanalytic method is a form of science. Implications for clinical and metapsychological issues in psychoanalysis are discussed. © 2016 The Psychoanalytic Quarterly, Inc.

  12. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  13. Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, Oscar

    1989-12-15

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology.

  14. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  15. Applying the accelerator

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1989-01-01

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology

  16. On applying cognitive psychology.

    Science.gov (United States)

    Baddeley, Alan

    2013-11-01

    Recent attempts to assess the practical impact of scientific research prompted my own reflections on over 40 years worth of combining basic and applied cognitive psychology. Examples are drawn principally from the study of memory disorders, but also include applications to the assessment of attention, reading, and intelligence. The most striking conclusion concerns the many years it typically takes to go from an initial study, to the final practical outcome. Although the complexity and sheer timescale involved make external evaluation problematic, the combination of practical satisfaction and theoretical stimulation make the attempt to combine basic and applied research very rewarding. © 2013 The British Psychological Society.

  17. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  18. Gamma-ray and electron spectroscopy in nuclear physics

    International Nuclear Information System (INIS)

    Ejiri, H.

    1989-01-01

    This book is devoted to the role of gamma-ray and conversion-electron (γ-e) spectroscopy in developing our understanding of nuclear structure and nuclear reaction-mechanisms. The book was written because of the spectacular development in the last decade of new γ-e spectroscopic methods, and their application to various kinds of nuclear reactions and the need to present γ-e spectroscopy from the point of view of nuclear structure as well as of reaction mechanism. The importance of γ-e spectroscopy is due to the simplicity and familiarity of the electromagnetic interaction, which gives accurate values for many nuclear quantities and reveals special nuclear properties. γ-e spectroscopy is applied to investigate static as well as dynamic nuclear properties over a wide range of excitation energies from the ground state to states of extreme temperatures and angular momentum, including some new degrees of freedom. (author)

  19. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  20. Advances in applied mechanics

    CERN Document Server

    Wu, Theodore Y; Wu, Theodore Y

    2000-01-01

    This highly acclaimed series provides survey articles on the present state and future direction of research in important branches of applied solid and fluid mechanics. Mechanics is defined as a branch of physics that focuses on motion and on the reaction of physical systems to internal and external forces.

  1. Essays on Applied Microeconomics

    Science.gov (United States)

    Mejia Mantilla, Carolina

    2013-01-01

    Each chapter of this dissertation studies a different question within the field of Applied Microeconomics. The first chapter examines the mid- and long-term effects of the 1998 Asian Crisis on the educational attainment of Indonesian children ages 6 to 18, at the time of the crisis. The effects are identified as deviations from a linear trend for…

  2. Signals: Applying Academic Analytics

    Science.gov (United States)

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  3. Journal of Applied Biosciences

    African Journals Online (AJOL)

    The Journal of Applied Biosciences provides a forum for scholars and practitioners in all spheres of biological sciences to publish their research findings or theoretical concepts and ideas of a scientific nature. Other websites related to this journal: http://m.elewa.org/Journals/about-jab/ ...

  4. Thermodynamics applied. Where? Why?

    NARCIS (Netherlands)

    Hirs, Gerard

    2003-01-01

    In recent years, thermodynamics has been applied in a number of new fields leading to a greater societal impact. This paper gives a survey of these new fields and the reasons why these applications are important. In addition, it is shown that the number of fields could be even greater in the future

  5. Thermodynamics, applied. : Where? why?

    NARCIS (Netherlands)

    Hirs, Gerard

    1999-01-01

    In recent years thermodynamics has been applied in a number of new fields leading to a greater societal impact. The paper gives a survey of these new fields and the reasons why these applications are important. In addition it is shown that the number of fields could be even greater in the future and

  6. Applied Statistics with SPSS

    Science.gov (United States)

    Huizingh, Eelko K. R. E.

    2007-01-01

    Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…

  7. Applied research on glucansucrases

    Science.gov (United States)

    Although glycansucrases have been known for over 70 years, they remain relatively unknown except to a small group of researchers. Practical, applied research on glycansucrases has been focused on certain key areas. The earliest of these was the development of blood plasma extenders from dextran, d...

  8. Essays in applied microeconometrics

    NARCIS (Netherlands)

    Cervený, Jakub

    2017-01-01

    Duration analysis has been widely used in the applied economic research since the late 1970s. The framework allows to examine the duration of time intervals and the rate of transition across a set of states over time. Many economic behaviors follow a similar pattern, such as transition from the

  9. Applied Behavior Analysis

    Science.gov (United States)

    Szapacs, Cindy

    2006-01-01

    Teaching strategies that work for typically developing children often do not work for those diagnosed with an autism spectrum disorder. However, teaching strategies that work for children with autism do work for typically developing children. In this article, the author explains how the principles and concepts of Applied Behavior Analysis can be…

  10. Applied Linguistics in Europe

    NARCIS (Netherlands)

    de Bot, Kees

    2004-01-01

    In this contribution developments in Applied Linguistics in Europe are linked to major social changes that have taken place over the last decades. These include: The decline of the USSR and the end of the cold war; The development of the EEC and the EU and fading of borders; The economic growth of

  11. Applied Anthropology in Broadcasting

    Science.gov (United States)

    Eiselein, E. B.

    1976-01-01

    Three different applied media anthropology projects are described. These projects stem from the broadcasters' legal need to know about the community (community ascertainment), the broadcasters' need to know about the station audience (audience profile), and the broadcasters' desire to change a community (action projects). (Author)

  12. Proton magnetic resonance spectroscopy in schizophrenia

    International Nuclear Information System (INIS)

    Bertolino, Alessandro; Weinberger, Daniel R.

    1999-01-01

    Proton magnetic resonance spectroscopy (MRS) has become an important tool to study in vivo certain biochemical aspects of brain disorders. In the last decade this technique has been applied to the in vivo investigation of pathophysiological aspects of psychiatric disorders, extending knowledge of the related brain alterations. This review will focus on providing some background to clarify technical and biochemical issues and it will describe the studies that have been performed in schizophrenia. The results will be framed in a more general context to highlight what we have learned and what remains to be understood from the application of this technique to schizophrenia

  13. Magnetic resonance spectroscopy studies in migraine

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, P.; Cortelli, P.; Barbiroli, B. (Inst. of Medical Pathology, Univ. of Bologna (Italy))

    1994-06-01

    The authors describe the method of [sup 31]phosphorus magnetic resonance spectroscopy and review the results when it is applied to the study of brain and muscle energy metabolism in migraine subjects. Brain energy metabolism appears to be abnormal in all major subtypes of migraine when measured both during and between attacks. Impaired energy metabolism is also documented in skeletal muscle. It is suggested that migraine is associated with a generalized disorder of mitochondrial oxidative phosphorylation and that this may constitute a threshold for the triggering of migraine attacks. 47 refs., 10 figs., 3 tabs.

  14. Photothermal deflection spectroscopy investigations of uranium electrochemistry

    International Nuclear Information System (INIS)

    Russo, R.E.; Rudnicki, J.D.

    1993-01-01

    Photothermal Deflection Spectroscopy (PDS) has been successfully applied to the study of uranium oxide electrochemistry. A brief description of PDS and preliminary results that demonstrate the technique are presented. Concentration gradients formed at the electrode surface are measured by this technique. The gradients give insight into the reaction mechanisms. There is some evidence of the initiation of non-electrochemical dissolution of the uranium oxide. Optical absorption by the uranium oxide is measured by PDS and the first results indicate that the absorption of the surface does not change during electrochemical experiments. This result is contrary to literature measurements of bulk samples that indicate that the optical absorption should be strongly changing

  15. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  16. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  17. Transit spectroscopy with GTC

    Directory of Open Access Journals (Sweden)

    Osorio M.R. Zapatero

    2013-04-01

    Full Text Available Thanks to different ground-based surveys and space missions, nowadays we have a fairly large sample of discovered extra-solar planets to study and, without a doubt, this number will increase in the future. One of the most succesful techniques that allows us to prove the physical properties and atmospheric composition of these exoplanets is transmission spectroscopy. The level of precision that is require to measure these effects provides a technical challenge that is solved by using big telescopes and stable instruments to reach low noise levels. In this article, we will discuss the use of the 10m class telescope GTC to observed planetary transits in spectroscopic mode and some of the results that we are currently obtaining.

  18. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  19. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  20. Introduction to NSE spectroscopy

    International Nuclear Information System (INIS)

    Pappas, C.

    2001-01-01

    Neutron Spin Echo (NSE) spectroscopy allows for reaching the highest energy resolution in inelastic neutron scattering while keeping the high intensity advantage of a beam which is only 10-20% monochromatic. Most spectroscopic methods determine separately the energies of the incident (ω 0 ) and scattered beams (ω) in order to deduce the energy transfer (Δω = ω-ω 0 ), which is the relevant parameter in inelastic neutron scattering. The accuracy in the determination of ω 0 and ω also determines the lowest limit for Δω, which can reach 10 -3 , but with the cost of a high incident beam monocromatisation. In NSE the precession of neutron spins in a magnetic field is used as a stop-watch, which is carried by each neutron individually and measures directly, with an accuracy of 10 -5 to 10 -3 , the difference in energy before and after the scattering process at the sample. (R.P.)