WorldWideScience

Sample records for ph affects chemical

  1. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Naveed, Muhammad; Ahmad, Rashid; Shahid, Muhammad

    2016-07-01

    Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Factors affecting intra-oral pH - a review.

    Science.gov (United States)

    Loke, C; Lee, J; Sander, S; Mei, L; Farella, M

    2016-10-01

    One of the greatest challenges to modern dentistry is the progressive destruction of tooth material due to chemical erosion. Dental erosion is the loss of dental hard tissue, without the action of bacteria, in which demineralisation of enamel and dentine results due to a decrease in intra-oral pH. The aim of this review was to appraise the scientific literature on the factors that can affect intra-oral pH. The review will examine (i) the protective role of human saliva, in terms of its mineral composition, flow rates and buffering systems and (ii) sources of in-mouth acids such as extrinsic acids, which are derived from the diet and environment, as well as intrinsic acids, which are related to disorders of the gastro-oesophageal tract. This review may assist clinicians to identify the risk factors for tooth wear and to recommend adequate preventive measures to patients. © 2016 John Wiley & Sons Ltd.

  3. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    Science.gov (United States)

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  4. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  5. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    Science.gov (United States)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  6. Consideration of Factors Affecting Strip Effluent PH and Sodium Content

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-29

    A number of factors were investigated to determine possible reasons for why the Strip Effluent (SE) can sometimes have higher than expected pH values and/or sodium content, both of which have prescribed limits. All of the factors likely have some impact on the pH values and Na content.

  7. Complexing agents and pH influence on chemical durability of type I moulded glass containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-06-16

    Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.

  8. Complexing Agents and pH Influence on Chemical Durability of Type I Molded Glass Containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-01-01

    Among the factors that affect the glass surface chemical durability, pH and complexing agents present in aqueous solution have the main role. Glass surface attack can be also related to the delamination issue causing glass particles' appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed. The present study emphasizes the possible synergy between a few complexing agents with pH on borosilicate glass chemical durability.Hydrolytic attack was performed in small-volume 23 mL type I glass containers autoclaved according to the European Pharmacopoeia or United States Pharmacopeia for 1 h at 121 °C, in order to enhance the chemical attack due to time, temperature, and the unfavorable surface/volume ratio. Solutions of 0.048 M or 0.024 M (M/L) of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid), together with sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ±0.05 units at fixed values 5.5, 6.6, 7, 7.4, 8, and 9 by LiOH diluted solution.Because silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by inductively coupled plasma atomic emission spectrophotometry. The work was completed by the analysis of the silicon release in the worst attack conditions of molded glass, soda lime type II glass, and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by scanning electron microscopy was finally performed to check for the surface status after the worst chemical attack condition by citric acid. LAY ABSTRACT: Glass, like every packaging material, can have some usage limits, mainly in basic pH solutions. The issue of glass surface degradation particles that appear in vials (delamination) has forced a number of drug product recalls in recent years

  9. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    Science.gov (United States)

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Equilibrium unfolding of A. niger RNase: pH dependence of chemical and thermal denaturation.

    Science.gov (United States)

    Kumar, Gundampati Ravi; Sharma, Anurag; Kumari, Moni; Jagannadham, Medicherla V; Debnath, Mira

    2011-08-01

    Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (A(MG1)) into another (I(MG2)).

  11. Effect of pH on optic and structural characterization of chemical deposited AgI thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tezel, Fatma Meydaneri [Department of Metallurgy and Materials Engineering, Karabük University (Turkey); Kariper, İshak Afşin [Department of Science Education, Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-11-15

    AgI thin films were grown on amorphous commercial glass substrates with chemical bath deposition (CBD) at different pH values (2, 3, 4, 5, 6), 6 hours deposition time and 60 °C. The structure of the nanocrystals was characterized by X-ray diffraction (XRD). The ratio of Ag{sup +} and I{sup -} ions changed the crystalline structures. The presence of the Ag{sup +} ions produces the γ-phase of AgI and excess of iodine concentration produces β-phase of AgI. The pH: 4 was like a transition pH for these phases. The number of crystallites per unit area has maximum value at pH: 5, as the structure is re-crystallization to hexagonal phase. Also, the thicknesses of produced thin films were decreased with increased pH values. Therefore, transmission, reflection, extinction coefficients and refractive index of the materials were affected by thicknesses, and calculated to be 32, 35, 3, 11, 9 (%) - 27, 25, 61, 45, 49 (%) - 0.036, 0.032, 0.067, 0.107, 0.075 and 3.21, 3.02, 5.16, 8.35, 5.70 in 550 nm at pH: 2-3-4-5-6 values, respectively. The exciton peaks of AgI were observed at between 320 and 420 nm. Surface properties were investigated by using scanning electron microscopy (SEM). (author)

  12. Physical and chemical factors affecting sludge consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Blimkie, M.E.; Lavoie, P.A

    1997-09-01

    Chemical reactions between sludge components and precipitation reactions within the pores of the existing sludge are shown to contribute to the consolidation of sludge under steam generator operating conditions. Simulations of sludge representative of plants with a mixed iron/copper feedtrain suggest that as the conditions in the feedtrain become more oxidizing the sludge will become harder with a higher nickel ferrite content. The precipitation of feedwater impurities introduced by condenser leaks and of zinc silicate, which is produced in plants with brass condenser tubes and silica in the makeup water, contribute significantly to sludge consolidation. Sodium phosphate is also shown to be an agent of sludge consolidation. (author)

  13. Expression of characteristics of ammonium nutrition as affected by pH of the root medium

    Science.gov (United States)

    Chaillou, S.; Vessey, J. K.; Morot-Gaudry, J. F.; Raper, C. D. Jr; Henry, L. T.; Boutin, J. P.

    1991-01-01

    To study the effect of root-zone pH on characteristic responses of NH4+ -fed plants, soybeans (Glycine max inverted question markL. inverted question mark Merr. cv. Ransom) were grown in flowing solution culture for 21 d on four sources of N (1.0 mol m-3 NO3-, 0.67 mol m-3 NO3- plus 0.33 mol m-3 NH4+, 0.33 mol m-3 NO3- plus 0.67 mol m-3 NH4+, and 1.0 mol m-3 NH4+) with nutrient solutions maintained at pH 6.0, 5.5, 5.0, and 4.5. Amino acid concentration increased in plants grown with NH4+ as the sole source of N at all pH levels. Total amino acid concentration in the roots of NH4+ -fed plants was 8 to 10 times higher than in NO3(-)-fed plants, with asparagine accounting for more than 70% of the total in the roots of these plants. The concentration of soluble carbohydrates in the leaves of NH4+ -fed plants was greater than that of NO3(-)-fed plants, but was lower in roots of NH4+ -fed plants, regardless of pH. Starch concentration was only slightly affected by N source or root-zone pH. At all levels of pH tested, organic acid concentration in leaves was much lower when NH4+ was the sole N source than when all or part of the N was supplied as NO3-. Plants grown with mixed NO3- plus NH4+ N sources were generally intermediate between NO3(-)- and NH4+ -fed plants. Thus, changes in tissue composition characteristic of NH4+ nutrition when root-zone pH was maintained at 4.5 and growth was reduced, still occurred when pH was maintained at 5.0 or above, where growth was not affected. The changes were slightly greater at pH 4.5 than at higher pH levels.

  14. Effect of pH and dissociation on the fate and exposure of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2010-01-01

    Ionizable organic chemicals comprise an important fraction of pharmaceuticals, pesticides as well as industrial chemicals. It has been estimated that 33% of the preregistered REACH substances is mostly ionized at pH 7. To extend the appliccability of existing exposure models, a Multimedia Activity...... parameters. The sensitivity analysis showed that the parameters describing ionization, pH and the dissociation constant (pKa), are among the most sensitive model parameters. The uncertainty analysis, however, indicated that these parameters are not the major source of uncertainty, which statistically...... and sediments. In most cases, the uncertainty of PECs and of persistance is largely explained by the uncertainty of (bio)degradation rates, which may be caused by model assumptions, experimental or estimation errors or by the environmental variability, including the effect of pH....

  15. Influence of pH during chemical weathering of bricks: Long term exposure

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Charola, A. Elena

    2016-01-01

    Within the framework of environmental weathering of bricks in historical structures, this study focuses on new bricks currently employed for restoration projects. The bricks were subjected to an accelerated chemical weathering test by immersion in solutions with pH ranging from 3 to 13 for differ...

  16. Influence of soil pH on the sorption of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-01-01

    , the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of p......The soil-water distribution coefficient of ionizable chemicals (K-d) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K-d values normalized to organic carbon (K-OC) from the literature, a method was developed to estimate the K-OC of monovalent organic acids...

  17. Chemical stability of insulin. 3. Influence of excipients, formulation, and pH.

    Science.gov (United States)

    Brange, J; Langkjaer, L

    1992-01-01

    The influence of auxiliary substances and pH on the chemical transformations of insulin in pharmaceutical formulation, including various hydrolytic and intermolecular cross-linking reactions, was studied. Bacteriostatic agents had a profound stabilizing effect--phenol > m-cresol > methylparaben--on deamidation as well as on insulin intermolecular cross-linking reactions. Of the isotonicity substances, NaCl generally had a stabilizing effect whereas glycerol and glucose led to increased chemical deterioration. Phenol and sodium chloride exerted their stabilizing effect through independent mechanisms. Zinc ions, in concentrations that promote association of insulin into hexamers, increase the stability, whereas higher zinc content had no further influence. Protamine gave rise to additional formation of covalent protamine-insulin products which increased with increasing protamine concentration. The impact of excipients on the chemical processes seems to be dictated mainly via an influence on the three-dimensional insulin structure. The effect of the physical state of the insulin on the chemical stability was also complex, suggesting an intricate dependence of intermolecular proximity of involved functional groups. At pH values below five and above eight, insulin degrades relatively fast. At acid pH, deamidation at residue A21 and covalent insulin dimerization dominates, whereas disulfide reactions leading to covalent polymerization and formation of A- and B-chains prevailed in alkaline medium. Structure-reactivity relationship is proposed to be a main determinant for the chemical transformation of insulin.

  18. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules.

    Science.gov (United States)

    Roggatz, Christina C; Lorch, Mark; Hardege, Jörg D; Benoit, David M

    2016-12-01

    Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO 2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO 2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH

  19. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    Science.gov (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  20. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  1. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  2. Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates

    Science.gov (United States)

    Williams, D.J.; Bigham, J.M.; Cravotta, C.A.; Traina, S.J.; Anderson, J.E.; Lyon, J.G.

    2002-01-01

    The pH of mine impacted waters was estimated from the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pennsylvania, representing acid to near neutral pH. Sediments occurring in acidic waters contained primarily schwertmannite and goethite while near neutral waters produced ferrihydrite. The minerals comprising the sediments occurring at each pH mode were spectrally separable. Spectral angle difference mapping was used to correlate sediment color with stream water pH (r2=0.76). Band-center and band-depth analysis of spectral absorption features were also used to discriminate ferrihydrite and goethite and/or schwertmannite by analyzing the 4T1??? 6A1 crystal field transition (900-1000 nm). The presence of these minerals accurately predicted stream water pH (r2=0.87) and provided a qualitative estimate of dissolved SO4 concentrations. Spectral analysis results were used to analyze airborne digital multispectral video (DMSV) imagery for several sites in the region. The high spatial resolution of the DMSV sensor allowed for precise mapping of the mine drainage sediments. The results from this study indicate that airborne and space-borne imaging spectrometers may be used to accurately classify streams impacted by acid vs. neutral-to-alkaline mine drainage after appropriate spectral libraries are developed.

  3. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  4. Modelling of chemical evolution of low pH cements at long term

    International Nuclear Information System (INIS)

    El Bitouri, Y.; Buffo-Lacarriere, L.; Sellier, A.; Bourbon, X.

    2015-01-01

    In the context of the underground radioactive waste repository, low-pH cements were developed to reduce interactions between concrete and clay barrier. These cements contain high proportions of mineral additions like silica fume, fly ash or blast furnace slag for example. The high ratio of cement replacement by pozzolanic additions allows to reduce the pH by a global reduction of Ca/Si ratio of the hydrates (according to the one observed on CEM I pastes). In order to predict the short term development of the hydration for each component of this cement, a multiphasic hydration model, previously developed, is used. The model predicts the evolution of hydration degree of each anhydrous phase and consequently the quantity of each hydrate in paste (CH, aluminates, CSH with different Ca/Si ratios). However, this model is not suitable to determine the long term mineralogical and chemical evolution of the material, due to the internal change induced by chemical imbalance between initial hydrates. In order to evaluate the chemical characteristics of low pH cement based materials, and thus assess its chemical stability in the context of radioactive waste storage, a complementary model of chemical evolution at long term is proposed. This original model is based on 'solid-solution' principles. It assumes that the microdiffusion of calcium plays a major role to explain how the different Ca/Si ratio of initial C-S-H tends together toward a medium stabilized value. The main mechanisms and full development of the model equations are presented first. Next, a comparison of the model with experimental data issue from EDS (Energy Dispersive X-ray Spectroscopy) analysis on low pH cement allows to test the model. (authors)

  5. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.

    Science.gov (United States)

    Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario

    2011-08-01

    • Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  6. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH.

    Science.gov (United States)

    Fliefel, Riham; Popov, Cvetan; Tröltzsch, Matthias; Kühnisch, Jan; Ehrenfeld, Michael; Otto, Sven

    2016-06-01

    Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Chemical and non-chemical stressors affecting childhood obesity: a systematic scoping review.

    Science.gov (United States)

    Lichtveld, Kim; Thomas, Kent; Tulve, Nicolle S

    2018-01-01

    Childhood obesity in the United States has doubled over the last three decades and currently affects 17% of children and adolescents. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stressors found in a child's environment and how these interactions affect a child's health and well-being. The objectives of this systematic scoping review were to (1) identify potential chemical stressors in the context of non-chemical stressors that impact childhood obesity; and, (2) summarize our observations for chemical and non-chemical stressors in regards to child-specific environments within a community setting. A review was conducted to identify chemical and non-chemical stressors related to childhood obesity for the childhood life stages ranging from prenatal to adolescence. Stressors were identified and grouped into domains: individual behaviors, family/household behaviors, community stressors, and chemical exposures. Stressors were related to the child and the child's everyday environments and used to characterize child health and well-being. This review suggests that the interactions of chemical and non-chemical stressors are important for understanding a child's overall health and well-being. By considering these relationships, the exposure science research community can better design and implement strategies to reduce childhood obesity.

  8. Quantification of iopamidol multi-site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH

    International Nuclear Information System (INIS)

    Sun, Phillip Zhe; Longo, Dario Livio; Hu, Wei; Xiao, Gang; Wu, Renhua

    2014-01-01

    pH-sensitive chemical exchange saturation transfer (CEST) MRI holds great promise for in vivo applications. However, the CEST effect depends on not only exchange rate and hence pH, but also on the contrast agent concentration, which must be determined independently for pH quantification. Ratiometric CEST MRI normalizes the concentration effect by comparing CEST measurements of multiple labile protons to simplify pH determination. Iopamidol, a commonly used x-ray contrast agent, has been explored as a ratiometric CEST agent for imaging pH. However, iopamidol CEST properties have not been solved, determination of which is important for optimization and quantification of iopamidol pH imaging. Our study numerically solved iopamidol multi-site pH-dependent chemical exchange properties. We found that iopamidol CEST MRI is suitable for measuring pH between 6 and 7.5 despite that T 1 and T 2 measurements varied substantially with pH and concentration. The pH MRI precision decreased with pH and concentration. The standard deviation of pH determined from MRI was 0.2 and 0.4 pH unit for 40 and 20 mM iopamidol solution of pH 6, and it improved to be less than 0.1 unit for pH above 7. Moreover, we determined base-catalyzed chemical exchange for 2-hydrooxypropanamido (k sw = 1.2*10 pH−4.1 ) and amide (k sw = 1.2*10 pH−4.6 ) protons that are statistically different from each other (P < 0.01, ANCOVA), understanding of which should help guide in vivo translation of iopamidol pH imaging. (paper)

  9. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    Science.gov (United States)

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  10. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and

  11. The high pH chemical and radiation compatibility of various liner materials

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Farnsworth, R.K.

    1990-01-01

    This paper reports on a flexible membrane liner that has been proposed to line a concrete vault in which liquid low-level radioactive waste will be solidified. High-density polyethylene (HDPE) and polypropylene liners were tested at the Pacific Northwest Laboratory in an EPA method 9090 format to determine their chemical compatibility with the waste. Radiation effects were also investigated. The liners were immersed in a highly caustic (pH>14), primarily inorganic solution at 90 degrees C. The liners were subjected to radiation doses up to 38.9 Mrad, which was the expected dose the liner would receive over a 30-year life inside the vault. Recent changes have placed the liner outside the vault. The acceptance criteria for judging the compatibility of the liner with radiation would be different that those used for judging chemical compatibility. The radiation damage over the life of the liner can be simulated in a short-term test. Both HDPE and polypropylene liners were judged to be acceptable from a chemical and radiation standpoint when placed outside of the vault, while several other liners were not compatible. Radiation did not have a significant effect on chemical degradation rates

  12. The high pH chemical and radiation compatibility of various liner materials

    International Nuclear Information System (INIS)

    Whyatt, G.; Farnsworth, R.

    1990-01-01

    A flexible membrane liner has been proposed to line a concrete vault in which liquid low-level radioactive waste will be solidified. High-density polyethylene (HDPE) and polypropylene liners were tested at the Pacific Northwest Laboratory in an EPA method 9090 format to determine their chemical compatibility with the waste. Radiation effects were also investigated. The liners were immersed in a highly caustic (pH>14), primarily inorganic solution at 90 degrees C. The liners were subjected to radiation doses up to 38.9 Mrad, which was the expected dose the liner would receive over a 30-year life inside the vault. Recent changes have placed the liner outside the vault. The acceptance criteria for judging the compatibility of the liner with radiation should be different than those used for judging chemical compatibility. The radiation damage over the life of the liner can be simulated in a short-term test. Both HDPE and polypropylene liners were judged to be acceptable from a chemical and radiation standpoint when placed outside of the vault, while several other liners were not compatible. Radiation did not have a significant effect on chemical degradation rates

  13. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    Science.gov (United States)

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  14. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    Science.gov (United States)

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  15. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of

  16. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Amanda Cristina Campos Antoniêto

    Full Text Available Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0, neutral (pH 7.0, and alkaline (pH 10.0 medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.

  17. Emulsifier type, metal chelation and pH affect oxidative stability of n-3-enriched emulsions

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Jacobsen, Charlotte

    2008-01-01

    -enriched oil-in-water emulsion. The selected food emulsifiers were Tween 80, Citrem, sodium caseinate and lecithin. Lipid oxidation was evaluated by determination of peroxide values and secondary volatile oxidation products. Moreover, the zeta potential and the droplet sizes were determined. Twen resulted...... in the least oxidatively stable emulsions, followed by Citrem. When iron was present, caseinate-stabilized emulsions oxidized slower than lecithin emulsions at pH 3, whereas the opposite was the case at pH 7. Oxidation generally progressed faster at pH 3 than at pH 7, irrespective of the addition of iron. EDTA...

  18. Temporal viscosity modulations driven by a pH sensitive polymer coupled to a pH-changing chemical reaction.

    Science.gov (United States)

    Escala, D M; Muñuzuri, A P; De Wit, A; Carballido-Landeira, J

    2017-05-17

    The Formaldehyde-Sulfite (FS) and the Formaldehyde-Sulfite-Gluconolactone (FSG) systems are examples of complex chemical reactions accompanied by well-controlled variations in pH. While the FS system exhibits a clock behavior, in the FSG reaction, this mechanism is coupled with the hydrolysis of the gluconolactone which gives the possibility to show large temporal oscillations of pH in an open reactor. In this work, we show how these reactive systems, due to their organic nature, can be coupled with pH sensitive polymers, particularly with polyacrylic acid (PAA) to trigger temporal changes of viscosity. We characterize this coupled reactive system showing the effects of changes in the initial concentrations of the polymer and in the chemical reagents on the induction time, the magnitude of the pH variations and the temporal modifications of the viscosity.

  19. Chemical and biological factors affecting bioavailability of contaminants in seawater

    International Nuclear Information System (INIS)

    Knezovich, J.P.

    1992-09-01

    This paper discusses the influence that salinity has on the bioavailability of the two largest classes of contaminants, trace metals and organic compounds will be discussed. Although data on contaminant toxicity will be used to draw inferences about chemical availability, this discussion will focus on the properties that contaminants are likely to exhibit in waters of varying salinities. In addition, information on physiological changes that are affected by salinity will be used to illustrate how biological effects can alter the apparent availability of contaminants

  20. Light acclimation and pH perturbations affect photosynthetic performance in

    NARCIS (Netherlands)

    Ihnken, S.; Beardall, J.; Kromkamp, J.C.; Gómez Serrano, C.; Torres, M.A.; Masojídek, J.; Malpartida, I.; Abdala, R.; Gil Jerez, C.; Malapascua, J.R.; Navarro, E.; Rico, R.M.; Peralta, E.; Ferreira Ezequil, J.P.; Lopez Figueroa, F

    2014-01-01

    Chlorella spp. are robust chlorophyte microalgal species frequently used in mass culture. The pH optimum for growth is close to neutrality; at this pH, theoretically little energy is required to maintain homeostasis. In the present study, we grew Chlorella fusca cells in an open, outdoor, thin-layer

  1. Consideration of factors affecting strip effluent pH and sodium content

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-29

    A number of factors were investigated to determine possible reasons for why the Strip Effluent (SE) can sometimes have higher than expected pH values and/or sodium content, both of which have prescribed limits. All of the factors likely have some impact on the pH values and Na content.

  2. The Shampoo pH can Affect the Hair: Myth or Reality?

    Science.gov (United States)

    Gavazzoni Dias, Maria Fernanda Reis; de Almeida, Andréia Munck; Cecato, Patricia Makino Rezende; Adriano, Andre Ricardo; Pichler, Janine

    2014-07-01

    Dermatologists most frequently prescribe shampoos for the treatment of hair shed and scalp disorders. Prescription of hair care products is often focused on improving scalp hair density, whereas the over-the-counter products focus on hair damage prevention. Little is taught in medical schools about the hair cosmetics, so that the prescriptions are based only on the treatment of the scalp and usually disregards the hair fiber health. In this work, we review the current literature about the mode of action of a low-pH shampoo regarding the hair shaft's health and analyze the pH of 123 shampoos of international brands. All shampoo pH values ranged from 3.5 to 9.0. 38.21% of all 123 shampoos presented a pH ≤ 5.5 (IC: 29.9-47%) and 61.78% presented a pH > 5.5. 26 anti-dandruff shampoos were analyzed. About 19.23% presented pH ≤ 5.5.(IC: 7.4-37.6%). 80.77% of all anti-dandruffs shampoos presented a pH > 5.5. The dermatological shampoo group (n = 19) presented 42.10% with pH ≤ 5.5 (IC: 21.8-64.6%), and 57.90% with pH > 5.5. Among the commercial (popular) products (n = 96), 34.37% presented pH ≤ 5.5 (IC: 25.4-44.3%) and 65.62% presented pH > 5.5. 15 professional products (used in hair salons) were analyzed, of which 75% had a pH ≤ 5.5 (IC: 18-65, 4%), and 25% had a pH > 5.5. 100% of the children's shampoos presented a pH > 5.5. Alkaline pH may increase the negative electrical charge of the hair fiber surface and, therefore, increase friction between the fibers. This may lead to cuticle damage and fiber breakage. It is a reality and not a myth that lower pH of shampoos may cause less frizzing for generating less negative static electricity on the fiber surface. Interestingly, only 38% of the popular brand shampoos against 75% of the salons shampoos presented a pH ≤ 5.0. Pediatric shampoos had the pH of 7.0 because of the "no-tear" concept. There is no standardized value for the final pH. The authors believe that it is important to reveal the pH value on the

  3. Ni removal from aqueous solutions by chemical reduction: Impact of pH and pe in the presence of citrate

    International Nuclear Information System (INIS)

    Li, Chi-Wang; Yu, Jui-Hsuan; Liang, Yang-Min; Chou, Yi-Hsuan; Park, Hyung-June; Choo, Kwang-Ho; Chen, Shiao-Shing

    2016-01-01

    The chemical precipitation of Ni ions from industrial wastewater at alkaline pH values creates waste chemical sludge (e.g., Ni(OH)_2). We herein focused on Ni removal via chemical reduction using dithionite, by converting Ni(II) to its elemental or other valuable forms. Without the presence of a chelator (e.g., citrate), the nickel reduction efficiency increased with increasing dithionite:Ni molar ratio, reaching 99% at ratios above 3:1. The effect of pH on Ni reduction was in agreement with the standard redox potentials (pe"0) of dithionite, which became more negative with an increase in pH leading to greater Ni reduction efficiencies. With the formation of Ni-citrate chelates, however, the Ni reduction deteriorated. Elevated pH and temperature improved nickel reduction, due to the greater reducing power of dithionite. The optimal pH value for Ni(II) reduction was found to be 8. Injecting Cu seed particles enhanced the rate and amount of Ni reduced. NiS and Ni_3S_2 were identified in the crystal of the resulting solids by X-ray crystallography, and the presence of elemental Ni was explained by X-ray photoelectron spectroscopy. The chemical reduction of actual printed circuit board wastewater with the dithionite:Ni(II) molar ratio dose of 12:1 retrieved 99% nickel after 30-min reaction at 40 °C.

  4. Ni removal from aqueous solutions by chemical reduction: Impact of pH and pe in the presence of citrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chi-Wang, E-mail: chiwang@mail.tku.edu.tw [Department of Water Resources and Environmental Engineering, Tamkang University, No. 151 Yingzhuan Road, Tamsui District, New Taipei City, 25137, Taiwan (China); Yu, Jui-Hsuan [Department of Water Resources and Environmental Engineering, Tamkang University, No. 151 Yingzhuan Road, Tamsui District, New Taipei City, 25137, Taiwan (China); Department of Marine Leisure and Tourism, Taipei College of Maritime Technology, No. 150, Sec. 3, Binhai Road, Tamsui District, New Taipei City, 251, Taiwan (China); Liang, Yang-Min; Chou, Yi-Hsuan [Department of Water Resources and Environmental Engineering, Tamkang University, No. 151 Yingzhuan Road, Tamsui District, New Taipei City, 25137, Taiwan (China); Park, Hyung-June [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566 (Korea, Republic of); Choo, Kwang-Ho, E-mail: chookh@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566 (Korea, Republic of); Chen, Shiao-Shing [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Road, Taipei, 106, Taiwan (China)

    2016-12-15

    The chemical precipitation of Ni ions from industrial wastewater at alkaline pH values creates waste chemical sludge (e.g., Ni(OH){sub 2}). We herein focused on Ni removal via chemical reduction using dithionite, by converting Ni(II) to its elemental or other valuable forms. Without the presence of a chelator (e.g., citrate), the nickel reduction efficiency increased with increasing dithionite:Ni molar ratio, reaching 99% at ratios above 3:1. The effect of pH on Ni reduction was in agreement with the standard redox potentials (pe{sup 0}) of dithionite, which became more negative with an increase in pH leading to greater Ni reduction efficiencies. With the formation of Ni-citrate chelates, however, the Ni reduction deteriorated. Elevated pH and temperature improved nickel reduction, due to the greater reducing power of dithionite. The optimal pH value for Ni(II) reduction was found to be 8. Injecting Cu seed particles enhanced the rate and amount of Ni reduced. NiS and Ni{sub 3}S{sub 2} were identified in the crystal of the resulting solids by X-ray crystallography, and the presence of elemental Ni was explained by X-ray photoelectron spectroscopy. The chemical reduction of actual printed circuit board wastewater with the dithionite:Ni(II) molar ratio dose of 12:1 retrieved 99% nickel after 30-min reaction at 40 °C.

  5. Biochar physico-chemical properties as affected by environmental exposure

    International Nuclear Information System (INIS)

    Sorrenti, Giovambattista; Masiello, Caroline A.; Dugan, Brandon; Toselli, Moreno

    2016-01-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30 t ha −1 . We combined two pycnometry techniques to measure skeletal (ρ s ) and envelope (ρ e ) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0–5 nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75 nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75 nm, while no significant changes were measured in the deepest layer, up to 110 nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~ years

  6. Biochar physico-chemical properties as affected by environmental exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sorrenti, Giovambattista, E-mail: g.sorrenti@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy); Masiello, Caroline A., E-mail: masiello@rice.edu [Departments of Earth Science, BioSciences, and Chemistry, Rice University, Houston, TX 77005 (United States); Dugan, Brandon, E-mail: dugan@rice.edu [Department of Earth Science, Rice University, Houston, TX 77005 (United States); Toselli, Moreno, E-mail: moreno.toselli@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy)

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30 t ha{sup −1}. We combined two pycnometry techniques to measure skeletal (ρ{sub s}) and envelope (ρ{sub e}) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0–5 nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75 nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75 nm, while no significant changes were measured in the deepest layer, up to 110 nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over

  7. Light acclimation and pH perturbations affect photosynthetic performance in Chlorella mass culture

    Czech Academy of Sciences Publication Activity Database

    Ihnken, S.; Beardall, J.; Kromkamp, J.C.; Serrano, C.G.; Torres, M.A.; Masojídek, Jiří; Malapartida, I.; Abdala, R.; Jerez, C.G.; Malapascua, José R.F.; Navarro, E.; Rico, R.M.; Peralta, E.; Ferreira Ezequil, J.P.; Figueroa, F.L.

    2014-01-01

    Roč. 22, č. 2 (2014), s. 95-110 ISSN 1864-7790 Institutional support: RVO:61388971 Keywords : Chlorella * Mass culture * pH * Chlorophyll fluorescence Subject RIV: EE - Microbiology, Virology Impact factor: 1.258, year: 2014

  8. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE.

  9. Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    Directory of Open Access Journals (Sweden)

    Guanshu Liu

    2012-01-01

    Full Text Available The measurement of extracellular pH (pHe has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 10-o-aminoanilide (Yb-DO3A-oAA suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer.

  10. Activated carbon addition affects substrate pH and germination of six plant species

    NARCIS (Netherlands)

    Kabouw, P.; Nab, M.; Dam, van M.

    2010-01-01

    Activated carbon (AC) is widely used in ecological studies for neutralizing allelopathic compounds. However, it has been suggested that AC has direct effects on plants because it alters substrate parameters such as nutrient availability and pH. These side-effects of AC addition may interfere with

  11. Activated carbon addition affects soil pH and germination of six plant species

    NARCIS (Netherlands)

    Kabouw, P.; Nab, M.R.; Van Dam, N.M.

    2010-01-01

    Activated carbon (AC) is widely used in ecological studies for neutralizing allelopathic compounds. However, it has been suggested that AC has direct effects on plants because it alters substrate parameters such as nutrient availability and pH. These side-effects of AC addition may interfere with

  12. Sorghum grain supplementation affects rumen pH of animals fed ...

    African Journals Online (AJOL)

    Martin Aguerre

    Ruminal pH was measured immediately and NH3-N concentration was determined by ... when using sorghum as a supplement of a rye grass hay. The aim of this ... Increasing grain level in a diet often results in higher rumen fermentation (Rymer & .... and in situ degradability and the in vitro gas production profile of the diet.

  13. Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

    Science.gov (United States)

    Kapchie, Virginie N; Yao, Linxing; Hauck, Catherine C; Wang, Tong; Murphy, Patricia A

    2013-12-01

    The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (Poil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions. Published by Elsevier Ltd.

  14. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    International Nuclear Information System (INIS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-01-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier

  15. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  16. [How aliphatic alcohols and ph affect reactional capability of the horse blood serum cholinesterase at its interaction with organophosphorus inhibitors].

    Science.gov (United States)

    Basova, N E; Kormilitsin, B N; Perchenok, A Iu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2013-01-01

    There was studied action of aliphatic alcohols (ethanol, propanol, isopropanol, n-butanol, isobutanol, secbutanol, tretbetanol) and pH on various kinds of reactional capability the serum cholinesterase. At the alcohols-affected inhibition of the cholinesterase hydrolytic activity, the determining role was played not the total number carbon atoms in the alcohol molecule, but by the "effective length" of the carbohydrate chain. The fact that the presence of alcohols did not affect parameters of the reverse cholinesterase inhibition with onium ions tetramethylammonium and choline allows suggesting the absence of effect solvents on specific acetylcholine sorption in the enzyme active center. With aid of two rows of hydrophobic organophosphorus inhibitors (OPI), we have managed to estimate both the degree and the character itself of the modifying action of alcohols and pH on the process of irreversible inhibition of serum cholinesterase.

  17. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    Science.gov (United States)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  18. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    Science.gov (United States)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  19. Physical and Chemical Factors Affecting Contaminant Hydrology in Cold Environments

    National Research Council Canada - National Science Library

    Grant, Steven

    2000-01-01

    .... The chemical thermodynamics of geochemical solutions below 0 deg C is then reviewed. Particular attention is placed on the physical-chemical properties of ice and liquid water at subzero temperatures...

  20. Effect of pH on the properties of ZnS thin films grown by chemical bath deposition

    International Nuclear Information System (INIS)

    Ben Nasr, T.; Kamoun, N.; Kanzari, M.; Bennaceur, R.

    2006-01-01

    Zinc sulphide thin films have been deposited on glass substrates using the chemical bath deposition technique. The depositions were carried out in the pH range of 10 to 11.5. Structure of these films was characterized by X-ray diffraction and scanning electron microscopy. Optical properties were studied by spectrophotometric measurements. Influence of the increased pH value on structural and optical properties is described and discussed in terms of transmission improvement in the visible range. Transmission spectra indicate a high transmission coefficient (∼70%). The direct band gap energy is found to be about 3.67 eV for the films prepared at pH equal to 11.5

  1. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    International Nuclear Information System (INIS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey M.; Wenzel, Walter W.; Puschenreiter, Markus

    2017-01-01

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L"-"1, cation binding capacity ∼24 μg cm"−"2). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t_9_0 response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al"3"+, Co"2"+, Cu"2"+, Fe, Mn"2"+, Ni"2"+ and Pb"2"+, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar optode (PO) imaging is combined. • A

  2. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Christoph [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Santner, Jakob, E-mail: jakob.santner@boku.ac.at [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Borisov, Sergey M. [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz (Austria); Wenzel, Walter W.; Puschenreiter, Markus [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria)

    2017-01-15

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L{sup -1}, cation binding capacity ∼24 μg cm{sup −2}). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t{sub 90} response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al{sup 3+}, Co{sup 2+}, Cu{sup 2+}, Fe, Mn{sup 2+}, Ni{sup 2+} and Pb{sup 2+}, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar

  3. Influence of alkaline (PH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites - batch experiments at 25 deg. C

    International Nuclear Information System (INIS)

    Heikola, Tiina; Vuorinen, Ulla; Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    Document available in extended abstract form only. Construction of a spent fuel repository deep in the bedrock will need supporting structures using cement materials. A part of them can be removed before closure but still it is estimated that about 1000 tonnes will remain in the host rock. Degradation of cementitious materials produces leachates of high pH. If such an alkaline plume reaches the bentonite buffer, it may induce mineralogical and chemical changes in bentonite over long term, and further affect the safety functions of the buffer. Laboratory experiments were done with the objective to gain data of possible alterations in mineralogical, chemical and physical properties of bentonites contacted with high-pH saline solutions. Two untreated, high grade, Na- and Ca-bentonites, were used in batch experiments, which were carried out in an anaerobic glove-box at 25±1 deg. C for 554 days. Each bentonite sample (20 g) was leached with approximately 3.8 L of leaching solution, which equals 190 mL/g of bentonite. The bentonites were leached with three types of simulated cement waters (pH 9.7, 11.3 and 12.0) and one saline groundwater simulate (pH 8.3) as a reference. The leaching solutions were 0.3 M, and contained NaCl and CaCl 2 , and trace amounts of SiO 2 , K, Br, Mg and SO 4 . Dissolved oxygen and carbon dioxide were removed from leaching solutions before mixing of bentonite in PC bottles. The samples were placed on a platform shaker in order to allow better contact between bentonite and the leaching solution. The evolution of pH in the samples was followed by measuring the pH-value of each sample in the solution phase approximately twice a week and the solution was renewed when values of two to three consecutive measurements did not change. On average, the leaching solution was renewed once a month. For each renewal of the leaching solution the phases were separated, the reacted solution withdrawn, and the chemical composition analysed. Before analysis the

  4. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    Science.gov (United States)

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  5. Fabric tensile strength as affected by different anti pilling agents at various concentration and ph levels

    International Nuclear Information System (INIS)

    Tusief, M.Q.; Mahmood, N.; Saleem, M.

    2013-01-01

    Pilling is a phenomenon that has a long cause trouble in textile industry. It is the formation of pills or knops on the surface of woven or knitted fabrics caused by friction and abrasion. If fabric has a pronounced tendency to pilling, their appearances suffer severely after a short period of use. The pilling of fabrics is a serious problem for the apparel industry. The use of anti pilling finishes is one of the best techniques to control the pilling of the fabric. In this method fabric is treated with special anti pilling agents to prevent pilling that promote adhesion of the fibres in the yarn or the fabric. This paper endeavors to optimize the application of different anti pilling agents at different concentration and pH levels on the Tensile Strength of P/C fabric for best results. The results exposed that different anti pilling finishes have significant effects on the Tensile Strength of fabric at different concentration level however different pH levels have no considerable effects. (author)

  6. Influence of pH on Drug Absorption from the Gastrointestinal Tract: A Simple Chemical Model

    Science.gov (United States)

    Hickman, Raymond J. S.; Neill, Jane

    1997-07-01

    A simple model of the gastrointestinal tract is obtained by placing ethyl acetate in contact with water at pH 2 and pH 8 in separate test tubes. The ethyl acetate corresponds to the lipid material lining the tract while the water corresponds to the aqueous contents of the stomach (pH 2) and intestine (pH 8). The compounds aspirin, paracetamol and 3-aminophenol are used as exemplars of acidic, neutral and basic drugs respectively to illustrate the influence which pH has on the distribution of each class of drug between the aqueous and organic phases of the model. The relative concentration of drug in the ethyl acetate is judged by applying microlitre-sized samples of ethyl acetate to a layer of fluorescent silica which, after evaporation of the ethyl acetate, is viewed under an ultraviolet lamp. Each of the three drugs, if present in the ethyl acetate, becomes visible as a dark spot on the silica layer. The observations made in the model system correspond well to the patterns of drug absorption from the gastrointestinal tract described in pharmacology texts and these observations are convincingly explained in terms of simple acid-base chemistry.

  7. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons

    Directory of Open Access Journals (Sweden)

    Valentina Bernal

    2017-06-01

    Full Text Available Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L−1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  8. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  9. Low corrosive chemical decontamination method using pH control. 1. Basic system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Ishida, Kazushige; Uetake, Naohito; Anazawa, Kazumi; Nakamura, Fumito; Yoshikawa, Hiroo; Tamagawa, Tadashi; Furukawa, Kiyoharu

    2001-01-01

    A new low corrosive decontamination method was developed which uses both oxalic acid and hydrazine as the reducing agent and potassium permanganate as the oxidizing agent. Less corrosion of structural materials during the decontamination is realized by pH control of the reducing agent. The pH of 2.5, attained by adding hydrazine to oxalic acid, was the optimum pH for maintaining a high decontamination effect and lowering the corrosion at the same time. As this reducing agent can be decomposed into carbon dioxide, nitrogen and water by using a catalyst column with hydrogen peroxide, the amount of secondary radioactive waste is small. These good features were demonstrated through actual plant decontamination tasks. (author)

  10. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-01-01

    a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however...

  11. Chemically driven switches for online detection of pH changes in microfluidic devices

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Levi, S.A.; van Hulst, N.F.; van den Berg, Albert

    2003-01-01

    The internal walls of microfabricated fluidic channels were functionalized with a selfassembled monolayer of Rhodamine B lactam. This molecule has the capability to interconvert between its open fluorescent amide form and the closed non-fluorescent lactam form upon changes of the pH conditions. The

  12. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    International Nuclear Information System (INIS)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-01-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of 14 C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents

  13. Considerations on prevention of phlebitis and venous pain from intravenous prostaglandin E(1) administration by adjusting solution pH: in vitro manipulations affecting pH.

    Science.gov (United States)

    Kohno, Emiko; Nishikata, Mayumi; Okamura, Noboru; Matsuyama, Kenji

    2008-01-01

    Prostaglandin E(1) (PGE(1); Alprostadil Alfadex) is a potent vasodilator and inhibitor of platelet aggregation used to treat patients with peripheral vascular disease. The main adverse effects of intravenous PGE(1) administration, phlebitis and venous pain, arise from the unphysiologically low pH of infusion solutions. When PGE(1) infusion solutions with a pH value greater then 6 are used, phlebitis and venous pain are considered to be avoidable. Beginning with a PGE(1) infusion solution with pH greater than 6, we add the amount of 7% sodium bicarbonate needed to bring the solution to pH 7.4 if phlebitis or venous pain develops. In the present study we established a convenient nomogram showing the relationship between the titratable acidity of various infusion solutions and the volume of 7% sodium bicarbonate required to attain pH 7.4 for preventing the phlebitis and venous pain associated with PGE(1) infusion.

  14. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves

    DEFF Research Database (Denmark)

    Maulvault, Ana Luísa; Camacho, Carolina; Barbosa, Vera

    2017-01-01

    Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore......, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater...... and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels...

  15. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions

    Science.gov (United States)

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant...

  16. Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy.

    Science.gov (United States)

    Jurasekova, Z; Domingo, C; Garcia-Ramos, J V; Sanchez-Cortes, S

    2014-07-07

    In this work we report the study of the chemical modifications undergone by flavonoids, especially by quercetin (QUC), under alkaline conditions by UV-visible absorption, Raman and surface-enhanced Raman scattering (SERS) spectroscopy, the study was performed in aqueous solution and also on Ag nanoparticles (AgNPs). Several processes are involved in the effect of alkaline pH both in solution and on AgNPs: autoxidation affecting mainly the C-ring of the molecule and giving rise to the molecular fragmentation leading to simpler molecular products, and/or the dimerization and further polymerization leading to species with a higher molecular weight. In addition, there exists a clear structure-instability correlation concerning mainly particular groups in the molecule: the C3-OH group in the C-ring, the catechol moiety in the B-ring and the C2=C3 bond also existing in the C-ring. QUC possesses all these groups and exhibits high instability in alkaline solution. The SERS spectra registered at different pH revealed a change in the dimerization protocol of QUC going from the A- and C-rings-like-condensation to B-ring-like-condensation. Increasing the knowledge of the chemical properties of these compounds and determining the structure-activity relationship under specific environmental factors allow us to improve their beneficial properties for health as well as the preservation of Cultural Heritage objects, for example, by preventing their degradation.

  17. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  18. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores

    NARCIS (Netherlands)

    Poelman, E.H.; Dam, van N.M.; Loon, van J.J.A.; Vet, L.E.M.; Dicke, M.

    2009-01-01

    Intraspecific variation in plants plays a major role in the composition and diversity of the associated insect community. Resistance traits of plants are likely candidates mediating community composition. However, it is debated whether total concentrations of chemical compounds or specific compounds

  19. Effect of time and pH on physical-chemical properties of orthodontic brackets and wires.

    Science.gov (United States)

    Dos Santos, Aretha Aliny Ramos; Pithon, Matheus Melo; Carlo, Fabíola Galbiatti Carvalho; Carlo, Hugo Lemes; de Lima, Bruno Alessandro Silva Guedes; Dos Passos, Tibério Andrade; Lacerda-Santos, Rogério

    2015-03-01

    To test the hypothesis that treatment time, debris/biofilm, and oral pH have an influence on the physical-chemical properties of orthodontic brackets and arch wires. One hundred twenty metal brackets were evaluated. They were divided into four groups (n  =  30) according to treatment time: group C (control) and groups T12, T24, and T36 (brackets recovered after 12, 24, and 36 months of treatment, respectively). Rectangular stainless-steel arch wires that remained in the oral cavity for 12 to 24 months were also analyzed. Dimensional stability, surface morphology, composition of brackets, resistance to sliding of the bracket-wire set, surface roughness of wires, and oral pH were analyzed. One-way analysis of variance, followed by a Tukey multiple comparisons test, was used for statistical analysis (P bracket slots were shown to have more influence on the degradation process and frictional force of these devices than did oral pH.

  20. Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Mustafa, E-mail: karamanm@selcuk.edu.tr [Department of Chemical Engineering, Selcuk University (Turkey); Advanced Technology Research and Application Center, Selcuk University (Turkey); Cabuk, Nihat [Department of Chemical Engineering, Selcuk University (Turkey)

    2012-08-31

    Poly(2-(diisopropylamino)ethyl methacrylate) (PDPAEMA) thin films were deposited on low temperature substrates by initiated chemical vapor deposition (iCVD) method using tertbutyl peroxide as an initiator. Very high deposition rates up to 38 nm/min were observed at low filament temperatures due to the use of the initiator. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy show the formation of PDPAEMA films with high retention of tertiary amine functionality which is responsible for pH induced changes in the wetting behavior of the surfaces. As-deposited PDPAEMA thin films on flat Si surface showed a reversible switching of water contact angle values between 87 Degree-Sign and 28 Degree-Sign ; after successive treatments of high and low pH water solutions, respectively. Conformal and non-damaging nature of iCVD allowed to functionalize fragile and rough electrospun poly(methyl methacrylate) fiber mat surfaces by PDPAEMA, which creates a surface with a switching behavior between superhydrophobic and approaching superhydrophilic with contact angle values of 155 {+-} 3 Degree-Sign and 22 {+-} 5 Degree-Sign , respectively. - Highlights: Black-Right-Pointing-Pointer Poly(2-diisopropylaminoethyl methacrylate) thin films were deposited by a dry process. Black-Right-Pointing-Pointer Initiated chemical vapor deposition can produce thin films on fragile substrates. Black-Right-Pointing-Pointer We report a reversible pH-induced transition from hydrophilic to super-hydrophobic.

  1. Physical-chemical characterization and stability study of alpha-trypsin at ph 3.0 by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.M.C.; Santana, M.A.; Gomide, F.T.F.; Oliveira, J.S.; Vilas Boas, F.A.S.; Santoro, M.M.; Teixera, K.N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas (ICB). Dept. de Bioquimica e Imunologia; Miranda, A.A.C.; Biondi, I. [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil). Dept. de Ciencias Biologicas; Vasconcelos, A.B.; Bemquerer, M.P. [EMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF (Brazil). Parque Estacao Biologica (PqEB)

    2008-07-01

    Full text: {alpha}-Trypsin is a serine-protease with a polypeptide chain of 223 amino acid residues and six disulfide bridges. It is a globular protein with predominance of antiparallel {beta}-sheet secondary structure and it has two domains with similar structures. In the present work, a stability study of {alpha}-trypsin in the acid pH range was performed and physical-chemical denaturation parameters were measured by using differential scanning calorimetry (DSC). The {alpha}-trypsin has a shelf-life (t{sub 95%}) of about ten months at pH 3.0 and 4 deg C and its hydrolysis into the {psi}-trypsin isoform is negligible during six months as monitored by mass spectrometry (Micromass Q-ToF). The observed {delta}H{sub cal}/{delta}H{sub vH} ratio is close to unity for {alpha}-trypsin denaturation, which suggests the occurrence of a two-state transition, devoid of molten-globule intermediates. At pH 3.0, {alpha}-trypsin unfolded with T{sub m} 325.9 K and {delta}H= 99.10 kcal mol{sup -1}, and the change in heat capacity between the native and unfolded forms of the protein was estimated to be 1.96 {+-} 0.18 kcal mol{sup -1} K{sup -1}. The stability of {alpha}-trypsin calculated at 298 K and at pH 3.0 was {delta}G{sub U} = 6.10 kcal mol{sup -1}. These values are in the range expected for a small globular protein. These results show that the thermodynamic parameters for unfolding of {beta}-trypsin do not change substantially after its conversion to {alpha}-trypsin.

  2. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies.

    Science.gov (United States)

    Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh

    2003-04-01

    Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.

  3. CHEMICAL SOIL ATTRIBUTES AS AFFECTED BY LIME AND GYPSUM SURFACE APPLICATION

    Directory of Open Access Journals (Sweden)

    A. Mantovani

    2017-10-01

    Full Text Available The gypsum is a soil condition end it has to function contribute to the elimination or reduction of aluminum in the soil in depth. Still, it can contribute to the distribution of nutrients in the soil profile more uniformly and thus increasing the productivity of crops. This study aimed to evaluate the influence of gypsum application, with and without lime, on soil chemical properties and soybean yield, in a no-till system. The experiment was carried in Campos Novos, Santa Catarina State, Brazil, with a randomized block design and split plot design with four replications, the main portion was distributed gypsum doses (1000, 2000, 4000 and 6000 kg ha-1 without incorporation, and the split plot (with and without lime and the liming was 2,000 kg ha-1. We evaluated the performance of components and productivity of soybeans. It was also analyzed the soil pH and Ca, Mg, S and Al at 0-20 and 20-40 cm. The application of gypsum at the rates tested surface with and without lime did not affect the yield components and soybean productivity. At 0-20 cm soil depth lime application increased soil pH by 0.3 units on the average rates of gypsum, but in the 20-40 cm layer was not found effect of lime and gypsum in pH ground due to the short time between application and evaluation. In areas with and without lime contents of Ca and S in the two layers evaluated increased with increasing rates of gypsum, since Mg has difference with the lime application on a 0-20 cm to dose 4000 kg ha-1 and the lime in the gypsum rates and Al decreased with increasing dose gypsum average in the 20-40 cm layer depth. The application of gypsum and limestone softened the negative effects of soil acidity and the increase mainly of calcium and sulfur at 0-20 cm, with less efficient effects in the 20-40 cm layer due to the soil is clayey and the period between the implementation and evaluation be 120 days.

  4. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens.

    Science.gov (United States)

    Hu, Marian Y; Lein, Etienne; Bleich, Markus; Melzner, Frank; Stumpp, Meike

    2018-04-16

    Experimental simulation of near-future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans-generational exposure to near-future acidification levels. Here we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, in order to study trans-generational plasticity using morphological and physiological endpoints. Acclimation of adults to pH T 7.2 (pCO 2 3500μatm) led to reductions in feeding rates, gonad weight, and fecundity. No effects were evident at moderate acidification levels (pH T 7.4; pCO 2 2000μatm). Parental pre-acclimation to pH T 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre-acclimation to pH T 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget. Parental pre-acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (e.g. pH T 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition.

    Science.gov (United States)

    Li, Bing-xue; Zhang, Ning; Peng, Qing; Yin, Tie; Guan, Fei-fei; Wang, Gui-li; Li, Ying

    2009-08-01

    A black yeast strain "NG" was isolated from strawberry fruit and identified as Aureobasidium pullulans. Strain NG displayed yeast-like cell (YL), swollen cell (SC), septate swollen cell (SSC), meristematic structure (MS), and chlamydospore (CH) morphologies. pH was the key factor regulating cell morphogenesis of strain NG. Differentiation of YL controlled by extracellular pH had no relationship with nutrition level. YL was maintained at pH >6.0, but was transformed into SC at pH approximately 4.5. SC, a stable cell type of A. pullulans, could bud, septate, or transform into MS or CH, in response to nutrition level and low pH. SC produced swollen cell blastospores (SCB) at pH 2.1 with abundant nutrition, and could transform into MS at lower pH (1.5). SC was induced to form CH by low level nutrition and pH melanin) were produced by SC of strain NG. Pullulan content of the polysaccharides was very high (98.37%). Fourier-transform infrared spectroscopy confirmed that chemical structures of the polysaccharides and standard pullulan were identical. Swollen cells produced 2.08 mg/ml non-pigmented polysaccharides at 96 h in YPD medium. Controlling pH of fermentation is an effective and convenient method to harvest SC for melanin-free pullulan production.

  6. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity

    Science.gov (United States)

    Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stres...

  7. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Science.gov (United States)

    2010-01-01

    ... examples of affected industries. 710.4 Section 710.4 Commerce and Foreign Trade Regulations Relating to... REGULATIONS (CWCR) § 710.4 Overview of scheduled chemicals and examples of affected industries. The following provides examples of the types of industries that may be affected by the CWCR (parts 710 through 729 of...

  8. Dolomitic lime amendment affects pine bark substrate pH, nutrient availability, and plant growth: A review

    Science.gov (United States)

    Dolomitic lime (DL) is one of the most commonly used fertilizer amendments in nursery container substrates. It is used to adjust pH of pine bark substrates from their native pH, 4.1 to 5.1, up to about pH 6. Additions of DL have been shown to be beneficial, inconsequential, or detrimental dependin...

  9. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    Science.gov (United States)

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  10. Change of physical and chemical parameters of fulvic acids at different pH of the system

    Science.gov (United States)

    Dinu, Marina; Kremleva, Tatyana

    2017-04-01

    Organic substances of humic nature significantly change physicochemical properties at different pH of natural waters. As a consequence, a large number of consecutive and parallel reactions in the structure of organic polymers, and reacting with inorganic anions. The main indicators of changes in the properties of organic acids in natural systems are changes in their IR spectra, changes in the colloid stability (the zeta potential) as well as in the molecular weight and emission spectra (fluorescence emission spectra). The aim of our study was to evaluate of changing in physical and chemical properties of the fulvic acid from soil/water samples in the natural areas of European Russia and Western Siberia (the steppe and the northern taiga zones) at different pH (from 8 to 1.5). Changes in absorption bands of fulvic acid caused by both COOH groups and amino groups with varying degrees of protonation were found. Consequently, we can assume that in an electric field fulvic acid change the sign of their charge at depending on pH. During the lowering of the pH intensity of C-O bands generally decreases, while in the region 1590 cm-1 disappears. In turn, the band at 1700 cm-1 is the most intense; it could mean a complete protonation of the carboxyl groups. According to our data, the values of zeta potential changes depending on pH of the system. The zeta potential becomes more negative with increasing pH and it may be due to ionization of oxygen groups of fulvic acid. For the colloidal polymer systems the value of the zeta potential is strongly negative (less than -20 mV) and strongly positive (over 20 mV) characterize the system as the most stable. Our experimental data for the study of the zeta potential of fulvic acids extracted from the soils and waters of different climatic zones show zonal influence of the qualitative characteristics of organic substances on the surface charge of the high-molecular micelle of fulvic acids. It was found that fulvic acids extracted

  11. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves.

    Science.gov (United States)

    Maulvault, Ana Luísa; Camacho, Carolina; Barbosa, Vera; Alves, Ricardo; Anacleto, Patrícia; Fogaça, Fabiola; Kwadijk, Christiaan; Kotterman, Michiel; Cunha, Sara C; Fernandes, José O; Rasmussen, Rie R; Sloth, Jens J; Aznar-Alemany, Òscar; Eljarrat, Ethel; Barceló, Damià; Marques, António

    2018-02-01

    Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater temperatures (Δ = + 4°C) and lower pH levels (Δ = - 0.4 pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs (dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when both abiotic stressors are combined, bivalves' capacity to accumulate contaminants may be time-dependent, considering significantly drastic increase observed with Dec 602 and TBBPA, during the last 10 days of exposure, when compared to reference conditions. Such changes in contaminants' bioaccumulation/elimination patterns also suggest a potential increase of human health risks of some compounds, if the climate continues changing as forecasted. Therefore, this first study pointed out the urgent need for further research on the effects of abiotic conditions on emerging contaminants kinetics, to adequately estimate the potential toxicological hazards associated to these compounds and

  12. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity?

    Science.gov (United States)

    Background: Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-ch...

  13. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH.

    Directory of Open Access Journals (Sweden)

    Claire Godinot

    Full Text Available The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO(2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i at three pH(T conditions (8.1, 7.8, and 7.5 and normal temperature (26°C, ii at three temperature conditions (26°, 29°C, and 33°C and normal pH(T (8.1, and iii at three pH(T conditions (8.1, 7.8, and 7.5 and elevated temperature (33°C. After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pH(T 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C and low pH(T (7.5 resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pH(T = 8.1. These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.

  14. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Science.gov (United States)

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  15. Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate.

    Science.gov (United States)

    Badia-Fabregat, Marina; Lucas, Daniel; Gros, Meritxell; Rodríguez-Mozaz, Sara; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2015-01-01

    Many technologies are being developed for the efficient removal of micropollutants from wastewater and, among them, fungal degradation is one of the possible alternative biological treatments. In this article, some factors that might affect pharmaceutically active compounds (PhACs) removal in a fungal treatment of real wastewater were identified in batch bioreactor treating reverse osmosis concentrate (ROC) from urban wastewater treatment plant (WWTP). We found that degradation of PhACs by Trametes versicolor was enhanced by addition of external nutrients (global removal of 44%). Moreover, our results point out that high aeration might be involved in the increase in the concentration of some PhACs. In fact, conjugation and deconjugation processes (among others) affect the removal assessment of emerging contaminants when working with real concentrations in comparison to experiments with spiked samples. Moreover, factors that could affect the quantification of micropollutants at lab-scale experiments were studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Chemical and non-chemical stressors affecting childhood obesity: a systematic scoping review

    Science.gov (United States)

    Childhood obesity in the United States has doubled over the last three decades and currently affects 17% of children and adolescents. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous che...

  17. Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear.

    Science.gov (United States)

    Rahaman, Toheder; Vasiljevic, Todor; Ramchandran, Lata

    2017-02-15

    Processing induced conformational changes can modulate digestibility of food allergens and thereby their antigenicity. Effect of different pH (3, 5, 7), temperature (room temperature, 120°C) and shear (0s(-1), 1000s(-1)) on simulated gastrointestinal digestibility of β-lg and post digestion antigenic characteristics have been studied. At all pH levels unheated β-lg showed resistance to peptic digestion with high antigenic value while it was fairly susceptible to pancreatin with moderate reduction in antigenicity. Heating at 120°C significantly improved both peptic and pancreatic digestion attributed to structural alterations that resulted in much lower antigenicity; the level of reduction being pH dependant. The lowest antigenicity was recorded at pH 5. Shearing (1000s(-1)) had a minor impact reducing digestibility and thereby enhancing antigenicity of unheated β-lg at pH 5 and 7 slightly; however in conjunction with heating (120°C) it reduced antigenicity further irrespective of the pH. Overall, treatment at pH 5, 120°C and 1000s(-1) could potentially reduce post digestion antigenicity of β-lg. Copyright © 2016. Published by Elsevier Ltd.

  18. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Nancy; Weare J. H.

    2008-05-29

    /or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

  19. Annealing Temperature Dependence of ZnO Nanostructures Grown by Facile Chemical Bath Deposition for EGFET pH Sensors

    Science.gov (United States)

    Bazilah Rosli, Aimi; Awang, Zaiki; Sobihana Shariffudin, Shafinaz; Herman, Sukreen Hana

    2018-03-01

    Zinc Oxide (ZnO) nanostructures were deposited using chemical bath deposition (CBD) technique in water bath at 95 °C for 4 h. Post-deposition heat treatment in air ambient at various temperature ranging from 200-600 °C for 30 min was applied in order to enhance the electrical properties of ZnO nanostructures as the sensing membrane of extended-gate field effect transistor (EGFET) pH sensor. The as-deposited sample was prepared for comparison. The samples were characterized in terms of physical and sensing properties. FESEM images showed that scattered ZnO nanorods were formed for the as-deposited sample, and the morphology of the ZnO nanorods changed to ZnO nanoflowers when the heat treatment was applied from 200-600 °C. For sensing properties, the samples heated at 300 °C showed the higher sensitivity which was 39.9 mV/pH with the linearity of 0.9792. The sensing properties was increased with the increasing annealing treatment temperature up to 300 °C before decreased drastically.

  20. 3-Nitropropionic acid production by the endophytic Diaporthe citri: Molecular taxonomy, chemical characterization, and quantification under pH variation.

    Science.gov (United States)

    Polonio, Julio Cesar; Ribeiro, Marcos Alessandro Dos Santos; Rhoden, Sandro Augusto; Sarragiotto, Maria Helena; Azevedo, João Lúcio; Pamphile, João Alencar

    2016-12-01

    3-nitropropionic acid (3-NPA) is a nitrogenated compound produced by plants and fungi and has been associated with poisoning episodes in humans, animals, and to induction of Huntington disease symptoms in rats. The production of 3-NPA by endophytes has been reported, but the function and biosynthesis are not well-defined. The specie of endophytic strain G-01 was confirmed as Diaporthe citri using a multilocus sequence analysis, and was verified different concentrations of 3-NPA produced at different initial pHs by these strain. The chemical analysis indicated that 3-NPA was the majority compound present in the crude extracts. The better extraction condition was at an initial pH of 7.0 for 22 d, yielding about 80 % of 3-NPA per mg of extract. It was observed that the concentration of 3-NPA increased after the initial consumption of reduction sugars, indicating that the compound is produced after the high energetic production phase of the fungus. These and other studies demonstrate the production of this compound by plants and endophytic fungi, indicating that 3-NPA may be involved in defence and nutrition systems of endophytes and host plants, and they also might participate in the biogeochemical nitrogen cycle. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Behaviour of lactose with the presence of lactic acid and Ca as affected by pH.

    Science.gov (United States)

    Chandrapala, Jayani; Gauthier, Claire; Vasiljevic, Todor

    2017-11-01

    Contradictory statements about the effects of pH change on crystallisation behaviour of lactose exist in the literature. Considering the importance of addressing the processability issue of acid whey, a systematic study is required to establish lactose crystallisation behaviour in the presence of LA and Ca at concentrations present in real acid whey waste streams emphasising impact of pH. Structural modifications of lactose were evident at elevated, more neutral pH in the presence of 1% w/w LA and 0·12% w/w Ca. These structural changes led to changes in the anomeric equilibrium of lactose, which manipulated the water-lactose behaviour and increased the crystallinity. Therefore, altering pH to 6·5 may be the solution to proper industrial processing of acid whey, enhancing the ability of lactose to crystallise properly.

  2. Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value.

    Science.gov (United States)

    Mäkinen, Outi E; Zannini, Emanuele; Koehler, Peter; Arendt, Elke K

    2016-04-01

    The influence of heating (100 °C; 0-15 min) on the relative molecular mass, protein unfolding and secondary structure of quinoa globulins was studied at pH 6.5 (low solubility), 8.5 and 10.5 (high solubility). The patterns of denaturation and aggregation varied with pH. Heating triggered the disruption of the disulfide bonds connecting the acidic and basic chains of the chenopodin subunits at pH 8.5 and 10.5, but not at pH 6.5. Large aggregates unable to enter a 4% SDS-PAGE gel were formed at pH 6.5 and 8.5, which became soluble under reducing conditions. Heating at pH 10.5 lead to a rapid dissociation of the native chenopodin and to the disruption of the subunits, but no SDS-insoluble aggregates were formed. No major changes in secondary structure occurred during a 15 min heating, but an increase in hydrophobicity indicated unfolding of the tertiary structure in all samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    Science.gov (United States)

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  5. Phenotypes of individuals affected by airborne chemicals in the general population

    DEFF Research Database (Denmark)

    Berg, Nikolaj Drimer; Linneberg, A.; Dirksen, Asger

    2009-01-01

    to symptoms than less severely affected individuals, and the number of symptoms was more predictive for severity than the number of exposures. Most predictive for the severity of reported symptoms were CNS-symptoms other than headache (OR = 3.2, P ... (OR = 2.0, P = 0.001). CONCLUSION: CNS-symptoms except from headache were a main characteristic of individuals severely affected by common chemical exposures in a general population-based sample...

  6. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Porcile-Saavedra, P.F. [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Trejo-Cruz, C. [Department of Physics, Faculty of Science, University of Biobío, Avenue Collao 1202, Box 5C, Concepción 4051381 (Chile)

    2016-07-15

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.

  7. Starch source in high concentrate rations does not affect rumen pH, histamine and lipopolysaccharide concentrations in dairy cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakom, C.; Everts, H.; Hendriks, W.H.

    2012-01-01

    The replacement of ground corn by cassava meal on rumen pH, lipopolysaccharide (LPS) and histamine concentrations under typical Thai feeding conditions (high concentrate diets and rice straw as the sole source of roughage) was investigated. Four rumen-fistulated crossbred Holstein, non-pregnant, dry

  8. Nitrogen form affects pH and EC of whole pine tree substrate and growth of petunia

    Science.gov (United States)

    Wood-based substrates are potential alternatives or amendments to traditional peat-based and pine bark substrates. Undesirable changes in substrate pH may result from the application of supplemental fertilizer required by some crops grown in wood-based substrates. Experiments were conducted to evalu...

  9. Physiological pH fiber-optic chemical sensor based on energy transfer. [Eosin and phenol red

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D.M.; Walt, D.R.; Milanovich, F.P.

    1987-02-01

    A fiber-optic sensor has been developed containing a fluorophore, eosin, and an absorber, phenol red, coimmobilized on the distal end of an optical fiber. When an argon laser is used to excite eosin with light of lambda 488 nm, a region of the spectrum where phenol red does not absorb, eosin emits light in a spectral region that overlaps significantly with the absorption spectru of the basic form of phenol red. Consequently, nonradiative energy transfer occurs from eosin (donor) to phenol red (acceptor). The amount of energy transfer increases as the pH increases resulting in a diminished fluorescence intensity. Thus, changes in the absorption of phenol red as a function of pH are detected as changes in the fluorescent signal. In this manner a pH sensor optimized for physiological pH measurement has been prepared. The fiber exhibits a precision of at least 0.01 pH units.

  10. Land cover changes affect soil chemical attributes in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Murilo Rezende Machado

    2017-05-01

    Full Text Available Forest plantations may minimize the effects of deforestation in the Amazon. However, there are differences among species in terms of their influences on soil recovery. The effects of monospecific plantations of Acacia mangium, Dipteryx odorata, Jacaranda copaia, Parkia decussata,and Swietenia macrophylla, and areas of pasture and native forest on the chemical soil attributes of the Brazilian Amazon were evaluated. One bulked soil sample was collected per plot (0.00-0.05, 0.05-0.10, and 0.10-0.30 m; three plots of 128 m2 in each area. No significant differences in most of the soil attributes were observed among the forest plantations. However, soil K+ and P were higher in the Swietenia macrophylla plantations, while higher values of Ca2+, sum of bases, and pH occurred in Jacaranda copaia plantations. In the native forest, the pH, and P content were lower, whereas the soil organic matter (SOM content, soil organic carbon (SOC content, cation exchange capacity (CEC, N content, H+Al content, and Al3+ content were higher than in the plantations. The lowest values of SOM, SOC, CEC, K+, Mg2+, N, H+Al, and Al3+ occurred in the pasture. None of the forest species led to the return of the original soil chemical attributes of the native forest. However, S. macrophylla and J. copaia plantations presented the highest positive edaphic influences.

  11. Immune activation affects chemical sexual ornaments of male Iberian wall lizards

    Science.gov (United States)

    López, Pilar; Gabirot, Marianne; Martín, José

    2009-01-01

    Many animals use chemical signals in sexual selection, but it is not clear how these sexual traits might have evolved to signal honestly male condition. It is possible that there is a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide), without pathogenic effects, to explore whether the immune activation affected chemical ornaments. Immune activation resulted in decreased proportions of a major chemical in femoral secretions (cholesta-5,7-dien-3-ol = provitamin D3) known to be selected in scent of males by females and which active form (vitamin D) has a variety of important effects on immune system function. This result suggests the existence of a potential trade-off between physiological regulation of the immune system and the allocation of essential nutrients (vitamins) to sexual chemical ornaments in male lizards.

  12. Alterations in seawater pH and CO 2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta)

    Science.gov (United States)

    Semesi, I. Sware; Kangwe, Juma; Björk, Mats

    2009-09-01

    Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO 2 concentration to ˜26 μmol kg -1 (by bubbling with air containing 0.9 mbar CO 2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO 2.

  13. HYDROLYSIS OF STARCH BY THERMO-AND PH-STABLE GLUCOAMYLASE AT CHANGE PHYSICO-CHEMICAL FACTORS

    Directory of Open Access Journals (Sweden)

    V. S. Grigirov

    2013-01-01

    Full Text Available Regularity of the change rate of the enzymatic reactions depending on different temperatures, pH values in the formation and decay of the enzyme-substrate complex was investigated. Found that the kinetics of hydrolysis of starch by the action of heat and pH stable glucoamylases is complex as evidenced by the change in the value Km, which is a measure of the affinity of the enzyme to the substrate, active centers studied glucoamylases and starch undergo conformational changes at pH 4,0-5,0; 4,5-5,5 and a temperature of 60-65 °C.

  14. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    Science.gov (United States)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  15. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter.

    Science.gov (United States)

    Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto

    2016-11-01

    The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values ​​are re-established. Thus, the effects of

  16. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  17. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions

    International Nuclear Information System (INIS)

    Ahmad, M.; Jamil, M.; Akhtar, F.U.Z.

    2014-01-01

    Salinity is one of the most critical constraints hampering agricultural production throughout the world, including Pakistan. Some plant growth promoting rhizobacteria (PGPR) have the ability to reduce the deleterious effect of salinity on plants due to the presence of ACC-deaminase enzyme along with some other mechanisms. The integrated use of organic, chemical and biofertilizers can reduce dependence on expensive chemical inputs. To sustain high crop yields without deterioration of soil fertility, it is important to work out optimal combination of chemical and biofertilizers, and manures in the cropping system. A pot trial was conducted to study the effect of integrated use of PGPR, chemical nitrogen, and biogas slurry for sustainable production of maize under salt-stressed conditions and for good soil health. Results showed that sole application of PGPR, chemical nitrogen and biogas slurry enhanced maize growth but their combined application was more effective. Maximum improvement in maize growth, yield, ionic concentration in leaves and nutrient concentration in grains was observed in the treatment where PGPR and biogas slurry was used in the presence of 100% recommended nitrogen as chemical fertilizer. It also improved the soil pH, ECe, and available N, P and K contents. It is concluded that integrated use of PGPR, biogas slurry and chemical nitrogen not only enhanced maize growth, yield and quality but also improved soil health. So, it may be evaluated under field conditions to get sustained yield of maize from salt-affected soils. (author)

  18. Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existed proteins

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2016-01-01

    Full Text Available Impacts of medium pH, temperature and coexisted proteins on the degradation of two flavonoids fisetin and quercetin were assessed by spectroscopic method in the present study. Based on the measured degradation rate constants (k, fisetin was more stable than quercetin in all cases. Increasing medium pH from 6.0 to 7.5 at 37°C enhanced respective k values of fisetin and quercetin from 8.30x10−3 and 2.81x10−2 to 0.202 and 0.375 h-1 (P<0.05. In comparison with their degradation at 37°C, fisetin and quercetin showed larger k values at higher temperature (0.124 and 0.245 h−1 at 50°C, or 0.490 and 1.42 h−1 at 65°C. Four protein products in medium could stabilize the two flavonoids (P<0.05, as these proteins at 0.10 g L-1 decreased respective k values of fisetin and quercetin to 2.28x10−2-2.98x10−2 and 4.37´10−2-5.97x10−2 h−1. Hydrophobic interaction between the proteins and the two flavonoids was evidenced responsible for the stabilization, as sodium dodecyl sulfate could destroy the stabilization significantly (P<0.05. Casein and soybean protein provided greater stabilization than whey protein isolate. It is thus concluded that higher temperature and alkaline pH can enhance flavonoid loss, whereas coexisted proteins as flavonoid stabilizers can inhibit flavonoid degradation.

  19. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy

    International Nuclear Information System (INIS)

    Elsentriecy, Hassan H.; Azumi, Kazuhisa; Konno, Hidetaka

    2008-01-01

    The effects of pH and temperature of a stannate bath on the quality of stannate chemical conversion coatings formed on AZ91 D magnesium alloy by using the potentiostatic polarization technique at E = -1.1 V were investigated in order to improve uniformity and corrosion protection performance of the coating films. It was found that the uniformity and corrosion resistance of coating films deposited by potentiostatic polarization were closely associated with pH and temperature of the coating bath. The pH and temperature to obtain the best coating film were investigated as a function of corrosion protection performance evaluated by curves of potentiodynamic anodic polarization conducted in borate buffer solution. Scanning electron microscope observation and electrochemical corrosion tests of the stannate-coated samples confirmed significant improvement in uniformity and corrosion resistivity of coating films deposited by the potentiostatic technique by modifying the pH and temperature of the coating bath. It was also found that uniformity and corrosion resistivity of the coating films deposited by the potentiostatic technique were considerably improved compared to those of coatings deposited by the simple immersion method at the best conditions of pH and temperature of the coating bath

  20. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH and Selected Flavors in e-Cigarette Cartridges and Refill Solutions

    Science.gov (United States)

    Lisko, Joseph G.; Tran, Hang; Stanfill, Stephen B.; Blount, Benjamin C.; Watson, Clifford H.

    2015-01-01

    Introduction Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH and flavors in 36 e-liquids brands from four manufacturers. Methods We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control (QC) validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH and flavors. Results Three-quarters of the products contained lower measured nicotine levels than the stated label values (6% - 42% by concentration). The pH for e-liquids ranged from 5.1 – 9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers. A number of common flavor compounds were analyzed in all e-liquids. Conclusions Free nicotine levels calculated from the measurement of pH correlated with total nicotine content. The direct correlation between the total nicotine concentration and pH suggests that the alkalinity of nicotine drives the pH of e-cigarette solutions. A higher percentage of nicotine exists in the more absorbable free form as total nicotine concentration increases. A number of products contained tobacco alkaloids at concentrations that exceed U.S. Pharmacopeia limits for impurities in nicotine used in pharmaceutical and food products. PMID:25636907

  1. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH, and Selected Flavors in E-Cigarette Cartridges and Refill Solutions.

    Science.gov (United States)

    Lisko, Joseph G; Tran, Hang; Stanfill, Stephen B; Blount, Benjamin C; Watson, Clifford H

    2015-10-01

    Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH, and flavors in 36 e-liquids brands from 4 manufacturers. We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH, and flavors. Three-quarters of the products contained lower measured nicotine levels than the stated label values (6%-42% by concentration). The pH for e-liquids ranged from 5.1-9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers. A number of common flavor compounds were analyzed in all e-liquids. Free nicotine levels calculated from the measurement of pH correlated with total nicotine content. The direct correlation between the total nicotine concentration and pH suggests that the alkalinity of nicotine drives the pH of e-cigarette solutions. A higher percentage of nicotine exists in the more absorbable free form as total nicotine concentration increases. A number of products contained tobacco alkaloids at concentrations that exceed U.S. pharmacopeia limits for impurities in nicotine used in pharmaceutical and food products. © Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Negative affect is associated with development and persistence of chemical intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Christensen, Karl Bang; Ebstrup, Jeanette Frost

    2015-01-01

    . METHODS: A general population sample aged 19 to 72years was examined in 2006-2008 and again in 2011-2012. Longitudinal data on CI were analysed with the purpose of examining baseline negative affect as a risk factor for having developed CI at 5-year follow-up and for reporting persistent CI. Participants.......4% of the participants who had reported CI at baseline also reported CI at follow-up. In participants with no baseline CI, 15.5% reported CI at follow-up and 18.1% reported symptoms related to chemicals but no daily life adjustments. Baseline negative affect was positively and statistically significantly associated...

  3. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: A systematic review.

    Science.gov (United States)

    Elhennawy, Karim; Manton, David John; Crombie, Felicity; Zaslansky, Paul; Radlanski, Ralf J; Jost-Brinkmann, Paul-Georg; Schwendicke, Falk

    2017-11-01

    To systematically assess and contrast reported differences in microstructure, mineral density, mechanical and chemical properties between molar-incisor-hypomineralization-affected (MIH) enamel and unaffected enamel. Studies on extracted human teeth, clinically diagnosed with MIH, reporting on the microstructure, mechanical properties or the chemical composition and comparing them to unaffected enamel were reviewed. Electronic databases (PubMed, Embase and Google Scholar) were screened; hand searches and cross-referencing were also performed. Twenty-two studies were included. Fifteen studies on a total of 201 teeth investigated the structural properties, including ten (141 teeth) on microstructure and seven (60 teeth) on mineral density; six (29 teeth) investigated the mechanical properties and eleven (87 teeth) investigated the chemical properties of MIH-affected enamel and compared them to unaffected enamel. Studies unambiguously found a reduction in mineral quantity and quality (reduced Ca and P content), reduction of hardness and modulus of elasticity (also in the clinically sound-appearing enamel bordering the MIH-lesion), an increase in porosity, carbon/carbonate concentrations and protein content compared to unaffected enamel. were ambiguous with regard to the extent of the lesion through the enamel to the enamel-dentin junction, the Ca/P ratio and the association between clinical appearance and defect severity. There is an understanding of the changes related to MIH-affected enamel. The association of these changes with the clinical appearance and resulting implications for clinical management are unclear. MIH-affected enamel is greatly different from unaffected enamel. This has implications for management strategies. The possibility of correlating the clinical appearance of MIH-affected enamel with the severity of enamel changes and deducing clinical concepts (risk stratification etc.) is limited. Crown Copyright © 2017. Published by Elsevier Ltd. All

  4. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    International Nuclear Information System (INIS)

    Muhammad, Iqbal; Puschenreiter, Markus; Wenzel, Walter W.

    2012-01-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C soln ) and 0.005 M Ca(NO 3 ) 2 extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C soln , the 0.005 M Ca(NO 3 ) 2 -soluble fractions and the DGT-measured Cd and Zn concentrations (C DGT ) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R 2 > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C soln . However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: ► The effect of soil acidification was assessed for four Zn and Cd polluted soils. ► For some soils moderate acidification could enhance the metal uptake efficiency. ► Chemical assessment of bioavailability using

  5. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Iqbal; Puschenreiter, Markus, E-mail: markus.puschenreiter@boku.ac.at; Wenzel, Walter W.

    2012-02-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C{sub soln}) and 0.005 M Ca(NO{sub 3}){sub 2} extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C{sub soln}, the 0.005 M Ca(NO{sub 3}){sub 2}-soluble fractions and the DGT-measured Cd and Zn concentrations (C{sub DGT}) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R{sup 2} > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C{sub soln}. However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: Black-Right-Pointing-Pointer The effect of soil acidification was assessed for four Zn and Cd polluted soils. Black-Right-Pointing-Pointer For some soils moderate acidification could

  6. Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency

    NARCIS (Netherlands)

    Wang, Ruzhen; Zhang, Yulan; Cerda Bolinches, Artemio; Cao, Mingming; Zhang, Yongyong; Yin, Jinfei; Jiang, Yong; Chen, Lijun

    2017-01-01

    Pyrogenic organic matter (PyOM) has long been used as a soil amendment to improve soil physicochemical properties. However, few studies simultaneously investigated both intensities and frequencies of PyOM addition on soil chemical properties of soil base cations, soil pH buffering capacity (pHBC),

  7. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH.

    Science.gov (United States)

    Wang, Xiaojuan; Butterly, Clayton R; Baldock, Jeff A; Tang, Caixian

    2017-06-01

    Residues differing in quality and carbon (C) chemistry are presumed to contribute differently to soil pH change and long-term soil organic carbon (SOC) pools. This study examined the liming effect of different crop residues (canola, chickpea and wheat) down the soil profile (0-30cm) in two sandy soils differing in initial pH as well as the long-term stability of SOC at the amended layer (0-10cm) using mid-infrared (MIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. A field column experiment was conducted for 48months. Chickpea- and canola-residue amendments increased soil pH at 0-10cm in the Podzol by up to 0.47 and 0.36units, and in the Cambisol by 0.31 and 0.18units, respectively, at 48months when compared with the non-residue-amended control. The decomposition of crop residues was greatly retarded in the Podzol with lower initial soil pH during the first 9months. The MIR-predicted particulate organic C (POC) acted as the major C sink for residue-derived C in the Podzol. In contrast, depletion of POC and recovery of residue C in MIR-predicted humic organic C (HOC) were detected in the Cambisol within 3months. Residue types showed little impact on total SOC and its chemical composition in the Cambisol at 48months, in contrast to the Podzol. The final HOC and resistant organic C (ROC) pools in the Podzol amended with canola and chickpea residues were about 25% lower than the control. This apparent priming effect might be related to the greater liming effect of these two residues in the Podzol. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  9. pH Dependent Studies of Chemical Bath Deposition Grown ZnO-SiO{sub 2} Core-Shell Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Rajni; Panwar, Sanjay [Maharishi Markandeshwar University, Ambala (India); Kumar, Sunil; Kang, T. W.; Jeon, H. C. [Dongguk University, Seoul (Korea, Republic of)

    2017-01-15

    ZnO-SiO{sub 2} core-shell thin films were synthesized using chemical-bath deposition at different pH. Optical studies were done to optimize the thin films to find suitable parameters for solar cell buffer layers. These studies were done by measuring the transmission at 500 nm, which is the peak of the solar spectrum. All the parameters were seen to be highly pH dependent. The transmittance for a sample synthesized with a pH of 10.8 reached 85%. The transmittance was found not to depend on the bandgap values, but it was found possibly to depend on the fewer defect states created at a particular pH, as shown by Urbach energy and scanning electron microscopy (SEM) surface structure. An appreciable transmittance was observed in the blue region of the spectrum which had been missing until now in commercial CdS-based buffer layers. The Fourier-transform infrared and the energy dispersive X-ray spectra confirmed that the films were composed of only ZnO and silica only : no impurities were found. The urbach energy values and the SEM image of sample S3 clearly indicate the creation of fewer of defects, leading to higher crystallintiy and higher transmittance. Therefore, this shortcoming can be resolved by the substituted buffer layer of ZnO:SiO{sub 2} nano-composite thin film, which can enhance the blue response of the photovoltaic cells.

  10. Chemical and physical parameters affecting the performance of the Os-191/Ir-191m generator

    International Nuclear Information System (INIS)

    Packard, A.B.; Butler, T.A.; Knapp, F.F.; O'Brien, G.M.; Treves, S.

    1984-01-01

    The development of an Os-191/Ir-191m generator suitable for radionuclide angiography in humans has elicited much interest. This generator employs ''(OsO 2 Cl 4 ) 2- '' on AG MP-1 anion exchange resin with a Dowex-2 scavenger column and is eluted with normal saline at pH 1. The parent Os species is, however, neither welldefined nor homogeneous leading to less than optimal breakthrough of Os-191 (5 x 10 -3 %) and modest Ir-191m yield (10-15%). The effect of a range of parameters on generator performance has been evaluated as has been the way in which the assembly and loading process affects generator performance. In addition, a number of potential alternative generator systems have been evaluated

  11. Digestibility and energetic value of agricultural wastes as affected by gamma irradiation and chemical treatments

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    2002-01-01

    Experiments were carried out to study the changes in the values of in-vitro apparent organic matter digestibility (IVOMD), metabolizable energy (ME) and net energy lactation (NEL) of wheat straw, sunflower seed shell, olive cake wood, date palm seeds and peanut shell after spraying with different concentrations of hydrobromic acid (HBr) and sodium hydroxide (NaOH) (0,3,6 ml HBr and 3,6 g NaOH/25 ml water/100 g Dm) or after exposure to various doses of gamma radiation (0, 20, 40, 60 kGy). Results indicated that, except for the date palm seeds, the chemical treatments with either HBr or NaOH significantly (P<0.05) increased IVOMD, Me and NEL values for all treated samples. The experimental agricultural wastes did not respond equally to the chemical treatments investigated, i.e. they differ in the induced increases pertaining to their IVOMD, ME and NEL. The highest changes in the studied parameters due to chemical treatments were obtained when applying the 6% concentration. There was no significant effect (P<0.05) of irradiation on IVOMD, ME and NEL values for all treated samples. Moreover, the combined treatments of irradiation and hydrobromic acid or sodium hydroxide were found to have no significant affects on the IVOMD, ME and NEL values compared to the individual chemical treatments. (author)

  12. Digestibility and energetic value of some agricultural wastes as affected by gamma irradiation and chemical treatments

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    2001-08-01

    Experiments were carried out to study the changes in the values of in-vitro apparent organic matter digestibility (IVOMD), metabolizable energy (ME) and net energy lactation (NEL) of wheat straw, sunflower seed shell, olive cake wood, date palm seeds and peanut shell after spraying with different concentrations of hydrobromic acid (HBr) and sodium hydroxide (NaOH) (0,3,6 ml HBr and 3,6 g NaOH/25 ml water/100 g DM) or after exposure to various doses of gamma radiation (0, 20, 40, 60 kGy). Results indicated that, except for the date palm seeds, the chemical treatments with either HBr or NaOH significantly (P<0.05) increased IVOMD, Me and NEL values for all treated samples. The experimental agricultural wastes did not respond equally to the chemical treatments investigated, i.e. they differ in the induced increases pertaining to their IVOMD, ME and NEL. The highest changes in the studied parameters due to chemical treatments were obtained when applying the 6% concentration. There was no significant effect (P<0.05) of irradiation on IVOMD, ME and NEL values for all treated samples. Moreover, the combined treatments of irradiation and hydrobromic acid or sodium hydroxide were found to have no significant affects on the IVOMD, ME and NEL values compared to the individual chemical treatments. (author)

  13. Host-derived pentapeptide affecting adhesion, proliferation, and local pH in biofilm communities composed of Streptococcus and Actinomyces species

    DEFF Research Database (Denmark)

    Drobni, M.; Li, T.; Krüger, C.

    2006-01-01

    RGRPQ and derivatives were used to investigate associated innate properties and responsible motifs. The RGRPQ peptide increased 2.5-fold the growth rate of S. gordonii via a Q-dependent sequence motif and selectively stimulated oral colonization of this organism in a rat model in vivo. In contrast......, the growth of Streptococcus mutans, implicated in caries, was not affected. While the entire RGRPQ sequence was required to block sucrose-induced pH-decrease by S. gordonii and S. mutans, the N-terminal Arg residue mediated the pH increase (i.e., ammonia production) by S. gordonii alone (which exhibits Arg...

  14. The effect of Penicillium bilaii on wheat growth and phosphorus uptake as affected by soil pH, soil P and application of sewage sludge

    DEFF Research Database (Denmark)

    Sánchez-Esteva, S.; Gomez Muñoz, Beatriz; Jensen, Lars Stoumann

    2016-01-01

    Penicillium bilaii may enhance P availability to plants, since it has been shown to increase plant growth and P uptake. There is currently increasing interest in using microorganisms to promote P mobilisation from organic P sources. An investigation was conducted to determine the effects of P. bi....... bilaii on P uptake and growth of wheat in the presence and absence of sewage sludge. Two soils differing in P contents and pH were used, as it was hypothesised that these affect the efficiency of P mobilisation....

  15. Chemical modification of chitosan in the absence of solvent for diclofenac sodium removal: pH and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Kerlaine Alexandre Araujo; Osorio, Luizangela Reis; Silva, Marcos Pereira; Silva Filho, Edson Cavalcanti da, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal do Piaui (UFPI/CCN), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Lab. Interdisciplinar de Materiais Avancados; Sousa, Kaline Soares [Universidade Federal da Paraiba (UFPB/CCEN), Joao Pessoa, PB (Brazil). Centro de Ciencias Exatas e da Natureza. Dept. de Quimica

    2014-08-15

    Chitosan was modified with acetylacetone and ethylenediamine in the absence of solvent. The new biopolymer obtained from the modification was characterized by elemental analysis and NMR 13C and applied in the removal of diclofenac sodium aqueous solution varying the pH and time. Through elemental analysis was possible to verify a decreasing in C/N relation after reaction with acetylacetone and an increasing after modification with ethylenediamine. From NMR analysis was verified the appearance of peaks around 160-210 ppm in both materials due to free carbonyl groups in the first step of the modification, besides the formation of imine bonds. The adsorption tests showed that the highest value occurred at pH 4 and from the results of the kinetic study was found that maximum adsorption occurred within 45 minutes and experimental data adjusted better to linear adjustment, following pseudo second-order model. The results show a material efficient in the removal of emerging pollutants. (author)

  16. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    Science.gov (United States)

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Soil Chemical Properties and Nutrient Uptake of Cocoa as Affected by Application of Different Organic Matters and Phosphate Fertilizers

    Directory of Open Access Journals (Sweden)

    Sugiyanto Sugiyanto

    2008-07-01

    Full Text Available Effort repair of land quality better be done by simultan namely with application of organic matters and inorganic fertilization. The objective of this research is to study the effect of varied organic matters source and phosphate fertilizers on the chemicals soil characteristic and cocoa nutrient uptake. The experiment was laid experimentally in split-plot design and environmentally in randomized complete block design. The main plot was source of P consisted of, control, SP 36 and rock phosphate in dosage of 200 mg P2O5 per kg of air dry soil. Source of organic matter as sub-plot consisted of control (no organic matter, cow dung, cocoa pod husk compost and sugar cane filter cake, each in dosage of 2.5 and 5.0%. Result of this experiment showed application of cow dung, cocoa pod husk compost and sugar cane filter cake increased content of C, N, Ca exchangeable, Fe available, and pH in soil, and SP 36 increased availability of P in soil. Application of sugar cane filter cake increased N, K, Ca, Mg, and SO4 uptake but did not increase Cl uptake, application of cow dung in dosage 5% increased N, K, and Cl uptake and cocoa pod husk compost dosage 5% increased N and K uptake of cocoa. SP 36 increased Mg uptake of cocoa but rock phosphate did not increase it. They were not interaction between organic matters and phosphate fertilizers to nutrient uptake of cocoa. Nutrient soil content as affected by organic matters correlated with nutrient uptake of cocoa.Key words : soil chemical properties, nutrient uptake, cocoa, organic matter, phosphate fertlizers.

  18. Data showing chemical compositions of the essential oils of the leaves of Cymbopogon citratus obtained by varying pH of the extraction medium

    Directory of Open Access Journals (Sweden)

    E.O. Ajayi

    2016-09-01

    Full Text Available This article describes the various chemical components as obtained from the oils in the leaves of Cymbopogon citratus using hydrodistillation and solvent-free microwave extraction methods. Furthermore, extractions of the oils were also carried out with a slight in pH variation and compared, “GC–MS evaluation of C. citratus (DC Stapf oil obtained using modified hydrodistillation and microwave extraction methods” (Ajayi et al., 2016 [1]. The current article contains one table exhibiting a list of compounds in the four different methods of extraction. Comparative studies amongst the various methods of extraction are highlighted in the table. Keywords: Essential oil, Cymbopogon citratus, pH Extraction medium

  19. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves

    NARCIS (Netherlands)

    Maulvault, Ana Luísa; Camacho, Carolina; Barbosa, Vera; Alves, Ricardo; Anacleto, Patrícia; Fogaça, Fabiola; Kwadijk, Christiaan; Kotterman, Michiel; Cunha, Sara C.; Fernandes, José O.; Rasmussen, Rie R.; Sloth, Jens J.; Aznar-Alemany, Òscar; Eljarrat, Ethel; Barceló, Damià; Marques, António

    2018-01-01

    Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the

  20. Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat pH and Skin Temperature Monitoring.

    Science.gov (United States)

    Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-03-24

    Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.

  1. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    Energy Technology Data Exchange (ETDEWEB)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Anne [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Alexander [Department of Cardiothoracic Surgery, Martin Luther University, Faculty of Medicine, Halle (Germany); Riemann, Dagmar [Department of Immunology, Martin Luther University, Faculty of Medicine, Halle (Germany); Knelangen, Julia [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Blueher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Koch, Holger [Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Ruhr-University Bochum, Bochum (Germany); Fischer, Bernd [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  2. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    International Nuclear Information System (INIS)

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blüher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-01

    Highlights: ► Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). ► The adipogenic impact depends strongly on the window of exposure. ► Bisphenol A reduces the potential of MSC to differentiate into adipocytes. ► DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. ► BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  3. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.

    Science.gov (United States)

    Andersen, Stephen J; Candry, Pieter; Basadre, Thais; Khor, Way Cern; Roume, Hugo; Hernandez-Sanabria, Emma; Coma, Marta; Rabaey, Korneel

    2015-01-01

    Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2). In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is

  4. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    International Nuclear Information System (INIS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-01-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH 2 ), carboxyl (-COOH) and methyl (-CH 3 ), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH 2 ) can absorb more proteins than these modified with more hydrophobic functional group (-CH 3 ). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH 2 modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH 3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  5. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  6. Accessible protocol for practice classroom about physical and chemical factors that affect the biomembranes integrity

    Directory of Open Access Journals (Sweden)

    Thiago Barros Galvão

    2012-12-01

    Full Text Available The aim of the current work is to review a protocol used in practical classes to demonstrate some factors that affect biomembrane integrity. Sugar-beet fragments were utilized as the experimental model as membrane damage could be visualized by leakage of betacyanins, hydrophilic pigments accumulated in the cell vacuoles. The tests were carried out as discrete experiments utilizing physical agents and chemical products present in the student daily routine. To test the effect of temperature, sugar-beet fragments were submitted to heat, cold or both at different times of exposition. When chemical products were tested, sugar-beet fragments were exposed to organic solvents (common alcohol and acetone or polar and amphipathic substances (disinfectant, detergent, hydrogen peroxide, and sodium hypochlorite. The obtained results were discussed in terms of the capacity of the physical and chemical factors to cause membrane damage. The review of this protocol using reagents that are present in the student daily routine were able to demonstrate clearly the effect of the different tested factors, allowing the utilization of this practical class under limited conditions.

  7. A rapid chemical method of labelling human plasma proteins with sup(99m)Tc-pertechnetate at pH 7.4

    International Nuclear Information System (INIS)

    Wong, D.W.; Mishkin, F.; Lee, T.

    1978-01-01

    A successful method for labelling human plasma proteins with sup(99m)Tc-pertechnetate by chemical means is described. The labelling methodology involves the production of Sup(99m)Tc-(Sn)citrate complex species with high protein binding capacity at pH 7.4 condition following initial chemical reduction of sodium sup(99m)Tc-pertechnetate by stannous chloride. A combined labelling efficiency range of 95-99% for sup(99m)Tc-labelled fibrinogen, immune gamma globulin and serum albumin is achieved. The actual amount of labelled protein content in the product is found to be 85-95% when assayed by ITLC and 74-85% by TCAA protein precipitation. In vitro experimental data indicate that sup(99m)Tc-fibrinogen contains an average of 85% clottable protein with an average clottability of 95%. This strongly suggests that the radioactive proteins retain much of their biological and physiological activities after the labelling process. (author)

  8. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pignatelli, Rossella, E-mail: rossellapignatelli@gmail.com [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Lombardi Ingegneria S.r.l., Via Giotto 36, 20145 Milano (Italy); Comi, Claudia, E-mail: comi@stru.polimi.it [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.

  9. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T.

    Science.gov (United States)

    Longo, Dario Livio; Dastrù, Walter; Digilio, Giuseppe; Keupp, Jochen; Langereis, Sander; Lanzardo, Stefania; Prestigio, Simone; Steinbach, Oliver; Terreno, Enzo; Uggeri, Fulvio; Aime, Silvio

    2011-01-01

    Iopamidol (Isovue®-Bracco Diagnostic Inc.) is a clinically approved X-Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH-dependent. Thus, a ratiometric method for pH assessment has been set-up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5-7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH-changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition. © 2010 Wiley-Liss, Inc.

  10. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    Science.gov (United States)

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. EDC IMPACT: Chemical UV filters can affect human sperm function in a progesterone-like manner

    Directory of Open Access Journals (Sweden)

    A Rehfeld

    2017-12-01

    Full Text Available Human sperm cell function must be precisely regulated to achieve natural fertilization. Progesterone released by the cumulus cells surrounding the egg induces a Ca2+ influx into human sperm cells via the CatSper Ca2+-channel and thereby controls sperm function. Multiple chemical UV filters have been shown to induce a Ca2+ influx through CatSper, thus mimicking the effect of progesterone on Ca2+ signaling. We hypothesized that these UV filters could also mimic the effect of progesterone on sperm function. We examined 29 UV filters allowed in sunscreens in the US and/or EU for their ability to affect acrosome reaction, penetration, hyperactivation and viability in human sperm cells. We found that, similar to progesterone, the UV filters 4-MBC, 3-BC, Meradimate, Octisalate, BCSA, HMS and OD-PABA induced acrosome reaction and 3-BC increased sperm penetration into a viscous medium. The capacity of the UV filters to induce acrosome reaction and increase sperm penetration was positively associated with the ability of the UV filters to induce a Ca2+ influx. None of the UV filters induced significant changes in the proportion of hyperactivated cells. In conclusion, chemical UV filters that mimic the effect of progesterone on Ca2+ signaling in human sperm cells can similarly mimic the effect of progesterone on acrosome reaction and sperm penetration. Human exposure to these chemical UV filters may impair fertility by interfering with sperm function, e.g. through induction of premature acrosome reaction. Further studies are needed to confirm the results in vivo.

  12. EDC IMPACT: Chemical UV filters can affect human sperm function in a progesterone-like manner.

    Science.gov (United States)

    Rehfeld, A; Egeberg, D L; Almstrup, K; Petersen, J H; Dissing, S; Skakkebæk, N E

    2018-01-01

    Human sperm cell function must be precisely regulated to achieve natural fertilization. Progesterone released by the cumulus cells surrounding the egg induces a Ca 2+ influx into human sperm cells via the CatSper Ca 2+ -channel and thereby controls sperm function. Multiple chemical UV filters have been shown to induce a Ca 2+ influx through CatSper, thus mimicking the effect of progesterone on Ca 2+ signaling. We hypothesized that these UV filters could also mimic the effect of progesterone on sperm function. We examined 29 UV filters allowed in sunscreens in the US and/or EU for their ability to affect acrosome reaction, penetration, hyperactivation and viability in human sperm cells. We found that, similar to progesterone, the UV filters 4-MBC, 3-BC, Meradimate, Octisalate, BCSA, HMS and OD-PABA induced acrosome reaction and 3-BC increased sperm penetration into a viscous medium. The capacity of the UV filters to induce acrosome reaction and increase sperm penetration was positively associated with the ability of the UV filters to induce a Ca 2+ influx. None of the UV filters induced significant changes in the proportion of hyperactivated cells. In conclusion, chemical UV filters that mimic the effect of progesterone on Ca 2+ signaling in human sperm cells can similarly mimic the effect of progesterone on acrosome reaction and sperm penetration. Human exposure to these chemical UV filters may impair fertility by interfering with sperm function, e.g. through induction of premature acrosome reaction. Further studies are needed to confirm the results in vivo . © 2018 The authors.

  13. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    Science.gov (United States)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  14. Surface variations affecting human dental enamel studied using nanomechanical and chemical analysis

    Science.gov (United States)

    Dickinson, Michelle Emma

    The enamel surface is the interface between the tooth and its ever changing oral environment. Cavity (caries) formation and extrinsic tooth staining are due, respectively, to degradation of the enamel structure under low pH conditions and interactions between salivary pellicle and dietary elements. Both of these occur at the enamel surface and are caused by the local environment changing the chemistry of the surface. The results can be detrimental to the enamel's mechanical integrity and aesthetics. Incipient carious lesions are the precursor to caries and form due to demineralisation of enamel. These carious lesions are a reversible structure where ions (e.g. Ca2+, F -) can diffuse in (remineralisation) to preserve the tooth's structural integrity. This investigation used controlled in vitro demineralisation and remineralisation to study artificial carious lesion formation and repair. The carious lesions were cross-sectioned and characterised using nanoindentation, electron probe micro-analysis and time of flight secondary ion mass spectrometry. Mechanical and chemical maps showed the carious lesion had a significantly reduced hardness and elastic modulus, and the calcium and phosphate content was lower than in sound enamel. Fluoride based remineralisation treatments gave a new phase (possibly fluorohydroxyapatite) within the lesion with mechanical properties higher than sound enamel. The acquired salivary pellicle is a protein-rich film formed by the physisorption of organic molecules in saliva onto the enamel surface. Its functions include lubrication during mastication and chemical protection. However, pellicle proteins react with dietary elements such as polyphenols (tannins in tea) causing a brown stain. This study has used in vitro dynamic nanoindentation and atomic force microscopy to examine normal and stained pellicles formed in vivo. The effects of polyphenols on the pellicle's mechanical properties and morphology have been studied. It was found that the

  15. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  16. Development of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene.

    Science.gov (United States)

    Xiao, Hang; Shi, Xiaoyang; Hao, Feng; Liao, Xiangbiao; Zhang, Yayun; Chen, Xi

    2017-08-17

    We developed ReaxFF parameters for phosphorus and hydrogen to give a good description of the chemical and mechanical properties of pristine and defected black phosphorene. ReaxFF for P/H is transferable to a wide range of phosphorus- and hydrogen-containing systems including bulk black phosphorus, blue phosphorene, edge-hydrogenated phosphorene, phosphorus clusters, and phosphorus hydride molecules. The potential parameters were obtained by conducting global optimization with respect to a set of reference data generated by extensive ab initio calculations. We extended ReaxFF by adding a 60° correction term, which significantly improved the description of phosphorus clusters. Emphasis was placed on the mechanical response of black phosphorene with different types of defects. Compared to the nonreactive SW potential ( Jiang , J.-W. Nanotechnology 2015 , 26 , 315706 ), ReaxFF for P/H systems provides a significant improvement in describing the mechanical properties of the pristine and defected black phosphorene, as well as the thermal stability of phosphorene nanotubes. A counterintuitive phenomenon is observed that single vacancies weaken the black phosphorene more than double vacancies with higher formation energy. Our results also showed that the mechanical response of black phosphorene is more sensitive to defects in the zigzag direction than that in the armchair direction. In addition, we developed a preliminary set of ReaxFF parameters for P/H/O/C to demonstrate that the ReaxFF parameters developed in this work could be generalized to oxidized phosphorene and P-containing 2D van der Waals heterostructures. That is, the proposed ReaxFF parameters for P/H systems establish a solid foundation for modeling of a wide range of P-containing materials.

  17. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  18. Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 spinel ferrite prepared by chemical reaction at different pH values

    Science.gov (United States)

    Aneesh Kumar, K. S.; Bhowmik, R. N.

    2017-12-01

    The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10-4-10-12 S cm-1, and unusually high activation energy ~0.17-1.36 eV.

  19. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  20. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Science.gov (United States)

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  1. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  2. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source.

    Science.gov (United States)

    Walaszczyk, Ewa; Podgórski, Waldemar; Janczar-Smuga, Małgorzata; Dymarska, Ewelina

    2018-01-01

    The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger . The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3-7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm -3 , was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm -3 , respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger , but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.

  3. Assessing Effects and interactions among key variables affecting the growth of mixotrophic microalgae: pH, inoculum volume, and growth medium composition

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Pinelo, Manuel; Meyer, Anne S.

    2014-01-01

    of growth medium (MWC) and wastewater at different proportions (from 20 to 50% of MWC) and at different pH (from 7 to 9). Multilinear regression analysis of the biomass productivity data showed that for SA and CD the biomass productivity was independent of the proportion of medium (MWC), while the growth...... of CV and CR slowed down in mixtures with high proportions of wastewater. However, the biomass productivity of SA was dependent on pH, while the growth of the other microalgae was independent of pH (7-9). When evaluating the influence of pH and proportion of medium, CD appeared most robust among...

  4. Interaction of extrinsic chemical factors affecting photodegradation of dissolved organic matter in aquatic ecosystems

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2014-01-01

    Roč. 13, č. 5 (2014), s. 799-812 ISSN 1474-905X R&D Projects: GA ČR(CZ) GAP503/12/0781 Institutional support: RVO:60077344 Keywords : photodegradation * dissolved organic matter * calcium * nitrate * iron * pH Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.267, year: 2014

  5. Precipitation and ultimate pH effect on chemical and gelation properties of protein prepared by isoelectric solubilization/precipitation process from pale, soft, exudative (PSE)-like chicken breast meat1.

    Science.gov (United States)

    Zhao, X; Xing, T; Chen, X; Han, M-Y; Li, X; Xu, X-L; Zhou, G-H

    2017-05-01

    Pale, soft, exudative (PSE)-like chicken breast is considered deteriorated raw material in the poultry meat industry that has inferior processing ability. The chemical and gelation properties of PSE-like chicken breast meat paste were studied. These pastes were prepared by the pH adjustment method and protein isolation using the isoelectric solubilization/precipitation (ISP) process from PSE-like chicken meat. The ISP-isolated samples were solubilized at pH 11.0 and recovered at pH 5.5 and 6.2. The ultimate pH of the ISP-isolated protein and meat paste was adjusted to 6.2 and 7.0. The ultimate pH in this article referred to the final pH of the extracted protein and meat paste. Higher reactive sulfhydryl content and surface hydrophobicity were found in the precipitation at pH 6.2 than at pH 5.5. However, various ultimate pH values showed no significant influence on the surface hydrophobicity. The hardness of gel, as measured by textural profile analysis, was improved using 6.2 as the precipitation pH compared with pH 5.5. The viscoelastic modulus (G΄) of gel pastes prior to the thermal gelation was higher with ISP treatment. However, lower G΄ was seen after thermal gelation compared with the control. Dynamic rheological measurement demonstrated a different gel-forming mechanism for protein precipitated at pH values of 5.5 and 6.2 compared with the meat paste. The cooking loss showed that the recovered protein failed to form a gel with good water-retention capacity unless the ultimate pH was adjusted to 7.0. Gels made from protein extracted by the ISP method had higher yellowness and lower redness values, probably due to protein denaturation. Precipitation at pH 6.2 formed a harder gel with lower water-retention ability than that at pH 5.5, and this result was possibly due to higher surface hydrophobicity and S-S bridge formation. Overall, network characteristics of ISP-treated protein gels were strongly dependent on precipitation pH and ultimate pH. © 2016

  6. Mixtures of environmentally relevant endocrine disrupting chemicals affect mammary gland development in female and male rats

    DEFF Research Database (Denmark)

    Mandrup, Karen Riiber; Johansson, Hanna Katarina Lilith; Boberg, Julie

    2015-01-01

    Estrogenic chemicals are able to alter mammary gland development in female rodents, but little is known on the effects of anti-androgens and mixtures of endocrine disrupting chemicals (EDCs) with dissimilar modes of action. Pregnant rat dams were exposed during gestation and lactation to mixtures...

  7. Peroxidase activity in roots of arracacha affected by pH and temperature = Atividade da peroxidase em raízes de batata-baroa afetada pelo pH e temperatura

    Directory of Open Access Journals (Sweden)

    Luciana Nunes Menolli

    2011-07-01

    Full Text Available In this paper, roots of arracacha (Arracacia xanthorrhyza Bancroft were stored at 5ºC to induce chilling injury symptoms and stress-related peroxidase activity. Later, peroxidase kinetic activity was determined in different pH and temperature conditions. For this, soluble crude extract was sequentially saturated with ammonium sulfate, obtaining a semi-purified enzyme solution used for the analysis. Activity of peroxidase induced by the chilling at 5oC was determined from pH 2.5 to 9.0 and at temperature ranging from 10 to80oC. The peroxidase had higher activity when the reaction occurred between pH 5.5 and 6.0 and at temperature of 30oC. Complete inactivation of the activity was observed in pH 2.5 after 60 minutes of pre-incubation or at 60oC for 10 minutes or alternatively at 70oCafter 5 minutes of pre-incubation. The enzyme is more susceptible to inactivation in acid than alkaline pHs or alternatively using heat treatment.Neste trabalho, raízes de batata-baroa (Arracacia xanthorrhiza Bancroft foram armazenadas a 5oC para induzir injúria por frio e expressar atividade da peroxidase de estresse. Posteriormente, a cinética de atividade foi determinada em diferentes condições depHs e temperatura. Para isto, extrato solúvel da raiz foi sequencialmente saturado com sulfato de amônio, obtendo-se uma preparação semi-purificada para a análise enzimática. Atividade peroxidativa induzida pela temperatura de armazenamento de 5oC foideterminada em pHs de 2,5 a 9,0 e a temperaturas de 10 a 80oC. A atividade da peroxidase foi maior quando a reação foi realizada nos pHs de 5,5 e 6,0 e temperatura de 30oC. A inativação completa da enzima ocorreu em pH de 2,5 após 60 min. de pré-incubação ou a60oC por 10 min., e alternativamente a 70oC após 5 min. de pré-incubação. A enzima foi mais susceptível à inativação em pH ácido do que alcalino, podendo também ser inativada pelo tratamento de calor.

  8. Differences in Health-related Fatty Acids, Intramuscular Fat and the Physico-chemical Quality in Mutton as Affected by Season, Place of Purchase and Meat Portion

    Directory of Open Access Journals (Sweden)

    Zikhona T. Rani

    2014-11-01

    Full Text Available The objective of the study was to determine the quality and fatty acid profiles of mutton cuts purchased from rural and urban localities in South Africa. Five hundred and ten samples were collected in four seasons from both rural and urban shops and butcheries. Samples were immediately transported to the laboratory in cooler boxes with ice where the following physico-chemical characteristics of mutton were determined; meat pH, color (L*, a*, and b*, cooking losses and Warner Braztler shear force and replicates stored at −20°C pending fatty acid analysis. Meat L* values were lowest (24.7±0.49 in winter and highest (32.2±0.49 in spring. The loin and sirloin cuts recorded the highest intramuscular fat whilst rib and leg cuts recorded the lowest intramuscular fat. In conclusion intramuscular fat, fatty acid profiles and physico-chemical quality of mutton were significantly affected by season and meat portion and not necessarily by the locality and class of shop.

  9. Synthesis of Nanocrystalline SnOx (x = 1–2 Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2011-09-01

    Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.

  10. The influence of pH and late microoxygenation on sourness, bitterness and astringency of red wine

    OpenAIRE

    Müller, Katrina; Picou, Erick; Souquet, Jean Marc; Moutounet, Michel; Cheynier, Veronique; Samson, Alain

    2007-01-01

    Introduction : In Mediterranean regions, pH values are often considered too high and acidification by addition of tartaric acid is often used. A decrease in pH allows better control of wine oxidation, physico– chemical stability, microbiological development, SO2 additions (1), and affects its sensory characteristics. Correction of pH by acidification is difficult to obtain with random results up to date, principally because high levels of pH are normally related to high levels of ...

  11. PH sensor

    OpenAIRE

    Artero, C.; Nogueras Cervera, Marc; Manuel Lázaro, Antonio

    2012-01-01

    This paper presents a design of a marine instrument for the measurement of pH in seawater. The measurement system consists of a pH electrode connected to the underwater observatory OBSEA. The extracted data are useful for scientists researching ocean acidification. Peer Reviewed

  12. Extrudates of starch-xanthan gum mixtures as affected by chemical agents and irradiation

    International Nuclear Information System (INIS)

    Hanna, M.A.; Chinnaswamy, R.; Gray, D.R.; Miladinov, V.D.

    1997-01-01

    Mixtures of starch, xanthan gum and either polyvinyl alcohol, epichlorohydrin, valeric acid or adipoyl chloride were extruded. Properties of extrudates including apparent viscosity, water solubility, water absorption indices and extrudate expansion were measured for different proportions of xanthan gum, 70% amylose starch (with or without irradiation) and chemical agents. Extrusion with chemical agents and irradiation changed physical properties of both starch and xanthan gum. Expansions of extrudates were higher than that of starch. Viscosity of extrudates increased with xanthan gum concentration. The addition of 1% (w/w) polyvinyl alcohol had the greatest effect of the chemical agents. Irradiation increased the apparent viscosity of starch-xanthan gum mixtures

  13. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    Science.gov (United States)

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  14. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Influence of pH on the chemical and structural properties of the oxide films formed on 316L stainless steel, alloy 600 and alloy 690 in high temperature aqueous environments

    International Nuclear Information System (INIS)

    Dupin, M.; Gosser, P.; Walls, M.G.; Rondot, B.; Pastol, J.L.

    2002-01-01

    The oxide films formed on 316L stainless steel, alloy 600 and alloy 690 at 320 deg C in high temperature aqueous environments of different pH have been examined by glow discharge optical spectroscopy, scanning electron microscopy, atomic force microscopy and capacitance measurements. The analytical study reveals that the films formed at pH 5 are mainly composed of chromium oxides. When the pH increases the chromium concentration decreases and those of the other two elements (Ni and Fe) tend to increase. The films formed at pH 5 on 316L stainless steel and alloy 600 are thick and powder-like. The film formed at the same pH on alloy 690 is thin and is composed of a compact protective inner layer and a less-compact outer layer formed by crystals of mixed iron-nickel-chromium oxides. The morphological appearance of the thick films and that of the thin films is very different. However, equivalent morphologies can be observed for the relatively thin duplex films formed at pH 8 and pH 9.5 on the 316L stainless steel and nickel-base alloys. The evolution of the chemical composition of the films is accompanied by important changes from the point of view of their semi-conductivity. (authors)

  16. Removal of radiocobalt from aqueous solutions by kaolinite affected by solid content, pH, ionic strength, contact time and temperature

    International Nuclear Information System (INIS)

    Kan Li; Zhengjie Liu; Lei Chen; Yunhui Dong; Jun Hu; Chinese Academy of Sciences, Hefei

    2013-01-01

    The kaolinite sample was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction, and was applied as adsorbent for the removal of radiocobalt ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values, and independent of pH and ionic strength at high pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The sorption isotherms were well described by Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters (i.e., ΔGdeg, ΔSdeg, ΔHdeg) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on kaolinite was an endothermic and spontaneous process. The results of high sorption capacity of kaolinite suggested that the kaolinite sample was a suitable material for the preconcentration of Co(II) from large volumes of aqueous solutions and as backfill materials in nuclear waste management. (author)

  17. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  18. Modelling the Interaction of Low pH Cements and Bentonite. Issues Affecting the Geochemical Evolution of Repositories for Radioactive Waste

    International Nuclear Information System (INIS)

    Watson, Claire; Benbow, Steven; Savage, David

    2007-05-01

    It is well known that in the hyperalkaline conditions (pH > 12) of standard cement pore fluids, there is potential for deleterious effects upon the host rock and other EBS materials, notably bentonite, in geological repositories for radioactive waste. Low pH cements are beginning to be considered as a potential alternative material that may address some of these concerns. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non pozzolanic silica flour. NUMO, Posiva and SKB have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. In this report we give the results of a preliminary modelling study to investigate the potential impacts of low pH cement water. We compare the evolution of a bentonite sample under the influence of several invading cement porewaters over a pH range from 10 to 13.2. The porewater compositions are taken from published CSH gel leaching experiments and published cement-bentonite modelling studies. The models suggest that the amount of degradation that is likely to be observed when low pH cement water interacts with bentonite is likely to be much less than when OPC water is the invading fluid. Below pH 11 there was not an observable Na montmorillonite dissolution front which would tend to support the pH ≤ 11 target suggested by NUMO, Posiva and SKB. The models used in this study could be improved upon by including a cement component to the model (rather than representing cement as a fixed boundary condition). Solid-solution models

  19. Contents of chemical elements in tissues of European badger (Meles meles affected by ovarian tumour – a case report

    Directory of Open Access Journals (Sweden)

    Karel Bukovjan

    2014-01-01

    Full Text Available Higher concentrations of chemical elements in animal tissues may be associated with tumours and may explain cancerogenity. In this study, selected chemical elements were measured in the liver, kidneys, muscles and tissues affected by tumour in a dead female European badger (Meles meles with a metastatic ovarian carcinoma. Atomic absorption spectroscopy was used for the assessment of concentrations of arsenic, cadmium, chromium, copper, lead, and zinc. AMA 254 analyser was used for the assessment of mercury concentration. Concentrations of heavy metals such as As, Cr, Cu, Zn, Cd, Pb, and total Hg amounted to 0.031, 0.16, 7.74, 44.54, 0.67, 0.67, and 0.36 mg·kg-1 in the tumour tissue. This is the first detection of ovarian tumour in a European badger (Meles meles which was systematically examined for the presence of chemical elements.

  20. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    Science.gov (United States)

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Some chemical components of garden egg as affected by stage of ...

    African Journals Online (AJOL)

    Fresh fruits of garden egg were sorted into green, yellow bottom and yellow all over stages of fruit ripeness. Each set of fruits was stored at 40Cand 270C for up to 16 days, respectively. The effects of stage of fruit ripeness, storage temperature and duration of storage on some chemical components of garden egg were ...

  2. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    Science.gov (United States)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  3. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice.

    Science.gov (United States)

    Anisimov, Andrey P; Bakhteeva, Irina V; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Kravchenko, Tat'yana B; Platonov, Mikhail E; Titareva, Galina M; Kombarova, Tat'yana I; Ivanov, Sergey A; Rakin, Alexander V; Amoako, Kingsley K; Dentovskaya, Svetlana V

    2009-01-01

    Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.

  4. Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part I: pH estimation of a solution with various chemicals

    International Nuclear Information System (INIS)

    Kim, Tae Hyeon; Jeong, Ji Hwan

    2016-01-01

    Highlights: • It is required to evaluate re-evolved iodine from sump water after LOCA. • pH evaluation based on Gibbs free energy minimization. • Program was developed to evaluate chemical equilibrium and pH solutions. • Predictions are in good agreement with experimental data. - Abstract: Radioactive iodine, which is released into the atmosphere of the containment building, is absorbed into the containment spray water and dissolved to be ionized. This iodine-rich water is then transported to the in-containment refueling water storage tank (IRWST) in APR1400 nuclear power plants. When the pH of the water is below 7, the dissolved iodine converts to molecular iodine and re-evolves from the water and returns to the atmosphere. A series of studies have been conducted in order to evaluate the iodine re-evolution from the IRWST. This study consists of two parts: the pH evaluation method and the evaluation of the iodine re-evolution. This paper presents the first part, i.e. the pH evaluation method. The equilibrium concentrations of various chemicals in a solution are determined at the minimum Gibbs’ free energy. This method is useful for complex reactant problems rather than equilibrium constants method because the latter method requires numerous equilibrium constants and there might be missing equilibrium constants associated with the solution. The calculated pH values of solutions are compared with the experimental measurements in order to validate this method and the thermodynamic data of the chemicals incorporated into the program. The estimated values for solutions are in good agreement with the experimental measurements within a difference of less than 3.3%.

  5. Seawater pH Predicted for the Year 2100 Affects the Metabolic Response to Feeding in Copepodites of the Arctic Copepod Calanus glacialis.

    Science.gov (United States)

    Thor, Peter; Bailey, Allison; Halsband, Claudia; Guscelli, Ella; Gorokhova, Elena; Fransson, Agneta

    2016-01-01

    Widespread ocean acidification (OA) is transforming the chemistry of the global ocean, and the Arctic is recognised as a region where the earliest and strongest impacts of OA are expected. In the present study, metabolic effects of OA and its interaction with food availability was investigated in Calanus glacialis from the Kongsfjord, West Spitsbergen. We measured metabolic rates and RNA/DNA ratios (an indicator of biosynthesis) concurrently in fed and unfed individuals of copepodite stages CII-CIII and CV subjected to two different pH levels representative of present day and the "business as usual" IPCC scenario (RCP8.5) prediction for the year 2100. The copepods responded more strongly to changes in food level than to decreasing pH, both with respect to metabolic rate and RNA/DNA ratio. However, significant interactions between effects of pH and food level showed that effects of pH and food level act in synergy in copepodites of C. glacialis. While metabolic rates in copepodites stage CII-CIII increased by 78% as a response to food under present day conditions (high pH), the increase was 195% in CII-CIIIs kept at low pH-a 2.5 times greater increase. This interaction was absent for RNA/DNA, so the increase in metabolic rates were clearly not a reaction to changing biosynthesis at low pH per se but rather a reaction to increased metabolic costs per unit of biosynthesis. Interestingly, we did not observe this difference in costs of growth in stage CV. A 2.5 times increase in metabolic costs of growth will leave the copepodites with much less energy for growth. This may infer significant changes to the C. glacialis population during future OA.

  6. Field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, D.J.; Waldman, J.M.; Munger, J.W.; Hoffmann, M.R.

    1984-09-01

    High ionic loadings were found in fogwater collected at Bakersfield, California during an extended stagnation episode. The major ions were NH4(+), NO3(-), and SO4(2-), with concentrations usually in the millimolar range. Droplet growth played an important role in determining fogwater concentrations. The amount of solute decreased substantially over the course of each fog event this was attributed, at least in part, to deposition of fog droplets on surfaces. The occurrence of this was attributed, at least in part, to deposition of fog droplets on surfaces. The sulfate fraction in the aerosol increased appreciably over several days of stagnation, but no statistical evidence for in situ S(IV) aqueous-phase oxidation was found. The high ammonia concentrations present were sufficient to neutralize a large fraction of the ambient acidity. As a result, fogwater pH values rarely attained the extremely low values found in other polluted environments. 46 references.

  7. pH in Action

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Biekman, E.S.A.

    2001-01-01

    Based on fundamental chemical relations, well-established in chemical engineering and chemical technology over almost a century, the effects of pH in food and agricultural products will be deduced for different situations and processes. Based on simple equilibria and dissociation of water, salts,

  8. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.

    Science.gov (United States)

    Dust, Jolene M; Gajda, Angela M; Flickinger, Elizabeth A; Burkhalter, Toni M; Merchen, Neal R; Fahey, George C

    2004-05-19

    An experiment was conducted to determine the effects of extrusion conditions on chemical composition and in vitro hydrolytic and fermentative digestion of barley grits, cornmeal, oat bran, soybean flour, soybean hulls, and wheat bran. Extrusion conditions altered crude protein, fiber, and starch concentrations of ingredients. Organic matter disappearance (OMD) increased for extruded versus unprocessed samples of barley grits, cornmeal, and soybean flour that had been hydrolytically digested. After 8 h of fermentative digestion, OMD decreased as extrusion conditions intensified for barley grits and cornmeal but increased for oat bran, soybean hulls, and wheat bran. Total short-chain fatty acid production decreased as extrusion conditions intensified for barley grits, soybean hulls, and soybean flour. These data suggest that the effects of extrusion conditions on ingredient composition and digestion are influenced by the unique chemical characteristics of individual substrates.

  9. The smell of change: warming affects species interactions mediated by chemical information

    Czech Academy of Sciences Publication Activity Database

    Sentis, Arnaud; Ramon-Portugal, F.; Brodeur, J.; Hemptinne, J.-L.

    2015-01-01

    Roč. 21, č. 10 (2015), s. 3586-3594 ISSN 1354-1013 Grant - others:European Social Fund(CZ) CZ.1.07/2.3.00/30.0049 Institutional support: RVO:60077344 Keywords : chemical communication * climate change * insects Subject RIV: EH - Ecology, Behaviour Impact factor: 8.444, year: 2015 http://onlinelibrary.wiley.com/doi/10.1111/gcb.12932/abstract

  10. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  11. Hydrology and geochemistry of a slag-affected aquifer and chemical characteristics of slag-affected ground water, northwestern Indiana and northeastern Illinois

    Science.gov (United States)

    Bayless, E. Randall; Greeman, T.K.; Harvey, C.C.

    1998-01-01

    ?aquifer interface. The solid-phase analyses indicated that calcite, dolomite, and quartz generally were present throughout the slag?aquifer system; barian celestite, cristobalite, manganese-bearing calcite, and minrecordite were present in fewer samples. Trace elements that are liberated from the slag may be incorporated as impurities during precipitation of major minerals, sorbed onto clays and other grainsize fractions not analyzed as part of this study, or present in low-abundance minerals that were not detected by the X-ray analysis. Mass-balance and speciation programs were used to identify geochemical processes that may be occurring as water infiltrates through the slag, flows into the aquifer, and discharges into Lake George. The geochemical models indicate that precipitation of calcite may be occurring where slag-affected water enters the aquifer. Models also indicate that dolomite precipitation and clay-mineral dissolution may be occurring at the slag?aquifer interface; however, dolomite precipitation is generally believed to require geologically long time periods. Silica may be dissolving where slag-affected ground water enters the aquifer and may be precipitating where slag-affected ground water discharges to the lakebed of Lake George. In addition to the site-specific study, a statistical analysis of regional water quality was done to compare ground water in wells affected and unaffected by slag. When com-pared to wells in background locations in the Calumet aquifer, wells screened in slag across northwestern Indiana and northeastern Illinois generally had relatively higher pH and specific-conductance values and relatively higher concentrations of alkalinity, dissolved solids, suspended solids, total organic carbon, calcium, potassium, sodium, chloride, aluminum, barium, and possibly magnesium, sulfate, chromium, cobalt, copper, cyanide, manganese, mercury, nickel, and vanadium. When compared to wells in slag and wells in background locations, ground water from immediat

  12. Chemical composition of lamina and sheath of Lolium perenne as affected by herbage management

    NARCIS (Netherlands)

    Hoekstra, N.J.; Struik, P.C.; Lantinga, E.A.; Schulte, R.P.O.

    2007-01-01

    The quality of grass in terms of form and relative amounts of energy and protein affects both animal production per unit of intake and nitrogen (N) utilization. Quality can be manipulated by herbage management and choice of cultivar. The effects of N application rate (0, 90 or 390 kg N ha¿1 year¿1),

  13. Physico-chemical characteristics of travertine springs and lakes, affecting the lives of lamellibranches (Ostracoda)

    International Nuclear Information System (INIS)

    Sykorova, M.

    2014-01-01

    Ostracods are very frequent fossils in the travertine, but we know little about their biodiversity, space distribution and ecological preferences in the extant travertine springs and lakes. To improve their application in Quaternary paleoecologic and paleoclimatic studies, we studied travertine springs and lakes of different physical characteristics (cold 25 grad C) and chemical composition (carbonate, sulfate, Fe) in Slovakia. Twenty-four ostracod species were observed in the travertine springs, lakes and their surroundings. Our findings provide interesting information on ostracods biodiversity in these environments. Connection between variables was evaluated by using the statistical program PCA analysis. Travertine habitats exhibit high variability in environmental parameters. (author)

  14. Collaborative Project: Understanding the Chemical Processes tat Affect Growth rates of Freshly Nucleated Particles

    Energy Technology Data Exchange (ETDEWEB)

    McMurry, Peter [Univ. of Minnesota, Minneapolis, MN (United States); Smuth, James [University Corporation for Atmospheric Research, Irvine, CA (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.

  15. Foliar Desiccators Glyphosate, Carfentrazone, and Paraquat Affect the Technological and Chemical Properties of Cowpea Grains.

    Science.gov (United States)

    Lindemann, Igor da Silva; Lang, Gustavo Heinrich; Hoffmann, Jessica Fernanda; Rombaldi, Cesar Valmor; de Oliveira, Maurício; Elias, Moacir Cardoso; Vanier, Nathan Levien

    2017-08-16

    The effects of the use of glyphosate (GLY), glyphosate plus carfentrazone (GLY/CAR), and paraquat (PAR) as plant desiccators on the technological and chemical properties of cowpea grains were investigated. All studied desiccants provided lower cooking time to freshly harvested cowpea. However, the coat color of PAR- and GLY/CAR-treated cowpea was reddish in comparison to the control treatment. Principal component analysis (PCA) from liquid chromatography-mass spectrometry (LC-MS) data sets showed a clear distinction among cowpea from the different treatments. Catechin-3-glucoside and epicatechin significantly contributed for discriminating GLY-treated cowpea, while citric acid was responsible for discriminating GLY/CAR-treated cowpea. Quercetin derivative and gluconic acid were responsible for discriminating control treatment. Residual glyphosate and paraquat content was higher than the maximum limits allowed by Codex Alimentarius and the European Union Commission. Improvements in the technological and chemical properties of cowpea may not be overlapped by the risks that those desiccants exhibit when exceeding the maximum limits of tolerance in food.

  16. Chemical processes causing cementation in heat-affected smectite - the Kinnekulle bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Takase, Hiroyasu; Benbow, S. [Quantisci Ltd., Oxfordshire (United Kingdom)

    1998-12-01

    Numerical calculation of silica migration and precipitation that can cause cementation of smectite buffer clay has been made using the Grindrod/Takase chemical model. It is used here to investigate whether the silicification of the bentonite and surrounding sediments at Kinnekulle, southwestern Sweden, can be explained by the heat pulse caused by the diabase intrusion that took place in Permian time. Compilation of data concerning silica cementation and associated microstructural and rheological changes showed that significant silica precipitation should have occurred in the Kinnekulle case and this is also documented. Thus, precipitation of quartz has taken place to an extent that can be explained by the chemical model, which also showed conversion of smectite to illite by neoformation of the latter mineral but only for the 3000 years long heating period. Introduction of a criterion for non-reversible illitization is hence a necessary improvement of the model for explaining the actual presence of neoformed illite, which may in fact be wholly or partly responsible for the cementation. (The report is made up of two articles: `Cementation processes in smectite clay associated with conversion of smectite to illite as exemplified by the Kinnekulle bentonites` and `Nonisothermal modelling of geochemical evolution in the Kinnekulle bentonite layer. Mathematical modelling and simulation`) 33 refs, 40 figs.

  17. Chemical processes causing cementation in heat-affected smectite - the Kinnekulle bentonite

    International Nuclear Information System (INIS)

    Pusch, R.; Takase, Hiroyasu; Benbow, S.

    1998-12-01

    Numerical calculation of silica migration and precipitation that can cause cementation of smectite buffer clay has been made using the Grindrod/Takase chemical model. It is used here to investigate whether the silicification of the bentonite and surrounding sediments at Kinnekulle, southwestern Sweden, can be explained by the heat pulse caused by the diabase intrusion that took place in Permian time. Compilation of data concerning silica cementation and associated microstructural and rheological changes showed that significant silica precipitation should have occurred in the Kinnekulle case and this is also documented. Thus, precipitation of quartz has taken place to an extent that can be explained by the chemical model, which also showed conversion of smectite to illite by neoformation of the latter mineral but only for the 3000 years long heating period. Introduction of a criterion for non-reversible illitization is hence a necessary improvement of the model for explaining the actual presence of neoformed illite, which may in fact be wholly or partly responsible for the cementation. (The report is made up of two articles: 'Cementation processes in smectite clay associated with conversion of smectite to illite as exemplified by the Kinnekulle bentonites' and 'Nonisothermal modelling of geochemical evolution in the Kinnekulle bentonite layer. Mathematical modelling and simulation')

  18. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    Science.gov (United States)

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca 2+ , Mg 2+ , alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca 2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term

  20. A quality enhancement green strategy for broiler meat by application of turmeric (Curcuma longa powder as litter amendment to affect microbes, ammonia emission, pH and moisture

    Directory of Open Access Journals (Sweden)

    K.G.S.C. Katukurunda

    2016-10-01

    Full Text Available In multi-cultural Sri Lankan conditions, poultry meat is paramount importance in ensuring food security and improving nutrition. Issues as contact dermatitis and ammonia emission in broiler industry which caused by diminished litter parameters cause reduction of meat quality, profits and environmental conditions. Therefore use of Turmeric (Curcuma longa (TM powder as an antiseptic litter amendment at several application levels to enhance litter parameters with microbial demolition was attempted. Three months old broiler litter (2 kg sample was taken and initial pH and moisture was determined. Turmeric was used to mix at levels of 0%, 1%, 3%, 5% and 8% (w/w. After mixing, 150 g of mixed litter was placed in container for each level of the 4 replicates, incubated for 5h and analyzed for Total Plate Count (TPC, Yeast and Mold Count (YMC, total Nematode Count (NC, ammonia emission, pH and moisture. Significant reduction (p <0.05 of total bacteria was seen (20%, 46%, 95% and 96% when 1%, 3%, 5% and 8% applications of TM. The YMC reduction was also significant (p <0.05 (34%, 41%, 55% and 65%. Total nematode reduction (p <0.05 was 22%, 45%, 62.5% and 70%. A significant (p <0.05 pH reduction with increment of TM also seen (0.1, 2, 3 and 3%. Moisture (% was increased (p <0.05 (6, 0.78, 19 and 1%. Ammonia emission was significantly decreased (p <0.05 by increased TM (64, 68, 73 and 84% against control. It was concluded that the bacterial, fungal, nematode counts, pH and Ammonia emission of broiler litter can be significantly reduced with the application of 8% (w/w of turmeric powder.

  1. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release

    Directory of Open Access Journals (Sweden)

    Syed Majid Hanif Bukhari

    2015-01-01

    Full Text Available This present work was aimed at synthesizing pH-sensitive cross-linked AA/Gelatin hydrogels by free radical polymerization. Ammonium persulfate and ethylene glycol dimethacrylate (EGDMA were used as initiator and as cross-linking agent, respectively. Different feed ratios of acrylic acid, gelatin, and EGDMA were used to investigate the effect of monomer, polymer, and degree of cross-linking on swelling and release pattern of the model drug. The swelling behavior of the hydrogel samples was studied in 0.05 M USP phosphate buffer solutions of various pH values pH 1.2, pH 5.5, pH 6.5, and pH 7.5. The prepared samples were evaluated for porosity and sol-gel fraction analysis. Pheniramine maleate used for allergy treatment was loaded as model drug in selected samples. The release study of the drug was investigated in 0.05 M USP phosphate buffer of varying pH values (1.2, 5.5, and 7.5 for 12 hrs. The release data was fitted to various kinetic models to study the release mechanism. Hydrogels were characterized by Fourier transformed infrared (FTIR spectroscopy which confirmed formation of structure. Surface morphology of unloaded and loaded samples was studied by surface electron microscopy (SEM, which confirmed the distribution of model drug in the gel network.

  2. Chemical plant factors affecting resistance in sugarcane in against Scirpophaga Nivella f

    International Nuclear Information System (INIS)

    Ashfaq, M.; Khan, A.; Ali, A.

    2003-01-01

    The study was conducted during 2000 to determine the role of various chemical plant factors viz., total minerals, nitrogen, fat contents, carbohydrate, macro an micro nutrients in the leaves of five genotypes of sugarcane i.e., BF-162, SPSG-26, L-118, CP-43/33 and CP-72/2086 by correlating the infestation of top borer, Scirpophaga Nivella F. at tillering stage. None of the genotype was found completely resistant to the pest. CP-43/33 and BF-162 proved susceptible and resistant varieties, respectively. Total mineral, manganese and copper contents did not show significant correlation with the pest infestation, whereas nitrogen, potassium, calcium, magnesium and ferrous contents played a positive and significant role. Phosphorous, carbohydrates, fats and zinc contents played a significant and negative effect on the pest infestation at tillering stage. (author)

  3. Final Report: "Collaborative Project. Understanding the Chemical Processes That Affect Growth Rates of Freshly Nucleated Particles"

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James N. [NCAR, Boulder, CO (United States); McMurry, Peter H. [NCAR, Boulder, CO (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate. Our measurements include a self-organized, DOE-ARM funded project at the Southern Great Plains site, the New Particle Formation Study (NPFS), which took place during spring 2013. NPFS data are available to the research community on the ARM data archive, providing a unique suite observations of trace gas and aerosols that are associated with the formation and growth of atmospheric aerosol particles.

  4. Nondestructive evaluation of the QT on the SG tubes affected by chemical cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok Shin; Cheon, Keun Young; Kim, Wang Bae [Central Research Institute, Daejeon (Korea, Republic of); Min, Kyong Mahn [UMI, Daejeon (Korea, Republic of)

    2012-10-15

    The major mechanisms of flaws detected on the currently operating steam generator(SG) tubes are wear and stress corrosion cracking(SCC) defects. Wear defect has continuously occurred in the upper tube bundle imposed to the flow induced vibration at the interaction between tube and its support structure. Meanwhile, SCC has been formed by a variety of mixed mode, such as the corrosion susceptible material, residual stress and secondary side chemical environment of the SG tubes. Recently, corrosion related defects were detected in the domestic OPR 1000 model SG tubes especially in the egg crate tube support plate(TSP), as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). Therefore, the need to take corrective measures against the corrosion defects is required and various studies have been conducted to clarify the main causes of the defects. In general, as a representing SG tube materials, Ni based alloy 600 tubes have been widely applied and also adversely shown weak properties on the corrosion cracking resistivity. According to the studies on the factors developing corrosion cracking, densely accumulated sludge pile on the secondary side of the SG tubes have been mainly attributed to the formation of the corrosion defects. Therefore, it is imperative to secure applicable and efficient sludge removal process. In this paper, the chemical cleaning processes to dissolve and remove the sludge, thus promote the integrity of the SG tubes were introduced and eddy current testing(ECT) results on the pre cracked SG tubes to determine the effectiveness of those processes were represented as well.

  5. Development of standards for chemical and biological decontamination of buildings and structures affected by terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, T.C.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Hay, A.W.M. [Leeds Univ., Leeds (United Kingdom)

    2006-07-01

    Currently, there are no suitable standards for determining levels of safety when reoccupying a building that has been recommissioned following a biological or chemical attack. For that reason, this study focused on developing clean-up standards for decontaminating buildings and construction materials after acts of terrorism. Several parameters must be assessed when determining the course of action to decontaminate toxic agents and to rehabilitate facilities. First, the hazardous substance must be positively identified along with the degree of contamination and information on likely receptors. Potential exposure route is also a key consideration in the risk assessment process. A key objective of the study was to develop specific guidelines for ascertaining and defining clean. In particular, standards for chemical and biological agents that pose a real or potential risk for use as agents of terrorism will be developed. The selected agents for standards development were ammonia, fentanyl, malathion, mustard gas, potassium cyanide, ricin, sarin, hepatitis A virus, and bacillus anthracis. The standards will be developed by establishing the relationship between the amount of exposure and expected health effects; assessing real and potential risks by identifying individuals at risk and consideration of all exposure routes; and, characterizing the risk to determine the potential for toxicity or infectivity. For non-carcinogens, this was done through the analysis of other known guidelines. Cancer-slope factors will be considered for carcinogens. The standards will be assessed in the laboratory using animal models. The guidelines and standards are intended for first-responders and are scheduled for development by the end of 2006. 15 refs., 3 tabs.

  6. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  7. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  8. Identification of the pH sensor and activation by chemical modification of the ClC-2G Cl- channel.

    Science.gov (United States)

    Stroffekova, K; Kupert, E Y; Malinowska, D H; Cuppoletti, J

    1998-10-01

    Rabbit and human ClC-2G Cl- channels are voltage sensitive and activated by protein kinase A and low extracellular pH. The objective of the present study was to investigate the mechanism involved in acid activation of the ClC-2G Cl- channel and to determine which amino acid residues play a role in this acid activation. Channel open probability (Po) at +/-80 mV holding potentials increased fourfold in a concentration-dependent manner with extracellular H+ concentration (that is, extracellular pH, pHtrans), with an apparent acidic dissociation constant of pH 4.95 +/- 0.27. 1-Ethyl-3(3-dimethylaminopropyl)carbodiimide-catalyzed amidation of the channel with glycine methyl ester increased Po threefold at pHtrans 7.4, at which the channel normally exhibits low Po. With extracellular pH reduction (protonation) or amidation, increased Po was due to a significant increase in open time constants and a significant decrease in closed time constants of the channel gating, and this effect was insensitive to applied voltage. With the use of site-directed mutagenesis, the extracellular region EELE (amino acids 416-419) was identified as the pH sensor and amino acid Glu-419 was found to play the key or predominant role in activation of the ClC-2G Cl- channel by extracellular acid.

  9. Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage.

    Science.gov (United States)

    Aoyagi, Tomo; Hamai, Takaya; Hori, Tomoyuki; Sato, Yuki; Kobayashi, Mikio; Sato, Yuya; Inaba, Tomohiro; Ogata, Atsushi; Habe, Hiroshi; Sakata, Takeshi

    2017-12-01

    For acceleration of removing toxic metals from acid mine drainage (AMD), the effects of hydraulic retention time (HRT) and pH on the reactor performance and microbial community structure in the depth direction of a laboratory-scale packed-bed bioreactor containing rice bran as waste organic material were investigated. The HRT was shortened stepwise from 25 to 12 h, 8 h, and 6 to 5 h under the neutral condition using AMD neutralized with limestone (pH 6.3), and from 25 to 20 h, 12 h, and 8 to 7 h under the acid condition using AMD (pH 3.0). Under the neutral condition, the bioreactor stably operated up to 6 h HRT, which was shorter than under the acid condition (up to 20 h HRT). During stable sulfate reduction, both the organic matter-remaining condition and the low oxidation-reduction potential condition in lower parts of the reactor were observed. Principal coordinate analysis of Illumina sequencing data of 16S rRNA genes revealed a dynamic transition of the microbial communities at the boundary between stable and unstable operation in response to reductions in HRT. During stable operation under both the neutral and acid conditions, several fermentative operational taxonomic units (OTUs) from the phyla Firmicutes and Bacteroidetes dominated in lower parts of the bioreactor, suggesting that co-existence of these OTUs might lead to metabolic activation of sulfate-reducing bacteria. In contrast, during unstable operation at shorter HRTs, an OTU from the candidate phylum OP11 were found under both conditions. This study demonstrated that these microorganisms can be used to monitor the treatment of AMD, which suggests stable or deteriorated performance of the system.

  10. The pH dependent Raman spectroscopic study of caffeine

    Science.gov (United States)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  11. Autonomous Optofluidic Chemical Analyzers for Marine Applications: Insights from the Submersible Autonomous Moored Instruments (SAMI for pH and pCO2

    Directory of Open Access Journals (Sweden)

    Chun-Ze Lai

    2018-01-01

    Full Text Available The commercial availability of inexpensive fiber optics and small volume pumps in the early 1990's provided the components necessary for the successful development of low power, low reagent consumption, autonomous optofluidic analyzers for marine applications. It was evident that to achieve calibration-free performance, reagent-based sensors would require frequent renewal of the reagent by pumping the reagent from an impermeable, inert reservoir to the sensing interface. Pumping also enabled measurement of a spectral blank further enhancing accuracy and stability. The first instrument that was developed based on this strategy, the Submersible Autonomous Moored Instrument for CO2 (SAMI-CO2, uses a pH indicator for measurement of the partial pressure of CO2 (pCO2. Because the pH indicator gives an optical response, the instrument requires an optofluidic design where the indicator is pumped into a gas permeable membrane and then to an optical cell for analysis. The pH indicator is periodically flushed from the optical cell by using a valve to switch from the pH indicator to a blank solution. Because of the small volume and low power light source, over 8,500 measurements can be obtained with a ~500 mL reagent bag and 8 alkaline D-cell battery pack. The primary drawback is that the design is more complex compared to the single-ended electrode or optode that is envisioned as the ideal sensor. The SAMI technology has subsequently been used for the successful development of autonomous pH and total alkalinity analyzers. In this manuscript, we will discuss the pros and cons of the SAMI pCO2 and pH optofluidic technology and highlight some past data sets and applications for studying the carbon cycle in aquatic ecosystems.

  12. Microplastics in urban New Jersey freshwaters: distribution, chemical identification, and biological affects

    Directory of Open Access Journals (Sweden)

    B. Ravit

    2017-12-01

    Full Text Available This proof of concept study was undertaken to test methodologies to characterize potential environmental risk associated with the presence of microplastics in surface waters. The goals of the study were to determine whether urban New Jersey freshwaters contained microplastic pollutants, and if so, to test analytic techniques that could potentially identify chemical compounds associated with this pollution. A third objective was to test whether identified associated compounds might have physiological effects on an aquatic organism. Using field collected microplastic samples obtained from the heavily urbanized Raritan and Passaic Rivers in New Jersey, microplastic densities, types, and sizes at 15 sampling locations were determined. Three types of plastic polymers were identified using pyrolysis coupled with gas chromatography (Pyr-GC/MS. Samples were further characterized using solid phase micro extraction coupled with headspace gas chromatography/ion trap mass spectrometry (HS-SPME-GC/ITMS to identify organic compounds associated with the: (i solid microplastic fraction, and (ii site water fraction. Identical retention times for GC peaks found in both fractions indicated compounds can move between the two phases, potentially available for uptake by aquatic biota in the dissolved phase. Patterns of tentatively identified compounds were similar to patterns obtained in Pyr-GC/MS. Embryonic zebrafish exposed to PyCG/MS- identified pure polymers in the 1–10 ppm range exhibited altered growth and heart defects. Using two analytic methods (SPME GC/MS and Pyr-GC/MS allows unambiguous identification of compounds associated with microplastic debris and characterization of the major plastic type(s. Specific “fingerprint” patterns can categorize the class of plastics present in a waterbody and identify compounds associated with the particles. This technique can also be used to identify compounds detected in biota that may be the result of ingesting

  13. Degradation of deicing chemicals affects the natural redox system in airfield soils.

    Science.gov (United States)

    Lissner, Heidi; Wehrer, Markus; Jartun, Morten; Totsche, Kai Uwe

    2014-01-01

    During winter operations at airports, large amounts of organic deicing chemicals (DIC) accumulate beside the runways and infiltrate into the soil during spring. To study the transport and degradation of DIC in the unsaturated zone, eight undisturbed soil cores were retrieved at Oslo airport, Norway, and installed as lysimeters at a nearby field site. Before snowmelt in 2010 and 2011, snow amended with a mix of the DICs propylene glycol (PG) and formate as well as bromide as conservative tracer was applied. Water samples were collected and analyzed until summer 2012. Water flow and solute transport varied considerably among the lysimeters but also temporally between 2010 and 2011. High infiltration rates during snowmelt resulted in the discharge of up to 51 and 82% PG in 2010 and 2011, respectively. The discharge of formate remained comparatively low, indicating its favored degradation even at freezing temperatures compared with PG. Manganese (Mn) and iron (Fe) were observed in the drainage in autumn owing to the anaerobic degradation of residual PG during summer. Our findings suggest that upper boundary conditions, i.e., snow cover and infiltration rate, and the extent of preferential flowpaths, control water flow and solute transport of bromide and PG during snowmelt. PG may therefore locally reach deeper soil regions where it may pose a risk for groundwater. In the long term, the use of DIC furthermore causes the depletion of potential electron acceptors and the transport of considerable amounts of Fe and Mn. To avoid an overload of the unsaturated zone with DIC and to maintain the natural redox system, the development of suitable remediation techniques is required.

  14. Invasive Egg Predators and Food Availability Interactively Affect Maternal Investment in Egg Chemical Defense

    Directory of Open Access Journals (Sweden)

    Sarah C. Paul

    2018-01-01

    Full Text Available Invasive species commonly predate the offspring of native species and eggs are the life stage most vulnerable to this predation. In many species with no maternal care, females can alter the phenotype of eggs to protect them, for instance through chemical defense. In ladybirds egg alkaloids deter predators, including invasive predatory species of ladybirds, but conversely may attract cannibals who benefit from the consumption of eggs with higher alkaloid levels. Invasive predators tend to be more abundant where resources are also abundant, but in high resource environments the maternal fitness benefits of sibling cannibalism are low. Consequently this presents a conflict for female ladybirds between the different factors that influence egg alkaloid level, as protecting her eggs from predators might come with the cost of inadvertently encouraging within-clutch cannibalism under circumstances where it is not beneficial. We investigated how the ladybird Adalia bipunctata addresses this trade-off experimentally, by measuring the quantity of alkaloids in eggs laid by ladybirds in environments that differed in levels of resource availability and perceived predation risk from an invasive predator Harmonia axyridis. Females did lay eggs with higher egg alkaloid levels under poor resource conditions, but only when predator cues were absent. The resulting negative correlation between egg number and egg alkaloid level under poor resource conditions indicates a trade-off between these two attributes of maternal investment, mediated by female response to offspring predation risk. This implies that selection pressures on mothers to adaptively adjust the risk of siblicide may outweigh the need to protect offspring from interspecific predation. Our results demonstrate that maternal effects are an important aspect of species' responses to invasive predators, and highlight the value of studying maternal effects in the context of the multifaceted environments in

  15. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice.

    Science.gov (United States)

    Seilkop, Steven K; Campen, Matthew J; Lund, Amie K; McDonald, Jacob D; Mauderly, Joe L

    2012-04-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/⁻) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE⁻/⁻ mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated "downwind" coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical-chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation.

  16. Frequent Prescribed Burning as a Long-term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition.

    Science.gov (United States)

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H

    2017-09-01

    The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time.

    Science.gov (United States)

    Wu, Li; Wang, Bujun

    2016-07-01

    We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (Pyeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Greater Fusarium wilt suppression after complex than after simple organic amendments as affected by soil pH, total carbon and ammonia-oxidizing bacteria

    NARCIS (Netherlands)

    Senechkin, I.V.; Overbeek, van L.S.; Bruggen, van A.H.C.

    2014-01-01

    A field experiment was conducted to compare effects of four types of organic amendments on soil chemical, microbiological and disease suppression characteristics in an organic farm. The amendments were plant-derived fresh compost (C), steer-derived slurry (S), slurry plus dung (SD) and slurry,

  19. Fate of chemicals in skin after dermal application: does the in vitro skin reservoir affect the estimate of systemic absorption?

    International Nuclear Information System (INIS)

    Yourick, Jeffrey J.; Koenig, Michael L.; Yourick, Debra L.; Bronaugh, Robert L.

    2004-01-01

    Recent international guidelines for the conduct of in vitro skin absorption studies put forward different approaches for addressing the status of chemicals remaining in the stratum corneum and epidermis/dermis at the end of a study. The present study investigated the fate of three chemicals [dihydroxyacetone (DHA), 7-(2H-naphtho[1,2-d]triazol-2-yl)-3-phenylcoumarin (7NTPC), and disperse blue 1 (DB1)] in an in vitro absorption study. In these studies, human and fuzzy rat skin penetration and absorption were determined over 24 or 72 h in flow-through diffusion cells. Skin penetration of these chemicals resulted in relatively low receptor fluid levels but high skin levels. For DHA, penetration studies found approximately 22% of the applied dose remaining in the skin (in both the stratum corneum and viable tissue) as a reservoir after 24 h. Little of the DHA that penetrates into skin is actually available to become systemically absorbed. 7NTPC remaining in the skin after 24 h was approximately 14.7% of the applied dose absorbed. Confocal laser cytometry studies with 7NTPC showed that it is present across skin in mainly the epidermis and dermis with intense fluorescence around hair. For DB1, penetration studies found approximately 10% (ethanol vehicle) and 3% (formulation vehicle) of the applied dose localized in mainly the stratum corneum after 24 h. An extended absorption study (72 h) revealed that little additional DB1 was absorbed into the receptor fluid. Skin levels should not be considered as absorbed material for DHA or DB1, while 7NTPC requires further investigation. These studies illustrate the importance of determining the fate of chemicals remaining in skin, which could significantly affect the estimates of systemically available material to be used in exposure estimates. We recommend that a more conclusive means to determine the fate of skin levels is to perform an extended study as conducted for DB1

  20. Changes in the pH and other soil chemical parameters in soil surrounding wood ant (.i.Formica polyctena./i.) nests

    Czech Academy of Sciences Publication Activity Database

    Jílková, Veronika; Matějíček, L.; Frouz, J.

    2011-01-01

    Roč. 47, č. 1 (2011), s. 72-76 ISSN 1164-5563 Institutional research plan: CEZ:AV0Z60660521 Keywords : wood ants * soil pH * nutrients Subject RIV: EH - Ecology, Behaviour Impact factor: 1.578, year: 2011

  1. Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti.

    Science.gov (United States)

    Kulkarni, Devdutt; Hommen, Udo; Schäffer, Andreas; Preuss, Thomas G

    2014-10-01

    Higher tiers of ecological risk assessment (ERA) consider population and community-level endpoints. At the population level, the phenomenon of density dependence is one of the most important ecological processes that influence population dynamics. In this study, we investigated how different mechanisms of density dependence would influence population-level ERA of the cyclopoid copepod Mesocyclops leuckarti under toxicant exposure. We used a combined approach of laboratory experiments and individual-based modelling. An individual-based model was developed for M. leuckarti to simulate population dynamics under triphenyltin exposure based on individual-level ecological and toxicological data from laboratory experiments. The study primarily aimed to-(1) determine which life-cycle processes, based on feeding strategies, are most significant in determining density dependence (2) explore how these mechanisms of density dependence affect extrapolation from individual-level effects to the population level under toxicant exposure. Model simulations showed that cannibalism of nauplii that were already stressed by TPT exposure contributed to synergistic effects of biotic and abiotic factors and led to a twofold stress being exerted on the nauplii, thereby resulting in a higher population vulnerability compared to the scenario without cannibalism. Our results suggest that in population-level risk assessment, it is easy to underestimate toxicity unless underlying ecological interactions including mechanisms of population-level density regulation are considered. This study is an example of how a combined approach of experiments and mechanistic modelling can lead to a thorough understanding of ecological processes in ecotoxicology and enable a more realistic ERA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Isavuconazole absorption following oral administration in healthy subjects is comparable to intravenous dosing, and is not affected by food, or drugs that alter stomach pH.

    Science.gov (United States)

    Schmitt-Hoffmann, Anne; Desai, Amit; Kowalski, Donna; Pearlman, Helene; Yamazaki, Takao; Townsend, Robert

    2016-08-01

    Two openlabel, single-dose, randomized crossover studies and one open-label, multiple-dose, parallel group study in healthy volunteers were conducted with the prodrug, isavuconazonium sulfate, to determine absolute bioavailability of the active triazole, isavuconazole (EudraCT 2007-004949-15; n = 14), and the effect of food (EudraCT 2007- 004940-63; n = 26), and pH (NCT02128893; n = 24) on the absorption of isavuconazole. Isavuconazonium sulfate 744 mg designed to deliver 400 mg of the active triazole isavuconazole was administered in the absolute bioavailability (oral or intravenous (IV) (2-hour infusion)) and food-effect studies (oral). In the pH-effect study, isavuconazonium sulfate 372 mg designed to deliver 200 mg of isavuconazole was administered orally three times daily (t.i.d.) for 2 days, followed by a single daily oral dose for 3 days, in the presence of steady state esomeprazole dosed orally at 40 mg/day. Isavuconazole was well tolerated in each study. Bioavailability: Geometric least squares mean ratios (GLSMR; oral/IV) for isavuconazole AUC∞, and Cmax were 98% (90% confidence interval (CI): 94, 101) and 78% (90% CI: 72, 85), respectively. Food-effect: GLSMR (fed/fasted) for AUC∞ and Cmax of isavuconazole in plasma were 110% (90% CI: 102, 118) and 92% (90% CI: 86, 98), respectively. Median tmax was 5 hours with food and 3 hours under fasted conditions. pH-effect: GLSMR for isavuconazole AUCtau and Cmax were 108% (90% CI: 89, 130) and 105% (90% CI: 89, 124), respectively. Orally administered isavuconazonium sulfate effectively delivers isavuconazole, as evidenced by the fact that oral isavuconazole is bioequivalent to the IV formulation. Dose adjustments are not required when switching between oral and IV formulations, regardless of food or drugs that increase gastric pH.

  3. Effects of K3[Fe(CN)6] slurry's pH value and applied potential on tungsten removal rate for chemical-mechanical planarization application

    Energy Technology Data Exchange (ETDEWEB)

    Akonko, S.B.; Li, D.Y.; Ziomek-Moroz, M.; Hawk, J.A.; Miller, A.; Cadien, K.

    2005-07-01

    Chemical-mechanical planarization (CMP) is an important process for building multilevel interconnections for electronic devices. Directly planarizing tungsten, which is used as via or contact in microelectronic circuits, by wear is a difficult process because of its high hardness. Therefore, an effective approach has been developed to facilitate planarizing tungsten surface by removing a continuously growing passive film on tungsten when exposed to a low-pH potassium ferricyanide slurry. Since the passive film is softer than tungsten, this chemical mechanical planarization process is effective. In this work, in order to determine effects of corrosion and wear on tungsten removal rate, attempts were made to investigate corrosion, wear, and corrosive wear behavior of tungsten in K3[Fe(CN)6] slurries. Electrochemical and tribological experiments were carried out for different slurry pH values and potentials using a rotating pin-on-disc tribometer. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize surface films formed at the different pH levels and potentials. It was demonstrated that the tungsten removal rate increased with increasing slurry pH and potential. Mechanisms involved are discussed.

  4. Zn availability in nutrient solutions for cucumber (Cucumis sativus L) in hydroponics as affected by Fe-chelates and pH

    NARCIS (Netherlands)

    Voogt, W.; Sonneveld, C.

    2017-01-01

    In soil-less culture systems Fe is usually supplied as chelate to ensure an adequate availability of this element. As chelates have affinity for many metal ions these chelates will interact with other cation nutrients in nutrient solutions. This affects the availability of Fe and other nutrients.

  5. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area.

    Science.gov (United States)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio

    2017-04-01

    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable

  6. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    Science.gov (United States)

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  7. Chemical characterization of polycyclic aromatic hydrocarbons (PAHs) in 2013 Rayong oil spill-affected coastal areas of Thailand.

    Science.gov (United States)

    Pongpiachan, S; Hattayanone, M; Tipmanee, D; Suttinun, O; Khumsup, C; Kittikoon, I; Hirunyatrakul, P

    2018-02-01

    Among Southeast Asian countries, Thailand has gradually accustomed to extremely prompt urbanization, motorization, and industrialization. Chonburi and Rayong provinces are two provinces involved in "eastern seaboard" industrial zones, which is an emerging economic region that plays a key role in Thailand's economy. The 2013 Rayong oil spill did not only cause damages to the coastal and maritime environment, but also undermine trust in the overall safety system and negatively affect the investor confidence. In this study, 69 coastal soils collected around Koh Samed Island were chemically extracted and analyzed for 15 PAHs by using a Shimadzu GCMS-QP2010 Ultra system comprising a high-speed performance system with ASSP function. In this study, numerous diagnostic binary ratios were applied to identify potential sources of PAHs. Advanced statistical techniques such as hierarchical cluster analysis coupled with principal component analysis were also conducted for further investigations of source identifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Marine mud and manure treatment in Ultisols increase pH and phosphate availability and affectCapsicum annum L. grows and production

    Directory of Open Access Journals (Sweden)

    F. Matulessy

    2015-07-01

    Full Text Available Marine mud and manure has potentially to improve ultisol soil condition, especially in soil acidity, CEC, base saturation, neutralizing organic acid, improving soil structure, soil nutrient retention, aeration, soil humidity, capacity of water holding capacity and infiltration and enhance the rapid supply of phosphate for plant grows and development. Two treatments, namely planting media with 200 ton.ha-1 marine mud and 30 ton.ha-1 manure and 400 ton.ha-1 marine mud and 30 ton.ha-1 manure were able to increase pH from 4.6 to 5.6.Significant decrease of Alexcsolubility about 0.03 meq.100 g-1 was found in M1O3; M2O1; M2O3 and M3O1 treatment about. Increase of phosphate about 5.02 ppm was found at treatment 200 ton.ha-1 marine mud and 30 ton.ha-1 manure. There are significant interaction in plant high about 62.42 cm in the media without marine mud and 30 ton.ha-1manure treatments. The amount of 30 ton,ha-1manure produce plant with leaf size about 95,52 cm2.tan-1and produce fresh fruit about 9.81 ton.ha-1.

  9. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    Science.gov (United States)

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  10. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  11. Internet’s Affects on the Human and Communicational Capitals of the Faculty Members and the PhD and MA Students in Universities

    Directory of Open Access Journals (Sweden)

    Mahdi Montazerghaem

    2009-02-01

    Full Text Available Internet and other modern communication technologies have affected all aspects of the gathering, combining, and transforming knowledge, especially in scientific-educational and research organizations. These processes are parts of the whole intellectual capital in any organization. Intellectual capital is the hidden and intangible property which is oriented toward organizational goals. In the present study, I attempt to reflect on the affects internet has on some particular dimensions of intellectual capital, namely the human and the communicational, in Iran’s universities. According to the theoretical basis, it is shown that internet usage is an important factor in developing organizational intellectual capital (here, in the universities. Results show that human and communicational capitals are differently distributed in various universities. On the other hand, internet accessibility and consumption (type and quantity, as the independent variables of the study, have meaningful affects on human and communicational capitals in all universities. Furthermore, it is noteworthy to say that there are some other factors, as the ranking of the university, department, educational level (for students, and degree (for faculty members, and gender, which intervene in the process. Results show that internet usage, besides other factors as age, gender, marital status, could guide in explanation of the human and communicational capitals’ changes in the universities.

  12. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    Directory of Open Access Journals (Sweden)

    Stanislava Vondráčková

    Full Text Available High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8 and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism.We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs.Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions.In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  13. High efficient removal of molybdenum from water by Fe{sub 2}(SO{sub 4}){sub 3}: Effects of pH and affecting factors in the presence of co-existing background constituents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ma, Jun, E-mail: majunhit@126.com; Lu, Xixin; Huangfu, Xiaoliu; Zou, Jing

    2015-12-30

    Highlights: • Proposed high efficient Mo (VI) removal with Fe{sub 2}(SO{sub 4}){sub 3} coagulation-filtration. • Studied different effects of Fe{sub 2}(SO{sub 4}){sub 3} and FeCl{sub 3} due to different anionic portions. • Reported the adverse effect of calcium on the removal of Mo (VI). • Proposed factors affecting Mo (VI) removal: intercepted Fe and adsorption affinity. - Abstract: Comparatively investigated the different effects of Fe{sub 2}(SO{sub 4}){sub 3} coagulation-filtration and FeCl{sub 3} coagulation-filtration on the removal of Mo (VI). And the influence of calcium, sulfate, silicate, phosphate and humic acid (HA) were also studied. The following conclusions can be obtained: (1) compared with the case of FeCl{sub 3}, Fe{sub 2}(SO{sub 4}){sub 3} showed a higher Mo (VI) removal efficiency at pH 4.00–5.00, but an equal removal efficiency at pH 6.00–9.00. (2) The optimum Mo (VI) removal by Fe{sub 2}(SO{sub 4}){sub 3} was achieved at pH 5.00–6.00; (3) The presence of calcium can reduce the removal of Mo (VI) over the entire pH range in the present study; (4) The effect of co-existing background anions (including HA) was dominated by three factors: Firstly the influence of co-existing background anions on the content of Fe intercepted from water (intercepted Fe). Secondly the competition of co-existing anions with Mo (VI) for adsorption sites. Thirdly the influence of co-existing background anions on the Zeta potential of the iron flocs.

  14. Chemical properties of volcanic soil affected by seven-year rotations Propiedades químicas del suelo volcánico afectado por rotaciones de siete años

    Directory of Open Access Journals (Sweden)

    Juan Hirzel

    2011-06-01

    Full Text Available Long-term crop rotation systems can benefit soil chemical-physical properties and crop productivity. The lack of information on the effect of long-term crop rotations on soil chemical-physical properties for volcanic soils in Chile could restrict reaping real benefits, and make it difficult to take agricultural management decisions, which could lead to possible negative consequences on some soil chemical-physical properties and the environment. The development of information associated with the effect on soil chemical-physical properties with respect to long-term rotation systems and their fertilization management contribute to improving agronomic management decisions for these soils. A study was carried out to assess the effect of six rotation systems replicating fertilization management used by farmers, especially N and P application, and eventually low rates of K, Ca and Mg on soil chemical properties in a volcanic soil after 7 yr in Central South Chile. Affected chemical properties were pH, inorganic N, and available K, along with a general decrease of pH related to fertilization used, which was insufficient in Ca, K, and Mg. Moreover, this soil exhibited high P adsorption capacity (90.2 to 97.5%. Hence, crop rotations that included pasture legumes and crops with high nutrient inputs such as sugar beet (Beta vulgaris L. generated a less negative effect on soil chemical properties. This study indicates that fertilization management in crop rotation systems must consider the input and output nutrient balances to prevent the negative effect on some soil chemical properties.Los sistemas de rotación de cultivos de largo plazo pueden tener varios beneficios sobre las propiedades físico-químicas del suelo y productividad de los cultivos. La falta de información sobre el efecto de rotaciones de largo plazo en las propiedades físico-químicas para suelos volcánicos en Chile podría limitar la obtención de beneficios reales, dificultando

  15. Endogenous enzymes, heat, and pH affect flavone profiles in parsley (Petroselinum crispum var. neapolitanum) and celery (Apium graveolens) during juice processing.

    Science.gov (United States)

    Hostetler, Gregory L; Riedl, Ken M; Schwartz, Steven J

    2012-01-11

    Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. The effects of juice extraction, acidification, thermal processing, and endogenous enzymes on flavone glycoside profile and concentration in both parsley and celery were investigated. Parsley yielded 72% juice with 64% of the total flavones extracted, whereas celery yielded 79% juice with 56% of flavones extracted. Fresh parsley juice averaged 281 mg flavones/100 g and fresh celery juice, 28.5 mg/100 g. Flavones in steamed parsley and celery were predominantly malonyl apiosylglucoside conjugates, whereas those in fresh samples were primarily apiosylglucoside conjugates; this was apparently the result of endogenous malonyl esterases. Acidification and thermal processing of celery converted flavone apiosylglucosides to flavone glucosides, which may affect the intestinal absorption and metabolism of these compounds.

  16. Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana

    OpenAIRE

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2013-01-01

    Uranium (U) causes oxidative stress in Arabidopsis thaliana plants grown at pH 5.5. However, U speciation and its toxicity strongly depend on environmental parameters, for example pH. It is unknown how different U species determine U uptake and translocation within plants and how they might affect the oxidative defense mechanisms of these plants. The present study analyzed U uptake and oxidative stress-related responses in A. thaliana (Columbia ecotype) under contrasted U chemical speciation ...

  17. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    Directory of Open Access Journals (Sweden)

    Elodie Nivelle

    Full Text Available The use of nitrogen (N fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+ or did not (N0 receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day, the highest dose of glyphosate (100FR negatively affected the alkaline phosphatase (AlP activity in soils without N fertilization history and decreased the cation exchange capacity (CEC in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3- and available phosphorus (PO43- regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH and AlP activities, respectively, while urease (URE activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD. By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates

  18. Atividade alelopática de substâncias químicas isoladas do Capim-Marandu e suas variações em função do pH Allelopathic activity of chemical substances isolated from Brachiaria brizantha cv. Marandu and their variations in function of pH

    Directory of Open Access Journals (Sweden)

    L.S. Santos

    2008-01-01

    Full Text Available Este trabalho teve por objetivos isolar, identificar e caracterizar a atividade alelopática de substâncias químicas produzidas pela Brachiaria brizantha cv. Marandu e determinar as variações na atividade dessas substâncias em função da variação do pH da solução. A atividade alelopática foi realizada em bioensaios de germinação e desenvolvimento da radícula e do hipocótilo, utilizando as plantas daninhas malícia (Mimosa pudica e mata-pasto (Senna obtusifolia como receptoras. Os efeitos do pH foram analisados na faixa de 3,0 a 9,0. Os triterpenos pentacíclicos friedelina e epifriedelinol isolados da parte aérea de B. brizantha apresentaram baixa atividade inibitória na germinação de sementes e no desenvolvimento da radícula e do hipocótilo das duas plantas daninhas. As duas substâncias apresentaram comportamento diferenciado em relação à variação do pH da solução, com inibições mais marcantes em relação à planta daninha mata-pasto.This work aimed to isolate, identify and determine the allelopathic activity of the chemical substances produced by Brachiaria brizantha cv. Marandu and to verify the effects of the pH in the solution on the activity of these compounds. The allelopathic activity was evaluated based on germination bioassays and radicle and hypocotyl growth using the species 'malícia' (Mimosa pudica and 'mata-pasto' (Senna obtusifolia as receptors. The effect of pH was analyzed in a range from 3.0 to 9.0. The pentacyclic triterpenes friedelin and epifriefelinol isolated from the shoots of B. brizantha showed a low inhibitory activity against seed germination and radicle and hypocotyl growth of the two receptor plants evaluated. The pentacyclic triterpenes friedelin and epifrifelinol presented differentiated behaviors in relation to the pH variation in the solution, with stronger inhibition activity against the weed 'mata-pasto'.

  19. The effects of magnetic nanoparticles embedded with SA/PVA and pH on chemical-mechanical polishing wastewater and magnetic particle regeneration and recycle

    Directory of Open Access Journals (Sweden)

    Chung-Fu Huang

    2017-12-01

    Full Text Available Experiments were conducted using sodium alginate (SA and polyvinyl alcohol (PVA as embedded materials for Fe3O4 magnetic nanoparticles (MNPs. The materials provided excellent protection to the embedded MNPs in low-pH conditions. This study observed and compared the adsorption capacity of the unaltered and embedded MNPs. At pH 3 and without additional magnetic fields, the wastewater turbidity removal rate of the embedded MNPs reached a maximum of 95%, similar to that of the unaltered MNPs. Moreover, this study examined the recyclability and reusability of the unaltered and embedded MNPs and discovered that the embedded MNPs could be reused up to seven times. Overall, the use of SA/PVA prevented MNPs from disintegrating and contaminating the wastewater through the dissolution of Fe ions. SA and PVA also increased the reusability of the unaltered MNPs.

  20. Chemical composition and antibacterial activity of Origanum saccatum P.H. Davis essential oil obtained by solvent-free microwave extraction: comparison with hydrodistillation.

    Science.gov (United States)

    Sozmen, Fazli; Uysal, Burcu; Oksal, Birsen S; Kose, Elif Odabas; Deniz, I Gokhan

    2011-01-01

    The components of the essential oils (EOs) obtained by solvent-free microwave extraction (SFME) and hydrodistillation (HD) from endemic Origanum saccatum P.H. Davis were identified by using GC/MS. The main constituents of both EOs obtained by SFME and HD, respectively, from O. saccatum were p-cymene (72.5 and 70.6%), thymol (9.32 and 8.11%), and carvacrol (7.18 and 6.36%). The EO obtained by SFME contained substantially higher amounts of oxygenated compounds and lower amounts of monoterpenes than did the EO obtained by HD. The antibacterial activities of the EOs obtained by SFME and HD were evaluated with the disc diffusion method by comparison with 10 different bacterial strains. The antibacterial activity of the EO extracted by SFME was found to be more effective than that of the EO extracted by HD against seven of the tested bacteria.

  1. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    Science.gov (United States)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  2. Pulverizing processes affect the chemical quality and thermal property of black, white, and green pepper (Piper nigrum L.).

    Science.gov (United States)

    Liu, Hong; Zheng, Jie; Liu, Pengzhan; Zeng, Fankui

    2018-06-01

    In this study, the effects of different pulverizing methods on the chemical attributes and thermal properties of black, white and green pepper were evaluated. Cryogenic grinding minimally damaged the lipid, moisture, crude protein, starch, non-volatile ether extract, piperine, essential oil and the typical pepper essential oil compounds of the spices. The pulverizing methods and storage significantly affected the compositions of the fatty acid in the peppers, except for palmitic acid and lignoceric acid. The amino acid contents and the thermo-gravimetric analysis curve were hardly influenced by the grinding techniques. The use of cryogenic grinding to prepare pepper ensured the highest quality of pepper products. Regardless of grinding technique, the values of moisture, piperine, unsaturated fatty acids, essential oil, monoterpenes, and the absolute concentrations of typical pepper essential oil constituents (except caryophyllene oxide) decreased, whereas the amino acid, lipid, protein, starch, and non-volatile ether extract content as well as the thermal properties were insignificantly changed after storage at 4 °C for 6 months.

  3. PhD students and integrative research

    NARCIS (Netherlands)

    Fry, G.; Tress, B.; Tress, G.

    2006-01-01

    The training of PhD students is currently very dynamic and varies widely from place to place. We present some examples of this variation and comment on how it may affect the way PhD students cope with integrative studies. Our focus is on the training needs of PhD students studying integrative

  4. Neuronal pH regulation

    DEFF Research Database (Denmark)

    Vorstrup, S; Jensen, K E; Thomsen, C

    1989-01-01

    The intracellular pH in the brain was studied in six healthy volunteers before and immediately after the administration of 2 g of acetazolamide. Phosphorus-31 nuclear magnetic resonance spectroscopy by a 1.5 tesla whole-body scanner was used. The chemical shift between the inorganic phosphate...

  5. Initial substrate moisture content and storage temperature affects chemical properties of bagged substrates containing controlled release fertilizer at two different temperatures

    Science.gov (United States)

    Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with controlled release fertilizers (CRF). The objective of this research was to observe how initial substrate moisture content and storage temperature affect the chemical p...

  6. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    Science.gov (United States)

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Low strength ultrasonication positively affects the methanogenic granules toward higher AD performance. Part I: Physico-chemical characteristics

    DEFF Research Database (Denmark)

    Cho, S. K.; Hwang, Yuhoon; Kim, D. H.

    2013-01-01

    To elucidate the correlation between enhanced biogas production and changed physico-chemical properties of methanogenic granules after low strength ultrasonication, in this study, the effects of low strength ultrasonication on the settling velocity, permeability, porosity, and fluid collection ef...

  8. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  9. Chemical or Biological Terrorist Attacks: An Analysis of the Preparedness of Hospitals for Managing Victims Affected by Chemical or Biological Weapons of Mass Destruction

    Science.gov (United States)

    Bennett, Russell L.

    2006-01-01

    The possibility of a terrorist attack employing the use of chemical or biological weapons of mass destruction (WMD) on American soil is no longer an empty threat, it has become a reality. A WMD is defined as any weapon with the capacity to inflict death and destruction on such a massive scale that its very presence in the hands of hostile forces is a grievous threat. Events of the past few years including the bombing of the World Trade Center in 1993, the Murrah Federal Building in Oklahoma City in 1995 and the use of planes as guided missiles directed into the Pentagon and New York’s Twin Towers in 2001 (9/11) and the tragic incidents involving twenty-three people who were infected and five who died as a result of contact with anthrax-laced mail in the Fall of 2001, have well established that the United States can be attacked by both domestic and international terrorists without warning or provocation. In light of these actions, hospitals have been working vigorously to ensure that they would be “ready” in the event of another terrorist attack to provide appropriate medical care to victims. However, according to a recent United States General Accounting Office (GAO) nationwide survey, our nation’s hospitals still are not prepared to manage mass causalities resulting from chemical or biological WMD. Therefore, there is a clear need for information about current hospital preparedness in order to provide a foundation for systematic planning and broader discussions about relative cost, probable effectiveness, environmental impact and overall societal priorities. Hence, the aim of this research was to examine the current preparedness of hospitals in the State of Mississippi to manage victims of terrorist attacks involving chemical or biological WMD. All acute care hospitals in the State were selected for inclusion in this study. Both quantitative and qualitative methods were utilized for data collection and analysis. Six hypotheses were tested. Using a

  10. Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation

    Directory of Open Access Journals (Sweden)

    Vanessa de Cássia Teixeira da Silva

    2016-01-01

    Full Text Available This work reports endoglucanase and beta-glucosidase production by the thermophilic fungus Myceliophthora heterothallica in solid-state (SSC and submerged (SmC cultivation. Wheat bran and sugarcane bagasse were used for SSC and cardboard for SmC. Highest endoglucanase production in SSC occurred after 192 hours: 1,170.6 ± 0.8 U/g, and in SmC after 168 hours: 2,642 ± 561 U/g. The endoglucanases and beta-glucosidases produced by both cultivation systems showed slight differences concerning their optimal pH and temperature. The number of endoglucanases was also different: six isoforms in SSC and ten in SmC. Endoglucanase activity remained above 50% after incubation between pH 3.0 and 9.0 for 24 h for both cultivation systems. The effect of several chemicals displayed variation between SSC and SmC isoenzymes. Manganese activated the enzymes from SmC but inhibited those from SSC. For β-glucosidases, maximum production on SmC was 244 ± 48 U/g after 168 hours using cardboard as carbon source. In SSC maximum production reached 10.9 ± 0.3 U/g after 240 h with 1 : 1 wheat bran and sugarcane bagasse. Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems. FeCl3 exerted the strongest inhibition for endoglucanases and β-glucosidases.

  11. Effects of sintering process, pH and temperature on chemical durability of Ce{sub 0.5}Pr{sub 0.5}PO{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jiyan; Teng, Yuancheng, E-mail: tyc239@163.com; Huang, Yi; Wu, Lang; Zhang, Kuibao; Zhao, Xiaofeng

    2015-10-15

    The Ce{sub 0.5}Pr{sub 0.5}PO{sub 4} ceramics with high relative density of 99% and small average grain size of 0.15 μm were prepared by hot-pressing at 1150 °C for 2 h. The effects of sintering process, pH values and temperature on the chemical durability of the ceramics were investigated. The results show that normalized elemental leaching rates of Pr (LR{sub Pr}) and Ce (LR{sub Ce}) of the hot-pressed ceramics are slightly lower than that of the ceramics sintered at 1500 °C for 4 h by normal pressure. The LR{sub Pr} and LR{sub Ce} reach the highest values (∼10{sup −3} g m{sup −2} d{sup −1}) when pH = 3, while the LR{sub Pr} and LR{sub Ce} have the lowest values (∼10{sup −7} g m{sup −2} d{sup −1}) when pH = 7. The surface of the ceramic in pH = 3 leachate appears serious corrosion with plenty of pores. The precipitation of low-soluble was formed on sample surface during leaching tests at pH = 9 and 11. - Highlights: • The Ce{sub 0.5}Pr{sub 0.5}PO{sub 4} ceramics with high relative density of 99% and small average grain size of 0.15 µm were prepared by hot-pressing at 1150 ºC for 2 h. • The normalized elemental leaching rates of Pr (LR{sub Pr}) and Ce (LR{sub Ce}) of the hot-pressed ceramics are slightly lower than that of the ceramics sintered at 1500 ºC for 4 h by normal pressure. • The LR{sub Pr} and LR{sub Ce} reach the highest values (∼10{sup −3} g m{sup −2} d{sup −1}) when pH = 3, while the LR{sub Pr} and LR{sub Ce} have the lowest values (∼10{sup −7} g m{sup −2} d{sup −1}) when pH = 7.

  12. Chemical Dependency and Violence: Working with Dually Affected Families. A Cross-Training Program Manual for Counselors and Advocates.

    Science.gov (United States)

    Wright, Janet M.

    This manual is designed as a cross-training program guide for counselors working in the fields of woman abuse and chemical dependency. (A cross-training program is a system for one (or more) agency personnel to train each other in their respective areas of expertise.) Chapter 1 discusses the rationale and goals of a cross-training program; issues…

  13. Chemical properties of forest soils as affected by nests of .i.Myrmica ruginodis./i. (Formicidae)

    Czech Academy of Sciences Publication Activity Database

    Véle, A.; Frouz, Jan; Holuša, J.; Kalčík, Jiří

    2010-01-01

    Roč. 65, č. 1 (2010), s. 122-127 ISSN 0006-3088 R&D Projects: GA MZe(CZ) QH81136 Institutional research plan: CEZ:AV0Z60660521 Keywords : ant nests * Myrmica * soil chemical properties Subject RIV: EH - Ecology, Behaviour Impact factor: 0.609, year: 2010

  14. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation

    NARCIS (Netherlands)

    Tuyen, Van Dinh; Cone, J.W.; Baars, J.J.P.; Sonnenberg, A.S.M.; Hendriks, W.H.

    2012-01-01

    Eleven white-rot fungi were examined for their potency to degrade lignin and to improve the rumen fermentability of wheat straw. The straw was inoculated with the fungi and incubated under solid state conditions at 24 °C for 0–49 days to determine changes in in vitro gas production and chemical

  15. Chemical composition of needles and cambial activity of stems of Scots pine trees affected by air pollutants in Polish forests

    Science.gov (United States)

    Wojciech Dmuchowski; Ewa U. Kurczynska; Wieslaw Wloch

    1998-01-01

    The impact of environmental pollution is defined for the chemical composition of Scots pine (Pinus sylvestris L.) needles and cambial activity in the tree stems in Polish forests. The research investigated 20-year-old trees growing in two areas in significantly different levels of pollution. The highly polluted area was located near the Warsaw...

  16. Ergonomics and Beyond: Understanding How Chemical and Heat Exposures and Physical Exertions at Work Affect Functional Ability, Injury, and Long-Term Health.

    Science.gov (United States)

    Ross, Jennifer A; Shipp, Eva M; Trueblood, Amber B; Bhattacharya, Amit

    2016-08-01

    To honor Tom Waters's work on emerging occupational health issues, we review the literature on physical along with chemical exposures and their impact on functional outcomes. Many occupations present the opportunity for exposure to multiple hazardous exposures, including both physical and chemical factors. However, little is known about how these different factors affect functional ability and injury. The goal of this review is to examine the relationships between these exposures, impairment of the neuromuscular and musculoskeletal systems, functional outcomes, and health problems with a focus on acute injury. Literature was identified using online databases, including PubMed, Ovid Medline, and Google Scholar. References from included articles were searched for additional relevant articles. This review documented the limited existing literature that discussed cognitive impairment and functional disorders via neurotoxicity for physical exposures (heat and repetitive loading) and chemical exposures (pesticides, volatile organic compounds [VOCs], and heavy metals). This review supports that workers are exposed to physical and chemical exposures that are associated with negative health effects, including functional impairment and injury. Innovation in exposure assessment with respect to quantifying the joint exposure to these different exposures is especially needed for developing risk assessment models and, ultimately, preventive measures. Along with physical exposures, chemical exposures need to be considered, alone and in combination, in assessing functional ability and occupationally related injuries. © 2016, Human Factors and Ergonomics Society.

  17. A ph sensor based on a flexible substrate

    Science.gov (United States)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  18. Using the WTO/TBT enquiry point to monitor tendencies in the regulation of environment, health, and safety issues affecting the chemical industry.

    Science.gov (United States)

    Pio Borges Menezes, Rodrigo; Maria de Souza Antunes, Adelaide

    2005-04-01

    The growing importance of technical regulation affecting the use and sale of chemical products is a topic of interest not only for the chemical industry, but also for governments, nongovernmental organizations, consumers, and interested communities. The results of such regulation on behalf of the environment, health and safety of individuals, as well as its economic effects on industrial activity, are well understood in the United States and recently in the European Union. In less developed countries, however, the general level of public understanding of these issues is still minimal. It is common knowledge that the so-called "regulatory asymmetry" between countries at different levels of development contributes to the establishment of technical barriers to trade. Such asymmetries, however, also have other impacts: the displacement of polluting industrial sectors to countries which have less demanding regulations, the concentration of unsafe and harmful environmental conditions in certain parts of the globe, and the competitive disadvantage for industries located in countries where control is more rigid. This study analyses information on a wide range of technical regulations issued by World Trade Organization (WTO) members, and focuses on those regulations that affect the chemical industry. This information is available through the WTO Enquiry Points, organizations created in each country to administrate the Technical Barriers to Trade Agreement (TBT). This article consists of an analysis of 4,301 notifications of technical regulations by WTO member states in the 7-year period following the establishment of the WTO in 1995. Starting from this mass of information, 585 notifications that affect the circulation or use of chemical products were isolated. Of this group, 71% refer to only 15 countries. This group of notifications was further classified according to their motivation (the environment, health, safety), by the type of product affected (medications, fuels

  19. The Differences in Chemical Composition, Physical Quality Traits and Nutritional Values of Horse Meat as Affected by Various Retail Cut Types

    Directory of Open Access Journals (Sweden)

    Pil Nam Seong

    2016-01-01

    Full Text Available The effects of retail cut type on chemical, quality and nutritional characteristics of horse meat were studied. Jeju female breed horses (n = 9 at 32-mo-old were slaughtered and the carcasses at 24 h post-mortem were fabricated into 10 retail cuts including: tender-loin, loin, strip-loin, shoulder-chuck-roll, shoulder-clod, top-round, outside-round, brisket, short-plate-brisket, and shank. The results revealed that all of parameters (chemical, meat quality and nutritional composition examined significantly (p<0.05 differed between the cuts. The chemical composition range (minimum to maximum of cuts was found as such: moisture 65.06% to 71.69%; protein 19.07% to 21.28%; collagen 1.40% to 2.45%; fat 2.56% to 12.14% and cholesterol 55.76 to 79.50 mg/100 g. Shoulder-chuck-roll had the highest pH and water-holding capacity, while top-round had the highest cooking loss. Shear force ranged between the cuts from 2.80 kg/cm2 to 4.98 kg/cm2. The Cu, Fe, and Zn contents ranged between the cuts from 1.52 mg/kg to 2.75 mg/kg, 21.25 mg/kg to 30.85 mg/kg, and 16.51 mg/kg to 40.42 mg/kg, respectively. Additionally, most of the cuts studied showed favorable polyunsaturated fatty acid/saturated fatty acid, n-3/n-6 and essential amino acid/non-essential amino acid ratios.

  20. The Differences in Chemical Composition, Physical Quality Traits and Nutritional Values of Horse Meat as Affected by Various Retail Cut Types.

    Science.gov (United States)

    Seong, Pil Nam; Park, Kyoung Mi; Kang, Geun Ho; Cho, Soo Hyun; Park, Beom Young; Chae, Hyun Seok; Van Ba, Hoa

    2016-01-01

    The effects of retail cut type on chemical, quality and nutritional characteristics of horse meat were studied. Jeju female breed horses (n = 9) at 32-mo-old were slaughtered and the carcasses at 24 h post-mortem were fabricated into 10 retail cuts including: tender-loin, loin, strip-loin, shoulder-chuck-roll, shoulder-clod, top-round, outside-round, brisket, short-plate-brisket, and shank. The results revealed that all of parameters (chemical, meat quality and nutritional composition) examined significantly (p<0.05) differed between the cuts. The chemical composition range (minimum to maximum) of cuts was found as such: moisture 65.06% to 71.69%; protein 19.07% to 21.28%; collagen 1.40% to 2.45%; fat 2.56% to 12.14% and cholesterol 55.76 to 79.50 mg/100 g. Shoulder-chuck-roll had the highest pH and water-holding capacity, while top-round had the highest cooking loss. Shear force ranged between the cuts from 2.80 kg/cm(2) to 4.98 kg/cm(2). The Cu, Fe, and Zn contents ranged between the cuts from 1.52 mg/kg to 2.75 mg/kg, 21.25 mg/kg to 30.85 mg/kg, and 16.51 mg/kg to 40.42 mg/kg, respectively. Additionally, most of the cuts studied showed favorable polyunsaturated fatty acid/saturated fatty acid, n-3/n-6 and essential amino acid/non-essential amino acid ratios.

  1. Environmental Growing Conditions in Five Production Systems Induce Stress Response and Affect Chemical Composition of Cocoa (Theobroma cacao L.) Beans.

    Science.gov (United States)

    Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke

    2017-11-29

    Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.

  2. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  3. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  4. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M.; Hyder, Fahmeed

    2014-01-01

    Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd3+) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CHx, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NHy, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) chelated with thulium (Tm3+) and ytterbium (Yb3+). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP5− than with TmDOTA-4AmP5−. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. PMID:24801742

  5. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  6. Nutritive value of some agricultural wastes as affected by relatively low gamma irradiation levels and chemical treatments

    International Nuclear Information System (INIS)

    Al-Masri, M. R.

    2006-01-01

    An experiment was carried out to study the changes in the values of in-vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) of wheat straw, sunflower seed shell, olive cake wood, date palm seeds and peanut shell after irradiation by various levels of gamma radiation (0, 20, 40, 60 kGy) or after spraying with different amounts of hydrobromic acid (HBr; 47%) and sodium hydroxide (NaOH): 0, 3, 6 ml HBr and 3, 6 g NaOH in 25 ml water/100 g DM. The results indicated that chemical treatments increased the IVOMD and ME values significantly for all samples treated except the date palm seeds. There was no significant effect of irradiation on IVOMD and ME. Combined treatments of irradiation and HBr or NaOH were also found to be ineffective in increasing the IVOMD and ME values. (Author)

  7. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta

    International Nuclear Information System (INIS)

    Myllynen, Paeivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysae, Jaana; Pirilae, Rauna; Lastumaeki, Anni; Vaehaekangas, Kirsi H.

    2008-01-01

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of 14 C-PhIP (2 μM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 ± 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of 14 C-PhIP from maternal to fetal circulation (FM ratio 0.90 ± 0.08 at 6 h, p 14 C-PhIP (R = - 0.81, p 14 C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells

  8. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  9. Health indices of the rural population living in the area affected by the Krasnoyarsk mining and chemical combine

    International Nuclear Information System (INIS)

    Mazharov, V.F.; Tikhonova, I.V.; Babyonyshev, S.V.; Koenenkov, V.I.; Protopopov, B.V.; Miretsky, G.I.; Kashin, V.N.; Theodorovich, O.A.

    1997-01-01

    Radioactive contamination of the floodplain of the Yenisei River with the wastes dumped by the Krasnoyarsk Mining, and Chemical Combine (MCC) might cause external and internal irradiation of a large part of rural population inhabiting the banks of the Yenisei. Due the lack of comprehensive data on the dose status and doses received by the population, the health parameters of the population were studied by comparing the recorded incidences of diseases and mortality in the areas located at different distances from the MCC, in the periods before and after the MCC was put into operation, and in different age groups. Also studied were territorial differences in the immunologic and immunogenetic statuses of some groups of population. It has been found out that in the district subjected to radioactive contamination (RAC-districts) there are characteristic shifts in the pathologies that are the main markers of the radiation factor. With possible accumulation of radiation doses the shifts become more distinct, and with the distance from the MCC less distinct. Time and space gradients of the cancer morbidity and mortality rate in the RAC-area have been found. In the riverside settlements of the RAC-area the mortality from malignant neoplasms (MN) of blood, blood-forming organs, and lymphatic system is higher than in the settlements located farther from the Yenisei. As the distance from the MCC down the Yenisei gets longer, the mortality of children due to congenital developmental defects and leukaemia decreases. The space gradient has been also found for most somatic disorders originating from stressogenic (psycho-emotional strain) and immunodeficient states. Besides increased incidence of cancer, in the RAC-area there is a higher incidence of pathological states determined to a large extent genetically - complicated pregnancies and their outcome, mortinatality, and congenital developmental defects. Investigations of immunologic and immunogenetic statuses of the RAC

  10. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta.

    Science.gov (United States)

    Myllynen, Päivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysä, Jaana; Pirilä, Rauna; Lastumäki, Anni; Vähäkangas, Kirsi H

    2008-10-15

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of (14)C-PhIP (2 microM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72+/-0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of (14)C-PhIP from maternal to fetal circulation (FM ratio 0.90+/-0.08 at 6 h, p<0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75+/-0.10, p=0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of (14)C-PhIP (R=-0.81, p<0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: -0.11, p=0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of (14)C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarcinoma cells.

  11. Amperometric micro pH measurements in oxygenated saliva.

    Science.gov (United States)

    Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-07-24

    An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.

  12. OZONE BLEACHING AT NEUTRAL PH – A NEW CONCEPT

    Directory of Open Access Journals (Sweden)

    Fernando de Carvalho

    2010-08-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage.  Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  13. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2017-10-01

    Full Text Available Introduction Agriculture is a major consumer of chemical resources. Increasing use of the inputs in agriculture has led to numerous environmental problems such as high consumption of nonrenewable energy resources, loss of biodiversity and pollution of the aquatic environment (Moradi et al., 2014. This environmental change will have the serious impacts on different growth and development processes of crops. The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause to climatic change (IPCC, 2007. This condition is also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. Consistent with the development of agricultural production systems and move towards modernization in this sector increased dependence of the chemical resource (Salinger, 2005. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the greenhouse gases (GHGs emission and global warming potential (GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating wheat, barley and maize in some regions of Kerman province at 2011-2012 growth season. Materials and methods The study was conducted in Kerman province of Iran. Information about planting area of potato, onion and watermelon in various regions of Kerman was collected. Data were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. The application rates of the chemical inputs were collected by using a face-to-face questionnaire in various regions (Bardsir, Bam, Jiroft

  14. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Nasibe Pourghasemian

    2017-12-01

    Full Text Available Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Therefore, it is necessary to reduce the application of chemical inputs in agricultural systems. Agriculture contributes significantly to atmospheric GHG emissions, with 14% of the global net CO2 emissions coming from this sector. Chemical inputs have a major role in this hazards. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the GHGs emission and Global warming Potential GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating potato, onion and watermelon in some regions of Kerman province at 2011-2012 growth season. Material and Methods The study was conducted in Kerman province of Iran. Data of planting area, application rates of the chemical inputs and other different parameter were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman(Bardsir, Bam, Jiroft, Kerman, Ravar, Rafsanjan and Sirjan. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. Farm random sampling was done within whole population and the sample size was determined by proper equations. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Then the amount of

  15. Investigation of the chromate conversion coating on Alclad 2024 aluminium alloy: effect of the pH of the chromate bath

    NARCIS (Netherlands)

    Campestrini, P.; Westing, E.P.M. van; Hovestad, A.; Wit, J.H.W. de

    2002-01-01

    The parameters of the chromate bath, like temperature, pH, and fluoride content, strongly affect the morphology and chemical composition of the chromate conversion coating and as a consequence have a large influence on its corrosion performance. In this paper, electrochemical impedance spectroscopy

  16. PH og modernismen

    DEFF Research Database (Denmark)

    Ahnfeldt-Mollerup, Merete

    2012-01-01

    Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus.......Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus....

  17. The Activity of TcCYS4 Modified by Variations in pH and Temperature Can Affect Symptoms of Witches’ Broom Disease of Cocoa, Caused by the Fungus Moniliophthora perniciosa

    Science.gov (United States)

    Freitas, Ana Camila Oliveira; Souza, Cristiane Ferreira; Monzani, Paulo Sérgio; Garcia, Wanius; de Almeida, Alex Alan Furtado; Costa, Marcio Gilberto Cardoso; Pirovani, Carlos Priminho

    2015-01-01

    The phytocystatins regulate various physiological processes in plants, including responses to biotic and abiotic stresses, mainly because they act as inhibitors of cysteine proteases. In this study, we have analyzed four cystatins from Theobroma cacao L. previously identified in ESTs libraries of the interaction with the fungus Moniliophthora perniciosa and named TcCYS1, TcCYS2, TcCYS3 and TcCYS4. The recombinant cystatins were purified and subjected to the heat treatment, at different temperatures, and their thermostabilities were monitored using their ability to inhibit papain protease. TcCYS1 was sensitive to temperatures above 50°C, while TcCYS2, TcCYS3, and TcCYS4 were thermostable. TcCYS4 presented a decrease of inhibitory activity when it was treated at temperatures between 60 and 70°C, with the greater decrease occurring at 65°C. Analyses by native gel electrophoresis and size-exclusion chromatography showed that TcCYS4 forms oligomers at temperatures between 60 and 70°C, condition where reduction of inhibitory activity was observed. TcCYS4 oligomers remain stable for up to 20 days after heat treatment and are undone after treatment at 80°C. TcCYS4 presented approximately 90% of inhibitory activity at pH values between 5 and 9. This protein treated at temperatures above 45°C and pH 5 presented reduced inhibitory activity against papain, suggesting that the pH 5 enhances the formation of TcCYS4 oligomers. A variation in the titratable acidity was observed in tissues of T. cacao during the symptoms of witches’ broom disease. Our findings suggest that the oligomerization of TcCYS4, favored by variations in pH, is an endergonic process. We speculate that this process can be involved in the development of the symptoms of witches’ broom disease in cocoa. PMID:25830226

  18. Effects of pH, temperature, and chemical structure on the stability of S-(purin-6-yl)-L-cysteine: evidence for a novel molecular rearrangement mechanism to yield N-(purin-6-yl)-L-cysteine.

    Science.gov (United States)

    Elfarra, A A; Hwang, I Y

    1996-01-01

    The stability of S-(purin-6-yl)-L-cysteine (SPC), a kidney-selective prodrug of 6-mercaptopurine and a putative metabolite of 6-chloropurine, was investigated under various pH and temperature conditions. At room temperature, the half-life (t 1/2) of SPC at either highly acidic (pH 3.6) or basic conditions (pH 9.6) was longer than at neutral or slightly acidic or basic conditions (pH 5.7-8.75). The primary degradation product, N-(purin-6-yl)-L-cysteine (NPC), was isolated using Sephadex LH-20 chromatography and characterized by 1H NMR and FAB/MS after derivatization with 2-iodoacetic acid. These results reveal novel stability requirements and implicate the cysteinyl amino group and the purinyl N-1 nitrogen in the mechanism of SPC rearrangement to NPC. Further evidence for this hypothesis was provided by the findings that the stability of SPC in phosphate buffer (pH 7.4) at 37 degrees C was similar to that of S-(guanin-6-yl)-L-cysteine, whereas S-(purin-6-yl)-N-acetyl-L-cysteine and S-(purin-6-yl)glutathione which have their cysteine amino groups blocked were much more stable than SPC. S-(Purin-6-yl)-L-homocysteine (SPHC) was also more stable than SPC, possibly because the formation of a 6-membered ring transition state as would be expected with SPHC is kinetically less favored than the formation of a 5-membered ring transition state as would be expected with SPC. These results may explain previous in vivo metabolism results of SPC and its analogs and may contribute to a better understanding of stability of structurally related cysteine S-conjugates.

  19. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    International Nuclear Information System (INIS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-01-01

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H"+) and hydroxide (OH"−) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H"+ and OH"− ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the

  20. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  1. Dietary Supplementation of Benzoic Acid and Essential Oil Compounds Affects Buffering Capacity of the Feeds, Performance of Turkey Poults and Their Antioxidant Status, pH in the Digestive Tract, Intestinal Microbiota and Morphology

    Directory of Open Access Journals (Sweden)

    I. Giannenas

    2014-02-01

    Full Text Available Three trials were conducted to evaluate the effect of supplementation of a basal diet with benzoic acid or thymol or a mixture of essential oil blends (MEO or a combination of benzoic acid with MEO (BMEO on growth performance of turkey poults. Control groups were fed a basal diet. In trial 1, benzoic acid was supplied at levels of 300 and 1,000 mg/kg. In trial 2, thymol or the MEO were supplied at levels of 30 mg/kg. In trial 3, the combination of benzoic acid with MEO was evaluated. Benzoic acid, MEO and BMEO improved performance, increased lactic acid bacteria populations and decreased coliform bacteria in the caeca. Thymol, MEO and BMEO improved antioxidant status of turkeys. Benzoic acid and BMEO reduced the buffering capacity compared to control feed and the pH values of the caecal content. Benzoic acid and EOs may be suggested as an effective alternative to AGP in turkeys.

  2. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  3. SOIL CHEMICAL PROPERTIES AND GROWTH OF SUNFLOWER (HELIANTHUS ANNUUS L. AS AFFECTED BY THE APPLICATION OF ORGANIC FERTILIZERS AND INOCULATION WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Apolino José Nogueira da Silva

    2015-02-01

    Full Text Available The use of organic fertilizers and the inoculation of mycorrhizal fungi in the cultivation of oil crops is essential to reduce production costs and minimize negative impacts on natural resources. A field experiment was conducted in an Argissolo Amarelo (Ultisol with the aim of evaluating the effects of fertilizer application and inoculation of arbuscular mycorrhizal fungi on the growth attributes of sunflower (Helianthus annuus L. and on soil chemical properties. The experiment was conducted at the Federal University of Rio Grande do Norte, Brazil, using a randomized block design with three replicates in a 4 × 2 factorial arrangement consisting of four treatments in regard to application of organic fertilizer (liquid biofertilizer, cow urine, mineral fertilizer, and unfertilized control and two treatments in regard to arbuscular mycorrhizal fungi (with and without mycorrhizal fungi. The results showed that the physiological attributes of relative growth rate and leaf weight ratio were positively influenced by fertilization, compared to the control treatment, likely brought about by the supply of nutrients from the fertilizers applied. The growth and productivity attributes were positively affected by mycorrhization.

  4. Critical review of pH sensing with optical fibers

    Science.gov (United States)

    Baldini, Francesco

    1999-02-01

    The chemical parameter most investigated with optical fibers is doubtless pH. The first pH optical fiber sensor was described in 1980. Since then, more than one hundred and twenty original papers describing different pH sensors have been published, based on absorption-based indicators on fluorophores. Such interest is perfectly justified, since pH detection is essential in many fields of application, ranging from the environment and medicine to industry and process control. Moreover, pH transduction can be used for measuring different chemical species, such as carbon dioxide, ammonia and pesticides. Notwithstanding the great number of prototypes realized in different laboratories all over the world, only a few products are available on the market. A critical analysis of the state of art in pH sensing using optical fibers is described, outlining the advantages and disadvantages of an optical approach.

  5. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH

    Directory of Open Access Journals (Sweden)

    Yuting Zhang

    2017-07-01

    Full Text Available Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007–2014 of applying chemical nitrogen, phosphorus and potassium (NPK fertilizers, composted manure or their combination to acidic (pH 5.8, near-neutral (pH 6.8 or alkaline (pH 8.4 Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (% of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%, Actinobacteria (19.7%, Chloroflexi (15.3% and Acidobacteria (12.6%; the medium dominant phyla were Bacterioidetes (5.3%, Planctomycetes (4.8%, Gemmatimonadetes (4.5%, Firmicutes (3.4%, Cyanobacteria (2.1%, Nitrospirae (1.8%, and candidate division TM7 (1

  6. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    Science.gov (United States)

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  7. Meet EPA Engineer Shawn Ryan, Ph.D.

    Science.gov (United States)

    Shawn Ryan, Ph.D. is a chemical engineer at EPA's National Homeland Security Research Center. He has worked at EPA for 12 years, nine of which have been devoted to leading research to support decontamination and consequence management.

  8. Meet EPA Scientist Jody Shoemaker, Ph.D.

    Science.gov (United States)

    EPA research chemist Jody Shoemaker, Ph.D., works to support Agency efforts to protect drinking water. She helps develop methods for analyzing organic chemicals on the Drinking Water Contaminant Candidate List (CCL).

  9. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing.

    Science.gov (United States)

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-02-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

  10. Atividade alelopática de substâncias químicas isoladas da Acacia mangium e suas variações em função do PH Allelopathic activity of chemical substances isolated from Acacia mangium and its variations in function of PH

    Directory of Open Access Journals (Sweden)

    S.M. Luz

    2010-01-01

    Full Text Available Os objetivos deste trabalho foram isolar, identificar e caracterizar a atividade alelopática de substâncias químicas produzidas por Acacia mangium, além de determinar as variações na atividade das substâncias em função da variação do pH da solução. A atividade alelopática foi avaliada em bioensaios de germinação (25 ºC de temperatura e fotoperíodo de 12 horas e crescimento de radícula e hipocótilo (25 ºC de temperatura e fotoperíodo de 24 horas das plantas daninhas malícia (Mimosa pudica e mata-pasto (Senna obtusifolia. Avaliou-se a interferência do pH (3,0 e 9,0 da solução na atividade alelopática das substâncias sobre a germinação das sementes da espécie malícia. Os triterpenoides lupenona (3-oxolup-20(29-eno e lupeol (3β-hidroxilup-20(29-eno, obtidos das folhas caídas da planta doadora, isolados e em par, evidenciaram baixo efeito alelopático inibitório da germinação de sementes e do crescimento do hipocótilo, especialmente do primeiro, cujos efeitos não ultrapassaram o valor de 2,0%. Os efeitos promovidos sobre o crescimento da radícula foram de maior magnitude, atingindo valores superiores a 40%, com destaque para as inibições promovidas pela substância lupenona. Isoladamente, as substâncias promoveram efeitos superiores aos efetivados pelas substâncias analisadas em pares, indicando a existência de antagonismo. O pH da solução influenciou a atividade alelopática das substâncias; para lupenona os efeitos foram mais intensos em pH ácido, enquanto para lupeol os melhores resultados foram verificados em condições alcalinas, mostrando que este fator é ponto importante a ser considerado em trabalhos de campo.The aim of this study was to isolate, identify and characterize the allelopathic activity of the substances produced by Acacia mangium and to determine the variations of this activity according to the pH variation of the solution. The allelopathic activity was evaluated in germination

  11. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  12. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  13. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  14. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  15. Trends and variations of pH and hardness in a typical semi-arid river in a monsoon climate region during 1985-2009.

    Science.gov (United States)

    Hao, Shaonan; Li, Xuyong; Jiang, Yan; Zhao, Hongtao; Yang, Lei

    2016-09-01

    The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 (2-), NOx, general total hardness (GH), Mg(2+), Ca(2+), and Cl(-) in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 (-), and SO4 (2-) were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China.

  16. Physical and chemical controls (fO2, T, pH) of the opposite behaviour of U and Sn-W as examplified by hydrothermal deposits in France and Great-Britain, and solubility data

    International Nuclear Information System (INIS)

    Dubessy, J.; Nguyen-Trung, C.; Cathelineau, M.; Cuney, M.; Leroy, J.; Poty, B.; Ramboz, C.; Charoy, B.; Weisbrod, A.

    1987-01-01

    In uranium deposits, fO 2 and fS 2 of mineralizing fluids are higher than values fixed by the pyrite-hematite-magnetite triple point, as shown by uraninite-hematite and/or pyrite mineral association. The stability of quartz-K feldspar-muscovite paragenesis in the wall-rocks of hydrothermal U deposits indicates weakly acid pH. By contrast, in the Sn-W occurrences from the French Southern Massif Central, the fO 2 of mineralizing fluids is between Ni-NiO and Q-F-M buffers as shown by fluid inclusions. The pH of these fluids is weakly acid to weakly basic. Sn-W mineralizing fluids from Cornwall are by contrast purely aqueous and acid. Experimental data on UO 2 , SnO 2 , FeWO 4 , CaWO 4 solubility and metal species in fluids show that fO 2 > H-M are required for uranium transport whereas fO 2 ≤ Ni-NiO favours Sn transport. The fluid oxidation state has no direct influence on the transport and deposition of tungsten. The fO 2 control on the hydrothermal transport properties of these three metals is related on the one hand to the fluid and rock composition, and on the other hand to the minimal 320 0 C temperature required for homogeneous equilibria in the C-O-H system to control the oxidation state at low values. At high temperatures, Sn, Fe and Ca chloride complexes are more stable than carbonate and phosphate uranium complexes. All these results show that temperature and fO 2 account for the opposite behaviour of uranium and tin-tungsten in hydrothermal systems between 300 0 to 500 0 C

  17. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    Science.gov (United States)

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries. © 2013 John Wiley & Sons Ltd.

  18. PhD Dissertations

    OpenAIRE

    Redazione Reti Medievali (a cura di)

    2010-01-01

    Report of PhD Dissertations.Anna Airò La scrittura delle regole. Politica e istituzioni a Taranto nel Quattrocento, Tesi di dottorato di ricerca in Storia medievale, Università degli studi di Firenze, 2005 Pasquale Arfé La Clavis Physicae II (316-529) di Honorius Augustodunensis. Studio ed edizione critica, Tesi di dottorato in Storia della filosofia medievale, Università degli Studi di Napoli "L'Orientale", 2005 Alessandro Azzimonti Scrittura agiografica e strutture di potere nell'Italia c...

  19. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  20. Fresh and preserved green fodder modify effects of urinary acidifiers on urine pH of horses.

    Science.gov (United States)

    Goren, G; Fritz, J; Dillitzer, N; Hipp, B; Kienzle, E

    2014-04-01

    Hay stabilises urine pH in horses. It is unknown whether this is an effect of structure or of chemical composition. In this study, four ponies (230-384 kg body weight [BW]) were fed six different diets with either a structure or a composition similar to hay with and without acidifiers in a cross-over experimental design in amounts to maintain body weight with the following main compounds: Fresh grass (GRASS), alfalfa hay (ALF), grass cobs (COBS), grass silage (SIL), straw (STR) or extruded straw (STRe) for 2 to 10 days. Urine pH was measured in all trials, blood pH, blood base excess and bicarbonate as well as mineral balance were determined in GRASS, ALF, STR and STRe. In the trials with straw and extruded straw, urine pH decreased significantly (STR control: 7.8 ± 0.23, acidifier: 5.2 ± 0.38) when acidifiers were added, whereas in all other diets that were based on fresh or preserved green fodder, pH did not decrease below 7. Blood pH was similarly affected by diet and acidifiers. Acidifiers had little effect on the pre-prandial blood pH, only in diet STR there was a significant reduction in relation to control. Post-prandial blood pH was significantly reduced by acidifiers in all diets. Blood bicarbonate and base excess showed corresponding effects. Faecal and renal mineral excretion and apparent mineral digestibility were not systematically affected by diet or acidifiers except for chloride. Chloride added as inorganic chloride salt had an even better apparent digestibility than chloride originating from feed. Because only green plant material stabilised acid base balance, chlorophyll and its metabolites are discussed as potential mediators of the effect of green fodder on acid base balance. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  1. Esophageal pH monitoring

    Science.gov (United States)

    pH monitoring - esophageal; Esophageal acidity test ... Esophageal pH monitoring is used to check how much stomach acid is entering the esophagus. It also checks how well the acid is cleared downward into the ...

  2. pH and redox effects of building materials

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van Zomeren, A.; Meeussen, J.C.L.; De Nie, D.S.

    2007-11-01

    The application of relatively fine grained industrial slags as fill material in industrial terrains and parking lots has led to unacceptably elevated pH values and imposed reducing conditions in ground- and surface water. Based on the Dutch Building Materials Decree the materials applied were classified as category 1 materials (free use). There are no limits set to pH and redox in this regulation. In itself a lower or higher pH and a low redox potential are not necessarily critical. Only when the buffer capacity of the surroundings is exceeded, undesirable situations may develop. In this work, the release of alkaline and reducing substances has been studied to assess if regulatory controls are needed and how such controls could be implemented practically. Both pH and redox potential are unsuitable properties for this purpose as it is the buffer capacity of the releasing material and the buffer capacity of the receiving soil and water bodies that determine whether unacceptable conditions develop. As pH and redox are also affected by gas reactions (O2 and CO2), the evaluation becomes relatively complex. Using the chemical speciation-transport model ORCHESTRA, a scenario description has been developed to assess the release of alkaline and reducing species from slag by infiltration under unsaturated conditions. Proper acid neutralization and redox buffering data for the materials were determined. Based on the sophisticated model results, a simplified model description was applied to link observations to impact. Decision schemes for applications above groundwater and in surface water have been developed based on the buffer capacity and particle size distribution of the material to be used, the infiltration rate, the degree of exposure to O2 and CO2 from the atmosphere or from soil air and the dimensions of the application. This has led to a preliminary guidance on implementing rules for acceptance of materials in specific applications. The modeled release predictions

  3. Comparison of electrocoagulation and chemical coagulation for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Akbal, F.; Camci, S. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, Kurupelit, Samsun (Turkey)

    2010-10-15

    Copper (Cu), chromium (Cr), and nickel (Ni) removal from metal plating wastewater by electrocoagulation and chemical coagulation was investigated. Chemical coagulation was performed using either aluminum sulfate or ferric chloride, whereas electrocoagulation was done in an electrolytic cell using aluminum or iron electrodes. By chemical coagulation, Cu-, Cr-, and Ni-removal of 99.9 % was achieved with aluminum sulfate and ferric chloride dosages of 500, 1000, and 2000 mg L{sup -1}, respectively. Removal of metals by electrocoagulation was affected by the electrode material, wastewater pH, current density, number of electrodes, and electrocoagulation time. Electrocoagulation with iron electrodes at a current density of 10 mA cm{sup -2}, electrocoagulation time of 20 min, and pH 3.0 resulted in 99.9 % Cu-, 99.9 % Cr-, and 98 % Ni-removal. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Mechanisms of intragastric pH sensing.

    Science.gov (United States)

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  5. Regulation of pH During Amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nanci, Antonio; Kurtz, Ira; Wright, J Timothy; Paine, Michael L

    2010-02-01

    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.

  6. Changing noise levels in a high CO2/lower pH ocean

    Science.gov (United States)

    Brewer, P. G.; Hester, K. C.; Peltzer, E. T.; Kirkwood, W. J.

    2008-12-01

    We show that ocean acidification from fossil fuel CO2 invasion and from increased respiration/reduced ventilation, has significantly reduced ocean sound absorption and thus increased ocean noise levels in the kHz frequency range. Below 10 kHz, sound absorption occurs due to well known chemical relaxations in the B(OH)3/B(OH)4- and HCO3-/CO32- systems. The pH dependence of these chemical relaxations results in decreased sound absorption (α = dB/km) as the ocean becomes more acidic from increased CO2 levels. The scale of surface ocean pH change today from the +105 ppmv change in atmospheric CO2 is about - 0.12 pH, resulting in frequency dependent decreases in sound absorption that now exceed 12% over pre- industrial. Under reasonable projections of future fossil fuel CO2 emissions and other sources a pH change of 0.3 units or more can be anticipated by mid-century, resulting in a decrease in α by almost 40%. Increases in water temperature have a smaller effect but also contribute to decreased sound absorption. Combining a lowering of 0.3 pH units with an increase of 3°C, α will decrease further to almost 45%. Ambient noise levels in the ocean within the auditory range critical for environmental, military, and economic interests are set to increase significantly due to the combined effects of decreased absorption and increasing sources from mankind's activities. Incorporation of sound absorption in modeling future ocean scenarios (R. Zeebe, personal communication) and long-term monitoring possibly with the aid of modern cabled observatories can give insights in how ocean noise will continue to change and its effect on groups such as marine mammals which communicate in the affected frequency range.

  7. The efficacy of chemical sanitizers on the reduction of Salmonella Typhimurium and Escherichia coli affected by bacterial cell history and water quality

    NARCIS (Netherlands)

    Banach, J.L.; Bokhorst-van de Veen, van H.; Overbeek, van L.S.; Zouwen, van der P.S.; Fels, van der Ine; Nierop Groot, M.N.

    2017-01-01

    Washing fresh produce with potable water helps to remove microorganisms, providing about a 1- to 2-log reduction, but this process can also pose an opportunity for cross-contamination of bacteria in the washing tank. The objective of this study was to evaluate the efficacy of three chemical

  8. A laboratory study of ikaite (CaCO3·6H2O) precipitation as a function of pH, salinity, temperature and phosphate concentration

    OpenAIRE

    Hu, Yu-Bin; Wolf-Gladrow, Dieter A.; Dieckmann, Gerhard S.; Völker, Christoph; Nehrke, Gernot

    2014-01-01

    Ikaite (CaCO3·6H2O) has only recently been discovered in sea ice, in a study that also provided first direct evidence of CaCO3 precipitation in sea ice. However, little is as yet known about the impact of physico-chemical processes on ikaite precipitation in sea ice. Our study focused on how the changes in pH, salinity, temperature and phosphate (PO4) concentration affect the precipitation of ikaite. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105 (in both artificial ...

  9. Ph responsive permeability and Ion- exchange characteristics of (PE/EPDM)-g-PMAA membranes

    International Nuclear Information System (INIS)

    El- Awady, M.M.; El-Awady, N.I.; Eissa, A.M.

    2005-01-01

    Chemical grafting of methacrylic acid (MAA) on low density exchange membranes for recovery of different cations from their solutions was investigated. When the dialysis permeability of two solutes (glucose + urea) through the membrane were tested at different ph values and compared, glucose was found to be less efficient than urea for permeation through the membrane. The permeability response of such solute was noticed only at higher ph value (ph 8). The grafted film (membrane) with graft yield of 185% is experimentally adequate to permeate all molecules with radius of lower than 4.3 x 10 polyethylene blended with EPDM with a ratio (90/10) films was carried out using sodium bisulphite as initiator. Factors affecting grafting and the properties of the grafted films were studied in details and showed improved hydrophilic properties, good thermal stability and nearly unaffected strength properties which make them acceptable for practical uses.In the present work, the possibility of practical uses of such grafted films as ph-responsive membranes in a dialysis process and as ion--7 mm. Grafted membranes in different forms (COOH-form), (Na-methacrylate form) and (K methacrylate- form) were prepared to evaluate the membranes uptake selectivity to different mono, di-and trivalent cations from their solutions. The results obtained showed very good efficiency of the prepared membranes as compared with the values obtained for the commercial cation exchange resin (Dowex)

  10. PhD Dissertations

    Directory of Open Access Journals (Sweden)

    Redazione Reti Medievali (a cura di

    2004-06-01

    Full Text Available Report of PhD Dissertations. Francesco Barone Istituzioni, società ed economia a Catania nel tardo medioevo (XIV-XV secolo, Tesi di dottorato in Storia medievale (XVI ciclo, Università degli Studi di Firenze, 2004   Laura Berti Ceroni Il territorio e le strutture di Cesarea e Classe tra tarda antichità e alto medioevo in rapporto con Ravenna, Tesi di dottorato di ricerca in Storia e Informatica, Università degli studi di Bologna, 2002-2003.   Marco Bicchierai Poppi dalla signoria dei conti Guidi al vicariato del Casentino (1360-1480, Tesi di dottorato in Storia medievale (XIV ciclo, Università degli Studi di Firenze, 2004   Emanuela Garimberti Spatiosa ad habitandum loca. Luoghi e identità nella Historia Langobardorum di Paolo Diacono, Tesi di dottorato in Storia medievale (XV ciclo, Università degli Studi di Bologna, 2004   Lorenzo Tanzini Sistemi normativi e pratiche istituzionali a Firenze dalla fine del XIII all’inizio del XV secolo, Tesi di dottorato di ricerca in Storia medievale (XVI ciclo, Università degli Studi di Firenze, 2004   Stefania Tarquini Pellegrinaggio e asseto urbano di Roma, Tesi di dottorato di ricerca in Storia dei centri, delle vie e della cultura dei pellegrinaggi nel Medioevo euro mediterraneo (XV ciclo, Università degli studi di Lecce, 2003

  11. PhD Dissertations

    Directory of Open Access Journals (Sweden)

    Redazione Reti Medievali (a cura di

    2010-06-01

    Full Text Available Report of PhD dissertations. Andrea Brugnoli Una storia locale: l’organizzazione del territorio veronese nel medioevo: trasformazioni della realtà e schemi notarili (IX-metà XII secolo, Tesi di dottorato di ricerca in Scienze Storiche e Antropologiche (XXII ciclo, Università degli Studi di Verona, 2010   Luca Filangieri Famiglie e gruppi dirigenti a Genova (secoli XII-metà XIII, Tesi di dottorato di ricerca in Storia medievale (XXII ciclo, Università degli Studi di Firenze, 2010   Jakub Kujawi ski Wernakularna kolekcja historiograficzna z rękopisu francuskiego nr 688 z Biblioteki Narodowej w Paryżu. Studium źródłoznawcze (La raccolta dei volgarizzamenti delle opere storiografiche nel manoscritto francese 688 della Biblioteca Nazionale di Parigi, Tesi di dottorato, Università “Adam Mickiewicz”, Facoltà di Storia, Pozna, a.a. 2009/2010   Marta Longhi I signori “de Radicata”. Strategie di affermazione familiare e patrimoniale nel Piemonte dei secoli XII-XIV, Tesi di dottorato di ricerca in Istituzioni, Società, Religioni dal Tardo Antico alla fine del Medioevo (XX ciclo, Università di Torino, 2008

  12. PhD Dissertations

    Directory of Open Access Journals (Sweden)

    Redazione Reti Medievali (a cura di

    2003-06-01

    Full Text Available Reporto of PhD Dissertations.   Mario Dalle Carbonare Società, potere e clientele nell’Irlanda altomedievale (secoli V-IX, Tesi di dottorato di ricerca in Storia sociale europea, Università "Ca' Foscari" di Venezia, 2003 Vieri Mazzoni La legislazione antighibellina e la politica oligarchica della Parte Guelfa di Firenze nel secondo Trecento (1347-1378, Tesi di dottorato di ricerca in Storia Medievale (ciclo XII, Università degli Studi di Firenze   Alma Poloni Pisa dalle origini del movimento popolare alla discesa di Ludovico il Bavaro. I gruppi dirigenti cittadini tra continuità e trasformazione, Tesi di dottorato di ricerca in Storia dell'Europa nel medioevo, Università degli studi di Pisa, 2003   Andrea Puglia Potere marchionale, amministrazione del territorio, società locali dalla morte di Ugo di Tuscia a Guelfo VI di Baviera (1001-1160, Tesi di dottorato di ricerca in Storia medievale, Università degli studi di Milano, 2003

  13. Titration and Spectroscopic Measurements of Poultry Litter pH Buffering Capacity.

    Science.gov (United States)

    Cassity-Duffey, Kate; Cabrera, Miguel; Mowrer, Jake; Kissel, David

    2015-07-01

    The pH value of poultry litter is affected by nitrification, mineralization, and the addition of acidifying chemicals, all acting on the poultry litter pH buffering capacity (pHBC). Increased understanding of poultry litter pHBC will aid in modeling NH volatilization from surface-applied poultry litter as well as estimating rates of alum applications. Our objectives were to (i) determine the pHBC of a wide range of poultry litters; (ii) assess the accuracy of near-infrared reflectance spectroscopy (NIRS) for determining poultry litter pHBC; and (iii) demonstrate the use of poultry litter pHBC to increase the accuracy of alum additions. Litter pHBC was determined by titration and calculated from linear and sigmoidal curves. For the 37 litters measured, linear pHBC ranged from 187 to 537 mmol (pH unit) kg dry litter. The linear and sigmoidal curves provided accurate predictions of pHBC, with most > 0.90. Results from NIRS analysis showed that the linear pHBC expressed on an "as is" water content basis had a NIRS coefficient of calibration (developed using a modified partial least squares procedure) of 0.90 for the 37 poultry litters measured. Using the litter pHBC, an empirical model was derived to determine the amount of alum needed to create a target pH. The model performed well in the range of pH 6.5 to 7.5 (RMSE = 0.07) but underpredicted the amount of alum needed to reach pH litter, which prevented its hydrolysis. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.

    Science.gov (United States)

    Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R

    2016-11-15

    Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    OpenAIRE

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  16. The Rules of Aggression: How Genetic, Chemical and Spatial Factors Affect Intercolony Fights in a Dominant Species, the Mediterranean Acrobat Ant Crematogaster scutellaris.

    Directory of Open Access Journals (Sweden)

    Filippo Frizzi

    Full Text Available Nest-mate recognition plays a key role in the biology of ants. Although individuals coming from a foreign nest are, in most cases, promptly rejected, the degree of aggressiveness towards non nest-mates may be highly variable among species and relies on genetic, chemical and environmental factors. We analyzed intraspecific relationships among neighboring colonies of the dominant Mediterranean acrobat ant Crematogaster scutellaris integrating genetic, chemical and behavioral analyses. Colony structure, parental relationships between nests, cuticular hydrocarbons profiles (CHCs and aggressive behavior against non nest-mates were studied in 34 nests located in olive tree trunks. Bayesian clustering analysis of allelic variation at nine species-specific microsatellite DNA markers pooled nests into 14 distinct clusters, each representing a single colony, confirming a polydomous arrangement of nests in this species. A marked genetic separation among colonies was also detected, probably due to long distance dispersion of queens and males during nuptial flights. CHCs profiles varied significantly among colonies and between nests of the same colony. No relationship between CHCs profiles and genetic distances was detected. The level of aggressiveness between colonies was inversely related to chemical and spatial distance, suggesting a 'nasty neighbor' effect. Our findings also suggest that CHCs profiles in C. scutellaris may be linked to external environmental factors rather than genetic relationships.

  17. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level.

    Science.gov (United States)

    Hunter, Jacobus J; Volschenk, Cornelis G

    2018-05-01

    The study aimed to unravel vineyard row orientation (NS, EW, NE-SW, NW-SE) and grape ripeness level (23, 25, 27 °Balling) implications for grape and wine composition and sensory properties/style (non-wooded/wooded wines) of Vitis vinifera L. cv. Shiraz (rootstock 101-14 Mgt). Soluble solid/titratable acidity ratios were lowest for EW, whereas warmer canopy sides (NW, N, NE) advanced grape ripening. Skin anthocyanins and phenolics generally decreased with ripening. NW-SE rows and S, SE, E and NE canopy sides showed highest skin total anthocyanins and phenolics. Wine total anthocyanins and phenolics increased with grape ripening; EW had lower values. Wine phenolic contents differed between canopy sides; N, NE, E and SE tended higher. Wine sensory profiles increased with grape ripening. For non-wooded wines, NW-SE and NE-SW row orientations generally resulted in highest scores, followed by NS. For EW rows, the N side presented better wines. Wood addition enhanced specific sensory descriptor perceptions. A large collection of wine styles surfaced in the same vineyard and terroir, increasing options to contribute positively to sustainable products. The study generated globally applicable, novel information vital for unlocking and valorising terroir/site potential for grape and wine chemical composition and wine sensory/style properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Variation reduction of brightness and pH of pulp sent to a paper mill

    Directory of Open Access Journals (Sweden)

    Napassavong Rojanarowan

    2015-03-01

    Full Text Available The variance of the brightness of pulp sent to the paper mill during the changing period of dry pulp grades affects the chemical control in the paper mill. This research aims to determine the mixing formula of pulp with different brightness from the EOP and D1 stages to handle this variation issue. This research uses response surface design with Central Composite Design type, regression technique and optimization technique to find the optimal setting of the mixing formula for each of the seven brightness levels to obtain the target brightness of 86% and the pH of 5.25. The mixing formulas are determined by the pulp mixing percentage and the sulfuric acid consumption. The experimental results reveal that when using higher EOP mixing ratio, the brightness decreases and the pH increases. Regarding the effect of the sulfuric acid, increasing the sulfuric acid makes the brightness and the pH decrease. After implementing the optimal formula in the production line, the mean of pulp brightness is closer to the target compared with the brightness before improvement and the brightness variation decreases without affecting the quality of other pulp grades, average of brightness decreased from 87.4% to 86.3% and standard deviation of brightness decreased from 1.09 to 0.46.

  19. Chemical and physicochemical characterization of vermicompost from bovine manure and evaluation of competitive adsorption of cadmium and lead

    International Nuclear Information System (INIS)

    Lamim, Soraida Sozzi Miguel; Jordao, Claudio Pereira; Brune, Walter; Pereira, Jose Luis

    1996-01-01

    The chemical and physicochemical characterization of vermicompost from bovine manure has been studied. It was examined the pH and cation exchangeable capacity (CTC), moistness, ash, organic carbon, total nitrogen, lignin, cellulose and metal concentrations, among other characteristics. The vermicompost was then applied to the retention and competition of metal pollutants (Cd and Pb) from metal nitrate solutions. The retention was affected by both the pH and time of adsorption, while the competitive character of these metals for the substrate was not relevant to each pH examined. (author)

  20. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices.

    Science.gov (United States)

    Zhao, Lihua; Jin, Ye; Ma, Changwei; Song, Huanlu; Li, Hui; Wang, Zhenyu; Xiao, Shan

    2011-08-01

    The microbiological, physico-chemical and free fatty acid composition of dry fermented mutton sausages were determined during ripening and storage. Three sausage mixtures (starter culture [SC], SC and black pepper [SC+BP] and SC, BP and cumin [SC+BP+C]) were compared with a control (CO). In general, the lactic acid bacteria populations in the SC+BP increased significantly to 9 log CFU/g and were higher than the CO (8 log CFU/g) (P0.05). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Affects and Affect Consciousness

    Science.gov (United States)

    MONSEN, JON T.; EILERTSEN, DAG ERIK; MELGÅRD, TROND; ØDEGÅRD, PÅL

    1996-01-01

    Affect consciousness (AC) was operationalized as degrees of awareness, tolerance, nonverbal expression, and conceptual expression of nine specific affects. A semistructured interview (ACI) and separate scales were developed to assess these aspects of affect integration. Their psychometric properties were preliminarily explored by having 20 former psychiatric outpatients complete the interview. Concurrent validity was assessed by using DSM-III-R Axis I and II diagnoses, the Health-Sickness Rating Scale, SCL-90-R, and several indexes from the Minnesota Multiphasic Personality Inventory. Satisfactory interrater reliability and high levels of internal consistency supported the construct validity of the measure. Results suggest the most meaningful use of this instrument is in measuring specific affect and overall AC. Clinically, the ACI has provided highly specific and relevant qualitative data for use in planning psychotherapeutic interventions. PMID:22700292

  2. A PhD is a PhD is a PhD

    OpenAIRE

    Ostrow, Deborah Anne

    2017-01-01

    A PhD is a PhD is a PhD is a practice-based project that interrogates the process of an artist undertaking PhD research under established criteria. It consists of an exegesis, an original screenplay, and a digital film made for online viewing, with images drawn from a range of documentaries and films found on YouTube. They have been dissected, re-assembled and then re-embedded to YouTube. The source material covers topics such as medicalization of madness, the conspicuous appropriation of uni...

  3. Effects of 42 deg. C hyperthermia on intracellular pH in ovarian carcinoma cells during acute or chronic exposure to low extracellular pH

    International Nuclear Information System (INIS)

    Wahl, Miriam L.; Bobyock, Suzanne B.; Leeper, Dennis B.; Owen, Charles S.

    1997-01-01

    Purpose: To determine whether intracellular pH (pH i ) is affected during hyperthermia in substrate-attached cells and whether acute extracellular acidification potentiates the cytotoxicity of hyperthermia via an effect on pH i . Methods and Materials: The pH i was determined in cells attached to extracellular matrix proteins loaded with the fluorescent indicator dye BCECF at 37 deg. C and during 42 deg. C hyperthermia at an extracellular pH (pH e ) of 6.7 or 7.3 in cells. Effects on pH i during hyperthermia are compared to effects on clonogenic survival after hyperthermia at pH e 7.3 and 6.7 of cells grown at pH e 7.3, or of cells grown and monitored at pH e 6.7. Results: The results show that pH i values are affected by substrate attachments. Cells attached to extracellular matrix proteins had better signal stability, low dye leakage and evidence of homeostatic regulation of pH i during heating. The net decrease in pH i in cells grown and assayed at pH e = 7.3 during 42 deg. C hyperthermia was 0.28 units and the decrease in low pH adapted cells heated at pH e = 6.7 was 0.14 units. Acute acidification from pH e = 7.3 to pH e = 6.7 at 37 deg. C caused an initial reduction of 0.5-0.8 unit in pH i , but a partial recovery followed during the next 60-90 min. Concurrent 42 deg. C hyperthermia caused the same initial reduction in pH i in acutely acidified cells, but inhibited the partial recovery that occurred during the next 60-90 min at 37 deg. C. After 4 h at 37 deg. C, the net change in pH i in acutely acidified cells was 0.30 pH unit, but at 42 deg. C is 0.63 pH units. The net change in pH i correlated inversely with clonogenic survival. Conclusions: Hyperthermia causes a pH i reduction in cells which was smaller in magnitude by 50% in low pH adapted cells. Hyperthermia inhibited the partial recovery from acute acidification that was observed at 37 deg. C in substrate attached cells, in parallel with a lower subsequent clonogenic survival

  4. The pH Game.

    Science.gov (United States)

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  5. Effect of pH value on particle morphology and electrochemical properties of LiFePO4 by hydrothermal method

    International Nuclear Information System (INIS)

    Song, Qingzhu; Ou, Xiuqin; Wang, Li; Liang, Guangchuan; Wang, Zuorui

    2011-01-01

    Graphical abstract: The pH value of system is adjusted in the range of 2.5-8.8 by using dilute sulfuric acid and ammonia water. The results indicated that the particle exhibits acute angle diamond flake-like morphology at pH = 2.5. With increase of pH value, the particle gradually becomes to round flake-like and irregular flake-like morphology. The optimal sample synthesized at pH = 6.4 exhibits discharge capacities of 151.8 mAh g -1 at 0.2 C rate and 129.3 mAh g -1 at 3 C rate. Highlights: → The pH value of solution affects greatly on particle morphology. → The solubility product determined the transition of interphases. → The disorder of atoms in crystal is affected by pH value. → LiFePO 4 with high capacity could be synthesized at slight acid or neutral conditions. -- Abstract: Lithium iron phosphate was prepared by hydrothermal synthesis using LiOH.H 2 O, FeSO 4 .7H 2 O and H 3 PO 4 as raw materials. The effects of pH value of reaction solution on particle morphology and electrochemical property were investigated. The pH value of the reaction solution was adjusted in the range of 2.5-8.8 by dilute sulfuric acid and ammonia water. The samples were characterized by field-emission scanning electronic microscope (FE-SEM), X-ray powder diffraction (XRD), constant-current charge/discharge cycling tests and chemical analysis. The results indicated that the particles exhibited acute angle diamond flake-like morphology at pH = 2.5, and as the pH value increased, the particle became hexagon flake-like, round flake-like and irregular flake-like morphology gradually. The optimal sample synthesized at pH = 6.4 exhibited discharge capacities of 151.8 mAh g -1 at 0.2 C rate and 129.3 mAh g -1 at 3 C rate. It was found that pH value affected the morphologies and properties of the product by means of different crystal growth rates.

  6. Atributos químicos do solo afetado pelo manejo da água e do fertilizante potássico na cultura de arroz irrigado Chemical properties of soil affected by water and potassium fertilization management in irrigated rice

    Directory of Open Access Journals (Sweden)

    Alberto B. dos Santos

    2002-04-01

    Full Text Available O desenvolvimento das culturas nas várzeas é extremamente influenciado pelo manejo destas, devido aos atributos químicos e físico-hídricos que elas possuem. O decréscimo na produtividade, verificado no monocultivo contínuo de arroz (Oryza sativa L. irrigado, pode estar relacionado à redução na fertilidade do solo, em decorrência da lixiviação de nutrientes. Com o objetivo de se avaliar os efeitos de manejo da água (MA1 - inundação contínua e MA2 - inundação intermitente seguida de contínua e do fertilizante potássico (K1 - na semeadura; K2 - adubação parcelada e K3 - meia dosagem parcelada na cultura de arroz irrigado sobre alguns atributos químicos de um solo Gley Pouco Húmico, foram conduzidos experimentos durante três anos consecutivos. Na inundação contínua ocorre maior lixiviação de cálcio e de potássio, teor de fósforo no solo e saturação por alumínio e menor pH na camada superficial do solo em relação à inundação intermitente, além de aumento do teor de potássio e do pH e diminuição de saturação por alumínio em profundidade. A inundação intermitente e o parcelamento do potássio podem contribuir na redução das perdas de nutrientes em solos de várzea que apresentam percolação excessiva. Alguns atributos químicos do solo podem ser melhorados através do manejo adequado da cultura do arroz irrigado, envolvendo manejo da água e do fertilizante potássico.Crop performance in lowland soils is influenced by management practices due to change in physico-chemical properties. Grain yield decrease in continuous monoculture of irrigated rice (Oryza sativa L. may be associated with decrease in soil fertility due to leaching of nutrients. The objective of this study was to evaluate effect of water management (WM1 - continuous flooding, and WM2 - intermittent flooding followed by continuous flooding and potassium fertilization (K1 - at sowing; K2 - fractional application, and K3 - fractional

  7. Seasonal Affective Disorder

    Science.gov (United States)

    ... cravings and weight gain Thoughts of death or suicide SAD is more common in women, young people, ... of serotonin, a brain chemical that affects your mood. Their bodies also make too ... with light therapy. NIH: National Institute of Mental Health

  8. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    Science.gov (United States)

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.

  9. From proton nuclear magnetic resonance spectra to pH. Assessment of {sup 1}H NMR pH indicator compound set for deuterium oxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tynkkynen, Tuulia, E-mail: tuulia.tynkkynen@uku.fi [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)

    2009-08-19

    In this study, a protocol for pH determination from D{sub 2}O samples using {sup 1}H NMR pH indicator compounds was developed and assessed by exploring the pH-dependency of 13 compounds giving pH-dependent {sup 1}H NMR signals. The indicators cover the pH range from pH* 0 to 7.2. Equations to transform the indicator chemical shifts to pH estimates are given here for acetic acid, formic acid, chloroacetic acid, dichloroacetic acid, creatine, creatinine, glycine, histidine, 1,2,4-triazole, and TSP (2,2,3,3-tetradeutero-3-(trimethylsilyl)-propionic acid). To characterize the method in presence of typical solutes, the effects of common metabolites, albumin and ionic strength were also evaluated. For the ionic strengths, the effects were also modelled. The experiments showed that the use of pH sensitive {sup 1}H NMR chemical shifts allows the pH determination of typical metabolite solutions with accuracy of 0.01-0.05 pH units. Also, when the ionic strength is known with accuracy better than 0.1 mol dm{sup -3} and the solute concentrations are low, pH{sub nmr}{sup *} (the NMR estimate of pH) can be assumed to be within 0.05 pH units from potentiometrically determined pH.

  10. BRANQUEAMENTO COM OZÔNIO EM PH NEUTRO ¿ UM NOVO CONCEITO

    Directory of Open Access Journals (Sweden)

    Fernando De Carvalho

    2006-01-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage. Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  11. Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva.

    Science.gov (United States)

    Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan

    2014-01-01

    To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

  12. Theory of pH changes in water desalination by capacitive deionization

    NARCIS (Netherlands)

    Dykstra, J.E.; Keesman, K.J.; Biesheuvel, P.M.; Wal, van der A.

    2017-01-01

    In electrochemical water desalination, a large difference in pH can develop between feed and effluent water. These pH changes can affect the long-term stability of membranes and electrodes. Often Faradaic reactions are implicated to explain these pH changes. However, quantitative theory has not

  13. pH within pores in plant fiber cell walls assessed by Fluorescence Ratio Imaging

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Thygesen, Lisbeth Garbrecht; Johansen, Katja Salomon

    2013-01-01

    The pH within cell wall pores of filter paper fibers and hemp fibers was assessed by Fluorescence Ratio Imaging (FRIM). It was found that the Donnan effect affected the pH measured within the fibers. When the conductivity of the added liquid was low (0. 7 mS), pH values were lower within the cell...

  14. Iodine evolution and pH control

    International Nuclear Information System (INIS)

    Beahm, E.C.; Lorenz, R.A.; Weber, C.F.

    1993-01-01

    The pH is the major factor in determining the extent of I 2 in solution. In containment where no pH-control chemicals are present, the acidity or basicity of the water pool will be determined by materials that are introduced into containment as a result of the accident itself. These materials may be fission products (i.e., cesium compounds), thermally produced products (i.e., core-concrete aerosols), or compounds produced by radiation (i.e., nitric acid). In situations where pH levels fall below ∼7, the formation of I 2 will occur in irradiated iodide solutions. A correlation between pH and iodine formation is needed so that the amounts I 2 in water pools can be assessed. This, in turn, determines the amount of I 2 in the atmosphere available for escape by containment leakage. A number of calculational routines based on more than 100 differential equations representing individual reactions can be found in the literature. In this work, it is shown that a simpler approach based on the steady-state decomposition of hydrogen peroxide should correctly describe iodine formation in severe accidents. Comparisons with test data show this approach to be valid. The most important acids in containment will be nitric acid (HNO 3 ), produced by irradiation of water and air, and hydrochloric acid (HCl), produced by irradiation or heating of electrical cable insulation. The most important bases in containment will be cesium hydroxide, cesium borate (or cesium carbonate), and in some plants pH additives, such as sodium hydroxide or sodium phosphate

  15. Does Fat Suppression via Chemically Selective Saturation (CHESS) Affect R2*-MRI for Transfusional Iron Overload Assessment? A Clinical Evaluation at 1.5 and 3 Tesla

    Science.gov (United States)

    Krafft, Axel J.; Loeffler, Ralf B.; Song, Ruitian; Bian, Xiao; McCarville, M. Beth; Hankins, Jane S.; Hillenbrand, Claudia M.

    2015-01-01

    Purpose Fat suppression (FS) via chemically selective saturation (CHESS) eliminates fat-water oscillations in multi-echo gradient echo (mGRE) R2*-MRI. However, for increasing R2* values as seen with increasing liver iron content (LIC), the water signal spectrally overlaps with the CHESS band, which may alter R2*. Here, we investigate the effect of CHESS on R2* and describe a heuristic correction for the observed CHESS-induced R2* changes. Methods Eighty patients (49/31 female/male, mean age: 18.3±11.7 years) with iron overload were scanned with a non-FS and a CHESS-FS mGRE sequence at 1.5T and 3T. Mean liver R2* values were evaluated using 3 published fitting approaches. Measured and model-corrected R2* values were compared and statistically analyzed. Results At 1.5T, CHESS led to a systematic R2* reduction (PCHESS-induced R2* bias after correction (linear regression slopes: 1.032/0.927/0.981). No CHESS-induced R2* reductions were found at 3T. Conclusion The CHESS-induced R2* bias at 1.5T needs to be considered when applying R2*-LIC biopsy calibrations for clinical LIC assessment which were established without FS at 1.5T. The proposed model corrects the R2* bias and could therefore improve clinical iron overload assessment based on linear R2*-LIC calibrations. PMID:26308155

  16. Species and life-history affects the utility of otolith chemical composition to determine natal stream-of-origin in Pacific salmon

    Science.gov (United States)

    Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.

    2013-01-01

    To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.

  17. Urine pH test

    Science.gov (United States)

    ... urine test Male urinary tract References Bose A, Monk RD, Bushinsky DA. Kidney stones. In: Melmed S, Polonsky ... and its influence on urine pH. J Am Diet Assoc . 1995;95(7):791-797. PMID: 7797810 ...

  18. Exercise and Pulmonary Hypertension (PH)

    Science.gov (United States)

    ... Situations Find a Doctor PH Care Centers PHA Classroom PHA Registry Insurance Guide Specialty Pharmacy Other Resources ... no published data in the medical literature regarding routine exercise in patients with PAH. However, there are ...

  19. PhEDEx Data Service

    International Nuclear Information System (INIS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-01-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the 'SiteDB' service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  20. Programmable pH buffers

    Science.gov (United States)

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  1. Optic nerve pH and PO2

    DEFF Research Database (Denmark)

    Pedersen, Daniella B; Stefánsson, Einar; Kiilgaard, Jens Folke

    2006-01-01

    Earlier studies have demonstrated that carbonic anhydrase inhibitors (CAIs) increase optic nerve oxygen tension (ONPO(2)) in pigs. We hypothesized that the mechanism of this effect was either a CO(2) increase or a pH decrease in tissue and blood. To test this hypothesis we investigated and compared...... how optic nerve pH (ONpH) and ONPO(2) are affected by: (1) carbonic anhydrase inhibition; (2) respiratory acidosis, and (3) metabolic acidosis. We measured ONpH with a glass pH electrode and ONPO(2) with a polarographic oxygen electrode. One of the electrodes was placed in the vitreous cavity 0.5 mm...

  2. Repeated applications of compost and manure mainly affect the size and chemical nature of particulate organic matter in a loamy soil after 8 years

    Science.gov (United States)

    Peltre, Clement; Dignac, Marie-France; Doublet, Jeremy; Plante, Alain; Houot, Sabine

    2013-04-01

    Land application of exogenous organic matter (EOM) of residual origin can help to maintain or increase soil organic carbon (SOC) stocks. However, it remains necessary to quantify and predict the soil C accumulation and to determine under which form the C accumulates. Changes to the chemical composition of soil organic matter (SOM) after repeated applications of composts and farmyard manure were investigated in a field experiment (Qualiagro experiment, Ile-de-France) after 8 years of applications of green waste and sludge compost (GWS), municipal solid waste compost (MSW), biowaste compost (BIOW) or farmyard manure (FYM). The soil was fractionated into particulate organic matter >50 µm (POM), a heavy fraction >50 µm and a 0-50 µm fraction demineralized with hydrofluoric acid (HF). Repeated EOM applications significantly increased total SOC stocks, the C amount in the POM fraction and to a less extent in the 0-50 µm fraction compared to the reference treatment. Compost applications accumulated C preferentially under the form of coarse organic matter of size >50 µm, whereas the FYM accumulated similar C proportions of size >50 µm and 0-50 µm, which was attributed to the presence in the FYM of a fraction of labile C stimulating microbial activity and producing humified by-products together with a fraction of stabilized C directly alimenting the humified fraction of SOC. Pyrolysis-GC/MS and DRIFT spectroscopy revealed enrichment in lignin in the POM fractions of amended soils with GWS, BIOW and FYM. In the soil receiving MSW compost, the pyrolysate of the POM fraction revealed the presence of plastics originating from the MSW compost. A lower C mineralization during laboratory incubation was found for the POM fractions of amended soils compared with the POM from reference soil. This feature was related to a lower ratio of (furfural+acetic acid) / pyrole pyrolysis products in POM of amended vs. reference plots, indicating a higher degree of recalcitrance.. The POM

  3. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata)

    Science.gov (United States)

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014–2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm-3 (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm-3 (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm-3 nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm-3, (4) I + Se + 1.0 mg SA⋅dm-3 and (5) I + Se + 10.0 mg SA⋅dm-3. The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves. PMID:27803709

  4. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau

    Science.gov (United States)

    Xiong, Jinbo; Liu, Yongqin; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Hou, Juzhi; Yang, Yongping; Yao, Tandong; Knight, Rob; Chu, Haiyan

    2012-01-01

    Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4–1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r = 0.443, P = 0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments. PMID:22676420

  5. Physico-chemical, mineralogical and chemical considerations in ...

    African Journals Online (AJOL)

    ... pH (5.17 – 6.90) and EC (16.53 – 149.20ìS/cm). Values from physico-chemical analyses, secondary minerals abundance index (SMAI) and chemical index of alteration (CIA) of the soils were reflective of particles with high potential for sliding. With major contributions from favourable slope, seismic and hydrologic forces, ...

  6. Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis

    Directory of Open Access Journals (Sweden)

    Eroukova Veronika

    2008-12-01

    Full Text Available Abstract Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134 with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45, cellular component biogenesis and organization (28, DNA maintenance (21, transport (20, others (38 and unknown (39. These may represent minor cellular target sites (side-effects for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s.

  7. Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis.

    Science.gov (United States)

    Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan

    2008-12-03

    Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, approximately 4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).

  8. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    Science.gov (United States)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  9. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    Science.gov (United States)

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission

  10. Chemical Peels

    Science.gov (United States)

    ... care Kids’ zone Video library Find a dermatologist Chemical peels Overview Chemical peels: Overview Also called chemexfoliation , derma peeling Do ... Overview Chemical peels: FAQs Chemical peels: Preparation FAQs Chemical peels: FAQs To help you decide whether this ...

  11. Teaching Chemical Engineers about Teaching

    Science.gov (United States)

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  12. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    Directory of Open Access Journals (Sweden)

    Richard Sauerheber

    2013-01-01

    Full Text Available The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  13. Physiologic conditions affect toxicity of ingested industrial fluoride.

    Science.gov (United States)

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  14. pH variations during diafiltration due to buffer nonidealities.

    Science.gov (United States)

    Baek, Youngbin; Yang, Deyu; Singh, Nripen; Arunkumar, Abhiram; Ghose, Sanchayita; Li, Zheng Jian; Zydney, Andrew L

    2017-11-01

    Diafiltration is used for final formulation of essentially all biotherapeutics. Several studies have demonstrated that buffer/excipient concentrations in the final diafiltered product can be different than that in the diafiltration buffer due to interactions between buffer species and the protein product. However, recent work in our lab has shown variations in solution pH that are largely independent of the protein concentration during the first few diavolumes. Our hypothesis is that these pH variations are due to nonidealities in the acid-base equilibrium coefficient. A model was developed for the diafiltration process accounting for the ionic strength dependence of the pK a . Experimental results obtained using phosphate and histidine buffers were in excellent agreement with model predictions. A decrease in ionic strength leads to an increase in the pK a for the phosphate buffer, causing a shift in the solution pH, even under conditions where the initial feed and the diafiltration buffer are at the same pH. This effect could be eliminated by matching the ionic strength of the feed and diafiltration buffer. The experimental data and model provide new insights into the factors controlling the pH profile during diafiltration processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1555-1560, 2017. © 2017 American Institute of Chemical Engineers.

  15. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method.

    Science.gov (United States)

    García-Bordejé, E; Víctor-Román, S; Sanahuja-Parejo, O; Benito, A M; Maser, W K

    2018-02-15

    Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH 3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.

  16. Paulette Gray, Ph.D.

    Science.gov (United States)

    Paulette S. Gray, Ph.D. is the Director for the Division of Extramural Activities (DEA). As the director of the division, she is responsible for the overall scientific, fiscal, and administrative management of the division, including broad strategic planning, development, implementation, and evaluation.

  17. CPT Special Report: Survey of Ph.D. Programs in Chemistry.

    Science.gov (United States)

    Journal of Chemical Education, 1997

    1997-01-01

    Presents preliminary results from a survey taken by the American Chemical Society (ACS) Committee on Professional Training (CPT) to determine the current practices among 155 Ph.D. programs in chemistry. (DKM)

  18. Preparing MD-PhD students for clinical rotations: navigating the interface between PhD and MD training.

    Science.gov (United States)

    Goldberg, Charles; Insel, Paul A

    2013-06-01

    Many aspects of MD-PhD training are not optimally designed to prepare students for their future roles as translational clinician-scientists. The transition between PhD research efforts and clinical rotations is one hurdle that must be overcome. MD-PhD students have deficits in clinical skills compared with those of their MD-only colleagues at the time of this transition. Reimmersion programs (RPs) targeted to MD-PhD students have the potential to help them navigate this transition.The authors draw on their experience creating and implementing an RP that incorporates multiple types of activities (clinical exam review, objective structured clinical examination, and supervised practice in patient care settings) designed to enhance the participants' skills and readiness for clinical efforts. On the basis of this experience, they note that MD-PhD students' time away from the clinical environment negatively affects their clinical skills, causing them to feel underprepared for clinical rotations. The authors argue that participation in an RP can help students feel more comfortable speaking with and examining patients and decrease their anxiety regarding clinical encounters. The authors propose that RPs can have positive outcomes for improving the transition from PhD to clinical MD training in dual-degree programs. Identifying and addressing this and other transitions need to be considered to improve the educational experience of MD-PhD students.

  19. Effect of pH on boron adsorption in some soils of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Steiner

    2013-06-01

    Full Text Available Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Paraná State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L¹ NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1. Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC of B was observed in the Arenic Hapludalf (49.8 mg B kg-1 soil followed by Arenic Hapludult (22.5 mg kg-1, Rhodic Hapludox (17.4 mg kg-1, and Typic Usthorthent (7.0 mg kg-1. The organic matter content, clay content, and aluminum oxide content (Al2O3 were the soils properties that affecting the B adsorption on Paraná soils.

  20. Chemical durability and characterization of nuclear waste forms in a hydrothermal environment

    International Nuclear Information System (INIS)

    Braithwaite, J.W.; Johnstone, J.K.

    1979-01-01

    The chemical durability of a simulated copper borosilicate waste glass and titanate waste ceramic has been studied in hydrothermal environments which could possibly be encountered in a bedded salt or sub-sealed waste isolation repository. The major parameters investigated which affect matrix corrosion and cesium solubilization include solution saturation and equilibrium phenomena, solution composition (especially the Mg +2 ion concentration), pH, particle size, temperature, and time

  1. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  2. A progress report on the LDRD project entitled {open_quotes}Microelectronic silicon-based chemical sensors: Ultradetection of high value molecules{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.C.

    1996-09-01

    This work addresses a new kind of silicon based chemical sensor that combines the reliability and stability of silicon microelectronic field effect devices with the highly selective and sensitive immunoassay. The sensor works on the principle that thin SiN layers on lightly doped Si can detect pH changes rapidly and reversibly. The pH changes affect the surface potential, and that can be quickly determined by pulsed photovoltage measurements. To detect other species, chemically sensitive films were deposited on the SiN where the presence of the chosen analyte results in pH changes through chemical reactions. A invention of a cell sorting device based on these principles is also described. A new method of immobilizing enzymes using Sandia`s sol-gel glasses is documented and biosensors based on the silicon wafer and an amperometric technique are detailed.

  3. Effects of biochar application on transformation and chemical forms of C,N and P in soils with different pH%生物质炭对不同 pH 土壤中碳氮磷的转化与形态的影响

    Institute of Scientific and Technical Information of China (English)

    徐秋桐; 邱志腾; 章明奎

    2014-01-01

    clay content,rainfall,and temperature regimes.In recent years,there has been considerable interest in the use of biochar from pyrolysis of renewable biomass to sequester C and improve soil productivity.Much of the stimulus for this interest comes from research on the soils of the Amazon basin,known as Terra Preta de Indio,that contain variable quantities of organic black carbon considered to be of anthropogenic origin.Biochar can improve nutrient availability,cation exchange capacity,bulk density,and water-holding capacity,but these effects depend on the feedstock,prolysis conditions. It is important to evaluate the effects of biochar on soil fertility under different soil and climatic regimes to increase our understanding of potential interactions before widespread use of biochar in agricultural systems.Although biochar has been shown to increase soil fertility and productivity in the tropics,there is limited information about influences of biochar on transformation and chemical forms of C,N and P in soils.Therefore,an incubation experiment was conducted to study the effects of biochar application on transformation and chemical forms of C,N and P in soils with different pH. The experiment included four treatments,i.e.,control without application of any chemical fertilizers and biochar, conventional fertilization with application of chemical fertilizers,biochar treatment with application of biochar but without any chemical fertilizers,and conventional fertilization + biochar treatment with application of both biochar and chemical fertilizers.The treated soils were incubated at temperature of 20 35 ℃ for 12 months,and the incubated soils were characterized for different forms of C,N,and P and potential capacities of N leaching and volatilization loss. The results showed that application of biochar increased soil pH,particularly for acidic soil.Application of biochar increased significantly the accumulation of organic C,microbial biomass C and humic/fulvic acids

  4. Field Performance of ISFET based Deep Ocean pH Sensors

    Science.gov (United States)

    Branham, C. W.; Murphy, D. J.

    2017-12-01

    Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.

  5. Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview

    OpenAIRE

    D. K. Maurya; A. Sardarinejad; K. Alameh

    2014-01-01

    pH sensors are widely used in chemical and biological applications. Metal oxides-based pH sensors have many attractive features including insolubility, stability, mechanical strength, electrocatalyst and manufacturing technology. Various metal oxide thin films prepared by radio frequency (R.F.) magnetron sputtering have attractive features, including high pH sensitivity, fast response, high resolution, good stability and reversibility as well as potential for measuring pH under conditions th...

  6. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  7. Industrial PhD report: Sustainable Innovation

    DEFF Research Database (Denmark)

    Olesen, Gitte Gylling Hammershøj

    2011-01-01

    Erhvervs PhD rapport udarbejdet i tilknytning til Erhvervs PhD kurset der er obligatorisk for Erhvervs PhD studerende. Rapporten omhandler relationer melllem den akademiske verden og industrien i sammenhæng med PhD projektet, betragtet og analyseret gennem teori om bæredygtig innovation....

  8. The pH of beverages in the United States.

    Science.gov (United States)

    Reddy, Avanija; Norris, Don F; Momeni, Stephanie S; Waldo, Belinda; Ruby, John D

    2016-04-01

    Dental erosion is the chemical dissolution of tooth structure in the absence of bacteria when the environment is acidic (pH beverage's erosive potential. In addition, citrate chelation of calcium ions may contribute to erosion at higher pH. The authors of this study determined the erosive potential measured by the pH of commercially available beverages in the United States. The authors purchased 379 beverages from stores in Birmingham, Alabama, and categorized them (for example, juices, sodas, flavored waters, teas, and energy drinks) and assessed their pH. They used a pH meter to measure the pH of each beverage in triplicate immediately after it was opened at a temperature of 25°C. The authors recorded the pH data as mean (standard deviation). Most (93%, 354 of 379) beverages had a pH of less than 4.0, and 7% (25 of 379) had a pH of 4.0 or more. Relative beverage erosivity zones based on studies of apatite solubility in acid indicated that 39% (149 of 379) of the beverages tested in this study were considered extremely erosive (pH beverages in the United States found that most are potentially erosive to the dentition. This study's findings provide dental clinicians and auxiliaries with information regarding the erosive potential of commercially available beverages. Specific dietary recommendations for the prevention of dental erosion may now be developed based on the patient's history of beverage consumption. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  9. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  10. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    Science.gov (United States)

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  11. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2002-01-01

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P. fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics

  12. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2002-10-15

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P. fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.

  13. Chemical burn or reaction

    Science.gov (United States)

    Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ... leave the person alone and watch carefully for reactions affecting the entire body. Note: If a chemical gets into the eyes, the eyes should be ...

  14. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    Science.gov (United States)

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  15. Calibration of antimony-based electrode for ph monitoring into underground components of nuclear repositories

    International Nuclear Information System (INIS)

    Betelu, S.; Ignatiadis, I.

    2012-01-01

    Document available in extended abstract form only. Nuclear waste repositories are being installed in deep excavated rock formations in some places in Europe to isolate and store radioactive waste. In France, Callovo-Oxfordian formation (COx) is potential candidate for nuclear waste repository. It is thus necessary to measure in situ the state of a structure's health during its entire life. The monitoring of the near-field rock and the knowledge of the geochemical transformations can be carried out by a set of sensors for a sustainable management of long-term safety, reversibility and retrievability. Among the chemical parameters, the most significant are pH, conductivity and redox potential. Based upon the reversible interfacial redox processes involving H + , metal-metal oxides electrodes should be regarded among the promising technologies to be devoted to the observation and monitoring of pH into the underground components of nuclear repositories due to their physical and chemical stability, with regards to temperatures, pressures and aggressive environments. Metal-metal oxides electrodes present furthermore the advantage of being easily miniaturised. Among the metal-metal oxide group, antimony-antimony oxide system, for which improved properties were obtained using mono-crystalline antimony, has been the first and then the most investigated and disputed for pH sensing; the fact remains that it has been the most frequently used in practical pH measurements. Nevertheless, numerous conflicting data exist concerning the disturbances of their potential by various physical and chemical parameters, which require calibrating the electrode under conditions similar to those in which it is to be applied. This work aimed to calibrate mono-crystalline Sb electrode (99.999 %, m = 500 mg, d = 6.7) for pH measurements into the underground components of nuclear repositories. The electrode presented the advantage of being strong in the conception: it presented an important

  16. SWCNT-Based Biosensor Modelling for pH Detection

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Kiani

    2015-01-01

    Full Text Available Different forms of CNT delivery have been discovered with several biomedical functions during past decades. The mechanisms of the cellular uptake of CNTs are mainly maintained due to the chemical nature, the cell type, and the features of the molecules, which are used to functionalize the nanotube exterior. Since single-wall carbon Nanotube (SWCNT has unique chemical and physical properties, it is a great applicant for pH sensing. In addition, ion sensitive FET (ISFET base on nanostructured SWCNT have covered a new method to help genetic investigators restructure metabolic pathways in cells, recognize the progression of disease, and expand diagnostics and therapeutics. Particularly, because PH sensing is very crucial for the constancy of enzymes, it is essential to extend the cost efficient types of this sensing. In this research, the conductance changes of the CNT-based ISFET device with different pH values can be modelled by ion concentration of the solution. In addition, the electrical current of channel is imagined as a function of pH levels, which can be controlled by a control factor (α. Thus, ISFET based nanostructured SWCNT is proposed focusing on the area of electrical detection of hydrogen ions of the electrolyte membrane. Besides, electrical detection of hydrogen ion applications is suggested to be used by modelling the delivery of SWCNT sheets. In the end, after comparing the proposed model and experimental data, it has been reported that there is a good compatibility between them.

  17. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  18. pH controlled diazo coupling of aldolase

    International Nuclear Information System (INIS)

    Montagnoli, G.; Balestreri, E.; Nannicini, L.; Bellucci, A.; Bracaloni, M.

    1978-01-01

    pH conditions have been found which achieve selective reaction of diazotized p-amino benzoate with cysteine residues of rabbit muscle aldolase. The difference in reactivity of the two sulphydryl groups involved, (Cys-237 and Cys-287) permits one to form either four or eight diazothioethers on the tetrameric enzyme and obtain a homogeneous protein. In both cases the enzyme became slightly more active in the fructose-1, 6-bisphosphate cleavage, the K sub(M) value being retained. The results have been discussed with regard to chemically modifying an enzyme to change its physical, chemical and immunological properties, whilst leaving the catalytical activity unmodified. (author)

  19. Determination of the intracellular pH of intact erythrocytes by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Isab, A.A.

    1982-01-01

    A method is described for determining the intracellular pH of intact erythrocytes by 1 H NMR. The determination is based on the pH dependence of the chemical shifts of resonances for carbon-bounded protons of an indicator molecule (imidazole) in intact cells. The imidazole is introduced into the erythrocytes by incubation in an isotonic saline solution of the indicator. The pH dependence of the chemical shifts of the imidazole resonances is calibrated from 1 H NMR spectra of the imidazole-containing red cell lysates whose pH is varied by the addition of acid or base and measured directly with a pH electrode. To reduce in intensity or eliminate the much more intense envelope of resonances from the hemoglobin, the 1 H NMR measurements are made by either the spin-echo Fourier transform technique or by the transfer-or-saturation by cross-relaxation method

  20. Chemical and physicochemical characterization of vermicompost from bovine manure and evaluation of competitive adsorption of cadmium and lead; Caracterizacao quimica e fisico-quimica de vermicomposto de esterco bovino e avaliacao da adsorcao competitiva por cadmio e chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Lamim, Soraida Sozzi Miguel [Juiz de Fora Univ., MG (Brazil). Dept. de Quimica; Jordao, Claudio Pereira; Brune, Walter; Pereira, Jose Luis [Vicosa Univ., MG (Brazil). Dept. de Quimica

    1996-09-01

    The chemical and physicochemical characterization of vermicompost from bovine manure has been studied. It was examined the pH and cation exchangeable capacity (CTC), moistness, ash, organic carbon, total nitrogen, lignin, cellulose and metal concentrations, among other characteristics. The vermicompost was then applied to the retention and competition of metal pollutants (Cd and Pb) from metal nitrate solutions. The retention was affected by both the pH and time of adsorption, while the competitive character of these metals for the substrate was not relevant to each pH examined. (author) 46 refs., 4 figs., 7 tabs.

  1. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.

    Science.gov (United States)

    Shi, Weijia; Li, Yu; Gao, Xueling; Fu, Ruiyan

    2016-03-01

    The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

  2. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.

    Science.gov (United States)

    Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E

    2015-12-01

    A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.

  3. Engineering a pH responsive pore forming protein.

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-08

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  4. Engineering a pH responsive pore forming protein

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-01

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  5. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  6. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  7. Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Nelson, Kara L; Amrose, Susan E; Gadgil, Ashok J

    2015-08-18

    Technologies addressing both arsenic and microbial contamination of Bengal groundwater are needed. Fe electrocoagulation (Fe-EC), a simple process relying on the dissolution of an Fe(0) anode to produce Fe(III) precipitates, has been shown to efficiently remove arsenic from groundwater at low cost. We investigated Escherichia coli (E. coli) attenuation by Fe-EC in synthetic Bengal groundwater as a function of Fe dosage rate, total Fe dosed, pH, and presence of natural organic matter (NOM). A 2.5 mM Fe dosage simultaneously achieved over 4-log E. coli attenuation and arsenic removal from 450 to below 10 μg/L. E. coli reduction was significantly enhanced at pH 6.6 compared to pH 7.5, which we linked to the decreased rate of Fe(II) oxidation at lower pH. 3 mg/L-C of NOM (Suwanee River fulvic acid) did not significantly affect E. coli attenuation. Live-dead staining and comparisons of Fe-EC with chemical coagulation controls showed that the primary mechanism of E. coli attenuation is physical removal with Fe(III) precipitates, with inactivation likely contributing as well at lower pH. Transmission electron microscopy showed that EC precipitates adhere to and bridge individual E. coli cells, resulting in large bacteria-Fe aggregates that can be removed by gravitational settling. Our results point to the promising ability of Fe-EC to treat arsenic and bacterial contamination simultaneously at low cost.

  8. Chronic effect of low pH on fathead minnow survival, growth, and reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Mount, D I

    1973-01-01

    Fathead minnows (Pimephales promelas rafinesque) were continuously exposed to reduced pH levels of 4.5, 5.2, 5.9, 6.6, and 7.5 (control) during a 13-month, one-generation test. Survival was not affected, even at the lowest pH tested. Fish behavior was abnormal, and fish were deformed at pH 4.5 and 5.2. Egg production and egg hatchability were reduced at pH 5.9 and lower, and all eggs were abnormal. A pH of 6.6 was marginal for vital life functions, but safe for continuous exposure. Free carbon dioxide, liberated by the addition of sulfuric acid to reduce the pH, may have had an unknown effect. The fish did not become acclimiated to low pH levels.

  9. Determination of pH by flow-injection analysis and by fiber-optrode analysis

    International Nuclear Information System (INIS)

    Pia, S.H.; Waltman, D.P.; Hillman, D.C.

    1988-07-01

    Two new procedures for measuring pH were developed. The first measures pH colorimetrically using a proprietary indicator-dye mixture in a flow injection analysis (FIA) procedure. The second measures pH using a fiber-optic chemical sensor (FOCS) specifically developed for pH determinations. The FOCS method measures pH by monitoring the fluorescence of a fluorescein derivative bonded to the distal end of a fiber-optic cable called an optrade. The FIA method currently has a precision and accuracy of about + or - 0.2 pH units and can measure 100 samples/hour. The FOCS method has a precision of + or - 0.05-0.20 pH units and an accuracy of + or - 0.1 to 0.6 pH units. About 10 to 60 samples can be analyzed. The characteristics of the FOCS Method will vary significantly with individual optrodes. The experimental results indicate that either flow-injection analysis or fiber optic chemical sensor analysis could form the basis for an alternative to electrometric measurement of pH in certain circumstances

  10. Embedded micro-sensor for monitoring pH in concrete structures

    Science.gov (United States)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  11. A touch of affect: mediated social touch and affect

    NARCIS (Netherlands)

    Huisman, Gijs

    2012-01-01

    This position paper outlines the first stages in an ongoing PhD project on mediated social touch, and the effects mediated touch can have on someone's affective state. It is argued that touch is a profound communication channel for humans, and that communication through touch can, to some extent,

  12. Effects of pH on nano-bubble stability and transport in saturated porous media

    Science.gov (United States)

    Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku

    2018-01-01

    An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.

  13. Unusual Salt and pH Induced Changes in Polyethylenimine Solutions.

    Directory of Open Access Journals (Sweden)

    Kimberly A Curtis

    Full Text Available Linear PEI is a cationic polymer commonly used for complexing DNA into nanoparticles for cell-transfection and gene-therapy applications. The polymer has closely-spaced amines with weak-base protonation capacity, and a hydrophobic backbone that is kept unaggregated by intra-chain repulsion. As a result, in solution PEI exhibits multiple buffering mechanisms, and polyelectrolyte states that shift between aggregated and free forms. We studied the interplay between the aggregation and protonation behavior of 2.5 kDa linear PEI by pH probing, vapor pressure osmometry, dynamic light scattering, and ninhydrin assay. Our results indicate that: At neutral pH, the PEI chains are associated and the addition of NaCl initially reduces and then increases the extent of association.The aggregate form is uncollapsed and co-exists with the free chains.PEI buffering occurs due to continuous or discontinuous charging between stalled states.Ninhydrin assay tracks the number of unprotonated amines in PEI.The size of PEI-DNA complexes is not significantly affected by the free vs. aggregated state of the PEI polymer. Despite its simple chemical structure, linear PEI displays intricate solution dynamics, which can be harnessed for environment-sensitive biomaterials and for overcoming current challenges with DNA delivery.

  14. Fetal scalp pH testing

    Science.gov (United States)

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  15. Acid loading test (pH)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  16. Synthesis of Nickel and Nickel Hydroxide Nano powders by Simplified Chemical Reduction

    International Nuclear Information System (INIS)

    Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D.

    2014-01-01

    Nickel nano powders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at ph ∼ 12.5. Sonication of the solutions created a temperature of 54-65 °C to activate the reduction reaction of nickel nanoparticles. The solution ph affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (ph ∼10) of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  17. pH sensor calibration procedure

    OpenAIRE

    Artero Delgado, Carola; Nogueras Cervera, Marc; Manuel Lázaro, Antonio; Prat Tasias, Jordi; Prat Farran, Joana d'Arc

    2013-01-01

    This paper describes the calibration of pH sensor located at the OBSEA marine Observatory. This instrument is based on an industrial pH electrode that is connected to a CTD instrument (Conductivity, Temperature, and Depth ). The calibration of the pH sensor has been done using a high precision spectrophotometer pH meter from Institute of Marine Sciences (ICM), and in this way it has been obtained a numerical function for the p H sensor propor...

  18. Optic nerve pH and PO2

    DEFF Research Database (Denmark)

    Pedersen, Daniella B; Stefánsson, Einar; Kiilgaard, Jens Folke

    2006-01-01

    Earlier studies have demonstrated that carbonic anhydrase inhibitors (CAIs) increase optic nerve oxygen tension (ONPO(2)) in pigs. We hypothesized that the mechanism of this effect was either a CO(2) increase or a pH decrease in tissue and blood. To test this hypothesis we investigated and compared...... how optic nerve pH (ONpH) and ONPO(2) are affected by: (1) carbonic anhydrase inhibition; (2) respiratory acidosis, and (3) metabolic acidosis. We measured ONpH with a glass pH electrode and ONPO(2) with a polarographic oxygen electrode. One of the electrodes was placed in the vitreous cavity 0.5 mm...... over the optic nerve in the eyes of domestic pigs....

  19. Volatility of fragrance chemicals: patch testing implications.

    Science.gov (United States)

    Gilpin, Sarah J; Hui, Xiaoying; Maibach, Howard I

    2009-01-01

    Diagnostic and predictive patch testing to determine contact allergy due to fragrance materials requires applying a fixed dose of material to the skin. This dose can be affected by the volatile nature of fragrances; little data exist on how the loss of fragrance dose due to volatility affects patch testing. (1) To evaluate pH dependence and evaporation rates of two fragrance chemicals, geraniol, citronellol, and a common fragrance solvent, diethyl phthalate (DEP) and (2) Assess implications for predictive patch-testing methods for fragrances. pH analysis of each material at 1% for three values (4.0, 5.0, 7.0) was done over 40 hours. Volatility experiments for each material, nonradiolabeled and radiolabeled, were conducted over a 24-hour period, taking readings at six time points (5 minutes, 15 minutes, 40 minutes, 1 hour, 3 hours, and 24 hours). Evaporation rates were not sensitive to pH shifts from 4.0 to 7.0. Evaporation rates for nonradiolabeled materials were low: after 24 hours, geraniol lost 8.9%, citronellol 27.0% and DEP 14.5%. The volatility data for radiolabeled materials demonstrated that geraniol loses up to 39% of its dose, citronellol loses up to 26%, and DEP up to 14% within 40 minutes. The tendency of fragrance materials to evaporate can impact the dose being applied to the patch and therefore the result of the patch and ultimately the decision-making process regarding that fragrance material's safety. These data, developed with DEP, utilized in a predictive sensitization assay cannot be generalized.

  20. Acidity enhances the effectiveness of active chemical defensive secretions of sea hares, Aplysia californica, against spiny lobsters, Panulirus interruptus.

    Science.gov (United States)

    Shabani, Shkelzen; Yaldiz, Seymanur; Vu, Luan; Derby, Charles D

    2007-12-01

    Sea hares such as Aplysia californica, gastropod molluscs lacking a protective shell, can release a purple cloud of chemicals when vigorously attacked by predators. This active chemical defense is composed of two glandular secretions, ink and opaline, both of which contain an array of compounds. This secretion defends sea hares against predators such as California spiny lobsters Panulirus interruptus via multiple mechanisms, one of which is phagomimicry, in which secretions containing feeding chemicals attract and distract predators toward the secretion and away from the sea hare. We show here that ink and opaline are highly acidic, both having a pH of approximately 5. We examined if the acidity of ink and opaline affects their phagomimetic properties. We tested behavioral and electrophysiological responses of chemoreceptor neurons in the olfactory and gustatory organs of P. interruptus, to ink and opaline of A. californica within their natural range of pH values, from approximately 5 to 8. Both behavioral and electrophysiological responses to ink and opaline were enhanced at low pH, and low pH alone accounted for most of this effect. Our data suggest that acidity enhances the phagomimetic chemical defense of sea hares.

  1. Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moshalagae Motlatle, Abesach, E-mail: AMotlatle@csir.co.za; Kesavan Pillai, Sreejarani, E-mail: skpillai@csir.co.za; Rudolf Scriba, Manfred, E-mail: MRscriba@csir.co.za; Sinha Ray, Suprakas, E-mail: Rsuprakas@csir.co.za [Council for Scientific and Industrial Research, DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials (South Africa)

    2016-10-15

    Cu nanoparticles were synthesized using low-temperature aqueous reduction method at pH 3, 5, 7, 9 and 11 in presence of ascorbic acid and polyvinylpyrrolidone. The nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Results demonstrated a strong dependence of synthesis pH on the size, shape, chemical composition and structure of Cu nanoparticles. While lower pH conditions of 3 and 5 produced Cu{sup 0}, higher pH levels (more than 7) led to the formation of Cu{sub 2}O/CuO nanoparticles. The reducing capacity of ascorbic acid, capping efficiency of PVP and the resulting particle sizes were strongly affected by solution pH. The results of in vitro disk diffusion tests showed excellent antimicrobial activity of Cu{sub 2}O/CuO nanoparticles against a mixture of bacterial strains (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), indicating that the size as well as oxidation state of Cu contributes to the antibacterial efficacy. The results indicate that varying synthesis pH is a strategy to tailor the composition, structure and properties of Cu nanoparticles.

  2. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  3. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  4. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  5. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  6. pH controls over methanogenesis and iron reduction along soil depth profile in Arctic tundra

    Science.gov (United States)

    Zheng, J.; Gu, B.; Wullschleger, S. D.; Graham, D. E.

    2017-12-01

    Increasing soil temperature in the Arctic is expected to accelerate rates of soil organic matter decomposition. However, the magnitude of this impact is uncertain due to the many physical, chemical, and biological processes that control the decomposition pathways. Varying soil redox conditions present a key control over pathways of organic matter decomposition by diverting the flow of reductants among different electron accepting processes and further driving acid-base reactions that alter soil pH. In this study we investigated the pH controls over anaerobic carbon mineralization, methanogenesis, Fe(III) reduction and the interplay between these processes across a range of pH and redox conditions. pH manipulation experiments were conducted by incubating soils representing organic, mineral, cryoturbated transitional layers and permafrost. In the experiments we sought to understand (1) if methanogenesis or Fe(III) reduction had similar pH optima; (2) if this pH response also occurs at `upstream' fermentation process; and (3) if pH alters organo-mineral association or organic matter sorption and desorption and its availability for microbial degradation. Our preliminary results suggest that the common bell-shaped pH response curve provides a good fit for both Fe(III) reduction and methanogenesis, with optimum pH at 6.0-7.0. Exceptions to this were found in transitional layer where methanogenesis rates positively correlated with increasing pH, with maximum rates measured at pH 8.5. It is likely that the transitional layer harbors distinct groups of methanogens that prefer a high pH. Variations in the optimum pH of Fe(III) reduction and methanogenesis may play a significant role in regulating organic matter decomposition pathways and thus greenhouse gas production in thawing soils. These results support biogeochemical modeling efforts to accurately simulate organic matter decomposition under changing redox and pH conditions.

  7. pH Sensing and Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Mehdi eDamaghi

    2013-12-01

    Full Text Available Cells maintain intracellular pH (pHi within a narrow range (7.1-7.2 by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the intracellular pH, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs and proton-sensing G-protein coupled receptors (GPCRs. In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including colfilin and talin regulated actin (de-polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extra-cellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.

  8. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure.

    Science.gov (United States)

    Yang, Yi; Cápiro, Natalie L; Yan, Jun; Marcet, Tyler F; Pennell, Kurt D; Löffler, Frank E

    2017-12-01

    Bioremediation treatment (e.g. biostimulation) can decrease groundwater pH with consequences for Dehalococcoides mccartyi (Dhc) reductive dechlorination activity. To explore the pH resilience of Dhc, the Dhc-containing consortium BDI was exposed to pH 5.5 for up to 40 days. Following 8- and 16-day exposure periods to pH 5.5, dechlorination activity and growth recovered when returned to pH 7.2; however, the ability of the culture to dechlorinate vinyl chloride (VC) to ethene was impaired (i.e. decreased rate of VC transformation). Dhc cells exposed to pH 5.5 for 40 days did not recover the ethene-producing phenotype upon transfer to pH 7.2 even after 200 days of incubation. When returned to pH 7.2 conditions after an 8-, a 16- and a 40-day low pH exposure, tceA and vcrA genes showed distinct fold increases, suggesting Dhc strain-specific responses to low pH exposure. Furthermore, a survey of Dhc biomarker genes in groundwater samples revealed the average abundances of Dhc 16S rRNA, tceA and vcrA genes in pH 4.5-6 groundwater were significantly lower (P-value pH 6-8.3 groundwater. Overall, the results of the laboratory study and the assessment of field data demonstrate that sustained Dhc activity should not be expected in low pH groundwater, and the duration of low pH exposure affects the ability of Dhc to recover activity at circumneutral pH. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature.

    Science.gov (United States)

    Ma, Jie; Li, Haiyan; Chi, Liping; Chen, Hongkun; Chen, Changzhao

    2017-12-01

    Persulfate (peroxydisulfate, S 2 O 8 2- ) is the newest oxidant used for the in situ chemical oxidation (ISCO) remediation of soil and groundwater. The present study investigated impacts of solution pH, temperature, and persulfate concentration on the reaction rate constant (k 1 ), activation energy (E a ), and reaction order of the heat-activated persulfate process. Phenol was chosen as the model organic contaminant. As temperature increased from 30 °C to 70 °C, k 1 exhibited a significant increase from 0.003 h -1 ∼0.962 h -1 (pH 1.3-13.9) to 1.184 h -1 ∼9.91 h -1 (pH 1.3-13.9), which corroborated with the activation of persulfate using heat. As pH increased from 1.3 to 13.9, k 1 exhibited a 4.3-fold increase at 70 °C and a 320-fold increase at 30 °C, thereby suggesting that: 1) the phenol oxidation rate increased under alkaline conditions, and 2) the enhancement of reaction rate due to alkaline activation was more pronounced at a lower temperature. Increasing pH significantly reduced E a from 139.7 ± 1.3 kJ/mol at pH 1.3 to 52.0 ± 3.3 kJ/mol at pH 13.9. In contrast to changing pH, increasing persulfate concentration from 20 to 320 mM significantly increased k 1 but did not affect E a . Changes in E a suggest that persulfate oxidation of phenol experienced different reaction pathways or elementary reaction sequences as the pH changed from 1.3 to 13.9. In addition, the k 1 and E a data also suggest that a minimal pH threshold of ∼11 was required for the effective alkaline activation of persulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. ORP and pH measurements to detect redox and acid-base anomalies from hydrothermal activity

    Science.gov (United States)

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.

    2017-12-01

    The Tagoro submarine volcano is located 1.8 km south of the Island of El Hierro at 350 m depth and rises up to 88 m below sea level. It was erupting melting material for five months, from October 2011 to March 2012, changing drastically the physical-chemical properties of the water column in the area. After this eruption, the system evolved to a hydrothermal system. The character of both reduced and acid of the hydrothermal emissions in the Tagoro submarine volcano allowed us to detect anomalies related with changes in the chemical potential and the proton concentration using ORP and pH sensors, respectively. Tow-yos using a CTD-rosette with these two sensors provided the locations of the emissions plotting δ(ORP)/δt and ΔpH versus the latitude or longitude. The ORP sensor responds very quickly to the presence of reduced chemicals in the water column. Changes in potential are proportional to the amount of reduced chemical species present in the water. The magnitude of these changes are examined by the time derivative of ORP, δ(ORP)/δt. To detect changes in the pH, the mean pH for each depth at a reference station in an area not affected by the vent emission is subtracted from each point measured near the volcanic edifice, defining in this way ΔpH. Detailed surveys of the volcanic edifice were carried out between 2014 and 2016 using several CTD-pH-ORP tow-yo studies, localizing the ORP and pH changes, which were used to obtain surface maps of anomalies. Moreover, meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which increases the acidity above the volcano by 20%. Sites like the Tagoro submarine volcano, in its degasification stage, provide an excellent opportunity to study the carbonate system in a high CO2 world, the volcanic contribution to the global

  11. Iron Hydroxide Minerals Drive Organic and Phosphorus Chemistry in Subsurface Redox / pH Gradients

    Science.gov (United States)

    Flores, E.; Barge, L. M.; VanderVelde, D.; Baum, M.

    2017-12-01

    Iron minerals, particularly iron oxides and oxyhydroxides, are prevalent on Mars and may exist in mixed valence or even reduced states beneath the oxidized surface. Iron (II,III) hydroxides, including green rust, are reactive and potentially catalytic minerals that can absorb and concentrate charged species, while also driving chemical reactions. These minerals are highly redox-sensitive and the presence of organics and/or phosphorus species could affect their mineralogy and/or stability. Conversely, the minerals might be able to drive chemical processes such as amino acid formation, phosphorus oxyanion reactions, or could simply selectively preserve organic species via surface adsorption. In an open aqueous sediment column, soluble products of mineral-driven reactions could also diffuse to sites of different chemical conditions to react even further. We synthesized Fe-hydroxide minerals under various conditions relevant to early Earth and ancient Mars (>3.0 Gyr), anoxically and in the presence of salts likely to have been present in surface or ground waters. Using these minerals we conducted experiments to test whether iron hydroxides could promote amino acid formation, and how the reaction is affected by subsurface gradients of redox, pH, and temperature. We also tested the adsorption of organic and phosphorus species onto Fe-hydroxide minerals at different conditions within the gradients. The suite of organic or phosphorus signatures that may be found in a particular mineral system is a combination of what is synthesized there, what is preferentially concentrated / retained there, and what is preserved against degradation. Further work is needed to determine how these processes could have proceeded on Mars and what mineral-organic signatures, abiotic or otherwise, would be produced from such processes.

  12. Early Development of the Threespine Stickleback in Relation to Water pH

    Directory of Open Access Journals (Sweden)

    Olivier Glippa

    2017-12-01

    Full Text Available Ocean acidification is a growing environmental problem, and there is a need to investigate how the decreasing pH will affect marine organisms. Here we studied the effects of lowered pH on the growth and development of the threespine stickleback (Gasterosteus aculeatus eggs. Adult fish, collected from the natural environment, were allowed to mate in aquaria and the newly produced eggs were incubated in an experiment. Eggs and larvae from ambient conditions (produced in the laboratory were reared at three different pH concentrations (control: pH 7.8; and reduced pH treatments: pH 7.5 and 7.0 for 21 days in the laboratory. Dissolved oxygen concentration (8.1 ± 0.1 mg l−1 and temperature (18.6 ± 0.02°C were monitored regularly. Then, egg diameter, larval length, weight and survival were measured. There was no relationship between egg diameter and pH or oxygen, but a negative relationship was found with temperature. Survival of larvae was not affected by pH or temperature, whereas dissolved oxygen concentration had a positive effect on number of survivors. The pH did not have a significant effect on the final larval length on day 21, but interacted significantly with dissolved oxygen. Higher temperatures were found to have a positive effect on the final larval length and weight. Larval weight, on the other hand, was not related to pH nor oxygen. Coastal zones are characterized by pH levels that fluctuate due to natural processes, such as upwelling and river runoff. Our results suggest that the threespine stickleback larvae are well adapted to the different pHs tested, and egg development will likely not be affected by decreasing pH, but even slight temperature and oxygen changes can have a great impact on the threespine stickleback development.

  13. WEED CONTROL EFFECTS ON SOIL CHEMICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2008-01-01

    Full Text Available The weed control procedures are known to affect the soil physical attributes and the nutrient amount taken up by weed roots. This work hypothesis is that weed control methods might also affect soil chemical attributes. Four experiments were carried out, three with maize (E-1, E-2 and E-3 and one with cotton (E-4, in randomized complete blocks design arranged in split-plots, with five replications. In E-1 experiment, the plots consisted of two weed control treatments: no-weed control and weed shovel-digging at 20 and 40 days after sowing; and the subplots consisted of six maize cultivars. In the three other experiments, the plots consisted of plant cultivars: four maize cultivars (E-2 and E-3 and four cotton cultivars (E-4. And, the subplots consisted of three weed control treatments: (1 no-weed control; (2 weed shovel-digging at 20 and 40 days after sowing; and (3 intercropping with cowpea (E-2 or Gliricidia sepium (Jacq. Walp. (E-3 and E-4. In all experiments, after harvest, eight soil samples were collected from each subplot (0-20 cm depth and composed in one sample. Soil chemical analysis results indicated that the weed control by shovel-digging or intercropping may increase or decrease some soil element concentrations and the alterations depend on the element and experiment considered. In E-2, the weed shovel-dug plots showed intermediate soil pH, lower S (sum of bases values and higher soil P concentrations than the other plots. In E-4, soil K and Na concentrations in plots without weed control did not differ from plots with intercropping, and in both, K and Na values were higher than in weed shovel-dug plots. Maize and cotton cultivars did not affect soil chemical characteristics.

  14. PENGARUH MEROKOK TERHADAP pH SALIVA DAN AKTIVITAS ENZIM PTIALIN PADA MAHASISWA FAKULTAS KEDOKTERAN DAN ILMU KESEHATAN UNIVERSITAS JAMBI

    OpenAIRE

    sauqi, ahmad; Dwi Fitri, Amelia

    2017-01-01

    Abstract Background: Cigarettes can cause disturbances in the oral cavity. From previous research it is known that daily cigarette consumption impact on decrease of salivary secretion and bicarbonate content. This will affect the decrease in salivary pH. Low salivary pH also has an effect on decreasing ptialin enzyme activity. Departing from the basic theory, researchers want to see the extent to which smoking can affect salivary pH and pyalin enzyme activity in students of the Faculty of ...

  15. Effects of elevated pH on marine copepods in mass cultivation systems

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Hansen, Per Juel; Nielsen, Torkel Gissel

    2017-01-01

    both Acartia spp. and C. typicus had higher mortality at pH 9.5 than at the other pH regimes while E. affinis nauplii were not affected by pH. Wild Acartia spp. and A. tonsa from a culture showed some differences in response although of minor practical importance for aquaculture; both produced no eggs......Female tolerance to pH (8.0–9.5) by six marine copepods, Oithona similis, Temora longicornis, Acartia spp., Centropages typicus, Pseudocalanus elongatus and Eurytemora affinis was investigated to identify robust species for live feed production. The species with the most oceanic...

  16. The chemical juggernaut.

    Science.gov (United States)

    Cadbury, D

    1997-01-01

    Man-made chemicals pervade and support every aspect of modern living. The chemical industry has become such a powerful force in the global economy, sales of synthetic chemicals and products derived from them constitute well in excess of a third of the world's gross national product. But, these man-made chemicals are also 'elixirs of death,' the symbol of human destruction. Laboratory tests have shown that a number of chemicals in common use possess a remarkable property: they can weakly mimic or modify the action of human hormones. It has been proven that some chemicals found in plastics, pesticides, and industrial products are weakly estrogenic, modifying the action of the female hormone. In addition, other chemicals affect the male hormones, androgens, or anti-androgens; others are thought to target different hormone systems, such as thyroid and adrenal glands. Many research studies are being conducted to establish the impact of chemicals on human health. Of special concern are the rising incidence of testicular cancer, decline in human sperm counts, and the sharp rise of breast cancer. In conclusion, although there is a worldwide debate on the effects of chemical exposure on humans, the significance of findings for human health, concerning testicular and breast cancer, are still unknown. An international treaty is called for to control the use of the persistent hormonally active chemicals.

  17. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  18. Dynamic regulation of gastric surface pH by luminal pH

    OpenAIRE

    Chu, Shaoyou; Tanaka, Shin; Kaunitz, Jonathan D.; Montrose, Marshall H.

    1999-01-01

    In vivo confocal imaging of the mucosal surface of rat stomach was used to measure pH noninvasively under the mucus gel layer while simultaneously imaging mucus gel thickness and tissue architecture. When tissue was superfused at pH 3, the 25 μm adjacent to the epithelial surface was relatively alkaline (pH 4.1 ± 0.1), and surface alkalinity was enhanced by topical dimethyl prostaglandin E2 (pH 4.8 ± 0.2). Luminal pH was changed from pH 3 to pH 5 to mimic the fasted-to-fed transition in intra...

  19. Tillage, fertilization systems and chemical attributes of a Paleudult

    Directory of Open Access Journals (Sweden)

    Evelyn Penedo Dorneles

    2015-02-01

    Full Text Available Tillage and fertilization methods may affect soil fertility. With the aim of assessing changes in soil chemical properties over a period of ten years, soil samples of a Paleudult were collected over nine seasons at three layer depths (0-5, 5-10, 10-20 cm and were chemically analyzed. Grain yield and nutrient export in two summer crops, soybean (Glycine max and corn (Zea mays, in a field experiment set in Eldorado do Sul, in the state of Rio Grande do Sul, Brazil, were determined. Three soil tillage systems were evaluated, conventional (CT, reduced (RT and no-tillage (NT, combined with mineral (lime and fertilizers and organic (poultry litter fertilization. The no-tillage system stood out as compared to the others, especially in the surface layer, in terms of values of organic matter, soil pH, available phosphorus, cation exchange capacity and base saturation. Phosphorus content was higher under organic than mineral fertilization due to the criteria used for the establishment of fertilizer doses. Under organic fertilization, soil pH values were similar to those obtained in limed soil samples because of the cumulative effect of the organic fertilizer. Soybean yield was lower under NT in comparison to the RT and CT systems. Consequently, soybean grain exported a lower content of nutrients than maize grain. Maize yield was not affected by either tillage or fertilization systems.

  20. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    Science.gov (United States)

    Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; Maryoung, Lindley A.; Noyes, Pamela D.; Pinkerton, Kent E.

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  1. The PhD track: who succeeds, who drops out?

    OpenAIRE

    Groenvynck, Hans; Vandevelde, Karen; Van Rossem, Ronan

    2013-01-01

    Doctoral completion rates are an indicator of successful doctoral programmes and of a region's potential of highly skilled workforce. The Human Resources in Research - Flanders (HRRF) database contains data of all academic staff appointments, doctoral student registrations, and doctoral degrees of all Flemish universities from 1990 onwards. Previous research has identified the following factors as affecting successfully completing the PhD: cohort, scientific discipline, type of scholarship or...

  2. Ca2+-associated triphasic pH changes in mitochondria during brown adipocyte activation.

    Science.gov (United States)

    Hou, Yanyan; Kitaguchi, Tetsuya; Kriszt, Rókus; Tseng, Yu-Hua; Raghunath, Michael; Suzuki, Madoka

    2017-08-01

    Brown adipocytes (BAs) are endowed with a high metabolic capacity for energy expenditure due to their high mitochondria content. While mitochondrial pH is dynamically regulated in response to stimulation and, in return, affects various metabolic processes, how mitochondrial pH is regulated during adrenergic stimulation-induced thermogenesis is unknown. We aimed to reveal the spatial and temporal dynamics of mitochondrial pH in stimulated BAs and the mechanisms behind the dynamic pH changes. A mitochondrial targeted pH-sensitive protein, mito-pHluorin, was constructed and transfected to BAs. Transfected BAs were stimulated by an adrenergic agonist, isoproterenol. The pH changes in mitochondria were characterized by dual-color imaging with indicators that monitor mitochondrial membrane potential and heat production. The mechanisms of pH changes were studied by examining the involvement of electron transport chain (ETC) activity and Ca 2+ profiles in mitochondria and the intracellular Ca 2+ store, the endoplasmic reticulum (ER). A triphasic mitochondrial pH change in BAs upon adrenergic stimulation was revealed. In comparison to a thermosensitive dye, we reveal that phases 1 and 2 of the pH increase precede thermogenesis, while phase 3, characterized by a pH decrease, occurs during thermogenesis. The mechanism of pH increase is partially related to ETC. In addition, the pH increase occurs concurrently with an increase in mitochondrial Ca 2+ . This Ca 2+ increase is contributed to by an influx from the ER, and it is further involved in mitochondrial pH regulation. We demonstrate that an increase in mitochondrial pH is implicated as an early event in adrenergically stimulated BAs. We further suggest that this pH increase may play a role in the potentiation of thermogenesis.

  3. White poplar (Populus alba L. - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Directory of Open Access Journals (Sweden)

    Paula Madejon

    2014-04-01

    Full Text Available Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health.Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH = 2.66 and a non-contaminated soil (RHU pH 7.19.Materials and methods: Soil samples were placed in 2,000 cm3 microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH4+-N and nitrate (NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN, protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl2 were determined at different times of incubation.Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH4+-N andNO3–-N, microbial biomass N and protease activity.Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle.Key words: microbial biomass N; protease activity; soil pH; N mineralization; nitrification; phytoremediation.

  4. Tolerance of photoperiod insensitive mutant of Sesbania rostrata to salinity and pH

    International Nuclear Information System (INIS)

    Ramani, Saradha; Joshua, D.C.; Shaikh, M.S.; Athalye, V.V.

    1998-01-01

    The photoperiod insensitive mutant, TSR-1 of Sesbania rostrata was compared with the parent variety for its response to soil salinity and different levels of pH in hydroponics. The plant growth and stem nodulation were not significantly affected by salinity. However, salinity in soil without farmyard manure stimulated plant growth. Radiotracer studies showed that the translocation of Na to stem and leaves was much less compared to uptake in both parent and mutant. The growth of TSR-1 was comparable to or marginally better than that of the parent variety in the pH range of 3.5-8.0. Root nodulation was less with low pH. The nitrogen content was not adversely affected by pH, but it was reduced with 200 mM NaCl. This mutant in addition to being short-day insensitive, is tolerant to low to moderate salinity levels and pH like its parent. (author)

  5. Effect of pH value of applied solution on radioiodine sorption by soils

    International Nuclear Information System (INIS)

    Szabova, T.

    1976-01-01

    Sorption of radioiodine by soils was followed under static conditions at different pH values of the initial solution in five soil types. Sorption of radioiodine by soils is affected by the amount of the organic mass and by the pH of solutions. With the same pH, soils containing a higher amount of the organic mass absorb more radioiodine. The highest sorption percentage of 131 I - for all pH values was found in meadow chernozem soil and the lowest in the rendzina and in carboniferous meadow soils. The highest sorption of 131 I - for degraded chernozem, meadow chernozem soils and brown soil was recorded at pH 5 and for carboniferous meadow soil and rendzina at pH 7. (author)

  6. Local pH at the surface of hen egg white lysozyme

    Science.gov (United States)

    Otosu, Takuhiro; Kobayashi, Kaito; Yamaguchi, Shoichi

    2018-02-01

    The microenvironment at the surface of hen-egg-white lysozyme (HEWL) was examined by analyzing the change in pKa of fluorescein isothiocyanate (FITC) upon binding to the N-terminus of HEWL. The result showed that the local pH at the HEWL surface is higher than the bulk pH. Furthermore, the data showed that the difference between the local and bulk pH becomes larger with decreasing pH, suggesting HEWL repels more protons at lower pH. Because the local pH affects the protonation states of functional amino-acids at the protein surface, the results provide the fundamental insight into the microenvironment at the protein surface.

  7. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O2, pH, and CO 2 Gradients in the Rhizosphere.

    Science.gov (United States)

    Koop-Jakobsen, Ketil; Mueller, Peter; Meier, Robert J; Liebsch, Gregor; Jensen, Kai

    2018-01-01

    In many wetland plants, belowground transport of O 2 via aerenchyma tissue and subsequent O 2 loss across root surfaces generates small oxic root zones at depth in the rhizosphere with important consequences for carbon and nutrient cycling. This study demonstrates how roots of the intertidal salt-marsh plant Spartina anglica affect not only O 2 , but also pH and CO 2 dynamics, resulting in distinct gradients of O 2 , pH, and CO 2 in the rhizosphere. A novel planar optode system (VisiSens TD ® , PreSens GmbH) was used for taking high-resolution 2D-images of the O 2 , pH, and CO 2 distribution around roots during alternating light-dark cycles. Belowground sediment oxygenation was detected in the immediate vicinity of the roots, resulting in oxic root zones with a 1.7 mm radius from the root surface. CO 2 accumulated around the roots, reaching a concentration up to threefold higher than the background concentration, and generally affected a larger area within a radius of 12.6 mm from the root surface. This contributed to a lowering of pH by 0.6 units around the roots. The O 2 , pH, and CO 2 distribution was recorded on the same individual roots over diurnal light cycles in order to investigate the interlinkage between sediment oxygenation and CO 2 and pH patterns. In the rhizosphere, oxic root zones showed higher oxygen concentrations during illumination of the aboveground biomass. In darkness, intraspecific differences were observed, where some plants maintained oxic root zones in darkness, while others did not. However, the temporal variation in sediment oxygenation was not reflected in the temporal variations of pH and CO 2 around the roots, which were unaffected by changing light conditions at all times. This demonstrates that plant-mediated sediment oxygenation fueling microbial decomposition and chemical oxidation has limited impact on the dynamics of pH and CO 2 in S. anglica rhizospheres, which may in turn be controlled by other processes such as root

  8. Plant-Sediment Interactions in Salt Marshes – An Optode Imaging Study of O2, pH, and CO2 Gradients in the Rhizosphere

    Directory of Open Access Journals (Sweden)

    Ketil Koop-Jakobsen

    2018-05-01

    Full Text Available In many wetland plants, belowground transport of O2 via aerenchyma tissue and subsequent O2 loss across root surfaces generates small oxic root zones at depth in the rhizosphere with important consequences for carbon and nutrient cycling. This study demonstrates how roots of the intertidal salt-marsh plant Spartina anglica affect not only O2, but also pH and CO2 dynamics, resulting in distinct gradients of O2, pH, and CO2 in the rhizosphere. A novel planar optode system (VisiSens TD®, PreSens GmbH was used for taking high-resolution 2D-images of the O2, pH, and CO2 distribution around roots during alternating light–dark cycles. Belowground sediment oxygenation was detected in the immediate vicinity of the roots, resulting in oxic root zones with a 1.7 mm radius from the root surface. CO2 accumulated around the roots, reaching a concentration up to threefold higher than the background concentration, and generally affected a larger area within a radius of 12.6 mm from the root surface. This contributed to a lowering of pH by 0.6 units around the roots. The O2, pH, and CO2 distribution was recorded on the same individual roots over diurnal light cycles in order to investigate the interlinkage between sediment oxygenation and CO2 and pH patterns. In the rhizosphere, oxic root zones showed higher oxygen concentrations during illumination of the aboveground biomass. In darkness, intraspecific differences were observed, where some plants maintained oxic root zones in darkness, while others did not. However, the temporal variation in sediment oxygenation was not reflected in the temporal variations of pH and CO2 around the roots, which were unaffected by changing light conditions at all times. This demonstrates that plant-mediated sediment oxygenation fueling microbial decomposition and chemical oxidation has limited impact on the dynamics of pH and CO2 in S. anglica rhizospheres, which may in turn be controlled by other processes such as root

  9. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  10. Borassus flabellifer L. Brown Crystal Sugar Processing (The Study of Sap pH and Fine Crystal Sucrose (FCS Concentration

    Directory of Open Access Journals (Sweden)

    Azmi Alvian Gabriel

    2017-04-01

    Full Text Available Nira as one of the Borassus flabellirer L. products has a similar characteristics with other agricultural commodities that are easily damaged. This research aims to know the influence of nira’s pH and concentration addition of FCS against characteristics of the brown crystal sugar. Research compiled by using Randomized Block Design (RBD which comprises two factors consisting of 3 levels with 3 times replication. The first factor is pH or degree of nira acidity which consists of 3 level (6.50 (± 0.10; 7.00 (± 0.10; 7.50 (± 0.10 and the second factor is addition of FCS concentration consisting of 3 level (5%; 10%; 15% (b/v. The analyzes used include analysis of organoleptic (color, aroma, taste as well as physical and chemical analyzes (sucrose content, moisture content, ash content, reducing sugar content, insoluble solid content. The analysis results of raw material showed that the pH of palm sap affect the amount of total sugar because the fermentation process. The addition of 10% FCS provides organoleptic results with the best reception at the brown crystal sugar. Physical and chemical test results of products with the best treatment showed that the levels of sucrose in brown crystal sugar was 81.483% in accordance with the minimum requirements specified Indonesian Industrial Standard (IIS, water content of 6.32% dry basis , ash content of 1.78%, reducing sugar amounted to 5.18%, and insoluble solid content of 0.089%.

  11. Some effects of pH on iodine volatility in containment

    International Nuclear Information System (INIS)

    Ashmore, C.B.; Gwyther, J.R.; Sims, H.E.

    1994-01-01

    The behaviour of iodine in containment in the event of an accident involving fission product release would be strongly dependent on pH. High pH leads to a lower rate of radiolytic oxidation and in alkaline conditions the thermally stable form is IO 3 - . Much of the work on effects of pH on radiolytic oxidation reported in the literature may be erroneous or misleading because of postirradiation reaction and in this report some new experiments are described which were designed to overcome these problems involving sparged irradiated solutions of CsI spiked with 131 I. The rate of radiolytic oxidation has been measured as a function of pH between pH 4.6 and pH 9 and iodide concentrations between 10 -4 and 10 -6 mol dm -3 . Also discussed in the paper are factors which can affect the pH of the sump water and the effects of high pH in sprays. It is concluded that high pH is beneficial and it is important not only to achieve high pH but to maintain it. (author). 10 refs., 1 tab., 6 figs

  12. pH : a key control of the nature and distribution of dissolved organic matter and associated trace metals in soil

    Science.gov (United States)

    Pédrot, M.; Dia, A.; Davranche, M.

    2009-04-01

    Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size pH and ionic strength .The molecular size and shape of HS is

  13. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  15. The chemistry, physiology and pathology of pH in cancer.

    Science.gov (United States)

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta

    2014-03-19

    Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.

  16. Effect of initial ph on growth characteristics and fermentation properties of Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Xingyan; Jia, Bo; Sun, Xiangyu; Ai, Jingya; Wang, Lihua; Wang, Cheng; Zhao, Fang; Zhan, Jicheng; Huang, Weidong

    2015-04-01

    As the core microorganism of wine making, Saccharomyces cerevisiae encounter low pH stress at the beginning of fermentation. Effect of initial pH (4.50, 3.00, 2.75, 2.50) on growth and fermentation performance of 3 S. cerevisiae strains Freddo, BH8, Nº.7303, different tolerance at low pH, chosen from 12 strains, was studied. The values of yeast growth (OD600 , colony forming units, cell dry weight), fermentation efficiency (accumulated mass loss, change of total sugar concentration), and fermentation products (ethanol, glycerol, acetic acid, and l-succinic acid) at different pH stress were measured. The results showed that the initial pH of must was a vital factor influencing yeast growth and alcoholic fermentation. Among the 3 strains, strain Freddo and BH8 were more tolerant than Nº.7303, so they were affected slighter than the latter. Among the 4 pH values, all the 3 strains showed adaptation even at pH 2.50; pH 2.75 and 2.50 had more vital effect on yeast growth and fermentation products in contrast with pH 4.50 and 3.00. In general, low initial pH showed the properties of prolonging yeast lag phase, affecting accumulated mass loss, changing the consumption rate of total sugar, increasing final content of acetic acid and glycerol, and decreasing final content of ethanol and l- succinic acid, except some special cases. Based on this study, the effect of low pH on wine products would be better understood and the tolerance mechanism of low pH of S. cerevisiae could be better explored in future. © 2015 Institute of Food Technologists®

  17. pH sensing and regulation in cancer.

    Science.gov (United States)

    Damaghi, Mehdi; Wojtkowiak, Jonathan W; Gillies, Robert J

    2013-12-17

    Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H(+)-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.

  18. Endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Mandrup, Karen

    chemical ethinyl estradiol, only. In studies on exposure to anti-androgens, other endpoints, such as nipple retention showed effects in male rats at dose levels where no effects were observed in male or female mammary glands orfemale external genitals. However, in studies on estrogenic chemicals, marked...... effects on prepubertal female rat mammary glands were observed at lower levels than those affecting other endpoints studied. CONCLUSION: The present findings in rats suggest that EDCs may affect mammary gland development in women and men, although risk assessment including comparison with exposure...

  19. Chemical Peels

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Chemical Peels Uses for Chemical Peels Learn more ...

  20. Trends in Ph.D. Productivity and Diversity in Top-50 U.S. Chemistry Departments: An Institutional Analysis

    Science.gov (United States)

    Laursen, Sandra L.; Weston, Timothy J.

    2014-01-01

    The education of doctoral chemists contributes to the chemical research enterprise and thus to innovation as an engine of the economy. This quantitative analysis describes trends in the production and diversity of chemistry Ph.D. degrees in the top-50 U.S. Ph.D.-granting departments in the past two decades. Time series data for individual…

  1. pH distribution in human tumors

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Leeper, D.B.; Moylan, D.J.; Nerlinger, R.E.

    1984-01-01

    pH distribution in human tumors is being determined to evaluate this parameter as a prognostic indicator of hyperthermia response. pH is measured by a modified glass pH electrode (21g, model MI 408, Microelectrodes, Inc., Londonderry, NH) inserted through an 18g open-ended Angiocath. Eight tumors have been evaluated to date; and of those, 3 were also assayed after the first heat treatment coincident with determination of blood flow. Tumors were between 2-5 cm, of various histologies, and of primary, recurrent, or metastatic origin. 2-4 measurements were made per tumor. Pretreatment readings were between 6.4 and 7.2 pH units. As tumor blood flow increased after 1 hr heating (41.5 - 43 0 ) pH rose 0.1 - 0.3 units. Normal rat muscle yields pH readings of 7.35 - 7.45. Although there was considerable heterogeneity of pH within tumors, accuracy and drift were not a problem. 5-15 min were required for pH stabilization after catheter insertion and <5 min after electrode insertion. A saline wheal was used for anesthesia to preclude modification of pH by anesthetics. Patient tolerance has not been a problems. This study suggests that human tumor tissue has a preponderance of areas more acidic than normal tissue. This may serve to sensitize tumor cells to hyperthermia and provide a prognostic indicator of tumor response

  2. A review of sample preparation and its influence on pH determination in concrete samples

    International Nuclear Information System (INIS)

    Manso, S.; Aguado, A.

    2017-01-01

    If we are to monitor the chemical processes in cementitious materials, then pH assays in the pore solutions of cement pastes, mortars, and concretes are of key importance. However, there is no standard method that regulates the sample-preparation method for pH determination. The state-of-the-art of different methods for pH determination in cementitious materials is presented in this paper and the influence of sample preparation in each case. Moreover, an experimental campaign compares three different techniques for pH determination. Its results contribute to establishing a basic criterion to help researchers select the most suitable method, depending on the purpose of the research. A simple tool is described for selecting the easiest and the most economic pH determination method, depending on the objective; especially for researchers and those with limited experience in this field.

  3. A review of sample preparation and its influence on pH determination in concrete samples

    Directory of Open Access Journals (Sweden)

    S. Manso

    2017-01-01

    Full Text Available If we are to monitor the chemical processes in cementitious materials, then pH assays in the pore solutions of cement pastes, mortars, and concretes are of key importance. However, there is no standard method that regulates the sample-preparation method for pH determination. The state-of-the-art of different methods for pH determination in cementitious materials is presented in this paper and the influence of sample preparation in each case. Moreover, an experimental campaign compares three different techniques for pH determination. Its results contribute to establishing a basic criterion to help researchers select the most suitable method, depending on the purpose of the research. A simple tool is described for selecting the easiest and the most economic pH determination method, depending on the objective; especially for researchers and those with limited experience in this field.

  4. Evolution of pH in a radwaste repository: internal reactions between concrete constituents

    International Nuclear Information System (INIS)

    Atkinson, A.; Everitt, N.M.; Guppy, R.M.

    1988-01-01

    The pH is an important characteristic of the chemical conditions within a radioactive waste repository. A high pH is particularly beneficial from a variety of points of view and this can be assured by the use of cementitious materials within the repository. Reactions between repository components which have an influence on pH have been studied in accelerated laboratory experiments. The reactions studied were those occurring in modified cements (specifically 90% pulverized fly ash/10% ordinary Portland cement and 90% blast furnace slag/10% OPC) and between aqueous calcium hydroxide and both crystalline and amorphous SiO 2 . The experiments indicate that extensive use of fuel ash leads to uncertainty in long term pH which could be as low as 9 to 10 in such cases. Experiments with crystalline calcium silicon hydrate (CSH) minerals suggest that crystallization of amorphous CSH could also lead to pH being lower than the optimum. (author)

  5. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  6. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  7. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  8. pH effect on structural and optical properties of nanostructured zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Munef, R. A. [Kirkuk Iraq, Kirkuk university, college of science physics department, phone: 009647702180337, Iraq Rafeamonef@yahoo.com (Iraq)

    2015-03-30

    ZnO nanostructures were Deposited on Objekttrager glasses for various pH values by chemical bath deposition method using Zn (NO3)2·6H2O (zinc nitrate hexahydrate) solution at 75°C reaction temperature without any posterior treatments. The ZnO nanostructures obtained were characterized by X-ray Diffraction (XRD, UV). The structure was hexagonal and it was found that some peaks disappear with various pH values. The grain sizes of ZnO films increases from 22-to-29nm with increasing pH. The transmission of the films was (85-95%)

  9. pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.

    Science.gov (United States)

    Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji

    2018-04-03

    A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.

  10. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules

    Directory of Open Access Journals (Sweden)

    Christian Hundshammer

    2018-02-01

    Full Text Available pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa. Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP. Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  11. Ex vivo Porcine Model to Measure pH Dependence of gagCEST in the Inter-Vertebral Disc

    Science.gov (United States)

    Melkus, Gerd; Grabau, Michelle; Karampinos, Dimitrios C.; Majumdar, Sharmila

    2013-01-01

    Purpose Studies have linked low pH and loss of glycosaminoglycan (GAG) in the intervertebral discs (IVDs) of patients with discogenic back pain. The purpose of the present study is to determine whether the chemical exchange saturation transfer (CEST) effect of GAG (gagCEST) is pH-dependent and whether it can be used to detect pH changes in IVD specimens. Iopromide, a FDA approved agent for CT/X-Ray, was also evaluated as a pH-sensitive CEST probe to explore the agents’ potential to measure IVD pH. Methods The pH dependency of the CEST effect of chondroitin sulfate (containing GAG) and Iopromide phantoms was investigated at 7 T. Z-spectra from porcine IVD specimens were acquired before and after manipulating the pH with sodium lactate. Iopromide was injected into the specimens and the calibration curve was used to determine the pH status. Results Chondroitin sulfate showed a non-linear dependence of gagCEST effect with pH and gagCEST signal differences were detected in the specimens. The CEST effect of Iopromide resulted in a sigmoidal relation with pH and was used to measure pH. Conclusion gagCEST is sensitive to pH and enables investigation of the IVD pH status. Iopromide CEST is independent of the local GAG concentration and has the potential for measuring pH in the IVD. PMID:23818244

  12. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers.

    Science.gov (United States)

    Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj

    2016-06-27

    A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.

  13. Affective Urbanism

    DEFF Research Database (Denmark)

    Samson, Kristine

    Urban design and architecture are increasingly used as material and affective strategies for setting the scene, for manipulation and the production of urban life: The orchestration of atmospheres, the framing and staging of urban actions, the programming for contemplation, involvement, play......, experience and consumption are all strategic design tools applied by planners and architects. Whereas urban design in former modernist planning served merely functional or political means, urban design has increasingly become an aesthetical mediator of ideologies embedded in the urban field of life forces....... Under these circumstances affective aesthetics operate strategically within the urban field of interests, capital flows and desires of the social. This ‘affective urbanism’ (Anderson & Holden 2008) is linked to a society influenced by new kinds of information flows, where culture is mediated and enacted...

  14. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs

  15. High yielding mutants of blackgram variety 'PH-25'

    International Nuclear Information System (INIS)

    Misra, R.C.; Mohapatra, B.D.; Panda, B.S.

    2001-01-01

    Seeds of blackgram (Vigna mungo L.) variety 'PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN 3 ), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M 4 generation. The mutants showed wide variation in most of the traits and multivariante D 2 analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M 5 . Yield and other productive traits of five high yielding mutants in M 4 and M 5 are presented

  16. Factors affecting actinide solubility in a repository for spent fuel, 1

    International Nuclear Information System (INIS)

    Snellman, Margit

    1986-07-01

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  17. Influence of pH and temperature on alunite dissolution rates and products

    Science.gov (United States)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al

  18. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Weber, Rodney; Nenes, Athanasios; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    Particle water (liquid water content, LWC) and aerosol pH are important parameters of the aerosol phase, affecting heterogeneous chemistry and bioavailability of nutrients that profoundly impact cloud formation, atmospheric composition, and atmospheric fluxes of nutrients to ecosystems. Few measurements of in situ LWC and pH, however, exist in the published literature. Using concurrent measurements of aerosol chemical composition, cloud condensation nuclei activity, and tandem light scattering coefficients, the particle water mass concentrations associated with the aerosol inorganic (Winorg) and organic (Worg) components are determined for measurements conducted at the Finokalia atmospheric observation station in the eastern Mediterranean between June and November 2012. These data are interpreted using the ISORROPIA-II thermodynamic model to predict the pH of aerosols originating from the various sources that influence air quality in the region. On average, closure between predicted aerosol water and that determined by comparison of ambient with dry light scattering coefficients was achieved to within 8 % (slope = 0.92, R2 = 0.8, n = 5201 points). Based on the scattering measurements, a parameterization is also derived, capable of reproducing the hygroscopic growth factor (f(RH)) within 15 % of the measured values. The highest aerosol water concentrations are observed during nighttime, when relative humidity is highest and the collapse of the boundary layer increases the aerosol concentration. A significant diurnal variability is found for Worg with morning and afternoon average mass concentrations being 10-15 times lower than nighttime concentrations, thus rendering Winorg the main form of particle water during daytime. The average value of total aerosol water was 2.19 ± 1.75 µg m-3, contributing on average up to 33 % of the total submicron mass concentration. Average aerosol water associated with organics, Worg, was equal to 0.56 ± 0.37 µg m-3; thus, organics

  19. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability

    Directory of Open Access Journals (Sweden)

    A. Bougiatioti

    2016-04-01

    Full Text Available Particle water (liquid water content, LWC and aerosol pH are important parameters of the aerosol phase, affecting heterogeneous chemistry and bioavailability of nutrients that profoundly impact cloud formation, atmospheric composition, and atmospheric fluxes of nutrients to ecosystems. Few measurements of in situ LWC and pH, however, exist in the published literature. Using concurrent measurements of aerosol chemical composition, cloud condensation nuclei activity, and tandem light scattering coefficients, the particle water mass concentrations associated with the aerosol inorganic (Winorg and organic (Worg components are determined for measurements conducted at the Finokalia atmospheric observation station in the eastern Mediterranean between June and November 2012. These data are interpreted using the ISORROPIA-II thermodynamic model to predict the pH of aerosols originating from the various sources that influence air quality in the region. On average, closure between predicted aerosol water and that determined by comparison of ambient with dry light scattering coefficients was achieved to within 8 % (slope  =  0.92, R2  =  0.8, n  =  5201 points. Based on the scattering measurements, a parameterization is also derived, capable of reproducing the hygroscopic growth factor (f(RH within 15 % of the measured values. The highest aerosol water concentrations are observed during nighttime, when relative humidity is highest and the collapse of the boundary layer increases the aerosol concentration. A significant diurnal variability is found for Worg with morning and afternoon average mass concentrations being 10–15 times lower than nighttime concentrations, thus rendering Winorg the main form of particle water during daytime. The average value of total aerosol water was 2.19 ± 1.75 µg m−3, contributing on average up to 33 % of the total submicron mass concentration. Average aerosol water associated with

  20. Physico-chemical, microbiological and sensory stability of chemically preserved mango pulp

    International Nuclear Information System (INIS)

    Akhtar, S.; Riaz, M.; Nisar, A.

    2010-01-01

    The effect of sodium benzoate (SB) and potassium metabisulphite (PMS) at various concentrations on chemical, microbiological and sensory quality of mango pulp during storage was assessed. Inhibitory activity of the chemical preservatives and their effect on chemical and sensory attributes was tested periodically by simulating the industrial mango pulp storage in the lab (30-42 deg. C in the dark), for a period of 90 days. Protein, fats, decreased while ash content and total soluble solid (TSS) increased during the storage period. A slight progressive decline in pH was observed with a proportional increase (p<0.05) in the acidity of the stored pulp samples. Significant inhibition of the total bacterial count (TBC) was observed on applying the specified concentrations, however PMS was shown to be more inhibitory. Storage time significantly (p<0.05) increased the CFU/g of the pulp samples as the maximum growth was observed after 90 days of storage. Sensory characteristics of the juice prepared from treated mango pulp samples were affected negatively on addition of preservatives however, the samples were accepted by the judges even after three months of storage. (author)

  1. Coaching af ph.d.-studerende

    DEFF Research Database (Denmark)

    Godskesen, Mirjam Irene

    Rapporten danner grundlag for at etablere et koncept for ph.d.-coaching. Erfaringerne fra et 2-årigt projekt om ph.d.-coaching i SCKK regi beskrives. De centrale temaer er tilrettelæggelse af den individuelle coaching, typiske temaer i coachingen og arbejdsdeling mellem coach og vejleder. Der er...

  2. Salivary pH: A diagnostic biomarker

    Directory of Open Access Journals (Sweden)

    Sharmila Baliga

    2013-01-01

    Full Text Available Objectives: Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. Study Design: The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. Results: The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001 whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001. Conclusion: These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  3. Salivary pH: A diagnostic biomarker.

    Science.gov (United States)

    Baliga, Sharmila; Muglikar, Sangeeta; Kale, Rahul

    2013-07-01

    Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001) whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001). These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  4. Ph og børnenes rum

    DEFF Research Database (Denmark)

    de Coninck-Smith, Ning

    2008-01-01

    Arkiteten og kulturkritikeren PH tegnede to bygninger til børn, nemlig fabriksbørnehaven ved Dehns Vaskeri fra 1948 og det ombyggede børnehjem Mindet fra 1954. Bidraget diskuterer PH's særlige greb om arkitektur til børn og placerer det ind i samtidens diskussion om børn, deres udvikling og behov....

  5. PER PhDs & Bachelor's Degrees

    Science.gov (United States)

    White, Susan C.

    2017-01-01

    Recently, the editor remarked to me that physics departments that offered a PhD with a specialization in Physics Education Research (PER) seemed to graduate more bachelor's degree recipients than those physics PhD departments that did not have the specialization. I was not convinced. That led to quite a bit of discussion between us. He compiled a…

  6. Urbanism PhD Research 2008 - 2010

    NARCIS (Netherlands)

    Smit, M.; Van der Hoeven, F.D.; Brand, N.; Van der Burg, L.; Çal??kan, O.; Tan, E.R.; Wang, C.Y.; Zhou, J.

    2009-01-01

    To ensure the quality of the Ph.D. research the Department introduced a special procedure for periodic evaluation: after a period of nine months the potential Ph.D. candidates are asked to present their research design, theoretical framework and methodological approach to the members of the

  7. (ajst) the influence of ph and adsorbent

    African Journals Online (AJOL)

    goethite sorbed a little more metal ion than the natural goethite. This was attributed ... was greatly governed by pH with nearly 100% adsorption of Pb occurring at initial pH of 5. Generally, Pb was ... extensively study and applied for the removal of heavy .... Goethite has variable surface charge characteristics, which gave it a ...

  8. On Calibration of pH Meters

    Directory of Open Access Journals (Sweden)

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  9. Hyperpolarised Organic Phosphates as NMR Reporters of Compartmental pH

    DEFF Research Database (Denmark)

    Jensen, Pernille Rose; Meier, Sebastian

    2016-01-01

    Organic phosphate metabolites contain functional groups withpKa values near the physiologic pH range, yielding pH-dependet 13C chemical shift changes of adjacent quaternary carbon sites.Whenformed in defined cellular compartmentsfrom exogenoushyperpolarised13Csubstrates,metabolites thuscanyieldlo......Organic phosphate metabolites contain functional groups withpKa values near the physiologic pH range, yielding pH-dependet 13C chemical shift changes of adjacent quaternary carbon sites.Whenformed in defined cellular compartmentsfrom exogenoushyperpolarised13Csubstrates...

  10. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.

    Science.gov (United States)

    Lavtižar, Vesna; van Gestel, Cornelis A M; Dolenc, Darko; Trebše, Polonca

    2014-01-01

    This study aimed at assessing the photodegradation of the insecticide chlorantraniliprole (CAP) in deionized water and in tap water amended with humic acids and nitrate. Photolysis was carried out under simulated solar or UV-A light. CAP (39 μM) photodegradation was slightly faster in tap water than in deionized water with half lives of 4.1 and 5.1 days, respectively. Photodegradation rate of CAP was hardly affected by humic acids (up to 100 mg L(-1)) and nitrate. Photodegradation pattern was different in slightly acidic (pH=6.1) deionized water compared to basic (pH=8.0) tap water. Four main degradation products have been isolated and characterized spectroscopically, and crystal structure was recorded for the first two photodegradation products. CAP also degraded in the dark controls, but only at basic pH (23% loss at pH 8.0 in tap water after 6 days), resulting in the formation of one single degradation product. Our study shows that the degradation of chlorantraniliprole in water is a combination of chemical and photochemical reactions, which are highly dependent on the pH of the solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Affect Regulation

    DEFF Research Database (Denmark)

    Pedersen, Signe Holm; Poulsen, Stig Bernt; Lunn, Susanne

    2014-01-01

    Gergely and colleagues’ state that their Social Biofeedback Theory of Parental Affect Mirroring” can be seen as a kind of operationalization of the classical psychoanalytic concepts of holding, containing and mirroring. This article examines to what extent the social biofeedback theory of parenta...

  12. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  13. Spectroscopic determination of pH

    International Nuclear Information System (INIS)

    Faanu, A.; Glover, E.T.; Bailey, E.; Rochelle, C.

    2009-01-01

    A technique of measuring pH at temperature range of 20 - 70 0 C and high pressure conditions of 1 - 200 atmospheres has been developed by relating the ratio of absorbance peaks of indicator solutions (basic and acidic) as a function of pH, using ultraviolet-visible spectrophotometer. The pH values of the buffer solutions measured at 20 0 C and 70 0 C indicated slight temperature dependence, while the pressure had no effect. The pH of the buffer solutions increased with temperature with relative standard deviations in the range 0.4 - 0.5 % at 95 % confidence interval. The possible causes of the temperature dependence were attributed to changes in pH values as the temperature changed. (au)

  14. Determination Of Ph Including Hemoglobin Correction

    Science.gov (United States)

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  15. Endoscopic sensing of alveolar pH.

    Science.gov (United States)

    Choudhury, D; Tanner, M G; McAughtrie, S; Yu, F; Mills, B; Choudhary, T R; Seth, S; Craven, T H; Stone, J M; Mati, I K; Campbell, C J; Bradley, M; Williams, C K I; Dhaliwal, K; Birks, T A; Thomson, R R

    2017-01-01

    Previously unobtainable measurements of alveolar pH were obtained using an endoscope-deployable optrode. The pH sensing was achieved using functionalized gold nanoshell sensors and surface enhanced Raman spectroscopy (SERS). The optrode consisted of an asymmetric dual-core optical fiber designed for spatially separating the optical pump delivery and signal collection, in order to circumvent the unwanted Raman signal generated within the fiber. Using this approach, we demonstrate a ~100-fold increase in SERS signal-to-fiber background ratio, and demonstrate multiple site pH sensing with a measurement accuracy of ± 0.07 pH units in the respiratory acini of an ex vivo ovine lung model. We also demonstrate that alveolar pH changes in response to ventilation.

  16. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    Science.gov (United States)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  17. Effect of pH on paste properties of irradiated corn starch by gamma-rays

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Aoki, Shohei; Kobayashi, Nobuo; Okuaki, Akira.

    1979-01-01

    The degradation of starch by γ-irradiation and the effect of pH on gelatinization of starch after irradiation were investigated. Paste viscosities were markedly affected by pH on gelatinization and a decrease in the viscosity of irradiated starch was stimulated by increasing pH. On the other hand, the solubility of irradiated starch increased significantly at the high pH. The granule structure of irradiated starch easily disintegrated at alkaline pH. Remarkable dissolution from the surface of the irradiated starch granules was observed after heating at high pH only a filamentous network frame remained, but the unirradiated one collapsed and folded. It was seen that alkali treatment after irradiation reduces the required dose to obtain low viscosity starch. The required dose to produce a low viscosity starch, for example Ajinomoto Essan Sizer 600 grade, was ca. 3 Mrad at pH 11.0 and ca. 5 Mrad at pH 7.0, whereas it was ca. 7 Mrad without pH adjustment. (author)

  18. [Chemical weapons and chemical terrorism].

    Science.gov (United States)

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  19. Affective World Literature

    DEFF Research Database (Denmark)

    Vilslev, Annette Thorsen

    The PhD dissertation compares the literary theory and novels of modern Japanese writer Natsume Sōseki. It reads Sōseki’s Theory of Literature (2009, Bungakuron, 1907) as an inherently comparative and interdisciplinary approach to theorizing feelings in world literature. More broadly, the disserta......The PhD dissertation compares the literary theory and novels of modern Japanese writer Natsume Sōseki. It reads Sōseki’s Theory of Literature (2009, Bungakuron, 1907) as an inherently comparative and interdisciplinary approach to theorizing feelings in world literature. More broadly......, the dissertation investigates the critical negotiation of the novel as a travelling genre in Japan in the beginning of the 20th century, and, more specifically, Sōseki’s work in relation to world literature and affect theory. Sōseki’s work is highly influential in Japan and East Asia, and his novels widely...... circulated beyond Japan. Using Sōseki’s theory as an example, and by comparing it to other theories, the dissertation argues that comparative literature needs to include not only more non-Western literature but also more non-Western literary theories in the ongoing debate of world literature. Close...

  20. Effect of pH on Cleavage of Glycogen by Vaginal Enzymes.

    Directory of Open Access Journals (Sweden)

    Greg T Spear

    Full Text Available Glycogen expressed by the lower genital tract epithelium is believed to support Lactobacillus growth in vivo, although most genital isolates of Lactobacillus are not able to use glycogen as an energy source in vitro. We recently reported that α-amylase is present in the genital fluid of women and that it breaks down glycogen into small carbohydrates that support growth of lactobacilli. Since the pH of the lower genital tract can be very low, we determined how low pH affects glycogen processing by α-amylase. α-amylase in saliva degraded glycogen similarly at pH 6 and 7, but activity was reduced by 52% at pH 4. The glycogen degrading activity in nine genital samples from seven women showed a similar profile with an average reduction of more than 50% at pH 4. However, two samples collected from one woman at different times had a strikingly different pH profile with increased glycogen degradation at pH 4, 5 and 6 compared to pH 7. This second pH profile did not correlate with levels of human α-acid glucosidase or human intestinal maltase glucoamylase. High-performance anion-exchange chromatography showed that mostly maltose was produced from glycogen by samples with the second pH profile in contrast to genital α-amylase that yielded maltose, maltotriose and maltotetraose. These studies show that at low pH, α-amylase activity is reduced to low but detectable levels, which we speculate helps maintain Lactobacillus growth at a limited but sustained rate. Additionally, some women have a genital enzyme distinct from α-amylase with higher activity at low pH. Further studies are needed to determine the identity and distribution of this second enzyme, and whether its presence influences the makeup of genital microbiota.

  1. Modeling pH variation in reverse osmosis.

    Science.gov (United States)

    Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav

    2015-12-15

    The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    Science.gov (United States)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  3. White popular (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ciadamidaro, L.; Madejon, P.; Cabrera, F.; Madejon, E.

    2014-06-01

    Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health. Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH 2.66) and a non-contaminated soil (RHU pH 7.19). Materials and methods: Soil samples were placed in 2,000 cm{sup 3} microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH{sub 4}{sup 4}+-N) and nitrate (NO{sub 3}{sup -} -N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl{sub 2}) were determined at different times of incubation. Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO{sub 3} –-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH{sub 4}{sup +}-N and NO{sub 3}{sup -} -N, microbial biomass N and protease activity. Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle. (Author)

  4. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.

  5. Alarms, Chemical

    Science.gov (United States)

    cited in applicable qualitative materiel requirements, small development requirements, technical characteristics, and other requirements and documentation that pertain to automatic chemical agent alarms.

  6. Chemical oceanography

    National Research Council Canada - National Science Library

    Millero, F.J

    1996-01-01

    Chemical Oceanography presents a comprehensive examination of the chemistry of oceans through discussions of such topics as descriptive physical oceanography, the composition of seawater and the major...

  7. Objective determination of pH thresholds in the analysis of 24 h ambulatory oesophageal pH monitoring

    NARCIS (Netherlands)

    Weusten, B. L.; Roelofs, J. M.; Akkermans, L. M.; vanBerge-Henegouwen, G. P.; Smout, A. J.

    1996-01-01

    In 24 h oesophageal pH monitoring, pH 4 is widely but arbitrarily used as the threshold between reflux and non-reflux pH values. The aim of the study was to define pH thresholds objectively, based on Gaussian curve fitting of pH frequency distributions. Single-channel 24 h oesophageal pH monitoring

  8. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2015-02-09

    CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.

    Science.gov (United States)

    Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad

    2014-07-15

    A novel pH optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of methyl orange indicator. The prepared optical sensor was fixed into a flow cell for on-line pH monitoring. Variables affecting sensor performance, such as pH of dye bonding to triacetylcellulose membrane and dye concentration have been fully evaluated and optimized. The calibration curve showed good behavior and precision (RSDpH range of 4.0-12.0. No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH by using the proposed optical sensor is on-line, quick, inexpensive, selective and sensitive in the pH range of 4.0-12.0. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    Science.gov (United States)

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Functional photoacoustic microscopy of pH.

    Science.gov (United States)

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin I; Wang, Lihong V

    2011-10-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.

  12. The PhD by Publication

    Directory of Open Access Journals (Sweden)

    Susi Peacock

    2017-07-01

    Full Text Available Aim/Purpose: The purpose of this work is to develop more nuanced understandings of the PhD by publication, particularly raising awareness of the retrospective PhD by publication. The article aims to contribute to contemporary debates about the differing pathways to the attainment of doctoral study completion and the artifacts submitted for that purpose. It also seeks to support prospective graduate students and supervisors who are embarking upon alternative routes to doctoral accreditation. Background: The PhD is considered the pinnacle of academic study – highly cherished, and replete with deeply held beliefs. In response to changes in job markets, developments in the disciplines, and more varied student cohorts, diverse pathways to completion of this award have emerged, such as the PhD by publication (PhDP. A PhDP may either be prospective or retrospective. For the former, publications are planned and created with their contributions to the PhDP in mind. The retrospective PhD is assembled after some, or most, of the publications have been completed. The artifact submitted for examination in this case consists of a series of peer-reviewed academic papers, books, chapters, or equivalents that have been published or accepted for publication, accompanied by an over-arching narrative. The retrospective route is particularly attractive for professionals who are research-active but lack formal academic accreditation at the highest level. Methodology: This article calls upon a literature review pertaining to the award of PhDP combined with the work of authors who offer their personal experiences of the award. The author also refers to her candidature as a Scottish doctoral student whilst studying for the award of PhD by publication. Contribution: This work raises awareness of the PhDP as a credible and comparable pathway for graduate students. The article focuses upon the retrospective PhDP which, as with all routes to doctoral accredit