WorldWideScience

Sample records for phase noise cancellation

  1. Self-Interference Cancellation Using Time-Domain Phase Noise Estimation in OFDM Full-Duplex Systems

    OpenAIRE

    Shehata, Heba; Khattab, Tamer

    2016-01-01

    In full-duplex systems, oscillator phase noise (PN) problem is considered the bottleneck challenge that may face the self-interference cancellation (SIC) stage especially when orthogonal frequency division multiplexing (OFDM) transmission scheme is deployed. Phase noise degrades the SIC performance significantly, if not mitigated before or during the SIC technique. The presence of the oscillator phase noise has different impacts on the transmitted data symbol like common phase error (CPE) and...

  2. Alien Noise Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Full FEXT Cancellation. Expectation Maximization based Algorithms. Partial Cancellation. Optimal Choice of what to Cancel and what not to! Alien Noise Cancellation. Efficient Crosstalk channel estimation. In addition:

  3. Phase noise cancellation in polarisation-maintaining fibre links

    Science.gov (United States)

    Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.

    2018-03-01

    The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.

  4. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    International Nuclear Information System (INIS)

    Li, Jiaming; Luo, Le; Carvell, Jeff; Cheng, Ruihua; Lai, Tianshu; Wang, Zixin

    2014-01-01

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10 −9  rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absence of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10 −9 rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film

  5. Adaptive noise cancellation

    International Nuclear Information System (INIS)

    Akram, N.

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique. (author)

  6. Noise canceling in-situ detection

    Science.gov (United States)

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  7. Noise cancellation properties of displacement noise free interferometer

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen Yanbei

    2010-01-01

    We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser interferometer (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder interferometers (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.

  8. A wide bandwidth fractional-N synthesizer for LTE with phase noise cancellation using a hybrid-ΔΣ-DAC and charge re-timing

    NARCIS (Netherlands)

    Ye, D.; Lu, Ping; Andreani, Pietro; van der Zee, Ronan A.R.

    2013-01-01

    This paper presents a 1MHz bandwidth, ΔΣ fractional-N PLL as the frequency synthesizer for LTE. A noise cancellation path composed of a novel hybrid ΔΣ DAC with 9 output bits is incorporated into the PLL in order to cancel the out-of-band phase noise caused by the quantization error. Further, a

  9. Active noise control in a duct to cancel broadband noise

    Science.gov (United States)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  10. Simulation for noise cancellation using LMS adaptive filter

    Science.gov (United States)

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  11. Active noise cancellation in hearing devices

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is a hearing device system comprising at least one hearing aid circuitry and at least one active noise cancellation unit, the at least one hearing aid circuitry comprises at least one input transducer adapted to convert a first audio signal to an electric audio signal; a signal processor...... connected to the at least one input transducer and adapted to process said electric audio signal by at least partially correcting for a hearing loss of a user; an output transducer adapted to generate from at least said processed electric audio signal a sound pressure in an ear canal of the user, whereby...... the generated sound pressure is at least partially corrected for the hearing loss of the user; ; the at least one active noise cancellation unit being adapted to provide an active noise cancellation signal adapted to perform active noise cancellation of an acoustical signal entering the ear canal in addition...

  12. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    OpenAIRE

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In contrast, this paper presents a feedforward noise-canceling technique, which allows for simultaneous noise and impedance matching, while canceling the noise and distortion contributions of the matching d...

  13. Vocal Noise Cancellation From Respiratory Sounds

    National Research Council Canada - National Science Library

    Moussavi, Zahra

    2001-01-01

    Although background noise cancellation for speech or electrocardiographic recording is well established, however when the background noise contains vocal noises and the main signal is a breath sound...

  14. Experimental testing of the noise-canceling processor.

    Science.gov (United States)

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  15. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Deng, Lei

    2012-01-01

    In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approx......In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs...

  16. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    Science.gov (United States)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  17. Development of a Voice Activity Controlled Noise Canceller

    Science.gov (United States)

    Abid Noor, Ali O.; Samad, Salina Abdul; Hussain, Aini

    2012-01-01

    In this paper, a variable threshold voice activity detector (VAD) is developed to control the operation of a two-sensor adaptive noise canceller (ANC). The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE) convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods. PMID:22778667

  18. Development of a Voice Activity Controlled Noise Canceller

    Directory of Open Access Journals (Sweden)

    Aini Hussain

    2012-05-01

    Full Text Available In this paper, a variable threshold voice activity detector (VAD is developed to control the operation of a two-sensor adaptive noise canceller (ANC. The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods.

  19. Active microphonic noise cancellation in radiation detectors

    International Nuclear Information System (INIS)

    Zimmermann, Sergio

    2013-01-01

    A new adaptive filtering technique to reduce microphonic noise in radiation detectors is presented. The technique is based on system identification that actively cancels the microphonic noise. A sensor is used to measures mechanical disturbances that cause vibration on the detector assembly, and the digital adaptive filtering estimates the impact of these disturbances on the microphonic noise. The noise then can be subtracted from the actual detector measurement. In this paper the technique is presented and simulations are used to support this approach. -- Highlights: •A sensor is used to measures mechanical disturbances that cause vibration on the detector assembly. •Digital adaptive filtering estimates the impact of these disturbances on the microphonic noise. •The noise is then subtracted from the actual detector measurement. •We use simulations to demonstrate the performance of this approach. •After cancellation, we recover most of the original energy resolution

  20. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  1. An inductorless wideband LNA with a new noise canceling technique

    OpenAIRE

    MOGHADAM, POURIA PAZHOUHESH; ABRISHAMIFAR, ADIB

    2017-01-01

    An inductorless wideband low-noise amplifier (LNA) employing a new noise canceling technique for multistandard applications is presented. The main amplifier has a cascode common gate structure, which provides good input impedance matching and isolation. The proposed noise canceling technique not only improves the noise figure and power gain but also embeds a g$_{m}$-boosting technique in itself, which reduces the power consumption of the main amplifier. Using current-steering and ...

  2. An improved probe noise approach for acoustic feedback cancellation

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    The perhaps most challenging problem in acoustic feedback cancellation using adaptive filters is the bias problem. It is well-known that a probe noise approach can effectively prevent this problem. However, when the probe noise must be inaudible and the steady-state error of the adaptive filter...... expressions for its system behavior, and through a simulation experiment in an acoustic feedback cancellation system....

  3. Active cancellation of probing in linear dipole phased array

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2015-01-01

    In this book, a modified improved LMS algorithm is employed for weight adaptation of dipole array for the generation of beam pattern in multiple signal environments. In phased arrays, the generation of adapted pattern according to the signal scenario requires an efficient adaptive algorithm. The antenna array is expected to maintain sufficient gain towards each of the desired source while at the same time suppress the probing sources. This cancels the signal transmission towards each of the hostile probing sources leading to active cancellation. In the book, the performance of dipole phased array is demonstrated in terms of fast convergence, output noise power and output signal-to-interference-and noise ratio. The mutual coupling effect and role of edge elements are taken into account. It is established that dipole array along with an efficient algorithm is able to maintain multilobe beamforming with accurate and deep nulls towards each probing source. This work has application to the active radar cross secti...

  4. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    Science.gov (United States)

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  5. A method of background noise cancellation for SQUID applications

    International Nuclear Information System (INIS)

    He, D F; Yoshizawa, M

    2003-01-01

    When superconducting quantum inference devices (SQUIDs) operate in low-cost shielding or unshielded environments, the environmental background noise should be reduced to increase the signal-to-noise ratio. In this paper we present a background noise cancellation method based on a spectral subtraction algorithm. We first measure the background noise and estimate the noise spectrum using fast Fourier transform (FFT), then we subtract the spectrum of background noise from that of the observed noisy signal and the signal can be reconstructed by inverse FFT of the subtracted spectrum. With this method, the background noise, especially stationary inferences, can be suppressed well and the signal-to-noise ratio can be increased. Using high-T C radio-frequency SQUID gradiometer and magnetometer, we have measured the magnetic field produced by a watch, which was placed 35 cm under a SQUID. After noise cancellation, the signal-to-noise ratio could be greatly increased. We also used this method to eliminate the vibration noise of a cryocooler SQUID

  6. A study on the method for cancelling the background noise of the impact signal

    International Nuclear Information System (INIS)

    Kim, J. S.; Ham, C. S.; Park, J. H.

    1998-01-01

    In this paper, we compared the noise canceller (time domain analysis method) to the spectral subtraction (frequency domain analysis method) for cancelling background noise when the Loose Part Monitoring System's accelerometers combined the noise signal with the impact signal if the impact signal exists. In the operation of a nuclear power plant monitoring, alarm triggering occurs due to a peak signal in the background noise, an amplitude increase by component operation such as control rod movement or abrupt pump operation. This operation causes the background noise in LPMS. Thus this noise inputs to LPMS together with the impact signal. In case that this noise amplitude is very large comparing to that of the impact signal, we may not analyze the impact position and mass estimation. We analyzed two methods for cancelling background noise. First, we evaluate the signal to noise ratio utilizing the noise canceller. Second, we evaluate the signal to noise ratio utilizing the spectral subtraction. The evaluation resulted superior the noise canceller to the spectral subtraction on the signal to noise ratio

  7. Thermal Noise Canceling in LNAs : A Review

    NARCIS (Netherlands)

    Nauta, Bram; Klumperink, Eric A.M.; Bruccoleri, Frederico

    2004-01-01

    Most wide-band amplifiers suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the

  8. Amplifiers Exploiting Thermal Noise Canceling: A Review

    NARCIS (Netherlands)

    Klumperink, Eric A.M.; Bruccoleri, F.; Stroet, P.M.; Stroet, Peter; Nauta, Bram

    2004-01-01

    Wide-band LNAs suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and

  9. A computer simulation of an adaptive noise canceler with a single input

    Science.gov (United States)

    Albert, Stuart D.

    1991-06-01

    A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.

  10. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    Directory of Open Access Journals (Sweden)

    Mehrshad Salmasi

    2012-07-01

    Full Text Available Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in noise attenuation are compared. We use Elman network as a recurrent neural network. For simulations, noise signals from a SPIB database are used. In order to compare the networks appropriately, equal number of layers and neurons are considered for the networks. Moreover, training and test samples are similar. Simulation results show that feedforward and recurrent neural networks present good performance in noise cancellation. As it is seen, the ability of recurrent neural network in noise attenuation is better than feedforward network.

  11. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    OpenAIRE

    Mehrshad Salmasi; Homayoun Mahdavi-Nasab

    2012-01-01

    Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in n...

  12. Multi-Stage Adaptive Noise Cancellation Technique for Synthetic Hard-α Inclusion

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2003-01-01

    Adaptive noise cancellation techniques are ideally suitable for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. Grain noises have an un-correlation property, while flaw echoes are correlated. Thus, adaptive filtering algorithms use the correlation properties of signals to enhance the signal-to-noise ratio (SNR) of the output signal. In this paper, a multi-stage adaptive noise cancellation (MANC) method using adaptive least mean square error (LMSE) filter for enhancing flaw detection in ultrasonic signals is proposed

  13. Hardware Implementation of LMS-Based Adaptive Noise Cancellation Core with Low Resource Utilization

    Directory of Open Access Journals (Sweden)

    Omid Sharifi Tehrani

    2011-10-01

    Full Text Available A hardware implementation of adaptive noise cancellation (ANC core is proposed. Adaptive filters are widely used in different applications such as adaptive noise cancellation, prediction, equalization, inverse modeling and system identification. FIR adaptive filters are mostly used because of their low computation costs and their linear phase. Least mean squared algorithm (LMS is used to train FIR adaptive filter weights. Advances in semiconductor technology especially in digital signal processors (DSP and field programmable gate arrays (FPGA with hundreds of mega hertz in speed, will allow digital designers to embed essential digital signal processing units in small chips. But designing a synthesizable core on an FPGA is not always as simple as DSP chips due to complexity and limitations of FPGAs. In this paper we design anLMS-based FIR adaptive filter for adaptive noise cancellation based on VHDL97 hardware description language (HDL and Xilinx SPARTAN3E (XC3S500E which utilizes low resources and is high performance and FPGA-brand independent so can be implemented on different FPGA brands (Xilinx, ALTERA, ACTEL. Simulations are done in MODELSIM and MATLAB and implementation is done with Xilinx ISE. Finally, result are compared with other papers for better judgment.

  14. Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters

    International Nuclear Information System (INIS)

    Harms, Jan; Venkateswara, Krishna

    2016-01-01

    The mitigation of terrestrial gravity noise, also known as Newtonian noise (NN), is one of the foremost challenges to improve low-frequency sensitivity of ground-based gravitational-wave detectors. At frequencies above 1 Hz, it is predicted that gravity noise from seismic surface Rayleigh waves is the dominant contribution to NN in surface detectors, and may still contribute significantly in future underground detectors. Noise cancellation based on a coherent estimate of NN using data from a seismometer array was proposed in the past. In this article, we propose an alternative scheme to cancel NN using a seismic tiltmeter. It is shown that even under pessimistic assumptions concerning the complexity of the seismic field, a single tiltmeter under each test mass of the detector is sufficient to achieve substantial noise cancellation. A technical tiltmeter design is presented to achieve the required sensitivity in the Newtonian-noise frequency band. (paper)

  15. Characteristics of noise-canceling headphones to reduce the hearing hazard for MP3 users.

    Science.gov (United States)

    Liang, Maojin; Zhao, Fei; French, David; Zheng, Yiqing

    2012-06-01

    Three pairs of headphones [standard iPod ear buds and two noise-canceling headphones (NCHs)] were chosen to investigate frequency characteristics of noise reduction, together with their attenuation effects on preferred listening levels (PLLs) in the presence of various types of background noise. Twenty-six subjects with normal hearing chose their PLLs in quiet, street noise, and subway noise using the three headphones and with the noise-canceling system on/off. Both sets of NCHs reduced noise levels at mid- and high-frequencies. Further noise reductions occurred in low frequencies with the noise canceling system switched on. In street noise, both NCHs had similar noise reduction effects. In subway noise, better noise reduction effects were found in the expensive NCH and with noise-canceling on. A two way repeated measures analysis of variance showed that both listening conditions and headphone styles were significant influencing factors on the PLLs. Subjects tended to increase their PLLs as the background noise level increased. Compared with ear buds, PLLs obtained from NCHs-on in the presence of background noise were reduced up to 4 dB. Therefore, proper selection and use of NCHs appears beneficial in reducing the risk of hearing damage caused by high music listening levels in the presence of background noise.

  16. Study of Noise Canceling Performance of Feedforward Fuzzy-Based ANC System under Non-Causal Condition

    DEFF Research Database (Denmark)

    Mojallali, Hamed; Izadi-Zamanabadi, Roozbeh; Amini, Rouzbeh

    of noise canceling performance of feed-forward fuzzy-based ANC systems for ducts under non-causal condition is presented. For this purpose, we use fuzzy filtered-x algorithm as an adaptive filter and the results are compared with classical filteredx algorithm which is employed under the same conditions......Feed-forward active noise control (ANC) systems act as adaptive systems to control and cancel undesired signals and noises. If the delay in the noise canceling subsystems increases more than the delays in the primary path, non-causal condition will occur in these systems. In this paper, study....... Analysis shows that ANC systems using fuzzy algorithm has better efficiency for noise cancellation in non-causal condition....

  17. Novel Acoustic Feedback Cancellation Approaches In Hearing Aid Applications Using Probe Noise and Probe Noise Enhancement

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    . In many cases, this bias problem causes the cancellation system to fail. The traditional probe noise approach, where a noise signal is added to the loudspeaker signal can, in theory, prevent the bias. However, in practice, the probe noise level must often be so high that the noise is clearly audible...... and annoying; this makes the traditional probe noise approach less useful in practical applications. In this work, we explain theoretically the decreased convergence rate when using low-level probe noise in the traditional approach, before we propose and study analytically two new probe noise approaches...... the proposed approaches much more attractive in practical applications. We demonstrate this through a simulation experiment with audio signals in a hearing aid acoustic feedback cancellation system, where the convergence rate is improved by as much as a factor of 10....

  18. Use of active noise cancellation devices in caregivers in the intensive care unit.

    Science.gov (United States)

    Akhtar, S; Weigle, C G; Cheng, E Y; Toohill, R; Berens, R J

    2000-04-01

    Recent development of noise cancellation devices may offer relief from noise in the intensive care unit environment. This study was conducted to evaluate the effect of noise cancellation devices on subjective hearing assessment by caregivers in the intensive care units. Randomized, double-blind. Adult medical intensive care unit and pediatric intensive care unit of a teaching hospital. Caregivers of patients, including nurses, parents, respiratory therapists, and nursing assistants from a medical intensive care unit and pediatric intensive care, were enrolled in the study. Each participant was asked to wear the headphones, functional or nonfunctional noise cancellation devices, for a minimum of 30 mins. Subjective ambient noise level was assessed on a 10-point visual analog scale (VAS) before and during headphone use by each participant. Headphone comfort and the preference of the caregiver to wear the headphone were also evaluated on a 10-point VAS. Simultaneously, objective measurement of noise was done with a sound level meter using the decibel-A scale and at each of nine octave bands at each bedspace. The functional headphones significantly reduced the subjective assessment of noise by 2 (out of 10) VAS points (p noise profiles, based on decibel-A and octave band assessments. Noise cancellation devices improve subjective assessment of noise in caretakers. The benefit of these devices on hearing loss needs further evaluation in caregivers and critically ill patients.

  19. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    International Nuclear Information System (INIS)

    Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-01-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  20. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Science.gov (United States)

    Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-02-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  1. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Casanueva, J., E-mail: casanuev@lal.in2p3.fr [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Loriette, V.; Maksimovic, I. [ESPCI, CNRS, F-75005 Paris (France); Robinet, F. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France)

    2017-02-11

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  2. Amplifiers Exploiting Thermal Noise Canceling: A Review

    OpenAIRE

    Klumperink, Eric A.M.; Bruccoleri, Federico; Stroet, Peter; Nauta, Bram

    2004-01-01

    Wide-band LNAs suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and its key properties. Although the technique has been applied to wideband CMOS LNAs, it can just as well be implemented exploiting transconductance elements realized with oth...

  3. Thermal Noise Canceling in LNAs: A Review

    OpenAIRE

    Nauta, Bram; Klumperink, Eric A.M.; Bruccoleri, Frederico

    2004-01-01

    Most wide-band amplifiers suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and its key properties. Although the technique has been applied to wideband CMOS LNAs, it can just as well be implemented exploiting transconductance elements realized with other types of t...

  4. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    OpenAIRE

    Soltani, N.

    2016-01-01

    A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH techno...

  5. Laboratory Investigation of Noise-Canceling Headphones Utilizing "Mr. Blockhead"

    Science.gov (United States)

    Koser, John

    2013-01-01

    While I was co-teaching an introductory course in musical acoustics a few years ago, our class investigated several pieces of equipment designed for audio purposes. One piece of such equipment was a pair of noise-canceling headphones. Our students were curious as to how these devices were in eliminating background noise and whether they indeed…

  6. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,

  7. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while

  8. Interpixel crosstalk cancellation on holographic memory

    Science.gov (United States)

    Ishii, Toshiki; Fujimura, Ryushi

    2017-09-01

    In holographic memory systems, there have been no practical techniques to minimize interpixel crosstalk thus far. We developed an interpixel crosstalk cancellation technique using a checkerboard phase pattern with a phase difference of π/2, which can decrease the size of the spatial filter along the Fourier plane with the signal-to-noise ratio (SNR) kept high. This interpixel crosstalk cancellation technique is simple because it requires only one phase plate in the signal beam path. We verified the effect of such a cancellation technique by simulation. The improvement of SNR is maximized to 6.5 dB when the filter size specified in the Nyquist areal ratio is approximately 1.05 in ideal optical systems with no other fixed noise. The proposed technique can improve SNR by 0.85 in an assumed monocular architecture at an actual noise intensity. This improvement of SNR is very useful for realizing high-density recording or enhancing system robustness.

  9. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  10. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    Directory of Open Access Journals (Sweden)

    N. Soltani

    2016-12-01

    Full Text Available A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH technology is used to simulate the circuit elements.

  11. Laboratory Investigation of Noise-Canceling Headphones Utilizing ``Mr. Blockhead''

    Science.gov (United States)

    Koser, John

    2013-09-01

    While I was co-teaching an introductory course in musical acoustics a few years ago, our class investigated several pieces of equipment designed for audio purposes. One piece of such equipment was a pair of noise-canceling headphones. Our students were curious as to how these devices were in eliminating background noise and whether they indeed block low-frequency sounds as advertised.

  12. Newtonian noise cancellation in tensor gravitational wave detector

    International Nuclear Information System (INIS)

    Paik, Ho Jung; Harms, Jan

    2016-01-01

    Terrestrial gravity noise produced by ambient seismic and infrasound fields poses one of the main sensitivity limitations in low-frequency ground-based gravitational-wave (GW) detectors. This noise needs to be suppressed by 3-5 orders of magnitude in the frequency band 10 mHz to 1 Hz, which is extremely challenging. We present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors is required to achieve noise suppression by a few orders of magnitude. (paper)

  13. Active3 noise reduction

    International Nuclear Information System (INIS)

    Holzfuss, J.

    1996-01-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. copyright 1996 American Institute of Physics

  14. On-line adaptive line frequency noise cancellation from a nuclear power measuring channel

    Directory of Open Access Journals (Sweden)

    Qadir Javed

    2011-01-01

    Full Text Available On-line software for adaptively canceling 50 Hz line frequency noise has been designed and tested at Pakistan Research Reactor 1. Line frequency noise causes much problem in weak signals acquisition. Sometimes this noise is so dominant that original signal is totally corrupted. Although notch filter can be used for eliminating this noise, but if signal of interest is in close vicinity of 50 Hz, then original signal is also attenuated and hence overall performance is degraded. Adaptive noise removal is a technique which could be employed for removing line frequency without degrading the desired signal. In this paper line frequency noise has been eliminated on-line from a nuclear power measuring channel. The adaptive LMS algorithm has been used to cancel 50 Hz noise. The algorithm has been implemented in labVIEW with NI 6024 data acquisition card. The quality of the acquired signal has been improved much as can be seen in experimental results.

  15. Investigation of LO-leakage cancellation and DC-offset influence on flicker-noise in X-band mixers

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus; Johansen, Tom; Tamborg, Kjeld

    2012-01-01

    This paper describes an investigation on the influences in 1/f noise of LO-leakage and DC-offset cancellation for X-band mixers. Conditions for LO-leakage cancellation and zero DC-offset is derived. Measurements on a double balanced diode mixer shows an improvement in noise figure from 14.3dB to ...

  16. Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems

    International Nuclear Information System (INIS)

    Claassen, J.P.; Patterson, M.M.

    1981-01-01

    Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals

  17. Inference from the futures: ranking the noise cancelling accuracy of realized measures

    DEFF Research Database (Denmark)

    Mirone, Giorgio

    We consider the log-linear relationship between futures contracts and their underlying assets and show that in the classical Brownian semi-martingale (BSM) framework the two series must, by no-arbitrage, have the same integrated variance. We then introduce the concept of noise cancelling...... measures in the presence of noise. Moreover, a thorough simulation analysis is employed to evaluate the estimators' sensitivity to different price and noise processes, and sampling frequencies....

  18. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    Science.gov (United States)

    Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.

    2016-07-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.

  19. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    International Nuclear Information System (INIS)

    Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D

    2016-01-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)

  20. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    Science.gov (United States)

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  1. Design and analysis of a BLPC vocoder-based adaptive feedback cancellation with probe noise

    DEFF Research Database (Denmark)

    Anand, Ankita; Kar, Asutosh; Swamy, M.N.S.

    2017-01-01

    a BLPC vocoderbased adaptive feedback canceller with probe noise with an objective of reducing the low-frequency bias in digital hearing-aids. A step-wise mathematical analysis of the proposed feedback canceller is presented employing the recursive least square and normalized least mean square adaptive......The band-limited linear predictive coding (BLPC) vocoder-based adaptive feedback cancellation (AFC) removes the high-frequency bias, while the low frequency bias persists between the desired input signal and the loudspeaker signal in the estimate of the feedback path. In this paper, we present...... algorithms. It is observed that the optimal solution of the feedback path is unbiased for an unshaped probe noise, but is biased for a shaped probe signal; the bias term does not consist of correlation between the desired input and the loudspeaker output. The identifiability conditions are analysed...

  2. Multireference adaptive noise canceling applied to the EEG.

    Science.gov (United States)

    James, C J; Hagan, M T; Jones, R D; Bones, P J; Carroll, G J

    1997-08-01

    The technique of multireference adaptive noise canceling (MRANC) is applied to enhance transient nonstationarities in the electroeancephalogram (EEG), with the adaptation implemented by means of a multilayer-perception artificial neural network (ANN). The method was applied to recorded EEG segments and the performance on documented nonstationarities recorded. The results show that the neural network (nonlinear) gives an improvement in performance (i.e., signal-to-noise ratio (SNR) of the nonstationarities) compared to a linear implementation of MRANC. In both cases an improvement in the SNR was obtained. The advantage of the spatial filtering aspect of MRANC is highlighted when the performance of MRANC is compared to that of the inverse auto-regressive filtering of the EEG, a purely temporal filter.

  3. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  4. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    Science.gov (United States)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  5. Noise-cancelled, cavity-enhanced saturation laser spectroscopy for laser frequency stabilisation

    International Nuclear Information System (INIS)

    Vine, Glenn de; McClelland, David E; Gray, Malcolm B

    2006-01-01

    We employ a relatively simple experimental technique enabling mechanical-noise free, cavityenhanced spectroscopic measurements of an atomic transition and its hyperfine structure. We demonstrate this technique with the 532 nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The resulting cavity-enhanced, noise-cancelled, iodine hyperfine error signal is used as a frequency reference with which we stabilise the frequency of the 1064nm Nd:YAG laser. Preliminary frequency stabilisation results are then presented

  6. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    Science.gov (United States)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  7. A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing.

    Science.gov (United States)

    Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A

    2015-10-01

    Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.

  8. Transient plasma estimation: a noise cancelling/identification approach

    International Nuclear Information System (INIS)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-03-01

    The application of a noise cancelling technique to extract energy storage information from sensors occurring during fusion reactor experiments on the Tandem Mirror Experiment-Upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is examined. We show how this technique can be used to decrease the uncertainty in the corresponding sensor measurements used for diagnostics in both real-time and post-experimental environments. We analyze the performance of algorithm on the sensor data and discuss the various tradeoffs. The algorithm suggested is designed using SIG, an interactive signal processing package developed at LLNL

  9. Linewidth-tolerant 10-Gbit/s 16-QAM transmission using a pilot-carrier based phase-noise cancelling technique.

    Science.gov (United States)

    Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya

    2008-07-07

    We experimentally demonstrated linewidth-tolerant 10-Gbit/s (2.5-Gsymbol/s) 16-quadrature amplitude modulation (QAM) by using a distributed-feedback laser diode (DFB-LD) with a linewidth of 30 MHz. Error-free operation, a bit-error rate (BER) of noise canceling capability provided by a pilot-carrier and standard electronic pre-equalization to suppress inter-symbol interference (ISI) gave clear 16-QAM constellations and floor-less BER characteristics. We evaluated the BER characteristics by real-time measurement of six (three different thresholds for each I- and Q-component) symbol error rates (SERs) with simultaneous constellation observation.

  10. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656

  11. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  12. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Directory of Open Access Journals (Sweden)

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  13. A wideband CMOS inductorless low noise amplifier employing noise cancellation for digital TV tuner applications

    International Nuclear Information System (INIS)

    Zhang Jihong; Bai Xuefei; Huang Lu

    2013-01-01

    A wideband inductorless low noise amplifier for digital TV tuner applications is presented. The proposed LNA scheme uses a composite NMOS/PMOS cross-coupled transistor pair to provide partial cancellation of noise generated by the input transistors. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed LNA achieves 12.2–15.2 dB voltage gain from 300 to 900 MHz, the noise figure is below 3.1 dB and has a minimum value of 2.3 dB, and the best input-referred 1-dB compression point (IP1dB) is − 17 dBm at 900 MHz. The core consumes 7 mA current with a supply voltage of 1.8 V and occupies an area of 0.5 × 0.35 mm 2 . (semiconductor integrated circuits)

  14. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    International Nuclear Information System (INIS)

    Coughlin, M; Mukund, N; Mitra, S; Harms, J; Driggers, J; Adhikari, R

    2016-01-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings. (paper)

  15. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    KAUST Repository

    Elsayed, Mohannad Yomn

    2010-06-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  16. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    KAUST Repository

    Elsayed, Mohannad Yomn; Emira, Ahmed; Sedky, Sherif M.; Habib, S. E. D.

    2010-01-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  17. Joint Use of Adaptive Equalization and Cyclic Noise Cancellation for Band-Limited OQAM Based Multi-Carrier Transmission in Power-Line Communication Systems

    Science.gov (United States)

    Kunishima, Hiromitsu; Koga, Hisao; Muta, Osamu; Akaiwa, Yoshihiko

    Power-line communication (PLC) technique is one method to realize high-speed communications in a home network. In PLC channels, the transmission signal quality is degraded by colored non-Gaussian noise as well as frequency-selectivity of the channels. In this paper, we describe our investigation of the performance of a OQAM-MCT system in which a noise canceller is used jointly with a time-domain per-subcarrier adaptive equalizer. Furthermore, we propose a noise cancellation method designed for the OQAM-MCT system. The performance of the OQAM-MCT system is evaluated in PLC channels with measured impulse responses in the presence of measured noise. Computer simulation results show that the bit rate of the OQAM-MCT system is improved using both an adaptive equalizer and noise canceller, and that the OQAM-MCT system achieves better performance than an OFDM system with an insufficient length of the guard interval.

  18. Extraction of Overt Verbal Response from the Acoustic Noise in a Functional Magnetic Resonance Imaging Scan by Use of Segmented Active Noise Cancellation

    Science.gov (United States)

    Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.

    2013-01-01

    A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385

  19. A flicker noise/IM3 cancellation technique for active mixer using negative impedance

    NARCIS (Netherlands)

    Cheng, W.; Annema, Anne J.; Wienk, Gerhardus J.M.; Nauta, Bram

    2013-01-01

    Abstract—This paper presents an approach to simultaneously cancel flicker noise and IM3 in Gilbert-type mixers, utilizing negative impedances. For proof of concept, two prototype double-balanced mixers in 0.16- m CMOS are fabricated. The first demonstration mixer chip was optimized for full IM3

  20. On Acoustic Feedback Cancellation Using Probe Noise in Multiple-Microphone and Single-Loudspeaker Systems

    DEFF Research Database (Denmark)

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt

    2012-01-01

    of the adaptive estimation is significantly decreased when keeping the steady-state error unchanged. The goal of this work is to derive analytic expressions for the system behavior such as convergence rate and steady-state error for a multiple-microphone and single-loudspeaker audio system, where the acoustic...... feedback cancellation is carried out using a probe noise signal. The derived results show how different system parameters and signal properties affect the cancellation performance, and the results explain theoretically the decreased convergence rate. Understanding this is important for making further...

  1. System and method for bearing fault detection using stator current noise cancellation

    Science.gov (United States)

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  2. Benign paroxysmal positional vertigo after use of noise-canceling headphones.

    Science.gov (United States)

    Dan-Goor, Eric; Samra, Monica

    2012-01-01

    Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo. We describe a case of a woman presenting acutely with a severe episode of disabling positional vertigo. Although she had no known etiologic risk factors, this attack followed 12 hours of continuously wearing digital noise-canceling headphones. This is the first such reported association between BPPV and the use of this gadget. We also provide a short review of BPPV and speculate on the possible pathogenic mechanisms involved. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    Science.gov (United States)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  4. Reduction of environmental MHz noise for SQUID application

    Energy Technology Data Exchange (ETDEWEB)

    Araya, T. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: araya@sup.ee.es.osaka-u.ac.jp; Kitamura, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Kamishiro, M. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sakuta, K. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Itozaki, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: itozaki@ee.es.osaka-u.ac.jp

    2006-10-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise.

  5. Reduction of environmental MHz noise for SQUID application

    International Nuclear Information System (INIS)

    Araya, T.; Kitamura, Y.; Kamishiro, M.; Sakuta, K.; Itozaki, H.

    2006-01-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise

  6. System and method for motor fault detection using stator current noise cancellation

    Science.gov (United States)

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  7. Active Electromagnetic Interference Cancelation for Automotive Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael A. E.

    2009-01-01

    Recent trends in the automotive audio industry have shown the importance of active noise cancelation (ANC) for major improvements in mobile entertainment environments. These approaches target the acoustical noise in the cabin and superimpose an inverse noise signal to cancel disturbances. Electro......Recent trends in the automotive audio industry have shown the importance of active noise cancelation (ANC) for major improvements in mobile entertainment environments. These approaches target the acoustical noise in the cabin and superimpose an inverse noise signal to cancel disturbances...

  8. High performance magnetic bearings suitable for noise cancellation in permanent magnet motor driven pumps

    International Nuclear Information System (INIS)

    Zmood, R.; Cholewka, J.; Patak, C.; Feng, G.; Zhang, C.; Maleri, T.; Pinder, B.; McDonald, R.; Homrigh, J.

    1991-01-01

    Conventional pumps having external drive motors experience problems due to bearing noise. In addition failure of bearings and seals can lead to limited operational reliability and impaired integrity of these pumps. Pumps using DC brushless motors and magnetic bearings offer means of overcoming these problems. A design of a pump having a DC brushless motor and magnetic bearings with a potential for Naval applications in ships and submarines is discussed. In this paper attention is given to the selection of the magnetic bearings suitable for achieving active noise cancellation

  9. An injection-locked OEO based frequency doubler independent of electrical doubler phase noise deteriorating rule

    Science.gov (United States)

    Xie, Zhengyang; Zheng, Xiaoping; Li, Shangyuan; Yan, Haozhe; Xiao, Xuedi; Xue, Xiaoxiao

    2018-06-01

    We propose an injection-locked optoelectronic oscillator (OEO) based wide-band frequency doubler, which is free from phase noise deterioration in electrical doubler, by using a dual-parallel Mach-Zehnder modulator (DPMZM). Through adjusting the optical phase shifts in different arms of the DPMZM, the doubling signal oscillates in the OEO loop while the fundamental signal takes on phase modulation over the light and vanishes at photo-detector (PD) output. By controlling power of fundamental signal the restriction of phase-noise deterioration rule in electrical doubler is totally canceled. Experimental results show that the doubler output has a better phase noise value of, for example, -117 dBc/Hz @ 10 kHz at 6 GHz with an improvement more than 17 dB and 23 dB compared with that of fundamental input and electrical doubler, respectively. Besides, the stability of this doubler output can reach to 1 . 5 × 10-14 at 1000 s averaging time. The frequency range of doubling signal is limited by the bandwidth of electrical amplifier in OEO loop.

  10. Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises

    Science.gov (United States)

    Tinto, Massimo

    2018-04-01

    We propose a data processing technique to cancel monopole and dipole noise sources (such as clock and ephemeris noises, respectively) in pulsar timing array searches for gravitational radiation. These noises are the dominant sources of correlated timing fluctuations in the lower-part (≈10-9-10-8 Hz ) of the gravitational wave band accessible by pulsar timing experiments. After deriving the expressions that reconstruct these noises from the timing data, we estimate the gravitational wave sensitivity of our proposed processing technique to single-source signals to be at least one order of magnitude higher than that achievable by directly processing the timing data from an equal-size array. Since arrays can generate pairs of clock and ephemeris-free timing combinations that are no longer affected by correlated noises, we implement with them the cross-correlation statistic to search for an isotropic stochastic gravitational wave background. We find the resulting optimal signal-to-noise ratio to be more than one order of magnitude larger than that obtainable by correlating pairs of timing data from arrays of equal size.

  11. A 0.18 μm biosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques.

    Science.gov (United States)

    Balasubramanian, Viswanathan; Ruedi, Pierre-Francois; Temiz, Yuksel; Ferretti, Anna; Guiducci, Carlotta; Enz

    2013-10-01

    This paper presents a novel sensor front-end circuit that addresses the issues of 1/f noise and distortion in a unique way by using canceling techniques. The proposed front-end is a fully differential transimpedance amplifier (TIA) targeted for current mode electrochemical biosensing applications. In this paper, we discuss the architecture of this canceling based front-end and the optimization methods followed for achieving low noise, low distortion performance at minimum current consumption are presented. To validate the employed canceling based front-end, it has been realized in a 0.18 μm CMOS process and the characterization results are presented. The front-end has also been tested as part of a complete wireless sensing system and the cyclic voltammetry (CV) test results from electrochemical sensors are provided. Overall current consumption in the front-end is 50 μA while operating on a 1.8 V supply.

  12. FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.

    Science.gov (United States)

    Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young

    2003-01-01

    An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.

  13. Active control of the noise

    International Nuclear Information System (INIS)

    Rodriguez V, Luis Alfonso; Lopez Q, Jose German

    2001-01-01

    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for

  14. Time Delay Mechanical-noise Cancellation (TDMC) to Provide Order of Magnitude Improvements in Radio Science Observations

    Science.gov (United States)

    Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.

    2017-12-01

    Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.

  15. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    International Nuclear Information System (INIS)

    Xin, Jun; Wang, Hailong; Jing, Jietai

    2016-01-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  16. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Jun; Wang, Hailong [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  17. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  18. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2015-10-01

    Full Text Available Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  19. A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.

    Science.gov (United States)

    Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.

  20. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    Science.gov (United States)

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  1. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  2. On The Use of A Phase Modulation Method for Decorrelation in Acoustic Feedback Cancellation

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    A major problem in using an adaptive filter in acoustic feedback cancellation systems is that the loudspeaker signal is correlated with the signals entering the microphones of the audio system, leading to biased filter estimates. One possible solution for reducing this problem is by means...... of decorrelation. In this work, we study a subband phase modulation method, which was originally proposed for decorrelation in multichannel acoustic echo cancellation systems. We determine if this method is effective for decorrelation in acoustic feedback cancellation systems by comparing it to a structurally...... similar frequency shifting decorrelation method. We show that the phase modulation method is suitable for decorrelation in a hearing aid acoustic feedback cancellation system, although the frequency shifting method is in general slightly more effective....

  3. Adaptive cancellation of motion artifact in wearable biosensors.

    Science.gov (United States)

    Yousefi, Rasoul; Nourani, Mehrdad; Panahi, Issa

    2012-01-01

    The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.

  4. A compressed sensing based method with support refinement for impulse noise cancelation in DSL

    KAUST Repository

    Quadeer, Ahmed Abdul

    2013-06-01

    This paper presents a compressed sensing based method to suppress impulse noise in digital subscriber line (DSL). The proposed algorithm exploits the sparse nature of the impulse noise and utilizes the carriers, already available in all practical DSL systems, for its estimation and cancelation. Specifically, compressed sensing is used for a coarse estimate of the impulse position, an a priori information based maximum aposteriori probability (MAP) metric for its refinement, followed by least squares (LS) or minimum mean square error (MMSE) estimation for estimating the impulse amplitudes. Simulation results show that the proposed scheme achieves higher rate as compared to other known sparse estimation algorithms in literature. The paper also demonstrates the superior performance of the proposed scheme compared to the ITU-T G992.3 standard that utilizes RS-coding for impulse noise refinement in DSL signals. © 2013 IEEE.

  5. dc SQUID electronics based on adaptive noise cancellation and a high open-loop gain controller

    International Nuclear Information System (INIS)

    Seppae, H.

    1992-01-01

    A low-noise SQUID readout electronics with a high slew rate and an automatic gain control feature has been developed. Flux noise levels of 5x10 -7 Φ 0 /√Hz at 1 kHz and 2x10 -6 Φ 0 /√Hz at 1 Hz have been measured with this readout scheme. The system tolerates sinusoidal disturbances having amplitudes up to 140 Φ 0 at 1 kHz without loosing lock. The electronics utilizes a cooled GaAs FET to control the cancellation of the voltage noise of the room temperature amplifier, a PI 3/2 controller to provide a high open-loop gain at low frequencies, and a square-wave flux and offset voltage modulation to enable automatic control of the noise reduction. The cutoff frequency of the flux-locked-loop is 300 kHz and the feedback gain is more than 130 dB at 10 Hz. (orig.)

  6. Beat Noise Cancellation in 2-D Optical Code-Division Multiple-Access Systems Using Optical Hard-Limiter Array

    Science.gov (United States)

    Dang, Ngoc T.; Pham, Anh T.; Cheng, Zixue

    We analyze the beat noise cancellation in two-dimensional optical code-division multiple-access (2-D OCDMA) systems using an optical hard-limiter (OHL) array. The Gaussian shape of optical pulse is assumed and the impact of pulse propagation is considered. We also take into account the receiver noise and multiple access interference (MAI) in the analysis. The numerical results show that, when OHL array is employed, the system performance is greatly improved compared with the cases without OHL array. Also, parameters needed for practical system design are comprehensively analyzed.

  7. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  8. A wideband LNA employing gate-inductive-peaking and noise-canceling techniques in 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Bao Kuan; Fan Xiangning; Li Wei; Zhang Li; Wang Zhigong

    2012-01-01

    This paper presents a wideband low noise amplifier (LNA) for multi-standard radio applications. The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gate-inductive-peaking technique. High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band. Fabricated in 0.18 μm CMOS process, the LNA achieves 2.5 GHz of −3 dB bandwidth and 16 dB of gain. The gain variation is within ±0.8 dB from 300 MHz to 2.2 GHz. The measured noise figure (NF) and average IIP3 are 3.4 dB and −2 dBm, respectively. The proposed LNA occupies 0.39 mm 2 core chip area. Operating at 1.8 V, the LNA drains a current of 11.7 mA. (semiconductor integrated circuits)

  9. A 0.18 μm CMOS inductorless complementary-noise-canceling-LNA for TV tuner applications

    International Nuclear Information System (INIS)

    Yuan Haiquan; Lin Fujiang; Fu Zhongqian; Huang Lu

    2010-01-01

    This paper presents an inductorless complementary-noise-canceling LNA (CNCLNA) for TV tuners. The CNCLNA exploits single-to-differential topology, which consists of a common gate stage and a common source stage. The complementary topology can save power and improve the noise figure. Linearity is also enhanced by employing a multiple gated transistors technique. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed CNCLNA achieves 13.5-16 dB voltage gain from 50 to 860 MHz, the noise figure is below 4.5 dB and has a minimum value of 2.9 dB, and the best P 1dB is -7.5 dBm at 860 MHz. The core consumes 6 mA current with a supply voltage of 1.8 V, while the core area is only 0.2 x 0.2 mm 2 . (semiconductor integrated circuits)

  10. The effect on recognition memory of noise cancelling headphones in a noisy environment with native and nonnative speakers

    Directory of Open Access Journals (Sweden)

    Brett R C Molesworth

    2014-01-01

    Full Text Available Noise has the potential to impair cognitive performance. For nonnative speakers, the effect of noise on performance is more severe than their native counterparts. What remains unknown is the effectiveness of countermeasures such as noise attenuating devices in such circumstances. Therefore, the main aim of the present research was to examine the effectiveness of active noise attenuating countermeasures in the presence of simulated aircraft noise for both native and nonnative English speakers. Thirty-two participants, half native English speakers and half native German speakers completed four recognition (cued recall tasks presented in English under four different audio conditions, all in the presence of simulated aircraft noise. The results of the research indicated that in simulated aircraft noise at 65 dB(A, performance of nonnative English speakers was poorer than for native English speakers. The beneficial effects of noise cancelling headphones in improving the signal to noise ratio led to an improved performance for nonnative speakers. These results have particular importance for organizations operating in a safety-critical environment such as aviation.

  11. Recognition of Voice Commands by Multisource ASR and Noise Cancellation in a Smart Home Environment

    OpenAIRE

    Vacher , Michel; Lecouteux , Benjamin; Portet , François

    2012-01-01

    International audience; In this paper, we present a multisource ASR system to detect home automation orders in various everyday listening conditions in a realistic home. The system is based on a state of the art echo cancellation stage that feeds recently introduced ASR techniques. The evaluation was conducted on a realistic noisy data set acquired in a smart home where a microphone was placed near the noise source and several other microphones were placed in different rooms. This distant spe...

  12. Phase holonomy, zero-point energy cancellation and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Iida, Shinji; Kuratsuji, Hiroshi

    1987-01-01

    We show that the zero-point energy of bosons is cancelled out by the phase holonomy which is induced by the adiabatic deformation of a boson system coupled with a fermion. This mechanism results in a supersymmetric quantum mechanics as a special case and presents a possible dynamical origin of supersymmetry. (orig.)

  13. Evaluation of State-of-the-Art Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2013-01-01

    This research evaluates four state-of-the-art acoustic feedback cancellation systems in hearing aids in terms of the cancellation performance, sound quality degradation, and computational complexity. The authors compared a traditional full-band system to a system with a prediction error method...... in a full band, a subband system, a subband system with frequency shifting, and a recently proposed subband system with a novel probe noise deployment. All systems outperformed the traditional full-band system in cancellation performance, especially the subband system with probe noise is most effective...... for cancellation. However, in all cases there was a trade-off between performance and computational cost. With a 3-times increase in computation load, the probe noise based cancellation system can be realized that functions even in the most challenging feedback situation....

  14. Reducing the Effects of Background Noise during Auditory Functional Magnetic Resonance Imaging of Speech Processing: Qualitative and Quantitative Comparisons between Two Image Acquisition Schemes and Noise Cancellation

    Science.gov (United States)

    Blackman, Graham A.; Hall, Deborah A.

    2011-01-01

    Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…

  15. Intensity noise cancellation in solid-state laser at 1.5  μm using SHG depletion as a buffer reservoir.

    Science.gov (United States)

    Audo, Kevin; Alouini, Mehdi

    2018-03-01

    An absorption mechanism based on second-harmonic generation (SHG) is successfully implemented as a buffer reservoir in a solid-state Er,Yb:Glass laser emitting at the telecom wavelength. We show that a slight absorption mechanism based on SHG rate conversion of 0.016% using a beta barium borate crystal enables the canceling out of the excess intensity noise at the relaxation oscillation frequency, i.e., 35 dB reduction, as well as canceling the amplified spontaneous emission beating at the free spectral range resonances of the laser lying in the gigahertz range. Laser robustness is discussed.

  16. Wiener variable step size and gradient spectral variance smoothing for double-talk-robust acoustic echo cancellation and acoustic feedback cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; Van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    Double-talk (DT)-robust acoustic echo cancellation (AEC) and acoustic feedback cancellation (AFC) are needed in speech communication systems, e.g., in hands-free communication systems and hearing aids. In this paper, we derive a practical and computationally efficient algorithm based...... model and in colored non-stationary noise....

  17. Noise considerations for vital signs CW radar sensors

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Jensen, Thomas; Zhurbenko, Vitaliy

    2011-01-01

    and the underlying signal theory for such sensors. Then to point out and especially clarify one of the most important effects aiding the design of vital signs radars (VSR), a more detailed discussion concerning phase noise cancellation (or filtering) by range correlation is given. This discussion leads to some...... general conclusions about which system components are the most critical concerning noise contribution and thus detection accuracy and dynamic range....

  18. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  19. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  20. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  1. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    International Nuclear Information System (INIS)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  2. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2005-01-01

    Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render

  3. Infra-sound cancellation and mitigation in wind turbines

    Science.gov (United States)

    Boretti, Albert; Ordys, Andrew; Al Zubaidy, Sarim

    2018-03-01

    The infra-sound spectra recorded inside homes located even several kilometres far from wind turbine installations is characterized by large pressure fluctuation in the low frequency range. There is a significant body of literature suggesting inaudible sounds at low frequency are sensed by humans and affect the wellbeing through different mechanisms. These mechanisms include amplitude modulation of heard sounds, stimulating subconscious pathways, causing endolymphatic hydrops, and possibly potentiating noise-induced hearing loss. We suggest the study of infra-sound active cancellation and mitigation to address the low frequency noise issues. Loudspeakers generate pressure wave components of same amplitude and frequency but opposite phase of the recorded infra sound. They also produce pressure wave components within the audible range reducing the perception of the infra-sound to minimize the sensing of the residual infra sound.

  4. Modulator noise suppression in the LISA time-delay interferometric combinations

    International Nuclear Information System (INIS)

    Tinto, Massimo; Armstrong, J W; Estabrook, Frank B

    2008-01-01

    Laser Interferometer Space Antenna (LISA) is a mission to detect and study low-frequency cosmic gravitational radiation through its influence on the phases of six modulated laser beams exchanged between three remote spacecraft. We previously showed how the measurements of some 18 time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passing gravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use the recently measured noise spectrum of an individual modulator (Klipstein et al 2006 Proc. 6th Int. LISA Symp. (Greenbelt, MA) (AIP Conf. Proc. vol 873) ed S M Merkowitz and J C Livas pp 19-23) to quantify the contribution of modulator noise to the first and second-generation time-delay interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than ∼682 MHz in the case of the unequal-arm Michelson TDI combination X 1 , ∼ 1.08 GHz for the Sagnac TDI combination α 1 , and ∼706 MHz for the symmetrical Sagnac TDI combination ζ 1 . These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISA's oscillator noise calibration subsystem. The measurements in Klipstein et al were performed in a laboratory experiment for a range of modulation frequencies, but we emphasize that, for the reference oscillator noise calibration algorithm to work, the modulation frequencies must be equal to the

  5. A Review on Successive Interference Cancellation Scheme Based on Optical CDMA Network

    Science.gov (United States)

    Alsowaidi, N.; Eltaif, T.; Mokhtar, M. R.

    2014-12-01

    Due to various desirable features of optical code division multiple access (OCDMA), it is believed this technique once developed and commercially available will be an integral part of optical access networks. Optical CDMA system suffers from a problem called multiple access interference (MAI) which limits the number of active users, it occurs when number of active users share the same carriers. The aim of this paper is to review successive interference cancellation (SIC) scheme based on optical CDMA system. The paper also reviews the system performance in presence of shot noise, thermal noise, and phase-induced intensity noise (PIIN). A comprehensive review on the mathematical model of SIC scheme using direct detection (DS) and spectral amplitude coding (SAC) were presented in this article.

  6. Monte Carlo Solutions for Blind Phase Noise Estimation

    Directory of Open Access Journals (Sweden)

    Çırpan Hakan

    2009-01-01

    Full Text Available This paper investigates the use of Monte Carlo sampling methods for phase noise estimation on additive white Gaussian noise (AWGN channels. The main contributions of the paper are (i the development of a Monte Carlo framework for phase noise estimation, with special attention to sequential importance sampling and Rao-Blackwellization, (ii the interpretation of existing Monte Carlo solutions within this generic framework, and (iii the derivation of a novel phase noise estimator. Contrary to the ad hoc phase noise estimators that have been proposed in the past, the estimators considered in this paper are derived from solid probabilistic and performance-determining arguments. Computer simulations demonstrate that, on one hand, the Monte Carlo phase noise estimators outperform the existing estimators and, on the other hand, our newly proposed solution exhibits a lower complexity than the existing Monte Carlo solutions.

  7. Noise-Canceling Helmet Audio System

    Science.gov (United States)

    Seibert, Marc A.; Culotta, Anthony J.

    2007-01-01

    A prototype helmet audio system has been developed to improve voice communication for the wearer in a noisy environment. The system was originally intended to be used in a space suit, wherein noise generated by airflow of the spacesuit life-support system can make it difficult for remote listeners to understand the astronaut s speech and can interfere with the astronaut s attempt to issue vocal commands to a voice-controlled robot. The system could be adapted to terrestrial use in helmets of protective suits that are typically worn in noisy settings: examples include biohazard, fire, rescue, and diving suits. The system (see figure) includes an array of microphones and small loudspeakers mounted at fixed positions in a helmet, amplifiers and signal-routing circuitry, and a commercial digital signal processor (DSP). Notwithstanding the fixed positions of the microphones and loudspeakers, the system can accommodate itself to any normal motion of the wearer s head within the helmet. The system operates in conjunction with a radio transceiver. An audio signal arriving via the transceiver intended to be heard by the wearer is adjusted in volume and otherwise conditioned and sent to the loudspeakers. The wearer s speech is collected by the microphones, the outputs of which are logically combined (phased) so as to form a microphone- array directional sensitivity pattern that discriminates in favor of sounds coming from vicinity of the wearer s mouth and against sounds coming from elsewhere. In the DSP, digitized samples of the microphone outputs are processed to filter out airflow noise and to eliminate feedback from the loudspeakers to the microphones. The resulting conditioned version of the wearer s speech signal is sent to the transceiver.

  8. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    Science.gov (United States)

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  9. Phase noise of dispersion-managed solitons

    International Nuclear Information System (INIS)

    Spiller, Elaine T.; Biondini, Gino

    2009-01-01

    We quantify noise-induced phase deviations of dispersion-managed solitons (DMS) in optical fiber communications and femtosecond lasers. We first develop a perturbation theory for the dispersion-managed nonlinear Schroedinger equation (DMNLSE) in order to compute the noise-induced mean and variance of the soliton parameters. We then use the analytical results to guide importance-sampled Monte Carlo simulations of the noise-driven DMNLSE. Comparison of these results with those from the original unaveraged governing equations confirms the validity of the DMNLSE as a model for many dispersion-managed systems and quantify the increased robustness of DMS with respect to noise-induced phase jitter.

  10. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  11. A Small-Area Self-Biased Wideband CMOS Balun LNA with Noise Cancelling and Gain Enhancement

    DEFF Research Database (Denmark)

    Bruun, Erik; Andreani, Pietro; Custódio, J. R.

    2010-01-01

    In this paper we present a low-power and small-area balun LNA. The proposed inverter-based topology uses selfbiasing and noise cancelling, yielding a very robust LNA with a low NF. Comparing this circuit with a conventional inverterbased circuit, we obtain a ∼3 dB enhancement in voltage gain......, with improved robustness against PVT variations. Simulations results in a 130 nm CMOS technology show a 17.7dB voltage gain, nearly flat over a wide bandwidth (200MHz-1GHz), and an NF of approximately 4dB. The total power consumption is below 7.5 mW, with a very small die area of 0.007 mm2. All data...

  12. Chaos Noise on Phase of Van Der Pol Oscillator

    Directory of Open Access Journals (Sweden)

    Xian He Huang

    2010-12-01

    Full Text Available Phase noise is the most important parameter in many oscillators. In this paper, based on nonlinear stochastic differential equation for phase noise analysis approach is proposed. And then discusses and compares the influence of two different sources of noise in the Van Der Pol oscillator adopted this method. One source of noise is a white noise process, which is a genuinely stochastic process; the other source of noise is actually a deterministic system, which exhibits chaotic behavior in some regions. The behavior of the oscillator under different conditions is investigated numerically. It is shown that the phase noise of the oscillator is affected more by noise arising from chaos than by noise arising from the genuine stochastic process at the same noise intensity.

  13. Two dimension MDW OCDMA code cross-correlation for reduction of phase induced intensity noise

    Directory of Open Access Journals (Sweden)

    Sh. Ahmed Israa

    2017-01-01

    Full Text Available In this paper, we first review 2-D MDW code cross correlation equations and table to be improved significantly by using code correlation properties. These codes can be used in the synchronous optical CDMA systems for multi access interference cancellation and maximum suppress the phase induced intensity noise. Low Psr is due to the reduction of interference noise that is induced by the 2-D MDW code PIIN suppression. High data rate causes increases in BER, requires high effective power and severely deteriorates the system performance. The 2-D W/T MDW code has an excellent system performance where the value of PIIN is suppressed as low as possible at the optimum Psr with high data bit rate. The 2-D MDW code shows better tolerance to PIIN in comparison to others with enhanced system performance. We prove by numerical analysis that the PIIN maximally suppressed by MDW code through the minimizing property of cross correlation in comparison to 2-D PDC and 2-D MQC OCDMA code.scheme systems.

  14. Two dimension MDW OCDMA code cross-correlation for reduction of phase induced intensity noise

    Science.gov (United States)

    Ahmed, Israa Sh.; Aljunid, Syed A.; Nordin, Junita M.; Dulaimi, Layth A. Khalil Al; Matem, Rima

    2017-11-01

    In this paper, we first review 2-D MDW code cross correlation equations and table to be improved significantly by using code correlation properties. These codes can be used in the synchronous optical CDMA systems for multi access interference cancellation and maximum suppress the phase induced intensity noise. Low Psr is due to the reduction of interference noise that is induced by the 2-D MDW code PIIN suppression. High data rate causes increases in BER, requires high effective power and severely deteriorates the system performance. The 2-D W/T MDW code has an excellent system performance where the value of PIIN is suppressed as low as possible at the optimum Psr with high data bit rate. The 2-D MDW code shows better tolerance to PIIN in comparison to others with enhanced system performance. We prove by numerical analysis that the PIIN maximally suppressed by MDW code through the minimizing property of cross correlation in comparison to 2-D PDC and 2-D MQC OCDMA code.scheme systems.

  15. Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems

    Science.gov (United States)

    Kiayani, Adnan; Waheed, Muhammad Zeeshan; Anttila, Lauri; Abdelaziz, Mahmoud; Korpi, Dani; Syrjala, Ville; Kosunen, Marko; Stadius, Kari; Ryynanen, Jussi; Valkama, Mikko

    2018-05-01

    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.

  16. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    Science.gov (United States)

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.

  17. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  18. Current-phase relations and noise in rf biased SQUIDS

    International Nuclear Information System (INIS)

    Jackel, L.D.; Clark, T.D.; Buhrman, R.A.

    1975-01-01

    An investigation was made of the effect of the weak link current-phase relation on noise in rf biased SQUIDs. Non-sinusoidal current-phase relations were observed in various weak links, and these non-sinusoidal relations were correlated with significantly increased intrinsic noise in the SQUID ring. The current-phase relation was also found to affect the amplitude of the rf SQUID ring dissipation. The result of an rf SQUID system noise analysis shows that, due to increased intrinsic noise and reduced ring dissipation, the minimum attainable noise for a SQUID ring having a very non-sinusoidal current-phase relation is considerably greater than for a ring with a sinusoidal relation

  19. An adaptive noise cancelling system used for beam control at the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    Himel, T.; Allison, S.; Grossberg, P.; Hendrickson, L.; Sass, R.; Shoaee, H.

    1993-06-01

    The SLAC Linear Collider now has a total of twenty-four beam-steering feedback loops used to keep the electron and positron beams on their desired trajectories. Seven of these loops measure and control the same beam as it proceeds down the linac through the arcs to the final focus. Ideally by each loop should correct only for disturbances that occur between it and the immediate upstream loop. In fact, in the original system each loop corrected for all upstream disturbances. This resulted in undesirable over-correction and ringing. We added MIMO (Multiple Input Multiple Output) adaptive noise cancellers to separate the signal we wish to correct from disturbances further upstream. This adaptive control improved performance in the 1992 run

  20. Phase Noise Tolerant QPSK Receiver Using Phase Sensitive Wavelength Conversion

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Xu, Jing; Lei, Lei

    2013-01-01

    A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated.......A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated....

  1. Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2017-01-01

    A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies...... on the loading condition of each drive unit as well as the number of drives in parallel. In order to enhance the harmonic cancellation by means of the phase-shifted current control, the currents drawn by the rectifiers should be maintained almost at the same level. Thus, this paper firstly analyzes the impact...... of unequal loading among the parallel drives, and a scheme to enhance the performance is introduced to improve the quality of the total grid current, where partial loading operation should be enabled. Simulation and experimental case studies on multidrive systems have demonstrated that the enhanced phase...

  2. Phase-conjugate optical coherence tomography

    International Nuclear Information System (INIS)

    Erkmen, Baris I.; Shapiro, Jeffrey H.

    2006-01-01

    Quantum optical coherence tomography (Q-OCT) offers a factor-of-2 improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the nonclassical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT) shows that nonclassical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT

  3. Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network.

    Science.gov (United States)

    Calosso, C E; Bertacco, E; Calonico, D; Clivati, C; Costanzo, G A; Frittelli, M; Levi, F; Mura, A; Godone, A

    2014-03-01

    We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fiber noise is passively canceled, and we compared two optical frequencies at the ultimate 10(-21) stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, which is here performed by digital electronics. This scheme offers some advantages with respect to active noise cancellation schemes, as the light travels only once in the fiber.

  4. Spectral Weighting Functions for Single-symbol Phase-noise Specifications in OFDM Systems

    NARCIS (Netherlands)

    Hoeksema, F.W.; Schiphorst, Roelof; Slump, Cornelis H.

    2003-01-01

    For the specification of phase-noise requirements for the front-end of a HiperLAN/2 system we investigated available literature on the subject. Literature differed in several aspects. One aspect is in the type of phase-noise used (Wiener phase-noise or small-angle phase noise). A Wiener phase-noise

  5. Phase-dependent deterministic switching of magnetoelectric spin wave detector in the presence of thermal noise via compensation of demagnetization

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sourav, E-mail: sdutta38@gatech.edu; Naeemi, Azad [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A. [Components Research, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2015-11-09

    The possibility of achieving phase-dependent deterministic switching of the magnetoelectric spin wave detector in the presence of thermal noise has been discussed. The proposed idea relies on the modification of the energy landscape by partially canceling the out-of-plane demagnetizing field and the resultant change in the intrinsic magnetization dynamics to drive the nanomagnet towards a preferential final magnetization state. The remarkable increase in the probability of successful switching can be accounted for by the shift in the location of the saddle point in the energy landscape and a resultant change in the nature of the relaxation dynamics of the magnetization from a highly precessional to a fairly damped one and an increased dependence on the initial magnetization values, a crucial requirement for phase-dependent spin wave detection.

  6. Active noise cancellation of low frequency noise propagating in a duct

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Conclusions: With regard to the wide range of frequencies of different noise sources, having optimized circumstances in the duct, microphone location on the duct body or even the distance of the speakers may be important in signal processing, noise sampling and anti noise production.

  7. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    Science.gov (United States)

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  8. Noise Depression of Parasitic Capacitance for Frequency Detection of Micromechanical Bulk Disk Resonator

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Escouflaire, Marie

    2010-01-01

    the frequency noise of the system. A capacitor cancellation circuit is used to subtract the parasitic capacitor. Measurements are conducted before and after the cancellation, and results show that after cancellation, the anti resonance is suppressed and the frequency noise is decreased, thus decreasing...

  9. Results of the Gallium-Clad Phase 3 and Phase 4 tasks (canceled prior to completion)

    International Nuclear Information System (INIS)

    Morris, R.N.

    1998-08-01

    This report summarizes the results of the Gallium-Clad interactions Phase 3 and 4 tasks. Both tasks were to involve examining the out-of-pile stability of residual gallium in short fuel rods with an imposed thermal gradient. The thermal environment was to be created by an electrical heater in the center of the fuel rod and coolant flow on the rod outer cladding. Both tasks were canceled due to difficulties with fuel pellet fabrication, delays in the preparation of the test apparatus, and changes in the Fissile Materials Disposition program budget

  10. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  11. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  12. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  13. Applications of adaptive filters in active noise control

    Science.gov (United States)

    Darlington, Paul

    The active reduction of acoustic noise is achieved by the addition of a cancelling acoustic signal to the unwanted sound. Successful definition of the cancelling signal amounts to a system identification problem. Recent advances in adaptive signal processing have allowed this problem to be tackled using adaptive filters, which offer significant advantages over conventional solutions. The extension of adaptive noise cancelling techniques, which were developed in the electrical signal conditioning context, to the control of acoustic systems is studied. An analysis is presented of the behavior of the Widrow-Hoff LMS adaptive noise canceller with a linear filter in its control loop. The active control of plane waves propagating axially in a hardwalled duct is used as a motivating model problem. The model problem also motivates the study of the effects of feedback around an LMS adaptive filter. An alternative stochastic gradient algorithm for controlling adaptive filters in the presence of feedback is presented.

  14. Multiple-energy tissue-cancellation applications of a digital beam attenuator to chest radiography

    International Nuclear Information System (INIS)

    Dobbins, J.T. III.

    1985-01-01

    The digitally-formed primary beam attenuator (DBA) spatially modulates the x-ray fluence incident upon the patient to selectively attenuate regions of interest. The DBA attenuating mask is constructed from CeO 2 powder by a modified printing technique and uses image information from an initial low-dose exposure. Two tissue-cancellation imaging techniques are investigated with the DBA: (1) energy-dependent information is used to form a beam attenuator that attenuates specific tissues in the primary x-ray beam for tissue-cancelled film radiography; (2) the beam attenuator is used to improve image signal-to-noise and scattered radiation properties in traditional energy-subtraction tissue-cancellation imaging with digital detectors. The tissue-cancellation techniques in the primary x-ray beam were capable of adequately removing either soft-tissue or bone from the final compensated film radiograph when using a phantom with well defined soft-tissue and bone sections. However, when tried on an anthropomorphic chest phantom the results were adequate for cancellation of large soft tissue structures, but unsatisfactory for cancellation of bony structures such as the ribs, because of the limited spatial frequency content of the attenuating mask. The second technique (with digital detectors) showed improved uniformity of image signal-to-noise and a two-fold increase in soft-tissue nodule contrast due to improved scattered radiation properties. The tissue-cancelled images contained residual image contributions from the presence of the attenuating mask, but this residual may be correctable by future algorithms

  15. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  16. Design and implementation of efficient low complexity biomedical artifact canceller for nano devices

    Directory of Open Access Journals (Sweden)

    Md Zia Ur RAHMAN

    2016-07-01

    Full Text Available In the current day scenario, with the rapid development of communication technology remote health care monitoring becomes as an intense research area. In remote health care monitoring, the primary aim is to facilitate the doctor with high resolution biomedical data. In order to cancel various artifacts in clinical environment in this paper we propose some efficient adaptive noise cancellation techniques. To obtain low computational complexity we combine clipping the data or error with Least Mean Square (LMS algorithm. This results sign regressor LMS (SRLMS, sign LMS (SLMS and sign LMS (SSLMS algorithms. Using these algorithms, we design Very-large-scale integration (VLSI architectures of various Biomedical Noise Cancellers (BNCs. In addition, the filtering capabilities of the proposed implementations are measured using real biomedical signals. Among the various BNCs tested, SRLMS based BNC is found to be better with reference to convergence speed, filtering capability and computational complexity. The main advantage of this technique is it needs only one multiplication to compute next weight. In this manner SRLMS based BNC is independent of filter length with reference to its computations. Whereas, the average signal to noise ratio achieved in the noise cancellation experiments are recorded as 7.1059dBs, 7.1776dBs, 6.2795dBs and 5.8847dBs for various BNCs based on LMS, SRLMS, SLMS and SSSLMS algorithms respectively. Based on the filtering characteristics, convergence and computational complexity, the proposed SRLMS based BNC architecture is well suited for nanotechnology applications.

  17. Adaptive Beamforming Algorithms for Tow Ship Noise Canceling

    NARCIS (Netherlands)

    Robert, M.K.; Beerens, S.P.

    2002-01-01

    In towed array sonar, the directional noise originating from the tow ship, mainly machinery and hydrodynamic noise, often limits the sonar performance. When processed with classical beamforming techniques, loud tow ship noise induces high sidelobes that may hide detection of quiet targets in forward

  18. Multipurpose exciter with low phase noise

    Science.gov (United States)

    Conroy, B.; Le, D.

    1989-01-01

    Results of an effort to develop a lower-cost exciter with high stability, low phase noise, and controllable phase and frequency for use in Deep Space Network and Goldstone Solar System Radar applications are discussed. Included is a discussion of the basic concept, test results, plans, and concerns.

  19. Balanced detection for self-mixing interferometry to improve signal-to-noise ratio

    Science.gov (United States)

    Zhao, Changming; Norgia, Michele; Li, Kun

    2018-01-01

    We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.

  20. Identification and Reduction of Turbomachinery Noise, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Communities near airports are often exposed to high noise levels due to low flying aircraft in the takeoff and landing phases of flight. Propulsion source noise is...

  1. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  2. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    Science.gov (United States)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  3. Experimental Investigations of Noise Control in Planetary Gear Set by Phasing

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2014-01-01

    Full Text Available Now a days reduction of gear noise and resulting vibrations has received much attention of the researchers. The internal excitation caused by the variation in tooth mesh stiffness is a key factor in causing vibration. Therefore to reduce gear noise and vibrations several techniques have been proposed in recent years. In this research the experimental work is carried out to study the effect of planet phasing on noise and subsequent resulting vibrations of Nylon-6 planetary gear drive. For this purpose experimental set-up was built and trials were conducted for two different arrangements (i.e., with phasing and without phasing and it is observed that the noise level and resulting vibrations were reduced by planet phasing arrangement. So from the experimental results it is observed that by applying the meshing phase difference one can reduce planetary gear set noise and vibrations.

  4. Jet noise reduction via dispersed phase injection

    Science.gov (United States)

    Greska, Brent; Krothapalli, Anjaneyulu; Arakeri, Vijay

    2001-11-01

    A recently developed hot jet aeroacoustics facility at FMRL,FAMU-FSU College of Engineering has been used to study the far field noise characteristics of hot supersonic jets as influenced by the injection of a dispersed phase with low mass loading.The measured SPL from a fully expanded Mach 1.36 hot jet shows a peak value of about 139 dB at 40 deg from the jet axis.By injecting atomized water,the SPL are reduced in the angular region of about 30 deg to 50 deg with the maximum reduction being about 2 dB at 40 deg.However,with the use of non atomized aqueous polymer solution as a dispersed phase the noise levels are reduced over all angular positions by at least 1 dB with the maximum reduction being about 3 dB at 40 deg.The injection of a dispersed phase readily kills the screech; the initial results show promise and optimization studies are underway to find methods of further noise reduction.

  5. Dispersion cancellation in a triple Laue interferometer

    International Nuclear Information System (INIS)

    Lemmel, Hartmut

    2014-01-01

    The concept of dispersion cancellation has been established in light optics to improve the resolution of interferometric measurements on dispersive media. Odd order dispersion cancellation allows to measure phase shifts without defocusing the interferometer due to wave packet displacements, while even order dispersion cancellation allows to measure time lags without losing resolution due to wave packet spreading. We report that either type of dispersion cancellation can be realized very easily in a triple Laue interferometer. Such interferometers are Mach–Zehnder interferometers based on Bragg diffraction, and are commonly used for neutrons and x-rays. Although the first x-ray interferometer was built nearly five decades ago, the feature of dispersion cancellation hasn't been recognized so far because the concept was hardly known in the neutron and x-ray community. However, it explains right away the surprising decoupling of phase shift and spatial displacement that we have discovered recently in neutron interferometry (Lemmel and Wagh 2010 Phys. Rev. A 82 033626). Furthermore, this article might inspire the light optics community to consider whether a triple Laue interferometer for laser light would be useful and feasible. We explain how dispersion cancellation works in neutron interferometry, and we describe the setup rigorously by solving the Schrödinger equation and by calculating the path integral. We point out, that the latter has to be evaluated with special care since in our setup the beam trajectory moves with respect to the crystal lattice of the interferometer. (paper)

  6. Elimination of noise peak for signal processing in Johnson noise thermometry development

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Jeong, J. E.; Jeo, Y. H.; Kisner, Roger A.

    2003-01-01

    The internal and external noise is the most considering obstacle in development of Johnson Noise Thermometry system. This paper addresses an external noise elimination issue of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. Although internal random noise is canceled by Cross Power Spectral Density function, a continuous wave penetrating into the electronic circuit is eliminated by the difference of peaks between Johnson signal and external noise. The elimination logic using standard deviation of CPSD and energy leakage problem in discrete CPSD function are discussed in this paper

  7. Phase noise reduction by self-phase locking in semiconductor lasers using phase conjugate feedback

    DEFF Research Database (Denmark)

    Petersen, Lykke; Gliese, Ulrik Bo; Nielsen, Torben Nørskov

    1994-01-01

    noise takes a finite-low value corresponding to a state of first-order self-phase locking of the laser. As a result, the spectral shape of the laser signal does not remain Lorentzian but collapses around the carrier to a delta function with a close to carrier noise level of less than -137 d...

  8. A comparative evaluation of adaptive noise cancellation algorithms for minimizing motion artifacts in a forehead-mounted wearable pulse oximeter.

    Science.gov (United States)

    Comtois, Gary; Mendelson, Yitzhak; Ramuka, Piyush

    2007-01-01

    Wearable physiological monitoring using a pulse oximeter would enable field medics to monitor multiple injuries simultaneously, thereby prioritizing medical intervention when resources are limited. However, a primary factor limiting the accuracy of pulse oximetry is poor signal-to-noise ratio since photoplethysmographic (PPG) signals, from which arterial oxygen saturation (SpO2) and heart rate (HR) measurements are derived, are compromised by movement artifacts. This study was undertaken to quantify SpO2 and HR errors induced by certain motion artifacts utilizing accelerometry-based adaptive noise cancellation (ANC). Since the fingers are generally more vulnerable to motion artifacts, measurements were performed using a custom forehead-mounted wearable pulse oximeter developed for real-time remote physiological monitoring and triage applications. This study revealed that processing motion-corrupted PPG signals by least mean squares (LMS) and recursive least squares (RLS) algorithms can be effective to reduce SpO2 and HR errors during jogging, but the degree of improvement depends on filter order. Although both algorithms produced similar improvements, implementing the adaptive LMS algorithm is advantageous since it requires significantly less operations.

  9. Extra phase noise from thermal fluctuations in nonlinear optical crystals

    DEFF Research Database (Denmark)

    César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.

    2009-01-01

    We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...

  10. Phase noise estimation and mitigation for DCT-based coherent optical OFDM systems.

    Science.gov (United States)

    Yang, Chuanchuan; Yang, Feng; Wang, Ziyu

    2009-09-14

    In this paper, as an attractive alternative to the conventional discrete Fourier transform (DFT) based orthogonal frequency division multiplexing (OFDM), discrete cosine transform (DCT) based OFDM which has certain advantages over its counterpart is studied for optical fiber communications. As is known, laser phase noise is a major impairment to the performance of coherent optical OFDM (CO-OFDM) systems. However, to our knowledge, detailed analysis of phase noise and the corresponding mitigation methods for DCT-based CO-OFDM systems have not been reported yet. To address these issues, we analyze the laser phase noise in the DCT-based CO-OFDM systems, and propose phase noise estimation and mitigation schemes. Numerical results show that the proposal is very effective in suppressing phase noise and could significantly improve the performance of DCT-based CO-OFDM systems.

  11. Beamforming design with proactive interference cancelation in MISO interference channels

    Science.gov (United States)

    Li, Yang; Tian, Yafei; Yang, Chenyang

    2015-12-01

    In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.

  12. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  13. Residual phase noise measurements of the input section in a receiver

    International Nuclear Information System (INIS)

    Mavric, Uros; Chase, Brian; Fermilab

    2007-01-01

    If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier

  14. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  15. Imperfect generalized transmit beamforming with co-channel interference cancelation

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-10-01

    The performance of a generalized single-stream transmit beamforming scheme employing receive co-channel interference -steering algorithms in slowly varying and flat fading channels is analyzed. The impact of imperfect prediction of channel state information (CSI) for the desired user spatially uncorrelated transmit channels is considered. Both dominant interference cancelation and adaptive arbitrary interference cancelation algorithms for closely spaced receive antennas are used. The impact of outdated statistical ordering of the interferers instantaneous powers on the effectiveness of dominant interference cancelation is investigated against the less complex adaptive arbitrary cancelation scheme. For the system models described above, new exact formulas for the statistics of combined signal-to-interference-plus-noise ratio (SINR) are derived, from which results for conventional maximum ratio transmission (MRT) and best transmit channel selection schemes can be deduced as limiting cases. The results presented herein can be used to obtain quantitative measure for various performance metrics, and in addition to investigate the performance-complexity tradeoff for different multiple-antenna system models. © 2010 IEEE.

  16. Adaptive Noise Canceling Menggunakan Algoritma Least Mean Square (Lms)

    OpenAIRE

    Nardiana, Anita; Sumaryono, Sari Sujoko

    2011-01-01

    Noise is inevitable in communication system. In some cases, noise can disturb signal. It is veryannoying as the received signal is jumbled with the noise itself. To reduce or remove noise, filter lowpass,highpass or bandpass can solve the problems, but this method cannot reach a maximum standard. One ofthe alternatives to solve the problem is by using adaptive filter. Adaptive algorithm frequently used is LeastMean Square (LMS) Algorithm which is compatible to Finite Impulse Response (FIR). T...

  17. Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Piels, Molly

    2015-01-01

    In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms...

  18. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    Science.gov (United States)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  19. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    Science.gov (United States)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  20. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    Science.gov (United States)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  1. First Test of Fan Active Noise Control (ANC) Completed

    Science.gov (United States)

    2005-01-01

    With the advent of ultrahigh-bypass engines, the space available for passive acoustic treatment is becoming more limited, whereas noise regulations are becoming more stringent. Active noise control (ANC) holds promise as a solution to this problem. It uses secondary (added) noise sources to reduce or eliminate the offending noise radiation. The first active noise control test on the low-speed fan test bed was a General Electric Company system designed to control either the exhaust or inlet fan tone. This system consists of a "ring source," an induct array of error microphones, and a control computer. Fan tone noise propagates in a duct in the form of spinning waves. These waves are detected by the microphone array, and the computer identifies their spinning structure. The computer then controls the "ring source" to generate waves that have the same spinning structure and amplitude, but 180 out of phase with the fan noise. This computer generated tone cancels the fan tone before it radiates from the duct and is heard in the far field. The "ring source" used in these tests is a cylindrical array of 16 flat-plate acoustic radiators that are driven by thin piezoceramic sheets bonded to their back surfaces. The resulting source can produce spinning waves up to mode 7 at levels high enough to cancel the fan tone. The control software is flexible enough to work on spinning mode orders from -6 to 6. In this test, the fan was configured to produce a tone of order 6. The complete modal (spinning and radial) structure of the tones was measured with two builtin sets of rotating microphone rakes. These rakes provide a measurement of the system performance independent from the control system error microphones. In addition, the far-field noise was measured with a semicircular array of 28 microphones. This test represents the first in a series of tests that demonstrate different active noise control concepts, each on a progressively more complicated modal structure. The tests are

  2. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    Science.gov (United States)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  3. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In

  4. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  5. A LOW-PHASE NOISE FREQUENCY MULTIPLIER CHAIN ...

    African Journals Online (AJOL)

    operations which are influenced by the development of frequency syn ..... The phase noise of the Isolation amplifier is also measured by .... obtained from manual. T(sec). 100. 1000. 10 ... IEEE Transations on Instrumentation and. Measurement ...

  6. Noise propagation in x-ray phase-contrast imaging and computed tomography

    International Nuclear Information System (INIS)

    Nesterets, Yakov I; Gureyev, Timur E

    2014-01-01

    Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)

  7. External non-white noise and nonequilibrium phase transitions

    International Nuclear Information System (INIS)

    Sancho, J.M.; San Miguel, M.

    1980-01-01

    Langevin equations with external non-white noise are considered. A Fokker Planck equation valid in general in first order of the correlation time tau of the noise is derived. In some cases its validity can be extended to any value of tau. The effect of a finite tau in the nonequilibrium phase transitions induced by the noise is analyzed, by means of such Fokker Planck equation, in general, for the Verhulst equation under two different kind of fluctuations, and for a genetic model. It is shown that new transitions can appear and that the threshold value of the parameter can be changed. (orig.)

  8. Crosstalk cancellation on linearly and circularly polarized communications satellite links

    Science.gov (United States)

    Overstreet, W. P.; Bostian, C. W.

    1979-01-01

    The paper discusses the cancellation network approach for reducing crosstalk caused by depolarization on a dual-polarized communications satellite link. If the characteristics of rain depolarization are sufficiently well known, the cancellation network can be designed in a way that reduces system complexity, the most important parameter being the phase of the cross-polarized signal. Relevant theoretical calculations and experimental data are presented. The simplicity of the cancellation system proposed makes it ideal for use with small domestic or private earth terminals.

  9. Phase noise analysis of clock recovery based on an optoelectronic phase-locked loop

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo

    2007-01-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser....... It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical...... clock signal can be evaluated. We numerically investigate the timing jitter requirements for combined electrical/optical local oscillators, in order for the recovered clock signal to have less jitter than that of the input signal. The timing jitter requirements for the free-running laser and the VCO...

  10. Using the effect of alcohol as a comparison to illustrate the detrimental effects of noise on performance

    Directory of Open Access Journals (Sweden)

    Brett R.C Molesworth

    2013-01-01

    Full Text Available The aim of the present research is to provide a user-friendly index of the relative impairment associated with noise in the aircraft cabin. As such, the relative effect of noise, at a level typical of an aircraft cabin was compared with varying levels of alcohol intoxication in the same subjects. Since the detrimental effect of noise is more pronounced on non-native speakers, both native English and non-native English speakers featured in the study. Noise cancelling headphones were also tested as a simple countermeasure to mitigate the effect of noise on performance. A total of 32 participants, half of which were non-native English speakers, completed a cued recall task in two alcohol conditions (blood alcohol concentration 0.05 and 0.10 and two audio conditions (audio played through the speaker and noise cancelling headphones. The results revealed that aircraft noise at 65 dB (A negatively affected performance to a level comparable to alcohol intoxication of 0.10. The results also supported previous research that reflects positively on the benefits of noise cancelling headphones in reducing the effects of noise on performance especially for non-native English speakers. These findings provide for personnel involved in the aviation industry, a user-friendly index of the relative impairment associated with noise in the aircraft cabin as compared with the effects of alcohol. They also highlight the benefits of a simple countermeasure such as noise cancelling headphones in mitigating some of the detrimental effects of noise on performance.

  11. Analysing Self Interference Cancellation in Full Duplex Radios

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Shafique Ansari, Imran; Berardinelli, Gilberto

    2016-01-01

    Full duplex communication promises a theoretical $100\\%$ throughput gain by doubling the number of simultaneous transmissions. Such compelling gains are conditioned on perfect cancellation of the self interference power resulting from simultaneous transmission and reception. Generally, self...... interference power is modelled as a noise-like constant level interference floor. However, experimental validations have shown that the self interference power is in practice a random variable depending on a number of factors such as the surrounding wireless environment and the degree of interference...... cancellation. In this study, we derive an analytical model for the residual self interference power, and demonstrate various applications of the derived model in analysing the performance of a Full Duplex radio. In general, full duplex communication is found to provide only modest throughput gains over half...

  12. Wideband Balun-LNA with Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2008-01-01

    An inductorless low-noise amplifier (LNA) with active balun is proposed for multi-standard radio applications between 100 MHz and 6 GHz. It exploits a combination of a common-gate (CGH) stage and an admittance-scaled common-source (CS) stage with replica biasing to maximize balanced operation, while

  13. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  14. Intelligent coil drum with electromagnetic force cancellation for MRI equipment

    International Nuclear Information System (INIS)

    Qiu, Jinhao; Tani, Junji; Ohtomo, Kikuo

    1995-01-01

    High-level noise induced in MRI equipment has been a main obstacle for their wide application in medical diagnosis. The noise is caused by the vibration of the cylindrical shell used to support the gradient magnetic field coils in MRI. In this study, a reduced-size model of the coil drum is constructed using polymer films and piezoelectric films. The piezoelectric films are divided into several patches and two patches of them are used as integrated bending actuators in the control of the shell vibration so that no external actuators are needed. The disturbance cancellation method is used since the shell is excited by predetermined forces. The relationships between the size, position and output magnitude of the actuators and control effect are also discussed. Experiment and simulation were carried out for the cases where the shell was excited at resonance frequencies of three main modes. The results show that the disturbance cancellation method in combination with the piezoelectric film actuators can successfully suppress the forced vibration of the shell and that the minimum amplitude of controlled vibration varies with the resonance mode. (author)

  15. A New Probe Noise Approach For Acoustic Feedback Cancellation In Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    Acoustic feedback is a big challenge in hearing aids. If not appropriately treated, the feedback limits the maximum possible amplification and may lead to significant sound distortions. In a state-of-the-art hearing aid, an acoustic feedback cancellation (AFC) system is used to compensate...

  16. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  17. Reduced Pain and Anxiety with Music and Noise-Canceling Headphones During Shockwave Lithotripsy.

    Science.gov (United States)

    Karalar, Mustafa; Keles, Ibrahim; Doğantekin, Engin; Kahveci, Orhan Kemal; Sarici, Hasmet

    2016-06-01

    We assessed the effects of music and noise-canceling headphones (NCHs) on perceived patient pain and anxiety from extracorporeal shockwave lithotripsy (SWL). Patients with renal calculi scheduled for SWL were prospectively enrolled. All 89 patients between the ages of 19 and 80 years were informed about this study and then randomized into three groups: Group 1 (controls), no headphones and music; Group 2, music with NCHs (patients listened to Turkish classical music with NCHs during SWL); and Group 3, music with non-NCHs (patients listened to Turkish classical music with non-NCHs during SWL). Hemodynamic and respiratory parameters were recorded before and just after the SWL session. All patient visual analog scale (VAS) and State-Trait Anxiety Inventory (STAI) scores were recorded just after the SWL procedure. There were significant differences in VAS scores among the groups (5.1, 3.6, and 4.5, respectively, p < 0.001), including between Groups 2 and 3 (p = 0.018). There were also significant differences in STAI-State anxiety scores among the groups (43.1, 33.5, and 38.9, respectively, p = 0.001), including between Groups 2 and 3 (p = 0.04). Music therapy during SWL reduced pain and anxiety. Music therapy with NCHs was more effective for pain and anxiety reduction. To reduce pain and anxiety, nonpharmacologic therapies such as music therapy with NCHs during SWL should be investigated further and used routinely.

  18. Does the central limit theorem always apply to phase noise? Some implications for radar problems

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2017-05-01

    The phase noise problem or Rayleigh problem occurs in all aspects of radar. It is an effect that a radar engineer or physicist always has to take into account as part of a design or in attempt to characterize the physics of a problem such as reverberation. Normally, the mathematical difficulties of phase noise characterization are avoided by assuming the phase noise probability distribution function (PDF) is uniformly distributed, and the Central Limit Theorem (CLT) is invoked to argue that the superposition of relatively few random components obey the CLT and hence the superposition can be treated as a normal distribution. By formalizing the characterization of phase noise (see Gray and Alouani) for an individual random variable, the summation of identically distributed random variables is the product of multiple characteristic functions (CF). The product of the CFs for phase noise has a CF that can be analyzed to understand the limitations CLT when applied to phase noise. We mirror Kolmogorov's original proof as discussed in Papoulis to show the CLT can break down for receivers that gather limited amounts of data as well as the circumstances under which it can fail for certain phase noise distributions. We then discuss the consequences of this for matched filter design as well the implications for some physics problems.

  19. Quiet comfort: noise, otherness, and the mobile production of personal space.

    Science.gov (United States)

    Hagood, Mack

    2011-01-01

    Marketing, news reports, and reviews of Bose QuietComfort noise-canceling headphones position them as essential gear for the mobile rational actor of the neoliberal market—the business traveler. This article concerns noise-canceling headphones’ utility as soundscaping devices, which render a sense of personal space by mediating sound. The airplane and airport are paradoxical spaces in which the pursuit of freedom impedes its own enjoyment. Rather than fight the discomforts of air travel as a systemic problem, travelers use the tactic of soundscaping to suppress the perceived presence of others. Attention to soundscaping enables the scholar to explore relationships between media, space, freedom, otherness, and selfhood in an era characterized by neoliberalism and increased mobility. Air travel is a moment in which people with diverse backgrounds, beliefs, and bodies crowd together in unusually close proximity. Noise is the sound of individualism and difference in conflict. Noise is othered sound, and like any type of othering, the perception of noise is socially constructed and situated in hierarchies of race, class, age, and gender. The normative QuietComfort user in media representations is white, male, rational, monied, and mobile; women, children, and “chatty” passengers are cast as noisemakers. Moreover, in putting on noise-canceling headphones, diverse selves put on the historically Western subjectivity that has been built into their technology, one that suppresses the noise of difference in favor of the smooth circulation of people, information, and commodities.

  20. Electrocardiogram de-noising based on forward wavelet transform ...

    Indian Academy of Sciences (India)

    Ratio (SNR) and Mean Square Error (MSE) computations showed that our proposed ... This technique permits to cancel noises and retain the informa- tion of the ... Wavelet analysis is used for transforming the signal under investigation into joined temporal and ... introduced the BWT in our proposed ECG de-noising system.

  1. Analysis, Design, and Evaluation of Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng

    2013-01-01

    Acoustic feedback problems occur when the output loudspeaker signal of an audio system is partly returned to the input microphone via an acoustic coupling through the air. This problem often causes significant performance degradations in applications such as public address systems and hearing aids....... In the worst case, the audio system becomes unstable and howling occurs. In this work, first we analyze a general multiple microphone audio processing system, where a cancellation system using adaptive filters is used to cancel the effect of acoustic feedback. We introduce and derive an accurate approximation...... in acoustic feedback cancellation for hearing aids. It utilizes a probe noise signal which is generated with a specific characteristic so that it can facilitate an unbiased adaptive filter estimation with fast tracking of feedback path variations/changes despite its low signal level. We show in a hearing aid...

  2. An Integrated Real-Time Beamforming and Postfiltering System for Nonstationary Noise Environments

    Directory of Open Access Journals (Sweden)

    Gannot Sharon

    2003-01-01

    Full Text Available We present a novel approach for real-time multichannel speech enhancement in environments of nonstationary noise and time-varying acoustical transfer functions (ATFs. The proposed system integrates adaptive beamforming, ATF identification, soft signal detection, and multichannel postfiltering. The noise canceller branch of the beamformer and the ATF identification are adaptively updated online, based on hypothesis test results. The noise canceller is updated only during stationary noise frames, and the ATF identification is carried out only when desired source components have been detected. The hypothesis testing is based on the nonstationarity of the signals and the transient power ratio between the beamformer primary output and its reference noise signals. Following the beamforming and the hypothesis testing, estimates for the signal presence probability and for the noise power spectral density are derived. Subsequently, an optimal spectral gain function that minimizes the mean square error of the log-spectral amplitude (LSA is applied. Experimental results demonstrate the usefulness of the proposed system in nonstationary noise environments.

  3. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2008-01-01

    Full Text Available With the advancement of digital signal processing technologies, consumers are more concerned with the quality of multimedia entertainment in automobiles. In order to meet this demand, an audio enhancement system is needed to improve bass reproduction and cancel engine noise in the cabins. This paper presents an integrated active noise control system that is based on frequency-sampling filters to track and extract the bass information from the audio signal, and a multifrequency active noise equalizer to tune the low-frequency engine harmonics to enhance the bass reproduction. In the noise cancellation mode, a maximum of 3 dB bass enhancement can be achieved with significant noise suppression, while higher bass enhancement can be achieved in the bass enhance mode. The results show that the proposed system is effective for solving both the bass audio reproduction and the noise control problems in automobile cabins.

  4. Final Report on DE-FG02-04ER46107: Glasses, Noise and Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Clare C. [Univ. of California, Irvine, CA (United States)

    2011-12-31

    We showed that noise has distinct signatures at phase transitions in spin systems. We also studied charge noise, critical current noise, and flux noise in superconducting qubits and Josephson junctions.

  5. Improved Noise Minimum Statistics Estimation Algorithm for Using in a Speech-Passing Noise-Rejecting Headset

    Directory of Open Access Journals (Sweden)

    Seyedtabaee Saeed

    2010-01-01

    Full Text Available This paper deals with configuration of an algorithm to be used in a speech-passing angle grinder noise-canceling headset. Angle grinder noise is annoying and interrupts ordinary oral communication. Meaning that, low SNR noisy condition is ahead. Since variation in angle grinder working condition changes noise statistics, the noise will be nonstationary with possible jumps in its power. Studies are conducted for picking an appropriate algorithm. A modified version of the well-known spectral subtraction shows superior performance against alternate methods. Noise estimation is calculated through a multi-band fast adapting scheme. The algorithm is adapted very quickly to the non-stationary noise environment while inflecting minimum musical noise and speech distortion on the processed signal. Objective and subjective measures illustrating the performance of the proposed method are introduced.

  6. Measurement of spectral phase noise in a cryogenically cooled Ti:Sa amplifier (Conference Presentation)

    Science.gov (United States)

    Nagymihaly, Roland S.; Jójárt, Péter; Börzsönyi, Ádám.; Osvay, Károly

    2017-05-01

    In most of cases the drift of the carrier envelope phase (CEP) of a chirped pulse amplifier (CPA) system is determined only [1], being the relevant parameter at laser-matter interactions. The need of coherent combination of multiple amplifier channels to further increase the peak power of pulses requires interferometric precision [2]. For this purpose, the stability of the group delay of the pulses may become equally important. Further development of amplifier systems requires the investigation of phase noise contributions of individual subsystems, like amplifier stages. Spectrally resolved interferometry (SRI), which is a completely linear optical method, makes the measurement of spectral phase noise possible of basically any part of a laser system [3]. By utilizing this method, the CEP stability of water-cooled Ti:Sa based amplifiers was investigated just recently, where the effects of seed and pump energy, repetition rate, and the cooling crystal mounts were thoroughly measured [4]. We present a systematic investigation on the noise of the spectral phase, including CEP, of laser pulses amplified in a cryogenically-cooled Ti:Sa amplifier of a CPA chain. The double-pass amplifier was built in the sample arm of a compact Michelson interferometer. The Ti:Sa crystal was cooled below 30 °K. The inherent phase noise was measured for different operation modes, as at various repetition rates, and pump depletion. Noise contributions of the vacuum pumps and the cryogenic refrigerator were found to be 43 and 47 mrad, respectively. We have also identified CEP noise having thermal as well as mechanical origin. Both showed a monotonically decreasing tendency towards higher repetition rates. We found that the widths of the noise distributions are getting broader towards lower repetition rates. Spectral phase noise with and without amplification was measured, and we found no significant difference in the phase noise distributions. The mechanical vibration was also measured in

  7. Distortion Cancellation via Polyphase Multipath Circuits

    NARCIS (Netherlands)

    Mensink, E.; Klumperink, Eric A.M.; Nauta, Bram

    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits with the help of polyphase multipath circuits. Polyphase multipath circuits are circuits with two or more paths that exploit phase differences between the paths to cancel unwanted signals. It turns out

  8. Noise Reduction Efforts for Special Operations C-130 Aircraft Using Active Synchrophaser Control

    National Research Council Canada - National Science Library

    Hammond, Daryl; McKinley, Richard; Hale, Bill

    1998-01-01

    .... A more complicated approach uses an active noise cancellation (ANC) system, which offers improved performance that can augment passive methods to significantly reduce both internal and external aircraft noise...

  9. Linear phase formation by noise simulator

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1998-01-01

    A new simulation technique is introduced to study noise propagation in nuclear power plants. Noise processes are considered as time functions, and the dynamic behaviour of the reactor core is modelled by ordinary and partial differential equations. The equations are solved by numerical methods and the results (time series) are considered as virtual measurements. The auto power spectral density and the cross power spectral density of these time series are calculated by traditional techniques. The spectrum obtained is compared with the analytical solution to validate the new simulation approach. After validation, the simulator is expanded to investigate some physical phenomena which are unmanageable by analytical calculations. Propagating disturbances are studied, and the effect of non-flat flux shape on phase curves is demonstrated. Numerical problems also are briefly discussed. (author)

  10. Performance analysis of power-efficient adaptive interference cancelation in fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    This paper analyzes the performance of a -steering scheme for highly correlated receive antennas in the presence of statistically unordered co-channel interferers over multipath fading channels. An adaptive activation of receive antennas according to the interfering signals fading conditions is considered in the analysis. Analytical expressions for various system performance measures, including the outage probability, average error probability of different signaling schemes, and raw moments of the combined signal-to-interference-plus-noise ratio (SINR) are obtained in exact forms. Numerical and simulation results for the performance-complexity tradeoff of this scheme is presented and then compared with that of full-size arbitrary interference cancelation and no cancelation scenarios. ©2010 IEEE.

  11. Performance analysis of power-efficient adaptive interference cancelation in fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-12-01

    This paper analyzes the performance of a -steering scheme for highly correlated receive antennas in the presence of statistically unordered co-channel interferers over multipath fading channels. An adaptive activation of receive antennas according to the interfering signals fading conditions is considered in the analysis. Analytical expressions for various system performance measures, including the outage probability, average error probability of different signaling schemes, and raw moments of the combined signal-to-interference-plus-noise ratio (SINR) are obtained in exact forms. Numerical and simulation results for the performance-complexity tradeoff of this scheme is presented and then compared with that of full-size arbitrary interference cancelation and no cancelation scenarios. ©2010 IEEE.

  12. A single antenna interference cancellation and adaptive technique based on ALOE

    Directory of Open Access Journals (Sweden)

    Xu Han

    2017-02-01

    Full Text Available A new type of single antenna interference cancellation (SAIC algorithm based on ALOE filtering module is introduced for co-channel interference cancellation in GSM/GPRS/EDGE downlink without changing the link structure of traditional receiver.Meanwhile,an adjacent frequency adaptive detection based on power spectrum estimation method is introduced to solve adjacent frequency interference and complex interference.Compared with traditional energy noise estimation method,the new method has simpler structure,less complexity,and can effectively improve the adaptability for various scenarios.The simulation results show that it can raise the resistance to co-channel frequency interference and adjacent frequency interference in multimode chips with low complexity,which improves the quality of 2G voice communication.

  13. Thermodynamics aspects of noise-induced phase synchronization.

    Science.gov (United States)

    Pinto, Pedro D; Oliveira, Fernando A; Penna, André L A

    2016-05-01

    In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.

  14. Thermodynamics aspects of noise-induced phase synchronization

    Science.gov (United States)

    Pinto, Pedro D.; Oliveira, Fernando A.; Penna, André L. A.

    2016-05-01

    In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.

  15. A DC-Link Modulation Scheme with Phase-Shifted Current Control for Harmonic Cancellations in Multidrive Applications

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2016-01-01

    of a new DC link modulation scheme with a phase-shifted current control enabled by the SCR. The DC-link current modulation scheme is implemented by adding and subtracting specific modulation levels, which makes the total currents drawn from the grid “multi-level”, resulting in an improved current quality......This letter proposes a harmonic mitigation strategy to cancel out current harmonics induced by the front-end rectifiers in multi-drive systems, which consist of diode rectifiers, Silicon-Controlled Rectifiers (SCR), and boost converters in the DC-link. The proposed strategy is a combination...

  16. Phase Noise and Intensity Noise of the Pulse Train Generated from Mode-locked Lasers in the Demodulation Measurement

    OpenAIRE

    Wu, Kan; Shum, Ping

    2010-01-01

    The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.

  17. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  18. Signal processing method for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Kinser, Rpger

    2003-01-01

    The development of Johnson Noise Thermometry requires a high sensitive preamplifier circuit to pick up the temperature-related noise on the sensing element. However, the random noise generated in this amplification circuit causes a significant erroneous influence to the measurement. This paper describes signal processing mechanism of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. It adopts two identical amplifier channels and utilizes a digital signal processing technique to remove the independent noise of each channel. The CPSD(Cross Power Spectral Density) function is used to cancel the independent noise and the differentiation of narrow or single frequency peak from the CPSD data separates the common mode electromagnetic interference noise

  19. Doubling the spectrum of time-domain induced polarization: removal of non-linear self-potential drift, harmonic noise and spikes, tapered gating, and uncertainty estimation

    DEFF Research Database (Denmark)

    Olsson, Per-Ivar; Fiandaca, Gianluca; Larsen, Jakob Juul

    , a logarithmic gate width distribution for optimizing IP data quality and an estimate of gating uncertainty. Additional steps include modelling and cancelling of non-linear background drift and harmonic noise and a technique for efficiently identifying and removing spikes. The cancelling of non-linear background...... drift is based on a Cole-Cole model which effectively handles current induced electrode polarization drift. The model-based cancelling of harmonic noise reconstructs the harmonic noise as a sum of harmonic signals with a common fundamental frequency. After segmentation of the signal and determining....... The processing steps is successfully applied on full field profile data sets. With the model-based cancelling of harmonic noise, the first usable IP gate is moved one decade closer to time zero. Furthermore, with a Cole-Cole background drift model the shape of the response at late times is accurately retrieved...

  20. Reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hiroto.

    1990-01-01

    The present invention concerns a reactor noise monitoring device by detecting abnormal sounds in background noises. Vibration sounds detected by accelerometers are applied to a loose parts detector. The detector generates high alarm if there are sudden impact sounds in the background noises and applies output signals to an accumulation device. If there is slight impact sounds in the vicinity of any of the accelerometers, the accumulation device accumulates the abnormal sounds assumed to be generated from an identical site while synchronizing the waveforms for all of the channels. Then, the device outputs signals in which the background noises are cancelled, as detection signals. Therefore, S/N ratio can be improved and the abnormal sounds contained in the background noises can be detected, to thereby improve the accuracy for estimating the position where the abnormal sounds are generated. (I.S.)

  1. Optimal Colored Noise for Estimating Phase Response Curves

    Science.gov (United States)

    Morinaga, Kazuhiko; Miyata, Ryota; Aonishi, Toru

    2015-09-01

    The phase response curve (PRC) is an important measure representing the interaction between oscillatory elements. To understand synchrony in biological systems, many research groups have sought to measure PRCs directly from biological cells including neurons. Ermentrout et al. and Ota et al. showed that PRCs can be identified through measurement of white-noise spike-triggered averages. The disadvantage of this method is that one has to collect more than ten-thousand spikes to ensure the accuracy of the estimate. In this paper, to achieve a more accurate estimation of PRCs with a limited sample size, we use colored noise, which has recently drawn attention because of its unique effect on dynamical systems. We numerically show that there is an optimal colored noise to estimate PRCs in the most rigorous fashion.

  2. The experimental plan of displacement- and frequency-noise free laser interferometer

    International Nuclear Information System (INIS)

    Kokeyama, K; Sato, S; Kawamura, S; Nishizawa, A; Chen, Y; Pai, A; Somiya, K; Ward, R; Sugamoto, A

    2008-01-01

    We present the partial demonstration of displacement- and laser-noise free interferometer (DFI) and the next experimental plan to examine the complete configuration. A part of the full implementation of DFI has been demonstrated to confirm the cancellation of beamsplitter displacements. The displacements were suppressed by about two orders of magnitude. The aim of the next experiment is to operate the system and to confirm the cancellation of all displacement noises, while the gravitational wave (GW) signals survive. The optical displacements will be simulated by electro-optic modulators (EOM). To simulate the GW contribution to laser lights, we will use multiple EOMs

  3. Application of phased array technology for identification of low frequency noise sources

    Energy Technology Data Exchange (ETDEWEB)

    Hugo E. Camargo; Patricio A. Ravetta; Ricardo A. Burdisso; Adam K. Smith [NIOSH (United States)

    2009-12-15

    A study conducted by the National Institute for Occupational Safety and Health (NIOSH) revealed that 90% of coal miners have hearing impairment by age 50, compared to only 10% of those not exposed to occupational noise. According to the Mine Safety and Health Administration (MSHA), Continuous Mining Machine (CM) operators account for 30% of workers exposed to noise doses exceeding the Permissible Exposure Level (PEL). In this context, NIOSH is conducting research to identify and control dominant noise sources in CMs. Previous noise source identification was performed using a Bruel & Kjaer (B&K) 1.92-m diameter, 42-microphone phased array. These measurements revealed that the impacts from the conveyor chain onto the tail roller, and the impacts from the conveyor chain onto the upper deck are the dominant noise sources at the tail-section of the CM. The objectives of the work presented in this paper were: (1) To rank the noise radiated by the different sections of the conveyor, and (2) to determine the effect of a urethane-coated tail roller on the noise radiated by the tail-section. This test was conducted using an Acoustical and Vibrations Engineering Consultants (AVEC) 3.5-m diameter, 121-microphone phased array. The results from this new test show that a urethane-coated tail roller yields reductions in the tail-section of 2 to 8 dB in Sound Pressure Level in the frequency range of 1 kHz to 5 kHz. However, integration of the acoustic maps shows that the front-section and mid-section of the conveyor also contain dominant noise sources. Therefore, a urethane-coated tail roller in combination with a chain with urethane-coated flights that reduces the noise sources in the front and mid sections of the conveyor is required to yield a significant noise reduction on the CM operator's overall exposure. These results show the applicability of phased array technology for low frequency noise source identification.

  4. Robustness against parametric noise of nonideal holonomic gates

    International Nuclear Information System (INIS)

    Lupo, Cosmo; Aniello, Paolo; Napolitano, Mario; Florio, Giuseppe

    2007-01-01

    Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the cause of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio et al. [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of nonideal holonomic gates at finite operational time, i.e., long before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite-time gates. The results obtained suggest that the finite-time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of a geometrical feature

  5. Robustness against parametric noise of nonideal holonomic gates

    Science.gov (United States)

    Lupo, Cosmo; Aniello, Paolo; Napolitano, Mario; Florio, Giuseppe

    2007-07-01

    Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the cause of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of nonideal holonomic gates at finite operational time, i.e., long before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite-time gates. The results obtained suggest that the finite-time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of a geometrical feature.

  6. Improved Iterative Parallel Interference Cancellation Receiver for Future Wireless DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Andrea Bernacchioni

    2005-04-01

    Full Text Available We present a new turbo multiuser detector for turbo-coded direct sequence code division multiple access (DS-CDMA systems. The proposed detector is based on the utilization of a parallel interference cancellation (PIC and a bank of turbo decoders. The PIC is broken up in order to perform interference cancellation after each constituent decoder of the turbo decoding scheme. Moreover, in the paper we propose a new enhanced algorithm that provides a more accurate estimation of the signal-to-noise-plus-interference-ratio used in the tentative decision device and in the MAP decoding algorithm. The performance of the proposed receiver is evaluated by means of computer simulations for medium to very high system loads, in AWGN and multipath fading channel, and compared to recently proposed interference cancellation-based iterative MUD, by taking into account the number of iterations and the complexity involved. We will see that the proposed receiver outperforms the others especially for highly loaded systems.

  7. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    International Nuclear Information System (INIS)

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne; Bech, Martin; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-01-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed

  8. Research on signal processing of shock absorber test bench based on zero-phase filter

    Science.gov (United States)

    Wu, Yi; Ding, Guoqing

    2017-10-01

    The quality of force-displacement diagram is significant to help evaluate the performance of shock absorbers. Damping force sampling data is often interfered by Gauss white noise, 50Hz power interference and its harmonic wave during the process of testing; data de-noising has become the core problem of drawing true, accurate and real-time indicator diagram. The noise and interference can be filtered out through generic IIR or FIR low-pass filter, but addition phase lag of useful signal will be caused due to the inherent attribute of IIR and FIR filter. The paper uses FRR method to realize zero-phase digital filtering in a software way based on mutual cancellation of phase lag between the forward and reverse sequences after through the filter. High-frequency interference above 40Hz are filtered out completely and noise attenuation is more than -40dB, with no additional phase lag. The method is able to restore the true signal as far as possible. Theoretical simulation and practical test indicate high-frequency noises have been effectively inhibited in multiple typical speed cases, signal-to-noise ratio being greatly improved; the curve in indicator diagram has better smoothness and fidelity. The FRR algorithm has low computational complexity, fast running time, and can be easily transplanted in multiple platforms.

  9. Phase transitions in distributed control systems with multiplicative noise

    Science.gov (United States)

    Allegra, Nicolas; Bamieh, Bassam; Mitra, Partha; Sire, Clément

    2018-01-01

    Contemporary technological challenges often involve many degrees of freedom in a distributed or networked setting. Three aspects are notable: the variables are usually associated with the nodes of a graph with limited communication resources, hindering centralized control; the communication is subject to noise; and the number of variables can be very large. These three aspects make tools and techniques from statistical physics particularly suitable for the performance analysis of such networked systems in the limit of many variables (analogous to the thermodynamic limit in statistical physics). Perhaps not surprisingly, phase-transition like phenomena appear in these systems, where a sharp change in performance can be observed with a smooth parameter variation, with the change becoming discontinuous or singular in the limit of infinite system size. In this paper, we analyze the so called network consensus problem, prototypical of the above considerations, that has previously been analyzed mostly in the context of additive noise. We show that qualitatively new phase-transition like phenomena appear for this problem in the presence of multiplicative noise. Depending on dimensions, and on the presence or absence of a conservation law, the system performance shows a discontinuous change at a threshold value of the multiplicative noise strength. In the absence of the conservation law, and for graph spectral dimension less than two, the multiplicative noise threshold (the stability margin of the control problem) is zero. This is reminiscent of the absence of robust controllers for certain classes of centralized control problems. Although our study involves a ‘toy’ model, we believe that the qualitative features are generic, with implications for the robust stability of distributed control systems, as well as the effect of roundoff errors and communication noise on distributed algorithms.

  10. Imaging resolution signal-to-noise ratio in transverse phase amplification from classical information theory

    International Nuclear Information System (INIS)

    French, Doug; Huang Zun; Pao, H.-Y.; Jovanovic, Igor

    2009-01-01

    A quantum phase amplifier operated in the spatial domain can improve the signal-to-noise ratio in imaging beyond the classical limit. The scaling of the signal-to-noise ratio with the gain of the quantum phase amplifier is derived from classical information theory

  11. Combined Effect of Random Transmit Power Control and Inter-Path Interference Cancellation on DS-CDMA Packet Mobile Communications

    Science.gov (United States)

    Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki

    In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.

  12. Experimental Results on the Level Crossing Intervals of the Phase of Sine Wave Plus Noise

    Science.gov (United States)

    Youssef, Neji; Munakata, Tsutomu; Mimaki, Tadashi

    1993-03-01

    Experimental study was made on the level crossing intervals of a phase process of a sine wave plus narrow-band Gaussian noise. Since successive level crossings of phase do not necessarily occur alternately in the upward and downward direction due to the phase jump beyond 2π, the usual definitions of the probability densities of the level crossing intervals for continuous random processes are not applicable in the case of the phase process. Therefore, the probability densities of level crossing intervals of phase process are newly defined. Measurements of these densities were performed for noise having lowpass spectra of Gaussian and 7th order Butterworth types. Results are given for various values of the signal-to-noise power ratio and of the crossing level, and compared with corresponding approximation developed under the assumption of quasi-independence. The validity of the assumption depends on the spectrum shape of the noise.

  13. Nonlinearity and Phase Noise Tolerant 75-110 GHz Signal over Fiber System Using Phase Modulation Technique

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhang, Xu

    2013-01-01

    We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....

  14. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler.

    Science.gov (United States)

    Xu, Dan; Yang, Fei; Chen, Dijun; Wei, Fang; Cai, Haiwen; Fang, Zujie; Qu, Ronghui

    2015-08-24

    A laser phase and frequency noise measurement method by an unbalanced Michelson interferometer composed of a 3 × 3 optical fiber coupler is proposed. The relations and differences of the power spectral density (PSD) of differential phase and frequency fluctuation, PSD of instantaneous phase and frequency fluctuation, phase noise and linewidth are derived strictly and discussed carefully. The method obtains the noise features of a narrow linewidth laser conveniently without any specific assumptions or noise models. The technique is also used to characterize the noise features of a narrow linewidth external-cavity semiconductor laser, which confirms the correction and robustness of the method.

  15. Engineering the Flow of Liquid Two-Phase Systems by Passive Noise Control

    Science.gov (United States)

    Zhang, Zeyi; Kong, Tiantian; Zhou, Chunmei; Wang, Liqiu

    2018-02-01

    We investigate a passive noise-control approach to engineering the two-phase flow in a microfluidic coflow system. The presence or absence of the jet breakup is studied for two immiscible oil phases, in a straight microchannel (referred to as the J device in the main text), an expansion microchannel (the W device) and a microchannel with the expansion-contraction geometry (the S device), respectively. We show that the jet breaks into droplets, in the jetting regime and the dripping regime (also referred to as the widening-jetting regime) for the straight channel and expansion channel, respectively, while a stable long jet does not break for the expansion-contraction geometry. As the inner phase passes the expansion-contraction functional unit, the random noise on the interface is significantly reduced and the hydrodynamic instability is suppressed, for a range of experimental parameters including flow rates, device geometry, liquid viscosity, and interfacial tension. We further present scale-up devices with multiple noise-control units and achieve decimeter-long yet stable jets. Our simple, effective, and robust noise-control approach can benefit microfluidic applications such as microfiber fabrication, interface chemical reaction, and on-chip distance transportation.

  16. Suppression of enhanced physiological tremor via stochastic noise: initial observations.

    Directory of Open Access Journals (Sweden)

    Carlos Trenado

    Full Text Available Enhanced physiological tremor is a disabling condition that arises because of unstable interactions between central tremor generators and the biomechanics of the spinal stretch reflex. Previous work has shown that peripheral input may push the tremor-related spinal and cortical systems closer to anti-phase firing, potentially leading to a reduction in tremor through phase cancellation. The aim of the present study was to investigate whether peripherally applied mechanical stochastic noise can attenuate enhanced physiological tremor and improve motor performance. Eight subjects with enhanced physiological tremor performed a visuomotor task requiring the right index finger to compensate a static force generated by a manipulandum to which Gaussian noise (3-35 Hz was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a larger green circle. Electromyogram (EMG from the active hand muscles and finger position were recorded. Performance was measured by the mean absolute deviation of the white dot from the zero position. Tremor was identified by the acceleration in the frequency range 7-12 Hz. Two different conditions were compared: with and without superimposed noise at optimal amplitude (determined at the beginning of the experiment. The application of optimum noise reduced tremor (accelerometric amplitude and EMG activity and improved the motor performance (reduced mean absolute deviation from zero. These data provide the first evidence of a significant reduction of enhanced physiological tremor in the human sensorimotor system due to application of external stochastic noise.

  17. Cancellation mechanism in the predictions of electric dipole moments

    Science.gov (United States)

    Bian, Ligong; Chen, Ning

    2017-06-01

    The interpretation of the baryon asymmetry of the Universe necessitates the C P violation beyond the Standard Model (SM). We present a general cancellation mechanism in the theoretical predictions of the electron electric dipole moments (EDM), quark chromo-EDMs, and Weinberg operators. A relative large C P violation in the Higgs sector is allowed by the current electron EDM constraint released by the ACME collaboration in 2013, and the recent 199Hg EDM experiment. The cancellation mechanism can be induced by the mass splitting of heavy Higgs bosons around ˜O (0.1 - 1 ) GeV , and the extent of the mass degeneracy determines the magnitude of the C P -violating phase. We explicate this point by investigating the C P -violating two-Higgs-doublet model and the minimal supersymmetric Standard Model. The cancellation mechanism is general when there are C P violation and mixing in the Higgs sector of new physics models. The C P -violating phases in this scenario can be excluded or detected by the projected 225Ra EDM experiments with precision reaching ˜10-28 e .cm , as well as the future colliders.

  18. Phase noise measurements of the new master oscillator for TTF2

    International Nuclear Information System (INIS)

    Lorbeer, B.

    2004-07-01

    The timing and RF-Field control systems in the Tesla Test Facility 2 and X-Ray FEL in the future require ultra low phase noise and timing jitter performance. The short term timing jitter should not exceed 100fs and the long term stability 1ps respectively. In order to meet these requirements a new master oscillator is under construction. The task of verifying its quality in terms of phase noise is approached in this thesis. The complexity of building an oscillator at such a high demand is focused on and its related problems are tried to be solved. (orig.)

  19. Hybrid Adaptive/Nonadaptive Delayed Signal Cancellation-Based Phase-Locked Loop

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    cancellation (DSC) operator is highly popular probably because it can be easily tailored for different grid scenarios. The DSC operator(s) can be used either as an in-loop filter in the PLL structure or as a preprocessing filter before the PLL input. The latter case is often preferred mainly because it results...

  20. 1-Gb/s zero-pole cancellation CMOS transimpedance amplifier for Gigabit Ethernet applications

    International Nuclear Information System (INIS)

    Huang Beiju; Zhang Xu; Chen Hongda

    2009-01-01

    A zero-pole cancellation transimpedance amplifier (TIA) has been realized in 0.35 μm RF CMOS technology for Gigabit Ethernet applications. The TIA exploits a zero-pole cancellation configuration to isolate the input parasitic capacitance including photodiode capacitance from bandwidth deterioration. Simulation results show that the proposed TIA has a bandwidth of 1.9 GHz and a transimpedance gain of 65 dB·Ω for 1.5 pF photodiode capacitance, with a gain-bandwidth product of 3.4 THz·Ω. Even with 2 pF photodiode capacitance, the bandwidth exhibits a decline of only 300 MHz, confirming the mechanism of the zero-pole cancellation configuration. The input resistance is 50 Ω, and the average input noise current spectral density is 9.7 pA/√Hz. Testing results shows that the eye diagram at 1 Gb/s is wide open. The chip dissipates 17 mW under a single 3.3 V supply.

  1. 1-Gb/s zero-pole cancellation CMOS transimpedance amplifier for Gigabit Ethernet applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang Beiju; Zhang Xu; Chen Hongda, E-mail: bjhuang@semi.ac.c [State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-10-15

    A zero-pole cancellation transimpedance amplifier (TIA) has been realized in 0.35 {mu}m RF CMOS technology for Gigabit Ethernet applications. The TIA exploits a zero-pole cancellation configuration to isolate the input parasitic capacitance including photodiode capacitance from bandwidth deterioration. Simulation results show that the proposed TIA has a bandwidth of 1.9 GHz and a transimpedance gain of 65 dB{center_dot}{Omega} for 1.5 pF photodiode capacitance, with a gain-bandwidth product of 3.4 THz{center_dot}{Omega}. Even with 2 pF photodiode capacitance, the bandwidth exhibits a decline of only 300 MHz, confirming the mechanism of the zero-pole cancellation configuration. The input resistance is 50 {Omega}, and the average input noise current spectral density is 9.7 pA/{radical}Hz. Testing results shows that the eye diagram at 1 Gb/s is wide open. The chip dissipates 17 mW under a single 3.3 V supply.

  2. Iterative Soft Decision Interference Cancellation for DS-CDMA Employing the Distribution of Interference

    Directory of Open Access Journals (Sweden)

    Gerstacker WolfgangH

    2010-01-01

    Full Text Available A well-known receiver strategy for direct-sequence code-division multiple-access (DS-CDMA transmission is iterative soft decision interference cancellation. For calculation of soft estimates used for cancellation, the distribution of residual interference is commonly assumed to be Gaussian. In this paper, we analyze matched filter-based iterative soft decision interference cancellation (MF ISDIC when utilizing an approximation of the actual probability density function (pdf of residual interference. In addition, a hybrid scheme is proposed, which reduces computational complexity by considering the strongest residual interferers according to their pdf while the Gaussian assumption is applied to the weak residual interferers. It turns out that the bit error ratio decreases already noticeably when only a small number of residual interferers is regarded according to their pdf. For the considered DS-CDMA transmission the bit error ratio decreases by 80% for high signal-to-noise ratios when modeling all residual interferers but the strongest three to be Gaussian distributed.

  3. Mitigation of MIMO Co-Channel Interference using robust interference cancellation receiver

    DEFF Research Database (Denmark)

    Rahman, Muhammad Imadur; De Carvalho, Elisabeth; Prasad, Ramjee

    2007-01-01

    (STBC) link may become equivalent to an interfering Spatial Multiplexing (SM) link. Using this knowledge and understanding, we propose an interference cancellation receiver robust to different types of MIMO interferers at cell edge for the Downlink (DL) of cellular systems. The receiver systematically...... performs a multiple symbol processing: this is the appropriate processing when the signal of interest or the signal of interferer is correlated across symbols, which is the case for STBC transmission. We evaluated different link combinations in terms of Signal to Interference and Noise Ratio (SINR......) statistics and Bit Error Rate (BER) performance in cellular Orthogonal Frequency Division Multiple Access (OFDMA) systems. We have found that the proposed multiple-symbol linear interference cancellation receiver performs satisfactorily when any kind of single 'logical' stream MIMO scheme is present...

  4. PHASED ARRAY FEED CALIBRATION, BEAMFORMING, AND IMAGING

    International Nuclear Information System (INIS)

    Landon, Jonathan; Elmer, Michael; Waldron, Jacob; Jones, David; Stemmons, Alan; Jeffs, Brian D.; Warnick, Karl F.; Richard Fisher, J.; Norrod, Roger D.

    2010-01-01

    Phased array feeds (PAFs) for reflector antennas offer the potential for increased reflector field of view and faster survey speeds. To address some of the development challenges that remain for scientifically useful PAFs, including calibration and beamforming algorithms, sensitivity optimization, and demonstration of wide field of view imaging, we report experimental results from a 19 element room temperature L-band PAF mounted on the Green Bank 20 Meter Telescope. Formed beams achieved an aperture efficiency of 69% and a system noise temperature of 66 K. Radio camera images of several sky regions are presented. We investigate the noise performance and sensitivity of the system as a function of elevation angle with statistically optimal beamforming and demonstrate cancelation of radio frequency interference sources with adaptive spatial filtering.

  5. Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors

    Science.gov (United States)

    Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr

    2010-06-01

    An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.

  6. Estimation of MIMO channel capacity from phase-noise impaired measurements

    DEFF Research Database (Denmark)

    Pedersen, Troels; Yin, Xuefeng; Fleury, Bernard Henri

    2008-01-01

    Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown t...... matrix. It is shown by means of Monte Carlo simulations assuming a measurementbased phase noise model, that the MIMO channel capacity can be estimated accurately for signal to noise ratios up to about 35 dB......Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown...... that phase noise of the transmitter and receiver local oscillators, when it is assumed to be a white Gaussian random process, can cause large errors of the estimated channel capacity of a low-rank MIMO channel when the standard channel matrix estimator is used. Experimental evidence shows that consecutive...

  7. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  8. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2016-03-21

    We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm.

  9. Generalized synchronization induced by noise and parameter mismatching in Hindmarsh-Rose neurons

    International Nuclear Information System (INIS)

    Wu Ying; Xu Jianxue; He Daihai; Earn, David J.D.

    2005-01-01

    Synchronization of two simple neuron models has been investigated in many studies. Thresholds for complete synchronization (CS) and phase synchronization (PS) have been obtained for coupling by diffusion or noise. In addition, it has been shown that it is possible for directional diffusion to induce generalized synchronization (GS) in a pair of neuron models even if the neurons are not identical (and differ in a single parameter). We study a system of two uncoupled, nonidentical Hindmarsh-Rose (HR) neurons and show that GS can be achieved by a combination of noise and changing the value of a second parameter in one of the neurons (the second parameter mismatch cancels the first). The significance of this approach will be the greatest in situations where the parameter that is originally mismatched cannot be controlled, but a suitable controllable parameter can be identified

  10. The minimization of ac phase noise in interferometric systems

    DEFF Research Database (Denmark)

    Filinski, Ignacy; Gordon, R A

    1994-01-01

    bladder vibration isolators are used incorrectly and do not provide sufficient reduction in the contribution of floor vibrations to phase noise. Several simple trampoline-type air bladder vibration isolator systems are described which are comparable in performance to commercial systems. With the exception...

  11. Design and Characterization of a 5.2 GHz/2.4 GHz Fractional- Frequency Synthesizer for Low-Phase Noise Performance

    Directory of Open Access Journals (Sweden)

    Dai Foster F

    2006-01-01

    Full Text Available This paper presents a complete noise analysis of a -based fractional- phase-locked loop (PLL based frequency synthesizer. Rigorous analytical and empirical formulas have been given to model various phase noise sources and spurious components and to predict their impact on the overall synthesizer noise performance. These formulas have been applied to an integrated multiband WLAN frequency synthesizer RFIC to demonstrate noise minimization through judicious choice of loop parameters. Finally, predicted and measured phase jitter showed good agreement. For an LO frequency of 4.3 GHz, predicted and measured phase noise was rms and rms, respectively.

  12. Limitations of Phased Array Beamforming in Open Rotor Noise Source Imaging

    Science.gov (United States)

    Horvath, Csaba; Envia, Edmane; Podboy, Gary G.

    2013-01-01

    Phased array beamforming results of the F31/A31 historical baseline counter-rotating open rotor blade set were investigated for measurement data taken on the NASA Counter-Rotating Open Rotor Propulsion Rig in the 9- by 15-Foot Low-Speed Wind Tunnel of NASA Glenn Research Center as well as data produced using the LINPROP open rotor tone noise code. The planar microphone array was positioned broadside and parallel to the axis of the open rotor, roughly 2.3 rotor diameters away. The results provide insight as to why the apparent noise sources of the blade passing frequency tones and interaction tones appear at their nominal Mach radii instead of at the actual noise sources, even if those locations are not on the blades. Contour maps corresponding to the sound fields produced by the radiating sound waves, taken from the simulations, are used to illustrate how the interaction patterns of circumferential spinning modes of rotating coherent noise sources interact with the phased array, often giving misleading results, as the apparent sources do not always show where the actual noise sources are located. This suggests that a more sophisticated source model would be required to accurately locate the sources of each tone. The results of this study also have implications with regard to the shielding of open rotor sources by airframe empennages.

  13. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  14. An Analysis Of Pole/zero Cancellation In LTR-based Feedback Design

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Jannerup, Ole Erik

    1990-01-01

    The pole/zero cancellation in LTR-based feedback design will be analyzed for both full-order as well as minimal-order observers. The asymptotic behaviour of the sensitivity function from the LTR-procedure are given in explicit expressions in the case when a zero is not cancelled by an equivalent...... pole. It will be shown that the non-minimum phase case is included as a special case. The results are not based on any specific LTR-method....

  15. Possibilities of an efficient noise damping in the large gas-fueled boilers

    International Nuclear Information System (INIS)

    1994-01-01

    This report describes a series of tests with the objective to develop a technique for active control, and suppression of unstable conditions of combustion in gas-fired boiler systems. The primary target group for this report are persons within the energy sector, including especially users of natural gas. Focus has been given more to the practical possibilities and limitations than to complicated acoustical theory. The technical background for this work is constituted by the latest innovations within active noise cancelling methods for low frequent noise in channel- and pipe shaped systems, such as heating-, air-and exhaust systems. The fundamental idea has been to implement already functioning and commercial available systems for active noise cancellation in an modified setup to a gasfired boiler system. A few examples of similar attempts are given. Latest a relatively successful example of actively controlling an unstable combustion in a channel shaped burner system (CNRS Paris 1993). The conclusion of the project is anyway, that unstable combustion in larger gasfired boilers can not be controlled by the active methods and systems known today. The reasons for this are: the flame and thus the noise source are distributed in space, the acoustical wave-propagation in the combustion chamber is complex and with low damping, several loops for unstable combustion are possible. Within this project special sensors for high temperatures are developed, e.g.: probe microphones, high temperature turbulence screens and a system for measuring of the variations in UV-light emission form the flame. These systems are applicable also for more 'traditional active noise cancellation' of low-frequent noise in exhaust pipes and chimneys. (au)

  16. [Research on electrocardiogram de-noising algorithm based on wavelet neural networks].

    Science.gov (United States)

    Wan, Xiangkui; Zhang, Jun

    2010-12-01

    In this paper, the ECG de-noising technology based on wavelet neural networks (WNN) is used to deal with the noises in Electrocardiogram (ECG) signal. The structure of WNN, which has the outstanding nonlinear mapping capability, is designed as a nonlinear filter used for ECG to cancel the baseline wander, electromyo-graphical interference and powerline interference. The network training algorithm and de-noising experiments results are presented, and some key points of the WNN filter using ECG de-noising are discussed.

  17. Adaptive Feedforward Cancellation of Sinusoidal Disturbances in Superconducting RF Cavities

    CERN Document Server

    Kandil, T H; Hartung, W; Khalil, H; Popielarski, J; Vincent, J; York, R C

    2004-01-01

    A control method, known as adaptive feedforward cancellation (AFC) is applied to damp sinusoidal disturbances due to microphonics in superconducting RF (SRF) cavities. AFC provides a method for damping internal, and external sinusoidal disturbances with known frequencies. It is preferred over other schemes because it uses rudimentary information about the frequency response at the disturbance frequencies, without the necessity of knowing an analytic model (transfer function) of the system. It estimates the magnitude and phase of the sinusoidal disturbance inputs and generates a control signal to cancel their effect. AFC, along with a frequency estimation process, is shown to be very successful in the cancellation of sinusoidal signals from different sources. The results of this research may significantly reduce the power requirements and increase the stability for lightly loaded continuous-wave SRF systems.

  18. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    Science.gov (United States)

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain.

  19. Canceling Some d-CON Mouse and Rat Control Products

    Science.gov (United States)

    EPA has reached agreement with the manufacturer, to cancel 12 d-CON products that do not meet our testing protocols that better protect children, pets and non-target wildlife from accidental exposure to the pesticide. These products will be phased out.

  20. Scientific journal cancellations

    CERN Multimedia

    The Library

    2001-01-01

    Earlier this year the Scientific Information Policy Board (SIPB) requested the Library and the Working Group for Acquisitions to revise the current printed journal collection in order to cancel those titles that are less required. Savings could then be used for the development of other collections and particularly electronic resources needed to support CERN current research activities. A list of proposed cancellations was drawn and posted on the Library web pages: http://library.cern.ch/library_general/cancel.html The SIPB invites every one to check if any of the titles are of importance to their work, in which case you are invited to inform the Library before the 25th of September by sending an e-mail to: eliane.chaney@cern.ch Titles not reconsidered by the users will be cancelled by the end of the year. Thank you, The Library

  1. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.

    2010-06-17

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  2. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.; Andrews, S. R.

    2010-01-01

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  3. Impulse Noise Cancellation of Medical Images Using Wavelet Networks and Median Filters

    Science.gov (United States)

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeid; Gheissari, Niloofar

    2012-01-01

    This paper presents a new two-stage approach to impulse noise removal for medical images based on wavelet network (WN). The first step is noise detection, in which the so-called gray-level difference and average background difference are considered as the inputs of a WN. Wavelet Network is used as a preprocessing for the second stage. The second step is removing impulse noise with a median filter. The wavelet network presented here is a fixed one without learning. Experimental results show that our method acts on impulse noise effectively, and at the same time preserves chromaticity and image details very well. PMID:23493998

  4. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  5. A low-phase-noise wide-band CMOS quadrature VCO for multi-standard RF front-ends

    DEFF Research Database (Denmark)

    Fard, Ali; Andreani, Pietro

    2005-01-01

    structures. The QVCO is compared to a double cross-coupled LC-tank differential oscillator, both in theory and experiments, for evaluation of its phase noise, providing a good insight into its performance. The measured data displays up to 2 dBc/Hz lower phase noise in the 1/f2 region for the QVCO, when...

  6. Phase noise effects in synchronized wireless networks for mimo-ofdm

    International Nuclear Information System (INIS)

    Kiyani, M.K.

    2014-01-01

    Channel impairments effects are evaluated by inclusion of phase noise in a synchronization error correction algorithm for MIMO (Multiple Input Multiple Output) OFDM (Orthogonal Frequency Division Multiplexing) systems. The original synchronization error correction algorithm applicable to AWGN (Additive White Gaussian Noise) channel pertaining to SISO (Single Input Single Output) system is modified in the presence of SUI (Stanford University Interim) channel models and then applied to MIMO systems. Then the performance of this modified algorithm is verified through simulations under the effects of channel impairments. (author)

  7. Gravity-Based Precise Cell Manipulation System Enhanced by In-Phase Mechanism

    Directory of Open Access Journals (Sweden)

    Koji Mizoue

    2016-07-01

    Full Text Available This paper proposes a gravity-based system capable of generating high-resolution pressure for precise cell manipulation or evaluation in a microfluidic channel. While the pressure resolution of conventional pumps for microfluidic applications is usually about hundreds of pascals as the resolution of their feedback sensors, precise cell manipulation at the pascal level cannot be done. The proposed system successfully achieves a resolution of 100 millipascals using water head pressure with an in-phase noise cancelation mechanism. The in-phase mechanism aims to suppress the noises from ambient vibrations to the system. The proposed pressure system is tested with a microfluidic platform for pressure validation. The experimental results show that the in-phase mechanism effectively reduces the pressure turbulence, and the pressure-driven cell movement matches the theoretical simulations. Preliminary experiments on deformability evaluation with red blood cells under incremental pressures of one pascal are successfully performed. Different deformation patterns are observed from cell to cell under precise pressure control.

  8. Design of low noise transimpedance amplifier for intravascular ultrasound

    KAUST Repository

    Reda, Dina

    2009-11-01

    In this paper, we study transimpedance amplifiers for capacitive sensing applications with a focus on Intravascular Ultra Sound (IVUS). We employ RF noise cancellation technique on capacitive feedback based transimpedance amplifiers. This technique eliminates the input-referred noise of TIAs completely and enhances the dynamic range of front-end electronics. Simulation results verify the proposed technique used in two different TIA topologies employing shunt-shunt feedback. ©2009 IEEE.

  9. Noise-induced phase space transport in two-dimensional Hamiltonian systems.

    Science.gov (United States)

    Pogorelov, I V; Kandrup, H E

    1999-08-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.

  10. Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence

    International Nuclear Information System (INIS)

    Liu, Dunge; Xu, Xin; Huang, Chao; Zhu, Wanhua; Liu, Xiaojun; Fang, Guangyou; Yu, Gang

    2015-01-01

    Magnetic anomaly detection (MAD) is an effective method for the detection of ferromagnetic targets against background magnetic fields. Currently, the performance of MAD systems is mainly limited by the background geomagnetic noise. Several techniques have been developed to detect target signatures, such as the synchronous reference subtraction (SRS) method. In this paper, we propose an adaptive coherent noise suppression (ACNS) method. The proposed method is capable of evaluating and detecting weak anomaly signals buried in background geomagnetic noise. Tests with real-world recorded magnetic signals show that the ACNS method can excellently remove the background geomagnetic noise by about 21 dB or more in high background geomagnetic field environments. Additionally, as a general form of the SRS method, the ACNS method offers appreciable advantages over the existing algorithms. Compared to the SRS method, the ACNS algorithm can eliminate the false target signals and represents a noise suppressing capability improvement of 6.4 dB. The positive outcomes in terms of intelligibility make this method a potential candidate for application in MAD systems. (paper)

  11. Phase noise measurements with a cryogenic power-splitter to minimize the cross-spectral collapse effect

    Science.gov (United States)

    Hati, Archita; Nelson, Craig W.; Pappas, David P.; Howe, David A.

    2017-11-01

    The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.

  12. Real Time Phase Noise Meter Based on a Digital Signal Processor

    Science.gov (United States)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  13. An Analysis of 1/f2 Phase Noise in Bipolar Colpitts Oscillators (With a Digression on Bipolar Differential-Pair LC Oscillators)

    DEFF Research Database (Denmark)

    Fard, A.; Andreani, Pietro

    2007-01-01

    This work presents an analysis of phase noise in the $1/f^{2}$ region displayed by both single-ended and differential bipolar Colpitts oscillators. Very accurate and rigorous symbolic phase noise expressions are derived, enabling a deeper insight into the major mechanisms of phase noise generatio......, and providing new tools for design optimization. Phase noise expressions for the cross-coupled differential-pair LC-tank oscillator are derived as well....

  14. Signal shaping and tail cancellation for gas proportional detectors at high counting rates

    International Nuclear Information System (INIS)

    Boie, R.A.; Hrisoho, A.T.; Rehak, P.

    1982-01-01

    A low noise, wide bandwidth preamplifier and signal processing filter were developed for high counting rate proportional counters. The filter consists of a seven pole Gaussian integrator with symmetrical weighting function and continuously variable shaping time, tausub(s), of 8-50 ns (fwhm) preceded by a second order pole/zero circuit which cancels the long (1/t) tails of the chamber signals. The preamplifier is an optimized common base input design with 2 ns rise time and an equivalent noise input charge < 2000 r.m.s. electrons, when connected to a chamber with 10 pF capacitance and at a filtering time, tausub(s), of 10 ns. (orig.)

  15. A fast, robust algorithm for power line interference cancellation in neural recording

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-04-01

    Objective. Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. Approach. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. Main results. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. Significance. The proposed algorithm features a highly robust operation, fast adaptation to

  16. 30 CFR 250.181 - When may the Secretary cancel my lease and when am I compensated for cancellation?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may the Secretary cancel my lease and when... may the Secretary cancel my lease and when am I compensated for cancellation? If the Secretary cancels.... Section 250.185 states conditions under which you will receive no compensation. The Secretary may cancel a...

  17. Low-complexity Joint Sub-carrier Phase Noise Compensation for Digital Multi-carrier Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Barletta, Luca; Zibar, Darko

    2017-01-01

    Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM.......Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM....

  18. A Baseband Ultra-Low Noise SiGe:C BiCMOS 0.25 µm Amplifier And Its Application For An On-Chip Phase-Noise Measurement Circuit

    OpenAIRE

    Godet , Sylvain; Tournier , Éric; Llopis , Olivier; Cathelin , Andreia; Juyon , Julien

    2009-01-01

    4 pages; International audience; The design and realization of an ultra-low noise operational amplifier is presented. Its applications are integrated low-frequency noise measurements in electronic devices and on-chip phase-noise measurement circuit. This paper discusses the SiGe:C BiCMOS 0.25 µm design improvements used for low noise applications. The proposed three-stage operational amplifier uses parallel bipolar transistor connection as input differential pair for low noise behavior. This ...

  19. Noise-induced phase space transport in two-dimensional Hamiltonian systems

    International Nuclear Information System (INIS)

    Pogorelov, I.V.; Kandrup, H.E.

    1999-01-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which open-quotes stickyclose quotes chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become open-quotes unstuckclose quotes much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation. copyright 1999 The American Physical Society

  20. Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise.

    Science.gov (United States)

    Chen, R C; Rigon, L; Longo, R

    2013-03-25

    Phase retrieval is a technique for extracting quantitative phase information from X-ray propagation-based phase-contrast tomography (PPCT). In this paper, the performance of different single distance phase retrieval algorithms will be investigated. The algorithms are herein called phase-attenuation duality Born Algorithm (PAD-BA), phase-attenuation duality Rytov Algorithm (PAD-RA), phase-attenuation duality Modified Bronnikov Algorithm (PAD-MBA), phase-attenuation duality Paganin algorithm (PAD-PA) and phase-attenuation duality Wu Algorithm (PAD-WA), respectively. They are all based on phase-attenuation duality property and on weak absorption of the sample and they employ only a single distance PPCT data. In this paper, they are investigated via simulated noise-free PPCT data considering the fulfillment of PAD property and weakly absorbing conditions, and with experimental PPCT data of a mixture sample containing absorbing and weakly absorbing materials, and of a polymer sample considering different degrees of statistical and structural noise. The simulation shows all algorithms can quantitatively reconstruct the 3D refractive index of a quasi-homogeneous weakly absorbing object from noise-free PPCT data. When the weakly absorbing condition is violated, the PAD-RA and PAD-PA/WA obtain better result than PAD-BA and PAD-MBA that are shown in both simulation and mixture sample results. When considering the statistical noise, the contrast-to-noise ratio values decreases as the photon number is reduced. The structural noise study shows that the result is progressively corrupted by ring-like artifacts with the increase of structural noise (i.e. phantom thickness). The PAD-RA and PAD-PA/WA gain better density resolution than the PAD-BA and PAD-MBA in both statistical and structural noise study.

  1. Study of Cancelled Elective Surgical Operations

    Directory of Open Access Journals (Sweden)

    M Amrollahi

    2004-07-01

    Full Text Available Introduction: Cancellation of an elective operation is a very important problem, which is the cause for different types of stresses for patients and their families and results in loss of significant amount of time, money and hospital resources. Therefore, finding the main causes of operation postponement may help us to understand and reduce these problems. Material & Method: A special questionnaire was designed to gather information about different causes of operation cancellation and filled from October 23rd (Aban 1st till November 21st (Azar 30 th, 2001 (1380 in all of the teaching hospitals of Yazd university. (S.Dr Rahnemoon, Afshar, Rah Ahan, Bahman and Savaneg Sukhteghy Results were statistically evaluated.. Results: 180 of the 31437 scheduled operations had been cancelled (12.52% Majority of cases (33.3% had been cancelled due to the absence of the surgeons. This group ((Surgeons absent was the most common cause for the postponement of operations (36.7%. The secondary cause of cancellations was related to anesthetic team and operating room problems (25%, the patient’s reasons for cancellation was 16.2% and the most minimal cause of cancellation was insufficient hospital revenue (0.5%. The basis of disease or high risk patients for operation were the main causes of dysfunction of the anesthetic team (68.9% and also the first cause of cancellation. The rate of cancellation was the most in the "older than 60 years" age group. (15.4% The cancellation in women was 12.6% and in males 12.5%. Conclusion: Surgeons schedule more patients keeping in mind cancellations which occur regularly due to patients, hospital, anesthesia, and operating room problems. This over scheduling is a problem itself, so preadmission evaluation clinics are recommended to decrease the rate of cancellations thereby saving the socioeconomic resources and decreasing patient’s stress.

  2. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    Science.gov (United States)

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  3. Surgery cancellations at a public hospital

    Directory of Open Access Journals (Sweden)

    Erika Pittelkow

    2008-12-01

    Full Text Available Objective: To determine the frequency of cancellation of scheduledsurgeries at a public hospital in the city of São Paulo, and to identifythe reasons of cancellation. Methods: A descriptive, exploratory,retrospective study, with quantitative analysis, of records ofprocedures cancelled and medical charts of patients whose surgerieswere cancelled, between January 2006 and July 2007. Results: Ofthe 6,149 (100% surgeries scheduled for the period surveyed, 701(11.4% were canceled and 5,448 (88.6% conducted; among thesurgeries cancelled, most were general surgeries (237/33.8% andorthopedic surgery (200/28.5%; surgeons or assistant surgeons(518/73.9% and anesthesiologists (183/26.1% were responsible forcancellations. The primary reasons for cancellation were unfavorableclinical status of patients (225/32.1%, no show up of patients(119/17.0%, change in medical management (79/11.3%, patientnot appropriately prepared (53/7.5% and lack of material (52/7.4%.Conclusions: This study enabled identifying the frequency and causesof surgical cancellations at a public hospital, so as to contribute toimproving professional performance in this area.

  4. 20 CFR 217.27 - Effect of cancellation.

    Science.gov (United States)

    2010-04-01

    ... ANNUITY OR LUMP SUM Cancellation of Application § 217.27 Effect of cancellation. When a person cancels an application the effect is the same as though an application was never filed. When an employee cancels his or her application, any application filed by the employee's spouse is also cancelled. However, a request...

  5. A novel crystal-analyzer phase retrieval algorithm and its noise property.

    Science.gov (United States)

    Bao, Yuan; Wang, Yan; Li, Panyun; Wu, Zhao; Shao, Qigang; Gao, Kun; Wang, Zhili; Ju, Zaiqiang; Zhang, Kai; Yuan, Qingxi; Huang, Wanxia; Zhu, Peiping; Wu, Ziyu

    2015-05-01

    A description of the rocking curve in diffraction enhanced imaging (DEI) is presented in terms of the angular signal response function and a simple multi-information retrieval algorithm based on the cosine function fitting. A comprehensive analysis of noise properties of DEI is also given considering the noise transfer characteristic of the X-ray source. The validation has been performed with synchrotron radiation experimental data and Monte Carlo simulations based on the Geant4 toolkit combined with the refractive process of X-rays, which show good agreement with each other. Moreover, results indicate that the signal-to-noise ratios of the refraction and scattering images are about one order of magnitude better than that of the absorption image at the edges of low-Z samples. The noise penalty is drastically reduced with the increasing photon flux and visibility. Finally, this work demonstrates that the analytical method can build an interesting connection between DEI and GDPCI (grating-based differential phase contrast imaging) and is widely suitable for a variety of measurement noise in the angular signal response imaging prototype. The analysis significantly contributes to the understanding of noise characteristics of DEI images and may allow improvements to the signal-to-noise ratio in biomedical and material science imaging.

  6. Measurement of two-phase flow variables in a BWR by analysis of in-core neutron detector noise signals

    International Nuclear Information System (INIS)

    Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der

    1996-01-01

    In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs

  7. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  8. A new Monte Carlo method for neutron noise calculations in the frequency domain

    International Nuclear Information System (INIS)

    Rouchon, Amélie; Zoia, Andrea; Sanchez, Richard

    2017-01-01

    Neutron noise equations, which are obtained by assuming small perturbations of macroscopic cross sections around a steady-state neutron field and by subsequently taking the Fourier transform in the frequency domain, have been usually solved by analytical techniques or by resorting to diffusion theory. A stochastic approach has been recently proposed in the literature by using particles with complex-valued weights and by applying a weight cancellation technique. We develop a new Monte Carlo algorithm that solves the transport neutron noise equations in the frequency domain. The stochastic method presented here relies on a modified collision operator and does not need any weight cancellation technique. In this paper, both Monte Carlo methods are compared with deterministic methods (diffusion in a slab geometry and transport in a simplified rod model) for several noise frequencies and for isotropic and anisotropic noise sources. Our stochastic method shows better performances in the frequency region of interest and is easier to implement because it relies upon the conventional algorithm for fixed-source problems.

  9. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    Science.gov (United States)

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.

  10. Study on phase noise induced by 1/f noise of the modulator drive circuit in high-sensitivity fiber optic gyroscope

    Science.gov (United States)

    Teng, Fei; Jin, Jing; Li, Yong; Zhang, Chunxi

    2018-05-01

    The contribution of modulator drive circuit noise as a 1/f noise source to the output noise of the high-sensitivity interferometric fiber optic gyroscope (IFOG) was studied here. A noise model of closed-loop IFOG was built. By applying the simulated 1/f noise sequence into the model, a gyroscope output data series was acquired, and the corresponding power spectrum density (PSD) and the Allan variance curve were calculated to analyze the noise characteristic. The PSD curve was in the spectral shape of 1/f, which verifies that the modulator drive circuit induced a low frequency 1/f phase noise into the gyroscope. The random walk coefficient (RWC), a standard metric to characterize the noise performance of the IFOG, was calculated according to the Allan variance curve. Using an operational amplifier with an input 1/f noise of 520 nV/√Hz at 1 Hz, the RWC induced by this 1/f noise was 2 × 10-4°/√h, which accounts for 63% of the total RWC. To verify the correctness of the noise model we proposed, a high-sensitivity gyroscope prototype was built and tested. The simulated Allan variance curve gave a good rendition of the prototype actual measured curve. The error percentage between the simulated RWC and the measured value was less than 13%. According to the model, a noise reduction method is proposed and the effectiveness is verified by the experiment.

  11. An Adaptive Noise Cancellation System Based on Linear and Widely Linear Complex Valued Least Mean Square Algorithms for Removing Electrooculography Artifacts from Electroencephalography Signals

    Directory of Open Access Journals (Sweden)

    Engin Cemal MENGÜÇ

    2018-03-01

    Full Text Available In this study, an adaptive noise cancellation (ANC system based on linear and widely linear (WL complex valued least mean square (LMS algorithms is designed for removing electrooculography (EOG artifacts from electroencephalography (EEG signals. The real valued EOG and EEG signals (Fp1 and Fp2 given in dataset are primarily expressed as a complex valued signal in the complex domain. Then, using the proposed ANC system, the EOG artifacts are eliminated in the complex domain from the EEG signals. Expression of these signals in the complex domain allows us to remove EOG artifacts from two EEG channels simultaneously. Moreover, in this study, it has been shown that the complex valued EEG signal exhibits noncircular behavior, and in the case, the WL-CLMS algorithm enhances the performance of the ANC system compared to real-valued LMS and CLMS algorithms. Simulation results support the proposed approach.

  12. Regression of environmental noise in LIGO data

    International Nuclear Information System (INIS)

    Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G

    2015-01-01

    We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)

  13. Effect of dipole-quadrupole Robinson mode coupling upon the beam response to radio-frequency phase noise

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2006-09-01

    Full Text Available In an electron storage ring, coupling between dipole and quadrupole Robinson oscillations modifies the spectrum of longitudinal beam oscillations driven by radio-frequency (rf generator phase noise. In addition to the main peak at the resonant frequency of the coupled dipole Robinson mode, another peak occurs at the resonant frequency of the coupled quadrupole mode. To describe these peaks analytically for a quadratic synchrotron potential, we include the dipole and quadrupole modes when calculating the beam response to generator noise. We thereby obtain the transfer function from generator-noise phase modulation to beam phase modulation with and without phase feedback. For Robinson-stable bunches confined in a synchrotron potential with a single minimum, the calculated transfer function agrees with measurements at the Aladdin 800-MeV electron storage ring. The transfer function is useful in evaluating phase feedback that suppresses Robinson oscillations in order to obtain quiet operation of an infrared beam line.

  14. 48 CFR 552.238-73 - Cancellation.

    Science.gov (United States)

    2010-10-01

    ... may cancel this contract in whole or in part by providing written notice. The cancellation will take... elects to cancel this contract, the Government will not reimburse the minimum guarantee. (End of clause) ...

  15. Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems

    DEFF Research Database (Denmark)

    Leong, M. Y.; Larsen, Knud J.; Jacobsen, G.

    2014-01-01

    We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead......We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead...

  16. Dimensioning BCH codes for coherent DQPSK systems with laser phase noise and cycle slips

    DEFF Research Database (Denmark)

    Leong, Miu Yoong; Larsen, Knud J.; Jacobsen, Gunnar

    2014-01-01

    Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN...... approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio....

  17. Beamspace Adaptive Beamforming for Hydrodynamic Towed Array Self-Noise Cancellation

    National Research Council Canada - National Science Library

    Premus, Vincent

    2001-01-01

    ... against signal self-nulling associated with steering vector mismatch. Particular attention is paid to the definition of white noise gain as the metric that reflects the level of mainlobe adaptive nulling for an adaptive beamformer...

  18. Beamspace Adaptive Beamforming for Hydrodynamic Towed Array Self-Noise Cancellation

    National Research Council Canada - National Science Library

    Premus, Vincent

    2000-01-01

    ... against signal self-nulling associated with steering vector mismatch. Particular attention is paid to the definition of white noise gain as the metric that reflects the level of mainlobe adaptive nulling for an adaptive beamformer...

  19. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  20. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  1. Reduction of Musical Noise in Spectral Subtraction Method Using Subframe Phase Randomization

    Energy Technology Data Exchange (ETDEWEB)

    Seok, J.W.; Bae, K.S. [Kyungpook National University, Taegu (Korea)

    1999-06-01

    The Subframe phase randomization method is applied to the spectral subtraction method to reduce the musical noise in nonvoicing region after speech enhancement. The musical noise in the spectral subtraction method is the result of the narrowband tonal components that appearing somewhat periodically in the spectrogram of unvoiced and silence regions. Thus each synthesis frame in nonvoicing region is divided into several subframes to broaden the narrowband spectrum, and then phases of silence and unvoiced regions are randomized to eliminate the tonal components in the spectrum while keeping the shape of the amplitude spectrum. Performance assessments based on visual inspection of spectrogram, objective measure, and informal subjective listening tests demonstrate the superiority of the proposed algorithm. (author). 7 refs., 5 figs.

  2. A theoretical model for measuring mass flowrate and quality of two phase flow by the noise of throttling set

    International Nuclear Information System (INIS)

    Tong Yunxian; Wang Wenran

    1992-03-01

    The mass flowrate and steam quality measuring of two phase flowrate is an essential issue in the tests of loss-of-coolant accident (LOCA). The spatial stochastic distribution of phase concentration would cause a differential pressure noise when two phase flow is crossing a throttling set. Under the assumption of that the variance of disperse phase concentration is proportional to its mean phase concentration and by using the separated flow model of two phase flow, it has demonstrated that the variance of noise of differential pressure square root is approximately proportional to the flowrate of disperse phase. Thus, a theoretical model for measuring mass flowrate and quality of two phase flow by noise measurement is developed. It indicates that there is a possibility to measure two phase flowrate and steam quality by using the simple theoretical model and a single throttling set

  3. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Science.gov (United States)

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  4. Analysis of design parameters for crosstalk cancellation filters applied to different loudspeaker configurations

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2011-01-01

    for crosstalk cancellation filters applied to different loudspeaker configurations has not yet been addressed systematically. A study of three different inversion techniques applied to several loudspeaker arrangements is documented. Least-squares approximations in the frequency and time domains are evaluated...... along with a crosstalk canceler based on minimum-phase approximation with a frequency-independent delay. The three methods were applied to loudspeaker configurations with two channels and the least-squares approaches to configurations with four channels. Several different span angles and elevations were...

  5. Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration.

    Science.gov (United States)

    Yu, Yinghong; Zhang, Yunhao; Huang, Lin; Xiao, Shilin

    2018-02-20

    In this paper, two main performance indices of the optical self-interference cancellation (OSIC) system are theoretically analyzed: cancellation bandwidth and depth. Delay deviation is investigated to be the determining factor of cancellation bandwidth, based on which the bandwidth advantage of the OSIC system over electrical schemes is also proven theoretically. Cancellation depth in the narrowband is mostly influenced by attenuation and delay-adjusting deviation, while in the broadband case, the performance is mostly limited by frequency-dependent amplitude and phase mismatch. The cancellation performance analysis is suitable for most linear modulation-demodulation OSIC systems, including the directly modulated laser (DML)-based OSIC system verified experimentally in this paper. The cancellation model is well demonstrated by the agreement between experimental cancellation results and predicted performance. For over-the-air demonstration with the employment of antennas, broadband cancellation within 450 MHz bandwidth of 22 dB and 25 dB is achieved at 900 MHz and 2.4 GHz, respectively. In addition, orthogonal frequency division multiplexing signals are employed to show in-band full-duplex transmission with good performance by the DML-based OSIC system, with successful suppression of self-interference and recovery of the signal of interest.

  6. Wideband CMOS low noise amplifier including an active balun

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2007-01-01

    An inductorless LNA with active balun is proposed for multi-standard radio applications between 100MHz and 6GHz [1]. It exploits a combination of a common-gate (CG) stage and an common-source (CS) stage with replica biasing to maximize balanced operation, while simultaneously canceling the noise and

  7. Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Raupach, Rainer; Flohr, Thomas G

    2011-01-01

    We analyze the signal and noise propagation of differential phase-contrast computed tomography (PCT) compared with conventional attenuation-based computed tomography (CT) from a theoretical point of view. This work focuses on grating-based differential phase-contrast imaging. A mathematical framework is derived that is able to analytically predict the relative performance of both imaging techniques in the sense of the relative contrast-to-noise ratio for the contrast of any two materials. Two fundamentally different properties of PCT compared with CT are identified. First, the noise power spectra show qualitatively different characteristics implying a resolution-dependent performance ratio. The break-even point is derived analytically as a function of system parameters such as geometry and visibility. A superior performance of PCT compared with CT can only be achieved at a sufficiently high spatial resolution. Second, due to periodicity of phase information which is non-ambiguous only in a bounded interval statistical phase wrapping can occur. This effect causes a collapse of information propagation for low signals which limits the applicability of phase-contrast imaging at low dose.

  8. Design and Characterization of a 5.2 GHz/2.4 GHz ΣΔ Fractional- N Frequency Synthesizer for Low-Phase Noise Performance

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper presents a complete noise analysis of a ΣΔ -based fractional- N phase-locked loop (PLL based frequency synthesizer. Rigorous analytical and empirical formulas have been given to model various phase noise sources and spurious components and to predict their impact on the overall synthesizer noise performance. These formulas have been applied to an integrated multiband WLAN frequency synthesizer RFIC to demonstrate noise minimization through judicious choice of loop parameters. Finally, predicted and measured phase jitter showed good agreement. For an LO frequency of 4.3 GHz, predicted and measured phase noise was 0.50 ° rms and 0.535 ° rms, respectively.

  9. A time-variant analysis of the 1/f^(2) phase noise in CMOS parallel LC-Tank quadrature oscillators

    DEFF Research Database (Denmark)

    Andreani, Pietro

    2006-01-01

    This paper presents a study of 1/f2 phase noise in quadrature oscillators built by connecting two differential LC-tank oscillators in a parallel fashion. The analysis clearly demonstrates the necessity of adopting a time-variant theory of phase noise, where a more simplistic, time...

  10. Low-complexity BCH codes with optimized interleavers for DQPSK systems with laser phase noise

    DEFF Research Database (Denmark)

    Leong, Miu Yoong; Larsen, Knud J.; Jacobsen, Gunnar

    2017-01-01

    The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose...... simulations. For a target post-FEC BER of 10−6, codes selected using our method result in BERs around 3× target and achieve the target with around 0.2 dB extra signal-to-noise ratio....

  11. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    Science.gov (United States)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  12. Phase-correcting non-local means filtering for diffusion-weighted imaging of the spinal cord.

    Science.gov (United States)

    Kafali, Sevgi Gokce; Çukur, Tolga; Saritas, Emine Ulku

    2018-02-09

    DWI suffers from low SNR when compared to anatomical MRI. To maintain reasonable SNR at relatively high spatial resolution, multiple acquisitions must be averaged. However, subject motion or involuntary physiological motion during diffusion-sensitizing gradients cause phase offsets among acquisitions. When the motion is localized to a small region, these phase offsets become particularly problematic. Complex averaging of acquisitions lead to cancellations from these phase offsets, whereas magnitude averaging results in noise amplification. Here, we propose an improved reconstruction for multi-acquisition DWI that effectively corrects for phase offsets while reducing noise. Each acquisition is processed with a refocusing reconstruction for global phase correction and a partial k-space reconstruction via projection-onto-convex-sets (POCS). The proposed reconstruction then embodies a new phase-correcting non-local means (PC-NLM) filter. PC-NLM is performed on the complex-valued outputs of the POCS algorithm aggregated across acquisitions. The PC-NLM filter leverages the shared structure among multiple acquisitions to simultaneously alleviate nuisance factors including phase offsets and noise. Extensive simulations and in vivo DWI experiments of the cervical spinal cord are presented. The results demonstrate that the proposed reconstruction improves image quality by mitigating signal loss because of phase offsets and reducing noise. Importantly, these improvements are achieved while preserving the accuracy of apparent diffusion coefficient maps. An improved reconstruction incorporating a PC-NLM filter for multi-acquisition DWI is presented. This reconstruction can be particularly beneficial for high-resolution or high-b-value DWI acquisitions that suffer from low SNR and phase offsets from local motion. © 2018 International Society for Magnetic Resonance in Medicine.

  13. A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction

    International Nuclear Information System (INIS)

    Ma, Yaping; Wei, Guo; Sun, Jinwei; Xiao, Yegui

    2016-01-01

    In this paper, a multichannel nonlinear adaptive noise canceller (ANC) based on the generalized functional link artificial neural network (FLANN, GFLANN) is proposed for fetal electrocardiogram (FECG) extraction. A FIR filter and a GFLANN are equipped in parallel in each reference channel to respectively approximate the linearity and nonlinearity between the maternal ECG (MECG) and the composite abdominal ECG (AECG). A fast scheme is also introduced to reduce the computational cost of the FLANN and the GFLANN. Two (2) sets of ECG time sequences, one synthetic and one real, are utilized to demonstrate the improved effectiveness of the proposed nonlinear ANC. The real dataset is derived from the Physionet non-invasive FECG database (PNIFECGDB) including 55 multichannel recordings taken from a pregnant woman. It contains two subdatasets that consist of 14 and 8 recordings, respectively, with each recording being 90 s long. Simulation results based on these two datasets reveal, on the whole, that the proposed ANC does enjoy higher capability to deal with nonlinearity between MECG and AECG as compared with previous ANCs in terms of fetal QRS (FQRS)-related statistics and morphology of the extracted FECG waveforms. In particular, for the second real subdataset, the F1-measure results produced by the PCA-based template subtraction (TS pca ) technique and six (6) single-reference channel ANCs using LMS- and RLS-based FIR filters, Volterra filter, FLANN, GFLANN, and adaptive echo state neural network (ESN a ) are 92.47%, 93.70%, 94.07%, 94.22%, 94.90%, 94.90%, and 95.46%, respectively. The same F1-measure statistical results from five (5) multi-reference channel ANCs (LMS- and RLS-based FIR filters, Volterra filter, FLANN, and GFLANN) for the second real subdataset turn out to be 94.08%, 94.29%, 94.68%, 94.91%, and 94.96%, respectively. These results indicate that the ESN a and GFLANN perform best, with the ESN a being slightly better than the GFLANN but about four times

  14. 34 CFR 674.59 - Cancellation for military service.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Cancellation for military service. 674.59 Section 674... Cancellation for military service. (a) Cancellation on a Defense loan. (1) An institution must cancel up to 50... cancellation rate is 121/2 percent of the original loan principal, plus the interest on the unpaid balance...

  15. Feasibility of Johnson Noise Thermometry based on Digital Signal Processing Techniques

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kim, Yang Mo

    2014-01-01

    This paper presents an implementation strategy of noise thermometry based on a digital signal processing technique and demonstrates its feasibilities. A key factor in its development is how to extract the small thermal noise signal from other noises, for example, random noise from amplifiers and continuous electromagnetic interference from the environment. The proposed system consists of two identical amplifiers and uses a cross correlation function to cancel the random noise of the amplifiers. Then, the external interference noises are eliminated by discriminating the difference in the peaks between the thermal signal and external noise. The gain of the amplifiers is estimated by injecting an already known pilot signal. The experimental simulation results of signal processing methods have demonstrated that the proposed approach is an effective method in eliminating an external noise signal and performing gain correction for development of the thermometry

  16. Feedback to Suppress Phase Noise at Aladdin

    CERN Document Server

    Bosch, Robert A; Kleman, Kevin J

    2005-01-01

    The performance of the Aladdin infrared beamline is adversely affected by a Robinson mode in which all bunches move in unison with a frequency of 3 kHz. To decrease these oscillations, feedback has been installed in the radiofrequency system to damp longitudinal motion of the bunch centroids. Simulations indicate that at frequencies around 3 kHz, the phase noise generated by Robinson modes may be reduced 20 dB by feedback with a damping time of 0.3 ms. This agrees with the measured performance of feedback circuitry. Since the feedback greatly improves operation of the infrared beamline, it is now incorporated into the standard operation of Aladdin.

  17. Lateralization of noise bursts in interaurally correlated or uncorrelated background noise using interaural level differences.

    Science.gov (United States)

    Reed, Darrin K; van de Par, Steven

    2015-10-01

    The interaural level difference (ILD) of a lateralized target source may be effectively reduced when the target is presented together with background noise containing zero ILD. It is not certain whether listeners perceive a position congruent with the reduced ILD or the actual target ILD in a lateralization task. Two sets of behavioral experiments revealed that many listeners perceived a position at or even larger than that corresponding to the presented target ILD when a temporal onset/offset asynchrony between the broadband target and the broadband background noise was present. When no temporal asynchrony was present, however, the perceived lateral position indicated a dependency on the coherence of the background noise for several listeners. With interaurally correlated background noise, listeners reported a reduced ILD resulting from the combined target and background noise stimulus. In contrast, several of the listeners made a reasonable estimate of the position corresponding to the target ILD for interaurally uncorrelated, broadband, background noise. No obvious difference in performance was seen between low- or high-frequency stimuli. Extension of a weighting template to the output of a standard equalization-cancellation model was shown to remove a lateral bias on the predicted target ILD resulting from the presence of background noise. Provided that an appropriate weighting template is applied based on knowledge of the background noise coherence, good prediction of the behavioral data is possible.

  18. Noise and Vibration Monitoring for Premium Efficiency IE 3 Three-Phase Induction Motors

    Directory of Open Access Journals (Sweden)

    NISTOR, C. G.

    2015-08-01

    Full Text Available The paper presents the original SV-100 platform that enables low-cost and very high accuracy determinations of noise and vibration levels. The aim of the proposed platform is to achieve an effective integration of the two topics of this analysis: vibrations and noises. To the best of our knowledge, no low price, dedicated compact platform with embedded measuring instruments exists. For proving the practical utility of the proposed platform, two induction motors of 7.5 kW and 11 kW, respectively, in single-layer winding, at 1000 rpm, with IE3 premium efficiency were analyzed. This analysis is required because, according to IEC60034-30 standard, the IE3 efficiency standard has become mandatory for induction motors of rated power greater than 7.5 kW. Therefore, in order to improve the motor operating efficiency, the power losses caused by noises and vibrations have to be reduced. Several variants of supply were studied, i.e., by the three-phase 50 Hz network and by a three-phase inverter at 40, 50 and 60 Hz, respectively. The experimental determinations of noises are presented comparatively, by using a Bruel&Kjaer sonometer and by using the new platform SV-100. The results are compared with the IEC60034 standard.

  19. The second phase of bipolar, nanosecond-range electric pulses determines the electroporation efficiency.

    Science.gov (United States)

    Pakhomov, Andrei G; Grigoryev, Sergey; Semenov, Iurii; Casciola, Maura; Jiang, Chunqi; Xiao, Shu

    2018-03-29

    Bipolar cancellation refers to a phenomenon when applying a second electric pulse reduces ("cancels") cell membrane damage by a preceding electric pulse of the opposite polarity. Bipolar cancellation is a reason why bipolar nanosecond electric pulses (nsEP) cause weaker electroporation than just a single unipolar phase of the same pulse. This study was undertaken to explore the dependence of bipolar cancellation on nsEP parameters, with emphasis on the amplitude ratio of two opposite polarity phases of a bipolar pulse. Individual cells (CHO, U937, or adult mouse ventricular cardiomyocytes (VCM)) were exposed to either uni- or bipolar trapezoidal nsEP, or to nanosecond electric field oscillations (NEFO). The membrane injury was evaluated by time-lapse confocal imaging of the uptake of propidium (Pr) or YO-PRO-1 (YP) dyes and by phosphatidylserine (PS) externalization. Within studied limits, bipolar cancellation showed little or no dependence on the electric field intensity, pulse repetition rate, chosen endpoint, or cell type. However, cancellation could increase for larger pulse numbers and/or for longer pulses. The sole most critical parameter which determines bipolar cancellation was the phase ratio: maximum cancellation was observed with the 2nd phase of about 50% of the first one, whereas a larger 2nd phase could add a damaging effect of its own. "Swapping" the two phases, i.e., delivering the smaller phase before the larger one, reduced or eliminated cancellation. These findings are discussed in the context of hypothetical mechanisms of bipolar cancellation and electroporation by nsEP. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Noise in position measurement by centroid calculation

    International Nuclear Information System (INIS)

    Volkov, P.

    1996-01-01

    The position of a particle trajectory in a gaseous (or semiconductor) detector can be measured by calculating the centroid of the induced charge on the cathode plane. The charge amplifiers attached to each cathode strip introduce noise which is added to the signal. This noise broadens the position resolution line. Our article gives an analytical tool to estimate the resolution broadening due to the noise per strip and the number of strips involved in the centroid calculation. It is shown that the position resolution increases faster than the square root of the number of strips involved. We also consider the consequence of added interstrip capacitors, intended to diminish the differential nonlinearity. It is shown that the position error increases slower than linearly with the interstrip capacities, due to the cancellation of correlated noise. The estimation we give, can be applied to calculations of position broadening other than the centroid finding. (orig.)

  1. Application of Adaptive Noise Cancellation for Anti-Vibration in Yield Monitor

    Directory of Open Access Journals (Sweden)

    Yan LI

    2014-04-01

    Full Text Available In the process of grain harvest, yield monitor system acquires real-time spatial distribution information of crop yield to provide important basis of decision-making for subsequent assignments of precision agriculture. The measurement accuracy has been seriously affected by Combine working vibration. Based on an innovative test platform of wheat combine harvester for yield monitor, well simulate the working vibration at the field situation; impact-based grain flow sensor with the structure of dual-parallel-beams as test terminals and using the NI (National Instrument data acquisition card to acquire signals; grain impacted frequency as fundamental frequency to process harmonic extraction, and for extracted signals, applied the improved LMS adaptive algorithm to interference cancellation, aim to eliminate interference cased by working vibration. The comparative experiment show that the maximum relative error less than 2 % under the proposed method and proved that the proposed algorithm in this paper is effective.

  2. Corrosion detection of carbon steel in water/oil two phases environment by electrochemical noise analysis

    International Nuclear Information System (INIS)

    Gusmano, G.; Montesperelli, G.; De Grandis, A.

    1998-01-01

    The aim of this paper is to demonstrate the effectiveness of the electrochemical noise analysis to detect the onset of corrosion phenomena in a very high resistivity medium. Tests were carried out on carbon steel electrodes immersed in a water/mineral oil two phases environment with high concentration of CO 2 , different aqueous/organic phase ratio, sulphide content between 0 and 0.5 g/l and pH between 1 and 5. The evolution of corrosion phenomena were followed by collecting current and potential noise between three nominally identical electrodes. The noise data were analysed in the time and in the frequency domain. In spite of a great loss of sensitivity of the method with respect to tests performed in aqueous solution, the data indicate a good agreement between the standard deviations and the power level of power spectra density (PSD) of current and potential noise signals and corrosion rates by means of weight loss. The values of the PSD slope, indicate the form of corrosion. The effect of water/oil ratio, sulphide concentration and pH on the corrosion rate was determined. Finally two methods to increase the sensitivity of the electrochemical noise are proposed. (orig.)

  3. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  4. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  5. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    International Nuclear Information System (INIS)

    Contillo, Adriano; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo

    2016-01-01

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  6. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2016-06-15

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  7. A low-power and low-phase-noise LC digitally controlled oscillator featuring a novel capacitor bank

    Energy Technology Data Exchange (ETDEWEB)

    Tian Huanhuan; Li Zhiqiang; Chen Pufeng; Wu Rufei; Zhang Haiying, E-mail: thuan8@126.com [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-12-15

    A monolithic low-power and low-phase-noise digitally controlled oscillator (DCO) based on a symmetric spiral inductor with center-tap and novel capacitor bank was implemented in a 0.18 {mu}m CMOS process with six metal layers. A third new way to change capacitance is proposed and implemented in this work. Results show that the phase noise at 1 MHz offset frequency is below -122.5 dBc/Hz while drawing a current of only 4.8 mA from a 1.8 V supply. Also, the DCO can work at low supply voltage conditions with a 1.6 V power supply and 4.1 mA supply current for the DCO's core circuit, achieving a phase-noise of -21.5 dBc/Hz at offset of 1 MHz. It demonstrates that the supply pushing of DCO is less than 10 MHz/V. (semiconductor integrated circuits)

  8. Full-diversity partial interference cancellation for multi-user wireless relaying networks

    KAUST Repository

    El Astal, M. T O

    2013-12-01

    We focus on the uplink channel of multi-user wireless relaying networks in a coverage extension scenario. The network consists of two users, a single half duplex (HD) relay and a destination, all equipped with multiple antennas. Perfect channel state information (CSI) is assumed to be available exclusively at the receiving nodes (i.e., the relay and the destination) while the users are assumed to be completely blind. The communication through the considered network takes place over two phases. During the first phase, both users send their information concurrently to the relay. The second phase consists of decoding the received data and forwarding it simultaneously to the destination. A transmission scheme that achieves full-diversity under partial interference cancellation (PIC) group decoding is proposed. Unlike many existing schemes, it allows the concurrent transmission in both phases while achieving the full-diversity gain of full time division multiple access (TDMA) transmission regardless of the number of antennas at each node. Numerical comparison with existing schemes in the literature is provided to corroborate our theoretical claims. It is found that our interference cancellation (IC) scheme clearly outperforms existing schemes at the expense of an affordable increase in decoding complexity at both of the relay and destination. © 2013 IEEE.

  9. Full-diversity partial interference cancellation for multi-user wireless relaying networks

    KAUST Repository

    El Astal, M. T O; Ismail, Amr; Alouini, Mohamed-Slim; Olivier, Jan Corné

    2013-01-01

    We focus on the uplink channel of multi-user wireless relaying networks in a coverage extension scenario. The network consists of two users, a single half duplex (HD) relay and a destination, all equipped with multiple antennas. Perfect channel state information (CSI) is assumed to be available exclusively at the receiving nodes (i.e., the relay and the destination) while the users are assumed to be completely blind. The communication through the considered network takes place over two phases. During the first phase, both users send their information concurrently to the relay. The second phase consists of decoding the received data and forwarding it simultaneously to the destination. A transmission scheme that achieves full-diversity under partial interference cancellation (PIC) group decoding is proposed. Unlike many existing schemes, it allows the concurrent transmission in both phases while achieving the full-diversity gain of full time division multiple access (TDMA) transmission regardless of the number of antennas at each node. Numerical comparison with existing schemes in the literature is provided to corroborate our theoretical claims. It is found that our interference cancellation (IC) scheme clearly outperforms existing schemes at the expense of an affordable increase in decoding complexity at both of the relay and destination. © 2013 IEEE.

  10. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  11. Patient experiences with interventions to reduce surgery cancellations

    DEFF Research Database (Denmark)

    Hovlid, Einar; von Plessen, Christian; Haug, Kjell

    2013-01-01

    The cancellation of planned surgery harms patients, increases waiting times and wastes scarce health resources. Previous studies have evaluated interventions to reduce cancellations from medical and management perspectives; these have focused on cost, length of stay, improved efficiency......, and reduced post-operative complications. In our case a hospital had experienced high cancellation rates and therefore redesigned their pathway for elective surgery to reduce cancelations. We studied how patients experienced interventions to reduce cancellations....

  12. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    Science.gov (United States)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  13. Group study of an "undercover" test for visuospatial neglect: invisible cancellation can reveal more neglect than standard cancellation.

    Science.gov (United States)

    Wojciulik, E; Rorden, C; Clarke, K; Husain, M; Driver, J

    2004-09-01

    Visual neglect is a relatively common deficit after brain damage, particularly strokes. Cancellation tests provide standard clinical measures of neglect severity and deficits in daily life. A recent single-case study introduced a new variation on standard cancellation. Instead of making a visible mark on each target found, the patient made invisible marks (recorded with carbon paper underneath, for later scoring). Such invisible cancellation was found to reveal more neglect than cancellation with visible marks. Here we test the generality of this. Twenty three successive cases with suspected neglect each performed cancellation with visible or invisible marks. Neglect of contralesional targets was more pronounced with invisible marks. Indeed, about half of the patients only showed neglect in this version. For cases showing more neglect with invisible marks, stronger neglect of contralesional targets correlated with more revisits to ipsilesional targets for making additional invisible marks upon them. These results indicate that cancellation with invisible marks can reveal more neglect than standard cancellation with visible marks, while still providing a practical bedside test. Our observations may be consistent with recent proposals that demands on spatial working memory (required to keep track of previously found items only when marked invisibly) can exacerbate spatial neglect.

  14. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    Science.gov (United States)

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  15. Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations

    NARCIS (Netherlands)

    Kästle, Emanuel D.; Soomro, Riaz; Weemstra, C.; Boschi, Lapo; Meier, Thomas

    2016-01-01

    Phase velocities derived from ambient-noise cross-correlation are compared with phase velocities calculated from cross-correlations of waveform recordings of teleseismic earthquakes whose epicentres are approximately on the station–station great circle. The comparison is conducted both for Rayleigh

  16. MEMS microphone innovations towards high signal to noise ratios (Conference Presentation) (Plenary Presentation)

    Science.gov (United States)

    Dehé, Alfons

    2017-06-01

    After decades of research and more than ten years of successful production in very high volumes Silicon MEMS microphones are mature and unbeatable in form factor and robustness. Audio applications such as video, noise cancellation and speech recognition are key differentiators in smart phones. Microphones with low self-noise enable those functions. Backplate-free microphones enter the signal to noise ratios above 70dB(A). This talk will describe state of the art MEMS technology of Infineon Technologies. An outlook on future technologies such as the comb sensor microphone will be given.

  17. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  18. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascad...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  19. Simpplified extended Kalman filter phase noise estimation for CO-OFDM transmissions.

    Science.gov (United States)

    Nguyen, Tu T; Le, Son T; Wuilpart, Marc; Yakusheva, Tatiana; Mégret, Patrice

    2017-10-30

    We propose a flexible simplified extended Kalman filter (S-EKF) scheme that can be applied in both pilot-aided and blind modes for phase noise compensation in 16-QAM CO-OFDM transmission systems employing a small-to-moderate number of subcarriers. The performance of the proposed algorithm is evaluated and compared with conventional pilot-aided (PA) and blind phase search (BPS) methods via extensive an Monte Carlo simulation in a back-to-back configuration and with a dual polarization fiber transmission. For 64 subcarrier 32 Gbaud 16-QAM CO-OFDM systems with 200 kHz combined laser linewidths, an optical signal-to-noise ratio penalty as low as 1 dB can be achieved with the proposed S-EKF scheme using only 2 pilots in the pilot-aided mode and just 4 inputs in the blind mode, resulting in a spectrally efficient enhancement by a factor of 3 and a computational effort reduction by a factor of more than 50 in comparison with the conventional PA and the BPS methods, respectively.

  20. Contributions to noise in the data readout for Trigger Tracker in the LHCb Experiment

    CERN Document Server

    Bieler, Ueli

    This thesis reports the analysis of contributions to noise in the data readout for Trigger Tracker in the LHCb experiment. Measurements have shown that some specific data channels have more noise than the others. This additional contributions to noise cannot be explained by basic electronic noise principles of the detector but by noise sources in the readout chain. The focus is on the channels near the header. Because of a crosstalk effect in the readout electronics the pseudo- digital header affects the close-by analog data channels. Therefore the correlation between the header and the data channels is studied precisely by self-made analysis tools in order to develop an algorithm that cancels the crosstalk contribution to noise. Thanks the algorithm the noise can be reduced efficiently.

  1. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    Science.gov (United States)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  2. Unexpected role of excess noise in spontaneous emission

    International Nuclear Information System (INIS)

    Lamprecht, C.; Ritsch, H.

    2002-01-01

    A single inverted two-level atom is used as a theoretical model for a quantum noise detector to investigate fundamental properties of excess noise in an unstable optical resonator. For a symmetric unstable spherical mirror cavity, we develop an analytic quantum description of the field in terms of a complete set of normalizable biorthogonal quasimodes and adjoint modes. Including the interaction with a single two-level atom leads to a description analogous to the Jaynes-Cummings model with modified coupling constants. One finds a strong position and geometry-dependent atomic decay probability proportional to the square root √(K) of the excess noise factor K at the cavity center. Introducing an additional homogeneous gain one recovers the K-fold emission enhancement that has been predicted before for the linewidth of an unstable cavity laser. We find that excess noise may be viewed as a spatial redistribution of the field quantum noise inside the resonator. Taking a position average of the atomic decay rate over the cavity volume leads to a cancellation of the excess noise enhancement

  3. The propagation of stochastic pixel noise into magnitude and phase values in the Fourier analysis of digital images

    International Nuclear Information System (INIS)

    Holden, J.E.; Halama, J.R.; Hasegawa, B.H.

    1986-01-01

    The use of Fourier analysis in nuclear medicine gated blood ventriculography provides a useful example of the application of Fourier methods to digital medical imaging. In particular, the nuclear medicine experience demonstrates that there is diagnostic significance not only in the pixel averages of temporal Fourier magnitude and phase computed in various image regions, but also in the distributions of the individual pixel values about those averages. However, a region containing pixels that are perfectly synchronous on average would still yield a finite distribution of calculated Fourier coefficients due to the propagation of stochastic pixel noise into the calculated values. The authors have studied this noise component of both the magnitude and phase distributions using phantom studies and computer simulation. In both approaches, several thousand one-pixel 'ventriculograms' were generated, all identical to each other except for stochastic noise. Fourier magnitudes and phases at several frequencies were calculated and histograms generated. A theoretical prediction of the distributions was developed and shown to fit the experimental results well. The authors' formalism can be used to estimate study count requirements or, for fixed study counts, to assess the stochastic noise contribution in the interpretation of measured phase and magnitude distributions. (author)

  4. Theory of the cancellation of 4-photon resonances by an off-resonance 3-photon cancellation

    DEFF Research Database (Denmark)

    Elk, M.; Lambropoulos, P.; Tang, X.

    1992-01-01

    We present a complete account of our recent work [Phys. Rev. A 44, 31 (1991)] in which we investigate the theory of cancellation by interference between the absorption of three fundamental laser photons and one third-harmonic photon. The theory is formulated in terms of the density matrix so...... as to take detunings, dephasing, and laser bandwidth into account. The result is a theory of cancellation for finite detuning that explains how four-photon resonances can be canceled by a three-photon mechanism if there is an atomic level at near-three-photon resonance. The treatment is extended to focused...

  5. Phase noise characterization of a QD-based diode laser frequency comb.

    Science.gov (United States)

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing

    2017-07-10

    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  6. Elimination of white Gaussian noise in arterial phase CT images to bring adrenal tumours into the forefront.

    Science.gov (United States)

    Koyuncu, Hasan; Ceylan, Rahime

    2018-04-01

    Dynamic Contrast-Enhanced Computed Tomography (DCE-CT) is applied to observe adrenal tumours in detail by utilising from the contrast matter, which generally brings the tumour into the forefront. However, DCE-CT images are generally influenced by noises that occur as the result of the trade-off between radiation doses vs. noise. Herein, this situation constitutes a challenge in the achievement of accurate tumour segmentation. In CT images, most of the noises are similar to Gaussian Noise. In this study, arterial phase CT images containing adrenal tumours are utilised, and elimination of Gaussian Noise is realised by fourteen different techniques reported in literature for the achievement of the best denoising process. In this study, the Block Matching and 3D Filtering (BM3D) algorithm typically achieve reliable Peak Signal-to-Noise Ratios (PSNR) and resolves challenges of similar techniques when addressing different levels of noise. Furthermore, BM3D obtains the best mean PSNR values among the first five techniques. BM3D outperforms to other techniques by obtaining better Total Statistical Success (TSS), CPU time and computation cost. Consequently, it prepares clearer arterial phase CT images for the next step (segmentation of adrenal tumours). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Wang, Hua; Fan, Wei

    2018-01-01

    In this paper, the effects of oscillator phase noises (PNs) on multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance ...

  8. Noise properties of Hilbert transform evaluation

    International Nuclear Information System (INIS)

    Pavliček, Pavel; Svak, Vojtěch

    2015-01-01

    The Hilbert transform is a standard method for the calculation of the envelope and phase of a modulated signal in optical measurement methods. Usually, the intensity of light is converted into an electric signal at a detector. Therefore the actual spatially or temporally sampled signal is always affected by noise. Because the noise values of individual samples are independent, the noise can be considered as white. If the envelope and phase are calculated from the noised signal, they will also be affected by the noise. We calculate the variance and spectral density of both the envelope noise and the phase noise. We determine which parameters influence the variance and spectral density of both the envelope noise and the phase noise. Finally, we determine the influence of the noise on the measurement uncertainty in white-light interferometry and fringe-pattern analysis. (paper)

  9. Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots

    Science.gov (United States)

    Zhang, Lu; Ming, Yi; Li, Jin

    2017-11-01

    Due to the unique phase noise (PN) characteristics in direct-detection optical OFDM (DDO-OFDM) systems, the design of PN compensator is considered as a difficult task. In this paper, a laser PN suppression scheme with low complexity for DDO-OFDM based on coherent superposition of data carrying subcarriers and their phase conjugates is proposed. Through theoretical derivation, the obvious PN suppression is observed. The effectiveness of this technique is demonstrated by simulation of a 4-QAM DDO-OFDM system over 1000 km transmission length at different laser line-width and subcarrier frequency spacing. The results show that the proposed scheme can significantly suppress both varied phase rotation term (PTR) and inter-carrier interference (ICI), and the laser line-width can be relaxed with up to 9 dB OSNR saving or even breakthrough of performance floor.

  10. Wavelet-LMS algorithm-based echo cancellers

    Science.gov (United States)

    Seetharaman, Lalith K.; Rao, Sathyanarayana S.

    2002-12-01

    This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).

  11. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    International Nuclear Information System (INIS)

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  12. Optimization of the GOES-1 Imagers radiometric accuracy: Drift and 1/f noise suppression

    International Nuclear Information System (INIS)

    Bremer, J.C.; Comeyne, G.J. III

    1994-01-01

    The raw output of many scanning radiometers is a small, rapidly varying signal superimposed on a large background that varies more slowly, due to thermal drifts and 1/f noise. To isolate the signal, it is necessary to perform a differential measurement: measure a known reference and subtract it from each of the raw outputs, canceling the common-mode background. Calibration is also a differential measurement: the difference between two outputs is divided by the difference between the two known references that produced them to determine the gain. The GOES-I Imager views space as its background subtraction reference and a full-aperture blackbody as its second reference for calibration. The background suppression efficiency of a differential measurement algorithm depends on its timing. The Imager measures space references before and after each scan line and performs interpolated background subtraction: a unique, linearly weighted average of the two references is subtracted from each scene sample in that line, canceling both constant bias and linear drift. One model quantifies the Gaussian noise and 1/f noise terms in the noise equivalent bandwidth, which is minimized to optimize the algorithm. The authors have obtained excellent agreement between the analytical predictions and Monte Carlo computer simulations

  13. Low-noise detector and amplifier design for 100 ns direct detection CO{sub 2} LIDAR receiver

    Energy Technology Data Exchange (ETDEWEB)

    Cafferty, M.M.; Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Fuller, K.

    1997-06-01

    The development and test results of a prototype detector/amplifier design for a background limited, pulsed 100 ns, 10--100 kHz repetition rate LIDAR/DIAL receiver system are presented. Design objectives include near-matched filter detection of received pulse amplitude and round trip time-of-flight, and the elimination of excess correlated detector/amplifier noise for optimal pulse averaging. A novel pole-zero cancellation amplifier, coupled with a state-of-the-art SBRC (Santa Barbara Research Center) infrared detector was implemented to meet design objectives. The pole-zero cancellation amplifier utilizes a tunable, pseudo-matched filter technique to match the width of the laser pulse to the shaping time of the filter for optimal SNR performance. Low frequency correlated noise, (l/f and drift noise) is rejected through a second order high gain feedback loop. The amplifier also employs an active detector bias stage minimizing detector drift. Experimental results will be provided that demonstrate near-background limited, 100 ns pulse detection performance given a 8.5--11.5 {micro}m (300 K B.B.) radiant background, with the total noise floor spectrally white for optimal pulse averaging efficiency.

  14. A novel transmitter IQ imbalance and phase noise suppression method utilizing pilots in PDM CO-OFDM system

    Science.gov (United States)

    Zhang, Haoyuan; Ma, Xiurong; Li, Pengru

    2018-04-01

    In this paper, we develop a novel pilot structure to suppress transmitter in-phase and quadrature (Tx IQ) imbalance, phase noise and channel distortion for polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. Compared with the conventional approach, our method not only significantly improves the system tolerance of IQ imbalance as well as phase noise, but also provides higher transmission speed. Numerical simulations of PDM CO-OFDM system is used to validate the theoretical analysis under the simulation conditions: the amplitude mismatch 3 dB, the phase mismatch 15°, the transmission bit rate 100 Gb/s and 560 km standard signal-mode fiber transmission. Moreover, the proposed method is 63% less complex than the compared method.

  15. Nuclear plant cancellations: causes, costs, and consequences

    International Nuclear Information System (INIS)

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested

  16. An improved affine projection algorithm for active noise cancellation

    Science.gov (United States)

    Zhang, Congyan; Wang, Mingjiang; Han, Yufei; Sun, Yunzhuo

    2017-08-01

    Affine projection algorithm is a signal reuse algorithm, and it has a good convergence rate compared to other traditional adaptive filtering algorithm. There are two factors that affect the performance of the algorithm, which are step factor and the projection length. In the paper, we propose a new variable step size affine projection algorithm (VSS-APA). It dynamically changes the step size according to certain rules, so that it can get smaller steady-state error and faster convergence speed. Simulation results can prove that its performance is superior to the traditional affine projection algorithm and in the active noise control (ANC) applications, the new algorithm can get very good results.

  17. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    Science.gov (United States)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  18. Active cancellation - A means to zero dead-time pulse EPR.

    Science.gov (United States)

    Franck, John M; Barnes, Ryan P; Keller, Timothy J; Kaufmann, Thomas; Han, Songi

    2015-12-01

    The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    Science.gov (United States)

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  20. Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB

    Science.gov (United States)

    Quartullo, D.; Shaposhnikova, E.; Timko, H.

    2017-07-01

    Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.

  1. An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

    International Nuclear Information System (INIS)

    Gao Peijun; Min Hao; Oh, N J

    2009-01-01

    A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative g m -cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply. (semiconductor integrated circuits)

  2. Voluntary Cancellation of a Pesticide Product or Use

    Science.gov (United States)

    A registrant can cancel the registration of a pesticide product or cancel a use from the product’s label at any time as stated in Section 6(f) of FIFRA. Learn how to request a voluntary cancellation or use deletion.

  3. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    Energy Technology Data Exchange (ETDEWEB)

    Lardner, Timothy; Gachagan, Anthony [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, Minghui [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-02-18

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  4. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    Science.gov (United States)

    Lardner, Timothy; Li, Minghui; Gachagan, Anthony

    2014-02-01

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  5. Low-complexity linewidth-tolerant time domain sub-symbol optical phase noise suppression in CO-OFDM systems.

    Science.gov (United States)

    Hong, Xuezhi; Hong, Xiaojian; Zhang, Junwei; He, Sailing

    2016-03-07

    Two linewidth-tolerant optical phase noise suppression algorithms, non-decision aided sub-symbol optical phase noise suppression (NDA-SPS) and partial-decision aided sub-symbol optical phase noise suppression (PDA-SPS), based on low-complexity time domain sub-symbol processing are proposed for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. High accuracy carrier phase estimation is achieved in the NDA-SPS algorithm without decision error propagation. Compared with NDA-SPS, partial-decision aided estimation is introduced in PDA-SPS to reduce the pilot-overhead by half, yet only a small performance degradation is induced. The principles and computational complexities of the proposed algorithms are theoretically analyzed. By adopting specially designed comb-type pilot subcarriers, multiplier-free observation-based matrix generation is realized in the proposed algorithms. Computationally intensive discrete Fourier transform (DFT) or inverse DFT (IDFT) operations, which are usually carried out in other high-performance inter-carrier-interference (ICI) mitigation algorithms multiple times, are completely avoided. Compared with several other sub-symbol algorithms, the proposed algorithms with lower complexities offer considerably larger laser linewidth tolerances as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the optimal performance of PDA-SPS can be achieved with moderate numbers of sub-symbols.

  6. Case review analysis of operating room decisions to cancel surgery.

    Science.gov (United States)

    Chang, Ju-Hsin; Chen, Ke-Wei; Chen, Kuen-Bao; Poon, Kin-Shing; Liu, Shih-Kai

    2014-07-23

    Cancellation of surgery close to scheduled time causes a waste of healthcare resources. The current study analyzes surgery cancellations occurring after the patient has been prepared for the operating room, in order to see whether improvements in the surgery planning process may reduce the number of cancellations. In a retrospective chart review of operating room surgery cancellations during the period from 2006 to 2011, cancellations were divided into the following categories: inadequate NPO; medical; surgical; system; airway; incomplete evaluation. The relative use of these reasons in relation to patient age and surgical department was then evaluated. Forty-one percent of cancellations were for other than medical reasons. Among these, 17.7% were due to incomplete evaluation, and 8.2% were due to family issues. Sixty seven percent of cancelled cases eventually received surgery. The relative use of individual reasons for cancellation varied with patient age and surgical department. The difference between cancellations before and after anesthesia was dependent on the causes of cancellation, but not age, sex, ASA status, or follow-up procedures required. Almost half of the cancellations were not due to medical reasons, and these cancellations could be reduced by better administrative and surgical planning and better communication with the patient and/or his family.

  7. Phase slip and telegraph noise in δ-MoN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Buh, Jože, E-mail: joze.buh@ijs.si [Jozef Stefan Institute, Department of Complex Matter, Jamova 39, SI-1000 Ljubljana (Slovenia); Mrzel, Aleš; Kovič, Andrej; Kabanov, Viktor [Jozef Stefan Institute, Department of Complex Matter, Jamova 39, SI-1000 Ljubljana (Slovenia); Jagličić, Zvonko [Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana (Slovenia); University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, SI-1000 Ljubljana (Slovenia); Vrtnik, Stanislav; Koželj, Primož [Jozef Stefan Institute, Jozef Stefan Institute, Department of Condensed Matter Physics, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, Jozef Stefan Institute, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Mihailović, Dragan [Jozef Stefan Institute, Department of Complex Matter, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, Jozef Stefan Institute, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Jozef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2017-04-15

    Highlights: • Normal to SC transition width is strongly dependent on the diameter of the wire. • Telegraph noise frequency can be controlled by bias current. • Bias current is controlling the stability of different resistive states. • Magnetic field blurs of transitions between resistive superconducting states. - Abstract: We have investigated the effect of the nanowire thickness on the superconducting resistive phase transition R(T) in δ-MoN nanowires. We have characterized the width of the transition in terms of thermally-activated phase-slip theory. A large increase in the width of the transition was found with the decrease of the nanowire thickness. Discrete phase-slip fluctuations also lead to the appearance of meta-stable resistive superconducting states in current-bearing superconducting wires, with spontaneous switching between them. We have investigated the effect of the bias current on the switching rate and the stability of different resistive states.

  8. Distributions of Conductance and Shot Noise and Associated Phase Transitions

    International Nuclear Information System (INIS)

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2008-01-01

    For a chaotic cavity with two identical leads each supporting N channels, we compute analytically, for large N, the full distribution of the conductance and the shot noise power and show that in both cases there is a central Gaussian region flanked on both sides by non-Gaussian tails. The distribution is weakly singular at the junction of Gaussian and non-Gaussian regimes, a direct consequence of two phase transitions in an associated Coulomb gas problem

  9. 20 CFR 217.26 - How to cancel an application.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false How to cancel an application. 217.26 Section... APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.26 How to cancel an application. An application may be cancelled under the following conditions: (a) Before an annuity is awarded. The application...

  10. Bayesian Filtering for Phase Noise Characterization and Carrier Synchronization of up to 192 Gb/s PDM 64-QAM

    DEFF Research Database (Denmark)

    Zibar, Darko; Carvalho, L.; Piels, Molly

    2014-01-01

    We show that phase noise estimation based on Bayesian filtering outperforms conventional time-domain approaches in the presence of moderate measurement noise. Additionally, carrier synchronization based on Bayesian filtering, in combination with expectation maximization, is demonstrated for the f...

  11. Performance comparison of optical interference cancellation system architectures.

    Science.gov (United States)

    Lu, Maddie; Chang, Matt; Deng, Yanhua; Prucnal, Paul R

    2013-04-10

    The performance of three optics-based interference cancellation systems are compared and contrasted with each other, and with traditional electronic techniques for interference cancellation. The comparison is based on a set of common performance metrics that we have developed for this purpose. It is shown that thorough evaluation of our optical approaches takes into account the traditional notions of depth of cancellation and dynamic range, along with notions of link loss and uniformity of cancellation. Our evaluation shows that our use of optical components affords performance that surpasses traditional electronic approaches, and that the optimal choice for an optical interference canceller requires taking into account the performance metrics discussed in this paper.

  12. Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography

    International Nuclear Information System (INIS)

    Faiz, Wali; Gao Kun; Wu Zhao; Wei Chen-Xi; Zan Gui-Bin; Tian Yang-Chao; Bao Yuan; Zhu Pei-Ping

    2017-01-01

    X-ray phase-contrast imaging is one of the novel techniques, and has potential to enhance image quality and provide the details of inner structures nondestructively. In this work, we investigate quantitatively signal-to-noise ratio (SNR) of grating-based x-ray phase contrast imaging (GBPCI) system by employing angular signal radiography (ASR). Moreover, photon statistics and mechanical error that is a major source of noise are investigated in detail. Results show the dependence of SNR on the system parameters and the effects on the extracted absorption, refraction and scattering images. Our conclusions can be used to optimize the system design for upcoming practical applications in the areas such as material science and biomedical imaging. (paper)

  13. New hybrid technique for impulsive noise suppression in OFDM systems

    International Nuclear Information System (INIS)

    Mirza, A.; Zeb, A.; Sheikh, S.A.

    2017-01-01

    In this paper, a new hybrid technique employing RS (Reed Solomon) coding and adaptive filter for impulsive noise suppression in OFDM (Orthogonal Frequency Division Multiplexing) systems is presented. Adaptive filter creates a more accurate estimate of the original OFDM signal after impulsive noise cancellation. The residual impulsive noise is further mitigated by RS decoder in the second stage of proposed technique. Three members of adaptive filters family i.e. NLMS (Normalized Least Mean Square) algorithm, RLS (Recursive Least Square) algorithm and Bhagyashri algorithm are tested with RS decoder in the proposed hybrid technique. Furthermore, the results in terms of steady state MSE (Mean Square Error) reduction, BER (Bit Error Rate) improvement and SNR (Signal to Noise Ratio) enhancement confirm the effectiveness of the proposed dual faceted technique when compared with the recently reported techniques in literature. (author)

  14. Active Noise Control Using Modified FsLMS and Hybrid PSOFF Algorithm

    Directory of Open Access Journals (Sweden)

    Ranjan Walia

    2018-04-01

    Full Text Available Active noise control is an efficient technique for noise cancellation of the system, which has been defined in this paper with the aid of Modified Filtered-s Least Mean Square (MFsLMS algorithm. The Hybrid Particle Swarm Optimization and Firefly (HPSOFF algorithm are used to identify the stability factor of the MFsLMS algorithm. The computational difficulty of the modified algorithm is reduced when compared with the original Filtered-s Least Mean Square (FsLMS algorithm. The noise sources are removed from the signal and it is compared with the existing FsLMS algorithm. The performance of the system is established with the normalized mean square error for two different types of noises. The proposed method has also been compared with the existing algorithms for the same purposes.

  15. Elective surgery cancelation on day of surgery: An endless dilemma

    Directory of Open Access Journals (Sweden)

    A Fayed

    2016-01-01

    Full Text Available Background: Cancelation of surgery is a constant agonizing dilemma for nearly all healthcare services that has been intensively investigated to find out its roots, consequences, and possible solutions. The rates of cancelation of surgery vary between centers and more so among surgical specialties with numerous reasons standing behind this phenomenon. Patients and Methods: In the current study, analysis of monthly cancelation rates from January 2009 to December 2012, and assessment of establishing new operating rooms (ORs using statistical process control charts was conducted. A detailed review of a total of 1813 cases canceled on the day of surgery from January to December 2012, to examine the various reasons of cancelation among surgical specialties. Results: The average cancelation rate was 11.1%, which dropped to 9.0% after launching of new theaters. Four reasons explained about 80% of cancelations; Patients "no show" was the leading cause of cancelation (27%. One-fourth of cancelations (24.3% were due to the need for further optimization, and the third most prominent cause of cancelation was a lack of OR time (19.5%. Unavailability of staff/equipment/implants accounted for only 0.7% of cancelations. The "no show" was the most common cause of cancelation among all surgical specialties ranging from 21% for plastic surgery to 32% in ophthalmic surgeries. Conclusion: It was confirmed that there is a unique profile of cancelation of surgery problem for every institute, an extension of infrastructure may not be the only solution. Control charts helped to enhance the general picture and are functional in monitoring and evaluating changes in the cancelation of surgery.

  16. 20 CFR 217.25 - Who may cancel an application.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Who may cancel an application. 217.25 Section... APPLICATION FOR ANNUITY OR LUMP SUM Cancellation of Application § 217.25 Who may cancel an application. An application may be cancelled by the claimant or a person described in § 217.17. If the claimant is deceased...

  17. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    International Nuclear Information System (INIS)

    Yoon, Tai Hyun

    2007-01-01

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms

  18. Field-incidence noise transmission loss of general aviation aircraft double wall configurations

    Science.gov (United States)

    Grosveld, F. W.

    1984-01-01

    Theoretical formulations have been developed to describe the transmission of reverberant sound through an infinite, semi-infinite and a finite double panel structure. The model incorporates the fundamental resonance frequencies of each of the panels, the mass-air-mass resonances of the structure, the standing wave resonances in the cavity between the panels and finally the coincidence resonance regions, where the exciting sound pressure wave and flexural waves of each of the panels coincide. It is shown that phase cancellation effects of pressure waves reflected from the cavity boundaries back into the cavity allows the transmission loss of a finite double panel structure to be approximated by a finite double panel mounted in an infinite baffle having no cavity boundaries. Comparison of the theory with high quality transmission loss data yields good agreement in the mass-controlled frequency region. It is shown that the application of acoustic blankets to the double panel structure does not eliminate the mass-air-mass resonances if those occur at low frequencies. It is concluded that this frequency region of low noise transmission loss is a potential interior noise problem area for propeller driven aircraft having a double panel fuselage construction.

  19. Day of Surgery Admission in Total Joint Arthroplasty: Why Are Surgeries Cancelled? An Analysis of 3195 Planned Procedures and 114 Cancellations

    Directory of Open Access Journals (Sweden)

    David M. Dalton

    2016-01-01

    Full Text Available Background. Day of surgery admission (DOSA is becoming standard practice as a means of reducing cost in total joint arthroplasty. Aims. The aim of our study was to audit the use of DOSA in a specialty hospital and identify reasons for cancellation. Methods. A retrospective study of patients presenting for hip or knee arthroplasty between 2008 and 2013 was performed. All patients were assessed at the preoperative assessment clinic (PAC. Results. Of 3195 patients deemed fit for surgery, 114 patients (3.5% had their surgery cancelled. Ninety-two cancellations (80% were due to the patient being deemed medically unsuitable for surgery by the anaesthetist. Cardiac disease was the most common reason for cancellation (n=27, followed by pulmonary disease (n=22. 77 patients (67.5% had their operation rescheduled and successfully performed in our institution at a later date. Conclusion. DOSA is associated with a low rate of cancellations on the day of surgery. Patients with cardiorespiratory comorbidities are at greatest risk of cancellation.

  20. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies.

    Science.gov (United States)

    Koželj, Saša; Baker, Stuart N

    2014-05-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6-13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control. Copyright © 2014 the American Physiological Society.

  1. 40 CFR 152.99 - Petitions to cancel registration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Petitions to cancel registration. 152... Submitters' Rights § 152.99 Petitions to cancel registration. An original data submitter may petition the Agency to deny or cancel the registration of a product in accordance with this section if he has...

  2. Does ambient noise or hypobaric atmosphere influence olfactory and gustatory function?

    Science.gov (United States)

    Rahne, Torsten; Köppke, Robert; Nehring, Michael; Plontke, Stefan K; Fischer, Hans-Georg

    2018-01-01

    Multidimensional food perception is based mainly on gustatory and olfactory function. Recent research has demonstrated that hypobaric pressure impairs gustatory function and that background noise or distracting auditory stimulation impairs olfactory function. Using a hypobaric chamber, the odor identification, discrimination, and thresholds as well as taste identification and threshold scores were measured in 16 healthy male volunteers under normal and hypobaric (6380 ft) conditions using clinically validated tests. In both conditions, background noise was either canceled out or replaced by white noise presentation (70 dB sound pressure level). Olfactory sensitivity for n-butanol and gustatory sensitivity were impaired in a hypobaric atmosphere. White noise did not influence the odor test results. White noise stimulation impaired sensitivity for sour and sweet but not for bitter or salty tastants. We conclude that hypobaric or noisy environments could impair gustatory and olfactory sensitivity selectively for particular tastants and odorants.

  3. Using Comics to Communicate Legal Contract Cancellation

    OpenAIRE

    Marietjie Botes

    2017-01-01

    This article investigates how comics can be used to adequately communicate the correct process of contract cancellation and whether comics can enhance understanding of the legal process. A survey of pre-owned vehicle buyers of various levels of education in Pretoria, South Africa found that when comics are used to communicate contract cancellation, a significant increase in the comprehension of the legal cancellation process occurs. The results may influence how contracting parties may choose...

  4. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone

    International Nuclear Information System (INIS)

    Lee, Kang ll; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo

    2007-01-01

    The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s -1 (angle-dependent Biot model) and 36.1 m s -1 (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 0 , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s -1 (angle-dependent Biot model) and 240.8 m s -1 (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone

  5. Photonic-Enabled RF Canceller with Tunable Time-Delay Taps

    Science.gov (United States)

    2016-12-05

    Photonic -Enabled RF Canceller with Tunable Time-Delay Taps Kenneth E. Kolodziej, Sivasubramaniam Yegnanarayanan, Bradley T. Perry MIT Lincoln...canceller design that uses photonics and a vector modulator architecture to provide a high number of canceller taps with tunable time-delays, which allow...microwave photonics , RF cancellation. I. INTRODUCTION In-Band Full-Duplex (IBFD) technologies are being consid- ered for 5th generation (5G) wireless

  6. Equalization Enhanced Phase Noise in Coherent Optical Systems with Digital Pre- and Post-Processing

    Directory of Open Access Journals (Sweden)

    Aditya Kakkar

    2016-03-01

    Full Text Available We present an extensive study of equalization enhanced phase noise (EEPN in coherent optical system for all practical electronic dispersion compensation configurations. It is shown that there are only eight practicable all-electronic impairment mitigation configurations. The non-linear and time variant analysis reveals that the existence and the cause of EEPN depend on the digital signal processing (DSP schemes. There are three schemes that in principle do not cause EEPN. Analysis further reveals the statistical equivalence of the remaining five system configurations resulting in EEPN. In three of them, EEPN is due to phase noise of the transmitting laser, while in the remaining two, EEPN is caused by the local oscillator. We provide a simple look-up table for the system designer to make an informative decision regarding practicable configuration choice and design.

  7. Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca

    2015-01-01

    In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based......, at the moderate received SNR region. The performance in these cases is close to the information rate achieved by the above mentioned trellis processing....

  8. Development of a low-noise, two-dimensional amplifier array

    International Nuclear Information System (INIS)

    Kishishita, Tetsuichi; Ikeda, Hirokazu; Sakumura, Takuto; Tamura, Ken-ichi; Takahashi, Tadayuki

    2009-01-01

    This paper describes the recent development of a low-noise, two-dimensional analog front-end ASIC for hybrid pixel imaging detectors. Based on the Open-IP LSI project, the ASIC is designed to meet a low-noise requirement of better than 100e - (rms) with self-triggering capability. The ASIC is intended for the readout of pixel sensors utilizing silicon (Si) and cadmium telluride (CdTe) as detector materials for spectroscopic imaging observations in the X-ray and gamma-ray regions. The readout chip consists of a 4x4 matrix of identical 270μmx270μm pixel cells and was implemented with TSMC 0.35-μm CMOS technology. Each pixel cell contains a charge-sensitive amplifier, pole-zero cancellation circuit, shaper, comparator, and peak hold circuit. Preliminary testing of the ASIC achieved an 88e - (rms) equivalent noise charge and a 25e - /pF noise slope with power consumption of 150μW per pixel.

  9. RATES OF PHOTOSPHERIC MAGNETIC FLUX CANCELLATION MEASURED WITH HINODE

    International Nuclear Information System (INIS)

    Park, Soyoung; Chae, Jongchul; Litvinenko, Yuri E.

    2009-01-01

    Photospheric magnetic flux cancellation on the Sun is generally believed to be caused by magnetic reconnection occurring in the low solar atmosphere. Individual canceling magnetic features are observationally characterized by the rate of flux cancellation. The specific cancellation rate, defined as the rate of flux cancellation divided by the interface length, gives an accurate estimate of the electric field in the reconnecting current sheet. We have determined the specific cancellation rate using the magnetograms taken by the Solar Optical Telescope (SOT) aboard the Hinode satellite. The specific rates determined with SOT turned out to be systematically higher than those based on the data taken by the Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric Observatory. The median value of the specific cancellation rate was found to be 8 x 10 6 G cm s -1 -a value four times that obtained from the MDI data. This big difference is mainly due to a higher angular resolution and better sensitivity of the SOT, resulting in magnetic fluxes up to five times larger than those obtained from the MDI. The higher rates of flux cancellation correspond to either faster inflows or stronger magnetic fields of the reconnection inflow region, which may have important consequences for the physics of photospheric magnetic reconnection.

  10. Frequency tracking and variable bandwidth for line noise filtering without a reference.

    Science.gov (United States)

    Kelly, John W; Collinger, Jennifer L; Degenhart, Alan D; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2011-01-01

    This paper presents a method for filtering line noise using an adaptive noise canceling (ANC) technique. This method effectively eliminates the sinusoidal contamination while achieving a narrower bandwidth than typical notch filters and without relying on the availability of a noise reference signal as ANC methods normally do. A sinusoidal reference is instead digitally generated and the filter efficiently tracks the power line frequency, which drifts around a known value. The filter's learning rate is also automatically adjusted to achieve faster and more accurate convergence and to control the filter's bandwidth. In this paper the focus of the discussion and the data will be electrocorticographic (ECoG) neural signals, but the presented technique is applicable to other recordings.

  11. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  12. Semi-Blind Noise Extraction Using Partially Known Position of the Target Source

    Czech Academy of Sciences Publication Activity Database

    Koldovský, Zbyněk; Málek, J.; Tichavský, Petr; Nesta, F.

    2013-01-01

    Roč. 21, č. 10 (2013), s. 2029-2041 ISSN 1558-7916 Grant - others:GA ČR(CZ) GAP103/11/1947 Program:GA Institutional support: RVO:67985556 Keywords : Independent component analysis * noise extraction * generalized sidelobe canceler Subject RIV: BI - Acoustics Impact factor: 2.625, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/tichavsky-0396861.pdf

  13. Characterisation of ultrasonic structural noise in multiple scattering media using phased arrays

    International Nuclear Information System (INIS)

    Bedetti, T; Dorval, V; Jenson, F; Derode, A

    2013-01-01

    The ultrasonic inspection of multiple scattering media gives rise to structural noise which makes it difficult to detect potential damage or crack inside the component. In order to predict the performances of ultrasonic inspection over such complex media, scattering models can be used. Such models rely on specific key parameters describing the multiple scattering process, which can be determined by specific measurements and post-processing techniques. Such experiments were carried out on stainless steel plates using linear phased-arrays. They consist in recording the response matrix constituted by impulse responses between all the elements of the array. By conducting post-processing on this matrix, we measure the elastic mean free path l e and the correlation distance d c of the recorded noise. Additionally, the dynamic behaviour of the coherent backscattering effect was studied in order to measure the diffusion constant D. Plane-wave beamforming has been applied to the response matrix to improve the angular resolution and the signal-to-noise ratio of the backscattered intensity. Details of postprocessing techniques will be shown

  14. Impulse noise estimation and removal for OFDM systems

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2014-03-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme that is widely used in wired and wireless communication systems. While OFDM is ideally suited to deal with frequency selective channels and AWGN, its performance may be dramatically impacted by the presence of impulse noise. In fact, very strong noise impulses in the time domain might result in the erasure of whole OFDM blocks of symbols at the receiver. Impulse noise can be mitigated by considering it as a sparse signal in time, and using recently developed algorithms for sparse signal reconstruction. We propose an algorithm that utilizes the guard band subcarriers for the impulse noise estimation and cancellation. Instead of relying on ℓ1 minimization as done in some popular general-purpose compressive sensing schemes, the proposed method jointly exploits the specific structure of this problem and the available a priori information for sparse signal recovery. The computational complexity of the proposed algorithm is very competitive with respect to sparse signal reconstruction schemes based on ℓ1 minimization. The proposed method is compared with respect to other state-of-the-art methods in terms of achievable rates for an OFDM system with impulse noise and AWGN. © 2014 IEEE.

  15. Impulse noise estimation and removal for OFDM systems

    KAUST Repository

    Al-Naffouri, Tareq Y.; Quadeer, Ahmed Abdul; Caire, Giuseppe

    2014-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme that is widely used in wired and wireless communication systems. While OFDM is ideally suited to deal with frequency selective channels and AWGN, its performance may be dramatically impacted by the presence of impulse noise. In fact, very strong noise impulses in the time domain might result in the erasure of whole OFDM blocks of symbols at the receiver. Impulse noise can be mitigated by considering it as a sparse signal in time, and using recently developed algorithms for sparse signal reconstruction. We propose an algorithm that utilizes the guard band subcarriers for the impulse noise estimation and cancellation. Instead of relying on ℓ1 minimization as done in some popular general-purpose compressive sensing schemes, the proposed method jointly exploits the specific structure of this problem and the available a priori information for sparse signal recovery. The computational complexity of the proposed algorithm is very competitive with respect to sparse signal reconstruction schemes based on ℓ1 minimization. The proposed method is compared with respect to other state-of-the-art methods in terms of achievable rates for an OFDM system with impulse noise and AWGN. © 2014 IEEE.

  16. Investigation of noise in Lightwave Synthesized Frequency Sweeper seeded LIDAR anemometers from leakage through the Acousto Optic Modulators

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Lindelöw, Per Jonas Petter

    2009-01-01

    Train (FSPT) modulated lidars the leakage will give rise to rapidly growing noise in the bins which corresponds to the signal from low radial wind velocities. It is likely that noise canceling techniques similar to those used for RIN removal has to be deployed for measurements of low wind velocities.......Lightwave Synthesized Frequency Sweepers (LSFS) have potential use as lightsources in lidar anemometers. In this paper noise due to leakage in the acousto optic modulators in an LSFS is investigated. Theoretical expressions describing the build-up of noise in the LSFS due to leakage are derived...

  17. CT urography in the urinary bladder: To compare excretory phase images using a low noise index and a high noise index with adaptive noise reduction filter

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Hayashi, Takaki; Ohgiya, Yoshimitsu

    2011-01-01

    Background: Although CT urography (CTU) is widely used for the evaluation of the entire urinary tract, the most important drawback is the radiation exposure. Purpose: To evaluate the effect of a noise reduction filter (NRF) using a phantom and to quantitatively and qualitatively compare excretory phase (EP) images using a low noise index (NI) with those using a high NI and postprocessing NRF (pNRF). Material and Methods: Each NI value was defined for a slice thickness of 5 mm, and reconstructed images with a slice thickness of 1.25 mm were assessed. Sixty patients who were at high risk of developing bladder tumors (BT) were divided into two groups according to whether their EP images were obtained using an NI of 9.88 (29 patients; group A) or an NI of 20 and pNRF (31 patients; group B). The CT dose index volume (CTDI vol ) and the contrast-to-noise ratio (CNR) of the bladder with respect to the anterior pelvic fat were compared in both groups. Qualitative assessment of the urinary bladder for image noise, sharpness, streak artifacts, homogeneity, and the conspicuity of polypoid or sessile-shaped BTs with a short-axis diameter greater than 10 mm was performed using a 3-point scale. Results: The phantom study showed noise reduction of approximately 40% and 76% dose reduction between group A and group B. CTDI vol demonstrated a 73% reduction in group B (4.6 ± 1.1 mGy) compared with group A (16.9 ± 3.4 mGy). The CNR value was not significantly different (P = 0.60) between group A (16.1 ± 5.1) and group B (16.6 ± 7.6). Although group A was superior (P < 0.01) to group B with regard to image noise, other qualitative analyses did not show significant differences. Conclusion: EP images using a high NI and pNRF were quantitatively and qualitatively comparable to those using a low NI, except with regard to image noise

  18. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    International Nuclear Information System (INIS)

    Okura, Yuki; Futamase, Toshifumi

    2013-01-01

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging, but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of ν ∼ 11.7.

  19. Green noise wall construction and evaluation.

    Science.gov (United States)

    2011-09-01

    This report details the research performed under Phase I of a research study titled Green Noise Wall Construction and Evaluation that looks into the feasibility of using green noise barriers as a noise mitigation option in Ohio. This phase incl...

  20. A new technique for noise reduction at coronary CT angiography with multi-phase data-averaging and non-rigid image registration

    Energy Technology Data Exchange (ETDEWEB)

    Tatsugami, Fuminari; Higaki, Toru; Nakamura, Yuko; Yamagami, Takuji; Date, Shuji; Awai, Kazuo [Hiroshima University, Department of Diagnostic Radiology, Minami-ku, Hiroshima (Japan); Fujioka, Chikako; Kiguchi, Masao [Hiroshima University, Department of Radiology, Minami-ku, Hiroshima (Japan); Kihara, Yasuki [Hiroshima University, Department of Cardiovascular Medicine, Minami-ku, Hiroshima (Japan)

    2015-01-15

    To investigate the feasibility of a newly developed noise reduction technique at coronary CT angiography (CTA) that uses multi-phase data-averaging and non-rigid image registration. Sixty-five patients underwent coronary CTA with prospective ECG-triggering. The range of the phase window was set at 70-80 % of the R-R interval. First, three sets of consecutive volume data at 70 %, 75 % and 80 % of the R-R interval were prepared. Second, we applied non-rigid registration to align the 70 % and 80 % images to the 75 % image. Finally, we performed weighted averaging of the three images and generated a de-noised image. The image noise and contrast-to-noise ratio (CNR) in the proximal coronary arteries between the conventional 75 % and the de-noised images were compared. Two radiologists evaluated the image quality using a 5-point scale (1, poor; 5, excellent). On de-noised images, mean image noise was significantly lower than on conventional 75 % images (18.3 HU ± 2.6 vs. 23.0 HU ± 3.3, P < 0.01) and the CNR was significantly higher (P < 0.01). The mean image quality score for conventional 75 % and de-noised images was 3.9 and 4.4, respectively (P < 0.01). Our method reduces image noise and improves image quality at coronary CTA. (orig.)

  1. 30 CFR 280.27 - When may MMS cancel my permit?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may MMS cancel my permit? 280.27 Section... Part Interrupted Activities § 280.27 When may MMS cancel my permit? The RD may cancel a permit at any time. (a) If we cancel your permit, the RD will advise you by certified or registered mail 30 days...

  2. A PWM strategy for acoustic noise reduction for grid-connected single-phase inverters

    Energy Technology Data Exchange (ETDEWEB)

    Shao, R.; Guo, Z.; Chang, L. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper presented a newly proposed and improved pulse width modulation (PWM) strategy for grid-connected single-phase inverters. Small distributed generators using energy from renewable resources such as PV and wind systems typically use grid-connected single-phase inverters as voltage source inverters for good acoustic performance. PWM is generally applied in these inverters in order to achieve good waveforms of output current as required by interconnection standards. In routine simultaneous switching PWM methods, the current ripples through the inverter output filter inductor are at the carrier switching frequency, which is one of the major causes for inverter acoustic noise. The new PWM strategy effectively alleviates acoustic noise and improves output power quality. It is based on the principle of evenly splitting the switching of Insulated Gate Bipolar Transistors (IGBT) in each switching cycle among all IGBTs of the full bridge, thereby using a non-simultaneous mode of PWM which doubles the output current ripple frequency. This increases the inductor current ripple frequency to twice the carrier frequency. It is therefore possible to increase the current ripple frequency, or noise frequency into the range of ultrasonic which is inaudible to the human ear, without increasing the inverter's switching frequency to which the inverter's switching loss is proportional. In addition, this new PWM scheme can reduce the output current harmonics distortion and dc link current ripples. As such, lower capacitance in dc link capacitors and lower inductance of output inductor are needed. The improved PWM scheme was verified in a 3 kW grid-connected single-phase inverter. It was shown that the PWM strategy can be readily implemented with a digital signal processing microcontroller. 8 refs., 11 figs.

  3. On Low-Pass Phase Noise Mitigation in OFDM System for mmWave Communications

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Fan, Wei; Zhang, Anxue

    2017-01-01

    A phase noise (PN) mitigation scheme was proposed for orthogonal frequency division multiplexing (OFDM) in a previous work. The proposed scheme does not require detailed knowledge of PN statistics and can eectively compensate the PN with sucient number of unknowns. In this paper, we analyze....... It is also shown that the PN spectral shape of the phase-lockedloop (PLL) based oscillator also aects the PN mitigation and that a larger PN may not necessarily degrade the performance of the OFDM system with PN mitigation. Simulations with realistic millimeter-wave (mmWave) PN and channel models...

  4. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    International Nuclear Information System (INIS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2010-01-01

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  5. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Cheng-Ying; Anastasio, Mark A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan 106, Taiwan (China); Department of Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn Street, E1-116, Chicago, Illinois 60616 (United States)

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  6. Full-duplex wireless communications systems self-interference cancellation

    CERN Document Server

    Le-Ngoc, Tho

    2017-01-01

    This book introduces the development of self-interference (SI)-cancellation techniques for full-duplex wireless communication systems. The authors rely on estimation theory and signal processing to develop SI-cancellation algorithms by generating an estimate of the received SI and subtracting it from the received signal. The authors also cover two new SI-cancellation methods using the new concept of active signal injection (ASI) for full-duplex MIMO-OFDM systems. The ASI approach adds an appropriate cancelling signal to each transmitted signal such that the combined signals from transmit antennas attenuate the SI at the receive antennas. The authors illustrate that the SI-pre-cancelling signal does not affect the data-bearing signal. This book is for researchers and professionals working in wireless communications and engineers willing to understand the challenges of deploying full-duplex and practical solutions to implement a full-duplex system. Advanced-level students in electrical engineering and computer ...

  7. Linearly interpolated sub-symbol optical phase noise suppression in CO-OFDM system.

    Science.gov (United States)

    Hong, Xuezhi; Hong, Xiaojian; He, Sailing

    2015-02-23

    An optical phase noise suppression algorithm, LI-SCPEC, based on phase linear interpolation and sub-symbol processing is proposed for CO-OFDM system. By increasing the temporal resolution of carrier phase tracking through dividing one symbol into several sub-blocks, i.e., sub-symbols, inter-carrier-interference (ICI) mitigation is achieved in the proposed algorithm. Linear interpolation is employed to obtain a reliable temporal reference for sub-symbol phase estimation. The new algorithm, with only a few number of sub-symbols (N(B) = 4), can provide a considerably larger laser linewidth tolerance than several other ICI mitigation algorithms as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the best performance is achieved with an optimal and moderate number of sub-symbols. Complexity analysis shows that the required number of complex-valued multiplications is independent of the number of sub-symbols used in the proposed algorithm.

  8. 27 CFR 479.87 - Cancellation of stamp.

    Science.gov (United States)

    2010-04-01

    ... OTHER FIREARMS Transfer Tax Application and Order for Transfer of Firearm § 479.87 Cancellation of stamp. The method of cancellation of the stamp required by this subpart as prescribed in § 479.67 shall be used. Exemptions Relating to Transfers of Firearms ...

  9. Multimodal biometric approach for cancelable face template generation

    Science.gov (United States)

    Paul, Padma Polash; Gavrilova, Marina

    2012-06-01

    Due to the rapid growth of biometric technology, template protection becomes crucial to secure integrity of the biometric security system and prevent unauthorized access. Cancelable biometrics is emerging as one of the best solutions to secure the biometric identification and verification system. We present a novel technique for robust cancelable template generation algorithm that takes advantage of the multimodal biometric using feature level fusion. Feature level fusion of different facial features is applied to generate the cancelable template. A proposed algorithm based on the multi-fold random projection and fuzzy communication scheme is used for this purpose. In cancelable template generation, one of the main difficulties is keeping interclass variance of the feature. We have found that interclass variations of the features that are lost during multi fold random projection can be recovered using fusion of different feature subsets and projecting in a new feature domain. Applying the multimodal technique in feature level, we enhance the interclass variability hence improving the performance of the system. We have tested the system for classifier fusion for different feature subset and different cancelable template fusion. Experiments have shown that cancelable template improves the performance of the biometric system compared with the original template.

  10. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design......-QW laser. There is good agreement between the measured results and existing theory....

  11. CERN Library - Scientific journal cancellations

    CERN Multimedia

    2004-01-01

    Due to the constant increase of the subscription costs of scientific journals and the current budget restrictions, the Scientific Information Policy Board has mandated the Working Group for Acquisitions (WGA) together with the Library to propose a list of titles to be cancelled at the end of 2004. As a first step, the WGA has identified the scientific journals listed at the web site below as candidates for cancellation. The choice has been guided by the personal experience of the WGA members, consultation of other expert CERN staff for highly specialized titles, and by criteria such as subscription price, impact factor, and - where available - access statistics for electronic journals. The list also accounts for the fact that many titles are subscribed to in 'packages' such that a cancellation of individual titles would not lead to any cost savings. We invite users to carefully check the list on the Library homepage (http://library.cern.ch/). If you find any title that you consider critically important for y...

  12. An investigation of time-frequency domain phase-weighted stacking and its application to phase-velocity extraction from ambient noise's empirical Green's functions

    Science.gov (United States)

    Li, Guoliang; Niu, Fenglin; Yang, Yingjie; Xie, Jun

    2018-02-01

    The time-frequency domain phase-weighted stacking (tf-PWS) technique based on the S transform has been employed in stacking empirical Green's functions (EGFs) derived from ambient noise data, mainly due to its superior power in enhancing weak signals. Questions such as the induced waveform distortion and the feasibility of phase-velocity extraction are yet to be thoroughly explored. In this study, we investigate these issues by conducting extensive numerical tests with both synthetic data and USArray transportable array (TA) ambient noise data. We find that the errors in the measured phase velocities associated with waveform distortion caused by the tf-PWS depend largely on the way of how the inverse S transform (IST) is implemented. If frequency IST is employed in tf-PWS, the corresponding errors are generally less than 0.1 per cent, sufficiently small that the measured phase velocities can be safely used in regular surface wave tomography. On the other hand, if a time IST is used in tf-PWS, then the extracted phase velocities are systematically larger than those measured from linearly stacked ones, and the discrepancy can reach as much as ˜0.4 per cent at some periods. Therefore, if tf-PWS is used in stacking EGFs, then frequency IST is preferred to transform the stacked S spectra back to the time domain for the stacked EGFs.

  13. Three-dimensional microarchitecture of adolescent cancellous bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Hvid, Ivan

    2012-01-01

    , the adolescent cancellous bone had similar bone volume fraction (BV/TV), structure type (plate, rod or mixtures), and connectivity (3-D trabecular networks) as the adult cancellous bone. The adolescent cancellous bone had significantly lower bone surface density (bone surface per total volume of specimen...... and lateral condyle. These samples were micro-CT scanned (vivaCT 40, Scanco Medical AG, Switzerland) resulting in cubic voxel sizes of 10.5⁎10.5⁎10.5μm(3). Microarchitectural properties were calculated. The samples were then tested in compression followed by collagen and mineral determination. Interestingly...

  14. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    Science.gov (United States)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  15. 5 CFR 837.803 - Cancellation of retirement by judicial or administrative authority.

    Science.gov (United States)

    2010-01-01

    ... Canceled Retirements § 837.803 Cancellation of retirement by judicial or administrative authority. (a... may only be canceled by the former employing agency in response to a direct and final order of a... requiring cancellation of the annuitant's separation or after the annuitant and the agency agree to cancel...

  16. GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur; Tryggvason, Ari

    2018-01-01

    We present a graphical user interface (GUI) package to facilitate phase-velocity dispersion measurements of surface waves in noise-correlation traces. The package, called GSpecDisp, provides an interactive environment for the measurements and presentation of the results. The selection of a dispersion curve can be done automatically or manually within the package. The data are time-domain cross-correlations in SAC format, but GSpecDisp measures phase velocity in the spectral domain. Two types of phase-velocity dispersion measurements can be carried out with GSpecDisp; (1) average velocity of a region, and (2) single-pair phase velocity. Both measurements are done by matching the real part of the cross-correlation spectrum with the appropriate Bessel function. Advantages of these two types of measurements are that no prior knowledge about surface-wave dispersion in the region is needed, and that phase velocity can be measured up to that period for which the inter-station distance corresponds to one wavelength. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor. First, we briefly present the theory behind the methods that are used, and then describe different modules of the package. Finally, we validate the developed algorithms by applying them to synthetic and real data, and by comparison with other methods. The source code of GSpecDisp can be downloaded from: https://github.com/Hamzeh-Sadeghi/GSpecDisp

  17. Histologic Evaluation of Wound Healing After Ridge Preservation With Cortical, Cancellous, and Combined Cortico-Cancellous Freeze-Dried Bone Allograft: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Demetter, Randy S; Calahan, Blaine G; Mealey, Brian L

    2017-09-01

    Cortical and cancellous mineralized freeze-dried bone allografts (FDBA) are available for use in alveolar ridge preservation after tooth extraction. There are currently no data regarding use of a combination 50%/50% cortico-cancellous FDBA compared with a 100% cortical or 100% cancellous FDBA in ridge preservation. The primary objective of this study is to dimensionally and histologically evaluate healing after ridge preservation in non-molar sites using 50%/50% cortico-cancellous FDBA versus 100% cortical and 100% cancellous FDBA. Sixty-six patients requiring extraction of a non-molar tooth were enrolled and randomized into three groups to receive ridge preservation with the following: 1) 100% cortical FDBA; 2) 100% cancellous FDBA; or 3) 50%/50% cortico-cancellous FDBA. After 18 to 20 weeks of healing, a biopsy was harvested, and an implant was placed. The alveolar ridge was measured pre- and postoperatively to evaluate change in ridge height and width. Percentages of vital bone, residual graft, and connective tissue (CT)/other were determined via histomorphometric analysis. Histomorphometric analysis revealed no significant differences among groups regarding percentage of vital bone or CT/other. The 100% cortical FDBA group had significantly greater residual graft material (P = 0.04). Dimensional analysis revealed no significant between-group differences in any parameter measured. To the best knowledge of the authors, this study offers the first histologic evidence demonstrating no significant difference in vital bone formation or dimensional changes among 50%/50% cortico-cancellous FDBA, 100% cortical FDBA, and 100% cancellous FDBA when used in ridge preservation of non-molar tooth sites.

  18. Noise effects on reproduction— animal experiments

    Science.gov (United States)

    Takigawa, H.; Sakamoto, H.; Murata, M.; Matsumura, Y.

    1988-12-01

    Noise effects on fetal development were observed in animals. While the copulatory function was not affected, birth rate decreased when the animals were exposed to noise. An increased number of stunted fetuses was observed when the animals were intermittently exposed. However, malformations in the fetuses increased with exposure to both intermittent and continuous noise. Two phases of hormonal change were observed in connection with noise exposure. One is the initial response phase, characterized by the increment of 11-OHCS in the adrenal gland. The other is the end phenomena phase, characterized by a disorder in central control. It is discussed that the disturbance of fetal development by exposure to noise is related to these changes in the hormonal condition.

  19. Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning

    Science.gov (United States)

    Wang, Danshi; Zhang, Min; Cai, Zhongle; Cui, Yue; Li, Ze; Han, Huanhuan; Fu, Meixia; Luo, Bin

    2016-06-01

    An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 ×10-3 is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate I/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing.

  20. The effects of orbital motion on LISA time delay interferometry

    International Nuclear Information System (INIS)

    Cornish, Neil J; Hellings, Ronald W

    2003-01-01

    In an effort to eliminate laser phase noise in laser interferometer spaceborne gravitational wave detectors, several combinations of signals have been found that allow the laser noise to be cancelled out while gravitational wave signals remain. This process is called time delay interferometry (TDI). In the papers that defined the TDI variables, their performance was evaluated in the limit that the gravitational wave detector is fixed in space. However, the performance depends on certain symmetries in the armlengths that are available if the detector is fixed in space, but that will be broken in the actual rotating and flexing configuration produced by the LISA orbits. In this paper we investigate the performance of these TDI variables for the real LISA orbits. First, addressing the effects of rotation, we verify Daniel Shaddock's result that the Sagnac variables α (t), β (t) and γ (t) will not cancel out the laser phase noise, and we also find the same result for the symmetric Sagnac variable ζ (t). The loss of the latter variable would be particularly unfortunate since this variable also cancels out gravitational wave signal, allowing instrument noise in the detector to be isolated and measured. Fortunately, we have found a set of more complicated TDI variables, which we call Δ Sagnac variables, one of which accomplishes the same goal as ζ (t) to good accuracy. Finally, however, as we investigate the effects of the flexing of the detector arms due to non-circular orbital motion, we show that all variables, including the interferometer variables, X(t), Y(t) and Z(t), which survive the rotation-induced loss of direction symmetry, will not completely cancel laser phase noise when the armlengths are changing with time. This unavoidable problem will place a stringent requirement on laser stability of ∼5 Hz Hz -1/2

  1. Interference Canceller Based on Cycle-and-Add Property for Single User Detection in DS-CDMA

    Science.gov (United States)

    Hettiarachchi, Ranga; Yokoyama, Mitsuo; Uehara, Hideyuki; Ohira, Takashi

    In this paper, performance of a novel interference cancellation technique for the single user detection in a direct-sequence code-division multiple access (DS-CDMA) system has been investigated. This new algorithm is based on the Cycle-and-Add property of PN (Pseudorandom Noise) sequences and can be applied for both synchronous and asynchronous systems. The proposed strategy provides a simple method that can delete interference signals one by one in spite of the power levels of interferences. Therefore, it is possible to overcome the near-far problem (NFP) in a successive manner without using transmit power control (TPC) techniques. The validity of the proposed procedure is corroborated by computer simulations in additive white Gaussian noise (AWGN) and frequency-nonselective fading channels. Performance results indicate that the proposed receiver outperforms the conventional receiver and, in many cases, it does so with a considerable gain.

  2. Empirical properties of inter-cancellation durations in the Chinese stock market

    Directory of Open Access Journals (Sweden)

    Gao-Feng eGu

    2014-03-01

    Full Text Available Order cancellation process plays a crucial role in the dynamics of price formation in order-driven stock markets and is important in the construction and validation of computational finance models. Based on the order flow data of 23 liquid stocks traded on the Shenzhen Stock Exchange in 2003, we investigate the empirical statistical properties of inter-cancellation durations in units of events defined as the waiting times between two consecutive cancellations. The inter-cancellation durations for both buy and sell orders of all the stocks favor a $q$-exponential distribution when the maximum likelihood estimation method is adopted; In contrast, both cancelled buy orders of 9 stocks and cancelled sell orders of 4 stocks prefer Weibull distribution when the nonlinear least-square estimation is used. Applying detrended fluctuation analysis (DFA, centered detrending moving average (CDMA and multifractal detrended fluctuation analysis (MF-DFA methods, we unveil that the inter-cancellation duration time series process long memory and multifractal nature for both buy and sell cancellations of all the stocks. Our findings show that order cancellation processes exhibit long-range correlated bursty behaviors and are thus not Poissonian.

  3. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    Science.gov (United States)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform

  4. Effects of background noise on inter-trial phase coherence and auditory N1-P2 responses to speech stimuli.

    Science.gov (United States)

    Koerner, Tess K; Zhang, Yang

    2015-10-01

    This study investigated the effects of a speech-babble background noise on inter-trial phase coherence (ITPC, also referred to as phase locking value (PLV)) and auditory event-related responses (AERP) to speech sounds. Specifically, we analyzed EEG data from 11 normal hearing subjects to examine whether ITPC can predict noise-induced variations in the obligatory N1-P2 complex response. N1-P2 amplitude and latency data were obtained for the /bu/syllable in quiet and noise listening conditions. ITPC data in delta, theta, and alpha frequency bands were calculated for the N1-P2 responses in the two passive listening conditions. Consistent with previous studies, background noise produced significant amplitude reduction and latency increase in N1 and P2, which were accompanied by significant ITPC decreases in all the three frequency bands. Correlation analyses further revealed that variations in ITPC were able to predict the amplitude and latency variations in N1-P2. The results suggest that trial-by-trial analysis of cortical neural synchrony is a valuable tool in understanding the modulatory effects of background noise on AERP measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Reproduction of Realistic Background Noise for Testing Telecommunications Devices

    DEFF Research Database (Denmark)

    Gil Corrales, Juan David; Song, Wookeun; MacDonald, Ewen

    2015-01-01

    A method for reproduction of sound, based on crosstalk cancellation using inverse filters, was implemented in the context of testing telecommunications devices. The effect of the regularization parameter, number of loudspeakers, type of background noise, and a technique to attenuate audible......, the performance was equally good when using eight or four loudspeakers, and the reproduction method was shown to be robust for different program materials. The proposed technique to reduce audible artifacts increased the perceived similarity....

  6. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    Science.gov (United States)

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  7. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  8. 5 CFR 894.602 - May I cancel my enrollment at any time?

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false May I cancel my enrollment at any time... Cancellation of Coverage § 894.602 May I cancel my enrollment at any time? No. You may only cancel your enrollment during an open season. Exceptions: You may cancel your dental and/or vision enrollment if you...

  9. Microscopic prediction of speech intelligibility in spatially distributed speech-shaped noise for normal-hearing listeners.

    Science.gov (United States)

    Geravanchizadeh, Masoud; Fallah, Ali

    2015-12-01

    A binaural and psychoacoustically motivated intelligibility model, based on a well-known monaural microscopic model is proposed. This model simulates a phoneme recognition task in the presence of spatially distributed speech-shaped noise in anechoic scenarios. In the proposed model, binaural advantage effects are considered by generating a feature vector for a dynamic-time-warping speech recognizer. This vector consists of three subvectors incorporating two monaural subvectors to model the better-ear hearing, and a binaural subvector to simulate the binaural unmasking effect. The binaural unit of the model is based on equalization-cancellation theory. This model operates blindly, which means separate recordings of speech and noise are not required for the predictions. Speech intelligibility tests were conducted with 12 normal hearing listeners by collecting speech reception thresholds (SRTs) in the presence of single and multiple sources of speech-shaped noise. The comparison of the model predictions with the measured binaural SRTs, and with the predictions of a macroscopic binaural model called extended equalization-cancellation, shows that this approach predicts the intelligibility in anechoic scenarios with good precision. The square of the correlation coefficient (r(2)) and the mean-absolute error between the model predictions and the measurements are 0.98 and 0.62 dB, respectively.

  10. Optimal Reinsertion of Cancelled Train Lines

    DEFF Research Database (Denmark)

    Groth, Julie Jespersen; Clausen, Jens

    2006-01-01

    One recovery strategy in case of a major disruption in rail network is to cancel all trains on a specific line of the network. When the disturbance has ended, the cancelled line must be reinserted as soon as possible. In this article we present a mixed integer programming (MIP) model for calculat....... The model finds the optimal solution in an average of 0.5 CPU seconds in each test case....

  11. Displacement-noise-free gravitational-wave detection with a single Fabry-Perot cavity: A toy model

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Vyatchanin, Sergey P.

    2008-01-01

    We propose a detuned Fabry-Perot cavity, pumped through both the mirrors, as a toy model of the gravitational-wave (GW) detector partially free from displacement noise of the test masses. It is demonstrated that the noise of cavity mirrors can be eliminated, but the one of lasers and detectors cannot. The isolation of the GW signal from displacement noise of the mirrors is achieved in a proper linear combination of the cavity output signals. The construction of such a linear combination is possible due to the difference between the reflected and transmitted output signals of detuned cavity. We demonstrate that in low-frequency region the obtained displacement-noise-free response signal is much stronger than the f gw 3 -limited sensitivity of displacement-noise-free interferometers recently proposed by S. Kawamura and Y. Chen. However, the loss of the resonant gain in the noise cancelation procedure results is the sensitivity limitation of our toy model by displacement noise of lasers and detectors

  12. Cancelled surgeries and payment by results in the English National Health Service.

    Science.gov (United States)

    McIntosh, Bryan; Cookson, Graham; Jones, Simon

    2012-04-01

    To model the frequency of 'last minute' cancellations of planned elective procedures in the English NHS with respect to the patient and provider factors that led to these cancellations. A dataset of 5,288,604 elective patients spell in the English NHS from January 1st, 2007 to December 31st, 2007 was extracted from the Hospital Episode Statistics. A binary dependent variable indicating whether or not a patient had a Health Resource Group coded as S22--'Planned elective procedure not carried out'--was modeled using a probit regression estimated via maximum likelihood including patient, case and hospital level covariates. Longer waiting times and being admitted on a Monday were associated with a greater rate of cancelled procedures. Male patients, patients from lower socio-economic groups and older patients had higher rates of cancelled procedures. There was significant variation in cancellation rates between hospitals; Foundation Trusts and private facilities had the lowest cancellation rates. Further research is needed on why Foundation Trusts exhibit lower cancellation rates. Hospitals with relatively high cancellation rates should be encouraged to tackle this problem. Further evidence is needed on whether hospitals are more likely to cancel operations where the procedure tariff is lower than the S22 tariff as this creates a perverse incentive to cancel. Understanding the underlying causes of why male, older and patients from lower socio-economic groups are more likely to have their operations cancelled is important to inform the appropriate policy response. This research suggests that interventions designed to reduce cancellation rates should be targeted to high-cancellation groups.

  13. The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods.

    Science.gov (United States)

    Liu, Yue; Yang, Chuanchuan; Yang, Feng; Li, Hongbin

    2014-03-24

    Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usuallyOFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

  14. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    Science.gov (United States)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  15. Identification and reduction of vibration and noise of a glass tempering system

    International Nuclear Information System (INIS)

    Ashhab, M S

    2015-01-01

    The vibration and noise of a glass tempering machine at a factory are studied. Experiments were conducted to identify the sources of vibration and noise. It was found that main sources for vibration and noise are two air barrels, the air pipes from the fans to the glass tempering machine and the fans location. Solutions were suggested to reduce vibration and noise from these three main sources. One of the solutions that were implemented is placing rubber dampers beneath the air barrels and pipes which almost cancelled the horizontal vibrations in the building structure and reduced the vertical vibrations to a low value most likely coming from noise. There are two types of noise, namely, radiation noise from the fans through the fans room walls and transmitted noise through the pipes caused by turbulence. A glass wool noise insulating layer was installed on the wall between the fans room and factory to reduce radiation noise through this wall. Part of the air pipe system in the factory is made of a light material which produced the highest levels of noise above 110 dBA. These air pipes were wrapped by glass wool rolls and the noise level near them was reduced to below 100 dBA which comes from other machine parts. In addition, noise levels were reduced between 2 and 15 dBA at different points in the factory. (paper)

  16. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    Directory of Open Access Journals (Sweden)

    D. McKay

    2018-01-01

    Full Text Available The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1–2 h. During the growth phase, an equatorward moving, east–west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10  keV and high- (>  10 keV energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  17. Very loud speech over simulated environmental noise tends to have a spectral peak in the F1 region

    Science.gov (United States)

    Ternstrom, Sten; Bohman, Mikael; Sodersten, Maria

    2003-04-01

    In some professions, workplace noise appears to be a hazard to the voice, if not to hearing. Several studies have shown that teachers and sports instructors, for example, are more prone to voice problems than average, prompting research on loud voice. Since on-location recordings are in many ways impractical, the running speech of 23 untrained speaker subjects (12 female, 11 male) was instead recorded in several types of loud noise that was presented over high-quality loudspeakers. Using adaptive cancellation techniques, the noise was then removed from the recordings, thus exposing the strained voices for analysis. The experiment produced a large body of data, only one aspect of which is reported here. In most subjects, the vowel spectrum as a function of voice SPL showed the expected behavior for low to moderate efforts, but developed a very pronounced peak in the F1 region at the highest efforts. This peak can be ascribed to the concerted action of several acoustic mechanisms, including source waveform asymmetry, F1 approximating one of the lower partials, and increased formant Q values due to a longer closed phase. [Work supported by the Swedish Council for Working Life and Social Research, Contract No. 2001-0341.

  18. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  19. Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem

    Science.gov (United States)

    Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.

    2008-01-01

    The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.

  20. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    Science.gov (United States)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  1. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.

    Science.gov (United States)

    Bushev, P; Hétet, G; Slodička, L; Rotter, D; Wilson, M A; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2013-03-29

    We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

  2. Effect of six sigma program on the number of surgeries cancellation.

    Science.gov (United States)

    Gheysari, Esmat; Yousefi, Hojatollah; Soleymani, Hossain; Mojdeh, Soheila

    2016-01-01

    Today, the rate of surgeries is increasing, but surgeries are canceled due to various reasons. Unexpected cancellation of surgeries not only results in disorder in the operating room schedule, but also causes stress for patients and their family and increases costs. We determined the number and causes of surgery cancellations and areas for improvement. This outcome evaluation of Six Sigma program was conducted on 850 cases after the implementation of the program and compared to that of 850 cases which received routine care before the program. Cases were selected through easy sampling during the study. Before the implementation, the number of cancellations was recorded daily and their reasons were investigated. Then, Six Sigma program was implemented in accordance with the reasons for each category and necessary steps were taken to prevent the cancellation of surgeries. Data were collected for 3 months using a three-section data collection form. For data analysis, distribution and relative frequency and chi-square test were used. The three categories of patient, physician, and hospital system were identified as the main causes. The highest rate of cancellation was related to ENT surgeries (74.19%). No cancellations were made in orology surgeries. The implementation of the Six Sigma program caused a significant difference in surgery cancellation (P = 0.003); 31 (3.6%) cases of cancellation were reduced to 12 (1.4%) cases. The results showed that Six Sigma program is a pre-surgery care quality improvement program. Patient education and the implementation of the 6 sigma program can be effective in reducing the rate of cancellation of operations.

  3. The effectiveness of environmental strategies on noise reduction in a pediatric intensive care unit: creation of single-patient bedrooms and reducing noise sources.

    Science.gov (United States)

    Kol, Emine; Aydın, Perihan; Dursun, Oguz

    2015-07-01

    Noise is a substantial problem for both patients and healthcare workers in hospitals. This study aimed to determine the effectiveness of environmental strategies (creating single-patient rooms and reducing noise sources) in noise reduction in a pediatric intensive care unit. Noise measurement in the unit was conducted in two phases. In the first phase, measurements aimed at determining the unit's present level of noise were performed over 4 weeks in December 2013. During the month following the first measurement phase, the intensive care unit (ICU) was moved to a new location and noise-reducing strategies were implemented. The second phase, in May 2014, measured noise levels in the newly constructed environment. The noise levels before and after environmental changes were statistically significant at 72.6 dB-A and 56 dB-A, respectively (p noise-reducing strategies can be effective in controlling environmental noise in the ICU. © 2015, Wiley Periodicals, Inc.

  4. Comparison of Channel Estimation Protocols for Coherent AF Relaying Networks in the Presence of Additive Noise and LO Phase Noise

    Directory of Open Access Journals (Sweden)

    Stefan Berger

    2010-01-01

    Full Text Available Channel estimation protocols for wireless two-hop networks with amplify-and-forward (AF relays are compared. We consider multiuser relaying networks, where the gain factors are chosen such that the signals from all relays add up coherently at the destinations. While the destinations require channel knowledge in order to decode, our focus lies on the channel estimates that are used to calculate the relay gains. Since knowledge of the compound two-hop channels is generally not sufficient to do this, the protocols considered here measure all single-hop coefficients in the network. We start from the observation that the direction in which the channels are measured determines (1 the number of channel uses required to estimate all coefficient and (2 the need for global carrier phase reference. Four protocols are identified that differ in the direction in which the first-hop and the second-hop channels are measured. We derive a sensible measure for the accuracy of the channel estimates in the presence of additive noise and phase noise and compare the protocols based on this measure. Finally, we provide a quantitative performance comparison for a simple single-user application example. It is important to note that the results can be used to compare the channel estimation protocols for any two-hop network configuration and gain allocation scheme.

  5. Development of the Phase-up Technology of the Radio Telescopes: 6.7 GHz Methanol Maser Observations with Phased Hitachi 32 m and Takahagi 32 m Radio Telescopes

    Science.gov (United States)

    Takefuji, K.; Sugiyama, K.; Yonekura, Y.; Saito, T.; Fujisawa, K.; Kondo, T.

    2017-11-01

    For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baseline interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (S/N) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a very long baseline interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the S/Ns of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching that is a similar technology to that used in noise-canceling headphones. Finally, we confirmed that the mean S/N of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.

  6. Generating cancelable fingerprint templates.

    Science.gov (United States)

    Ratha, Nalini K; Chikkerur, Sharat; Connell, Jonathan H; Bolle, Ruud M

    2007-04-01

    Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key." The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments.

  7. Improved optical ranging for space based gravitational wave detection

    International Nuclear Information System (INIS)

    Sutton, Andrew J; Shaddock, Daniel A; McKenzie, Kirk; Ware, Brent; De Vine, Glenn; Spero, Robert E; Klipstein, W

    2013-01-01

    The operation of 10 6  km scale laser interferometers in space will permit the detection of gravitational waves at previously unaccessible frequency regions. Multi-spacecraft missions, such as the Laser Interferometer Space Antenna (LISA), will use time delay interferometry to suppress the otherwise dominant laser frequency noise from their measurements. This is accomplished by performing sub-sample interpolation of the optical phase measurements recorded at each spacecraft for synchronization and cancellation of the otherwise dominant laser frequency noise. These sub-sample interpolation time shifts are dependent upon the inter-spacecraft range and will be measured using a pseudo-random noise ranging modulation upon the science laser. One limit to the ranging performance is mutual interference between the outgoing and incoming ranging signals upon each spacecraft. This paper reports on the demonstration of a noise cancellation algorithm which is shown to providing a factor of ∼8 suppression of the mutual interference noise. Demonstration of the algorithm in an optical test bed showed an rms ranging error of 0.06 m, improved from 0.19 m in previous results, surpassing the 1 m RMS LISA specification and potentially improving the cancellation of laser frequency noise. (paper)

  8. Experimental Study of Nonlinear Phase Noise and its Impact on WDM Systems with DP-256QAM

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson

    2016-01-01

    A probabilistic method for mitigating the phase noise component of the non-linear interference in WDM systems with Raman amplification is experimentally demonstrated. The achieved gains increase with distance and are comparable to the gains of single-channel digital back-propagation....

  9. A 24 GHz Waveguide based Radar System using an Advanced Algorithm for I/Q Offset Cancelation

    Directory of Open Access Journals (Sweden)

    C. Will

    2017-10-01

    Full Text Available Precise position measurement with micrometer accuracy plays an important role in modern industrial applications. Herewith, a guided wave Six-Port interferometric radar system is presented. Due to limited matching and discontinuities in the radio frequency part of the system, the designers have to deal with DC offsets. The offset voltages in the baseband lead to worse relative modulation dynamics relating to the full scale range of the analog-to-digital converters and thus, considerably degrade the system performance. While common cancelation techniques try to estimate and extinguish the DC offsets directly, the proposed radar system is satisfied with equalizing both DC offsets for each of the two differential baseband signal pairs. Since the complex representation of the baseband signals is utilized for a subsequent arctangent demodulation, the proposed offset equalization implicates a centering of the in-phase and quadrature (I/Q components of the received signal, which is sufficient to simplify the demodulation and improve the phase accuracy. Therefore, a standard Six-Port radar system is extended and a variable phase shifter plus variable attenuators are inserted at different positions. An intelligent algorithm adjusts these configurable components to achieve optimal I/Q offset cancelation.

  10. Measurement of drag and its cancellation

    Energy Technology Data Exchange (ETDEWEB)

    DeBra, D B; Conklin, J W, E-mail: johnwc@stanford.edu [Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035 (United States)

    2011-05-07

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  11. Measurement of drag and its cancellation

    International Nuclear Information System (INIS)

    DeBra, D B; Conklin, J W

    2011-01-01

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  12. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  13. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  14. Squeezed noise in precision force measurements

    International Nuclear Information System (INIS)

    Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.

    1986-01-01

    The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)

  15. Factors impacting same-day cancellation of outpatient pediatric magnetic resonance imaging under anesthesia

    International Nuclear Information System (INIS)

    Hoffman, Andrea S.; Matlow, Anne; Shroff, Manohar; Cohen, Eyal

    2015-01-01

    Studies of elective surgical procedures indicate that cancellation is common and preventable. Little is known about cancellation of anesthesia-supported elective diagnostic imaging. To describe the reasons for same-day cancellation of MRI studies performed under sedation or anesthesia and identify patient characteristics associated with cancellations. This case-control study was carried out in a university-affiliated tertiary care children's hospital. Cases were defined as elective outpatient MRI studies booked under anesthesia that were cancelled after the patient had arrived in the radiology department in 2009. Matched controls were identified by selecting the same day and time 1 week before or after the cancelled case. Main outcome measures included demographics, MRI study characteristics, and social and medical factors. There were 111 outpatient anesthesia-supported MRI studies cancelled on the same day as the assessment (cancellation rate: 4.5%), of which 74.6% were related to family and patient factors, while 22% were related to system factors. Cancelled cases involved patients who lived in lower median income quintile neighborhoods compared to controls (2 vs. 3; P = 0.0007; odds ratio [OR] 3.81; 95% confidence interval [CI] 1.18-12.34). Those who traveled a greater median distance (in kilometers) were less likely to be cancelled (18.8 vs. 27.1, P = 0.0035). Although cancelled patients had a lower mean number of total medical services (2.5 vs. 3.0; P = 0.03; OR = 0.78; 95% CI 0.62-0.98), current medical factors (past 12 months) did not impact cancellations. Same-day cancellations of anesthesia-supported MRI studies are not uncommon, and the main predictor of cancellation seems to be socioeconomic rather than medical. (orig.)

  16. Factors impacting same-day cancellation of outpatient pediatric magnetic resonance imaging under anesthesia

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Andrea S. [University of Toronto, Department of Paediatrics, Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto (Canada); Matlow, Anne [University of Toronto, Strategic Initiatives, Postgraduate Medical Education, Toronto (Canada); Shroff, Manohar [University of Toronto, Department of Diagnostic Imaging, Division of Neuroradiology, Hospital for Sick Children, Toronto (Canada); Cohen, Eyal [University of Toronto, Division of Paediatric Medicine and Child Health Evaluative Sciences, Hospital for Sick Children, Department of Paediatrics and Institute of Health Policy, Management and Evaluation, Toronto (Canada)

    2014-07-24

    Studies of elective surgical procedures indicate that cancellation is common and preventable. Little is known about cancellation of anesthesia-supported elective diagnostic imaging. To describe the reasons for same-day cancellation of MRI studies performed under sedation or anesthesia and identify patient characteristics associated with cancellations. This case-control study was carried out in a university-affiliated tertiary care children's hospital. Cases were defined as elective outpatient MRI studies booked under anesthesia that were cancelled after the patient had arrived in the radiology department in 2009. Matched controls were identified by selecting the same day and time 1 week before or after the cancelled case. Main outcome measures included demographics, MRI study characteristics, and social and medical factors. There were 111 outpatient anesthesia-supported MRI studies cancelled on the same day as the assessment (cancellation rate: 4.5%), of which 74.6% were related to family and patient factors, while 22% were related to system factors. Cancelled cases involved patients who lived in lower median income quintile neighborhoods compared to controls (2 vs. 3; P = 0.0007; odds ratio [OR] 3.81; 95% confidence interval [CI] 1.18-12.34). Those who traveled a greater median distance (in kilometers) were less likely to be cancelled (18.8 vs. 27.1, P = 0.0035). Although cancelled patients had a lower mean number of total medical services (2.5 vs. 3.0; P = 0.03; OR = 0.78; 95% CI 0.62-0.98), current medical factors (past 12 months) did not impact cancellations. Same-day cancellations of anesthesia-supported MRI studies are not uncommon, and the main predictor of cancellation seems to be socioeconomic rather than medical. (orig.)

  17. High-Fidelity Simulation of Turbofan Noise, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband fan noise -- closely tied to turbulent flow on and around the fan blades -- represents a key challenge to the noise reduction community due to the...

  18. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas

    Directory of Open Access Journals (Sweden)

    Wanli Liu

    2015-07-01

    Full Text Available Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise.

  19. A software to measure phase-velocity dispersion from ambient-noise correlations and its application to the SNSN data

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur

    2017-04-01

    Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.

  20. A journal cancellation survey and resulting impact on interlibrary loan.

    Science.gov (United States)

    Nash, Jacob L; McElfresh, Karen R

    2016-10-01

    The research describes an extensible method of evaluating and cancelling electronic journals during a budget shortfall and evaluates implications for interlibrary loan (ILL) and user satisfaction. We calculated cost per use for cancellable electronic journal subscriptions (n=533) from the 2013 calendar year and the first half of 2014, cancelling titles with cost per use greater than $20 and less than 100 yearly uses. For remaining titles, we issued an online survey asking respondents to rank the importance of journals to their work. Finally, we gathered ILL requests and COUNTER JR2 turnaway reports for calendar year 2015. Three hundred fifty-four respondents completed the survey. Because of the level of heterogeneity of titles in the survey as well as respondents' backgrounds, most titles were reported to be never used. We developed criteria based on average response across journals to determine which to cancel. Based on this methodology, we cancelled eight journals. Examination of ILL data revealed that none of the cancelled titles were requested with any frequency. Free-text responses indicated, however, that many value free ILL as a suitable substitute for immediate full-text access to biomedical journal literature. Soliciting user feedback through an electronic survey can assist collections librarians to make electronic journal cancellation decisions during slim budgetary years. This methodology can be adapted and improved upon at other health sciences libraries.

  1. Experimental Demonstration of Nonlinearity and Phase Noise Tolerant 16-QAM OFDM W-Band (75–110 GHz) Signal Over Fiber System

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser i...

  2. 30 CFR 285.437 - When can my lease or grant be canceled?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When can my lease or grant be canceled? 285.437... Administration Lease Or Grant Cancellation § 285.437 When can my lease or grant be canceled? (a) The Secretary will cancel any lease or grant issued under this part upon proof that it was obtained by fraud or...

  3. Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space

    Science.gov (United States)

    Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng

    2017-09-01

    A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.

  4. Imperfect generalized transmit beamforming with co-channel interference cancelation

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    of outdated statistical ordering of the interferers instantaneous powers on the effectiveness of dominant interference cancelation is investigated against the less complex adaptive arbitrary cancelation scheme. For the system models described above, new exact

  5. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio

    Science.gov (United States)

    Pan, Xinjian; Cai, Yi; Zeng, Xuanke; Zheng, Shuiqin; Li, Jingzhen; Xu, Shixiang

    2017-05-01

    The paper presents a novel design for terahertz (THz) free-space time domain electro-optic (EO) detection where the static birefringent phases of the two balanced arms are set close to zero but opposite to each other. Our theoretical and numerical analyses show this design has much stronger ability to cancel the optical background noise than both THz ellipsometer and traditional crossed polarizer geometry (CPG). Its optical modulation depth is about twice as high as that of traditional CPG, but about ten times as high as that of THz ellipsometer. As for the dynamical range, our improved design is comparable to the THz ellipsometer but obviously larger than the traditional CPG. Some experiments for comparing our improved CPG with traditional CPG agree well with the corresponding theoretical predictions. Our experiments also show that the splitting ratio of the used non-polarization beam splitter is critical for the performance of our design.

  6. An Interference Cancellation Scheme for High Reliability Based on MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Ro

    2018-03-01

    Full Text Available This article proposes a new interference cancellation scheme in a half-duplex based two-path relay system. In the conventional two-path relay system, inter-relay-interference (IRI which severely degrades the error performances at a destination occurs because a source and a relay transmit signals simultaneously at a specific time. The proposed scheme removes the IRI at a relay for higher signal-to-interference plus noise ratio (SINR to receive interference free signal at a destination, unlike the conventional relay system, which removes IRI at a destination. To handle the IRI, the proposed scheme uses multiple-input multiple-output (MIMO signal detection at the relays and it makes low-complexity signal processing at a destination which is a usually mobile user. At the relays, the proposed scheme uses the low-complexity QR decomposition-M algorithm (QRD-M to optimally remove the IRI. Also, for obtaining diversity gain, the proposed scheme uses cyclic delay diversity (CDD to transmit the signals at a source and the relays. In simulation results, the error performance for the proposed scheme is better when the distance between one relay and another relay is low unlike the conventional scheme because the QRD-M detects received signal in order of higher post signal-to-noise ratio (SNR.

  7. Sub-shot-noise phase sensitivity with a Bose-Einstein condensate Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Pezze, L.; Smerzi, A.; Collins, L.A.; Berman, G.P.; Bishop, A.R.

    2005-01-01

    Bose-Einstein condensates (BEC), with their coherence properties, have attracted wide interest for their possible application to ultraprecise interferometry and ultraweak force sensors. Since condensates, unlike photons, are interacting, they may permit the realization of specific quantum states needed as input of an interferometer to approach the Heisenberg limit, the supposed lower bound to precision phase measurements. To this end, we study the sensitivity to external weak perturbations of a representative matter-wave Mach-Zehnder interferometer whose input are two Bose-Einstein condensates created by splitting a single condensate in two parts. The interferometric phase sensitivity depends on the specific quantum state created with the two condensates, and, therefore, on the time scale of the splitting process. We identify three different regimes, characterized by a phase sensitivity Δθ scaling with the total number of condensate particles N as (i) the standard quantum limit Δθ∼1/N 1/2 (ii) the sub shot-noise Δθ∼1/N 3/4 , and the (iii) the Heisenberg limit Δθ∼1/N. However, in a realistic dynamical BEC splitting, the 1/N limit requires a long adiabaticity time scale, which is hardly reachable experimentally. On the other hand, the sub-shot-noise sensitivity Δθ∼1/N 3/4 can be reached in a realistic experimental setting. We also show that the 1/N 3/4 scaling is a rigorous upper bound in the limit N→∞, while keeping constant all different parameters of the bosonic Mach-Zehnder interferometer

  8. Fermi Electronics: A Means of Correlating and Canceling Shot Noise From Solid State Devices

    National Research Council Canada - National Science Library

    Brown, Elliot

    2004-01-01

    .... Simulation results are analyzed and compared to experimental results for an InGaAs/AlAs double-barrier structure, which is the fastest resonant tunneling diode ever characterized for its noise properties...

  9. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    Science.gov (United States)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  10. Infrared divergence cancellation in pure Yang-Mills theory

    International Nuclear Information System (INIS)

    Alvarez, A.G.

    1977-01-01

    Virtual and real corrections to massless external lines in pure Yang-Mills theory are considered in order to look for general features of the infrared divergence cancellation. Use of the Ward identities and sums over transverse polarization states give rise to terms formally corresponding to real ghost emission, cancelling ghost loop singularities, and to a factorisation of the hard narrow single gauge boson emission. Other virtual corrections are examined in the soft region and a graph by graph cancellation is also found. An illustrative explicit calculation of scattering of a gauge particle in an external scalar potential, including hard narrow angle emission is presented. (Auth.)

  11. Journal cancellations in university libraries in South Africa

    Directory of Open Access Journals (Sweden)

    Ruth Hoskins

    2010-01-01

    Full Text Available This article is based on part of a survey that investigated journal cancellations in university libraries in South Africa. A study population consisting of 17 university libraries in South Africa was surveyed by means of an online questionnaire to establish the factors that influenced journal cancellations. Interpretation of the results revealed that South African university libraries, like most academic and research libraries world wide, have been adversely affected by high priced journal subscriptions and many libraries have simply cancelled subscriptions to pay for ongoing subscriptions. Recommendations are made about enhancing library budgets and access to usage statistics, supporting consortia and avoiding restrictive journal packages.

  12. Davis Canyon noise analysis: Revision 2

    International Nuclear Information System (INIS)

    1985-11-01

    A study was performed as part of the Civilian Radioactive Waste Management Program to quantify the level and effect of noise from the various major phases of development of the proposed potentially acceptable nuclear waste repository site at Davis Canyon, Utah. This report contains the results of a predictive noise level study for the site characterization, repository construction, and repository operational phases. Included herein are graphic representations of energy averaged sound levels, and of audibility levels representing impact zones expected during each phase. Sound levels from onsite and offsite activity including traffic on highways and railroad routes are presented in isopleth maps. A description of the Environmental Noise Prediction Model used for the study, the study basis and methodologies, and actual modeling data are provided. Noise and vibration levels from blasting are also predicted and evaluated. Protective noise criteria containing a margin of safety are used in relation to residences, schools, churches, noise-sensitive recreation areas, and noise-sensitive biological resources. Protective ground motion criteria for ruins and delicate rock formation in Canyonlands National Park and for human annoyance are used in the evaluation of blasting. The evaluations provide the basis for assessing the noise impacts from the related activities at the proposed repository. 45 refs., 21 figs., 15 tabs

  13. 42 CFR 57.313a - Loan cancellation reimbursement.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Loan cancellation reimbursement. 57.313a Section 57.313a Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR... Loans § 57.313a Loan cancellation reimbursement. In the event that insufficient funds are available to...

  14. Adaptive noise cancellation

    International Nuclear Information System (INIS)

    Rizwan, N.

    1999-01-01

    Wavelet analysis consists of decomposing a signal or an image into a hierarchical set of approximations and details. The levels in the hierarchy correspond to those in a dyadic scale. Wavelet provide an alternative to classical Short Time Fourier Transforms for the analysis of non-stationary signals. Wavelets are defined in continuous time and discrete time. Recently Discrete Wavelet Transform (DWT) had emerged as a popular technique in Image Compression. DWT has high decorrelation and energy compaction efficiency. In this report, the effect of level of decomposition on image compression was studied and results are compared with DCT based image compression. DWT proved better in compression as there was high energy compaction and compressed image was free from blocking artifacts. (author)

  15. The position profiles of order cancellations in an emerging stock market

    International Nuclear Information System (INIS)

    Gu, Gao-Feng; Ren, Fei; Zhou, Wei-Xing; Xiong, Xiong; Zhang, Wei

    2013-01-01

    Order submission and cancellation are two constituent actions of stock trading behaviors in order-driven markets. Order submission dynamics has been extensively studied for different markets, while order cancellation dynamics is less understood. There are two positions associated with a cancellation, that is, the price level in the limit-order book (LOB) and the position in the queue at each price level. We study the profiles of these two order cancellation positions through rebuilding the limit-order book using the order flow data of 23 liquid stocks traded on the Shenzhen Stock Exchange in the year 2003. We find that the profiles of relative price levels where cancellations occur obey a log-normal distribution. After normalizing the relative price level by removing the factor of order numbers stored at the price level, we find that the profiles exhibit a power-law scaling behavior on the right tails for both buy and sell orders. When focusing on the order cancellation positions in the queue at each price level, we find that the profiles increase rapidly in the front of the queue, and then fluctuate around a constant value till the end of the queue. These profiles are similar for different stocks. In addition, the profiles of cancellation positions can be fitted by an exponent function for both buy and sell orders. These two kinds of cancellation profiles seem universal for different stocks investigated and exhibit minor asymmetry between buy and sell orders. Our empirical findings shed new light on the order cancellation dynamics and pose constraints on the construction of order-driven stock market models. (paper)

  16. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  17. Split SR-RLS for the Joint Initialization of the Per-Tone Equalizers and Per-Tone Echo Cancelers in DMT-Based Receivers

    Directory of Open Access Journals (Sweden)

    Ysebaert Geert

    2004-01-01

    Full Text Available In asymmetric digital subscriber lines (ADSL, the available bandwidth is divided in subcarriers or tones which are assigned to the upstream and/or downstream transmission direction. To allow efficient bidirectional communication over one twisted pair, echo cancellation is required to separate upstream and downstream channels. In addition, intersymbol interference and intercarrier interference have to be reduced by means of equalization. In this paper, a computationally efficient algorithm for adaptively initializing the per-tone equalizers (PTEQ and per-tone echo cancelers (PTEC is presented. For a given number of equalizer and echo canceler taps per-tone, it was shown that the joint PTEQ/PTEC receiver structure is able to maximize the signal-to-noise ratio (SNR on each subcarrier and hence also the achievable bit rate. The proposed initialization scheme is based on a modification of the square root recursive least squares (SR-RLS algorithm to reduce computational complexity and memory requirement compared to full SR-RLS, while keeping the convergence rate acceptably fast. Our performance analysis will show that the proposed method converges in the mean and an upper bound for the step size is given. Moreover, we will indicate how the presented initialization method can be reused in several other ADSL applications.

  18. Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization

    International Nuclear Information System (INIS)

    Braginsky, Vladimir B.; Gorodetsky, Mikhail L.; Khalili, Farid Ya.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Thorne, Kip S.

    2003-01-01

    It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if one filters the interferometer output appropriately. No additional noise arises from the test masses' initial quantum state or from reduction of the test-mass state due to measurement of the interferometer output or from the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these conclusions: (i) The interferometer output [the photon number flux N(t) entering the final photodetector] commutes with itself at different times in the Heisenberg picture, [N(t),N(t ' )]=0 and thus can be regarded as classical. (ii) This number flux is linear to high accuracy in the test-mass initial position and momentum operators x o and p o , and those operators influence the measured photon flux N(t) in manners that can easily be removed by filtering. For example, in most interferometers x o and p o appear in N(t) only at the test masses' ∼1 Hz pendular swinging frequency and their influence is removed when the output data are high-pass filtered to get rid of noise below ∼10 Hz. The test-mass operators x o and p o contained in the unfiltered output N(t) make a nonzero contribution to the commutator [N(t),N(t ' )]. That contribution is precisely canceled by a nonzero commutation of the photon shot noise and radiation-pressure noise, which also are contained in N(t). This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer's standard quantum limit from test-mass considerations, and independently from photon-noise considerations, and get identically the same result. These conclusions are all true for a far wider class of measurements than just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought experiments that

  19. Cancellation of soft and collinear divergences in noncommutative QED

    International Nuclear Information System (INIS)

    Mirza, B.; Zarei, M.

    2006-01-01

    In this paper, we investigate the behavior of noncommutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the nonplanar diagrams will be examined in order to prove an all-order cancellation of these divergences using the Weinberg's method. In noncommutative QED, collinear divergences due to triple photon splitting vertex, were encountered, which are shown to be canceled out by the noncommutative version of KLN theorem. This guarantees that there is no mixing between the Collinear, soft divergences and noncommutative IR divergences

  20. Three-dimensional Microarchitecture of Adolescent Cancellous Bone

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I; Overgaard, Søren

    regarding three-dimensional (3-D) microarchitecture of normal adolescent cancellous bone. The objective of this study was to investigate 3-D microarchitecture of normal adolescent cancellous bone, and compared them with adult cancellous bone, thus seeking more insight into the subchondral bone adaptations...... of lateral condyle in the young adult. There were no statistical significances in the mechanical properties apart from the Young’s modulus of adolescent in anterior-posterior direction was significantly lower than the other groups. DISCUSSION: This is the first study on the 3-D microarchitecture of human......, Switzerland) resulting in cubic voxel sizes of 10*10*10 m3. Microarchitectural properties were calculated, and the mean values for either tibia, medial or lateral condyle were used in analyses. Furthermore, the samples were first tested non-destructively in compression in antero-posterior (AP) and medial...

  1. 42 CFR 57.213a - Loan cancellation reimbursement.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Loan cancellation reimbursement. 57.213a Section 57... Professions Student Loans § 57.213a Loan cancellation reimbursement. (a) For loans made prior to October 22... credited to this insurance fund), and used only to reimburse the school for the institutional share of any...

  2. Croatian Experience in Road Traffic Noise Management - Concrete Noise Barriers

    Directory of Open Access Journals (Sweden)

    Ahac Saša

    2014-07-01

    Full Text Available The paper gives an overview of concrete noise barrier application in several EU countries and in Croatia. It describes a process of introducing different noise protection solutions on Croatian market in the phase of intensive motorway construction in recent years. Namely, an extensive motorway network has been constructed in Croatia in the last 10 years. Following the process of motorway construction, noise protection walls have also been erected. Usage of different building materials and installation processes as well as variations in building expenditures has led to a comparative analysis of several types of noise protection solutions (expanded clay, wood fibre including a new eco-innovative product RUCONBAR, which incorporates rubber granules from recycled waste tyres to form a porous noise absorptive layer.

  3. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    Science.gov (United States)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  4. Acoustical Engineering Controls and Estimated Return on Investment for DoD Selected High Noise Sources: A Roadmap for Future Noise Control in Acquisition

    Science.gov (United States)

    2013-04-25

    20K $4.4B $8.8B Active Noise Cancellation 7 dB $30K $60K $13.2B $26.4B Tire Tread Re-design 5 dB $0.8K $2K $0.3B $0.8B Distributed TVA’s 5 dB $10K...lbs Distributed vibration absorbers $10,000 to $20,000 4 inches tall 1000 lbs Tire Tread $200-500 Minimal impact Minimal impact Hydraulic Mounts...of vibration and changing the shape and thickness of covers can reduce vibration levels and reduce radiation efficiency. Other than separating

  5. Structural strength of cancellous specimens from bovine femur under cyclic compression

    Directory of Open Access Journals (Sweden)

    Kaori Endo

    2016-01-01

    Full Text Available The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01 and structural model index (SMI, r = − 0.81, p < 0.01. The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01 and SMI (r = − 0.78, p < 0.01. These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that

  6. 19 CFR 113.55 - Cancellation of export bonds.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Cancellation of export bonds. 113.55 Section 113... export bonds. (a) Manner of cancellation. A bond to assure exportation as defined in § 101.1 of this... shall be signed by a revenue officer of the foreign country to which the merchandise is exported, unless...

  7. Design and analysis of an energy-efficient O-QPSK coherent IR-UWB transceiver with a 0.52° RMS phase-noise fractional synthesizer

    Science.gov (United States)

    Ying, Yutong; Lin, Fujiang; Bai, Xuefei

    2018-03-01

    This paper explores an energy-efficient pulsed ultra-wideband (UWB) radio-frequency (RF) front-end chip fabricated in 0.18-μm CMOS technology, including a transmitter, receiver, and fractional synthesizer. The transmitter adopts a digital offset quadrature phase-shift keying (O-QPSK) modulator and passive direct-phase multiplexing technology, which are energy- and hardware-efficient, to enhance the data rate for a given spectrum. A passive mixer and a capacitor cross-coupled (CCC) source-follower driving amplifier (DA) are also designed for the transmitter to further reduce the low power consumption. For the receiver, a power-aware low-noise amplifier (LNA) and a quadrature mixer are applied. The LNA adopts a CCC boost common-gate amplifier as the input stage, and its current is reused for the second stage to save power. The mixer uses a shared amplification stage for the following passive IQ mixer. Phase noise suppression of the phase-locked loop (PLL) is achieved by utilizing an even-harmonics-nulled series-coupled quadrature oscillator (QVCO) and an in-band noise-aware charge pump (CP) design. The transceiver achieves a measured data rate of 0.8 Gbps with power consumption of 16 mW and 31.5 mW for the transmitter and the receiver, respectively. The optimized integrated phase noise of the PLL is 0.52° at 4.025 GHz. Project supported by the National Science and Technology Major Project of China (No. 2011ZX03004-002-01).

  8. Self-noise in interferometers - radio and infrared

    International Nuclear Information System (INIS)

    Kulkarni, S.R.

    1989-01-01

    A complete theory of noise in a synthesis image is proposed for a source of arbitrary strength. In the limit of faint sources, the standard estimates of noise in a synthesis image are recovered, while in the limit of strong sources, the noise in the synthesis image is found to be dominated by either self noise or by the noise generated by the source signal itself. It is found that the best VLBI maps (with noise approaching the thermal noise) may in fact be limited by self noise, and that there is a negligible bias in the standard definitions of the bispectrum phasor and the closure phase. The results suggest that at the low signal levels which are characteristic of infrared interferometers, it is best to fit the model to all the closure phases and fringe amplitudes. 13 refs

  9. HUD Initiated Activity Cancellation Reports

    Data.gov (United States)

    Department of Housing and Urban Development — This monthly report displays all HOME activities automatically cancelled by IDIS. Effective January 1, 2011, and the beginning of every month thereafter, committed...

  10. Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.

    Science.gov (United States)

    Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker

    2013-07-01

    It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.

  11. Richton Dome noise analysis: Revision 2

    International Nuclear Information System (INIS)

    1985-11-01

    A study was performed as part of the Civilian Radioactive Waste Management Program to quantify the level and effect of noise from the various major phases of development of the proposed potentially acceptable nuclear waste repository site at Richton Dome, Mississippi. This report contains the results of a predictive noise level study for the site characterization, repository construction, and repository operational phases. Included herein are graphic representations of energy averaged day/night sound levels representing impact zones expected during each phase. Sound levels from onsite and offsite activity including traffic on highways and railroad routes are presented in isopleth maps. A description of the Environmental Noise Prediction Model used for the study, the study basis and methodologies, and actual modeling data are provided. Noise and vibration levels from blasting are also predicted and evaluated. Protective noise criteria containing a margin of safety are used for persons in relation to residences, schools, churches, and agricultural areas. Protective ground motion criteria for residential dwelling and for human annoyance are used in the evaluation. The evaluation provides the bases for assessing the noise impacts from the related activities at the proposed repository. 24 refs., 8 figs., 8 tabs

  12. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier in...

  13. Deaf Smith County noise analysis: Revision 2

    International Nuclear Information System (INIS)

    1985-11-01

    An analysis of activities proposed for the three major phases of development of the proposed nuclear waste repository site in Deaf Smith County, Texas, was conducted to quantify the noise levels and the effect of noise resulting from these activities. The report provides additional details of the predictive noise level modeling conducted for the site characterization, repository construction, and repository operation phases. Equivalent day/night sound levels are presented for each phase as sound level contours. Sound levels from onsite and offsite activities are addressed including traffic on access routes, and railroad construction and operation. A description of the predictive models, the analysis methodologies, the noise source inventories, the model outputs, and the evaluation criteria are included. 35 refs., 6 figs., 2 tabs

  14. Analysis and Optimal Condition of the Rear-Sound-Aided Control Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Karel Kreuter

    2011-01-01

    Full Text Available An active noise control scenario of simple ducts is considered. The previously suggested technique of using an single loudspeaker and its rear sound to cancel the upstream sound is further examined and compared to the bidirectional solution in order to give theoretical proof of its advantage. Firstly, a model with a new approach for taking damping effects into account is derived based on the electrical transmission line theory. By comparison with the old model, the new approach is validated, and occurring differences are discussed. Moreover, a numerical application with the consideration of damping is implemented for confirmation. The influence of the rear sound strength on the feedback-path system is investigated, and the optimal condition is determined. Finally, it is proven that the proposed source has an advantage of an extended phase lag and a time delay in the feedback-path system by both frequency-response analysis and numerical calculation of the time response.

  15. Analysis of design parameters for crosstalk cancellation filters applied to different loudspeaker configurations

    DEFF Research Database (Denmark)

    Parodi, Yesenia Lacouture

    2008-01-01

    Several approaches to render binaural signals through loudspeakers have been proposed previously. Some studies had focused on the optimum loudspeaker arrangement while others had proposed efficient filters. However, to our knowledge, the identification of optimal parameters for inverse methods ap...... loudspeaker arrangements. Least square approximations in frequency and time domain are evaluated along with a crosstalk canceler based on minimum-phase approximation. Filter parameters, such as length and regularization, are varied and simulated for different span and elevation angles....

  16. Noise as a Probe of Ising Spin Glass Transitions

    Science.gov (United States)

    Chen, Zhi; Yu, Clare

    2009-03-01

    Noise is ubiquitous and and is often viewed as a nuisance. However, we propose that noise can be used as a probe of the fluctuations of microscopic entities, especially in the vicinity of a phase transition. In recent work we have used simulations to show that the noise increases in the vicinity of phase transitions of ordered systems. We have recently turned our attention to noise near the phase transitions of disordered systems. In particular, we are studying the noise near Ising spin glass transitions using Monte Carlo simulations. We monitor the system as a function of temperature. At each temperature, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization. We look at different quantities, such as the noise power spectrum and the second spectrum of the noise, to analyze the fluctuations.

  17. Characterization of pseudosingle bunch kick-and-cancel operational mode

    Science.gov (United States)

    Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.

    2015-12-01

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  18. Characterization of pseudosingle bunch kick-and-cancel operational mode

    Directory of Open Access Journals (Sweden)

    C. Sun

    2015-12-01

    Full Text Available Pseudosingle-bunch kick-and-cancel (PSB-KAC is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  19. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel

    International Nuclear Information System (INIS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-01-01

    The magnetic properties of ferrite–martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels. - Highlights: • Normalized impedance decreased as the ASTM grain size number increased. • An increase in martensite percentage resulted in a decrease in normalized impedance. • As the martensite in the DP steels increased, the MBN signals increased. • Barkhausen jumps increased with increasing the ASTM grain size number. • Both ECT and MBN had a high potential to detect microstructural changes of DP steels

  20. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels.

    Science.gov (United States)

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos

    2013-07-01

    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.