WorldWideScience

Sample records for pet acquisition modes

  1. The study on acquisition mode and reconstruction parameters of brain FDG PET images

    International Nuclear Information System (INIS)

    Zuo Chuantao; Liu Yongchang; Guan Yihui; Zhao Jun; Lin Xiangtong

    2001-01-01

    Objective: To evaluate the effect of acquisition mode on the brain PET images. Methods: After changing conditions and parameters, the authors got brain PET images of different acquisition modes, different emission counts, different transmission times; and compared with the reference images the impacts of different acquisition modes, different acquisition conditions were assessed. Results: Compared with 2D mode, much higher background and noise were observed on the reconstruction images of 3D mode, and the bottoms of the brain structure were not well displayed. But the middle part of brain structure displayed well in 2D and 3D mode without difference; the gray/white radioactivity ratios were 2.108 +- 0.183 and 2.286 +- 0.232 under 2D and 3D mode, respectively. The gray/white radioactivity ratios with different emission counts were 2.108 +- 0.183, 2.215 +- 0.158, 2.161 +- 0.176, respectively, there was no evident difference among them. With transmission counts increasing, the segmented image outline of Hoffman phantom and brain structure became clear and integral. Conclusions: Different acquisition modes, different emission counts and different transmission times are of certain impacts on brain FDG PET images, and it should be paid more attention in clinical practice

  2. Reduction of radiation exposure in PET examinations by data acquisition in the 3D mode

    International Nuclear Information System (INIS)

    Brix, G.; Deutsches Krebsforschungszentrum; Adam, L.E.; Zaers, J.; Trojan, H.; Doll, J.; Bellemann, M.E.; Fachhochschule Jena; Nosske, D.

    1999-01-01

    Aim: Modern volume PET systems offer the possibility to measure without the shadowing effect of interplane septa (2D mode) and thus to detect coincident events between detectors on distant rings (3D mode). It was the aim of the present paper to characterize the count rate behaviour of a latest-generation whole-body PET system in the 2D and 3D mode as well as to discuss the consequences for the radiation hygiene of PET examinations with 2-[F-18]-fluoro-2-deoxyglucose (18-F-FDG). Methods: All experiments were performed with the PET system ECAT EXACT HR + . For 2D data acquisition, a collimator of thin tungsten septa was positioned in the field-of-view. The count rate behaviour of the scanner was evaluated in the 2D and 3D mode over a wide range of F-18 activity concentrations following the NEMA protocol. Moreover, PET images of the EEC whole-body phantom with different inserts were acquired in the 2D and 3D mode over a period of 15 min each. For the 3D measurement, the activity concentrations of the F-18 solution were only half of those used for the 2D measurement. Results: For the circular NEMA phantom (diameter=19.4 cm, length=19,0 cm), we observed an increase of the system sensitivity in the 3D mode by a factor of about 5 with respect to the 2D mode (27.7 vs. 5.7 cps/Bq/ml). The evaluation of the activity distributions of the EEC phantom reconstructed from the 3D data set revealed a superior image quality compared to the corresponding 2D images despite the fact that the activity concentrations were only half as high. Conclusion: By using the 3D data acquisition mode, it is possible to markedly reduce the amount of activity to be applied to the patient and nevertheless to improve image quality. In our experience, it is sufficient to administer an activity of 150-200 MBq for whole-body examinations with F-18-FDG, which results in an effective equivalent dose of 3 or 4 mSv, respectively. (orig.) [de

  3. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters.

    Science.gov (United States)

    Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert

    2010-10-01

    Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor

  4. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    International Nuclear Information System (INIS)

    Galavis, Paulina E.; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert; Hollensen, Christian

    2010-01-01

    Background. Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [ 18 F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range = 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% = range = 25%) were entropy-GLCM, sum entropy, high gray level run emphasis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion. Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be

  5. A single-mode data acquisition architecture for PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sportelli, Giancarlo; Belcari, Nicola; Bisogni, Maria Giuseppina; Camarlinghi, Niccolo; Zaccaro, Emanuele; Del Guerra, Alberto [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2015-05-18

    The development of MRI compatible detectors based on compact solid state photomultipliers has recently led to simultaneous fully integrated PET/MRI systems for human imaging. The PET acquisition design for MRI integration is known to have several additional constraints, including smaller space, electromagnetic compatibility issues and thermal management. The current work presents the PET acquisition architecture that has been developed for the TRIMAGE project, whose aim is to provide a cost effective, commercial grade trimodality PET/MRI/EEG scanner. The TRIMAGE PET component consists of 216 modules of 2.5 cm x 2.5 cm, arranged in 18 rectangular detectors of 5 cm x 15 cm, the latter in the axial direction, to form a full ring of 31 cm diameter. Each module consists of a staggered dual layer LYSO matrix read out by two arrays of 4 x 8 SiPMs and an ASIC. The detector board hosts a low-power low-end FPGA that performs pixel identification, energy calibration and handles the communication between the ASICs and the motherboard, which is located in proximity of the scanner. Data is streamed using high-density shielded cables and high-speed LVDS transmission to 9 low-end SoC FPGAs and from there to a central mainboard where coincidences and events statistics are processed. Coincidence data is finally transmitted to a host PC for image reconstruction. The proposed architecture and technological solutions will be presented and discussed.

  6. A single-mode data acquisition architecture for PET/MRI

    International Nuclear Information System (INIS)

    Sportelli, Giancarlo; Belcari, Nicola; Bisogni, Maria Giuseppina; Camarlinghi, Niccolo; Zaccaro, Emanuele; Del Guerra, Alberto

    2015-01-01

    The development of MRI compatible detectors based on compact solid state photomultipliers has recently led to simultaneous fully integrated PET/MRI systems for human imaging. The PET acquisition design for MRI integration is known to have several additional constraints, including smaller space, electromagnetic compatibility issues and thermal management. The current work presents the PET acquisition architecture that has been developed for the TRIMAGE project, whose aim is to provide a cost effective, commercial grade trimodality PET/MRI/EEG scanner. The TRIMAGE PET component consists of 216 modules of 2.5 cm x 2.5 cm, arranged in 18 rectangular detectors of 5 cm x 15 cm, the latter in the axial direction, to form a full ring of 31 cm diameter. Each module consists of a staggered dual layer LYSO matrix read out by two arrays of 4 x 8 SiPMs and an ASIC. The detector board hosts a low-power low-end FPGA that performs pixel identification, energy calibration and handles the communication between the ASICs and the motherboard, which is located in proximity of the scanner. Data is streamed using high-density shielded cables and high-speed LVDS transmission to 9 low-end SoC FPGAs and from there to a central mainboard where coincidences and events statistics are processed. Coincidence data is finally transmitted to a host PC for image reconstruction. The proposed architecture and technological solutions will be presented and discussed.

  7. Next generation PET data acquisition architectures

    Science.gov (United States)

    Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.

    1997-06-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.

  8. Next generation PET data acquisition architectures

    International Nuclear Information System (INIS)

    Jones, W.F.; Reed, J.H.; Everman, J.L.

    1996-01-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT reg-sign EXACT HR ++ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of-interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 M byte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512 x 512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning

  9. Estimating accidental coincidences for pixelated PET detectors and singles list-mode acquisition

    International Nuclear Information System (INIS)

    Rafecas, M.; Torres, I.; Spanoudaki, V.; McElroy, D.P.; Ziegler, S.I.

    2007-01-01

    We have studied the validity of random estimation techniques for various low energy thresholds (LETs) and single list-mode data sets in small animal PET. While a LET below 255 keV helps to increase the sensitivity, it also results in an increase of random coincidences and inter-crystal scatter (ICS). The study is carried out for MADPET-II, a dual-layer positron emission tomography (PET) scanner prototype consisting of LSO crystals read out individually by APDs. The data are acquired in singles list-mode format, and coincidences are computed post-acquisition. To estimate randoms, we have used the delayed coincidence window method (DW), and the singles rate model (SR). Various phantoms were simulated using GATE. For LETs under 255 keV, the number of random events R, estimated using the SR and the DW methods, is larger than the number of randoms which was directly computed from GATE simulations, and R(SR)>R(DW)>R(GATE). The higher the LET, the smaller the overestimation. For LETs >255 keV, R(DW)/R(GATE) ∼1. If scattered singles were excluded from the file, this discrepancy between R(DW or SR) and R(GATE) significantly diminished. This fact points out to ICS as the effect responsible for the mismatch, since for LETs lower than 255 keV, all singles related to an ICS event can be detected independently, thus altering the singles rate. Therefore, if low LETs are used, random estimation techniques should account for ICS

  10. Quantitation of respiratory motion during 4D-PET/CT acquisition

    International Nuclear Information System (INIS)

    Nehmeh, S.A.; Erdi, Y.E.; Pan, T.; Yorke, E.; Mageras, G.S.; Rosenzweig, K.E.; Schoder, H.; Mostafavi, H.; Squire, O.; Pevsner, A.; Larson, S.M.; Humm, J.L.

    2004-01-01

    We report on the variability of the respiratory motion during 4D-PET/CT acquisition. The respiratory motion for five lung cancer patients was monitored by tracking external markers placed on the abdomen. CT data were acquired over an entire respiratory cycle at each couch position. The x-ray tube status was recorded by the tracking system, for retrospective sorting of the CT data as a function of respiration phase. Each respiratory cycle was sampled in ten equal bins. 4D-PET data were acquired in gated mode, where each breathing cycle was divided into ten 500 ms bins. For both CT and PET acquisition, patients received audio prompting to regularize breathing. The 4D-CT and 4D-PET data were then correlated according to their respiratory phases. The respiratory periods, and average amplitude within each phase bin, acquired in both modality sessions were then analyzed. The average respiratory motion period during 4D-CT was within 18% from that in the 4D-PET sessions. This would reflect up to 1.8% fluctuation in the duration of each 4D-CT bin. This small uncertainty enabled good correlation between CT and PET data, on a phase-to-phase basis. Comparison of the average-amplitude within the respiration trace, between 4D-CT and 4D- PET, on a bin-by-bin basis show a maximum deviation of ∼15%. This study has proved the feasibility of performing 4D-PET/CT acquisition. Respiratory motion was in most cases consistent between PET and CT sessions, thereby improving both the attenuation correction of PET images, and co-registration of PET and CT images. On the other hand, in two patients, there was an increased partial irregularity in their breathing motion, which would prevent accurately correlating the corresponding PET and CT images

  11. Reduction of radiation exposure in PET examinations by data acquisition in the 3D mode; Reduktion der Strahlenexposition bei PET-Untersuchungen durch Datenakquisition im 3D-Modus

    Energy Technology Data Exchange (ETDEWEB)

    Brix, G. [Bundesamt fuer Strahlenschutz, Neuherberg (Germany). Inst. fuer Strahlenhygiene]|[Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik und Therapie; Adam, L.E. [Department of Radiology, Philadelphia, PA (United States). Div. of Nuclear Medicine; Zaers, J.; Trojan, H.; Doll, J. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik und Therapie; Bellemann, M.E. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik und Therapie]|[Fachhochschule Jena (Germany). Fachbereich Medizintechnik; Nosske, D. [Bundesamt fuer Strahlenschutz, Neuherberg (Germany). Inst. fuer Strahlenhygiene

    1999-04-01

    Aim: Modern volume PET systems offer the possibility to measure without the shadowing effect of interplane septa (2D mode) and thus to detect coincident events between detectors on distant rings (3D mode). It was the aim of the present paper to characterize the count rate behaviour of a latest-generation whole-body PET system in the 2D and 3D mode as well as to discuss the consequences for the radiation hygiene of PET examinations with 2-[F-18]-fluoro-2-deoxyglucose (18-F-FDG). Methods: All experiments were performed with the PET system ECAT EXACT HR{sup +}. For 2D data acquisition, a collimator of thin tungsten septa was positioned in the field-of-view. The count rate behaviour of the scanner was evaluated in the 2D and 3D mode over a wide range of F-18 activity concentrations following the NEMA protocol. Moreover, PET images of the EEC whole-body phantom with different inserts were acquired in the 2D and 3D mode over a period of 15 min each. For the 3D measurement, the activity concentrations of the F-18 solution were only half of those used for the 2D measurement. Results: For the circular NEMA phantom (diameter=19.4 cm, length=19,0 cm), we observed an increase of the system sensitivity in the 3D mode by a factor of about 5 with respect to the 2D mode (27.7 vs. 5.7 cps/Bq/ml). The evaluation of the activity distributions of the EEC phantom reconstructed from the 3D data set revealed a superior image quality compared to the corresponding 2D images despite the fact that the activity concentrations were only half as high. Conclusion: By using the 3D data acquisition mode, it is possible to markedly reduce the amount of activity to be applied to the patient and nevertheless to improve image quality. In our experience, it is sufficient to administer an activity of 150-200 MBq for whole-body examinations with F-18-FDG, which results in an effective equivalent dose of 3 or 4 mSv, respectively. (orig.) [Deutsch] Ziel: Moderne Volumen-PET-Systeme bieten die Moeglichkeit

  12. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  13. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    DEFF Research Database (Denmark)

    Galavis, P.E.; Hollensen, Christian; Jallow, N.

    2010-01-01

    Background. Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes...... reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results. Fifty textural features were...... classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range 30%). Conclusion. Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small...

  14. Optimization of Acquisition time of 68Ga-PSMA-Ligand PET/MRI in Patients with Local and Metastatic Prostate Cancer.

    Science.gov (United States)

    Lütje, Susanne; Blex, Sebastian; Gomez, Benedikt; Schaarschmidt, Benedikt M; Umutlu, Lale; Forsting, Michael; Jentzen, Walter; Bockisch, Andreas; Poeppel, Thorsten D; Wetter, Axel

    2016-01-01

    The aim of this optimization study was to minimize the acquisition time of 68Ga-HBED-CC-PSMA positron emission tomography/magnetic resonance imaging (PET/MRI) in patients with local and metastatic prostate cancer (PCa) to obtain a sufficient image quality and quantification accuracy without any appreciable loss. Twenty patients with PCa were administered intravenously with the 68Ga-HBED-CC-PSMA ligand (mean activity 99 MBq/patient, range 76-148 MBq) and subsequently underwent PET/MRI at, on average, 168 min (range 77-320 min) after injection. PET and MR imaging data were acquired simultaneously. PET acquisition was performed in list mode and PET images were reconstructed at different time intervals (1, 2, 4, 6, 8, and 10 min). Data were analyzed regarding radiotracer uptake in tumors and muscle tissue and PET image quality. Tumor uptake was quantified in terms of the maximum and mean standardized uptake value (SUVmax, SUVmean) within a spherical volume of interest (VOI). Reference VOIs were drawn in the gluteus maximus muscle on the right side. PET image quality was evaluated by experienced nuclear physicians/radiologists using a five-point ordinal scale from 5-1 (excellent-insufficient). Lesion detectability linearly increased with increasing acquisition times, reaching its maximum at PET acquisition times of 4 min. At this image acquisition time, tumor lesions in 19/20 (95%) patients were detected. PET image quality showed a positive correlation with increasing acquisition time, reaching a plateau at 4-6 min image acquisition. Both SUVmax and SUVmean correlated inversely with acquisition time and reached a plateau at acquisition times after 4 min. In the applied image acquisition settings, the optimal acquisition time of 68Ga-PSMA-ligand PET/MRI in patients with local and metastatic PCa was identified to be 4 min per bed position. At this acquisition time, PET image quality and lesion detectability reach a maximum while SUVmax and SUVmean do not change

  15. Optimization of Acquisition time of 68Ga-PSMA-Ligand PET/MRI in Patients with Local and Metastatic Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Susanne Lütje

    Full Text Available The aim of this optimization study was to minimize the acquisition time of 68Ga-HBED-CC-PSMA positron emission tomography/magnetic resonance imaging (PET/MRI in patients with local and metastatic prostate cancer (PCa to obtain a sufficient image quality and quantification accuracy without any appreciable loss.Twenty patients with PCa were administered intravenously with the 68Ga-HBED-CC-PSMA ligand (mean activity 99 MBq/patient, range 76-148 MBq and subsequently underwent PET/MRI at, on average, 168 min (range 77-320 min after injection. PET and MR imaging data were acquired simultaneously. PET acquisition was performed in list mode and PET images were reconstructed at different time intervals (1, 2, 4, 6, 8, and 10 min. Data were analyzed regarding radiotracer uptake in tumors and muscle tissue and PET image quality. Tumor uptake was quantified in terms of the maximum and mean standardized uptake value (SUVmax, SUVmean within a spherical volume of interest (VOI. Reference VOIs were drawn in the gluteus maximus muscle on the right side. PET image quality was evaluated by experienced nuclear physicians/radiologists using a five-point ordinal scale from 5-1 (excellent-insufficient.Lesion detectability linearly increased with increasing acquisition times, reaching its maximum at PET acquisition times of 4 min. At this image acquisition time, tumor lesions in 19/20 (95% patients were detected. PET image quality showed a positive correlation with increasing acquisition time, reaching a plateau at 4-6 min image acquisition. Both SUVmax and SUVmean correlated inversely with acquisition time and reached a plateau at acquisition times after 4 min.In the applied image acquisition settings, the optimal acquisition time of 68Ga-PSMA-ligand PET/MRI in patients with local and metastatic PCa was identified to be 4 min per bed position. At this acquisition time, PET image quality and lesion detectability reach a maximum while SUVmax and SUVmean do not change

  16. Respiratory gating of cardiac PET data in list-mode acquisition

    International Nuclear Information System (INIS)

    Livieratos, Lefteris; Rajappan, Kim; Camici, Paolo G.; Stegger, Lars; Schafers, Klaus; Bailey, Dale L.

    2006-01-01

    Respiratory motion has been identified as a source of artefacts in most medical imaging modalities. This paper reports on respiratory gating as a means to eliminate motion-related inaccuracies in PET imaging. Respiratory gating was implemented in list mode with physiological signal recorded every millisecond together with the PET data. Respiration was monitored with an inductive respiration monitor using an elasticised belt around the patient's chest. Simultaneous ECG gating can be maintained independently by encoding ECG trigger signal into the list-mode data. Respiratory gating is performed in an off-line workstation with gating parameters defined retrospectively. The technique was applied on a preliminary set of patient data with C 15 O. Motion was visually observed in the cine displays of the sagittal and coronal views of the reconstructed respiratory gated images. Significant changes in the cranial-caudal position of the heart could be observed. The centroid of the cardiac blood pool showed an excursion of 4.5-16.5 mm (mean 8.5±4.8 mm) in the cranial-caudal direction, with more limited excursion of 1.1-7.0 mm (mean 2.5±2.2 mm) in the horizontal direction and 1.3-3.7 mm (mean 2.4±0.9 mm) in the vertical direction. These preliminary data show that the extent of motion involved in respiration is comparable to myocardial wall thickness, and respiratory gating may be considered in order to reduce this effect in the reconstructed images. (orig.)

  17. Respiratory gating of cardiac PET data in list-mode acquisition.

    Science.gov (United States)

    Livieratos, Lefteris; Rajappan, Kim; Stegger, Lars; Schafers, Klaus; Bailey, Dale L; Camici, Paolo G

    2006-05-01

    Respiratory motion has been identified as a source of artefacts in most medical imaging modalities. This paper reports on respiratory gating as a means to eliminate motion-related inaccuracies in PET imaging. Respiratory gating was implemented in list mode with physiological signal recorded every millisecond together with the PET data. Respiration was monitored with an inductive respiration monitor using an elasticised belt around the patient's chest. Simultaneous ECG gating can be maintained independently by encoding ECG trigger signal into the list-mode data. Respiratory gating is performed in an off-line workstation with gating parameters defined retrospectively. The technique was applied on a preliminary set of patient data with C(15)O. Motion was visually observed in the cine displays of the sagittal and coronal views of the reconstructed respiratory gated images. Significant changes in the cranial-caudal position of the heart could be observed. The centroid of the cardiac blood pool showed an excursion of 4.5-16.5 mm (mean 8.5+/-4.8 mm) in the cranial-caudal direction, with more limited excursion of 1.1-7.0 mm (mean 2.5+/-2.2 mm) in the horizontal direction and 1.3-3.7 mm (mean 2.4+/-0.9 mm) in the vertical direction. These preliminary data show that the extent of motion involved in respiration is comparable to myocardial wall thickness, and respiratory gating may be considered in order to reduce this effect in the reconstructed images.

  18. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  19. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions

    International Nuclear Information System (INIS)

    Fin, Loic; Daouk, Joel; Morvan, Julie; Esper, Isabelle El; Saidi, Lazhar; Meyer, Marc-Etienne; Bailly, Pascal

    2008-01-01

    Respiratory motion causes uptake in positron emission tomography (PET) images of chest structures to spread out and misregister with the CT images. This misregistration can alter the attenuation correction and thus the quantisation of PET images. In this paper, we present the first clinical results for a respiratory-gated PET (RG-PET) processing method based on a single breath-hold CT (BH-CT) acquisition, which seeks to improve diagnostic accuracy via better PET-to-CT co-registration. We refer to this method as ''CT-based'' RG-PET processing. Thirteen lesions were studied. Patients underwent a standard clinical PET protocol and then the CT-based protocol, which consists of a 10-min List Mode RG-PET acquisition, followed by a shallow end-expiration BH-CT. The respective performances of the CT-based and clinical PET methods were evaluated by comparing the distances between the lesions' centroids on PET and CT images. SUV MAX and volume variations were also investigated. The CT-based method showed significantly lower (p=0.027) centroid distances (mean change relative to the clinical method =-49%; range =-100% to 0%). This led to higher SUV MAX (mean change =+33%; range =-4% to 69%). Lesion volumes were significantly lower (p=0.022) in CT-based PET volumes (mean change =-39%: range =-74% to -1%) compared with clinical ones. A CT-based RG-PET processing method can be implemented in clinical practice with a small increase in radiation exposure. It improves PET-CT co-registration of lung lesions and should lead to more accurate attenuation correction and thus SUV measurement. (orig.)

  20. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    International Nuclear Information System (INIS)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV; Knopp, MU; Zhang, B; Tung, C

    2016-01-01

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  1. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV [The Ohio State University, Columbus, OH (United States); Knopp, MU [Pepperdine University, Malibu, CA (United States); Zhang, B; Tung, C [Philips Healthcare, Highland Heights, OH (United States)

    2016-06-15

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  2. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    International Nuclear Information System (INIS)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick

    2015-01-01

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  3. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick [Nuclear Medicine, University Hospital Zurich (Switzerland)

    2015-05-18

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  4. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  5. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    International Nuclear Information System (INIS)

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; El Fakhri, Georges; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.

    2015-01-01

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  6. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794 (United States); Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Ouyang, Jinsong; El Fakhri, Georges [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Reese, Timothy G. [Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 and Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129 (United States); Ahlman, Mark A.; Bluemke, David A. [Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland 20892 (United States)

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  7. PET/CT-guided percutaneous liver mass biopsies and ablations: Targeting accuracy of a single 20 s breath-hold PET acquisition

    International Nuclear Information System (INIS)

    Shyn, P.B.; Tatli, S.; Sahni, V.A.; Sadow, C.A.; Forgione, K.; Mauri, G.; Morrison, P.R.; Catalano, P.J.; Silverman, S.G.

    2014-01-01

    Aim: To determine whether a single 20 s breath-hold positron-emission tomography (PET) acquisition obtained during combined PET/computed tomography (CT)-guided percutaneous liver biopsy or ablation procedures has the potential to target 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-avid liver masses as accurately as up to 180 s breath-hold PET acquisitions. Materials and methods: This retrospective study included 10 adult patients with 13 liver masses who underwent FDG PET/CT-guided percutaneous biopsies (n = 5) or ablations (n = 5). PET was acquired as nine sequential 20 s, monitored, same-level breath-hold frames and CT was acquired in one monitored breath-hold. Twenty, 40, 60, and 180 s PET datasets were reconstructed. Two blinded readers marked tumour centres on randomized PET and CT datasets. Three-dimensional spatial localization differences between PET datasets and either 180 s PET or CT were analysed using multiple regression analyses. Statistical tests were two-sided and p < 0.05 was considered significant. Results: Targeting differences between 20 s PET and 180 s PET ranged from 0.7–20.3 mm (mean 5.3 ± 4.4 mm; median 4.3) and were not statistically different from 40 or 60 s PET (p = 0.74 and 0.91, respectively). Targeting differences between 20 s PET and CT ranged from 1.4–36 mm (mean 9.6 ± 7.1 mm; median 8.2 mm) and were not statistically different from 40, 60, or 180 s PET (p = 0.84, 0.77, and 0.35, respectively). Conclusion: Single 20 s breath-hold PET acquisitions from PET/CT-guided percutaneous liver procedures have the potential to target FDG-avid liver masses with equivalent accuracy to 180 s summed, breath-hold PET acquisitions and may facilitate strategies that improve image registration and shorten procedure times

  8. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  9. Usefulness of a breath-holding acquisition method in PET/CT for pulmonary lesions

    International Nuclear Information System (INIS)

    Yamaguchi, Toshiaki; Ueda, Osamu; Hara, Hideyuki; Sakai, Hiroto; Kida, Tohru; Suzuki, Kayo; Adachi, Shuji; Ishii, Kazunari

    2009-01-01

    The objective of this study was to evaluate the usefulness of a breath-holding (BH) 18 F-2-fluoro-2-deoxy-D-glucose positron emission tomography ( 18 F-FDG-PET) technique for PET/computed tomography (CT) scanning of pulmonary lesions near the diaphragm, where image quality is influenced by respiratory motion. In a basic study, simulated breath-holding PET (sBH-PET) data were acquired by repeating image acquisition eight times with fixation of a phantom at 15 s/bed. Free-breathing PET (FB-PET) was simulated by acquiring data even as moving the phantom at 120 s/bed (sFB-PET). Images with total acquisition times of 15 s, 30 s, 45 s, 60 s, and 120 s were generated for sBH-PET. Receiver-operating characteristic (ROC) analyses and determination of the statistical significance of differences between sFB-PET images and sBH-PET images were performed. A total of 22 pulmonary lesions in 21 patients (12 men and 9 women, mean age 61.3±10.6 years, 10 benign lesions in 9 patients and 12 malignant lesions in 12 patients) were examined by FB-PET and BH-PET). For evaluation of these two acquisition methods, displacement of the lesion between CT and PET was considered to be a translation, and the statistical significance of differences in maximum standardized uptake value (SUV max ) of the lesion was assessed using the paired t test. In the basic study, sBH-PET images with acquisition times of 45 s, 60 s, and 120 s had significantly higher diagnostic accuracy than 120-s sFB-PET images (P max of the lesions in the BH-PET images was significantly higher than that in the FB-PET images (benign: 2.40±0.86 vs. 2.20±0.85, P=0.005; malignant: 4.84±2.16 vs. 3.75±2.11, P=0.001). BH-PET provides images with better diagnostic accuracy, avoids image degradation owing to respiratory motion, and yields more accurate attenuation correction. This method is very useful for overcoming the problem of respiratory motion. (author)

  10. Studies oriented to optimize the image quality of the small animal PET: Clear PET, modifying some of the parameters of the reconstruction algorithm IMF-OSEM 3D on the data acquisition simulated with GAMOS

    International Nuclear Information System (INIS)

    Canadas, M.; Mendoza, J.; Embid, M.

    2007-01-01

    This report presents studies oriented to optimize the image quality of the small animal PET: Clear- PET. Certain figures of merit (FOM) were used to assess a quantitative value of the contrast and delectability of lesions. The optimization was carried out modifying some of the parameters in the reconstruction software of the scanner, imaging a mini-Derenzo phantom and a cylinder phantom with background activity and two hot spheres. Specifically, it was evaluated the incidence of the inter-update Metz filter (IMF) inside the iterative reconstruction algorithm 3D OSEM. The data acquisition was simulated using the GAMOS framework (Monte Carlo simulation). Integrating GAMOS output with the reconstruction software of the scanner was an additional novelty of this work, to achieve this, data sets were written with the list-mode format (LMF) of ClearPET. In order to verify the optimum values obtained, we foresee to make real acquisitions in the ClearPET of CIEMAT. (Author) 17 refs

  11. Dynamic and gated PET. Quantitative imaging of the heart revisited

    International Nuclear Information System (INIS)

    Nekolla, S.G.

    2005-01-01

    This short overview focuses on the basic implementation as well as applications of cardiac PET studies acquired in dynamic and ECG triggered modes. Both acquisition modes are well suited for quantitative analysis and the advantages of such an approach are discussed. An outlook on the measurement of respiratory triggered studies and the new challenges this data presents is provided. In the context of modern PET/CT tomographs with the combination of high sensitivity and morphologic resolution, the promise of list mode acquisition is investigated. The before mentioned acquisition modes are ideal candidates for this technology the utility of which in a clinical setting is briefly discussed. The retrospective generation of dynamic and gated image data (and any combinations) is greatly facilitated with this approach. Finally, a novel presentation mode for the wealth of quantitative information generated by these systems is presented. (orig.)

  12. A scanning point source for quality control of FOV uniformity in GC-PET imaging

    International Nuclear Information System (INIS)

    Bergmann, H.; Minear, G.; Dobrozemsky, G.; Nowotny, R.; Koenig, B.

    2002-01-01

    Aim: PET imaging with coincidence cameras (GC-PET) requires additional quality control procedures to check the function of coincidence circuitry and detector zoning. In particular, the uniformity response over the field of view needs special attention since it is known that coincidence counting mode may suffer from non-uniformity effects not present in single photon mode. Materials and methods: An inexpensive linear scanner with a stepper motor and a digital interface to a PC with software allowing versatile scanning modes was developed. The scanner is used with a source holder containing a Sodium-22 point source. While moving the source along the axis of rotation of the GC-PET system, a tomographic acquisition takes place. The scan covers the full axial field of view of the 2-D or 3-D scatter frame. Depending on the acquisition software, point source scanning takes place continuously while only one projection is acquired or is done in step-and-shoot mode with the number of positions equal to the number of gantry steps. Special software was developed to analyse the resulting list mode acquisition files and to produce an image of the recorded coincidence events of each head. Results: Uniformity images of coincidence events were obtained after further correction for systematic sensitivity variations caused by acquisition geometry. The resulting images are analysed visually and by calculating NEMA uniformity indices as for a planar flood field. The method has been applied successfully to two different brands of GC-PET capable gamma cameras. Conclusion: Uniformity of GC-PET can be tested quickly and accurately with a routine QC procedure, using a Sodium-22 scanning point source and an inexpensive mechanical scanning device. The method can be used for both 2-D and 3-D acquisition modes and fills an important gap in the quality control system for GC-PET

  13. Clinical applications of PET/CT

    International Nuclear Information System (INIS)

    Le Ngoc Ha

    2011-01-01

    The purpose of this article is to review the evolution of PET, PET/CT focusing on the technical aspects, PET radiopharmaceutical developments and current clinical applications as well. The newest technologic advances have been reviewed, including improved crystal design, acquisition modes, reconstruction algorithms, etc. These advancements will continue to improve contrast, decrease noise, and increase resolution. Combined PET/CT system provides faster attenuation correction and useful anatomic correlation to PET functional information. A number of new radiopharmaceuticals used for PET imaging have been developed, however, FDG have been considered as the principal PET radiotracer. The current clinical applications of PET and PET/CT are widespread and include oncology, cardiology and neurology. (author)

  14. Evaluation of effects of magnetic field by TMS on PET data acquisition

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Narayana, Shalini; Fox, Peter

    2001-01-01

    There is a controversy regarding the necessity of mu-metal shielding of PET scanner during transcranial magnetic stimulation (TMS). The aim of this study was to test the effects of magnetic field by TMS on PET data acquisition. With TMS on and off in PET field of view, transmission images were acquired for 9 minutes. The frequency and intensity of stimulation were set at 3 ∼ 5 Hz and 70% of the maximum output of the stimulator, respectively. Distance between TMS coil and patient port edge of the PET gantry was varied from 2 cm to 21 cm, and arrangement of TMS coil was varied between parallel or perpendicular orientation of the maximum field with the scanner's axis. On inspection of the sinograms of transmission PET scans and their subtraction images, there was no measurable difference between TMS on and off conditions for any distance and any orientation. The lack of effect may be due to the long distance between TMS coil and detector block in PET scanner with respect to quick fading of magnetic field with distance (3% of maximum field at 10 cm, in air) and the brief duration (∼250 μ sec) of TMS pulse relative to total PET acquisition time

  15. Evaluation of effects of magnetic field by TMS on PET data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Narayana, Shalini; Fox, Peter [Health Science Center, Texas Univ., San Antonio (United States)

    2001-07-01

    There is a controversy regarding the necessity of mu-metal shielding of PET scanner during transcranial magnetic stimulation (TMS). The aim of this study was to test the effects of magnetic field by TMS on PET data acquisition. With TMS on and off in PET field of view, transmission images were acquired for 9 minutes. The frequency and intensity of stimulation were set at 3 {approx} 5 Hz and 70% of the maximum output of the stimulator, respectively. Distance between TMS coil and patient port edge of the PET gantry was varied from 2 cm to 21 cm, and arrangement of TMS coil was varied between parallel or perpendicular orientation of the maximum field with the scanner's axis. On inspection of the sinograms of transmission PET scans and their subtraction images, there was no measurable difference between TMS on and off conditions for any distance and any orientation. The lack of effect may be due to the long distance between TMS coil and detector block in PET scanner with respect to quick fading of magnetic field with distance (3% of maximum field at 10 cm, in air) and the brief duration ({approx}250 {mu} sec) of TMS pulse relative to total PET acquisition time.

  16. Initial evaluation of a practical PET respiratory motion correction method in clinical simultaneous PET/MRI

    International Nuclear Information System (INIS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian; Barnes, Anna; Ourselin, Sebastien; Arridge, Simon; O’Meara, Celia; Atkinson, David

    2014-01-01

    Respiratory motion during PET acquisitions can cause image artefacts, with sharpness and tracer quantification adversely affected due to count ‘smearing’. Motion correction by registration of PET gates becomes increasingly difficult with shorter scan times and less counts. The advent of simultaneous PET/MRI scanners allows the use of high spatial resolution MRI to capture motion states during respiration [1, 2]. In this work, we use a respiratory signal derived from the PET list-mode data [3, ], with no requirement for an external device or MR sequence modifications.

  17. Monitoring proton radiation therapy with in-room PET imaging

    International Nuclear Information System (INIS)

    Zhu Xuping; Ouyang Jinsong; El Fakhri, Georges; Espana, Samuel; Daartz, Juliane; Liebsch, Norbert; Paganetti, Harald; Bortfeld, Thomas R

    2011-01-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to 15 O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  18. Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    Science.gov (United States)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically

  19. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.

    Science.gov (United States)

    Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  20. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    International Nuclear Information System (INIS)

    Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-01-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ∼15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ∼45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate K i and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different

  1. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    Science.gov (United States)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  2. NIRS report of investigations for the development of the next generation PET apparatus. FY 2000

    International Nuclear Information System (INIS)

    2001-03-01

    This is a summary of study reports from representative technology fields for the development of the next generation PET apparatus directing to 3-D images, and is hoped to be useful for future smooth cooperation between the fields. The investigation started from April 2000 in National Institute of Radiological Sciences (NIRS) with cooperation of other facilities, universities and companies. The report involves chapters of: Detector volume and geometrical efficiency- Design criterion for the next generation PET; Scintillator for PET; An investigation of detector and front-end electronics for the next generation PET; A measurement system of depth of interaction; Detector simulator; Development of an evaluation system for PET detector; On the signal processing system for the next generation PET; List-mode data acquisition method for the next generation PET; List-mode data acquisition simulator; Image reconstruction; A Monte Carlo simulator for the next generation PET scanners; Out-of-field of view (FOV) radioactivity; and Published papers and presentations. (N.I.)

  3. Preliminary assessment of a new data acquisition system for the microPET at IFUNAM

    Science.gov (United States)

    Murrieta-Rodríguez, Tirso; Alva-Sánchez, Héctor; Nava, Dante; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes

    2010-12-01

    In this work the new data acquisition system (DAQ) for the microPET of the SIBI project is presented. To increase the microPET sensitivity, the inclusion of more detection modules is required, which in turn needs a more sophisticated and compact signal processing system. The new DAQ is based on programmable integrated circuits (FPGAs) and is composed of (i) an 8-input triggering board with individual channel adjusting capabilities, which can process signals from 8 detector modules working in coincidence mode and (ii) two 10-channel digitising boards with 12-bit resolution. The digitised signals are transmitted to a PC through two Ethernet ports in each board. With the new boards the maximum singles counting rate is of the order of 350 kHz, with a dead time of 2.8 μs. Individual crystal maps of two detectors for image corrections have been obtained, with peak-to-valley ratios of 5:1. The new FPGA boards will allow the introduction of more detection modules with relatively simple electronics arrangement.

  4. Optimization of a shorter variable-acquisition time for legs to achieve true whole-body PET/CT images.

    Science.gov (United States)

    Umeda, Takuro; Miwa, Kenta; Murata, Taisuke; Miyaji, Noriaki; Wagatsuma, Kei; Motegi, Kazuki; Terauchi, Takashi; Koizumi, Mitsuru

    2017-12-01

    The present study aimed to qualitatively and quantitatively evaluate PET images as a function of acquisition time for various leg sizes, and to optimize a shorter variable-acquisition time protocol for legs to achieve better qualitative and quantitative accuracy of true whole-body PET/CT images. The diameters of legs to be modeled as phantoms were defined based on data derived from 53 patients. This study analyzed PET images of a NEMA phantom and three plastic bottle phantoms (diameter, 5.68, 8.54 and 10.7 cm) that simulated the human body and legs, respectively. The phantoms comprised two spheres (diameters, 10 and 17 mm) containing fluorine-18 fluorodeoxyglucose solution with sphere-to-background ratios of 4 at a background radioactivity level of 2.65 kBq/mL. All PET data were reconstructed with acquisition times ranging from 10 to 180, and 1200 s. We visually evaluated image quality and determined the coefficient of variance (CV) of the background, contrast and the quantitative %error of the hot spheres, and then determined two shorter variable-acquisition protocols for legs. Lesion detectability and quantitative accuracy determined based on maximum standardized uptake values (SUV max ) in PET images of a patient using the proposed protocols were also evaluated. A larger phantom and a shorter acquisition time resulted in increased background noise on images and decreased the contrast in hot spheres. A visual score of ≥ 1.5 was obtained when the acquisition time was ≥ 30 s for three leg phantoms, and ≥ 120 s for the NEMA phantom. The quantitative %errors of the 10- and 17-mm spheres in the leg phantoms were ± 15 and ± 10%, respectively, in PET images with a high CV (scan mean SUV max of three lesions using the current fixed-acquisition and two proposed variable-acquisition time protocols in the clinical study were 3.1, 3.1 and 3.2, respectively, which did not significantly differ. Leg acquisition time per bed position of even 30-90

  5. From 2D PET to 3D PET. Issues of data representation and image reconstruction

    International Nuclear Information System (INIS)

    Gundlich, B.; Musmann, P.; Weber, S.; Nix, O.; Semmler, W.

    2006-01-01

    Positron emission tomography (PET), intrinsically a 3D imaging technique, was for a long time exclusively operated in 2D mode, using septa to shield the detectors from photons emitted obliquely to the detector planes. However, the use of septa results in a considerable loss of sensitivity. From the late 1980s, significant efforts have been made to develop a methodology for the acquisition and reconstruction of 3D PET data. This paper focuses on the differences between data acquisition in 2D and 3D mode, especially in terms of data set sizes and representation. Although the real time data acquisition aspect in 3D has been mostly solved in modern PET scanner systems, there still remain questions on how to represent and how to make best use of the information contained in the acquired data sets. Data representation methods, such as list-mode and matrix-based methods, possibly with additional compression, will be discussed. Moving from 2D to 3D PET has major implications on the way these data are reconstructed to images. Two fundamentally different approaches exist, the analytical one and the iterative one. Both, at different expenses, can be extended to directly handle 3D data sets. Either way the computational burden increases heavily compared to 2D reconstruction. One possibility to benefit from the increased sensitivity in 3D PET while sticking to high-performance 2D reconstruction algorithms is to rebin 3D into 2D data sets. The value of data rebinning will be explored. An ever increasing computing power and the concept of distributed or parallel computing have made direct 3D reconstruction feasible. Following a short review of reconstruction methods and their extensions to 3D, we focus on numerical aspects that improve reconstruction performance, which is especially important in solving large equation systems in 3D iterative reconstruction. Finally exemplary results are shown to review the properties of the discussed algorithms. (orig.)

  6. Feasibility of deep-inspiration breath-hold PET/CT with short-time acquisition. Detectability for pulmonary lesions compared with respiratory-gated PET/CT

    International Nuclear Information System (INIS)

    Yamashita, Shozo; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Yokoyama, Kunihiko; Onoguchi, Masahisa; Nakajima, Kenichi

    2014-01-01

    Deep-inspiration breath-hold (DIBH) positron emission tomography (PET)/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used. (author)

  7. Studies oriented to optimize the image quality of the small animal PET: Clear PET, modifying some of the parameters of the reconstruction algorithm IMF-OSEM 3D on the data acquisition simulated with GAMOS; Estudios para la optimizaciOn de la calidad de imagen en el escaner ClearPET, modifi cando parametros del algoritmo IMF-OSEM 3D sobre adquisiciones simuladas con GAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Canadas, M.; Mendoza, J.; Embid, M.

    2007-09-27

    This report presents studies oriented to optimize the image quality of the small animal PET: Clear- PET. Certain figures of merit (FOM) were used to assess a quantitative value of the contrast and delectability of lesions. The optimization was carried out modifying some of the parameters in the reconstruction software of the scanner, imaging a mini-Derenzo phantom and a cylinder phantom with background activity and two hot spheres. Specifically, it was evaluated the incidence of the inter-update Metz filter (IMF) inside the iterative reconstruction algorithm 3D OSEM. The data acquisition was simulated using the GAMOS framework (Monte Carlo simulation). Integrating GAMOS output with the reconstruction software of the scanner was an additional novelty of this work, to achieve this, data sets were written with the list-mode format (LMF) of ClearPET. In order to verify the optimum values obtained, we foresee to make real acquisitions in the ClearPET of CIEMAT. (Author) 17 refs.

  8. Optimization of whole-body PET imaging protocol for the detection of 18F-FDG overlappings in oncology

    International Nuclear Information System (INIS)

    Lartizien, C.

    2001-01-01

    Positron emission tomography (PET) is a nuclear imaging modality that allows studying in vivo cellular metabolic and biochemical processes. During the 90's, there has been a growing interest in the applications of PET in oncology related to the use of a glucose analog (FDG) labeled with the positron emitter 18 F. This tracer of the glucose metabolism is trapped in the cancer cells characterized by a deregulated glycolytic activity. This allows detecting tumors and metastases. The interest of PET in oncology has lead to develop imaging systems and protocols to perform whole-body acquisitions of the patient. Whole-body PET imaging has been limited in practice by the high level of statistical noise that affects the detection of small lesions due to limited radioactive dose injected to the patient and short acquisition time. In this context, our work focused on the optimization of detection performances in whole-body 18 F-FDG PET images. We have first developed an original method to evaluate detectability based on the psychophysical approach of the ROC methodology and adapted to the specificity of whole-body PET images. This method was used to evaluate detection performances of different reconstruction algorithms used for whole-body imaging. We have also studied the influence of the acquisition mode, namely the 2D and the 3D modes. To that purpose, we have used the NEC index to select relevant statistical acquisition conditions in both acquisition modes as a function of the injected dose to the patient. Then, we have compared the detection performances of these different acquisition conditions based on our psychophysical evaluation technique. (author) [fr

  9. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations

    International Nuclear Information System (INIS)

    Lamare, F; Carbayo, M J Ledesma; Cresson, T; Kontaxakis, G; Santos, A; Rest, C Cheze Le; Reader, A J; Visvikis, D

    2007-01-01

    Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations

  10. Variability in "1"8F-FDG PET/CT methodology of acquisition, reconstruction and analysis for oncologic imaging: state survey

    International Nuclear Information System (INIS)

    Fischer, Andreia C.F. da S.; Druzian, Aline C.; Bacelar, Alexandre; Pianta, Diego B.; Silva, Ana M. Marques da

    2016-01-01

    The SUV in "1"8F-FDG PET/CT oncological imaging is useful for cancer diagnosis, staging and treatment assessment. There are, however, several factors that can give rise to bias in SUV measurements. When using SUV as a diagnostic tool, one needs to minimize the variability in this measurement by standardization of patient preparation, acquisition and reconstruction parameters. The aim of this study is to evaluate the methodological variability in PET/CT acquisition in Rio Grande do Sul State. For that, in each department, a questionnaire was applied to survey technical information from PET/CT systems and about the acquisitions and analysis methods utilized. All departments implement quality assurance programs consistent with (inter)national recommendations. However, the acquisition and reconstruction methods of acquired PET data differ. The implementation of a harmonized strategy for quantifying the SUV is suggested, in order to obtain greater reproducibility and repeatability. (author)

  11. Evaluation of early-phase [18F]-florbetaben PET acquisition in clinical routine cases

    Directory of Open Access Journals (Sweden)

    Sonja Daerr

    2017-01-01

    Conclusions: Early-phase FBB acquisitions correlate on a relative quantitative and visual level with FDG PET scans, irrespective of the amyloid plaque density assessed in late FBB imaging. Thus, early-phase FBB uptake depicts a metabolism-like image, suggesting it as a valid surrogate marker for synaptic dysfunction, which could ultimately circumvent the need for additional FDG PET investigation in diagnosis of dementia.

  12. Crystal timing offset calibration method for time of flight PET scanners

    Science.gov (United States)

    Ye, Jinghan; Song, Xiyun

    2016-03-01

    In time-of-flight (TOF) positron emission tomography (PET), precise calibration of the timing offset of each crystal of a PET scanner is essential. Conventionally this calibration requires a specially designed tool just for this purpose. In this study a method that uses a planar source to measure the crystal timing offsets (CTO) is developed. The method uses list mode acquisitions of a planar source placed at multiple orientations inside the PET scanner field-of-view (FOV). The placement of the planar source in each acquisition is automatically figured out from the measured data, so that a fixture for exactly placing the source is not required. The expected coincidence time difference for each detected list mode event can be found from the planar source placement and the detector geometry. A deviation of the measured time difference from the expected one is due to CTO of the two crystals. The least squared solution of the CTO is found iteratively using the list mode events. The effectiveness of the crystal timing calibration method is evidenced using phantom images generated by placing back each list mode event into the image space with the timing offset applied to each event. The zigzagged outlines of the phantoms in the images become smooth after the crystal timing calibration is applied. In conclusion, a crystal timing calibration method is developed. The method uses multiple list mode acquisitions of a planar source to find the least squared solution of crystal timing offsets.

  13. Relationship between sources of pet acquisition and euthanasia of cats and dogs in an animal shelter: a pilot study.

    Science.gov (United States)

    Arbe Montoya, A I; Rand, J S; Greer, R M; Alberthsen, C; Vankan, D

    2017-06-01

    Approximately 140,000 unwanted dogs and cats are culled in Australia annually. There is a paucity of information linking sources of pet acquisition with subsequent euthanasia, which may inform evidence-based strategies to reduce euthanasia rates. This pilot study aimed to determine whether there is a higher risk of euthanasia related to the source of acquisition for pets surrendered to an animal shelter. Data for 5391 dogs and 5581 cats surrendered to one Queensland shelter between January 2006 and December 2009 were analysed. The main sources of acquisition for owner-surrendered dogs were 'shelter' and 'pet shop' and for owner-surrendered cats were 'own litter' and 'shelter'. Euthanasia rates for different sources varied. For adult dogs, acquisition through newspaper advertisements was associated with the highest euthanasia rate. Adult cats obtained as gifts (from friend or family member) had the highest euthanasia rate. For junior cats, the overwhelming source was the owner's own litter (68% of intake) and only kittens acquired as strays were at significantly higher risk of euthanasia. For both dogs and cats, animals acquired from shelters had lower rates of euthanasia than most other sources, which suggests that shelter-sourced animals may be considered a preferred source for pet acquisition to assist in reducing the number of adoptable pets euthanased. There was evidence from the study animal shelter that the risk of euthanasia was related to acquisition source. These findings should be confirmed by prospective studies, which should also investigate the interaction between acquisition source and other factors, using larger data sets from a variety of shelters. © 2017 Australian Veterinary Association.

  14. Validation of a simultaneous PET/MR system model for PET simulation using GATE

    International Nuclear Information System (INIS)

    Monnier, Florian; Fayad, Hadi; Bert, Julien; Schmidt, Holger; Visvikis, Dimitris

    2015-01-01

    Simultaneous PET/MR acquisition shows promise in a range of applications. Simulation using GATE is an essential tool that allows obtaining the ground truth for such acquisitions and therefore helping in the development and the validation of innovative processing methods such as PET image reconstruction, attenuation correction and motion correction. The purpose of this work is to validate the GATE simulation of the Siemens Biograph mMR PET/MR system. A model of the Siemens Biograph mMR was developed. This model includes the geometry and spatial positioning of the crystals inside the scanner and the characteristics of the detection process. The accuracy of the model was tested by comparing, on a real physical phantom study, GATE simulated results to reconstructed PET images using measured results obtained from a Siemens Biograph mMR system. The same parameters such as the acquisition time and phantom position inside the scanner were fixed for our simulations. List-mode outputs were recovered in both cases and reconstructed using the OPL-EM algorithm. Several parameters were used to compare the two reconstructed images such as profile comparison, signal-to-noise ratio and activity contrast analysis. Finally patient acquired MR images were segmented and used for the simulation of corresponding PET images. The simulated and acquired sets of reconstructed phantom images showed close emission values in regions of interest with relative differences lower than 5%. The scatter fraction was within a <3% agreement. Close matching of profiles and contrast indices were obtained between simulated and corresponding acquired PET images. Our results indicate that the GATE developed Biograph mMR model is accurate in comparison to the real scanner performance and can be used for evaluating innovative processing methods for applications in clinical PET/MR protocols.

  15. Processing optimization with parallel computing for the J-PET scanner

    Directory of Open Access Journals (Sweden)

    Krzemień Wojciech

    2015-12-01

    Full Text Available The Jagiellonian Positron Emission Tomograph (J-PET collaboration is developing a prototype time of flight (TOF-positron emission tomograph (PET detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measurements. The very fast field programmable gate array (FPGA-based front-end electronics and the data acquisition system, as well as low- and high-level reconstruction algorithms were specially developed to be used with the J-PET scanner. The TOF-PET data processing and reconstruction are time and resource demanding operations, especially in the case of a large acceptance detector that works in triggerless data acquisition mode. In this article, we discuss the parallel computing methods applied to optimize the data processing for the J-PET detector. We begin with general concepts of parallel computing and then we discuss several applications of those techniques in the J-PET data processing.

  16. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    Energy Technology Data Exchange (ETDEWEB)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M [Grupo de Fisica Nuclear, Departmento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid (Spain); Vaquero, J J; Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2009-03-21

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  17. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    International Nuclear Information System (INIS)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M; Vaquero, J J; Desco, M

    2009-01-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  18. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner

    International Nuclear Information System (INIS)

    Visvikis, D.; Griffiths, D.; Costa, D.C.; Bomanji, J.; Ell, P.J.

    2005-01-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions. (orig.)

  19. Simultaneous acquisition of dynamic PET-MRI: arterial input function using DSC-MRI and [18F]-FET

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, Liliana; Yun, Seong Dae; Silva, Nuno da; Filss, Christian; Scheins, Juergen; Telmann, Lutz; Herzog, Hans; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH (Germany)

    2015-05-18

    This work focuses on the study of simultaneous dynamic MR-PET acquisition in brain tumour patients. MR-based perfusion-weighted imaging (PWI) and PET [18F]-FET are dynamic methods, which allow to evaluate tumour metabolism in a quantitative way. In both methods, arterial input function (AIF) is necessary for quantification. However, the AIF estimation is a challenging task. In this work, we explore the possibilities to combine dynamic MR and PET AIF.

  20. Simultaneous acquisition of dynamic PET-MRI: arterial input function using DSC-MRI and [18F]-FET

    International Nuclear Information System (INIS)

    Caldeira, Liliana; Yun, Seong Dae; Silva, Nuno da; Filss, Christian; Scheins, Juergen; Telmann, Lutz; Herzog, Hans; Shah, Jon

    2015-01-01

    This work focuses on the study of simultaneous dynamic MR-PET acquisition in brain tumour patients. MR-based perfusion-weighted imaging (PWI) and PET [18F]-FET are dynamic methods, which allow to evaluate tumour metabolism in a quantitative way. In both methods, arterial input function (AIF) is necessary for quantification. However, the AIF estimation is a challenging task. In this work, we explore the possibilities to combine dynamic MR and PET AIF.

  1. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  2. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  3. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-08-15

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  4. Statistical dynamic imaging of RI-labeled tracer from list-mode PET data

    International Nuclear Information System (INIS)

    Tanimoto, Michiaki; Kuroda, Yoshihiro; Oshiro, Osamu; Watabe, Hiroshi; Kuroda, Tomohiro

    2009-01-01

    Positron emission tomography (PET) can be used in physiological analysis to illustrate physiological states by visualizing the accumulation of radioisotope (RI)-labeled tracer in specific organs or tissues. PET obtains spatio-temporal statistics in the form of list-mode data. However, conventional imaging techniques, which sum up list-mode data over a given time period, cannot depict detailed temporal dynamics of the RI-labeled tracer. In this study, a spatio-temporal analysis approach was employed to visualize the temporal flow dynamics of RI-labeled tracer from the obtained list-mode data. Experiments to assess the visualization of simulated RI-labeled tracer dynamics as well as RI-labeled tracer dynamics in a vascular phantom showed that the proposed method successfully depicted detailed temporal flow dynamics that could not be visualized using conventional methods. (author)

  5. Enhanced Application of 18F-FDG PET/CT in Bladder Cancer by Adding Early Dynamic Acquisition to a Standard Delayed PET Protocol.

    Science.gov (United States)

    Yoon, Hai-Jeon; Yoo, Jang; Kim, Yemi; Lee, Dong Hyeon; Kim, Bom Sahn

    2017-10-01

    We investigated the value of early dynamic (ED) PET for the detection and characterization of bladder cancer. Fifty-two bladder cancer patients were prospectively enrolled. The study protocol was composed of ED, whole-body (WB, 60 minutes after injection), and additional delayed (AD, 120 minutes after injection) PET acquisition. Early dynamic PET was acquired for 10 minutes and reconstructed as 5 frames at 2-minute intervals. A focal radiotracer accumulation confined to the bladder wall was considered as PET positive and referred for further quantitative measurement. SUVmax on ED (SUVmax, SUVmax, SUVmax, SUVmax, and SUVmax for 5 frames), WB (SUVmax), and AD PET (SUVmax) were measured. PET results were correlated with bladder cancer pathology variables. The sensitivities of ED, WB, and AD PET for bladder cancer were 84.6%, 57.7%, and 61.2%, respectively. The sensitivity of ED PET was significantly higher than that of WB (P = 0.002) and AD PET (P = 0.008). On ED PET, SUVmax was significantly correlated with muscle invasiveness, histological grade, and pathological tumor size (P = 0.018, P = 0.030, and P = 0.030). On WB and AD PET, only pathological tumor size showed significant positive correlation with SUVmax and SUVmax (P = 0.043 and P = 0.007). Early dynamic PET can help to detect and characterize bladder cancer.

  6. Non rigid respiratory motion correction in whole body PET/MR imaging

    International Nuclear Information System (INIS)

    Fayad, Hadi; Schmidt, Holger; Wuerslin, Christian; Visvikis, Dimitris

    2014-01-01

    Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted elastic transformations were applied to list-mode data either inside the image reconstruction or to the reconstructed respiratory synchronized images to obtain respiration corrected PET images.

  7. Evaluation of high performance data acquisition boards for simultaneous sampling of fast signals from PET detectors

    International Nuclear Information System (INIS)

    Judenhofer, Martin S; Pichler, Bernd J; Cherry, Simon R

    2005-01-01

    Detectors used for positron emission tomography (PET) provide fast, randomly distributed signals that need to be digitized for further processing. One possibility is to sample the signals at the peak initiated by a trigger from a constant fraction discriminator (CFD). For PET detectors, simultaneous acquisition of many channels is often important. To develop and evaluate novel PET detectors, a flexible, relatively low cost and high performance laboratory data acquisition (DAQ) system is therefore required. The use of dedicated DAQ systems, such as a multi-channel analysers (MCAs) or continuous sampling boards at high rates, is expensive. This work evaluates the suitability of well-priced peripheral component interconnect (PCI)-based 8-channel DAQ boards (PD2-MFS-8 2M/14 and PD2-MFS-8-500k/14, United Electronic Industries Inc., Canton, MA, USA) for signal acquisition from novel PET detectors. A software package was developed to access the board, measure basic board parameters, and to acquire, visualize, and analyse energy spectra and position profiles from block detectors. The performance tests showed that the boards input linearity is >99.2% and the standard deviation is 22 Na source was 14.9% (FWHM) at 511 keV and is slightly better than the result obtained with a high-end single channel MCA (8000A, Amptek, USA) using the same detector (16.8%). The crystals (1.2 x 1.2 x 12 mm 3 ) within a 9 x 9 LSO block detector could be clearly separated in an acquired position profile. Thus, these boards are well suited for data acquisition with novel detectors developed for nuclear imaging

  8. Diagnostic evaluation of the breast using PET: optimization of data acquisition and postprocessing

    International Nuclear Information System (INIS)

    Brix, G.; Lucht, R.; Henze, M.; Doll, J.; Zaers, J.; Trojan, H.; Knopp, M.V.; Haberkorn, U.; Deutsches Krebsforschungszentrum, Heidelberg

    2000-01-01

    Purpose: Development and evaluation of an optimized protocol for PET examinations of the female breast with 2-F-18-fluoro-2-deoxyglucose (F-18-FDG). Methods: All PET measurements were performed with a whole-body PET system (ECAT EXACT HR + ). In order to examine the women with the breasts freely pendant, a special extension for the patient table made of carbon layer composite was designed. After data acquisition in the 3D modus, emission data were sorted into 2D sinograms using the Fourier rebinning algorithm and reconstructed by means of an ultra-fast iterative 2D algorithm (HOSP). The reconstructed emission scans were superimposed onto the corresponding transmission images. The protocol presented was evaluated in examinations on 6 women with breast lesions after the administration of 150-220 MBq F-18-FDG. From two adjacent bed positions, emission and transmission data were acquired over periods of 20 min and 10 min, respectively. For comparison, dynamic magnetic resonance (MR) image series were acquired with a whole-body MR system (MAGNETOM SP 4000) using a double-breast coil. Results and Conclusion: Using the designed extension of the patient table, it was possible to examine corpulent women despite the limited patient part of the PET system in the prone position with the breasts freely pendant. Alongside a reduction in motion artifacts, this positioning also offers the possibility of making a direct comparison between PET and MR images. Despite the fact that the amount of F-18-FDG applied to the patient was markedly reduced, the combination of 3D data acquisition and iterative image reconstruction resulted in excellent quality of the emission scans. By superpositioning of iteratively reconstructed emission and transmission scans, anatomical localization of breast lesions visualized on the emission scans could be improved. The postprocessing of the PET data described was completed in 60 min, this meaning that the presented concept can readily be employed in

  9. Optimization of PET image quality by means of 3D data acquisition and iterative image reconstruction

    International Nuclear Information System (INIS)

    Doll, J.; Zaers, J.; Trojan, H.; Bellemann, M.E.; Adam, L.E.; Haberkorn, U.; Brix, G.

    1998-01-01

    The experiments were performed at the latest-generation whole-body PET system ECAT EXACT HR + . For 2D data acquisition, a collimator of thin tungsten septa was positioned in the field-of-view. Prior to image reconstruction, the measured 3D data were sorted into 2D sinograms by using the Fourier rebinning (FORE) algorithm developed by M. Defrise. The standard filtered backprojection (FBP) method and an optimized ML/EM algorithm with overrelaxation for accelerated convergence were employed for image reconstruction. The spatial resolution of both methods as well as the convergence and noise properties of the ML/EM algorithm were studied in phantom measurements. Furthermore, patient data were acquired in the 2D mode as well as in the 3D mode and reconstructed with both techniques. At the same spatial resolution, the ML/EM-reconstructed images showed fewer and less prominent artefacts than the FBP-reconstructed images. The resulting improved detail conspicuously was achieved for the data acquired in the 2D mode as well as in the 3D mode. The best image quality was obtained by iterative 2D reconstruction of 3D data sets which were previously rebinned into 2D sinograms with help of the FORE algorithm. The phantom measurements revealed that 50 iteration steps with the otpimized ML/EM algorithm were sufficient to keep the relative quantitation error below 5%. (orig./MG) [de

  10. Evaluation of attenuation correction in cardiac PET using PET/MR.

    Science.gov (United States)

    Lau, Jeffrey M C; Laforest, R; Sotoudeh, H; Nie, X; Sharma, S; McConathy, J; Novak, E; Priatna, A; Gropler, R J; Woodard, P K

    2017-06-01

    Simultaneous acquisition Positron emission tomography/magnetic resonance (PET/MR) is a new technology that has potential as a tool both in research and clinical diagnosis. However, cardiac PET acquisition has not yet been validated using MR imaging for attenuation correction (AC). The goal of this study is to evaluate the feasibility of PET imaging using a standard 2-point Dixon volume interpolated breathhold examination (VIBE) MR sequence for AC. Evaluation was performed in both phantom and patient data. A chest phantom containing heart, lungs, and a lesion insert was scanned by both PET/MR and PET/CT. In addition, 30 patients underwent whole-body 18 F-fluorodeoxyglucose PET/CT followed by simultaneous cardiac PET/MR. Phantom study showed 3% reduction of activity values in the myocardium due to the non-inclusion of the phased array coil in the AC. In patient scans, average standardized uptake values (SUVs) obtained by PET/CT and PET/MR showed no significant difference (n = 30, 4.6 ± 3.5 vs 4.7 ± 2.8, P = 0.47). There was excellent per patient correlation between the values acquired by PET/CT and PET/MR (R 2  = 0.97). Myocardial SUVs PET imaging using MR for AC shows excellent correlation with myocardial SUVs obtained by standard PET/CT imaging. The 2-point Dixon VIBE MR technique can be used for AC in simultaneous PET/MR data acquisition.

  11. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system

    Science.gov (United States)

    Sportelli, G.; Belcari, N.; Camarlinghi, N.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Ortuño, J. E.; Romano, F.; Santos, A.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-01-01

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1 mm

  12. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system

    International Nuclear Information System (INIS)

    Sportelli, G; Belcari, N; Camarlinghi, N; Ferretti, S; Kraan, A; Straub, K; Guerra, A Del; Rosso, V; Cirrone, G A P; Cuttone, G; Romano, F; Tramontana, A; Ortuño, J E; Santos, A

    2014-01-01

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1

  13. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    Science.gov (United States)

    Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João

    2016-02-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.

  14. Fast GPU-based computation of the sensitivity matrix for a PET list-mode OSEM algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, Moulay Ali; Carrier, Jean-Francois [Montreal Univ., QC (Canada). Dept. de Radio-Oncologie; Hissoiny, Sami [Ecole Polytechnique de Montreal, QC (Canada). Dept. de Genie Informatique et Genie Logiciel; Despres, Philippe [Quebec Univ. (Canada). Dept. de Radio-Oncologie

    2011-07-01

    One of the obstacle in introducing a list-mode PET reconstruction algorithm for routine clinical use is the long computation time required for the sensitivity matrix calculation. This matrix must be computed for each study because it depends on the object attenuation map. During the last decade, studies have shown that 3D list-mode OSEM reconstruction algorithms could be effectively performed and considerably accelerated by GPU devices. However, most of that preliminary work (1) was done for pre-clinical PET systems in which the number of LORs is small compared to modern human PET systems and (2) supposed that the sensitivity matrix is pre-calculated. The time required to compute this matrix can however be longer than the reconstruction time itself. The objective of this work is to investigate the performance of sensitivity matrix calculations in terms of computation time with modern GPUs, for clinical fully 3D LM-OSEM for modern PET scanners. For this purpose, sensitivity matrix calculations and full list-mode OSEM reconstruction for human PET systems were implemented on GPUs using the CUDA framework. The system matrices were built on-the-fly by using the multi-ray Siddon algorithm. The time to compute the sensitivity matrix for 288 x 288 x 57 arrays using 3 tangential LORs was 29 seconds. The 3D LM-OSEM algorithm, including the sensitivity matrix calculation, was performed for the same LORs in 71 seconds for 62 millions events, 6 frames and 1 iterations. This work let envision fast reconstructions for advanced PET application such as dynamic studies and parametric image reconstruction. (orig.)

  15. Monte Carlo simulation of efficient data acquisition for an entire-body PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Isnaini, Ismet; Obi, Takashi [Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Yoshida, Eiji, E-mail: rush@nirs.go.jp [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan)

    2014-07-01

    Conventional PET scanners can image the whole body using many bed positions. On the other hand, an entire-body PET scanner with an extended axial FOV, which can trace whole-body uptake images at the same time and improve sensitivity dynamically, has been desired. The entire-body PET scanner would have to process a large amount of data effectively. As a result, the entire-body PET scanner has high dead time at a multiplex detector grouping process. Also, the entire-body PET scanner has many oblique line-of-responses. In this work, we study an efficient data acquisition for the entire-body PET scanner using the Monte Carlo simulation. The simulated entire-body PET scanner based on depth-of-interaction detectors has a 2016-mm axial field-of-view (FOV) and an 80-cm ring diameter. Since the entire-body PET scanner has higher single data loss than a conventional PET scanner at grouping circuits, the NECR of the entire-body PET scanner decreases. But, single data loss is mitigated by separating the axially arranged detector into multiple parts. Our choice of 3 groups of axially-arranged detectors has shown to increase the peak NECR by 41%. An appropriate choice of maximum ring difference (MRD) will also maintain the same high performance of sensitivity and high peak NECR while at the same time reduces the data size. The extremely-oblique line of response for large axial FOV does not contribute much to the performance of the scanner. The total sensitivity with full MRD increased only 15% than that with about half MRD. The peak NECR was saturated at about half MRD. The entire-body PET scanner promises to provide a large axial FOV and to have sufficient performance values without using the full data.

  16. Retrospective data-driven respiratory gating for PET/CT

    International Nuclear Information System (INIS)

    Schleyer, Paul J; O'Doherty, Michael J; Barrington, Sally F; Marsden, Paul K

    2009-01-01

    Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.

  17. The simulation of a data acquisition system for a proposed high resolution PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, C.; Larwill, M.; Chappa, S. [Fermi National Accelerator Lab., Batavia, IL (United States); Ordonez, C. [Chicago Univ., IL (United States)

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs.

  18. The simulation of a data acquisition system for a proposed high resolution PET scanner

    International Nuclear Information System (INIS)

    Rotolo, C.; Larwill, M.; Chappa, S.; Ordonez, C.

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs

  19. Prospectively Electrocardiogram-Gated High-Pitch Spiral Acquisition Mode Dual-Source CT Coronary Angiography in Patients with High Heart Rates: Comparison with Retrospective Electrocardiogram-Gated Spiral Acquisition Mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Ma, Rui; Wang, Li Jun [Dept. of Radiology, Baotou Central Hospital, Baotou (China); Li, Li Gang; Chen, Jiu Hong [CT BM Clinic Marketing, Siemens Healthcare, Beijing (China)

    2012-11-15

    To assess the image quality and effective radiation dose of prospectively electrocardiogram (ECG)-gated high-pitch spiral acquisition mode (flash mode) of dual-source CT (DSCT) coronary angiography (CTCA) in patients with high heart rates (HRs) as compared with retrospectively ECG-gated spiral acquisition mode. Two hundred and sixty-eight consecutive patients (132 female, mean age: 55 {+-} 11 years) with mean HR > 65 beats per minute (bpm) were prospectively included in this study. The patients were divided into two groups. Collection was performed in group A CTCA using flash mode setting at 20-30% of the R-R interval, and retrospectively ECG-gated spiral acquisition mode in group B. The image noise, contrast-to-noise ratio (CNR), image quality scores, effective radiation dose and influencing factors on image quality between the two groups were assessed. There were no significant differences in image quality scores and proportions of non-diagnostic coronary artery segments between two groups (image quality scores: 1.064 {+-} 0.306 [group A] vs. 1.084 {+-} 0.327 [group B], p = 0.063; proportion of non-diagnostic coronary artery segments: segment-based analysis 1.52% (group A) vs. 1.74% (group B), p = 0.345; patient-based analysis 7.5% (group A) vs. 6.7% (group B), p = 0.812). The estimated radiation dose was 1.0 {+-} 0.16 mSv in group A and 7.1 {+-} 1.05 mSv in group B (p = 0.001). In conclusion, in patients with HRs > 65 bpm without cardiac arrhythmia, the prospectively high-pitch spiral-acquisition mode with image-acquired timing set at 20-30% of the R-R interval provides a similar image quality and low rate of non-diagnostic coronary segments to the retrospectively ECG-gated low-pitch spiral acquisition mode, with significant reduction of radiation exposure.

  20. Prospectively Electrocardiogram-Gated High-Pitch Spiral Acquisition Mode Dual-Source CT Coronary Angiography in Patients with High Heart Rates: Comparison with Retrospective Electrocardiogram-Gated Spiral Acquisition Mode

    International Nuclear Information System (INIS)

    Sun, Kai; Ma, Rui; Wang, Li Jun; Li, Li Gang; Chen, Jiu Hong

    2012-01-01

    To assess the image quality and effective radiation dose of prospectively electrocardiogram (ECG)-gated high-pitch spiral acquisition mode (flash mode) of dual-source CT (DSCT) coronary angiography (CTCA) in patients with high heart rates (HRs) as compared with retrospectively ECG-gated spiral acquisition mode. Two hundred and sixty-eight consecutive patients (132 female, mean age: 55 ± 11 years) with mean HR > 65 beats per minute (bpm) were prospectively included in this study. The patients were divided into two groups. Collection was performed in group A CTCA using flash mode setting at 20-30% of the R-R interval, and retrospectively ECG-gated spiral acquisition mode in group B. The image noise, contrast-to-noise ratio (CNR), image quality scores, effective radiation dose and influencing factors on image quality between the two groups were assessed. There were no significant differences in image quality scores and proportions of non-diagnostic coronary artery segments between two groups (image quality scores: 1.064 ± 0.306 [group A] vs. 1.084 ± 0.327 [group B], p = 0.063; proportion of non-diagnostic coronary artery segments: segment-based analysis 1.52% (group A) vs. 1.74% (group B), p = 0.345; patient-based analysis 7.5% (group A) vs. 6.7% (group B), p = 0.812). The estimated radiation dose was 1.0 ± 0.16 mSv in group A and 7.1 ± 1.05 mSv in group B (p = 0.001). In conclusion, in patients with HRs > 65 bpm without cardiac arrhythmia, the prospectively high-pitch spiral-acquisition mode with image-acquired timing set at 20-30% of the R-R interval provides a similar image quality and low rate of non-diagnostic coronary segments to the retrospectively ECG-gated low-pitch spiral acquisition mode, with significant reduction of radiation exposure.

  1. PET/CT detectability and classification of simulated pulmonary lesions using an SUV correction scheme

    Science.gov (United States)

    Morrow, Andrew N.; Matthews, Kenneth L., II; Bujenovic, Steven

    2008-03-01

    Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.

  2. Automatic cardiac gating of small-animal PET from list-mode data

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Udias, J.M. [Universidad Complutense de Madrid Univ. (Spain). Grupo de Fisica Nuclear; Vaquero, J.J.; Desco, M. [Universidad Carlos III de Madrid (Spain). Dept. de Bioingenieria e Ingenieria Aeroespacial; Cusso, L. [Hospital General Universitario Gregorio Maranon, Madrid (Spain). Unidad de Medicina y Cirugia Experimental

    2011-07-01

    This work presents a method to obtain automatically the cardiac gating signal in a PET study of rats, by employing the variation with time of the counts in the cardiac region, that can be extracted from list-mode data. In an initial step, the cardiac region is identified in the image space by backward-projecting a small fraction of the acquired data and studying the variation with time of the counts in each voxel inside said region, with frequencies within 2 and 8 Hz. The region obtained corresponds accurately to the left-ventricle of the heart of the rat. In a second step, the lines-of-response (LORs) connected with this region are found by forward-projecting this region. The time variation of the number of counts in these LORs contains the cardiac motion information that we want to extract. This variation of counts with time is band-pass filtered to reduce noise, and the time signal so obtained is used to create the gating signal. The result was compared with a cardiac gating signal obtained from an ECG acquired simultaneously to the PET study. Reconstructed gated images obtained from both gating information are similar. The method proposed demonstrates that valid cardiac gating signals can be obtained for rats from PET list-mode data. (orig.)

  3. Variability in {sup 18}F-FDG PET/CT methodology of acquisition, reconstruction and analysis for oncologic imaging: state survey; Variabilidade metodologica na aquisicao, reconstrucao e analise de estudos de PET/CT oncologico com FDG-{sup 18}F: levantamento estadual

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andreia C.F. da S.; Druzian, Aline C.; Pianta, Diego B.; Bacelar, Alexandre, E-mail: acfischer@hcpa.edu.br [Hospital de Clinicas de Porto Alegre, RS (Brazil); Silva, Ana M. Marques da [Pontificia Universidade Catolica do Rio Grande do Sul (NIMed/PUC-RS), Porto Alegre, RS (Brazil). Faculdade de Fisica. Nucleo de Pesquisas em Imagens Medicas

    2016-07-01

    The SUV in {sup 18}F-FDG PET/CT oncological imaging is useful for cancer diagnosis, staging and treatment assessment. There are, however, several factors that can give rise to bias in SUV measurements. When using SUV as a diagnostic tool, one needs to minimize the variability in this measurement by standardization of patient preparation, acquisition and reconstruction parameters. The aim of this study is to evaluate the methodological variability in PET/CT acquisition in Rio Grande do Sul State. For that, in each department, a questionnaire was applied to survey technical information from PET/CT systems and about the acquisitions and analysis methods utilized. All departments implement quality assurance programs consistent with (inter)national recommendations. However, the acquisition and reconstruction methods of acquired PET data differ. The implementation of a harmonized strategy for quantifying the SUV is suggested, in order to obtain greater reproducibility and repeatability. (author)

  4. Fast generation of 4D PET-MR data from real dynamic MR acquisitions

    International Nuclear Information System (INIS)

    Tsoumpas, C; Buerger, C; King, A P; Schleyer, P; Schaeffter, T; Marsden, P K; Mollet, P; Keereman, V; Vandenberghe, S; Schulz, V

    2011-01-01

    We have implemented and evaluated a framework for simulating simultaneous dynamic PET-MR data using the anatomic and dynamic information from real MR acquisitions. PET radiotracer distribution is simulated by assigning typical FDG uptake values to segmented MR images with manually inserted additional virtual lesions. PET projection data and images are simulated using analytic forward projections (including attenuation and Poisson statistics) implemented within the image reconstruction package STIR. PET image reconstructions are also performed with STIR. The simulation is validated with numerical simulation based on Monte Carlo (GATE) which uses more accurate physical modelling, but has 150x slower computation time compared to the analytic method for ten respiratory positions and is 7000x slower when performing multiple realizations. Results are validated in terms of region of interest mean values and coefficients of variation for 65 million coincidences including scattered events. Although some discrepancy is observed, agreement between the two different simulation methods is good given the statistical noise in the data. In particular, the percentage difference of the mean values is 3.1% for tissue, 17% for the lungs and 18% for a small lesion. The utility of the procedure is demonstrated by simulating realistic PET-MR datasets from multiple volunteers with different breathing patterns. The usefulness of the toolkit will be shown for performance investigations of the reconstruction, motion correction and attenuation correction algorithms for dynamic PET-MR data.

  5. Phantom study on three-dimensional target volume delineation by PET/CT-based auto-contouring

    International Nuclear Information System (INIS)

    Zhang, Tiejiao; Sakaguchi, Yuichi; Mitsumoto, Katsuhiko; Mitsumoto, Tatsuya; Sasaki, Masayuki; Tachiya, Yosuke; Ohya, Nobuyoshi

    2010-01-01

    The aim of this study was to determine an appropriate threshold value for delineation of the target volume in positron emission tomography (PET)/CT and to investigate whether we could delineate a target volume by phantom studies. A phantom consisted of six spheres (φ10-37 mm) filled with 18 F solution. Data acquisition was performed PET/CT in non-motion and motion status with high 18 F solution and in non-motion status with low 18 F solution. In non-motion phantom experiments, we determined two types of threshold value, an absolute SUV (T SUV ) and a percentage of the maximum SUV (T % ). Delineation using threshold values was applied for all spheres and for selected large spheres (a diameter of 22 mm or larger). In motion phantom experiments, data acquisition was performed in a static mode (sPET) and a gated mode (gPET). CT scanning was performed with helical CT (HCT) and 4-dimentional CT (4DCT). The appropriate threshold values were aT % =27% and aT SUV =2.4 for all spheres, and sT % =30% and sT SUV =4.3 for selected spheres. For all spheres in sPET/HCT in motion, the delineated volumes were 84%-129% by the aT % and 34%-127% by the aT SUV . In gPET/4DCT in motion, the delineated volumes were 94-103% by the aT % and 51-131% by the aT SUV . For low radioactivity spheres, the delineated volumes were all underestimated. A threshold value of T % =27% was proposed for auto-contouring of lung tumors. Our results also suggested that the respiratory gated data acquisition should be performed in both PET and CT for target volume delineation. (author)

  6. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques

    International Nuclear Information System (INIS)

    Bettinardi, Valentino; Picchio, Maria; Di Muzio, Nadia; Gianolli, Luigi; Gilardi, Maria Carla; Messa, Cristina

    2010-01-01

    Purpose: To describe the degradation effects produced by respiratory organ and lesion motion on PET/CT images and to define the role of respiratory gated (RG) 4D-PET/CT techniques to compensate for such effects. Methods: Based on the literature and on our own experience, technical recommendations and clinical indications for the use of RG 4D PET/CT have been outlined. Results: RG 4D-PET/CT techniques require a state of the art PET/CT scanner, a respiratory monitoring system and dedicated acquisition and processing protocols. Patient training is particularly important to obtain a regular breathing pattern. An adequate number of phases has to be selected to balance motion compensation and statistical noise. RG 4D PET/CT motion free images may be clinically useful for tumour tissue characterization, monitoring patient treatment and target definition in radiation therapy planning. Conclusions: RG 4D PET/CT is a valuable tool to improve image quality and quantitative accuracy and to assess and measure organ and lesion motion for radiotherapy planning.

  7. A regularized relaxed ordered subset list-mode reconstruction algorithm and its preliminary application to undersampling PET imaging

    International Nuclear Information System (INIS)

    Cao, Xiaoqing; Xie, Qingguo; Xiao, Peng

    2015-01-01

    List mode format is commonly used in modern positron emission tomography (PET) for image reconstruction due to certain special advantages. In this work, we proposed a list mode based regularized relaxed ordered subset (LMROS) algorithm for static PET imaging. LMROS is able to work with regularization terms which can be formulated as twice differentiable convex functions. Such a versatility would make LMROS a convenient and general framework for fulfilling different regularized list mode reconstruction methods. LMROS was applied to two simulated undersampling PET imaging scenarios to verify its effectiveness. Convex quadratic function, total variation constraint, non-local means and dictionary learning based regularization methods were successfully realized for different cases. The results showed that the LMROS algorithm was effective and some regularization methods greatly reduced the distortions and artifacts caused by undersampling. (paper)

  8. Timing performances of a data acquisition system for Time of Flight PET

    International Nuclear Information System (INIS)

    Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Bisogni, Maria G.; Collazuol, Gianmaria; Ambrosi, Giovanni; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2012-01-01

    We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm 2 of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.

  9. Optimization of Rb-82 PET acquisition and reconstruction protocols for myocardial perfusion defect detection

    Science.gov (United States)

    Tang, Jing; Rahmim, Arman; Lautamäki, Riikka; Lodge, Martin A.; Bengel, Frank M.; Tsui, Benjamin M. W.

    2009-05-01

    The purpose of this study is to optimize the dynamic Rb-82 cardiac PET acquisition and reconstruction protocols for maximum myocardial perfusion defect detection using realistic simulation data and task-based evaluation. Time activity curves (TACs) of different organs under both rest and stress conditions were extracted from dynamic Rb-82 PET images of five normal patients. Combined SimSET-GATE Monte Carlo simulation was used to generate nearly noise-free cardiac PET data from a time series of 3D NCAT phantoms with organ activities modeling different pre-scan delay times (PDTs) and total acquisition times (TATs). Poisson noise was added to the nearly noise-free projections and the OS-EM algorithm was applied to generate noisy reconstructed images. The channelized Hotelling observer (CHO) with 32× 32 spatial templates corresponding to four octave-wide frequency channels was used to evaluate the images. The area under the ROC curve (AUC) was calculated from the CHO rating data as an index for image quality in terms of myocardial perfusion defect detection. The 0.5 cycle cm-1 Butterworth post-filtering on OS-EM (with 21 subsets) reconstructed images generates the highest AUC values while those from iteration numbers 1 to 4 do not show different AUC values. The optimized PDTs for both rest and stress conditions are found to be close to the cross points of the left ventricular chamber and myocardium TACs, which may promote an individualized PDT for patient data processing and image reconstruction. Shortening the TATs for <~3 min from the clinically employed acquisition time does not affect the myocardial perfusion defect detection significantly for both rest and stress studies.

  10. Dual cardiac-respiratory gated PET: implementation and results from a feasibility study

    International Nuclear Information System (INIS)

    Martinez-Moeller, Axel; Zikic, Darko; Navab, Nassir; Botnar, Rene M.; Bundschuh, Ralph A.; Ziegler, Sibylle I.; Schwaiger, Markus; Nekolla, Stephan G.; Howe, William

    2007-01-01

    Spatial resolution in myocardial imaging is impaired by both cardiac and respiratory motion owing to motional blurring. We investigated the feasibility of a dual cardiac-respiratory gated positron emission tomography (PET) acquisition using a clinical PET/computer tomography (CT) scanner. We describe its implementation and present results on the respiratory motion observed. The correlation between diaphragmatic excursion measured by real-time magnetic resonance imaging (MRI) and the expansion of the chest measured with an elastic belt was studied in six subjects. PET list mode acquisitions were then performed in 12 patients, six of them injected with 13 N-ammonia and six with 18 F-FDG. In parallel, the ECG and respiratory signals of the patients were recorded and the list mode file correspondingly sorted using a dual gated approach. Respiratory motion of the heart was quantified by measuring the displacement between the inspiratory and expiratory images in the diastolic phase by means of intensity-based non-rigid image registration. The correlation between diaphragmatic excursion and expansion of the chest was excellent (R 2 = 0.91), validating the ability of the elastic belt to provide an adequate respiratory trigger. Respiratory signals corresponding to the chest expansion showed a large inter-patient variability, requiring adapted algorithms in order to define suitable respiratory gates. Dual gated PET series were successfully acquired for both groups of patients, showing better resolved myocardial walls. The average respiratory motion of the heart measured by PET was 4.8 mm, with its largest component in the craniocaudal direction. Moreover, a deformation of the heart with respiration was observed, with the inferior wall moving significantly more than the anterior. Dual gated cardiac PET studies were performed successfully and showed better resolved myocardial walls as compared with ungated acquisitions. The respiratory motion of the heart presented a

  11. Timing performances of a data acquisition system for Time of Flight PET

    Energy Technology Data Exchange (ETDEWEB)

    Morrocchi, Matteo, E-mail: matteo.morrocchi@pi.infn.it [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy); Marcatili, Sara; Belcari, Nicola; Bisogni, Maria G. [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy); Collazuol, Gianmaria [University of Padova and INFN Sezione di Padova (Italy); Ambrosi, Giovanni [INFN Sezione di Perugia, I 06100 Perugia (Italy); Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito [Politecnico di Bari and INFN Sezione di Bari, I 70100 Bari (Italy); Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres [Universidad Politecnica de Madrid, E 28040 Madrid (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Del Guerra, Alberto [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy)

    2012-12-11

    We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm{sup 2} of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.

  12. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems

    Energy Technology Data Exchange (ETDEWEB)

    Jentzen, Walter; Freudenberg, Lutz; Brandau, Wolfgang; Bockisch, Andreas [Universitaet Duisburg-Essen, Klinik fuer Nuklearmedizin, Essen (Germany); Weise, Reiner; Burchert, Wolfgang [Institut fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen (Germany); Kupferschlaeger, Juergen; Bares, Ronald [Universitaet Tuebingen, Klinik fuer Nuklearmedizin, Tuebingen (Germany)

    2008-03-15

    This study evaluated the absolute quantification of iodine-124 ({sup 124}I) activity concentration with respect to the use of this isotope for dosimetry before therapies with {sup 131}I or {sup 131}I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using {sup 124}I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with {sup 124}I and with fluorine-18 ({sup 18}F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with {sup 18}F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR{sup +}) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our {sup 124}I PET(/CT) protocol for DTC patients. Compared with that of {sup 18}F, transversal spatial resolution of {sup 124}I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P<0.002). Using the body phantom, recovery was lower for {sup 124}I than for {sup 18}F in both 2D and 3D modes. The {sup 124}I recovery coefficient of the largest sphere was significantly higher in 2D than in 3D mode (81% vs. 75%, P=0.03). Remarkably, the {sup 18}F recovery coefficient for the largest sphere significantly deviated from unity

  13. Combined positron emission tomography/computed tomography (PET/CT) for clinical oncology: technical aspects and acquisition protocols

    International Nuclear Information System (INIS)

    Beyer, T.

    2004-01-01

    Combined PET/CT imaging is a non-invasive means of reviewing both, the anatomy and the molecular pathways of a patient during a quasi-simultaneous examination. Since the introduction of the prototype PET/CT in 1998 a rapid development of this imaging technology is being witnessed. The incorporation of fast PET detector technology into PET/CT designs and the routine use of the CT transmission images for attenuation correction of the PET allow for anato-metabolic whole-body examinations to be completed in less than 30 min. Thus, PET/CT imaging offers a logistical advantage to both, the patient and the clinicians since the two complementary exams - whenever clinically indicated - can be performed almost at the same time and a single integrated report can be created. Nevertheless, a number of pit-falls, primarily from the use of CT-based attenuation correction, have been identified and are being addressed through optimized acquisition protocols. It is fair to say, that PET/CT has been integrated in the diagnostic imaging arena, and in many cases has led to a close collaboration between different, yet complementary diagnostic and therapeutic medical disciplines. (orig.)

  14. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data.

    Science.gov (United States)

    Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger

    2016-01-01

    Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose

  15. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol. Synopsis of Version 2.0

    International Nuclear Information System (INIS)

    Fukukita, Hiroyoshi; Suzuki, Kazufumi; Matsumoto, Keiichi; Terauchi, Takashi; Shimada, Naoki; Daisaki, Hiromitsu; Ikari, Yasuhiko; Senda, Michio

    2014-01-01

    This synopsis outlines the Japanese guideline Version 2.0 for the data acquisition protocol of oncology FDG-PET/CT scans that was created by a joint task force of the Japanese Society of Nuclear Medicine Technology, the Japanese Society of Nuclear Medicine and the Japanese Council of PET Imaging, and was published in Kakuigaku-Gijutsu 2013; 33:377-420 in Japanese. The guideline aims at standardizing the PET image quality among PET centers and different PET camera models by providing criteria for the IEC body phantom image quality as well as for the patient PET image quality based on the noise equivalent count (NEC), NEC density and liver signal-to-noise ratio, so that the appropriate scanning parameters can be determined for each PET camera. This Version 2.0 covers issues that were not focused on in Version 1.0, including the accuracy of the standardized uptake value (SUV), effect of body size together with adjustment of scanning duration, and time-of-flight (TOF) reconstruction technique. Version 2.0 also presents data acquired with new PET camera models that were not tested in Version 1.0. Reference values for physical indicators of phantom image quality have been updated as well. (author)

  16. An Austrian framework for PET quality control

    International Nuclear Information System (INIS)

    Nicoletti, R.; Dobrozemsky, G.; Minear, G.; Bergmann, H.

    2002-01-01

    Full text: The European patient protection directive (97/43 EURATOM) requires regular routine quality control (QC) of PET imaging devices. Since no standards were available covering this area and in order to comply with the directive a joint working party of the Austrian societies of nuclear medicine and of medical physics have developed a set of procedures suitable for both dedicated PET scanners and gamma cameras operating in coincidence mode (GCPET). The routine procedures proposed include both manufacturer recommended procedures and tests for specific parameters and calibration procedures. Wherever possible, procedures adapted or derived from NEMA standards publication NU 2-2001 were used to permit direct comparison with specified parameters of image quality. For dedicated PET scanners the most important procedures are the checking of detector sensitivities and the attenuation calibration scan. With full ring scanners the attenuation calibration scan is a blank scan, with partial ring devices a special attenuation calibration phantom has to be used. Test protocols are specific to manufacturer and scanner type. They are usually performed automatically overnight. In addition, some instruments require special calibrations, e.g. gain adjustments or coincidence timing calibration. GCPET procedures include the frequent assessment in coincidence mode of detector uniformity, energy resolution and system sensitivity. Common to both dedicated PET and GCPET are the regular quarterly assessment of tomographic spatial resolution and the calibration of the system for quantitative measurements. As a total performance test for both systems assessment of image quality following NU 2-2001 was included, to be carried out after major system changes or repairs. The suite of QC procedures was tested on several dedicated PET and GCPET systems including all major manufacturers' systems. Due to missing hardware or software not all tests could be performed on all systems. Some of the

  17. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    International Nuclear Information System (INIS)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A.

    2013-01-01

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  18. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A., E-mail: Michael.King@umassmed.edu [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  19. The AX-PET demonstrator-Design, construction and characterization

    International Nuclear Information System (INIS)

    Beltrame, P.; Bolle, E.; Braem, A.; Casella, C.; Chesi, E.; Clinthorne, N.; De Leo, R.; Dissertori, G.; Djambazov, L.; Fanti, V.; Heller, M.; Joram, C.; Kagan, H.; Lustermann, W.; Meddi, F.; Nappi, E.; Nessi-Tedaldi, F.; Oliver, J.F.; Pauss, F.; Rafecas, M.

    2011-01-01

    Axial PET is a novel geometrical concept for Positron Emission Tomography (PET), based on layers of long scintillating crystals axially aligned with the bore axis. The axial coordinate is obtained from arrays of wavelength shifting (WLS) plastic strips placed orthogonally to the crystals. This article describes the design, construction and performance evaluation of a demonstrator set-up which consists of two identical detector modules, used in coincidence. Each module comprises 48 LYSO crystals of 100 mm length and 156 WLS strips. Crystals and strips are readout by Geiger-mode Avalanche Photo Diodes (G-APDs). The signals from the two modules are processed by fully analog front-end electronics and recorded in coincidence by a VME-based data acquisition system. Measurements with point-like 22 Na sources, with the modules used both individually and in coincidence mode, allowed for a complete performance evaluation up to the focal plane reconstruction of point sources. The results obtained are in good agreement with expectations and proved the set-up to be ready for the next evaluation phase with PET phantoms filled with radiotracers.

  20. Simultaneous PET/MRI with (13)C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification.

    Science.gov (United States)

    Hansen, Adam E; Andersen, Flemming L; Henriksen, Sarah T; Vignaud, Alexandre; Ardenkjaer-Larsen, Jan H; Højgaard, Liselotte; Kjaer, Andreas; Klausen, Thomas L

    2016-12-01

    Integrated PET/MRI with hyperpolarized (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous (1)H-MRI and PET but never for (13)C-MRSI and PET. Here, the feasibility of simultaneous PET and (13)C-MRSI as well as hyperpolarized (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Combined PET and (13)C-MRSI phantoms including a NEMA [(18)F]-FDG phantom, (13)C-acetate and (13)C-urea sources, and hyperpolarized (13)C-pyruvate were imaged repeatedly with PET and/or (13)C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and (13)C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. PET and (13)C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous (13)C-MRSI was 0.83 (largest sphere) and -0.76 % (background). The average difference in net trues was -0.01 %. The average difference in (13)C-MRSI SNR between acquisitions with and without simultaneous PET ranged from -2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of (13)C-MRSI of hyperpolarized (13)C-pyruvate. Simultaneous PET and (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and

  1. Quantitative PET imaging with the 3T MR-BrainPET

    International Nuclear Information System (INIS)

    Weirich, C.; Scheins, J.; Lohmann, P.; Tellmann, L.; Byars, L.; Michel, C.; Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N.J.

    2013-01-01

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner

  2. MO-G-BRF-02: Enhancement of Texture-Based Metastasis Prediction Models Via the Optimization of PET/MRI Acquisition Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Vallieres, M; Laberge, S; Levesque I, R; El Naqa, I [McGill University, Montreal, QC (Canada)

    2014-06-15

    Purpose: We have previously identified a prediction model of lung metastases at diagnosis of soft-tissue sarcomas (STS) that is composed of two textural features extracted from FDG-PET and T1-weighted (T1w) MRI scans. The goal of this study is to evaluate whether the optimization in FDGPET and MRI acquisition parameters would enhance the prediction performance of texture-based models. Methods: Ten FDG-PET and T1w- MRI digitized tumor models were generated from imaging data of STS patients who underwent pre-treatment clinical scans between 2005 and 2011. Five of ten patients eventually developed lung metastases. Numerically simulated MR images were produced using echo times (TE) of 2 and 4 times the nominal clinical parameter (TEc), and repetition times (TR) of 0.5, 0.67, 1.5 and 2 times the nominal clinical parameter (TRc) found in the DICOM headers (TEc range: 9–13 ms, TRc range: 410-667 ms). PET 2D images were simulated using Monte-Carlo and were reconstructed using an ordered-subsets expectation maximization (OSEM) algorithm with 1 to 32 iterations and a post-reconstruction Gaussian filter of 0, 2, 4 or 6 mm width. For all possible combinations of PET and MRI acquisition parameters, the prediction model was constructed using logistic regression with new coefficients, and its associated prediction performance for lung metastases was evaluated using the area under the ROC curve (AUC). Results: The prediction performance over all simulations yielded AUCs ranging from 0.7 to 1. Notably, TR values below or equal to TRc and higher PET post-reconstruction filter widths yielded higher prediction performance. The best results were obtained with a combination of 4*TEc, TRc, 30 OSEM iterations and 2mm filter width. Conclusion: This work indicates that texture-based metastasis prediction models could be improved using optimized choices of FDG-PET and MRI acquisition protocols. This principle could be generalized to other texture-based models.

  3. Uniformity studies inter cut with continuous movement PET stretcher; Homogeneidad intercorte de estudios PET con movimiento continuo de camila

    Energy Technology Data Exchange (ETDEWEB)

    Cons Perez, N.; Gomez Gonzalez, N.; Garcia Repiso, S.; Hernandez Rodriguez, J.; Montes Fuentes, C.; Garcia Ledesma, J.; Diez Gallego, M. A.

    2015-07-01

    One of the latest advances in PET scanners is the introduction of acquisitions with continuous movement of stretcher (CBM) Among the benefits that this technology brings they are: lower axial variation of noise, greater flexibility in planning studies with different levels of statistics for different anatomical and greater patient comfort regions. Behavior unexpected because the concentration obtained in all CBMs studies with PET-CT scanner Biograph mCTFlow (Slemens Medica Solutions) we propose a quantitative analysis with a series of parameters chosen to assess the inhomogeneity between cuts in the concentration obtained by homogeneous mannequins. A comparison with studies of static bed (S and S) indicates a problem only mode dynamic bed. (Author)

  4. Respiratory motion correction for PET oncology applications using affine transformation of list mode data

    International Nuclear Information System (INIS)

    Lamare, F; Cresson, T; Savean, J; Rest, C Cheze Le; Reader, A J; Visvikis, D

    2007-01-01

    Respiratory motion is a source of artefacts and reduced image quality in PET. Proposed methodology for correction of respiratory effects involves the use of gated frames, which are however of low signal-to-noise ratio. Therefore a method accounting for respiratory motion effects without affecting the statistical quality of the reconstructed images is necessary. We have implemented an affine transformation of list mode data for the correction of respiratory motion over the thorax. The study was performed using datasets of the NCAT phantom at different points throughout the respiratory cycle. List mode data based PET simulated frames were produced by combining the NCAT datasets with a Monte Carlo simulation. Transformation parameters accounting for respiratory motion were estimated according to an affine registration and were subsequently applied on the original list mode data. The corrected and uncorrected list mode datasets were subsequently reconstructed using the one-pass list mode EM (OPL-EM) algorithm. Comparison of corrected and uncorrected respiratory motion average frames suggests that an affine transformation in the list mode data prior to reconstruction can produce significant improvements in accounting for respiratory motion artefacts in the lungs and heart. However, the application of a common set of transformation parameters across the imaging field of view does not significantly correct the respiratory effects on organs such as the stomach, liver or spleen

  5. Comparison of an alternative and existing binning methods to reduce the acquisition duration of 4D PET/CT

    International Nuclear Information System (INIS)

    Didierlaurent, David; Ribes, Sophie; Caselles, Olivier; Jaudet, Cyril; Dierickx, Lawrence O.; Zerdoud, Slimane; Brillouet, Severine; Weits, Kathleen; Batatia, Hadj; Courbon, Frédéric

    2014-01-01

    Purpose: Respiratory motion is a source of artifacts that reduce image quality in PET. Four dimensional (4D) PET/CT is one approach to overcome this problem. Existing techniques to limiting the effects of respiratory motions are based on prospective phase binning which requires a long acquisition duration (15–25 min). This time is uncomfortable for the patients and limits the clinical exploitation of 4D PET/CT. In this work, the authors evaluated an existing method and an alternative retrospective binning method to reduce the acquisition duration of 4D PET/CT. Methods: The authors studied an existing mixed-amplitude binning (MAB) method and an alternative binning method by mixed-phases (MPhB). Before implementing MPhB, they analyzed the regularity of the breathing patterns in patients. They studied the breathing signal drift and missing CT slices that could be challenging for implementing MAB. They compared the performance of MAB and MPhB with current binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. Results: MPhB can be implemented depending on an optimal phase (in average, the exhalation peak phase −4.1% of the entire breathing cycle duration). Signal drift of patients was in average 35% relative to the breathing amplitude. Even after correcting this drift, MAB was feasible in 4D CT for only 64% of patients. No significant differences appeared between the different binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. The authors also determined the inaccuracies of MAB and MPhB to measure the maximum amplitude of tumor motion with three bins (less than 3 mm for movement inferior to 12 mm, up to 6.4 mm for a 21 mm movement). Conclusions: The authors proposed an alternative binning method by mixed-phase binning that halves the acquisition duration of 4D PET/CT. Mixed-amplitude binning was challenging because of signal drift and missing CT slices. They showed that more

  6. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    Science.gov (United States)

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  7. APNEA list mode data acquisition and real-time event processing

    Energy Technology Data Exchange (ETDEWEB)

    Hogle, R.A.; Miller, P. [GE Corporate Research & Development Center, Schenectady, NY (United States); Bramblett, R.L. [Lockheed Martin Specialty Components, Largo, FL (United States)

    1997-11-01

    The LMSC Active Passive Neutron Examinations and Assay (APNEA) Data Logger is a VME-based data acquisition system using commercial-off-the-shelf hardware with the application-specific software. It receives TTL inputs from eighty-eight {sup 3}He detector tubes and eight timing signals. Two data sets are generated concurrently for each acquisition session: (1) List Mode recording of all detector and timing signals, timestamped to 3 microsecond resolution; (2) Event Accumulations generated in real-time by counting events into short (tens of microseconds) and long (seconds) time bins following repetitive triggers. List Mode data sets can be post-processed to: (1) determine the optimum time bins for TRU assay of waste drums, (2) analyze a given data set in several ways to match different assay requirements and conditions and (3) confirm assay results by examining details of the raw data. Data Logger events are processed and timestamped by an array of 15 TMS320C40 DSPs and delivered to an embedded controller (PowerPC604) for interim disk storage. Three acquisition modes, corresponding to different trigger sources are provided. A standard network interface to a remote host system (Windows NT or SunOS) provides for system control, status, and transfer of previously acquired data. 6 figs.

  8. A survey of PET activity in Germany during 1999

    International Nuclear Information System (INIS)

    Brix, Gunnar; Nosske, Dietmar; Minkov, Vladimir; Glatting, Gerhard; Reske, Sven N.

    2002-01-01

    Positron emission tomography (PET) is the most powerful molecular imaging technique currently available for clinical use. The aim of this study was to provide public health information on PET procedures carried out in Germany - a country with a very high number of PET installations. To this end, all facilities that in 1999 were running at least one dedicated PET system were contacted and requested to provide information in a questionnaire on the radiopharmaceuticals applied, the total number and age distribution of patients and volunteers examined, the main diagnostic applications and the range of administered activities. Based on the information provided by 48 of the 60 PET facilities in Germany, an annual frequency of about 0.34 PET procedures per 1,000 inhabitants was estimated, associated with an annual per capita effective dose of about 1.9 μSv. Averaged over all PET procedures, the mean effective dose to patients was 5.6 mSv. The age distribution of patients and volunteers was skewed markedly towards higher ages; only a very small fraction ( 18 F]fluoro-2-deoxy-D-glucose (FDG), which was utilised in more than 84% of all PET procedures. For this tracer, the median value for activities applied for examinations in the three-dimensional (3D) acquisition mode was only half of that used for two-dimensional (2D) measurements. Based on a statistical analysis of the distribution of mean FDG activities administered to patients in the 48 PET facilities who responded to our inquiry, diagnostic reference levels of 370 and 200 MBq are proposed for the 2D and the 3D mode, respectively. (orig.)

  9. FDG PET and PET/CT : EANM procedure guidelines for tumour PET imaging: version 1.0

    NARCIS (Netherlands)

    Boellaard, Ronald; O'Doherty, Mike J.; Weber, Wolfgang A.; Mottaghy, Felix M.; Lonsdale, Markus N.; Stroobants, Sigrid G.; Oyen, Wim J. G.; Kotzerke, Joerg; Hoekstra, Otto S.; Pruim, Jan; Marsden, Paul K.; Tatsch, Klaus; Hoekstra, Corneline J.; Visser, Eric P.; Arends, Bertjan; Verzijlbergen, Fred J.; Zijlstra, Josee M.; Comans, Emile F. I.; Lammertsma, Adriaan A.; Paans, Anne M.; Willemsen, Antoon T.; Beyer, Thomas; Bockisch, Andreas; Schaefer-Prokop, Cornelia; Delbeke, Dominique; Baum, Richard P.; Chiti, Arturo; Krause, Bernd J.

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed

  10. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    NARCIS (Netherlands)

    Boellaard, Ronald; O'Doherty, Mike J.; Weber, Wolfgang A.; Mottaghy, Felix M.; Lonsdale, Markus N.; Stroobants, Sigrid G.; Oyen, Wim J. G.; Kotzerke, Joerg; Hoekstra, Otto S.; Pruim, Jan; Marsden, Paul K.; Tatsch, Klaus; Hoekstra, Corneline J.; Visser, Eric P.; Arends, Bertjan; Verzijlbergen, Fred J.; Zijlstra, Josee M.; Comans, Emile F. I.; Lammertsma, Adriaan A.; Paans, Anne M.; Willemsen, Antoon T.; Beyer, Thomas; Bockisch, Andreas; Schaefer-Prokop, Cornelia; Delbeke, Dominique; Baum, Richard P.; Chiti, Arturo; Krause, Bernd J.

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about[18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed

  11. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    NARCIS (Netherlands)

    Boellaard, R.; O'Doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; Lonsdale, M.N.; Stroobants, S.G.; Oyen, W.J.G.; Kotzerke, J.; Hoekstra, O.S.; Pruim, J.; Marsden, P.K.; Tatsch, K.; Hoekstra, C.J.; Visser, E.P.; Arends, B.; Verzijlbergen, F.J.; Zijlstra, J.M.; Comans, E.F.I.; Lammertsma, A.A.; Paans, A.M.; Willemsen, A.T.; Beyer, T.; Bockisch, A.; Schaefer-Prokop, C.; Delbeke, D.; Baum, R.P.; Chiti, A.; Krause, B.J.

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed

  12. Advances in hybrid MR–PET at 3 T and 9.4 T in humans

    Energy Technology Data Exchange (ETDEWEB)

    Jon Shah, N., E-mail: n.j.shah@fz-juelich.de [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University Aachen (Germany); Mauler, Jörg [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Neuner, Irene [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen (Germany); Oros-Peusquens, Ana-Maria; Romanzetti, Sandro; Vahedipour, Kaveh; Felder, Jörg; Celik, Avdo [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Iida, Hidehiro [Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565 (Japan); Langen, Karl-Josef; Herzog, Hans [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany)

    2013-02-21

    Hybrid MR–PET data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. From an MR perspective, the potential for ultra-high resolution structural imaging is discussed and example images of the cerebellum with an isotropic resolution of 320 μm are presented. Further, metabolic imaging is discussed and high-resolution images of the sodium distribution are demonstrated. Examples of tumour imaging on a 3 T MR–PET system are included and discussed.

  13. Advances in hybrid MR–PET at 3 T and 9.4 T in humans

    International Nuclear Information System (INIS)

    Jon Shah, N.; Mauler, Jörg; Neuner, Irene; Oros-Peusquens, Ana-Maria; Romanzetti, Sandro; Vahedipour, Kaveh; Felder, Jörg; Celik, Avdo; Iida, Hidehiro; Langen, Karl-Josef; Herzog, Hans

    2013-01-01

    Hybrid MR–PET data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. From an MR perspective, the potential for ultra-high resolution structural imaging is discussed and example images of the cerebellum with an isotropic resolution of 320 μm are presented. Further, metabolic imaging is discussed and high-resolution images of the sodium distribution are demonstrated. Examples of tumour imaging on a 3 T MR–PET system are included and discussed

  14. The design and implementation of a motion correction scheme for neurological PET

    International Nuclear Information System (INIS)

    Bloomfield, Peter M; Spinks, Terry J; Reed, Johnny; Schnorr, Leonard; Westrip, Anthony M; Livieratos, Lefteris; Fulton, Roger; Jones, Terry

    2003-01-01

    A method is described to monitor the motion of the head during neurological positron emission tomography (PET) acquisitions and to correct the data post acquisition for the recorded motion prior to image reconstruction. The technique uses an optical tracking system, Polaris TM , to accurately monitor the position of the head during the PET acquisition. The PET data are acquired in list mode where the events are written directly to disk during acquisition. The motion tracking information is aligned to the PET data using a sequence of pseudo-random numbers, which are inserted into the time tags in the list mode event stream through the gating input interface on the tomograph. The position of the head is monitored during the transmission acquisition, and it is assumed that there is minimal head motion during this measurement. Each event, prompt and delayed, in the list mode event stream is corrected for motion and transformed into the transmission space. For a given line of response, normalization, including corrections for detector efficiency, geometry and crystal interference and dead time are applied prior to motion correction and rebinning in the sinogram. A series of phantom experiments were performed to confirm the accuracy of the method: (a) a point source located in three discrete axial positions in the tomograph field of view, 0 mm, 10 mm and 20 mm from a reference point, (b) a multi-line source phantom rotated in both discrete and gradual rotations through ±5 deg. and ±15 deg, including a vertical and horizontal movement in the plane. For both phantom experiments images were reconstructed for both the fixed and motion corrected data. Measurements for resolution, full width at half maximum (FWHM) and full width at tenth maximum (FWTM), were calculated from these images and a comparison made between the fixed and motion corrected datasets. From the point source measurements, the FWHM at each axial position was 7.1 mm in the horizontal direction, and

  15. Determination of optimal acquisition time of [18F]FCWAY PET for imaging serotonin 1A receptors in the healthy male subjects

    International Nuclear Information System (INIS)

    Yong Choi, Jae; Lee, Minkyung; Jeon, Tae Joo; Choi, Soo-Hee; Choi, Ye Ji; Lee, Yu Kyung; Kim, Jae-Jin; Ryu, Young Hoon

    2014-01-01

    The purpose of this research is to find optimal acquisition time point of [ 18 F]FCWAY PET for the assessment of serotonin 1A receptor (5-HT 1A ) density. To achieve this goal, we examined the specific-to-nonspecific ratios in various brain regions. The cerebellum has very few 5-HT 1A receptors in the brain, so we set this region as the reference tissue. As a result, specific-to-nonspecific binding ratios in the frontal, temporal cortex and the hippocampus were steadily increased at 90 min after injection and remained stable at 120 min. In addition, the binding ratio of the late time was significantly higher than that of the previous time points. From these results, we recommend that 90 min p.i. is a better single time point for the analysis rather than previous time points for assessing [ 18 F]FCWAY binding to 5-HT 1A receptors. - Highlights: • For routine clinical study, PET protocol should be conducted on a single time point with short imaging acquisition. • The specific-to-nonspecific ratios in the various brain regions were calculated. • Optimal [ 18 F]FCWAY PET acquisition time point was proposed

  16. Robust real-time extraction of respiratory signals from PET list-mode data.

    Science.gov (United States)

    Salomon, Andre; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-05-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions' detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting ("binning") of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signalsdirectly from the acquired PET data simplifies the clinical workflow as it avoids to handle additional signal measurement equipment. We introduce a new data-driven method "Combined Local Motion Detection" (CLMD). It uses the Time-of-Flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using 7 measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4s in total on a standard multi-core CPU

  17. Robust real-time extraction of respiratory signals from PET list-mode data

    Science.gov (United States)

    Salomon, André; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-06-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions’ detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting (‘binning’) of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signals directly from the acquired PET data simplifies the clinical workflow as it avoids handling additional signal measurement equipment. We introduce a new data-driven method ‘combined local motion detection’ (CLMD). It uses the time-of-flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using seven measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4 s in total on a standard

  18. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    DEFF Research Database (Denmark)

    Boellaard, Ronald; O'Doherty, Mike J; Weber, Wolfgang A

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about[18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomogr...

  19. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  20. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  1. A new generation of PET scanners for small animal studies

    International Nuclear Information System (INIS)

    Hegyesi, G.; Imrek, J.; Kalinka, G.; Molnar, J.; Novak, D.; Valastyan, I.; Balkay, L.; Emri, M.; Kis, S.; Tron, L.

    2008-01-01

    Complete text of publication follows. Research on small animal PET scanners has been a hot topic in recent years. These devices are used in the preclinical phases of drug tests and during the development of new radiopharmaceuticals. They also provide a cost efficient way to test new materials, new design concepts and new technologies that later can be used to build more efficient human medical imaging devices. The development of a PET scanner requires expertise on different fields, therefore a consortium was formed that brought together Hungarian academic and industrial partners: the Nuclear Research Institute (which has experience in the development of nuclear detectors and data acquisition systems), the PET Center of the University of Debrecen (which has clinical experience in the application of nuclear imaging devices and background in image processing software), Mediso Ltd. (which has been developing, manufacturing, selling and servicing medical imaging devices since 1990) and other academic partners. This consortium has been working together since 2003: the knowledge base acquired during the development of our small animal PET scanners (miniPET-I and miniPET-II) is now being utilized to build a commercial multimodal human PET scanner. The operation of a PET scanner is based on the simultaneous detection ('coincidence') of two gamma photons originating from a positron annihilation. In traditional PET scanners coincidence is detected by a central unit during the measurement. In our system there is no such central module: all detected single gamma events are recorded (list mode data acquisition), and the list of events are processed using a computer cluster (built from PCs). The usage of independent detector modules and commercial components reduce both development and maintenance costs. Also, this mode of data acquisition is more suitable for development purposes, since once the data is collected and stored it can be used many times to test different signal

  2. Dependence of image quality on acquisition time for the PET/CT Biograph mCT

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Duran, Flavia; Glatting, Gerhard [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Dinter, Dietmar; Schoenberg, Stefan O. [Heidelberg Univ., Mannheim (Germany). Inst. of Clinical Radiology and Nuclear Medicine; Schoenahl, Frederic [Siemens Healthcare Molecular Imaging, Erlangen (Germany)

    2014-03-01

    The impact of acquisition time on reconstructed PET image quality is analyzed for different acquisition times (1, 2, 3 and 4 min). Image quality was tested according to the National Electrical Manufacturers Association (NEMA) NU 2-2007, the evaluation for the signal to noise ratio (SNR) and the reconstructed activity ratio (RAR) for three algorithms, i.e. OSEM, TrueX and TOF applying different effective iteration numbers. The present work shows that the image quality of 3 and 4 min acquisition time for spherical lesions of 10 mm diameter are not significantly different between TrueX, TOF and OSEM. The 2 min acquisition time should be used carefully for the TrueX and OSEM algorithms in small lesions, because the levels of background noise are high compared to 3 or 4 min measurements. Also, the reconstructed activity ratio is underestimated to be approximately half of the expected value. For large lesions the three algorithms perform similarly for all acquisition durations, however, OSEM has the advantage of a more accurately reconstructed activity ratio compared to TrueX and TOF, which are more strongly influenced by noise. (orig.)

  3. List mode reconstructions for PET with motion compensation: A simulation study

    International Nuclear Information System (INIS)

    Qi, Jinyi; Huesman, Ronald H.

    2002-01-01

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject motion is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time-varying rate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts

  4. List mode reconstruction for PET with motion compensation: A simulation study

    International Nuclear Information System (INIS)

    Qi, Jinyi; Huesman, Ronald H.

    2002-01-01

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject moti is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time vary ingrate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts

  5. Imaging with 124I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    International Nuclear Information System (INIS)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J.; Umutlu, L.

    2016-01-01

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using 124 I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT 2 ) followed by PET/MRI of the neck 24 h after 124 I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT 2 acquisition time (2 min, PET/MRI 2 ) and the other covering the whole MRI scan time (30 min, PET/MRI 30 ). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI 2 detected significantly more iodine-positive metastases and thyroid remnants than PET/CT 2 (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI 30 tended to detect more PET-positive metastases than PET/MRI 2 (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine-positive lesions as either metastasis or thyroid remnant

  6. New Acquisition Protocol of 18F-Choline PET/CT in Prostate Cancer Patients: Review of the Literature about Methodology and Proposal of Standardization

    Directory of Open Access Journals (Sweden)

    Sotirios Chondrogiannis

    2014-01-01

    Full Text Available Purpose. (1 To evaluate a new acquisition protocol of 18F-choline (FCH PET/CT for prostate cancer patients (PC, (2 to review acquisition 18F-choline PET/CT methodology, and (3 to propose a standardized acquisition protocol on FCH PET/CT in PC patients. Materials. 100 consecutive PC patients (mean age 70.5 years, mean PSA 21.35 ng/mL were prospectively evaluated. New protocol consisted of an early scan of the pelvis immediately after the injection of the tracer (1 bed position of 4 min followed by a whole body scan at one 1 hour. Early and 1 hour images were compared for interfering activity and pathologic findings. Results. The overall detection rate of FCH PET/CT was 64%. The early static images of the pelvis showed absence of radioactive urine in ureters, bladder, or urethra which allowed a clean evaluation of the prostatic fossae. Uptake in the prostatic region was better visualized in the early phase in 26% (7/30 of cases. Other pelvic pathologic findings (bone and lymph nodes were visualized in both early and late images. Conclusion. Early 18F-choline images improve visualization of abnormal uptake in prostate fossae. All pathologic pelvic deposits (prostate, lymph nodes, and bone were visualized in both early and late images.

  7. Sensitivity estimation in time-of-flight list-mode positron emission tomography.

    Science.gov (United States)

    Herraiz, J L; Sitek, A

    2015-11-01

    An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  8. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J. L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Sitek, A., E-mail: sarkadiu@gmail.com [Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  9. High-Speed Data Acquisition and Digital Signal Processing System for PET Imaging Techniques Applied to Mammography

    Science.gov (United States)

    Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.

    2004-06-01

    This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.

  10. Imaging with {sup 124}I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Umutlu, L. [University of Duisburg-Essen, Medical Faculty, Department of Radiology, Essen (Germany)

    2016-06-15

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using {sup 124}I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT{sub 2}) followed by PET/MRI of the neck 24 h after {sup 124}I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT{sub 2} acquisition time (2 min, PET/MRI{sub 2}) and the other covering the whole MRI scan time (30 min, PET/MRI{sub 30}). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI{sub 2} detected significantly more iodine-positive metastases and thyroid remnants than PET/CT{sub 2} (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI{sub 30} tended to detect more PET-positive metastases than PET/MRI{sub 2} (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine

  11. Multi-GPU based acceleration of a list-mode DRAMA toward real-time OpenPET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinouchi, Shoko [Chiba Univ. (Japan); National Institute of Radiological Sciences, Chiba (Japan); Yamaya, Taiga; Yoshida, Eiji; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Kudo, Hiroyuki [Tsukuba Univ., Ibaraki (Japan); Suga, Mikio [Chiba Univ. (Japan)

    2011-07-01

    OpenPET, which has a physical gap between two detector rings, is our new PET geometry. In order to realize future radiation therapy guided by OpenPET, real-time imaging is required. Therefore we developed a list-mode image reconstruction method using general purpose graphic processing units (GPUs). For GPU implementation, the efficiency of acceleration depends on the implementation method which is required to avoid conditional statements. Therefore, in our previous study, we developed a new system model which was suited for the GPU implementation. In this paper, we implemented our image reconstruction method using 4 GPUs to get further acceleration. We applied the developed reconstruction method to a small OpenPET prototype. We obtained calculation times of total iteration using 4 GPUs that were 3.4 times faster than using a single GPU. Compared to using a single CPU, we achieved the reconstruction time speed-up of 142 times using 4 GPUs. (orig.)

  12. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    CERN Document Server

    Dang, J; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Soni...

  13. Technical requirements for Na¹⁸F PET bone imaging of patients being treated using a Taylor spatial frame.

    Science.gov (United States)

    Hatherly, Robert; Brolin, Fredrik; Oldner, Åsa; Sundin, Anders; Lundblad, Henrik; Maguire, Gerald Q; Jonsson, Cathrine; Jacobsson, Hans; Noz, Marilyn E

    2014-03-01

    Diagnosis of new bone growth in patients with compound tibia fractures or deformities treated using a Taylor spatial frame is difficult with conventional radiography because the frame obstructs the images and creates artifacts. The use of Na(18)F PET studies may help to eliminate this difficulty. Patients were positioned on the pallet of a clinical PET/CT scanner and made as comfortable as possible with their legs immobilized. One bed position covering the site of the fracture, including the Taylor spatial frame, was chosen for the study. A topogram was performed, as well as diagnostic and attenuation correction CT. The patients were given 2 MBq of Na(18)F per kilogram of body weight. A 45-min list-mode acquisition was performed starting at the time of injection, followed by a 5-min static acquisition 60 min after injection. The patients were examined 6 wk after the Taylor spatial frame had been applied and again at 3 mo to assess new bone growth. A list-mode reconstruction sequence of 1 × 1,800 and 1 × 2,700 s, as well as the 5-min static scan, allowed visualization of regional bone turnover. With Na(18)F PET/CT, it was possible to confirm regional bone turnover as a means of visualizing bone remodeling without the interference of artifacts from the Taylor spatial frame. Furthermore, dynamic list-mode acquisition allowed different sequences to be performed, enabling, for example, visualization of tracer transport from blood to the fracture site.

  14. Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation

    Science.gov (United States)

    Hakim, P. R.; Permala, R.; Jayani, A. P. S.

    2018-05-01

    LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.

  15. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems.

    Science.gov (United States)

    Jentzen, Walter; Weise, Reiner; Kupferschläger, Jürgen; Freudenberg, Lutz; Brandau, Wolfgang; Bares, Ronald; Burchert, Wolfgang; Bockisch, Andreas

    2008-03-01

    This study evaluated the absolute quantification of iodine-124 ((124)I) activity concentration with respect to the use of this isotope for dosimetry before therapies with (131)I or (131)I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using (124)I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with (124)I and with fluorine-18 ((18)F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with (18)F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR(+)) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our (124)I PET(/CT) protocol for DTC patients. Compared with that of (18)F, transversal spatial resolution of (124)I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P or =12.6 mm in diameter. Recovery correction is mandatory for (124)I PET quantification, even for large structures. To ensure accurate dosimetry, thorough absolute recovery measurements must be individually established for the particular PET scanner and radionuclide to be used.

  16. Gated listmode acquisition with the QuadHIDAC animal PET to image mouse hearts

    International Nuclear Information System (INIS)

    Schaefers, K.P.; Lang, N.; Stegger, L.; Schober, O.; Schaefers, M.

    2006-01-01

    Purpose: the aim of this study was to develop ECG and respiratory gating in combination with listmode acquisition for the quadHIDAC small-animal PET scanner. Methods: ECG and respiratory gating was realized with the help of an external trigger device (BioVET) synchronized with the listmode acquisition. Listmode data of a mouse acquisition (injected with 6.5 MBq of 18 F-FDG) were sorted according to three different gating definitions: 12 cardiac gates, 8 respiratory gates and a combination of 8 cardiac and 8 respiratory gates. Images were reconstructed with filtered back-projection (ramp filter), and parameters like left ventricular wall thickness (WT), wall-to-wall separation (WS) and blood to myocardium activity ratios (BMR) were calculated. Results: cardiac gated images show improvement of all parameters (WT 2.6 mm, WS 4.1 mm, BRM 2.3) in diastole compared to ungated images (WT 3.0 mm, WS 3.4 mm, BMR 1.3). Respiratory gating had little effect on calculated parameters. Conclusion: ECG gating with the quadHIDAC can improve myocardial image quality in mice. This could have a major impact on the calculation of an image-derived input function for kinetic modelling. (orig.)

  17. Physical performance evaluation of GE DST PET-CT and evaluation of characteristics in dynamic image acquisition

    International Nuclear Information System (INIS)

    Lee, B. I.; Kim, J. Y.; Min, J. J.; Song, H. C.; Bom, H. S.; Kim, J. S.; Lee, J. S.

    2005-01-01

    As a new standard for performance measurement, NEMA NU2-2001 was presented recently. In this study, we investigated the spatial resolution, sensitivity, scatter fraction, and noise equivalent count ratio (NECR) in order to know the information of physical characteristics and system performance. Bismuth germinate crystals (6 X 6 array, 6.3mm X 6.3mm X 30mm) were used in discovery ST (energy window: 375-650 keV, coincidence window: 11.7 nsec). To measure the sensitivity, five aluminum sleeves (Data Spectrum Corp., Chapel Hill, NC., USA, thickness:1.25 mm) -NEMA sensitivity phantom- filled with F-18 solution were used. Spatial resolution was estimated using a point source (F-18, 0.1 mCi). Data were acquired while the count reaches at 100,000 and another experiment was performed at a distance of one-fourth the axial extent of the FOV. Scatter fraction and NECR was tested. Dynamic data were acquired for 7 half-lives. And true to background ratio was averaged at last three frames when the random rate was as small as ignorable for the calculation of scatter fraction. Sensitivity was 1.79 cps/kBq (2D) and 9.84 cps/kBq (3D) at the center and 1.78 cps/kBq (2D) and 9.60 cps/kBq (3D) at 10 cm off from the center. Spatial resolution at center was 6.15 mm (2D), 6.16 mm (3D) transverse direction and 5.77 mm (2D) and 5.93 mm (3D) at axial direction. At 10 cm radius, resolution of transverse radial was 7.19 mm (2D) and 7.16 mm (3D) and transverse tangential was 6.81 mm (2D) and 6.80mm (3D). Scatter fraction was 45.1% in 3D mode. Peak true rate and NECR were 325.1 kcps at 30.1 kBq/cc and 59.3 kcps at 13.7 kBq/cc. Dynamic image acquisition and gating image acquisition were acquired successfully. The physical characteristics of PET-CT were investigated. The sensitivity of installed system in 3D mode was better than the result of published study. We anticipate this overall evaluated results could be used for the quantification and optimized image acquisition for clinical research

  18. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    Science.gov (United States)

    Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi

    2011-06-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).

  19. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    Science.gov (United States)

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  20. Dynamic comparison of PET imaging performance between state-of-the-art ToF-PET/CT and ToF-PET/MR scanners

    International Nuclear Information System (INIS)

    Delso, Gaspar; Deller, Tim; Khalighi, Mehdi; Veit-Haibach, Patrick; Schulthess, Gustav von

    2014-01-01

    The goal of the present work was to determine the potential for dose reduction in a new clinical ToF-PET/MR scanner. This was achieved by means of long dynamic phantom acquisitions designed to provide a fair comparison of image quality and lesion detectability, as a function of activity, between the new PET/MR system and a state-of-the art PET/CT.

  1. Phantom study for the systemic performance of Gemini PET/CT

    International Nuclear Information System (INIS)

    Feng Yanlin; He Xiaohong; Huang Kemin; Yu Fengwen; Liu Dejun; Yuan Jianwei; Yuan Baihong; Su Shaodi

    2005-01-01

    Objective: To develop the methods and parameters for evaluating the systemic performance of Gemini PET/CT. Methods: The spatial resolution, standardized uptake value (SUV), uniformity and accuracy of image registration were selected as the evaluating indexes. The Jaszczak phantom with smaller inserts was filled with 18 F-fluorodeoxyglucose (FDG) solution and imaged with whole body and brain imaging modes, respectively, to evaluate the spatial resolution of the PET/CT; a Philips hollow phantom was filled with 18 F-FDG solution and imaged for calculating the SUV and the uniformity parameters; four 22 Na solid sources were put under the pad of the patient table and imaged synchronously with the patient's data acquisition to evaluate the accuracy of the PET and CT image fusion. Results: The rods of the diameter of 6.4 mm of both the hot and cold inserts were observed with whole body imaging mode, and rods of the diameters of 4.8 mm of both the hot and cold inserts were observed with brain imaging mode. The SUV with X-ray CT attenuation correction (CTAC) was 0.92 ± 0.24, and was 0.99±0.26 with 137 Cs attenuation correction (CsAC), and t=-1.327, P>0.05 between the two groups. The uniformity of the images with both CTAC and CsAC was very nice, no artifacts were seen either. The maximum pixel counts was 3790, the minimum was 1434, the average was 2581.23 and the standard deviation was 728.39 with CTAC; and were 4218, 1073, 2758.19 and 838.79 with CsAC correspondingly, and t=-1.069, P>0.05 between the two groups. The images of PET and CT were registrated better, and also no diversity was detected on the fusion images. Conclusions: These methods and parameters might be used to evaluate the systemic performance of the PET/CT, and could also be used as the supplementary items for the acceptance test and daily quality assurance of the PET/CT. (authors)

  2. Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI.

    Science.gov (United States)

    Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho

    2018-06-01

    Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p PET/MR datasets. High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times

  3. Adaptation of the modified Bouc–Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: Testing using MRI

    International Nuclear Information System (INIS)

    Dasari, Paul K. R.; Shazeeb, Mohammed Salman; Könik, Arda; Lindsay, Clifford; Mukherjee, Joyeeta M.; Johnson, Karen L.; King, Michael A.

    2014-01-01

    Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (VTS) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the VTS derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the

  4. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    DEFF Research Database (Denmark)

    Jonasson, L S; Axelsson, J; Riklund, K

    2017-01-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET...... cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events...... from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function...

  5. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    Science.gov (United States)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  6. Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning

    Science.gov (United States)

    Dahlbom, M.; Reed, J.; Young, J.

    2001-08-01

    True continuous axial bed motion has been implemented on a high-resolution positron emission tomography (PET) scanner for use in both two-dimensional (2-D) and three-dimensional (3-D) acquisition modes. This has been accomplished by modifications in the bed motion controller firmware and by acquiring data in list mode. The new bed controller firmware was shown to provide an accurate and constant bed speed down to 0.25 mm/s with a moderate patient weight load. The constant bed motion eliminates previously reported dead-time due to bed positioning when using small discrete bed steps. The continuous bed motion was tested on uniform phantoms, in 2-D and 3-D. As a result of the continuous axial motion, a uniform axial sensitivity is achieved. This was also reflected in the reconstructed images, which showed an improvement in axial image uniformity (1.4% for continuous sampling, 5.0% for discrete) as well as an improvement in %SD uniformity in comparison to conventional step-and-shoot acquisitions. The use of the continuous axial motion also provide slight improvements in 2-D emission and transmission scanning, resulting in an overall improved image quality in whole-body PET.

  7. PET and PET/CT in malignant melanoma; PET y PET/CT en melanoma maligno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, J R [Nuclear Medicine and Molecular Imaging PET/CT, Centro Medico ABC, Mexico D.F. (Mexico)

    2007-07-01

    The advantages that it has the PET/CT are: 1. It diminishes mainly positive false lesions. It identifies physiologic accumulate places. 2. It diminishes in smaller grade false negative. Small injuries. Injuries with low grade concentration. Injure on intense activity areas. 3. Precise anatomical localization of accumulate places. 4. Reduction of the acquisition time. (Author)

  8. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    Science.gov (United States)

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  9. Task Performance with List-Mode Data

    Science.gov (United States)

    Caucci, Luca

    This dissertation investigates the application of list-mode data to detection, estimation, and image reconstruction problems, with an emphasis on emission tomography in medical imaging. We begin by introducing a theoretical framework for list-mode data and we use it to define two observers that operate on list-mode data. These observers are applied to the problem of detecting a signal (known in shape and location) buried in a random lumpy background. We then consider maximum-likelihood methods for the estimation of numerical parameters from list-mode data, and we characterize the performance of these estimators via the so-called Fisher information matrix. Reconstruction from PET list-mode data is then considered. In a process we called "double maximum-likelihood" reconstruction, we consider a simple PET imaging system and we use maximum-likelihood methods to first estimate a parameter vector for each pair of gamma-ray photons that is detected by the hardware. The collection of these parameter vectors forms a list, which is then fed to another maximum-likelihood algorithm for volumetric reconstruction over a grid of voxels. Efficient parallel implementation of the algorithms discussed above is then presented. In this work, we take advantage of two low-cost, mass-produced computing platforms that have recently appeared on the market, and we provide some details on implementing our algorithms on these devices. We conclude this dissertation work by elaborating on a possible application of list-mode data to X-ray digital mammography. We argue that today's CMOS detectors and computing platforms have become fast enough to make X-ray digital mammography list-mode data acquisition and processing feasible.

  10. Survey to investigate pet ownership and attitudes to pet care in metropolitan Chicago dog and/or cat owners.

    Science.gov (United States)

    Freiwald, Amber; Litster, Annette; Weng, Hsin-Yi

    2014-08-01

    The aims of this descriptive cross-sectional study were to investigate dog and cat acquisition and attitudes toward pet care among residents of the Chicago area (zip codes 60600-60660); to compare data obtained from owners of shelter-acquired pets with those of residents who acquired their pets from other sources; to compare data from dog owners with cat owners; and to compare pet health practices among the respondents of different zip code income groups. In-person surveys administered at five pet store locations collected data from 529 respondents, representing 582 dogs and 402 cats owned or continuously cared for in the past 3 years. Median household income data for represented zip codes was also obtained. Shelters were the most common source of cats (ppet stores, breeders or rescue organizations and to be kept as outdoor-only pets (pPet owners were most commonly 'very likely' (5 on a 1-5/5 Likert scale) to administer all hypothetical treatments discussed, although cat owners were less likely to spend time training their pet (p=0.05). Cat owners were less likely to have taken their pet to a veterinarian for vaccinations or annual physical exams (ppets were at least as willing as other respondents to administer hypothetical treatments and pay ≥$1000 for veterinary treatment. Respondents from site #3 lived in zip codes that had relatively lower median household incomes (ppets than those at the four other sites (ppet owners from all acquisition categories expressed very high levels of attachment (≥8-10/10 on a Likert scale), except for owners of cats acquired as strays (84.9%) or from the 'other' category (75.0%). Survey respondents commonly acquired their pets from shelters and those who did were at least as willing to pay for and provide veterinary care as respondents who owned pets acquired from other sources. The data collected provides a snapshot of the attitudes of survey respondents in the Chicago area toward pet acquisition and care. Copyright © 2014

  11. Erroneous cardiac ECG-gated PET list-mode trigger events can be retrospectively identified and replaced by an offline reprocessing approach: first results in rodents

    International Nuclear Information System (INIS)

    Böning, Guido; Todica, Andrei; Vai, Alessandro; Lehner, Sebastian; Xiong, Guoming; Mille, Erik; Ilhan, Harun; Fougère, Christian la; Bartenstein, Peter; Hacker, Marcus

    2013-01-01

    The assessment of left ventricular function, wall motion and myocardial viability using electrocardiogram (ECG)-gated [ 18 F]-FDG positron emission tomography (PET) is widely accepted in human and in preclinical small animal studies. The nonterminal and noninvasive approach permits repeated in vivo evaluations of the same animal, facilitating the assessment of temporal changes in disease or therapy response. Although well established, gated small animal PET studies can contain erroneous gating information, which may yield to blurred images and false estimation of functional parameters. In this work, we present quantitative and visual quality control (QC) methods to evaluate the accuracy of trigger events in PET list-mode and physiological data. Left ventricular functional analysis is performed to quantify the effect of gating errors on the end-systolic and end-diastolic volumes, and on the ejection fraction (EF). We aim to recover the cardiac functional parameters by the application of the commonly established heart rate filter approach using fixed ranges based on a standardized population. In addition, we propose a fully reprocessing approach which retrospectively replaces the gating information of the PET list-mode file with appropriate list-mode decoding and encoding software. The signal of a simultaneously acquired ECG is processed using standard MATLAB vector functions, which can be individually adapted to reliably detect the R-peaks. Finally, the new trigger events are inserted into the PET list-mode file. A population of 30 mice with various health statuses was analyzed and standard cardiac parameters such as mean heart rate (119 ms ± 11.8 ms) and mean heart rate variability (1.7 ms ± 3.4 ms) derived. These standard parameter ranges were taken into account in the QC methods to select a group of nine optimal gated and a group of eight sub-optimal gated [ 18 F]-FDG PET scans of mice from our archive. From the list-mode files of the optimal gated group

  12. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring

    International Nuclear Information System (INIS)

    Murray, Iain; Hasan, Syed; Quraishi, Shuaib; Avril, Norbert; Kalemis, Antonis; Glennon, Joe; Beyer, Thomas

    2010-01-01

    Accurate quantification of tumour tracer uptake is essential for therapy monitoring by sequential PET imaging. In this study we investigated to what extent a reduction in administered activity, synonymous with an overall reduction in repeated patient exposure, compromised the accuracy of quantitative measures using time-of-flight PET/CT. We evaluated the effect of reducing the emission count statistics, using a 64-channel GEMINI TF PET/CT system. Experiments were performed with the NEMA IEC body phantom at target-to-background ratios of 4:1 and 10:1. Emission data for 10 s, 30 s, 1 min, 2 min, 5 min and 30 min were acquired. Volumes of interest fitted to the CT outline of the spheres were used to calculate recovery coefficients for each target-to-background ratio and for different reconstruction algorithms. Whole-body time-of-flight PET/CT was performed in 20 patients 62±4 min after injection of 350±40 MBq (range 269-411 MBq) 18 F-FDG. From the acquired 2 min per bed position list mode data, simulated 1-min, 30-s and 15-s PET acquisitions were created. PET images were reconstructed using the TOF-OSEM algorithm and analysed for differences in SUV measurements resulting from the use of lower administered activity as simulated by reduced count statistics. In the phantom studies, overall we identified no significant quantitation bias over a wide range of acquired counts. With acquisition times as short as 10 s, lesions as small as 1 cm in diameter could still be identified. In the patient studies, visual analysis showed that emission scans as short as 15 s per bed position sufficiently identified tumour lesions for quantification. As the acquisition time per bed position decreased, the differences in SUV quantification of tumour lesions increased relative to the 2-min reference protocol. However, SUVs remained within the limits of reproducibility required for therapy monitoring. Measurements of SUVmean within the region of interest were less prone to noise than

  13. A DEMATEL-Based Framework for Identification of Causalities Among Internal and External Modes of Technology Acquisition

    OpenAIRE

    Farshid Mohamadnejad

    2014-01-01

    Technology acquisition plays a key role in the management of technology in industrial organizations. While there are ample theoretical and empirical researches on firm technology acquisition which are focused on the study of its dependence on other components of organization, the literature pays less attention to explore and analyze the inter-relatedness found in the main body of technology acquisition itself. Internal and external technology acquisitions are among the main substitute modes w...

  14. TH-E-202-00: PET for Radiation Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  15. TH-E-202-00: PET for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  16. Validating PET segmentation of thoracic lesions-is 4D PET necessary?

    DEFF Research Database (Denmark)

    Nielsen, M. S.; Carl, J.

    2017-01-01

    Respiratory-induced motions are prone to degrade the positron emission tomography (PET) signal with the consequent loss of image information and unreliable segmentations. This phantom study aims to assess the discrepancies relative to stationary PET segmentations, of widely used semiautomatic PET...... segmentation methods on heterogeneous target lesions influenced by motion during image acquisition. Three target lesions included dual F-18 Fluoro-deoxy-glucose (FDG) tracer concentrations as high-and low tracer activities relative to the background. Four different tracer concentration arrangements were...... segmented using three SUV threshold methods (Max40%, SUV40% and 2.5SUV) and a gradient based method (GradientSeg). Segmentations in static 3D-PET scans (PETsta) specified the reference conditions for the individual segmentation methods, target lesions and tracer concentrations. The motion included PET...

  17. Effects of Video Caption Modes on English Listening Comprehension and Vocabulary Acquisition Using Handheld Devices

    Science.gov (United States)

    Hsu, Ching-Kun; Hwang, Gwo-Jen; Chang, Yu-Tzu; Chang, Chih-Kai

    2013-01-01

    This study investigates the effects of different display modes of video captions on mobile devices, including non-caption, full-caption, and target-word modes, on the English comprehension and vocabulary acquisition of fifth graders. During the one-month experiment, the status of the students' English listening comprehension and vocabulary…

  18. Initial experience on protocol optimization for integrated PET/MR%PET/MR一体机操作优化的初步经验

    Institute of Scientific and Technical Information of China (English)

    刘家金; 陈英茂; 张雄伟; 富丽萍; 田嘉禾; 尹大一; 徐白萱

    2014-01-01

    目的 通过比较PET/CT和PET/MR,初步探索PET/MR一体机的操作流程和成像优化方案.方法 228例患者同日内接受PET/CT和PET/MR检查,通过6种不同MR序列与PET采集组合方案,比较图像质量的优劣,以在保证诊断信息基础上缩短患者扫描时间的原则分析判断,并初步确定最优PET/MR一体机采集方案.结果 PET/MR结果与PET/CT相近,但其操作流程和注意事项有独特之处;在6种方案中,以躯干和头部各有独立序列组合、兼顾各向同性结构显示与突出病灶特点的方案6效果最优;PET/MR比PET/CT更易产生伪影.结论 在优化方案基础上,PET/MR可获得与PET/CT一致的诊断级图像,但PET/MR采集时间长、伪影多,有待进一步完善.%Objective To investigate the optimal workflow and protocol for integrated PET/MR by comparison with PET/CT.Methods A total of 228 patients were enrolled in this study for PET/CT and PET/MR evaluation on the same day.Six PET/MR protocols with different MR sequences but the same PET acquisition protocol were investigated and the optimal protocol was identified based on image quality,acquisition time and diagnostic performance.Results PET/MR workflow was similar to PET/CT,however,some special issues needed to be considered for PET/MR.Among the 6 protocols,protocol No.6 outperformed others for body and head regions.Types of artifacts were found more often in PET/MR than in PET/CT.Conclusions By optimizing the protocol,PET/MR could achieve almost the same diagnostic performance as PET/CT.However,the issues of long acquisition time and artifacts on PET/MR need to be further improved.

  19. TU-AB-BRA-04: Quantitative Radiomics: Sensitivity of PET Textural Features to Image Acquisition and Reconstruction Parameters Implies the Need for Standards

    International Nuclear Information System (INIS)

    Nyflot, MJ; Yang, F; Byrd, D; Bowen, SR; Sandison, GA; Kinahan, PE

    2015-01-01

    Purpose: Despite increased use of heterogeneity metrics for PET imaging, standards for metrics such as textural features have yet to be developed. We evaluated the quantitative variability caused by image acquisition and reconstruction parameters on PET textural features. Methods: PET images of the NEMA IQ phantom were simulated with realistic image acquisition noise. 35 features based on intensity histograms (IH), co-occurrence matrices (COM), neighborhood-difference matrices (NDM), and zone-size matrices (ZSM) were evaluated within lesions (13, 17, 22, 28, 33 mm diameter). Variability in metrics across 50 independent images was evaluated as percent difference from mean for three phantom girths (850, 1030, 1200 mm) and two OSEM reconstructions (2 iterations, 28 subsets, 5 mm FWHM filtration vs 6 iterations, 28 subsets, 8.6 mm FWHM filtration). Also, patient sample size to detect a clinical effect of 30% with Bonferroni-corrected α=0.001 and 95% power was estimated. Results: As a class, NDM features demonstrated greatest sensitivity in means (5–50% difference for medium girth and reconstruction comparisons and 10–100% for large girth comparisons). Some IH features (standard deviation, energy, entropy) had variability below 10% for all sensitivity studies, while others (kurtosis, skewness) had variability above 30%. COM and ZSM features had complex sensitivities; correlation, energy, entropy (COM) and zone percentage, short-zone emphasis, zone-size non-uniformity (ZSM) had variability less than 5% while other metrics had differences up to 30%. Trends were similar for sample size estimation; for example, coarseness, contrast, and strength required 12, 38, and 52 patients to detect a 30% effect for the small girth case but 38, 88, and 128 patients in the large girth case. Conclusion: The sensitivity of PET textural features to image acquisition and reconstruction parameters is large and feature-dependent. Standards are needed to ensure that prospective trials

  20. TU-AB-BRA-04: Quantitative Radiomics: Sensitivity of PET Textural Features to Image Acquisition and Reconstruction Parameters Implies the Need for Standards

    Energy Technology Data Exchange (ETDEWEB)

    Nyflot, MJ; Yang, F; Byrd, D; Bowen, SR; Sandison, GA; Kinahan, PE [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: Despite increased use of heterogeneity metrics for PET imaging, standards for metrics such as textural features have yet to be developed. We evaluated the quantitative variability caused by image acquisition and reconstruction parameters on PET textural features. Methods: PET images of the NEMA IQ phantom were simulated with realistic image acquisition noise. 35 features based on intensity histograms (IH), co-occurrence matrices (COM), neighborhood-difference matrices (NDM), and zone-size matrices (ZSM) were evaluated within lesions (13, 17, 22, 28, 33 mm diameter). Variability in metrics across 50 independent images was evaluated as percent difference from mean for three phantom girths (850, 1030, 1200 mm) and two OSEM reconstructions (2 iterations, 28 subsets, 5 mm FWHM filtration vs 6 iterations, 28 subsets, 8.6 mm FWHM filtration). Also, patient sample size to detect a clinical effect of 30% with Bonferroni-corrected α=0.001 and 95% power was estimated. Results: As a class, NDM features demonstrated greatest sensitivity in means (5–50% difference for medium girth and reconstruction comparisons and 10–100% for large girth comparisons). Some IH features (standard deviation, energy, entropy) had variability below 10% for all sensitivity studies, while others (kurtosis, skewness) had variability above 30%. COM and ZSM features had complex sensitivities; correlation, energy, entropy (COM) and zone percentage, short-zone emphasis, zone-size non-uniformity (ZSM) had variability less than 5% while other metrics had differences up to 30%. Trends were similar for sample size estimation; for example, coarseness, contrast, and strength required 12, 38, and 52 patients to detect a 30% effect for the small girth case but 38, 88, and 128 patients in the large girth case. Conclusion: The sensitivity of PET textural features to image acquisition and reconstruction parameters is large and feature-dependent. Standards are needed to ensure that prospective trials

  1. Acquisition versus greenfield foreign entry : diversification mode choice in Central and Eastern Europe

    NARCIS (Netherlands)

    Dikova, Desislava; Witteloostuijn, Adriaan van

    2005-01-01

    Departing from the traditional transaction cost approach in diversification mode literature, this study investigates the influence of experimental organizational learning on the choice between acquisition and a greenfield investment. We provide empirical support that prior experience with

  2. 18F-FDOPA PET/CT imaging of insulinoma revisited

    International Nuclear Information System (INIS)

    Imperiale, Alessio; Namer, Izzie-Jacques; Sebag, Frederic; Vix, Michel; Castinetti, Frederic; Kessler, Laurence; Moreau, Francois; Bachellier, Philippe; Guillet, Benjamin; Mundler, Olivier; Taieb, David

    2015-01-01

    18 F-FDOPA PET imaging is increasingly used in the work-up of patients with neuroendocrine tumours. It has been shown to be of limited value in localizing pancreatic insulin-secreting tumours in adults with hyperinsulinaemic hypoglycaemia (HH) mainly due to 18 F-FDOPA uptake by the whole pancreatic gland. The objective of this study was to review our experience with 18 F-FDOPA PET/CT imaging with carbidopa (CD) premedication in patients with HH in comparison with PET/CT studies performed without CD premedication in an independent population. A retrospective study including 16 HH patients who were investigated between January 2011 and December 2013 using 18 F-FDOPA PET/CT (17 examinations) in two academic endocrine tumour centres was conducted. All PET/CT examinations were performed under CD premedication (200 mg orally, 1 - 2 h prior to tracer injection). The PET/CT acquisition protocol included an early acquisition (5 min after 18 F-FDOPA injection) centred over the upper abdomen and a delayed whole-body acquisition starting 20 - 30 min later. An independent series of eight consecutive patients with HH and investigated before 2011 were considered for comparison. All patients had a reference whole-body PET/CT scan performed about 1 h after 18 F-FDOPA injection. In all cases, PET/CT was performed without CD premedication. In the study group, 18 F-FDOPA PET/CT with CD premedication was positive in 8 out of 11 patients with histologically proven insulinoma (73 %). All 18 F-FDOPA PET/CT-avid insulinomas were detected on early images and 5 of 11 (45 %) on delayed ones. The tumour/normal pancreas uptake ratio was not significantly different between early and delayed acquisitions. Considering all patients with HH, including those without imaging evidence of disease, the detection rate of the primary lesions using CD-assisted 18 F-FDOPA PET/CT was 53 %, showing 9 insulinomas in 17 studies performed. In the control group (without CD premedication, eight patients), the final

  3. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.

    Science.gov (United States)

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm 3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  4. PET/MR Imaging in Gynecologic Oncology.

    Science.gov (United States)

    Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina

    2017-08-01

    MR imaging and PET using 2-Deoxy-2-[ 18 F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Simulation of triple coincidences in PET

    International Nuclear Information System (INIS)

    Cal-González, J; Herranz, E; Vicente, E; Udias, J M; Lage, E; Dave, S R; Parot, V; Herraiz, J L; Moore, S C; Park, M-A

    2015-01-01

    Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (R T ), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β + γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner’s energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For

  6. TH-E-202-03: PET for Tumor Response Evaluation

    International Nuclear Information System (INIS)

    Lu, W.

    2016-01-01

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  7. TH-E-202-03: PET for Tumor Response Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W. [University of Maryland School of Medicine (United States)

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  8. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  9. Performance evaluation of a high resolution dedicated breast PET scanner

    International Nuclear Information System (INIS)

    García Hernández, Trinitat; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo; Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del; Roselló Ferrando, Joan

    2016-01-01

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ("1"8F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good performance

  10. Performance Evaluation of a Dedicated Preclinical PET/CT System for the Assessment of Mineralization Process in a Mouse Model of Atherosclerosis.

    Science.gov (United States)

    Rucher, Guillaume; Cameliere, Lucie; Fendri, Jihene; Abbas, Ahmed; Dupont, Kevin; Kamel, Said; Delcroix, Nicolas; Dupont, Axel; Berger, Ludovic; Manrique, Alain

    2018-04-30

    The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis. All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE -/- , non-uremic ApoE -/- , and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [ 18 F]fluoride (Na[ 18 F]F) aortic uptake and for quantitative measurement of Na[ 18 F]F bone influx (Ki) with a Patlak analysis. For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[ 18 F]F aortic uptake in 3/14 ApoE -/- mice and demonstrated a decreased Ki in uremic ApoE -/- compared to non-uremic ApoE -/- and control mice (p PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.

  11. Study of multi-pixel Geiger-mode avalanche photodiodes as a read-out for PET

    CERN Document Server

    Musienko, Yuri; Lecoq, Paul; Reucroft, Stephen; Swain, John; Trummer, Julia

    2007-01-01

    We have studied the performance of two multi-pixel Geiger-mode APDs (recently developed by the Centre of Perspective Technologies and Apparatus (CPTA) in Moscow) with 1×1 mm2 and 3×3 mm2 sensitive area as a readout for LSO and LYSO scintillator crystals. Energy and timing spectra were measured using a 22Na γ-source. The results of this study allow us to conclude that this photodetector is a very promising candidate for PET applications.

  12. Evaluation of {sup 124}I PET/CT and {sup 124}I PET/MRI in the management of patients with differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dercle, Laurent; Deandreis, Desiree; Terroir, Marie; Leboulleux, Sophie; Lumbroso, Jean; Schlumberger, Martin [Institut Gustave Roussy and University Paris Saclay, Department of Nuclear Medicine and Endocrine Oncology, Villejuif Cedex (France)

    2016-06-15

    The work of Binse and colleagues points out that there are probably some research perspectives for the use of {sup 124}I PET/ CT and PET/MRI in patients with DTC. It shows that there is no substantial advantage of {sup 124}I PET/MRI over {sup 124}I PET/CT for the detection of tumour lesions in the neck when using similar PET devices. It confirms the superiority of {sup 124}I PET over CT and MRI for the detection of iodine-positive lesions. It demonstrates that the use of a more sensitive PET device and a longer acquisition time leads to the detection of more lesions. {sup 124}I PET is a promising research tool for pretherapy dosimetry, the evaluation of response to {sup 131}I treatment and the staging of recurrent or residual disease. The recognized advantages of MRI are the evaluation of aerodigestive tract lesions and suprahyoid region lesions. The coregistration of MRI and {sup 124}I PET/CT might thus be more convenient than {sup 124}I PET/ MRI (shorter time of acquisition, better cost-effectiveness and more accurate attenuation correction). The benefits of these procedures in terms of patient outcome, and for the clinician and the healthcare system remain to be determined.

  13. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  14. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    International Nuclear Information System (INIS)

    Shao, Yiping; Sun, Xishan; Lou, Kai

    2015-01-01

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  15. Simultaneous trimodal MR-PET-EEG imaging for the investigation of resting state networks in humans

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, Irene [RWTH Aachen (Germany); Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH (Germany); Mauler, Joerg; Arrubla, Jorge; Kops, Elena Rota; Tellmann, Lutz; Scheins, Jurgen; Herzog, Hans [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH (Germany); Langen, Karl Josef; Shah, Jon [RWTH Aachen (Germany)

    2015-05-18

    Glucose is the principal source of energy for the brain and its relationship to neuronal activity are poorly understood. The human brain uses 80% of its energy for ongoing neural activity that occurs in isolation from any particular stimulus. A promising tool for the investigation of glucose metabolism and its relationship to neuronal activity is simultaneous trimodal MR-PET-EEG data imaging. We here demonstrate the first in vivo human trimodal data at 3T. In one session MR, FDG-PET and EEG data were recorded simultaneously at a 3T hybrid MR-BrainPET scanner (Siemens, Germany) equipped with a 32 channel MR-compatible EEG system (Brain Products, Germany) in 11 healthy volunteers (11 males, mean age: 25.2 years SD: 1.2). MR and EEG data acquisition MP-RAGE (TR = 2250 ms, TE= 3.03 ms, 176 sagittal slices. 1 mm, GRAPPA factor 2. MR-based attenuation correction of PET data via UTE: flip angle=15. Two different echo times TE1=0.07 and TE2=2.46 ms, TR=200 ms. EPI sequence (TR: 2.2 s, TE: 30 ms, FOV: 200 mm, 165 volumes, The subjects were requested to close their eyes and relax EEG data were recorded using a 32-channel MR compatible EEG system. App. 200 MBq/μmol FDG were injected, data were acquired in list mode and iteratively reconstructed with all necessary corrections into 153 slices with 256 x 256 voxels sized 1.25 mm{sup 3}. The trimodal approach, recording PET data, MR data and EEG data simultaneously was successful. The high neuronal activity of the structures within the default mode network occurs on the basis of a high glucose consumption rate within the default node network. The activity of the default mode is not tied to a special EEG frequency band.

  16. Simultaneous trimodal MR-PET-EEG imaging for the investigation of resting state networks in humans

    International Nuclear Information System (INIS)

    Neuner, Irene; Mauler, Joerg; Arrubla, Jorge; Kops, Elena Rota; Tellmann, Lutz; Scheins, Jurgen; Herzog, Hans; Langen, Karl Josef; Shah, Jon

    2015-01-01

    Glucose is the principal source of energy for the brain and its relationship to neuronal activity are poorly understood. The human brain uses 80% of its energy for ongoing neural activity that occurs in isolation from any particular stimulus. A promising tool for the investigation of glucose metabolism and its relationship to neuronal activity is simultaneous trimodal MR-PET-EEG data imaging. We here demonstrate the first in vivo human trimodal data at 3T. In one session MR, FDG-PET and EEG data were recorded simultaneously at a 3T hybrid MR-BrainPET scanner (Siemens, Germany) equipped with a 32 channel MR-compatible EEG system (Brain Products, Germany) in 11 healthy volunteers (11 males, mean age: 25.2 years SD: 1.2). MR and EEG data acquisition MP-RAGE (TR = 2250 ms, TE= 3.03 ms, 176 sagittal slices. 1 mm, GRAPPA factor 2. MR-based attenuation correction of PET data via UTE: flip angle=15. Two different echo times TE1=0.07 and TE2=2.46 ms, TR=200 ms. EPI sequence (TR: 2.2 s, TE: 30 ms, FOV: 200 mm, 165 volumes, The subjects were requested to close their eyes and relax EEG data were recorded using a 32-channel MR compatible EEG system. App. 200 MBq/μmol FDG were injected, data were acquired in list mode and iteratively reconstructed with all necessary corrections into 153 slices with 256 x 256 voxels sized 1.25 mm 3 . The trimodal approach, recording PET data, MR data and EEG data simultaneously was successful. The high neuronal activity of the structures within the default mode network occurs on the basis of a high glucose consumption rate within the default node network. The activity of the default mode is not tied to a special EEG frequency band.

  17. {sup 18}F-FDOPA PET/CT imaging of insulinoma revisited

    Energy Technology Data Exchange (ETDEWEB)

    Imperiale, Alessio; Namer, Izzie-Jacques [University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Strasbourg (France); University of Strasbourg/CNRS and FMTS, Faculty of Medicine, ICube - UMR 7357, Strasbourg (France); Sebag, Frederic [Aix-Marseille University, Department of Endocrine Surgery, La Timone University Hospital, Marseille (France); Vix, Michel [University of Strasbourg, Department of General, Digestive, and Endocrine Surgery, IRCAD-IHU, Strasbourg (France); Castinetti, Frederic [Aix-Marseille University, Department of Endocrinology, Diabetes and Metabolic Disorders, La Timone University Hospital, Marseille (France); Kessler, Laurence; Moreau, Francois [University of Strasbourg, Department of Diabetology, University Hospital of Strasbourg, Strasbourg (France); Bachellier, Philippe [University Hospitals of Strasbourg, Department of Visceral Surgery and Transplantation, Strasbourg (France); Guillet, Benjamin; Mundler, Olivier [Aix-Marseille University, Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Marseille (France); Taieb, David [Aix-Marseille University, Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Marseille (France); Aix-Marseille University, Biophysics and Nuclear Medecine, La Timone University Hospital, European Center for Research in Medical Imaging, Marseille (France)

    2014-11-01

    {sup 18}F-FDOPA PET imaging is increasingly used in the work-up of patients with neuroendocrine tumours. It has been shown to be of limited value in localizing pancreatic insulin-secreting tumours in adults with hyperinsulinaemic hypoglycaemia (HH) mainly due to {sup 18}F-FDOPA uptake by the whole pancreatic gland. The objective of this study was to review our experience with {sup 18}F-FDOPA PET/CT imaging with carbidopa (CD) premedication in patients with HH in comparison with PET/CT studies performed without CD premedication in an independent population. A retrospective study including 16 HH patients who were investigated between January 2011 and December 2013 using {sup 18}F-FDOPA PET/CT (17 examinations) in two academic endocrine tumour centres was conducted. All PET/CT examinations were performed under CD premedication (200 mg orally, 1 - 2 h prior to tracer injection). The PET/CT acquisition protocol included an early acquisition (5 min after {sup 18}F-FDOPA injection) centred over the upper abdomen and a delayed whole-body acquisition starting 20 - 30 min later. An independent series of eight consecutive patients with HH and investigated before 2011 were considered for comparison. All patients had a reference whole-body PET/CT scan performed about 1 h after {sup 18}F-FDOPA injection. In all cases, PET/CT was performed without CD premedication. In the study group, {sup 18}F-FDOPA PET/CT with CD premedication was positive in 8 out of 11 patients with histologically proven insulinoma (73 %). All {sup 18}F-FDOPA PET/CT-avid insulinomas were detected on early images and 5 of 11 (45 %) on delayed ones. The tumour/normal pancreas uptake ratio was not significantly different between early and delayed acquisitions. Considering all patients with HH, including those without imaging evidence of disease, the detection rate of the primary lesions using CD-assisted {sup 18}F-FDOPA PET/CT was 53 %, showing 9 insulinomas in 17 studies performed. In the control group (without

  18. PET and PET/CT in malignant melanoma

    International Nuclear Information System (INIS)

    Garcia O, J.R.

    2007-01-01

    The advantages that it has the PET/CT are: 1. It diminishes mainly positive false lesions. It identifies physiologic accumulate places. 2. It diminishes in smaller grade false negative. Small injuries. Injuries with low grade concentration. Injure on intense activity areas. 3. Precise anatomical localization of accumulate places. 4. Reduction of the acquisition time. (Author)

  19. Generation of static PET images with [{sup 11}C]-(R)-PK11195: Defining time interval; Geração de imagens PET Estáticas com [{sup 11}C]-(R)-PK11195: definição do intervalo temporal

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, Phelipi Nunes; Dartora, Caroline Machado; Silva, Ana Maria Marques da, E-mail: phelipi.schuck@acad.pucrs.br [Pontificia Universidade catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Núcleo de Pesquisa em Imagens Médicas

    2017-07-01

    [{sup 11}C]-(R)-PK11195 radiotracer shows microglia affinity in PET images and can be used as neuro inflammatory disease indicator, such as in Multiple Sclerosis (MS). There is no consensus about appropriate time interval to generate static PET images with [{sup 11}C]-(R)-PK11195. The aim of this study is to define the most appropriate time interval to generate static brain PET images with [{sup 11}C]-(R)-PK11195 for quantification. For this study, images from 10 remittent-recurrent MS patients and 5 healthy controls were used. Static images were generated from list-mode dynamic acquisition in the following time intervals: 0-60min, 5-20min, 5-30min, 10-60min, 30-60min e 40-60min. The ratio between SUV mean of juxtacortical and periventricular regions and normal appearing white matter, denominated SUVR{sup WM}, was used for image quantification. Results shown high variation in time intervals that include radiotracer perfusion. SUVRWM higher stability was observed in two time intervals (30-60min and 40-60min), for both control and MS patients groups. In conclusion, the best acquisition time interval to generate static PET images for quantification is from 40 to 60 minutes after administration, meaning an image acquired 40 minutes after [{sup 11}C]-(R)-PK11195 injection, during 20 min. (author)

  20. Data acquisition electronics for gamma ray emission tomography using width-modulated leading-edge discriminators

    Energy Technology Data Exchange (ETDEWEB)

    Lage, E; Tapias, G; Villena, J; Desco, M; Vaquero, J J, E-mail: desco@mce.hggm.e [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)

    2010-08-07

    We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 x 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s{sup -1} when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.

  1. Data acquisition electronics for gamma ray emission tomography using width-modulated leading-edge discriminators

    Science.gov (United States)

    Lage, E.; Tapias, G.; Villena, J.; Desco, M.; Vaquero, J. J.

    2010-08-01

    We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s-1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.

  2. Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy

    International Nuclear Information System (INIS)

    Fidanzio, Andrea; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio; Cilla, Savino; Grimaldi, Luca; D'Onofrio, Guido; Azario, Luigi; Piermattei, Angelo

    2008-01-01

    In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during three months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, S t , (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between S t and the dose at half thickness, D m , measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the S t signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, D iso , for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed D iso values can be obtained with an accuracy within ±2.5% in cylindrical phantom and within ±3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time

  3. 4-D PET-MR with Volumetric Navigators and Compressed Sensing

    DEFF Research Database (Denmark)

    Pedemonte, Stefano; Catana, Ciprian; Van Leemput, Koen

    2015-01-01

    Hybrid PET-MR scanners acquire multi-modal signals simultaneously, eliminating the requirement of software alignment between the MR and PET imaging data. However, the acquisition of high-resolution MR and PET images requires long scanning times, therefore movement of the subject during the acquis...

  4. Quantitative simultaneous PET-MR imaging

    Science.gov (United States)

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-06-01

    Whole-body PET is currently limited by the degradation due to patient motion. Respiratory motion degrades imaging studies of the abdomen. Similarly, both respiratory and cardiac motions significantly hamper the assessment of myocardial ischemia and/or metabolism in perfusion and viability cardiac PET studies. Based on simultaneous PET-MR, we have developed robust and accurate MRI methods allowing the tracking and measurement of both respiratory and cardiac motions during abdominal or cardiac studies. Our list-mode iterative PET reconstruction framework incorporates the measured motion fields into PET emission system matrix as well as the time-dependent PET attenuation map and the position dependent point spread function. Our method significantly enhances the PET image quality as compared to conventional methods.

  5. A method of adjusting SUV for injection-acquisition time differences in {sup 18}F-FDG PET Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, Eric [Hopital du Haut Leveque, CHU de Bordeaux, Pessac (France); Centre de Recherche Cardio-Thoracique, Bordeaux (France); Hopital du Haut-Leveque, Service de Medecine Nucleaire, Pessac (France); Clermont, Henri de [Hopital du Haut Leveque, CHU de Bordeaux, Pessac (France); Marthan, Roger [Hopital du Haut Leveque, CHU de Bordeaux, Pessac (France); Centre de Recherche Cardio-Thoracique, Bordeaux (France)

    2011-11-15

    A time normalisation method of tumour SUVs in {sup 18}F-FDG PET imaging is proposed that has been verified in lung cancer patients. A two-compartment model analysis showed that, when SUV is not corrected for {sup 18}F physical decay (SUV{sub uncorr}), its value is within 5% of its peak value (t = 79 min) between 55 and 110 min after injection, in each individual patient. In 10 patients, each with 1 or more malignant lesions (n = 15), two PET acquisitions were performed within this time delay, and the maximal SUV of each lesion, both corrected and uncorrected, was assessed. No significant difference was found between the two uncorrected SUVs, whereas there was a significant difference between the two corrected ones: mean differences were 0.04 {+-} 0.22 and 3.24 {+-} 0.75 g.ml{sup -1}, respectively (95% confidence intervals). Therefore, a simple normalisation of decay-corrected SUV for time differences after injection is proposed: SUV{sub N} = 1.66*SUV{sub uncorr}, where the factor 1.66 arises from decay correction at t = 79 min. When {sup 18}F-FDG PET imaging is performed within the range 55-110 min after injection, a simple SUV normalisation for time differences after injection has been verified in patients with lung cancer, with a {+-}2.5% relative measurement uncertainty. (orig.)

  6. PET/MRI for Neurological Applications

    Science.gov (United States)

    Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R.

    2013-01-01

    PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MR data acquisition allows the spatial and temporal correlation of the measured signals, opening up opportunities impossible to realize using stand-alone instruments. This paper reviews the methodological improvements and potential neurological and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MR data to improve the PET data quantification. On the MR side, we present how improved PET quantification could be used to validate a number of MR techniques. Finally, we describe promising research, translational and clinical applications that could benefit from these advanced tools. PMID:23143086

  7. PET/MRI for neurologic applications.

    Science.gov (United States)

    Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R

    2012-12-01

    PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.

  8. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  9. [F-18]FDG imaging of head and neck tumors: comparison of hybrid PET, dedicated PET and CT

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Poepperl, G.; Hahn, K.; Szeimies, U.

    2001-01-01

    Aim: Aim of the study was to evaluate [F-18]FDG imaging of head and neck tumors using a Hybrid-PET device of the 2nd or 3rd generation. Examinations were compared to dedicated PET and Spiral-CT. Methods: 54 patients suffering from head and neck tumors were examined using dedicated PET and Hybrid-PET after injection of 185-350 MBq [F-18]FDG. Examinations were carried out on the dedicated PET first followed by a scan on the Hybrid-PET. Dedicated PET was acquired in 3D mode, Hybrid-PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and Hybrid-PET. All patients received a CT scan in multislice technique. All finding have been verified by the goldstandard histology or in case of negative histology by follow up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using Hybrid-PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with Hybrid-PET and in 15/18 with CT. False positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and Hybrid-PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastastic lesions were seen with dedicated PET and with Hybrid-PET elsewhere in the body. Additional malignant disease other than the head and neck tumor was found in 4 patients. Conclusion: Using Hybrid-PET for [F-18]FDG imaging reveals a loss of sensitivity and specificity of about 1-5% as compared to dedicated PET in head and neck tumors. [F-18]FDG PET with both, dedicated PET and Hybrid-PET is superior to CT in the diagnosis of primary or recurrent lesions as well as in the assessment of lymph node involvement. (orig.) [de

  10. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    International Nuclear Information System (INIS)

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Fiedler, F; Bert, C

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. (note)

  11. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    Science.gov (United States)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  12. FDG-PET/CT in oncology. German guideline

    International Nuclear Information System (INIS)

    Krause, B.J.; Beyer, T.; Bockisch, A.; Delbeke, D.; Kotzerke, J.; Minkov, V.; Reiser, M.; Willich, N.

    2007-01-01

    FDG-PET/CT examinations combine metabolic and morphologic imaging within an integrated procedure. Over the past decade PET/CT imaging has gained wide clinical acceptance in the field of oncology. This FDG-PET/CT guideline focuses on indications, data acquisition and processing as well as documentation of FDG-PET/CT examinations in oncologic patients within a clinical and social context specific to Germany. Background information and definitions are followed by examples of clinical and research applications of FDG-PET/CT. Furthermore, protocols for CT scanning (low dose and contrast-enhanced CT) and PET emission imaging are discussed. Documentation and reporting of examinations are specified. Image interpretation criteria and sources of errors are discussed. Quality control for FDG and PET/CT-systems, qualification requirements of personnel as well as legal aspects are presented. (orig.)

  13. Characteristics of time-activity curves obtained from dynamic 11C-methionine PET in common primary brain tumors.

    Science.gov (United States)

    Nomura, Yuichi; Asano, Yoshitaka; Shinoda, Jun; Yano, Hirohito; Ikegame, Yuka; Kawasaki, Tomohiro; Nakayama, Noriyuki; Maruyama, Takashi; Muragaki, Yoshihiro; Iwama, Toru

    2018-07-01

    The aim of this study was to assess whether dynamic PET with 11 C-methionine (MET) (MET-PET) is useful in the diagnosis of brain tumors. One hundred sixty patients with brain tumors (139 gliomas, 9 meningiomas, 4 hemangioblastomas and 8 primary central nervous system lymphomas [PCNSL]) underwent dynamic MET-PET with a 3-dimensional acquisition mode, and the maximum tumor MET-standardized uptake value (MET-SUV) was measured consecutively to construct a time-activity curve (TAC). Furthermore, receiver operating characteristic (ROC) curves were generated from the time-to-peak (TTP) and the slope of the curve in the late phase (SLOPE). The TAC patterns of MET-SUVs (MET-TACs) could be divided into four characteristic types when MET dynamics were analyzed by dividing the MET-TAC into three phases. MET-SUVs were significantly higher in early and late phases in glioblastoma compared to anaplastic astrocytoma, diffuse astrocytoma and the normal frontal cortex (P dynamic MET-PET study could be helpful in the non-invasive discrimination of brain tumor subtypes, in particular gliomas.

  14. Free-running ADC- and FPGA-based signal processing method for brain PET using GAPD arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Choi, Yong, E-mail: ychoi.image@gmail.com [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Hong, Key Jo [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kang, Jihoon [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Jung, Jin Ho [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Huh, Youn Suk [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Lim, Hyun Keong; Kim, Sang Su [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Chung, Yonghyun [Department of Radiological Science, Yonsei University College of Health Science, 234 Meaji, Heungup Wonju, Kangwon-Do 220-710 (Korea, Republic of)

    2012-02-01

    Currently, for most photomultiplier tube (PMT)-based PET systems, constant fraction discriminators (CFD) and time to digital converters (TDC) have been employed to detect gamma ray signal arrival time, whereas anger logic circuits and peak detection analog-to-digital converters (ADCs) have been implemented to acquire position and energy information of detected events. As compared to PMT the Geiger-mode avalanche photodiodes (GAPDs) have a variety of advantages, such as compactness, low bias voltage requirement and MRI compatibility. Furthermore, the individual read-out method using a GAPD array coupled 1:1 with an array scintillator can provide better image uniformity than can be achieved using PMT and anger logic circuits. Recently, a brain PET using 72 GAPD arrays (4 Multiplication-Sign 4 array, pixel size: 3 mm Multiplication-Sign 3 mm) coupled 1:1 with LYSO scintillators (4 Multiplication-Sign 4 array, pixel size: 3 mm Multiplication-Sign 3 mm Multiplication-Sign 20 mm) has been developed for simultaneous PET/MRI imaging in our laboratory. Eighteen 64:1 position decoder circuits (PDCs) were used to reduce GAPD channel number and three off-the-shelf free-running ADC and field programmable gate array (FPGA) combined data acquisition (DAQ) cards were used for data acquisition and processing. In this study, a free-running ADC- and FPGA-based signal processing method was developed for the detection of gamma ray signal arrival time, energy and position information all together for each GAPD channel. For the method developed herein, three DAQ cards continuously acquired 18 channels of pre-amplified analog gamma ray signals and 108-bit digital addresses from 18 PDCs. In the FPGA, the digitized gamma ray pulses and digital addresses were processed to generate data packages containing pulse arrival time, baseline value, energy value and GAPD channel ID. Finally, these data packages were saved to a 128 Mbyte on-board synchronous dynamic random access memory (SDRAM) and

  15. Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence

    International Nuclear Information System (INIS)

    Steiner, C.; Zaidi, H.; Wissmeyer, M.; Berrebi, O.; Ratib, O.; Miralbell, R.; Buchegger, F.; University Hospital of Lausanne

    2009-01-01

    Contribution of 3-phase 18 F-fluorocholine PET/CT in suspected prostate cancer recurrence at early rise of PSA. Retrospective analysis was performed in 47 patients after initial treatment with radiotherapy (n = 30) or surgery (n 17). Following CT, 10 minutes list-mode PET acquisition was done over the prostate bed after injection of 300 MBq of 18 F-fluorocholine. Three timeframes of 3 minutes each were reconstructed for analysis. All patients underwent subsequent whole body PET/CT. Delayed pelvic PET/CT was obtained in 36 patients. PET/CT was interpreted visually by two observers and SUV max determined for suspicious lesions. Biopsies were obtained from 13 patients. Biopsies confirmed the presence of cancer in 11 of 13 patients with positive PET for a total of 15 local recurrences in which average SUV max increased during 14 minutes post injection and marginally decreased in delayed scanning. Conversely inguinal lymph nodes with mild to moderate metabolic activity on PET showed a clearly different pattern with decreasing SUV max on dynamic images. Three-phase PET/CT contributed to the diagnostic assessment of 10 of 47 patients with biological evidence of recurrence of cancer. It notably allowed the discrimination of confounding blood pool or urinary activity from suspicious hyperactivities. PET/CT was positive in all patients with PSA ≥ 2 ng/ml (n 34) and in 4/13 patients presenting PSA values 18 F-fluorocholine 3-phase PET/CT showed a progressively increasing SUV max in biopsy confirmed cancer lesions up to 14 minutes post injection while decreasing in inguinal lymph nodes interpreted as benign. Furthermore, it was very useful in differentiating local recurrences from confounding blood pool and urinary activity. (orig.)

  16. Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation

    NARCIS (Netherlands)

    Karakatsanis, Nicolas A.; Tsoumpas, Charalampos; Zaidi, Habib

    Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk

  17. Trade, Foreign Direct Investment or Acquisition: Optimal Entry Modes for Multinationals

    OpenAIRE

    Theo Eicher; Jong Woo Kang

    2004-01-01

    We examine multinationals’ optimal entry modes into foreign markets as a function of market size, FDI fixed costs, tariffs and transport costs. Our results highlight why large countries are more likely to attract acquisition investment, while intermediate-sized countries may be served predominantly through trade, even in the presence of high tariffs. Small countries are most likely to experience either FDI or no entry. We also show how these results vary with the competition intensity in th...

  18. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle

    KAUST Repository

    Li, Erqiang

    2010-09-01

    A PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzles is designed and fabricated. The printhead chamber is comprised of PET (polyethylene terephthalate) tubing or PTFE (polytetrafluoroethylene, or Teflon) tubing, which of a much softer material, than the conventionally used glass tubing. Applying the same electrical voltage, PET/PTFE-based printhead will generate a larger volume change in the material to be dispensed. The novel printhead fabricated herein has successfully dispensed liquids with viscosities up to 100 cps, as compared to 20 cps for the commercial printheads. Furthermore, PTFE-based printhead provides excellent anti-corrosive property when strongly corrosive inks are involved. The interchangeable nozzle design enables the same printhead to be fitted with nozzles of different orifice size, thus a clogged nozzle can be easily removed for cleaning or replacement. The characteristics of this novel printhead are also studied by dispensing glycerin-water solutions. © 2010 Elsevier B.V. All rights reserved.

  19. Simultaneous functional imaging using fPET and fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Villien, Marjorie [CERMEP (France)

    2015-05-18

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  20. Simultaneous functional imaging using fPET and fMRI

    International Nuclear Information System (INIS)

    Villien, Marjorie

    2015-01-01

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  1. TH-E-202-02: The Use of Hypoxia PET Imaging for Radiotherapy

    International Nuclear Information System (INIS)

    Humm, J.

    2016-01-01

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  2. TH-E-202-02: The Use of Hypoxia PET Imaging for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Humm, J. [Memorial Sloan-Kettering Cancer Center (United States)

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  3. PET and PET-CT. State of the art and future prospects

    International Nuclear Information System (INIS)

    Fanti, Stefano; Franchi, Roberto; Battista, Giuseppe; Monetti, Nino; Canini, Romeo

    2005-01-01

    Fluoro-deoxyglucose positron emission tomography (FDG PET) enables the in vivo study of tissue metabolism, and thus is able to identify malignant tumours as hypermetabolic lesions by an increase in tracer uptake. Many papers have demonstrated both the relevant impact of FDG PET on staging of many cancers and the superior accuracy of the technique compared with conventional diagnostic methods for pre-treatment evaluation, therapy response evaluation and relapse identification. In particular PET was found useful in identifying lymph nodal and metastatic spread. thus altering patient management in more than 30% of cases. PET images, however, provide limited anatomical data, which in regions such as the head and neck, mediastinum and pelvic cavity is a significant drawback. The exact localization of lesions may also be difficult in some cases, on the basis of PET images alone. The introduction of combined PET-computed tomography (PET-CT) scanners enables the almost simultaneous acquisition of transmission and emission images, thus obtaining optimal fusion images in a very short time. PET-CT fusion images enable lesions to be located, reducing false positive studies and increasing accuracy; the overall duration of examination may also be reduced. On the basis of both literature data and our experience we established the clinical indications when PET-CT may be particularly useful, in comparison with PET alone. It should also be underlined that the use of PET-CT is almost mandatory for new traces such as C-choline and C-methionine; these new tracers may be applied for studying tumours not assessable with FDG, such as prostate cancer. In conclusion PET-CT is at present the most advanced method for metabolic imaging, and is capable of precisely localizing and assessing tumours; fusion images reduce false positive and inconclusive studies, thus increasing diagnostic accuracy [it

  4. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    Science.gov (United States)

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. New cardiac cameras: single-photon emission CT and PET.

    Science.gov (United States)

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow

  6. Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    Binns, David S.; Callahan, Jason; Mileshkin, Linda; Pirzkall, Andrea; Yu, Wei; Fine, Bernard M.; Conti, Peter; Scott, Andrew M.; Macfarlane, David; Hicks, Rodney J.

    2011-01-01

    The Response Evaluation Criteria in Solid Tumors (RECIST) are widely used but have recognized limitations. Molecular imaging assessments, including changes in 18 F-deoxyglucose (FDG) or 18 F-deoxythymidine (FLT) uptake by positron emission tomography (PET), may provide earlier, more robust evaluation of treatment efficacy. A prospective trial evaluated on-treatment changes in FDG and FLT PET imaging among patients with relapsed or recurrent non-small cell lung cancer treated with erlotinib to assess the relationship between PET-evaluated response and clinical outcomes. We describe an audit of compliance with the study imaging charter, to establish the feasibility of achieving methodological consistency in a multicentre setting. Patients underwent PET scans at baseline and approximately day 14 and day 56 of treatment (n = 73, 66 and 51 studies, and n = 73, 63 and 50 studies for FDG PET and FLT PET, respectively). Blood glucose levels were within the target range for all FDG PET scans. Charter-specified uptake times were achieved in 86% (63/73) and 89% (65/73) of baseline FDG and FLT scans, respectively. On-treatment scans were less consistent: 72% (84/117) and 68% (77/113), respectively, achieved the target of ±5 min of baseline uptake time. However, 96% (112/117) and 94% (106/113) of FDG and FLT PET studies, respectively, were within ±15 min. Bland-Altman analysis of intra-individual hepatic average standardized uptake value (SUV ave ), to assess reproducibility, showed only a small difference in physiological uptake (-0.006 ± 0.224 in 118 follow-up FDG scans and 0.09 ± 0.81 in 111 follow-up FLT scans). It is possible to achieve high reproducibility of scan acquisition methodology, provided that strict imaging compliance guidelines are mandated in the study protocol. (orig.)

  7. Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Binns, David S.; Callahan, Jason; Mileshkin, Linda [The Peter MacCallum Cancer Centre, Melbourne (Australia); Pirzkall, Andrea; Yu, Wei; Fine, Bernard M. [Genentech, Inc., South San Francisco, CA (United States); Conti, Peter [University of Southern California Kenneth Norris Medical Center, Los Angeles, CA (United States); Scott, Andrew M. [The University of Melbourne and The Austin Hospital, Centre for PET, and Ludwig Institute for Cancer Research, Victoria (Australia); Macfarlane, David [Queensland PET Service, Royal Brisbane and Women' s Hospital, Brisbane (Australia); Hicks, Rodney J. [The University of Melbourne and The Peter MacCallum Cancer Centre, Departments of Medicine and Radiology, East Melbourne, VIC (Australia); The Peter MacCallum Cancer Centre, Melbourne (Australia)

    2011-04-15

    The Response Evaluation Criteria in Solid Tumors (RECIST) are widely used but have recognized limitations. Molecular imaging assessments, including changes in {sup 18}F-deoxyglucose (FDG) or {sup 18}F-deoxythymidine (FLT) uptake by positron emission tomography (PET), may provide earlier, more robust evaluation of treatment efficacy. A prospective trial evaluated on-treatment changes in FDG and FLT PET imaging among patients with relapsed or recurrent non-small cell lung cancer treated with erlotinib to assess the relationship between PET-evaluated response and clinical outcomes. We describe an audit of compliance with the study imaging charter, to establish the feasibility of achieving methodological consistency in a multicentre setting. Patients underwent PET scans at baseline and approximately day 14 and day 56 of treatment (n = 73, 66 and 51 studies, and n = 73, 63 and 50 studies for FDG PET and FLT PET, respectively). Blood glucose levels were within the target range for all FDG PET scans. Charter-specified uptake times were achieved in 86% (63/73) and 89% (65/73) of baseline FDG and FLT scans, respectively. On-treatment scans were less consistent: 72% (84/117) and 68% (77/113), respectively, achieved the target of {+-}5 min of baseline uptake time. However, 96% (112/117) and 94% (106/113) of FDG and FLT PET studies, respectively, were within {+-}15 min. Bland-Altman analysis of intra-individual hepatic average standardized uptake value (SUV{sub ave}), to assess reproducibility, showed only a small difference in physiological uptake (-0.006 {+-} 0.224 in 118 follow-up FDG scans and 0.09 {+-} 0.81 in 111 follow-up FLT scans). It is possible to achieve high reproducibility of scan acquisition methodology, provided that strict imaging compliance guidelines are mandated in the study protocol. (orig.)

  8. Optimized workflow and imaging protocols for whole-body oncologic PET/MRI.

    Science.gov (United States)

    Ishii, Shirou; Hara, Takamitsu; Nanbu, Takeyuki; Suenaga, Hiroki; Sugawara, Shigeyasu; Kuroiwa, Daichi; Sekino, Hirofumi; Miyajima, Masayuki; Kubo, Hitoshi; Oriuchi, Noboru; Ito, Hiroshi

    2016-11-01

    Although PET/MRI has the advantages of a simultaneous acquisition of PET and MRI, high soft-tissue contrast of the MRI images, and reduction of radiation exposure, its low profitability and long acquisition time are significant problems in clinical settings. Thus, MRI protocols that meet oncological purposes need to be used in order to reduce examination time while securing detectability. Currently, half-Fourier acquisition single-shot turbo spin echo and 3D-T1 volumetric interpolated breath-hold examination may be the most commonly used sequences for whole-body imaging due to their shorter acquisition time and higher diagnostic accuracy. Although there have been several reports that adding diffusion weighted image (DWI) to PET/MRI protocol has had no effect on tumor detection to date, in cases of liver, kidney, bladder, and prostate cancer, the use of DWI may be beneficial in detecting lesions. Another possible option is to scan each region with different MRI sequences instead of scanning the whole body using one sequence continuously. We herein report a workflow and imaging protocols for whole-body oncologic PET/MRI using an integrated system in the clinical routine, designed for the detection, for example by cancer screening, of metastatic lesions, in order to help future users optimize their workflow and imaging protocols.

  9. Noise equivalent count measurements in a neuro-PET scanner with retractable septa

    International Nuclear Information System (INIS)

    Bailey, D.L.; Jones, T.; Spinks, T.J.; Gilardi, M.C.; Townsend, D.W.

    1990-01-01

    This paper reports on the removal of interplane septa in a PET scanner that enables acquisition of all possible lines of response (3D mode) in an effort to maximize the available number of detected events. One problem with this method at high countrates, however, is a markedly increased deadtime and randoms rate, which has a deleterious effect on data quality. The noise-equivalent countrate (NEC) performance of a neuro-PET scanner has been determined with and without interplane septa on uniform cylindrical phantoms of differing radii and in human studies to assess the optimum countrate conditions that realize the maximum gain. In the brain, the effective gain in NEC performance for 3D ranges from >5 at low countrates to ∼3.3 at 200 kcps (equivalent to 37 kcps in 2D). The gains of the 3D method assessed by this analysis are significant, and are shown to be highly dependent on countrate and object dimensions

  10. Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET

    Science.gov (United States)

    Moliner, L.; Correcher, C.; González, A. J.; Conde, P.; Hernández, L.; Orero, A.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2013-02-01

    In this work we present an innovative algorithm for the reconstruction of PET images based on the List-Mode (LM) technique which improves their spatial resolution compared to results obtained with current MLEM algorithms. This study appears as a part of a large project with the aim of improving diagnosis in early Alzheimer disease stages by means of a newly developed hybrid PET-MR insert. At the present, Alzheimer is the most relevant neurodegenerative disease and the best way to apply an effective treatment is its early diagnosis. The PET device will consist of several monolithic LYSO crystals coupled to SiPM detectors. Monolithic crystals can reduce scanner costs with the advantage to enable implementation of very small virtual pixels in their geometry. This is especially useful for LM reconstruction algorithms, since they do not need a pre-calculated system matrix. We have developed an LM algorithm which has been initially tested with a large aperture (186 mm) breast PET system. Such an algorithm instead of using the common lines of response, incorporates a novel calculation of tubes of response. The new approach improves the volumetric spatial resolution about a factor 2 at the border of the field of view when compared with traditionally used MLEM algorithm. Moreover, it has also shown to decrease the image noise, thus increasing the image quality.

  11. Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET

    International Nuclear Information System (INIS)

    Moliner, L.; Correcher, C.; González, A.J.; Conde, P.; Hernández, L.; Orero, A.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Soriano, A.; Vidal, L.F.; Benlloch, J.M.

    2013-01-01

    In this work we present an innovative algorithm for the reconstruction of PET images based on the List-Mode (LM) technique which improves their spatial resolution compared to results obtained with current MLEM algorithms. This study appears as a part of a large project with the aim of improving diagnosis in early Alzheimer disease stages by means of a newly developed hybrid PET-MR insert. At the present, Alzheimer is the most relevant neurodegenerative disease and the best way to apply an effective treatment is its early diagnosis. The PET device will consist of several monolithic LYSO crystals coupled to SiPM detectors. Monolithic crystals can reduce scanner costs with the advantage to enable implementation of very small virtual pixels in their geometry. This is especially useful for LM reconstruction algorithms, since they do not need a pre-calculated system matrix. We have developed an LM algorithm which has been initially tested with a large aperture (186 mm) breast PET system. Such an algorithm instead of using the common lines of response, incorporates a novel calculation of tubes of response. The new approach improves the volumetric spatial resolution about a factor 2 at the border of the field of view when compared with traditionally used MLEM algorithm. Moreover, it has also shown to decrease the image noise, thus increasing the image quality

  12. A comparative study on PET and SPECT image formation systems for a proper scanner choice in a considered PET center

    International Nuclear Information System (INIS)

    Santos, G.R. dos; Oliveira, A. de; Oliveira, C.L. de

    2001-01-01

    precocious discovery of males. Presently multi-ring commercial PET scanners can operate in either two or three-dimensional acquisition modes. Some special features like the retractable lead septa allows 3-D acquisition. In this mode the overall scanner sensitivity has a remarkable increasing compared with earlier scanners, in spite of an increase in both the scatter and random rate. As the emission and transmission data are fed into the computers, and the coincidence events are stored as sinograms, it is also necessary to keep up with computational area. Just to give an idea on the complexity level, the software should be able to provide a full 2-D or 3-D reconstruction algorithm, based on filtered back projection, incorporating an attenuation correction procedure. This is necessary to characterize sinograms, which correspond to sets of two-dimensional projections of the tracer distribution. Software tools should also have the capability for image manipulation and ultimately using various bio-mathematical models. This way, the PET data could be transformed into information with physiological, pathological significance. In a self-sustained project, like the PET Center's project in Rio de Janeiro intend to be, the most important parameters to be considered in the equipment's choice are the per capita's income and acquisition and maintenance costs. However, these factors by itself cannot predict which the best equipment should be acquired and some inherent characteristic of the product as resolution, sensitivity, time of resolution, time of scan and others capabilities should be considered. Out of the comparative scenario, there are also some legal complies. Specifically connected to project of PET Center in Brazil, is the fact that the production of radioactive substances are monopoly of the federal government. As a consequence, and also considering that most PET radioisotopes are short-lived, the availability is restricted to this Southeastern region of Brazil. This region

  13. Design and performance of an acquisition and control system for a positron camera with novel detectors

    International Nuclear Information System (INIS)

    Symonds-Tayler, J.R.N.; Reader, A.J.; Flower, M.A.

    1996-01-01

    A Sun-based data acquisition and control (DAQ) system has been designed for PETRRA, a whole-body positron camera using large-area BaF 2 -TMAE detectors. The DAQ system uses a high-speed digital I/O card (S16D) installed on the S-bus of a SPARC10 and a specially-designed Positron Camera Interface (PCI), which also controls both the gantry and horizontal couch motion. Data in the form of different types of 6-byte packets are acquired in list mode. Tests with a signal generator show that the DAQ system should be able to cater for coincidence count-rates up to 100 kcps. The predicted count loss due to the DAQ system is ∼13% at this count rate, provided asynchronous-read based software is used. The list-mode data acquisition system designed for PETRRA could be adapted for other 3D PET cameras with similar data rates

  14. Comparison of the diagnostic accuracy of PET/MRI to PET/CT-acquired FDG brain exams for seizure focus detection: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Paldino, Michael J.; Jones, Jeremy Y.; Mahmood, Nadia; Sher, Andrew; Hayatghaibi, Shireen; Seghers, Victor [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Yang, Erica [SimonMed Imaging, Department of Radiology, Scottsdale, AZ (United States); Zhang, Wei [Texas Children' s Hospital, Outcomes and Impact Service, Houston, TX (United States); Krishnamurthy, Ramkumar [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2017-10-15

    There is great interest in positron emission tomography (PET)/magnetic resonance (MR) as a clinical tool due to its capacity to provide diverse diagnostic information in a single exam. The goal of this exam is to compare the diagnostic accuracy of PET/MR-acquired [F-18]2-fluoro-2-deoxyglucose (FDG) brain exams to that of PET/CT with respect to identifying seizure foci in children with localization-related epilepsy. Institutional Review Board approval and informed consent were obtained for this Health Insurance Portability and Accountability Act-compliant, prospective study. All patients referred for clinical FDG-PET/CT exams of the brain at our institution for a diagnosis of localization-related epilepsy were prospectively recruited to undergo an additional FDG-PET acquisition on a tandem PET/MR system. Attenuation-corrected FDG images acquired at PET/MR and PET/CT were interpreted independently by five expert readers. Readers were blinded to the scanner used for acquisition and attenuation correction as well as all other clinical and imaging data. A Likert scale scoring system (1-5) was used to assess image quality. The locale of seizure origin determined at multidisciplinary epilepsy surgery work rounds was considered the reference standard. Non-inferiority testing for paired data was used to compare the diagnostic accuracy of PET/MR to that of PET/CT. The final study population comprised 35 patients referred for a diagnosis of localization-related epilepsy (age range: 2-19 years; median: 11 years; 21 males, 14 females). Image quality did not differ significantly between the two modalities. The accuracy of PET/MR was not inferior to that of PET/CT for localization of a seizure focus (P=0.017). The diagnostic accuracy of FDG-PET images acquired on a PET/MR scanner and generated using MR-based attenuation correction was not inferior to that of PET images processed by traditional CT-based correction. (orig.)

  15. Comparison of the diagnostic accuracy of PET/MRI to PET/CT-acquired FDG brain exams for seizure focus detection: a prospective study

    International Nuclear Information System (INIS)

    Paldino, Michael J.; Jones, Jeremy Y.; Mahmood, Nadia; Sher, Andrew; Hayatghaibi, Shireen; Seghers, Victor; Yang, Erica; Zhang, Wei; Krishnamurthy, Ramkumar

    2017-01-01

    There is great interest in positron emission tomography (PET)/magnetic resonance (MR) as a clinical tool due to its capacity to provide diverse diagnostic information in a single exam. The goal of this exam is to compare the diagnostic accuracy of PET/MR-acquired [F-18]2-fluoro-2-deoxyglucose (FDG) brain exams to that of PET/CT with respect to identifying seizure foci in children with localization-related epilepsy. Institutional Review Board approval and informed consent were obtained for this Health Insurance Portability and Accountability Act-compliant, prospective study. All patients referred for clinical FDG-PET/CT exams of the brain at our institution for a diagnosis of localization-related epilepsy were prospectively recruited to undergo an additional FDG-PET acquisition on a tandem PET/MR system. Attenuation-corrected FDG images acquired at PET/MR and PET/CT were interpreted independently by five expert readers. Readers were blinded to the scanner used for acquisition and attenuation correction as well as all other clinical and imaging data. A Likert scale scoring system (1-5) was used to assess image quality. The locale of seizure origin determined at multidisciplinary epilepsy surgery work rounds was considered the reference standard. Non-inferiority testing for paired data was used to compare the diagnostic accuracy of PET/MR to that of PET/CT. The final study population comprised 35 patients referred for a diagnosis of localization-related epilepsy (age range: 2-19 years; median: 11 years; 21 males, 14 females). Image quality did not differ significantly between the two modalities. The accuracy of PET/MR was not inferior to that of PET/CT for localization of a seizure focus (P=0.017). The diagnostic accuracy of FDG-PET images acquired on a PET/MR scanner and generated using MR-based attenuation correction was not inferior to that of PET images processed by traditional CT-based correction. (orig.)

  16. FDG-PET-based radiotherapy planning in lung cancer. Optimum breathing protocol and patient positioning - an intraindividual comparison; FDG-PET-basierte Bestrahlungsplanung von nicht kleinzelligen Bronchialkarzinomen. Optimales Atemprotokoll und Patientenpositionierung - ein intraindividueller Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Grgic, A.; Schaefer-Schuler, A.; Kirsch, C.M.; Hellwig, D. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Nuklearmedizin; Nestle, U. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde; Kremp, S. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2008-12-15

    FDG-PET and PET / CT is increasingly used for radiotherapy (RT) planning in non-small-cell lung carcinoma (NSCLC). The planning process is often based on separately-acquired FDG-PET / CT and planning CT. We compared intraindividual differences between PET acquired in diagnostic and radiotherapy treatment position coregistered with planning CTs acquired using different breathing protocols. Sixteen patients with NSCLC underwent two PET acquisitions (diagnostic position-D-PET, radiotherapy position-RT-PET) and three planning-CT acquisitions (expiration-EXP, inspiration-INS, mid-breathhold-MID) on the same day. All scans were rigidly coregistered resulting in six fused datasets: D-INS, D-EXP, D-MID, RT-INS, RT-EXP and RT-MID. Fusion accuracy was assessed by three readers at eight anatomical landmarks: lung apices, aortic arch, heart, spine, sternum, carina, diaphragm and tumor using an alignment score ranging from 1 (no alignment) to 5 (exact alignment). RT-PET showed better alignment with any CT than D-PET (p < 0.001). With regard to breathing, RT-MID showed the best mean alignment score (3.7 {+-} 1.0) followed by RT-EXP (3.5 {+-} 0.9) and RT-INS (3.0 {+-} 0.8), all differences being significant (p < 0.001). Comparing the alignment scores with regard to anatomical landmarks, the largest deviations were found at diaphragm, heart and apices. Overall, there was a fair agreement (? = 0.48; p < 0.001) among the three readers. Significantly better fusion of PET and planning-CT can be reached with PET acquired in RT-position. The best intraindividual fusion results are obtained with the planning-CT performed during mid-breathhold. Our data justify the acquisition of a separate planning-PET in RT-treatment position if only a diagnostic PET-scan is available. (orig.)

  17. Simultaneous Hyperpolarized 13C-Pyruvate MRI and 18F-FDG PET (HyperPET) in 10 Dogs with Cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E

    2015-01-01

    with biopsy-verified spontaneous malignant tumors were included for imaging. All dogs underwent a protocol of simultaneous (18)F-FDG PET, anatomic MR, and hyperpolarized dynamic nuclear polarization with (13)C-pyruvate imaging. The data were acquired using a combined clinical PET/MR imaging scanner. We found...... that combined (18)F-FDG PET and (13)C-pyruvate MRS imaging was possible in a single session of approximately 2 h. A continuous workflow was obtained with the injection of (18)F-FDG when the dogs was placed in the PET/MR scanner. (13)C-MRS dynamic acquisition demonstrated in an axial slab increased (13)C......With the introduction of combined PET/MR spectroscopic (MRS) imaging, it is now possible to directly and indirectly image the Warburg effect with hyperpolarized (13)C-pyruvate and (18)F-FDG PET imaging, respectively, via a technique we have named hyperPET. The main purpose of this present study...

  18. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    Science.gov (United States)

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  19. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation

    International Nuclear Information System (INIS)

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (∼15–20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate K i and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final K i parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion

  20. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics.

    Science.gov (United States)

    Schleyer, P J; Thielemans, K; Marsden, P K

    2014-08-07

    Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions.

  1. Towards enhanced PET quantification in clinical oncology

    DEFF Research Database (Denmark)

    Zaidi, Habib; Karakatsanis, Nicolas

    2018-01-01

    is still a matter of debate. Quantitative PET has advanced elegantly during the last two decades and is now reaching the maturity required for clinical exploitation, particularly in oncology where it has the capability to open many avenues for clinical diagnosis, assessment of response to treatment...... and therapy planning. Therefore, the preservation and further enhancement of the quantitative features of PET imaging is crucial to ensure that the full clinical value of PET imaging modality is utilized in clinical oncology. Recent advancements in PET technology and methodology have paved the way for faster...... PET acquisitions of enhanced sensitivity to support the clinical translation of highly quantitative 4D parametric imaging methods in clinical oncology. In this report, we provide an overview of recent advances and future trends in quantitative PET imaging in the context of clinical oncology. The pros...

  2. Development of a single-ring OpenPET prototype

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Wakizaka, Hidekatsu; Nishikido, Fumihiko; Hirano, Yoshiyuki; Inadama, Naoko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-11-21

    One of the challenging applications of PET is implementing it for in-beam PET, which is an in situ monitoring method for charged particle therapy. For this purpose, we have previously proposed an open-type PET scanner, OpenPET. The original OpenPET had a physically opened field-of-view (FOV) between two detector rings through which irradiation beams pass. This dual-ring OpenPET (DROP) had a wide axial FOV including the gap. This geometry was not necessarily the most efficient for application to in-beam PET in which only a limited FOV around the irradiation field is required. Therefore, we have proposed a new single-ring OpenPET (SROP) geometry which can provide an accessible and observable open space with higher sensitivity and a reduced number of detectors than the DROP. The proposed geometry was a cylinder shape with its ends cut at a slant, in which the shape of each cut end became an ellipse. In this work, we developed and evaluated a small prototype of the SROP geometry for proof-of-concept. The SROP prototype was designed with 2 ellipse-shaped detector rings of 16 depth-of-interaction (DOI) detectors each. The DOI detectors consisted of 1024 GSOZ scintillator crystals which were arranged in 4 layers of 16×16 arrays, coupled to a 64-channel FP-PMT. Each ellipse-shaped detector ring had a major axis of 281.6 mm and a minor axis of 207.5 mm. For the slant mode, the rings were placed at a 45-deg slant from the axial direction and for the non-slant mode (used as a reference) they were at 90 deg from the axial direction with no gap. The system sensitivity measured from a {sup 22}Na point source was 5.0% for the slant mode. The average spatial resolutions of major and minor axis directions were calculated as 3.8 mm FWHM and 4.9 mm FWHM, respectively for the slant mode. This difference resulted from the ellipsoidal ring geometry and the spatial resolution of the minor axis direction degraded by the parallax error. Comparison between the slant mode and the non

  3. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  4. Early-Dynamic Positron Emission Tomography (PET)/Computed Tomography and PET Angiography for Endoleak Detection After Endovascular Aneurysm Repair.

    Science.gov (United States)

    Drescher, Robert; Gühne, Falk; Freesmeyer, Martin

    2017-06-01

    To propose a positron emission tomography (PET)/computed tomography (CT) protocol including early-dynamic and late-phase acquisitions to evaluate graft patency and aneurysm diameter, detect endoleaks, and rule out graft or vessel wall inflammation after endovascular aneurysm repair (EVAR) in one examination without intravenous contrast medium. Early-dynamic PET/CT of the endovascular prosthesis is performed for 180 seconds immediately after intravenous injection of F-18-fluorodeoxyglucose. Data are reconstructed in variable time frames (time periods after tracer injection) to visualize the arterial anatomy and are displayed as PET angiography or fused with CT images. Images are evaluated in view of vascular abnormalities, graft configuration, and tracer accumulation in the aneurysm sac. Whole-body PET/CT is performed 90 to 120 minutes after tracer injection. This protocol for early-dynamic PET/CT and PET angiography has the potential to evaluate vascular diseases, including the diagnosis of complications after endovascular procedures.

  5. Advances in PET-MRI technology

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua

    2011-01-01

    Multimodality imaging is the general trend of clinical imaging. PET-CT is one of the most classic and mature multimodality imaging methods and is widely used today. MRI is another kind of conventional imaging method, in contrast to CT, MRI can not only yield images with higher soft-tissue contrast and better spatial resolution resolution but also provide some functional information by special imaging techniques such as MRS. The combination of PET and MRI for simultaneous data acquisition should have far-reaching consequences for clinical and scientific study. This review describes the progress to date and talks about the problems met in the development of PET-MRI and look forward to its potential application. (authors)

  6. The MiniPET: a didactic PET system

    International Nuclear Information System (INIS)

    Pedro, R; Silva, J; Maio, A; Gurriana, L; Silva, J M; Augusto, J Soares

    2013-01-01

    The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius φ=51 mm), up to a geometry with 70 detectors per ring (φ=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137 Cs radioactive source and by photons resulting of the annihilation of positrons from a 22 Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.

  7. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research

    International Nuclear Information System (INIS)

    Bergeron, Mélanie; Cadorette, Jules; Beaudoin, Jean-François; Lecomte, Roger; Tétrault, Marc-André; Leroux, Jean-Daniel; Fontaine, Réjean

    2014-01-01

    The LabPET is an avalanche photodiode (APD) based digital PET scanner with quasi-individual detector read-out and highly parallel electronic architecture for high-performance in vivo molecular imaging of small animals. The scanner is based on LYSO and LGSO scintillation crystals (2×2×12/14 mm 3 ), assembled side-by-side in phoswich pairs read out by an APD. High spatial resolution is achieved through the individual and independent read-out of an individual APD detector for recording impinging annihilation photons. The LabPET exists in three versions, LabPET4 (3.75 cm axial length), LabPET8 (7.5 cm axial length) and LabPET12 (11.4 cm axial length). This paper focuses on the systematic characterization of the three LabPET versions using two different energy window settings to implement a high-efficiency mode (250–650 keV) and a high-resolution mode (350–650 keV) in the most suitable operating conditions. Prior to measurements, a global timing alignment of the scanners and optimization of the APD operating bias have been carried out. Characteristics such as spatial resolution, absolute sensitivity, count rate performance and image quality have been thoroughly investigated following the NEMA NU 4-2008 protocol. Phantom and small animal images were acquired to assess the scanners' suitability for the most demanding imaging tasks in preclinical biomedical research. The three systems achieve the same radial FBP spatial resolution at 5 mm from the field-of-view center: 1.65/3.40 mm (FWHM/FWTM) for an energy threshold of 250 keV and 1.51/2.97 mm for an energy threshold of 350 keV. The absolute sensitivity for an energy window of 250–650 keV is 1.4%/2.6%/4.3% for LabPET4/8/12, respectively. The best count rate performance peaking at 362 kcps is achieved by the LabPET12 with an energy window of 250–650 keV and a mouse phantom (2.5 cm diameter) at an activity of 2.4 MBq ml −1 . With the same phantom, the scatter fraction for all scanners is about

  8. TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning

    International Nuclear Information System (INIS)

    Pan, T.

    2016-01-01

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  9. TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  10. Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology

    Science.gov (United States)

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric

    2018-02-01

    Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a

  11. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics

    International Nuclear Information System (INIS)

    Schleyer, P J; Thielemans, K; Marsden, P K

    2014-01-01

    Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH 3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions. (paper)

  12. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  13. AX-PET: A novel PET concept with G-APD readout

    CERN Document Server

    Heller, M; Casella, C; Chesi, E; De Leo, R; Dissertori, G; Fanti, V; Gillam, J E; Joram, C; Lustermann, W; Nappi, E; Oliver, J F; Pauss, F; Rafecas, M; Rudge, A; Ruotsalainen, U; Schinzel, D; Schneider, T; Seguinot, J; Solevi, P; Stapnes, S; Tuna, U; Weilhammer, P

    2012-01-01

    The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-...

  14. Competitive advantage of PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein, E-mail: jadvar@usc.edu; Colletti, Patrick M.

    2014-01-15

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.

  15. Competitive advantage of PET/MRI.

    Science.gov (United States)

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Competitive advantage of PET/MRI

    International Nuclear Information System (INIS)

    Jadvar, Hossein; Colletti, Patrick M.

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved

  17. Cardiac PET/CT for the diagnosis and prognostic evaluation of coronary artery disease

    International Nuclear Information System (INIS)

    Geronazzo, R.J.; Romero, R.L.; Campisi, R.

    2014-01-01

    Coronary artery disease is considered by de World Health Organization (WHO) to be pandemic. Eighty percent of the deaths occurs secondary to coronary artery disease, stroke and diabetes, thus they can be prevented. All of them are related to the same risk factors. Ischemic heart disease is the mayor cause of death in Argentina in the elderly population. Primary prevention strategies are essential in the health system. Hence, image complementary methods are very important to accomplish risk stratification, secondary prevention and pre-surgical evaluation. Nuclear cardiology has occupied this place through myocardial perfusion studies with radiopharmaceuticals, using SPECT (Single photon emission computed tomography) that have improved the level of sensitivity and specificity with ECG gated. Furthermore, positron emission tomography (PET) can evaluate relative myocardial perfusion, quantify absolute myocardial blood flow and coronary flow reserve. With its capacity to quantify rest-peak stress left ventricular systolic function we can underscore for example “balance ischemia”. By using hybrid PET/CT, also we can get information of coronary artery calcium scoring and coronary angiography. Currently, with the available softwares, we can acquire images in List mode. It means, from a single acquisition, it allows multiple image reconstructions, along with the associated electrocardiographic phase. PET/CT uses radiopharmaceuticals with short physical half life, and in conjunction with the possibility of acquiring in 3D mode, the perfusion studies can be done in a short time and offers lower radiation exposure to the patient. The new softwares for routine correction of misalignments between transmission and emission images have helped to reduce the frequency of artifacts and improve diagnostic accuracy. Hybrid PET/CT technology allows functional evaluation of myocardial perfusion combined with anatomic characterization of the epicardial coronary arteries, thereby

  18. Optimal MRI sequences for 68Ga-PSMA-11 PET/MRI in evaluation of biochemically recurrent prostate cancer.

    Science.gov (United States)

    Lake, Spencer T; Greene, Kirsten L; Westphalen, Antonio C; Behr, Spencer C; Zagoria, Ronald; Small, Eric J; Carroll, Peter R; Hope, Thomas A

    2017-09-19

    PET/MRI can be used for the detection of disease in biochemical recurrence (BCR) patients imaged with 68 Ga-PSMA-11 PET. This study was designed to determine the optimal MRI sequences to localize positive findings on 68 Ga-PSMA-11 PET of patients with BCR after definitive therapy. Fifty-five consecutive prostate cancer patients with BCR imaged with 68 Ga-PSMA-11 3.0T PET/MRI were retrospectively analyzed. Mean PSA was 7.9 ± 12.9 ng/ml, and mean PSA doubling time was 7.1 ± 6.6 months. Detection rates of anatomic correlates for prostate-specific membrane antigen (PSMA)-positive foci were evaluated on small field of view (FOV) T2, T1 post-contrast, and diffusion-weighted images. For prostate bed recurrences, the detection rate of dynamic contrast-enhanced (DCE) imaging for PSMA-positive foci was evaluated. Finally, the detection sensitivity for PSMA-avid foci on 3- and 8-min PET acquisitions was compared. PSMA-positive foci were detected in 89.1% (49/55) of patients evaluated. Small FOV T2 performed best for lymph nodes and detected correlates for all PSMA-avid lymph nodes. DCE imaging performed the best for suspected prostate bed recurrence, detecting correlates for 87.5% (14/16) of PSMA-positive prostate bed foci. The 8-min PET acquisition performed better than the 3-min acquisition for lymph nodes smaller than 1 cm, detecting 100% (57/57) of lymph nodes less than 1 cm, compared to 78.9% (45/57) for the 3-min acquisition. PSMA PET/MRI performed well for the detection of sites of suspected recurrent disease in patients with BCR. Of the MRI sequences obtained for localization, small FOV T2 images detected the greatest proportion of PSMA-positive abdominopelvic lymph nodes and DCE imaging detected the greatest proportion of PSMA-positive prostate bed foci. The 8-min PET acquisition was superior to the 3 min acquisition for detection of small lymph nodes.

  19. Design of respiration averaged CT for attenuation correction of the PET data from PET/CT

    International Nuclear Information System (INIS)

    Chi, Pai-Chun Melinda; Mawlawi, Osama; Nehmeh, Sadek A.; Erdi, Yusuf E.; Balter, Peter A.; Luo, Dershan; Mohan, Radhe; Pan Tinsu

    2007-01-01

    ACT can reduce radiation dose to 1/3 of the current 4DCT dose; however, the implementation of this approach requires additional hardware that is not standard equipment on PET/CT scanners. In the cine approach, we recommend a duration of 6±1 s in order to include variations of respiratory patterns in a larger population. This approach can be easily implemented because cine acquisition mode is available on all GE PET/CT scanners. The CT dose in the cine approach can be reduced to approximately 5 mGy by using the lowest mA setting (10 mA), while still maintaining good quality CT data for PET attenuation correction. In our scanning protocol, the ACT is only acquired if respiration-induced misregistration is observed (determined before the PET scan is completed), and therefore patients do not receive unnecessary CT radiation dose

  20. Objective and subjective comparison of standard 2-D and fully 3-D reconstructed data on a PET/CT system.

    Science.gov (United States)

    Strobel, Klaus; Rüdy, Matthias; Treyer, Valerie; Veit-Haibach, Patrick; Burger, Cyrill; Hany, Thomas F

    2007-07-01

    The relative advantage of fully 3-D versus 2-D mode for whole-body imaging is currently the focus of considerable expert debate. The nature of 3-D PET acquisition for FDG PET/CT theoretically allows a shorter scan time and improved efficiency of FDG use than in the standard 2-D acquisition. We therefore objectively and subjectively compared standard 2-D and fully 3-D reconstructed data for FDG PET/CT on a research PET/CT system. In a total of 36 patients (mean 58.9 years, range 17.3-78.9 years; 21 male, 15 female) referred for known or suspected malignancy, FDG PET/CT was performed using a research PET/CT system with advanced detector technology with improved sensitivity and spatial resolution. After 45 min uptake, a low-dose CT (40 mAs) from head to thigh was performed followed by 2-D PET (emission 3 min per field) and 3-D PET (emission 1.5 min per field) with both seven slices overlap to cover the identical anatomical region. Acquisition time was therefore 50% less (seven fields; 21 min vs. 10.5 min). PET data was acquired in a randomized fashion, so in 50% of the cases 2-D data was acquired first. CT data was used for attenuation correction. 2-D (OSEM) and 3-D PET images were iteratively reconstructed. Subjective analysis of 2-D and 3-D images was performed by two readers in a blinded, randomized fashion evaluating the following criteria: sharpness of organs (liver, chest wall/lung), overall image quality and detectability and dignity of each identified lesion. Objective analysis of PET data was investigated measuring maximum standard uptake value with lean body mass (SUV(max,LBM)) of identified lesions. On average, per patient, the SUV(max) was 7.86 (SD 7.79) for 2-D and 6.96 (SD 5.19) for 3-D. On a lesion basis, the average SUV(max) was 7.65 (SD 7.79) for 2-D and 6.75 (SD 5.89) for 3-D. The absolute difference on a paired t-test of SUV 3-D-2-D based on each measured lesion was significant with an average of -0.956 (P=0.002) and an average of -0.884 on a

  1. WE-G-209-03: PET

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, B. [Mayo Clinic (United States)

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This course will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.

  2. WE-G-209-03: PET

    International Nuclear Information System (INIS)

    Kemp, B.

    2016-01-01

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This course will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.

  3. PET/MRI in Oncological Imaging: State of the Art

    Science.gov (United States)

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  4. PET/MRI in Oncological Imaging: State of the Art

    Directory of Open Access Journals (Sweden)

    Usman Bashir

    2015-07-01

    Full Text Available Positron emission tomography (PET combined with magnetic resonance imaging (MRI is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.

  5. PET/MRI for Preoperative Planning in Patients with Soft Tissue Sarcoma

    DEFF Research Database (Denmark)

    Loft Jakobsen, Annika; Jensen, Karl Erik; L�fgren, Johan

    2013-01-01

    Clinical positron emission tomography (PET)/magnetic resonance imaging (MRI) acquisition protocols may improve the evaluation of soft tissue sarcomas (STS) prior to surgical planning. We examined two patients with lower extremity STS using a Siemens Biograph mMR PET/MRI scanner and the glucose...

  6. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-01-01

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  7. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  8. Comparison between PET/MR and PET/CT in evaluation of oncological patients%PET/MR与PET/CT的对比研究

    Institute of Scientific and Technical Information of China (English)

    徐白萱; 富丽萍; 关志伟; 尹大一; 刘家金; 杨晖; 张锦明; 陈英茂; 安宁豫

    2014-01-01

    Objective To verify the feasibility of the integrated PET/MR for oncological applications by comparing PET/MR with PET/CT in terms of lesion detection and quantitative measurement.Methods A total of 277 patients (165 males,112 females,average age (52.9± 12.6) years) voluntarily participated in this same-day PET/CT and PET/MR comparative study.The time interval between the two studies was 15-35 min.PET/CT images were acquired and reconstructed following standard protocols.PET/MR covered the body trunk with a sequence combination of transverse T1 weighted imaging (WI) 3D-volumetric interpolated breath-hold,T2WI turbo spin echo with fat saturation,diffusion-weighted imaging,and simultaneous PET acquisition.PET images were reconstructed by vender-provided attenuation correction methods.The results of PET/CT and PET/MR were regarded as positive if any modality (CT,PET or MRI) was positive.SUVmax was obtained by the manually drawn ROI.Detection rates were compared with x2 test and SUVmax from the two modalities was analyzed with Spearman correlation analysis.Results A total of 353 lesions were detected in 220 patients.Compared to PET/CT,PET/MR revealed 30 additional true-positive lesions,while missed 6.The detection rates between PET/CT and PET/MR were significantly different (P<0.05).The lesion-based and patient-based consistency was 89.8% (317/353) and 85.9% (189/220),respectively.There were significant correlations of SUVmax between PET/MR and PET/CT for lesions(rs =0.91,P<0.01) and for normal tissues(rs =0.62-0.76,all P<0.01).Conclusions With reference to PET/CT,integrated PET/MR may provide comparable semi-quantitative measurements of pathological lesions as well as normal tissues.Integrated PET/MR may be more effective to detect lesions in abdomen and pelvis.%目的 通过与PET/CT在病灶检测及定量分析方面的比较,论证PET/MR一体机应用于临床的可行性.方法 2012年5月至2013年2月共300例患者同天间隔15 ~ 35 min行PET/CT和PET

  9. PET/MR synchronization by detection of switching gradients

    International Nuclear Information System (INIS)

    Weissler, Bjoern; Gebhardt, Pierre; Lerche, Christoph W; Soultanidis, Georgios; Wehner, Jakob; Heberling, Dirk; Schulz, Volkmar

    2014-01-01

    The full potential of simultaneous PET and MRI image acquisition, such as dynamic studies or motion compensation, can only be explored if the data of both modalities are temporally synchronized. These hybrid imaging systems are often realized as custom made PET inserts for commercially available MRI scanner. Unfortunately, the standard MRIs do not always offer easily programmable synchronization outputs, nor can they be modified.

  10. Concurrent Respiratory Motion Correction of Abdominal PET and DCE-MRI using a Compressed Sensing Approach.

    Science.gov (United States)

    Fuin, Niccolo; Catalano, Onofrio Antonio; Scipioni, Michele; Canjels, Lisanne P W; Izquierdo, David; Pedemonte, Stefano; Catana, Ciprian

    2018-01-25

    Purpose: We present an approach for concurrent reconstruction of respiratory motion compensated abdominal DCE-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields (MVFs) derived from radial MR data; the approach is robust to changes in respiratory pattern and do not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncological patients were simultaneously acquired for 6 minutes on an integrated PET/MR system after administration of 18 F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases based on a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. MVFs obtained using the full 6-minute (MC_6-min) and only the last 1 minute (MC_1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MRI images (moco_GRASP). The motion-correction methods (MC_6-min and MC_1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of maximum and mean standardized uptake values (SUV max , SUVmean), contrast, signal-to-noise ratio (SNR) and lesion volume in the PET images. Results: Motion corrected MC_6-min PET images demonstrated 30%, 23%, 34% and 18% increases in average SUV max , SUVmean, contrast and SNR, and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC_1-min protocol: 19%, 10%, 15% and 9% increases in average SUV max , SUVmean, contrast and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image

  11. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Alexander M. [Department of Bioengineering, Stanford University, Stanford, California 94305-5128 and Department of Radiology, Stanford University, Stanford, California 94305-5128 (United States); Deller, Timothy W.; Maramraju, Sri Harsha [GE Healthcare, Waukesha, Wisconsin 53188-1678 (United States); Khalighi, Mohammad Mehdi [GE Healthcare, Applied Science Lab, Menlo Park, California 94025-3493 (United States); Delso, Gaspar [GE Healthcare and University Hospital of Zurich, Zurich 8006 (Switzerland); Levin, Craig S., E-mail: cslevin@stanford.edu [Department of Bioengineering, Stanford University, Stanford, California 94305-5128 (United States); Department of Radiology, Stanford University, Stanford, California 94305-5128 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305-5128 (United States); Department of Physics, Stanford University, Stanford, California 94305-5128 (United States)

    2016-05-15

    Purpose: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. Methods: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. Results: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Conclusions: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.

  12. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system

    International Nuclear Information System (INIS)

    Grant, Alexander M.; Deller, Timothy W.; Maramraju, Sri Harsha; Khalighi, Mohammad Mehdi; Delso, Gaspar; Levin, Craig S.

    2016-01-01

    Purpose: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. Methods: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. Results: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Conclusions: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.

  13. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging

    International Nuclear Information System (INIS)

    Beheshti, M.; Langsteger, W.; Mottaghy, F.M.; Payche, F.; Behrendt, F.F.F.; Wyngaert, T.V. den; Fogelman, I.; Strobel, K.; Celli, M.; Fanti, S.; Giammarile, F.; Krause, B.

    2015-01-01

    The aim of this guideline is to provide minimum standards for the performance and interpretation of 18 F-NaF PET/CT scans. Standard acquisition and interpretation of nuclear imaging modalities will help to provide consistent data acquisition and numeric values between different platforms and institutes and to promote the use of PET/CT modality as an established diagnostic modality in routine clinical practice. This will also improve the value of scientific work and its contribution to evidence-based medicine. (orig.)

  14. Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method.

    Science.gov (United States)

    Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya

    2015-06-01

    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. PET/CT diagnostic of colo-rectal cancers

    International Nuclear Information System (INIS)

    Straciuc, O.

    2012-01-01

    Full text: Objective: Presenting the advantages of Positron Emission Tomography/Computed Tomography (PET/ CT) examination, using the radiotracer fluorure 18-deoxyglucose (FDG) in colo-rectal cancer diagnostic. Basics of the method will be also presented. Introduction: FDG PET/CT is recognized as the most efficient diagnostic imaging weapon in colorectal cancer, enable too comprehend all the 3 targets needed for staging of colo-rectal cancers: 1)Detection and evaluation of primary tumor (T) and recurrence; 2) Lymphadenopathy (N); 3)Metastatic disease (M). Assessment of treatment response during and after therapy, follow up and radiotherapy planning are also indications for PET/CT. There are two essential advantages of the method: 1)The whole body examination; 2)The complementary morphological information offered by CT and functional information offered by PET. Material and methods: Study of a total of 394 patients diagnosed with colo-rectal cancer of the total of 4125 investigated by PET/CT in Diagnosztika Pozitron center of Oradea, between 01.06.2008 - 06.06.2012. All cases had documented preoperative or postoperative histopathologic evaluation. We used a Siemens Biograph 16 device and only FDG as radiotracer, injected intravenously at a dose of 0.1-0.15 mCi /kg. Standard protocol of examination was performed at 60 minutes after FDG injection. CT acquisition consists of 'low dose' from vertex to thighs, followed by PET acquisition in 7 to 8 beds. Results: We followed the performance of PET/CT diagnostic in staging and restaging of colorectal cancer compared with other imaging methods. 141 patients had negative examinations. 107 patients were diagnosed with locally recurrent lesions, lymphadenopathy and/ or metastases. Compared with the results of previous imaging new metabolically active lesions were detected in 87 patients by PET/CT and suspected lesions were denied in 48 patients. Significant clinically cases are presented. Conclusions: The data obtained by PET

  16. Structural insight into catalytic mechanism of PET hydrolase

    OpenAIRE

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-01-01

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  17. Structural insight into catalytic mechanism of PET hydrolase.

    Science.gov (United States)

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-12-13

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  18. A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.

    Science.gov (United States)

    Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George

    2017-01-01

    To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and

  19. Investigation of the signal-to-noise ratio on a state-of-the-art PET system: measurements with the EEC whole-body phantom

    International Nuclear Information System (INIS)

    Jaegel, M.; Adam, L.E.; Bellemann, M.E.; Zaers, J.; Trojan, H.; Brix, G.; Rauschnabel, K.

    1998-01-01

    Aim: The spatial resolution of PET scanners can be improved by using smaller detector elements. This approach, however, results in poorer counting statistics of the reconstructed images. Therefore, the aim of this study was to investigate the influence of different acquisition parameters on the signal-to-noise ratio (SNR) and thus to optimize PET image quality. Methods: The experiments were performed with the latest-generation whole-body PET system (ECAT Exact HR + , Siemens/CTI) using the standard 2D and 3D data acquisition parameters recommended by the manufacturer. The EEC whole-body phantom with different inserts was used to simulate patient examinations of the thorax. Emission and transmission scans were acquired with varying numbers of events and at different settings of the lower level energy discriminator. The influence of the number of counts on the SNR was parameterized using a simple model function. Results: For count rates frequently encountered in clinical PET studies, the emission scan has a stronger influence on the SNR in the reconstructed image than the transmission scan. The SNR can be improved by using a higher setting of the lower energy level provided that the total number of counts is kept constant. Based on the established model function, the relative duration of the emission scan with respect to the total acquistion time was optimized, yielding a value of about 75% for both the 2D and 3D mode. Conclusion: The presented phenomenological approach can readily be employed to optimize the SNR and thus the quality of PET images acquired at different scanners or with different examination protocols. (orig.) [de

  20. PET applications in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Shulkin, B. L. [Ann Arbor, Univ. of Michigan Medical Center (United States). Pediatric Nuclear Medicine Section

    1997-12-01

    This article summarizes the major PET studies which have been performed in pediatric patients to elucidate and characterize diseases and normal development. Issues special for the application of the technique in children, such as dosimetry, patient preparation, and image acquisition are discussed. Studies of central nervous system (CNS) development and pathology, including epilepsy, intraventricular hemorrhage, neonatal asphyxia, tumors, and effects on the CNS from treatment of other tumors are reviewed. These have contributed information fundamental to their understanding of CNS development and pathology. PET investigations into the pathophysiology of congenital heart disease have begun and hold great promise to aid their understanding of these conditions. The second major area in which PET has been applied is the study of non CNS neoplasms. Neuroblastoma has been investigated with tracers which explore basic biochemical features which characterize this tumor, as well as with tracers which explore biochemical events relatively specific for this malignancy. Other common and uncommon tumors of childhood are discussed. The PET technique has been shown useful for answering questions of clinical relevance for the management of these uncommon neoplasms. PET is likely to continue to aid their understanding of many pediatric diseases and may gain more widespread clinical acceptance as the technology continues to disseminate rapidly.

  1. PET/TAC: Basic principles, physiological variants and artifacts; PET/TAC: Generalidades, variantes fisiologicas y artefactos

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez V, A.M. [Especialista en Medicina Nuclear, Profa. Depto. Radiologia de la Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-01

    This presentation is about the basic principles, physiologic variants and devices that work in the PET/TAC technique. Next the conclusions obtained in the same one are presented: For a correct evaluation of the PET/TAC images with FDG is necessary the knowledge of the image acquisition technique, as well as of the physiologic distribution of the FDG, variants of the normality, benign causes of captation and more frequent devices. The introduction of this hybrid procedure allows the correct anatomical localization and identification of the deposits of FDG largely avoiding false or doubtful interpretations, but it can also originate not specific devices existent in the conventional PET. The previous knowledge of the possible devices will make possible in certain cases its elimination and in other its identification avoiding incorrect interpretations. (Author)

  2. PET-MRI: the likely future of molecular imaging

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua; Zhao Jun

    2008-01-01

    PET-CT is a successful combination of functional and morphologic information, and it has already been shown to have great value both in clinics and in scientific research. MRI is another kind of morphologic imaging method, in contrast to CT, MRI can yield images with higher soft-tissue contrast and better spatial resolution. The combination of PET and MRI for simultaneous data acquisition should have far- reaching consequences for molecular imaging. This review will talk about the problems met in the development of PET-MRI and describe the progress to date and look forward to its potential application. (authors)

  3. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET

    NARCIS (Netherlands)

    Karakatsanis, Nicolas A.; Zhou, Yun; Lodge, Martin A.; Casey, Michael E.; Wahl, Richard L.; Zaidi, Habib; Rahmim, Arman

    2015-01-01

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake,

  4. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo; Bernardes, Felipe Dias; Mamede, Marcelo; Oliveira, Paulo Marcio Campos de; Silva, Teogenes Augusto da; Mourao FIlho, Arnaldo Prata

    2014-01-01

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical 18 F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in 18 F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  5. SU-D-9A-03: STAMP: Simulator for Texture Analysis in MRI/PET

    Energy Technology Data Exchange (ETDEWEB)

    Laberge, S; Vallieres, M; Levesque, I R.; El Naqa, I [McGill University, Montreal, QC (Canada)

    2014-06-01

    Purpose: To develop a convenient simulation platform to facilitate PET/MR image analysis with the prospect of gaining a better understanding of the influence of acquisition parameters on PET/MRI textural features. The simulation platform is demonstrated by showing textural variations of a representative case study using different image acquisition parameters. Methods: The simulation platform is composed of MRI simulators JEMRIS and SIMRI to achieve simulations of customized MRI sequences on sample tumor models. The PET simulator GATE is used to get 2D and 3D Monte Carlo acquisitions of voxelized PET sources using a phantom geometry and a customized scanner architecture. The platform incorporates a series of graphical user interfaces written in Matlab. Two GUIs are used to facilitate communication with the simulation executables installed on a computer cluster. A third GUI is used to collect and display the clinical and simulated images, as well as fused PET/MRI images, and perform computation of textural features.To illustrate the capabilities of this platform, one FDG-PET and T1-weighted (T1w) digitized tumor models were generated from clinical images of a soft-tissue sarcoma patient. Numerically simulated MR images were produced using 3 different echo times (TE) and 5 different repetition times (TR). PET 2D images were simulated using an OSEM algorithm with 1 to 32 iterations and a post-reconstruction Gaussian filter of 0, 2, 4 or 6 mm width. Results: STAMP was successfully used to produce numerically simulated FDG-PET and MRI images, and to calculate their corresponding textures. Three typical textures (GLCM-Contrast, GLSZM-ZSV and NGTDM-Coarseness) were found to vary by a range of 45% on average compared to reference scanning conditions in the case of FDG-PET, and by a range of 40% in the case of T1w MRI. Conclusion: We have successfully developed a Matlab-based simulation platform to facilitate PET/MRI texture image analysis for outcome prediction.

  6. Towards truly integrated hardware fusion with PET/CT

    International Nuclear Information System (INIS)

    Beyer, T.

    2005-01-01

    Combined PET/CT imaging is a non-invasive means of acquiring and reviewing both, the anatomy and the molecular pathways of a patient during a quasi-simultaneous examination. Since the introduction of the prototype PET/CT in 1998 this imaging technology has evolved rapidly. State-of-the-art PET/CT tomographs combine the latest technology in spiral, multi-slice CT and PET using novel scintillator materials and image reconstruction techniques. Together with novel patient positioning systems PET/CT tomographs allow to acquire complementary PET and CT data in a single exam with the best intrinsic co-registration. In addition to the hardware integration efforts have been made to integrate the acquisition and viewing software in PET/CT, thus making the diagnostic review and reporting more efficient. Based on the first clinical experiences and the technical evolution of combined imaging technology PET/CT has become a standard in diagnostic oncology. With high-performance imaging technology at hand today, standardized, high-quality PET/CT imaging protocols are needed to provide best oncology patient care. These protocols mandate the joint efforts of a multi-disciplinary team of physicians, physicists and radiochemists. (orig.)

  7. {sup 18}F-NaF PET/CT: EANM procedure guidelines for bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, M.; Langsteger, W. [St Vincent' s Hospital, PET - CT Center LINZ, Department of Nuclear Medicine and Endocrinology, Linz (Austria); Mottaghy, F.M. [University Hospital Aachen, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Payche, F. [Louis Mourier Hospital, Department of Nuclear Medicine, Colombes (France); Behrendt, F.F.F. [University Hospital Aachen, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Wyngaert, T.V. den [Antwerp University Hospital, Department of Nuclear Medicine, Edegem (Belgium); Fogelman, I. [King' s College, Department of Nuclear Medicine, London (United Kingdom); Strobel, K. [Lucerne Cantonal Hospital, Department of Radiology and Nuclear Medicine, Lucerne (Switzerland); Celli, M.; Fanti, S. [Policlinico S. Orsola-Malpighi, Department of Nuclear Medicine, PET Unit, Bologna (Italy); Giammarile, F. [Centre Hospitalier Universitaire de Lyon, Department of Nuclear Medicine, Lyon (France); Krause, B. [University Hospital Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2015-10-15

    The aim of this guideline is to provide minimum standards for the performance and interpretation of {sup 18}F-NaF PET/CT scans. Standard acquisition and interpretation of nuclear imaging modalities will help to provide consistent data acquisition and numeric values between different platforms and institutes and to promote the use of PET/CT modality as an established diagnostic modality in routine clinical practice. This will also improve the value of scientific work and its contribution to evidence-based medicine. (orig.)

  8. Performance evaluation of SiPM photodetectors for PET imaging in the presence of magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Espana, S., E-mail: samuel@nuclear.fis.ucm.e [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Fraile, L.M.; Herraiz, J.L.; Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M.; Vaquero, J.J. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)

    2010-02-01

    The multi-pixel photon counter (MPPC) or silicon photomultiplier (SiPM), recently introduced as a solid-state photodetector, consists of an array of Geiger-mode photodiodes (microcells). It is a promising device for PET due to its potential for high photon detection efficiency (PDE) and its foreseeable immunity to magnetic fields. It is also easy to use with simple read-outs, has a high gain and a small size. In this work we evaluate the in field performance of three 1x1 mm{sup 2} (with 100, 400 and 1600 microcells, respectively) and one 6x6 mm{sup 2} (arranged as a 2x2 array) Hamamatsu MPPCs for their use in PET imaging. We examine the dependence of the energy resolution and the gain of these devices on the temperature and reverse bias voltage, when coupled to LYSO scintillator crystals under conditions that one would find in a PET system. We find that the 400 and 1600 microcells models and the 2x2 array are suitable for small-size crystals, like those employed in high resolution small animal scanners. We have confirmed the good performance of these devices up to magnetic fields of 7 T as well as their suitability for performing PET acquisitions in the presence of fast switching gradients and high duty radiofrequency MRI sequences.

  9. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  10. Detection of local recurrence of prostate cancer after radical prostatectomy: Is there a role for early ¹⁸F-FCH PET/CT?

    Science.gov (United States)

    Di Biagio, Daniele; Chiaravalloti, Agostino; Tavolozza, Mario; Abbatiello, Paolo; Schillaci, Orazio

    2015-12-01

    To investigate the diagnostic performance of early acquisition compared to late imaging for the detection of local recurrence of prostate cancer by means of ¹⁸F-FCH PET/CT. 99 patients with radical prostatectomy (mean PSA 3.9 ± 5.03) were subjected to early dynamic PET/CT acquisition of the pelvis and a whole body PET/CT in the same exam session. None of the patients examined was subjected to radiotherapy for local or distant recurrence. All the subjects were taken off hormonal therapy. 58 subjects did not show local recurrence in both early and late acquisition, 22 were positive in both modalities, 10 showed a positive early and a negative late acquisition while 9 showed a negative early and a positive late acquisition (Cohen's k = 0.558). When the results of imaging modalities were considered separately, sensitivity, specificity, positive predictive value and negative predictive value resulted: 78.9, 96.7, 93.8 and 88.1 % for early acquisition and 73.7, 95.1, 90.3 and 85.3 % for late acquisition, respectively. When the results of early and late acquisition were considered together, results were 97.4, 93.4, 90.2 and 98.3 %, respectively. The combination of early acquisition with late acquisition lead to an increase of the diagnostic accuracy of ¹⁸F-FCH PET/CT for the diagnosis of local recurrence in prostate cancer.

  11. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dillenseger, Jean-Philippe; Goetz, Christian [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Matern, Jean-Francois [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Gros, Catherine-Isabelle; Bornert, Fabien [Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Faculte de Chirurgie Dentaire, Strasbourg (France); Le Minor, Jean-Marie [Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Universite de Strasbourg, Institut d' Anatomie Normale, Strasbourg (France); Constantinesco, Andre [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Choquet, Philippe [Hopitaux Universitaires de Strasbourg, Imagerie Preclinique-UF6237, Pole d' imagerie, Strasbourg (France); Universite de Strasbourg, Icube, equipe MMB, CNRS, Strasbourg (France); Universite de Strasbourg, Federation de Medecine Translationnelle de Strasbourg, Faculte de Medecine, Strasbourg (France); Hopital de Hautepierre, Imagerie Preclinique, Biophysique et Medecine Nucleaire, Strasbourg Cedex (France)

    2014-09-24

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  12. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging

    International Nuclear Information System (INIS)

    Dillenseger, Jean-Philippe; Goetz, Christian; Matern, Jean-Francois; Gros, Catherine-Isabelle; Bornert, Fabien; Le Minor, Jean-Marie; Constantinesco, Andre; Choquet, Philippe

    2015-01-01

    Our aim was to conduct a quantitative and qualitative evaluation of high-resolution skull-bone imaging for dentistry and otolaryngology using different architectures of recent X-ray computed tomography systems. Three multi-slice computed tomography (MSCT) systems and one Cone-beam computed tomography (CBCT) system were used in this study. All apparatuses were tested with installed acquisition modes and proprietary reconstruction software enabling high-resolution bone imaging. Quantitative analyses were performed with small fields of view with the preclinical vmCT phantom, which permits to measure spatial resolution, geometrical accuracy, linearity and homogeneity. Ten operators performed visual qualitative analyses on the vmCT phantom images, and on dry human skull images. Quantitative analysis showed no significant differences between protocols in terms of linearity and geometric accuracy. All MSCT systems present a better homogeneity than the CBCT. Both quantitative and visual analyses demonstrate that CBCT acquisitions are not better than the collimated helical MSCT mode. Our results demonstrate that current high-resolution MSCT protocols could exceed the performance of a previous generation CBCT system for spatial resolution and image homogeneity. (orig.)

  13. Evaluation of Multiclass Model Observers in PET LROC Studies

    Science.gov (United States)

    Gifford, H. C.; Kinahan, P. E.; Lartizien, C.; King, M. A.

    2007-02-01

    A localization ROC (LROC) study was conducted to evaluate nonprewhitening matched-filter (NPW) and channelized NPW (CNPW) versions of a multiclass model observer as predictors of human tumor-detection performance with PET images. Target localization is explicitly performed by these model observers. Tumors were placed in the liver, lungs, and background soft tissue of a mathematical phantom, and the data simulation modeled a full-3D acquisition mode. Reconstructions were performed with the FORE+AWOSEM algorithm. The LROC study measured observer performance with 2D images consisting of either coronal, sagittal, or transverse views of the same set of cases. Versions of the CNPW observer based on two previously published difference-of-Gaussian channel models demonstrated good quantitative agreement with human observers. One interpretation of these results treats the CNPW observer as a channelized Hotelling observer with implicit internal noise

  14. Deep-inspiration breath-hold PET/CT versus free breathing PET/CT and respiratory gating PET for reference. Evaluation in 95 patients with lung cancer

    International Nuclear Information System (INIS)

    Kawano, Tsuyoshi; Ohtake, Eiji; Inoue, Tomio

    2011-01-01

    The objective of this study was to define the factors that correlate with differences in maximum standardized uptake value (SUV max ) in deep-inspiration breath-hold (DIBH) and free breathing (FB) positron emission tomography (PET)/CT admixed with respiratory gating (RG) PET for reference. Patients (n=95) with pulmonary lesions were evaluated at one facility over 33 months. After undergoing whole-body PET/CT, a RG PET and FB PET/CT scans were obtained, followed by a DIBH PET/CT scan. All scans were recorded using a list-mode dynamic collection method with respiratory gating. The RG PET was reconstructed using phase gating without attenuation correction; the FB PET was reconstructed from the RG PET sinogram datasets with attenuation correction. Respiratory motion distance, breathing cycle speed, and waveform of RG PET were recorded. The SUV max of FB PET/CT and DIBH PET/CT were recorded: the percent difference in SUV max between the FB and DIBH scans was defined as the %BH-index. The %BH-index was significantly higher for lesions in the lower lung area than in the upper lung area. Respiratory motion distance was significantly higher in the lower lung area than in the upper lung area. A significant relationship was observed between the %BH-index and respiratory motion distance. Waveforms without steady end-expiration tended to show a high %BH-index. Significant inverse relationships were observed between %BH-index and cycle speed, and between respiratory motion distance and cycle speed. Decrease in SUV max of FB PET/CT was due to tumor size, distribution of lower lung, long respiratory movement at slow breathing cycle speeds, and respiratory waveforms without steady end-expiration. (author)

  15. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  16. Comparison of Coregistration Accuracy of Pelvic Structures Between Sequential and Simultaneous Imaging During Hybrid PET/MRI in Patients with Bladder Cancer.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Balar, Arjun V; Huang, William C; Jackson, Kimberly; Friedman, Kent P

    2015-08-01

    The aim of this study was to compare coregistration of the bladder wall, bladder masses, and pelvic lymph nodes between sequential and simultaneous PET and MRI acquisitions obtained during hybrid (18)F-FDG PET/MRI performed using a diuresis protocol in bladder cancer patients. Six bladder cancer patients underwent (18)F-FDG hybrid PET/MRI, including IV Lasix administration and oral hydration, before imaging to achieve bladder clearance. Axial T2-weighted imaging (T2WI) was obtained approximately 40 minutes before PET ("sequential") and concurrently with PET ("simultaneous"). Three-dimensional spatial coordinates of the bladder wall, bladder masses, and pelvic lymph nodes were recorded for PET and T2WI. Distances between these locations on PET and T2WI sequences were computed and used to compare in-plane (x-y plane) and through-plane (z-axis) misregistration relative to PET between T2WI acquisitions. The bladder increased in volume between T2WI acquisitions (sequential, 176 [139] mL; simultaneous, 255 [146] mL). Four patients exhibited a bladder mass, all with increased activity (SUV, 9.5-38.4). Seven pelvic lymph nodes in 4 patients showed increased activity (SUV, 2.2-9.9). The bladder wall exhibited substantially less misregistration relative to PET for simultaneous, compared with sequential, acquisitions in in-plane (2.8 [3.1] mm vs 7.4 [9.1] mm) and through-plane (1.7 [2.2] mm vs 5.7 [9.6] mm) dimensions. Bladder masses exhibited slightly decreased misregistration for simultaneous, compared with sequential, acquisitions in in-plane (2.2 [1.4] mm vs 2.6 [1.9] mm) and through-plane (0.0 [0.0] mm vs 0.3 [0.8] mm) dimensions. FDG-avid lymph nodes exhibited slightly decreased in-plane misregistration (1.1 [0.8] mm vs 2.5 [0.6] mm), although identical through-plane misregistration (4.0 [1.9] mm vs 4.0 [2.8] mm). Using hybrid PET/MRI, simultaneous imaging substantially improved bladder wall coregistration and slightly improved coregistration of bladder masses and

  17. Attenuation correction for the large non-human primate brain imaging using microPET

    International Nuclear Information System (INIS)

    Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R

    2010-01-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57 Co transmission point source with a 4% energy window. The optimal energy window for a 68 Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57 Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [ 18 F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57 Co (4% energy window) or 68 Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  18. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    Science.gov (United States)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  19. Textural features and SUV-based variables assessed by dual time point 18F-FDG PET/CT in locally advanced breast cancer.

    Science.gov (United States)

    Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel

    2017-12-01

    To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.

  20. Optimization of Protocol CT, PET-CT, whole body; Optimizacion de protocolo CT, en PET-CT, de cuerpo entero

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Fredys Santos, E-mail: fsantos@ccss.sa.cr [Caja Costarricense de Seguro Social (ACCPR/CCSS), San Jose (Costa Rica). Area Control de Calidade Y Proteccion Radiologica; Namias, Mauro, E-mail: mnamias@gmail.com [Comision Nacional de Energia Atomica (FCDN/CNEA), Buenos Aires (Argentina). Fundacion Centro Diagnostico Nuclear

    2013-11-01

    The objective of this study was to optimize the acquisition protocols and processing existing of the CT PET/CT scanner for clinical use of Nuclear Diagnostic Center Foundation, a way to minimize the radiation dose while maintaining diagnostic image quality properly. Dosimetric data of PET / CT service were surveyed and obtained the baseline against which we compare and define strategies and modifications to develop online. We selected transaxial up to the pulmonary hilum and liver slices as the anatomical regions of interest that led to the standardization of the study.

  1. Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles.

    Science.gov (United States)

    Chava, Anil K; Bandyopadhyay, Sumi; Chatterjee, Mitali; Mandal, Chitra

    2004-01-01

    Protozoan parasites including Plasmodia, Leishmania, Trypanosoma, Entamoeba, Trichomonas and others cause diseases in humans and domestic livestock having far-reaching socio-economic implications. They show remarkable propensity to survive within hostile environments encountered during their life cycle, and the identification of molecules that enable them to survive in such milieu is a subject of intense research. Currently available knowledge of the parasite cell surface architecture and biochemistry indicates that sialic acid and its principle derivatives are major components of the glycocalyx and assist the parasite to interact with its external environment through functions ranging from parasite survival, infectivity and host-cell recognition. This review highlights the present state of knowledge with regard to parasite sialobiology with an emphasis on its mode(s) of acquisition and their emerging biological roles, notably as an anti-recognition molecule thereby aiding the pathogen to evade host defense mechanisms.

  2. Determining the Minimal Required Radioactivity of 18F-FDG for Reliable Semiquantification in PET/CT Imaging: A Phantom Study.

    Science.gov (United States)

    Chen, Ming-Kai; Menard, David H; Cheng, David W

    2016-03-01

    In pursuit of as-low-as-reasonably-achievable (ALARA) doses, this study investigated the minimal required radioactivity and corresponding imaging time for reliable semiquantification in PET/CT imaging. Using a phantom containing spheres of various diameters (3.4, 2.1, 1.5, 1.2, and 1.0 cm) filled with a fixed (18)F-FDG concentration of 165 kBq/mL and a background concentration of 23.3 kBq/mL, we performed PET/CT at multiple time points over 20 h of radioactive decay. The images were acquired for 10 min at a single bed position for each of 10 half-lives of decay using 3-dimensional list mode and were reconstructed into 1-, 2-, 3-, 4-, 5-, and 10-min acquisitions per bed position using an ordered-subsets expectation maximum algorithm with 24 subsets and 2 iterations and a gaussian 2-mm filter. SUVmax and SUVavg were measured for each sphere. The minimal required activity (±10%) for precise SUVmax semiquantification in the spheres was 1.8 kBq/mL for an acquisition of 10 min, 3.7 kBq/mL for 3-5 min, 7.9 kBq/mL for 2 min, and 17.4 kBq/mL for 1 min. The minimal required activity concentration-acquisition time product per bed position was 10-15 kBq/mL⋅min for reproducible SUV measurements within the spheres without overestimation. Using the total radioactivity and counting rate from the entire phantom, we found that the minimal required total activity-time product was 17 MBq⋅min and the minimal required counting rate-time product was 100 kcps⋅min. Our phantom study determined a threshold for minimal radioactivity and acquisition time for precise semiquantification in (18)F-FDG PET imaging that can serve as a guide in pursuit of achieving ALARA doses. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. The Road to the Common PET/CT Detector

    Science.gov (United States)

    Nassalski, Antoni; Moszynski, Marek; Szczesniak, Tomasz; Wolski, Dariusz; Batsch, Tadeusz

    2007-10-01

    Growing interest in the development of dual modality positron emission/X-rays tomography (PET/CT) systems prompts researchers to face a new challenge: to acquire both the anatomical and functional information in the same measurement, simultaneously using the same detection system and electronics. The aim of this work was to study a detector consisting of LaBr3, LSO or LYSO pixel crystals coupled to an avalanche photodiode (APD). The measurements covered tests of the detectors in PET and CT modes, respectively. The measurements included the determination of light output, energy resolution, the non-proportionality of the light yield and the time resolution for 511 keV annihilation quanta; analysis also included characterizing the PET detector, and determining the dependence of counting rate versus mean current of the APD in the X-ray detection. In the present experiment, the use of counting and current modes in the CT detection increases the dynamic range of the measured dose of X-rays by a factor of 20, compared to the counting mode alone.

  4. Design and construction of a small animal PET/CT scanner combining scintillation Phoswich modules and hybrid pixels detectors

    International Nuclear Information System (INIS)

    Nicol, St.

    2010-07-01

    The pathway that has been followed by the imXgam team at CPPM was to combine on a single rotating device the detector modules of the small animal PET scanner ClearPET with a photon counting X-ray detector in order to perform simultaneous acquisition of images from the anatomy (X-ray CT) and from the metabolic function (PET) of the common field-of-view. A preliminary study of the hybrid imaging system ClearPET/XPAD3 carried out using Gate led us to form a new PET detection assembly based on 21 Phoswich modules, to fix the design of the PET/CT device, as well as to study and solve the difficulties arising from simultaneous hybrid imaging. Last but not least, the simulation tool also allowed us for thinking how well such a system could judiciously use the spatial and temporal correlations between anatomic and functional information. From an instrumentation point of view, we succeeded to set up the ClearPET/XPAD3 prototype. Once both imaging systems were operational individually, we demonstrated on one side that the ClearPET prototype was perfectly capable of performing correctly in simultaneous acquisition conditions, providing that the detector modules were appropriately shielded. On the other side, the new generation of the hybrid pixel camera using the XPAD3-S chip proved to be quite promising given the good quality of the first reconstructed images. Finally, the proof of concept of simultaneous PET/CT data acquisition was made using a sealed positron source and an X-ray tube. (author)

  5. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging

    International Nuclear Information System (INIS)

    Aschoff, Philip; Plathow, Christian; Lichy, Matthias P.; Claussen, Claus D.; Pfannenberg, Christina; Beyer, Thomas; Erb, Gunter; Oeksuez, Mehmet Oe.

    2012-01-01

    State-of-the-art positron emission tomography/computed tomography (PET/CT) systems incorporate multislice CT technology, thus facilitating the acquisition of multiphase, contrast-enhanced CT data as part of integrated PET/CT imaging protocols. We assess the influence of a highly concentrated iodinated contrast medium (CM) on quantification and image quality following CT-based attenuation correction (CT-AC) in PET/CT. Twenty-eight patients with suspected malignant liver lesions were enrolled prospectively. PET/CT was performed 60 min after injection of 400 MBq of 18 F-fluorodeoxyglucose (FDG) and following the biphasic administration of an intravenous CM (400 mg iodine/ml, Iomeron 400). PET images were reconstructed with CT-AC using any of four acquired CT image sets: non-enhanced, pre-contrast (n-PET), arterial phase (art-PET), portal venous phase (pv-PET) and late phase (late-PET). Normal tissue activity and liver lesions were assessed visually and quantitatively on each PET/CT image set. Visual assessment of PET following CT-AC revealed no noticeable difference in image appearance or quality when using any of the four CT data sets for CT-AC. A total of 44 PET-positive liver lesions was identified in 21 of 28 patients. There were no false-negative or false-positive lesions on PET. Mean standardized uptake values (SUV) in 36 evaluable lesions were: 5.5 (n-PET), 5.8 (art-PET), 5.8 (pv-PET) and 5.8 (late-PET), with the highest mean increase in mean SUV of 6%. Mean SUV changes in liver background increased by up to 10% from n-PET to pv-PET. Multiphase CT data acquired with the use of highly concentrated CM can be used for qualitative assessment of liver lesions in torso FDG PET/CT. The influence on quantification of FDG uptake is small and negligible for most clinical applications. (orig.)

  6. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    Science.gov (United States)

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a

  7. Value of new MR techniques in MR-PET

    International Nuclear Information System (INIS)

    Attenberger, U.I.; Schoenberg, S.O.; Quick, H.H.; Guimaraes, A.; Catalano, O.; Morelli, J.N.

    2013-01-01

    The unparalleled soft tissue contrast of magnetic resonance imaging (MRI) and the functional information obtainable with 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) render MR-PET well-suited for oncological and psychiatric imaging. The lack of ionizing radiation with MRI also makes MR-PET a promising modality for oncology patients requiring frequent follow-up and pediatric patients. Lessons learned with PET computed tomography (CT) over the last few years do not directly translate to MR-PET. For example, in PET-CT the Hounsfield units derived from CT are used for attenuation correction (AC). As 511 keV photons emitted in PET examinations are attenuated by the patient's body CT data are converted directly to linear attenuation coefficients (LAC); however, proton density measured by MRI is not directly related to the radiodensity or LACs of biological tissue. Thus, direct conversion to LAC data is not possible making AC more challenging in simultaneous MRI-PET scanning. In addition to these constraints simultaneous MRI-PET acquisitions also improve on some solutions to well-known challenges of hybrid imaging techniques, such as limitations in motion correction. This article reports on initial clinical experiences with simultaneously acquired MRI-PET data, focusing on the potential benefits and limitations of MRI with respect to motion correction as well as metal and attenuation correction artefacts. (orig.) [de

  8. [PET/CT: protocol aspects and legal controversies].

    Science.gov (United States)

    Gorospe Sarasúa, L; Vicente Bártulos, A; González Gordaliza, C; García Poza, J; Lourido García, D; Jover Díaz, R

    2008-01-01

    The combination of positron emission tomography (PET) and computed tomography (CT) in a single scanner (PET/CT) allows anatomic and metabolic images to be fused and correlated with a high degree of accuracy; this represents a very important landmark in the history of medicine and especially in the area of diagnostic imaging. Nevertheless, the implementation, startup, and operation of a PET/CT scanner presents particularly interesting challenges, because it involves the integration of two well-established and consolidated techniques (CT and PET, which provide complementary information) that have traditionally been carried out in the context of two different specialties (radiology and nuclear medicine). The rapid diffusion of this new integrated technology raises a series of questions related to the optimal protocols for image acquisition, the supervision of the examinations, image interpretation, and reporting, as well as questions related to the legal competence and responsibility of the specialists involved in a PET/CT study. The objective of this article is to approach these aspects from a constructive perspective and to stimulate the dialog between the specialties of radiology and nuclear medicine, with the aim of maximizing the diagnostic potential of PET/CT and thus of providing better care for patients.

  9. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Cristina [University of Santiago de Compostela, Department of Particle Physics, Santiago de Compostela (Spain); Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela (Spain); Imaging Science Institute, Tuebingen (Germany); Bezrukov, Ilja [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Max Plank Institute for Intelligent Systems, Department of Empirical Inference, Tuebingen (Germany); Schmidt, Holger [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Schwenzer, Nina; Werner, Matthias K. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Kupferschlaeger, Juergen [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany); Beyer, Thomas [Imaging Science Institute, Tuebingen (Germany); cmi-experts GmbH, Zuerich (Switzerland)

    2012-11-15

    Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. We employed two MRCA: Lumirem {sup registered} (oral) and Gadovist {sup registered} (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and {sup 18}F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist {sup registered} (IV) and a volunteer study employing two different oral MRCA (Lumirem {sup registered} and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT and PR) algorithm. IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT and PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation

  10. [Diagnostic use of positron emission tomography in France: from the coincidence gamma-camera to mobile hybrid PET/CT devices].

    Science.gov (United States)

    Talbot, Jean-Noël

    2010-11-01

    Positron emission tomography (PET) is a well-established medical imaging method. PET is increasingly used for diagnostic purposes, especially in oncology. The most widely used radiopharmaceutical is FDG, a glucose analogue. Other radiopharmaceuticals have recently been registered or are in development. We outline technical improvements of PET machines during more than a decade of clinical use in France. Even though image quality has improved considerably and PET-CT hybrid machines have emerged, spending per examination has remained remarkably constant. Replacement and maintenance costs have remained in the range of 170-190 Euros per examination since 1997, whether early CDET gamma cameras or the latest time-of-flight PET/CT devices are used. This is mainly due to shorter acquisition times and more efficient use of FDG New reimbursement rates for PET/CT are needed in France in order to favor regular acquisition of state-of-the-art devices. One major development is the coupling of PET and MR imaging.

  11. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  12. SU-G-IeP4-13: PET Image Noise Variability and Its Consequences for Quantifying Tumor Hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Kueng, R [Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Manser, P; Fix, M K [Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Driscoll, B; Keller, H [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Stampanoni, M F M [Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH) (Switzerland)

    2016-06-15

    Purpose: The values in a PET image which represent activity concentrations of a radioactive tracer are influenced by a large number of parameters including patient conditions as well as image acquisition and reconstruction. This work investigates noise characteristics in PET images for various image acquisition and image reconstruction parameters. Methods: Different phantoms with homogeneous activity distributions were scanned using several acquisition parameters and reconstructed with numerous sets of reconstruction parameters. Images from six PET scanners from different vendors were analyzed and compared with respect to quantitative noise characteristics. Local noise metrics, which give rise to a threshold value defining the metric of hypoxic fraction, as well as global noise measures in terms of noise power spectra (NPS) were computed. In addition to variability due to different reconstruction parameters, spatial variability of activity distribution and its noise metrics were investigated. Patient data from clinical trials were mapped onto phantom scans to explore the impact of the scanner’s intrinsic noise variability on quantitative clinical analysis. Results: Local noise metrics showed substantial variability up to an order of magnitude for different reconstruction parameters. Investigations of corresponding NPS revealed reconstruction dependent structural noise characteristics. For the acquisition parameters, noise metrics were guided by Poisson statistics. Large spatial non-uniformity of the noise was observed in both axial and radial direction of a PET image. In addition, activity concentrations in PET images of homogeneous phantom scans showed intriguing spatial fluctuations for most scanners. The clinical metric of the hypoxic fraction was shown to be considerably influenced by the PET scanner’s spatial noise characteristics. Conclusion: We showed that a hypoxic fraction metric based on noise characteristics requires careful consideration of the

  13. A modular data acquisition system for high resolution clinical PET scanners

    OpenAIRE

    Sportelli, Giancarlo

    2011-01-01

    En las últimas dos décadas, la Tomografía por Emisión de Positrones (PET) ha demostrado ser una modalidad clave para el estudio de la biología del cúncer y trastornos cardíacos, y para la realizaciún imágenes moleculares, una tecnica que permite la terapia individualizada de la enfermedad [Weissleder01]. La mejor característica de la PET es su sensibilidad: es la tecnica que proporciona imúagenes moleculares con la mayor sensibilidad, y las imúagenes de cuerpo entero que produce no pueden ser...

  14. Optimization of oncological {sup 18}F-FDG PET/CT imaging based on a multiparameter analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Vinicius O., E-mail: vinicius@radtec.com.br [Nuclear Medicine Department, São Rafael Hospital, Salvador 41720-375, Brazil and Nuclear Medicine Department, Hospital das Clínicas da Universidade Federal de Pernambuco/Ebserh, Recife 50670-901 (Brazil); Machado, Marcos A. D. [Nuclear Medicine Department, São Rafael Hospital, Salvador 41720-375, Brazil and Nuclear Medicine Department, Hospital das Clínicas da Universidade Federal de Bahia/Ebserh, Salvador 40110-060 (Brazil); Queiroz, Cleiton C. [Nuclear Medicine Department, São Rafael Hospital, Salvador 41720-375, Brazil and Nuclear Medicine Department, Hospital Universitário Professor Alberto Antunes/Ebserh, Maceió 57072-900 (Brazil); Souza, Susana O. [Department of Physics, Universidade Federal de Sergipe, São Cristóvão 49100-000 (Brazil); D’Errico, Francesco [Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 and School of Engineering, University of Pisa, Pisa 56126 (Italy); Namías, Mauro [Fundación Centro Diagnóstico Nuclear, Buenos Aires C1417CVE (Argentina); Larocca, Ticiana F. [Centro de Biotecnologia e Terapia Celular, São Rafael Hospital, Salvador 41253-190 (Brazil); Soares, Milena B. P. [Centro de Biotecnologia e Terapia Celular, São Rafael Hospital, Salvador 41253-190, Brazil and Fundação Oswaldo Cruz, Centro de Pesq. Gonçalo Moniz, Salvador 40296-710 (Brazil)

    2016-02-15

    Purpose: This paper describes a method to achieve consistent clinical image quality in {sup 18}F-FDG scans accounting for patient habitus, dose regimen, image acquisition, and processing techniques. Methods: Oncological PET/CT scan data for 58 subjects were evaluated retrospectively to derive analytical curves that predict image quality. Patient noise equivalent count rate and coefficient of variation (CV) were used as metrics in their analysis. Optimized acquisition protocols were identified and prospectively applied to 179 subjects. Results: The adoption of different schemes for three body mass ranges (<60 kg, 60–90 kg, >90 kg) allows improved image quality with both point spread function and ordered-subsets expectation maximization-3D reconstruction methods. The application of this methodology showed that CV improved significantly (p < 0.0001) in clinical practice. Conclusions: Consistent oncological PET/CT image quality on a high-performance scanner was achieved from an analysis of the relations existing between dose regimen, patient habitus, acquisition, and processing techniques. The proposed methodology may be used by PET/CT centers to develop protocols to standardize PET/CT imaging procedures and achieve better patient management and cost-effective operations.

  15. Whole-body PET acceptance test in 2D and 3D using NEMA NU 2-2001 protocol

    International Nuclear Information System (INIS)

    Sharma, Shamurailatpam Dayananda; Deshpande, D.; Prasad, R.; Shetye, Bina; Rangarajan, V.; Shrivastava, S.K.; Dinshaw, K.A.

    2007-01-01

    Integrated PET/CT has emerged as an integral component of oncology management because of its unique potential of providing both functional and morphological images in a single imaging session. In this work, performance of the 'bismuth germinate (BGO) crystal'-based PET of a newly installed Discovery ST PET/CT was evaluated in 2D and 3D mode for whole-body scanning using National Electrical Manufacturers Association (NEMA) NU 2-2001 protocol and the recommended phantoms. During the entire measurements, the system operates with an energy window of 375-650 keV and 11.7 ns coincidence time window. The set of tests performed were spatial resolution, sensitivity, scatter fraction (SF) and counting rate performance. The average transaxial and axial spatial resolution measured as full width at half maximum (FWHM) of the point spread function at 1 cm (and 10 cm) off-axis was 0.632 (0.691) and 0.491 (0.653) cm in 2D and 0.646 (0.682) and 0.54 (0.601) cm in 3D respectively. The average sensitivity for the two radial positions (R = 0 cm and R = 10 cm) was 2.56 (2.63) cps/kBq in 2D and 11.85 (12.14) cps/kBq in 3D. The average scatter fraction was 19.79% in 2D and 46.19% in 3D. The peak noise equivalent counting rate (NECR) evaluated with single random subtraction was 89.41 kcps at 49 kBq/cc in 2D and 60 kcps at 12 kBq/cc in 3D acquisition mode. The NECR with delayed random subtraction was 61.47 kcps at 40.67 kBq/cc in 2D and 45.57 kcps at 16.45 kBq/cc in 3D. The performance of the PET scanner was satisfactory within the manufacturer-specified limits. The test result of PET shows excellent system sensitivity with relatively uniform resolution throughout the FOV, making this scanner highly suitable for whole-body studies. (author)

  16. Selected PET radiomic features remain the same.

    Science.gov (United States)

    Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko

    2018-04-17

    We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.

  17. Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Frohwein, Lynn Johann; Pouw, Joost; Schäfers, Klaus Peter; Stegger, Lars

    2018-05-21

    Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [ 18 F]FDG PET/CT or [ 18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [ 18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all

  18. Comparison of continuous with step and shoot acquisition in SPECT scanning

    International Nuclear Information System (INIS)

    McCarthy, L.; Cotterill, T.; Chu, J.M.G.

    1998-01-01

    Full text: Following the recent advent of continuous acquisition for performing SPECT scanning, it was decided to compare the commonly used Step and Shoot mode of acquisition with the new continuous acquisition mode. The aim of the study is to assess any difference in resolution from the resulting images acquired using the two modes of acquisition. Sequential series of studies were performed on a SPECT phantom using both modes of acquisition. Separate sets of data were collected for both high resolution parallel hole and ultra high resolution fan beam collimators. Clinical data was collected on patients undergoing routine gallium, 99m Tc-MDP bone and 99m Tc-HMPAO brain studies. Separate sequential acquisition in both modes were collected for each patient. The sequence of collection was also alternated. Reconstruction was performed utilising the same parameters for each acquisition. The reconstructed data were assessed visually by blinded observers to detect differences in resolution and image quality. No significant difference in the studies collected by either acquisition modes were detected. The time saved by continuous acquisition could be an advantage

  19. Extended data acquisition support at GSI

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Busch, F.; Hultzsch, H.; Lowsky, J.; Richter, M.

    1984-01-01

    The Experiment Data Acquisition and Analysis System (EDAS) of GSI, designed to support the data processing associated with nuclear physics experiments, provides three modes of operation: real-time, interactive replay and batch replay. The real-time mode is used for data acquisition and data analysis during an experiment performed at the heavy ion accelerator at GSI. An experiment may be performed either in Stand Alone Mode, using only the Experiment Computers, or in Extended Mode using all computing resources available. The Extended Mode combines the advantages of the real-time response of a dedicated minicomputer with the availability of computing resources in a large computing environment. This paper first gives an overview of EDAS and presents the GSI High Speed Data Acquisition Network. Data Acquisition Modes and the Extended Mode are then introduced. The structure of the system components, their implementation and the functions pertinent to the Extended Mode are presented. The control functions of the Experiment Computer sub-system are discussed in detail. Two aspects of the design of the sub-system running on the mainframe are stressed, namely the use of a multi-user installation for real-time processing and the use of a high level programming language, PL/I, as an implementation language for a system which uses parallel processing. The experience accumulated is summarized in a number of conclusions

  20. PET functional volume delineation: a robustness and repeatability study

    International Nuclear Information System (INIS)

    Hatt, Mathieu; Cheze-le Rest, Catherine; Albarghach, Nidal; Pradier, Olivier; Visvikis, Dimitris

    2011-01-01

    Current state-of-the-art algorithms for functional uptake volume segmentation in PET imaging consist of threshold-based approaches, whose parameters often require specific optimization for a given scanner and associated reconstruction algorithms. Different advanced image segmentation approaches previously proposed and extensively validated, such as among others fuzzy C-means (FCM) clustering, or fuzzy locally adaptive bayesian (FLAB) algorithm have the potential to improve the robustness of functional uptake volume measurements. The objective of this study was to investigate robustness and repeatability with respect to various scanner models, reconstruction algorithms and acquisition conditions. Robustness was evaluated using a series of IEC phantom acquisitions carried out on different PET/CT scanners (Philips Gemini and Gemini Time-of-Flight, Siemens Biograph and GE Discovery LS) with their associated reconstruction algorithms (RAMLA, TF MLEM, OSEM). A range of acquisition parameters (contrast, duration) and reconstruction parameters (voxel size) were considered for each scanner model, and the repeatability of each method was evaluated on simulated and clinical tumours and compared to manual delineation. For all the scanner models, acquisition parameters and reconstruction algorithms considered, the FLAB algorithm demonstrated higher robustness in delineation of the spheres with low mean errors (10%) and variability (5%), with respect to threshold-based methodologies and FCM. The repeatability provided by all segmentation algorithms considered was very high with a negligible variability of <5% in comparison to that associated with manual delineation (5-35%). The use of advanced image segmentation algorithms may not only allow high accuracy as previously demonstrated, but also provide a robust and repeatable tool to aid physicians as an initial guess in determining functional volumes in PET. (orig.)

  1. PET AND SPECT STUDIES IN CHILDREN WITH HEMISPHERIC LOW-GRADE GLIOMAS

    Science.gov (United States)

    Juhász, Csaba; Bosnyák, Edit

    2016-01-01

    Molecular imaging is playing an increasing role in the pre-treatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting and improved detection of tumor recurrence. This review provides a brief overview of single photon emission computed tomography (SPECT) studies followed by a more detailed review of clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pre- and post-treatment evaluation of pediatric brain tumors. PMID:27659825

  2. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction

    NARCIS (Netherlands)

    Karakatsanis, Nicolas A.; Casey, Michael E.; Lodge, Martin A.; Rahmim, Arman; Zaidi, Habib

    2016-01-01

    Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the

  3. Quantitative dynamic ¹⁸FDG-PET and tracer kinetic analysis of soft tissue sarcomas.

    Science.gov (United States)

    Rusten, Espen; Rødal, Jan; Revheim, Mona E; Skretting, Arne; Bruland, Oyvind S; Malinen, Eirik

    2013-08-01

    To study soft tissue sarcomas using dynamic positron emission tomography (PET) with the glucose analog tracer [(18)F]fluoro-2-deoxy-D-glucose ((18)FDG), to investigate correlations between derived PET image parameters and clinical characteristics, and to discuss implications of dynamic PET acquisition (D-PET). D-PET images of 11 patients with soft tissue sarcomas were analyzed voxel-by-voxel using a compartment tracer kinetic model providing estimates of transfer rates between the vascular, non-metabolized, and metabolized compartments. Furthermore, standard uptake values (SUVs) in the early (2 min p.i.; SUVE) and late (45 min p.i.; SUVL) phases of the PET acquisition were obtained. The derived transfer rates K1, k2 and k3, along with the metabolic rate of (18)FDG (MRFDG) and the vascular fraction νp, was fused with the computed tomography (CT) images for visual interpretation. Correlations between D-PET imaging parameters and clinical parameters, i.e. tumor size, grade and clinical status, were calculated with a significance level of 0.05. The temporal uptake pattern of (18)FDG in the tumor varied considerably from patient to patient. SUVE peak was higher than SUVL peak for four patients. The images of the rate constants showed a systematic pattern, often with elevated intensity in the tumors compared to surrounding tissue. Significant correlations were found between SUVE/L and some of the rate parameters. Dynamic (18)FDG-PET may provide additional valuable information on soft tissue sarcomas not obtainable from conventional (18)FDG-PET. The prognostic role of dynamic imaging should be investigated.

  4. Dynamic respiratory gated 18FDG-PET of lung tumors - a feasibility study

    International Nuclear Information System (INIS)

    Skjei Knudtsen, Ingerid; Skretting, Arne; Roedal, Jan; Brustugun, Odd Terje; Helland, Aaslaug; Malinen, Eirik

    2011-01-01

    Background. 18 FDG-PET/CT imaging is well established for diagnosis and staging of lung tumors. However, more detailed information regarding the distribution of FDG within the tumor, also as a function of time after injection may be relevant. In this study we explore the feasibility of a combined dynamic and respiratory gated (DR) PET protocol. Material and methods. A DR FDG-PET protocol for a Siemens Biograph 16 PET/CT scanner was set up, allowing data acquisition from the time of FDG injection. Breath-hold (BH) respiratory gating was performed at four intervals over a total acquisition time of 50 minutes. Thus, the PET protocol provides both motion-free images and a spatiotemporal characterization of the glucose distribution in lung tumors. Software tools were developed in-house for tentative tumor segmentation and for extracting standard uptake values (SUVs) voxel by voxel, tumor volumes and SUV gradients in all directions. Results. Four pilot patients have been investigated with the DR PET protocol. The procedure was well tolerated by the patients. The BH images appeared sharper, and SUV max /SUV mean was higher, compared to free breathing (FB) images. Also, SUV gradients in the periphery of the tumor in the BH images were in general greater than or equal to the gradients in the FB PET images. Conclusion. The DR FDG-PET protocol is feasible and the BH images have a superior quality compared to the FB images. The protocol may also provide information of relevance for radiotherapy planning and follow-up. A patient trial is needed for assessing the clinical value of the imaging protocol

  5. 68Ga-PSMA-11 Dynamic PET/CT Imaging in Primary Prostate Cancer.

    Science.gov (United States)

    Sachpekidis, Christos; Kopka, Klaus; Eder, Matthias; Hadaschik, Boris A; Freitag, Martin T; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2016-11-01

    The aim of our study is to assess the pharmacokinetics and biodistribution of Ga-PSMA-11 in patients suffering from primary prostate cancer (PC) by means of dynamic and whole-body PET/CT. Twenty-four patients with primary, previously untreated PC were enrolled in the study. All patients underwent dynamic PET/CT (dPET/CT) scanning of the pelvis and whole-body PET/CT studies with Ga-PSMA-11. The evaluation of dPET/CT studies was based on qualitative evaluation, SUV calculation, and quantitative analysis based on two-tissue compartment modeling and a noncompartmental approach leading to the extraction of fractal dimension (FD). A total of 23/24 patients (95.8%) were Ga-PSMA-11 positive. In 9/24 patients (37.5%), metastatic lesions were detected. PC-associated lesions demonstrated the following mean values: SUVaverage = 14.3, SUVmax = 23.4, K1 = 0.24 (1/min), k3 = 0.34 (1/min), influx = 0.15 (1/min), and FD = 1.27. The parameters SUVaverage, SUVmax, k3, influx, and FD derived from PC-associated lesions were significantly higher than respective values derived from reference prostate tissue. Time-activity curves derived from PC-associated lesions revealed an increasing Ga-PSMA-11 accumulation during dynamic PET acquisition. Correlation analysis revealed a moderate but significant correlation between PSA levels and SUVaverage (r = 0.60) and SUVmax (r = 0.57), and a weak but significant correlation between Gleason score and SUVaverage (r = 0.33) and SUVmax (r = 0.28). Ga-PSMA-11 PET/CT confirmed its capacity in detecting primary PC with a detection rate of 95.8%. Dynamic PET/CT studies of the pelvis revealed an increase in tracer uptake in PC-associated lesions during the 60 minutes of dynamic PET acquisition, a finding with potential applications in anti-PSMA approaches.

  6. Target volume definition for {sup 18}F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Schaefer-Schuler, Andrea; Hellwig, Dirk; Kirsch, Carl-Martin [Saarland University Medical Centre, Department of Nuclear Medicine, Homburg/Saar (Germany); Kremp, Stephanie; Ruebe, Christian [Saarland University Medical Centre, Department of Radio-oncology, Homburg/Saar (Germany); Groeschel, Andreas [Saarland University Medical Centre, Department of Pneumology, Homburg/Saar (Germany)

    2007-04-15

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN{sub PET}). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN{sub PET}). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV{sub vis}; 40% SUV{sub max}: GTV{sub 40}; SUV=2.5: GTV{sub 2.5}; target/background (T/B) algorithm: GTV{sub bg}). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUV{sub max} = 2.5; p = 0.0001 for technical delineability by GTV{sub 2.5}; p = 0.003 by GTV{sub 40}), favouring the GTV{sub bg} method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring. (orig.)

  7. Implement of the Owner Distinction Function for Healing-Type Pet Robots

    Science.gov (United States)

    Nambo, Hidetaka; Kimura, Haruhiko; Hirose, Sadaki

    In recent years, a robotics technology is extremely progressive, and robots are widely applied in many fields. One of the most typical robots is a pet robot. The pet robot is based on an animal pet, such as a dog or a cat. Also, it is known that an animal pet has a healing effect. Therefore, the study to apply pet robots to Animal Assisted Therapy instead of an animal pet has begun to be investigated. We, also, have investigated a method of an owner distinction for pet robot, to emphasize a healing effect of pet robots. In this paper, taking account of implementation into pet robots, a real-time owner distinction method is proposed. In the concrete, the method provides a real-time matching algorithm and an oblivion mechanism. The real-time matching means that a matching and a data acquisition are processed simultaneously. The oblivion mechanism is deleting features of owners in the database of the pet robots. Additionally, the mechanism enables to reduce matching costs or size of database and it enables to follow a change of owners. Furthermore, effectivity and a practicality of the method are evaluated by experiments.

  8. First in situ TOF-PET study using digital photon counters for proton range verification

    NARCIS (Netherlands)

    Cambraia Lopes Ferreira da Silva, P.; Bauer, J.; Salomon, A.; Rinaldi, I; Tabacchini, V.; Tessonnier, T.; Crespo, P; Parodi, K; Schaart, D.R.

    2016-01-01

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (∼2 min) and high

  9. A versatile scalable PET processing system

    International Nuclear Information System (INIS)

    Dong, H.; Weisenberger, A.; McKisson, J.; Wenze, Xi; Cuevas, C.; Wilson, J.; Zukerman, L.

    2011-01-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  10. Optimization of Protocol CT, PET-CT, whole body

    International Nuclear Information System (INIS)

    Gutierrez, Fredys Santos; Namias, Mauro

    2013-01-01

    The objective of this study was to optimize the acquisition protocols and processing existing of the CT PET/CT scanner for clinical use of Nuclear Diagnostic Center Foundation, a way to minimize the radiation dose while maintaining diagnostic image quality properly. Dosimetric data of PET / CT service were surveyed and obtained the baseline against which we compare and define strategies and modifications to develop online. We selected transaxial up to the pulmonary hilum and liver slices as the anatomical regions of interest that led to the standardization of the study

  11. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

    International Nuclear Information System (INIS)

    Berthelsen, A.K.; Holm, S.; Loft, A.; Klausen, T.L.; Andersen, F.; Hoejgaard, L.

    2005-01-01

    If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can be used for PET attenuation without reducing the clinical value of the PET scan. A uniform phantom study was used to document that the PET acquisition itself is not significantly influenced by the presence of IV contrast medium. Then, 19 patients referred to PET/CT with IV contrast underwent CT scans without, and then with contrast agent, followed by an 18 F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global comparison of standard uptake value (SUV) was performed, and SUVs in tumour, in non-tumour tissue and in the subclavian vein were calculated. Clinical evaluation of the number and location of lesions on all PET/CT scans was performed twice, blinded and in a different random order, by two independent nuclear medicine specialists. In all patients, the measured global SUV of PET images based on CT with IV contrast agent was higher than the global activity using non-contrast correction. The overall increase in the mean SUV (for two different conversion tables tested) was 4.5±2.3% and 1.6±0.5%, respectively. In 11/19 patients, focal uptake was identified corresponding to malignant tumours. Eight out of 11 tumours showed an increased SUV max (2.9±3.1%) on the PET images reconstructed using IV contrast

  12. Image registration/fusion software for PET and CT/MRI by using simultaneous emission and transmission scans

    International Nuclear Information System (INIS)

    Kitamura, Keishi; Amano, Masaharu; Sato, Tomohiko; Okumura, Takeshi; Konishi, Norihiro; Komatsu, Masahiko

    2003-01-01

    When PET (positron emission tomography) is used for oncology studies, it is important to register and over-lay PET images with the images of other anatomical modalities, such as those obtained by CT (computed tomography) or MRI (magnetic resonance imaging), in order for the lesions to be anatomically located with high accuracy. The Shimadzu SET-2000W Series PET scanners provide simultaneous acquisition of emission and transmission data, which is capable of complete spatial alignment of both functional and attenuation images. This report describes our newly developed image registration/fusion software, which reformats PET emission images to the CT/MRI grid by using the transform matrix obtained by matching PET transmission images with CT/MRI images. Transmission images are registered and fused either automatically or manually, through 3-dimensional rotation and translation, with the transaxial, sagittal, and coronal fused images being monitored on the screen. This new method permits sufficiently accurate registration and efficient data processing with promoting effective use of CT/MRI images of the DICOM format, without using markers in data acquisition or any special equipment, such as a combined PET/CT scanner. (author)

  13. High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT

    International Nuclear Information System (INIS)

    Callahan, Jason; Hofman, Michael S.; Siva, Shankar; Kron, Tomas; Schneider, Michal E.; Binns, David; Eu, Peter; Hicks, Rodney J.

    2014-01-01

    Our group has previously reported on the use of 68 Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for 68 Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of 68 Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p 68 Ga-VQ 4-D PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including

  14. PET Performance Evaluation of an MR-Compatible PET Insert

    Science.gov (United States)

    Wu, Yibao; Catana, Ciprian; Farrell, Richard; Dokhale, Purushottam A.; Shah, Kanai S.; Qi, Jinyi; Cherry, Simon R.

    2010-01-01

    A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350–650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 μs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 μCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance. PMID:21072320

  15. Positron emission tomography with gamma camera in coincidence mode

    International Nuclear Information System (INIS)

    Hertel, A.; Hoer, G.

    1999-01-01

    Positron emission tomography using F-18 FDG has been estbalished in clinical diagnostics with first indications especially in oncology. To install a conventional PET tomography (dedicated PET) is financially costly and restricted to PET examinations only. Increasing demand for PET diagnostics on one hand and restricted financial resources in the health system on the other hand led industry to develop SPECT cameras to be operated in coincidence mode (camera PET) in order to offer nuclear medicine physicians cost-effective devices for PET diagnostic. At the same time camera PET is inferior to conventional PET regarding sensitivity and detection-efficiency for 511 keV photons. Does camera-PET offer a reliable alternative to conventional PET? The first larger comparative studies are now available, so a first apraisal about the technical clinical performance of camera-PET can be done. (orig.) [de

  16. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC.

    Science.gov (United States)

    Slart, Riemer H J A

    2018-07-01

    Large vessel vasculitis (LVV) is defined as a disease mainly affecting the large arteries, with two major variants, Takayasu arteritis (TA) and giant cell arteritis (GCA). GCA often coexists with polymyalgia rheumatica (PMR) in the same patient, since both belong to the same disease spectrum. FDG-PET/CT is a functional imaging technique which is an established tool in oncology, and has also demonstrated a role in the field of inflammatory diseases. Functional FDG-PET combined with anatomical CT angiography, FDG-PET/CT(A), may be of synergistic value for optimal diagnosis, monitoring of disease activity, and evaluating damage progression in LVV. There are currently no guidelines regarding PET imaging acquisition for LVV and PMR, even though standardization is of the utmost importance in order to facilitate clinical studies and for daily clinical practice. This work constitutes a joint procedural recommendation on FDG-PET/CT(A) imaging in large vessel vasculitis (LVV) and PMR from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine (EANM), the Cardiovascular Council of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), and the PET Interest Group (PIG), and endorsed by the American Society of Nuclear Cardiology (ASNC). The aim of this joint paper is to provide recommendations and statements, based on the available evidence in the literature and consensus of experts in the field, for patient preparation, and FDG-PET/CT(A) acquisition and interpretation for the diagnosis and follow-up of patients with suspected or diagnosed LVV and/or PMR. This position paper aims to set an internationally accepted standard for FDG-PET/CT(A) imaging and reporting of LVV and PMR.

  17. Incremental diagnostic utility of gastric distension FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, Pierre-Yves [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Brest University Hospital, Department of Nuclear Medicine, Brest (France); Duong, Cuong P.; Cabalag, Carlos S. [Peter MacCallum Cancer Centre, Department of Surgical Oncology, East Melbourne, VIC (Australia); Parameswaran, Bimal K.; Callahan, Jason [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hicks, Rodney J. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); The University of Melbourne, Parkville (Australia)

    2016-04-15

    To assess the diagnostic utility of gastric distension (GD) FDG PET/CT in both patients with known gastric malignancy and those not known to have gastric malignancy but with incidental focal FDG uptake in the stomach. This retrospective analysis included 88 patients who underwent FDG PET/CT following GD with hyoscine N-butylbromide (Buscopan registered) and water ingestion as part of routine clinical evaluation between 2004 and 2014. FDG PET/CT scans before and after GD were reported blinded to the patient clinical details in 49 patients undergoing pretreatment staging of gastric malignancy and 39 patients who underwent GD following incidental suspicious gastric uptake. The PET findings were validated by a composite clinical standard. In the 49 patients undergoing pretreatment staging of gastric malignancy, GD improved PET detection of the primary tumour (from 80 % to 90 %). PET evaluation of tumour extent was concordant with endoscopic/surgical reports in 31 % (interpreter 1) and 45 % (interpreter 2) using pre-GD images and 73 % and 76 % using GD images. Interobserver agreement also improved with GD (κ = 0.29 to 0.69). Metabolic and morphological quantitative analysis demonstrated a major impact of GD in normal gastric wall but no significant effect in tumour, except a minor increase in SUV related to a delayed acquisition time. The tumour to normal stomach SUVmax ratio increased from 3.8 ± 2.9 to 9.2 ± 8.6 (mean ± SD) with GD (p < 0.0001), facilitating detection and improved assessment of the primary tumour. In 25 (64 %) of the 39 patients with incidental suspicious gastric uptake, acquisition after GD correctly excluded a malignant process. In 10 (71 %) of the remaining 14 patients with persistent suspicious FDG uptake despite GD, malignancy was confirmed and in 3 (21 %) an active but benign pathology was diagnosed. GD is a simple way to improve local staging with FDG PET in patients with gastric malignancy. In the setting of incidental suspicious gastric

  18. Incremental diagnostic utility of gastric distension FDG PET/CT

    International Nuclear Information System (INIS)

    Le Roux, Pierre-Yves; Duong, Cuong P.; Cabalag, Carlos S.; Parameswaran, Bimal K.; Callahan, Jason; Hicks, Rodney J.

    2016-01-01

    To assess the diagnostic utility of gastric distension (GD) FDG PET/CT in both patients with known gastric malignancy and those not known to have gastric malignancy but with incidental focal FDG uptake in the stomach. This retrospective analysis included 88 patients who underwent FDG PET/CT following GD with hyoscine N-butylbromide (Buscopan registered) and water ingestion as part of routine clinical evaluation between 2004 and 2014. FDG PET/CT scans before and after GD were reported blinded to the patient clinical details in 49 patients undergoing pretreatment staging of gastric malignancy and 39 patients who underwent GD following incidental suspicious gastric uptake. The PET findings were validated by a composite clinical standard. In the 49 patients undergoing pretreatment staging of gastric malignancy, GD improved PET detection of the primary tumour (from 80 % to 90 %). PET evaluation of tumour extent was concordant with endoscopic/surgical reports in 31 % (interpreter 1) and 45 % (interpreter 2) using pre-GD images and 73 % and 76 % using GD images. Interobserver agreement also improved with GD (κ = 0.29 to 0.69). Metabolic and morphological quantitative analysis demonstrated a major impact of GD in normal gastric wall but no significant effect in tumour, except a minor increase in SUV related to a delayed acquisition time. The tumour to normal stomach SUVmax ratio increased from 3.8 ± 2.9 to 9.2 ± 8.6 (mean ± SD) with GD (p < 0.0001), facilitating detection and improved assessment of the primary tumour. In 25 (64 %) of the 39 patients with incidental suspicious gastric uptake, acquisition after GD correctly excluded a malignant process. In 10 (71 %) of the remaining 14 patients with persistent suspicious FDG uptake despite GD, malignancy was confirmed and in 3 (21 %) an active but benign pathology was diagnosed. GD is a simple way to improve local staging with FDG PET in patients with gastric malignancy. In the setting of incidental suspicious gastric

  19. Evaluation of a Hanging-Breast PET System for Primary Tumor Visualization in Patients With Stage I-III Breast Cancer: Comparison With Standard PET/CT.

    Science.gov (United States)

    Teixeira, Suzana C; Rebolleda, José Ferrér; Koolen, Bas B; Wesseling, Jelle; Jurado, Raúl Sánchez; Stokkel, Marcel P M; Del Puig Cózar Santiago, María; van der Noort, Vincent; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2016-06-01

    The purposes of this study were to evaluate the performance of a mammography with molecular imaging PET (MAMMI-PET) system for breast imaging in the hanging-breast position for the visualization of primary breast cancer lesions and to compare this method with whole-body PET/CT. Between March 2011 and March 2014, a prospective evaluation included women with one or more histologically confirmed primary breast cancer lesions (index lesions). After injection of 180-240 MBq of (18)F-FDG, whole-body PET/CT and MAMMI-PET acquisitions were performed, index lesions were scored 0, 1, or 2 for FDG uptake relative to background. Detection and FDG uptake were compared by breast length, maximal tumor diameter, affected breast quadrants, tumor grade, and histologic and immunologic sub-types. Finally, the two PET modalities were compared for detection of index lesions. For 234 index lesions (diameter, 5-170 mm), the overall sensitivity was 88.9% for MAMMI-PET and 91% for PET/CT (p = 0.61). Twenty-three (9.8%) index lesions located too close to the pectoral muscle were missed with MAMMI-PET, and 20 index lesions were missed with PET/CT. Lesion visibility on MAMMI-PET images was influenced by tumor grade (p = 0.034) but not by cancer subtype (p = 0.65). Although in an overall evaluation MAMMI-PET was not superior to PET/CT, MAMMI-PET does have higher sensitivity for primary breast cancer lesions within the scanning range of the device. Optimization of the positioning device may increase visualization of the most dorsal lesions.

  20. Comparison of screening performance metrics and patient dose of two mammographic image acquisition modes in the Danish National Breast Cancer Screening Programme

    DEFF Research Database (Denmark)

    Abdi, Ahmed Jibril; Fieselmann, Andreas; Pfaff, Heiderose

    2018-01-01

    Introduction: In this study, screening performance metrics and radiation dose were compared for two image acquisition modes for breast cancer screening with MAMMOMAT Inspiration (Siemens Healthcare GmbH, Forchheim, Germany). This mammography system can operate without an anti-scatter grid in place...... compared to grid-based screening. The specificity was 98.11% (95% confidence interval (CI) from 97.93% to 98.29%) and 97.96% (95% CI from 97.84% to 98.09%) for screening with grid-less acquisition and grid-based acquisition, respectively. The cancer detection rate as a measure for sensitivity was equal (0...

  1. SU-F-T-263: Dosimetric Characteristics of the Cine Acquisition Mode of An A-Si EPID

    Energy Technology Data Exchange (ETDEWEB)

    Bawazeer, O; Deb, P [RMIT University, Melbourne, VIC (Australia); Sarasanandarajah, S [Peter MacCallum Cancer Institute, Melbourne, Victoria (Australia); Herath, S; Kron, T [Peter MacCallum Cancer Institute, Melbourne, VIC (Australia)

    2016-06-15

    Purpose: To investigate the dosimetric characteristics of Varian a-Si-500 electronic portal imaging device (EPID) operated in cine mode particularly considering linearity with delivered dose, dose rate, field size, phantom thickness, MLC speed and common IMRT fields. Methods: The EPID that attached to a Varian Clinac 21iX linear accelerator, was irradiated with 6 and 18 MV using 600 MU/min. Image acquisition is controlled by the IAS3 software, Trigger delay was 6 ms, BeamOnDelay and FrameStartDelay were zero. Different frame rates were utilized. Cine mode response was calculated using MATLAB as summation of mean pixel values in a region of interest of the acquired images. The performance of cine mode was compared to integrated mode and dose measurements in water using CC13 ionization chamber. Results: Figure1 illustrates that cine mode has nonlinear response for small MU, when delivering 10 MU was about 0.5 and 0.64 for 6 and 18 MV respectively. This is because the missing acquired images that were calculated around four images missing in each delivery. With the increase MU the response became linear and comparable with integrated mode and ionization chamber within 2%. Figure 2 shows that cine mode has comparable response with integrated mode and ionization chamber within 2% with changing dose rate for 10 MU delivered. This indicates that the dose rate change has no effect on nonlinearity of cine mode response. Except nonlinearity, cine mode is well matched to integrated mode response within 2% for field size, phantom thickness, MLC speed dependences. Conclusion: Cine mode has similar dosimetric characteristics to integrated mode with open and IMRT fields, and the main limitation with cine mode is missing images. Therefore, the calibration of EPID images with this mode should be run with large MU, and when IMRT verification field has low MU, the correction for missing images are required.

  2. SU-F-T-263: Dosimetric Characteristics of the Cine Acquisition Mode of An A-Si EPID

    International Nuclear Information System (INIS)

    Bawazeer, O; Deb, P; Sarasanandarajah, S; Herath, S; Kron, T

    2016-01-01

    Purpose: To investigate the dosimetric characteristics of Varian a-Si-500 electronic portal imaging device (EPID) operated in cine mode particularly considering linearity with delivered dose, dose rate, field size, phantom thickness, MLC speed and common IMRT fields. Methods: The EPID that attached to a Varian Clinac 21iX linear accelerator, was irradiated with 6 and 18 MV using 600 MU/min. Image acquisition is controlled by the IAS3 software, Trigger delay was 6 ms, BeamOnDelay and FrameStartDelay were zero. Different frame rates were utilized. Cine mode response was calculated using MATLAB as summation of mean pixel values in a region of interest of the acquired images. The performance of cine mode was compared to integrated mode and dose measurements in water using CC13 ionization chamber. Results: Figure1 illustrates that cine mode has nonlinear response for small MU, when delivering 10 MU was about 0.5 and 0.64 for 6 and 18 MV respectively. This is because the missing acquired images that were calculated around four images missing in each delivery. With the increase MU the response became linear and comparable with integrated mode and ionization chamber within 2%. Figure 2 shows that cine mode has comparable response with integrated mode and ionization chamber within 2% with changing dose rate for 10 MU delivered. This indicates that the dose rate change has no effect on nonlinearity of cine mode response. Except nonlinearity, cine mode is well matched to integrated mode response within 2% for field size, phantom thickness, MLC speed dependences. Conclusion: Cine mode has similar dosimetric characteristics to integrated mode with open and IMRT fields, and the main limitation with cine mode is missing images. Therefore, the calibration of EPID images with this mode should be run with large MU, and when IMRT verification field has low MU, the correction for missing images are required.

  3. THE ROLE OF INTRAMOLECULAR TIES ENERGY IN THE PYROLYSIS PROCESS OF PET

    Directory of Open Access Journals (Sweden)

    P. Iu. Salikov

    2014-01-01

    Full Text Available Summary. Recycling plastic waste to focus on. The main type of used products made of polyethylene terephthalate (PET is a container from the various types of beverages. There was considered a possibility of waste of PET (bottles, bottles, packaging containers by pyrolysis. Most of the proposed methods are not suitable for recycling (recycling of waste consumption contamination. Purpose - to develop technological foundations and optimum modes waste PET to obtain useful secondary products, taking into account the energy of chemical intramolecular bonds. Applied scientific basis of recycling PET into useful forms of secondary products, in particular the establishment of the collapse of the intramolecular bonds, depending on the temperature of the pyrolysis method of mathematical processing - differentiation of polynomial equations change in the degree of pyrolysis temperature-dependent. The optimum modes of processing. The block diagram of apparatus for processing contaminated waste PET pyrolysis methods of control processing in accordance with the specified composition of secondary products. The possibility of controlling the amount and types of fuel components of secondary products due to measurable parameters of the pyrolysis process. The effective temperature pyrolysis of waste PET with the CCA-tures energy intramolecular bonds.

  4. PET in neurology: an outline of problems, recent acquisitions and future perspectives

    International Nuclear Information System (INIS)

    Lenzi, G.L.; Fieschi, C.

    1987-01-01

    The impact of computerized neuro-imaging in the neurological sciences has been so dramatic that our approach to the individual patient has changed completely since computed tomography scan availability. Further changes may be expected from the recently born positron emission tomography (PET) in particular if the exploitation of this technique is performed in close relationship with physiopathological questions and clinical problems. Moreover, the potentials and the obvious interest of PET, particularly in neurology, yield a series of problems that have to be faced without excessive fears or restraints. The problem faced is the amount and the quality of the information. (Auth.)

  5. Daily organ tracking in intensity-modulated radiotherapy of prostate cancer using an electronic portal imaging device with a dose saving acquisition mode

    International Nuclear Information System (INIS)

    Vetterli, Daniel; Thalmann, Sandrine; Behrensmeier, Frank; Kemmerling, Ludger; Born, Ernst J.; Mini, Roberto; Greiner, Richard H.; Aebersold, Daniel M.

    2006-01-01

    Background and purpose: Daily use of conventional electronic portal imaging devices (EPID) for organ tracking is limited due to the relatively high dose required for high quality image acquisition. We studied the use of a novel dose saving acquisition mode (RadMode) allowing to take images with one monitor unit per image in prostate cancer patients undergoing intensity-modulated radiotherapy (IMRT) and tracking of implanted fiducial gold markers. Patients and methods: Twenty five patients underwent implantation of three fiducial gold markers prior to the planning CT. Before each treatment of a course of 37 fractions, orthogonal localization images from the antero-posterior and from the lateral direction were acquired. Portal images of both the setup procedure and the five IMRT treatment beams were analyzed. Results: On average, four localization images were needed for a correct patient setup, resulting in four monitor units extra dose per fraction. The mean extra dose delivered to the patient was thereby increased by 1.2%. The procedure was precise enough to reduce the mean displacements prior to treatment to ≤0.3 mm. Conclusions: The use of a new dose saving acquisition mode enables to perform daily EPID-based prostate tracking with a cumulative extra dose of below 1 Gy. This concept is efficiently used in IMRT-treated patients, where separation of setup beams from treatment beams is mandatory

  6. Feasibility of Systematic Respiratory-Gated Acquisition in Unselected Patients Referred for 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Philippe Robin

    2018-02-01

    Full Text Available ObjectiveRespiratory motion in 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT induces blurred images, leading to errors in location and quantification for lung and abdominal lesions. Various methods have been developed to correct for these artifacts, and most of current PET/CT scanners are equipped with a respiratory gating system. However, they are not routinely performed because their use is time-consuming. The aim of this study is to assess the feasibility and quantitative impact of a systematic respiratory-gated acquisition in unselected patients referred for FDG PET/CT, without increasing acquisition time.MethodsPatients referred for a FDG PET/CT examination to the nuclear medicine department of Brest University Hospital were consecutively enrolled, during a 3-month period. Cases presenting lung or liver uptakes were analyzed. Two sets of images were reconstructed from data recorded during a unique acquisition with a continuous table speed of 1 mm/s of the used Biograph mCT Flow PET/CT scanner: standard free-breathing images, and respiratory-gated images. Lesion location and quantitative parameters were recorded and compared.ResultsFrom October 1 2015 to December 31 2015, 847 patients were referred for FDG PET/CT, 741 underwent a respiratory-gated acquisition. Out of them, 213 (29% had one or more lung or liver uptake but 82 (38% had no usable respiratory-gated signal. Accordingly, 131 (62% patients with 183 lung or liver uptakes were analyzed. Considering the 183 lesions, 140 and 43 were located in the lungs and the liver, respectively. The median (IQR difference between respiratory-gated images and non-gated images was 18% (4−32 for SUVmax, increasing to 30% (14−57 in lower lobes for lung lesions, and −18% (−40 to −4 for MTV (p < 0.05. Technologists’ active personal dosimetry and mean total examinations duration were not statistically different between periods with and without

  7. Understanding advertising in pet nutrition.

    Science.gov (United States)

    Brown, R G

    1994-04-01

    Advertising is part of the effort to attract attention of consumers to products, in this case, pet foods. It is generally benign in its effect, but it can be misleading, although rarely deliberately so. It uses a specialized vocabulary, which must be mastered if one is to understand what is intended. For all of the expense and effort, advertising figures directly in relatively few decisions to purchase. Its main intention is to call our attention to a particular pet food and to give that product an image. If the pet food does not perform in the consumer's hands, then all of the advertising on earth will not be persuasive. On the other hand, if a product performs well, the word-of-mouth will be positive and that mode of advertising is one of the most effective.

  8. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary?

    Science.gov (United States)

    Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar

    2014-01-01

    This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P DOTA-NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P DOTA-NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.

  9. PET/TAC: Basic principles, physiological variants and artifacts

    International Nuclear Information System (INIS)

    Jimenez V, A.M.

    2007-01-01

    This presentation is about the basic principles, physiologic variants and devices that work in the PET/TAC technique. Next the conclusions obtained in the same one are presented: For a correct evaluation of the PET/TAC images with FDG is necessary the knowledge of the image acquisition technique, as well as of the physiologic distribution of the FDG, variants of the normality, benign causes of captation and more frequent devices. The introduction of this hybrid procedure allows the correct anatomical localization and identification of the deposits of FDG largely avoiding false or doubtful interpretations, but it can also originate not specific devices existent in the conventional PET. The previous knowledge of the possible devices will make possible in certain cases its elimination and in other its identification avoiding incorrect interpretations. (Author)

  10. MR-guided data framing for PET motion correction in simultaneous MR–PET: A preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, M.G., E-mail: m.ullisch@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Scheins, J.; Weirich, C.; Rota Kops, E.; Celik, A.; Tellmann, L.; Stöcker, T.; Herzog, H.; Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany)

    2013-02-21

    Head motion can significantly degrade image quality of static and dynamic Positron Emission Tomography (PET) of the human brain. One method to regain acceptable image quality in the presence of motion is to include the correction for motion in the reconstruction process. When applying motion correction, the PET data can be segmented into discrete parts of similar head position, referred to as frames. This framing of the data can reduce the computational overhead necessary for motion correction during the reconstruction process by reducing the number of discrete head positions which have to be accounted for. Here a framing algorithm is presented which minimises residual motion in the framed data, while taking full advantage of the additional information provided by Magnetic Resonance Imaging (MRI) in a simultaneous MR–PET acquisition. In the work presented here information on motion is derived from EPI sequences acquired simultaneously with the PET data. A comparison to images reconstructed with regular framing show a more clearly delineated cortex due to increased contrast between grey matter and white matter. This improvement in image quality is achieved as well as a reduction in the number of frames, thereby reducing the reconstruction time. Preliminary data indicates an efficient reduction of residual intra-frame motion compared to regular framing.

  11. Motion compensation for fully 4D PET reconstruction using PET superset data

    Energy Technology Data Exchange (ETDEWEB)

    Verhaeghe, J; Gravel, P; Mio, R; Fukasawa, R; Rosa-Neto, P; Soucy, J-P; Thompson, C J; Reader, A J, E-mail: jeroen.verhaeghe@mcgill.c [Montreal Neurological Institute, McGill University, Montreal (Canada)

    2010-07-21

    Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for {sup 18}F-FDG obtained from Patlak analysis.

  12. Development of PET in Latin America. Experience of the first PET-Cyclotron Center

    International Nuclear Information System (INIS)

    Tutor, C.A.; Frias, L.

    2002-01-01

    Aim: Describe the experience of the first PET-Cyclotron Center in Latin America. Demonstrate the viability of running a PET Center in Argentina despite the economic crisis. Materials and Methods: For this study, we used a UGM/GE Quest 250 PET scan, a RDS 112 cyclotron and a Radiosynthesis Laboratory installed at the (FUESMEN) Nuclear Medicine School Foundation, located in Mendoza City, in the middle-west of Argentina. From January 1999 to March 2002, 741 studies were obtained, 731 were 18 FluorDeoxyGlucose-PET studies and 10 phantoms for calibration purposes. We used acquisition and imaging processing standard protocols, as well as research protocols designed according to the pathology under investigation. To better correlate anatomical and functional images, we used fusion techniques with (CT) Computed Tomography in some (WB) whole-body PET scans. Results: A total of 731 patients were retrospectively analyzed and classified according to statistics variables such as: 1-sex: 317 women and 414 men, 2-type of scan: 439 WB cases, 267 brain studies and 25 cardiac. From this data we divided them as PET indications and resulted in 17 cases as healthy volunteers, 422 oncological cases, 267 neurological studies and 25 cardiac for myocardial viability. According to the origin they were classified as patients coming from Mendoza 544, Buenos Aires 112, other argentine provinces 60 and foreign (Chile, Brazil and Uruguay) 15 cases. In terms of billing, 181 studies were done free of charge, 95 under research protocols were also done free of charge and 451 were charged. Conclusion: Not only the economical and political factors play an important role limiting the advances of PET Imaging in Latin America, but also the lack of a neighboring cyclotron that circumscribe many hospitals to have access to the radiopharmaceutical agent. FUESMEN was established in 1991 by three governmental entities: the (CONEA) National Commission of Atomic Energy, the (UNC) National University of Cuyo and

  13. Diagnosing lung nodules on oncologic MR/PET imaging: Comparison of fast T1-weighted sequences and influence of image acquisition in inspiration and expiration breath-hold

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios; Brendle, Cornelia; Schmidt, Holger; Pfannenberg, Christina A; LaFougère, Christian; Nikolaou, Konstantin; Schraml, Christina [University Hospital of Tuebingen, Tuebingen (Germany)

    2016-09-15

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  14. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Brendle, Cornelia [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Department of Diagnostic and Interventional Neuroradiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Schmidt, Holger; Pfannenberg, Christina A. [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Fougère, Christian la [Department of Nuclear Medicine, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Nikolaou, Konstantin; Schraml, Christina [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany)

    2016-11-01

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  15. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer

    International Nuclear Information System (INIS)

    Wang Hui; Vees, Hansjoerg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib

    2009-01-01

    Background and purpose: We evaluate the contribution of 18 F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Materials and methods: Seventeen patients with local-only recurrent prostate cancer (median = 5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of 18 F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the 18 F-choline-based GTVs. These included manual delineation of contours (GTV man ) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV 40% and GTV 50% ), signal-to-background ratio-based adaptive thresholding (GTV SBR ), and a region growing (GTV RG ) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Results: Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p = 0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Conclusions: Semi-automated segmentation techniques for 18 F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.

  16. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer.

    Science.gov (United States)

    Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib

    2009-11-01

    We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.

  17. Clinical PET/MR Imaging in Dementia and Neuro-Oncology

    DEFF Research Database (Denmark)

    Henriksen, Otto M.; Marner, Lisbeth; Law, Ian

    2016-01-01

    The introduction of hybrid PET/MRI systems allows simultaneous multimodality image acquisition of high technical quality. This technique is well suited for the brain, and particularly in dementia and neuro-oncology. In routine use combinations of well-established MRI sequences and PET tracers....../MRI using [18F]-fluoro-ethyl-tyrosine (FET) also abide to the expectations of the adaptive and versatile diagnostic tool necessary in neuro-oncology covering both simple 20 min protocols for routine treatment surveillance and complicated 90 min brain and spinal cord protocols in pediatric neuro...

  18. Value of PET/CT versus PET and CT performed as separate investigations in patients with Hodgkin's disease and non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Fougere, Christian la; Broeckel, Nicole; Pfluger, Thomas; Haug, Alexander; Scher, Bernhard; Hacker, Marcus; Hahn, Klaus; Tiling, Reinhold; Hundt, Walter; Reiser, Maximilan

    2006-01-01

    The aim of this study was to assess the clinical benefit of combined [ 18 F]FDG PET/CT in patients with malignant lymphoma as compared to separately performed PET and CT. Overall, 100 patients with Hodgkin's disease (HD) or non-Hodgkin's lymphoma (NHL) were included in this study. Co-registered PET/CT with [ 18 F]FDG and contrast medium was performed in 50 consecutive patients with NHL (n=38) or HD (n=12) for initial staging (IS) (n=12) or re-treatment staging (RS) (n=38). Another 50 patients with NHL (n=32) or HD (n=18) underwent separate PET and CT investigations within a time frame of 10 days for IS (n=22) or RS (n=28). Lymphoma involvement was separately evaluated for seven different regions in each patient. Each patient had clinical follow-up evaluation for >6 months. PET and CT data were analysed separately as well as side-by-side or in fused mode. In the PET/CT group, region-based evaluation for lymphoma involvement suggested a sensitivity/specificity of 85%/91% for CT, 98%/99% for PET and 98%/99% for PET/CT. In the PET and CT group, region-based evaluation showed a sensitivity/specificity of 87%/80% for CT, 98%/99% for PET and 98%/100% for PET and CT read side by side. PET was superior to CT alone and was improved further by side-by-side reading of both examinations. However, no significant difference was observed between PET/CT and separate PET and CT imaging in patients with lymphoma. (orig.)

  19. Automatic data acquisition system of environmental radiation monitor with a personal computer

    International Nuclear Information System (INIS)

    Ohkubo, Tohru; Nakamura, Takashi.

    1984-05-01

    The automatic data acquisition system of environmental radiation monitor was developed in a low price by using a PET personal computer. The count pulses from eight monitors settled at four site boundaries were transmitted to a radiation control room by a signal transmission device and analyzed by the computer via 12 channel scaler and PET-CAMAC Interface for graphic display and printing. (author)

  20. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    OpenAIRE

    Dang, J; Lecoq, P; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    International audience; Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allo...

  1. Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems?

    Science.gov (United States)

    Cecchin, Diego; Palombit, Alessandro; Castellaro, Marco; Silvestri, Erica; Bui, Franco; Barthel, Henryk; Sabri, Osama; Corbetta, Maurizio; Bertoldo, Alessandra

    2017-12-01

    between these two modalities. However, at least in one study the correlation at the level of gray, white matter, and whole brain is rather good (r=0.94, 0.8, 0.81 respectively). Finally, receptor studies show that simultaneous PET/fMRI could be a useful tool to characterize functional connectivity along with dynamic neuroreceptor adaptation in several physiological (e.g. working memory) or pathological (e.g. pain) conditions, with or without drug administrations. The simultaneous acquisition of PET (using a number of radiotracers) and functional MRI (using a number of sequences) offers exciting opportunities that we are just beginning to explore. The results thus far are promising in the evaluation of cerebral metabolism/flow, neuroreceptor adaptation, and network's energetic demand.

  2. Value of new MR techniques in MR-PET; Stellenwert neuer MR-Techniken in der MR-PET

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, U.I.; Schoenberg, S.O. [Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim der Universitaet Heidelberg, Institut fuer klinische Radiologie und Nuklearmedizin, Mannheim (Germany); Quick, H.H. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Institut fuer Medizinische Physik, Erlangen (Germany); Guimaraes, A. [Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown (United States); Catalano, O. [University of Naples Federico II, Naples (Italy); Morelli, J.N. [The Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore (United States)

    2013-12-15

    The unparalleled soft tissue contrast of magnetic resonance imaging (MRI) and the functional information obtainable with 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) render MR-PET well-suited for oncological and psychiatric imaging. The lack of ionizing radiation with MRI also makes MR-PET a promising modality for oncology patients requiring frequent follow-up and pediatric patients. Lessons learned with PET computed tomography (CT) over the last few years do not directly translate to MR-PET. For example, in PET-CT the Hounsfield units derived from CT are used for attenuation correction (AC). As 511 keV photons emitted in PET examinations are attenuated by the patient's body CT data are converted directly to linear attenuation coefficients (LAC); however, proton density measured by MRI is not directly related to the radiodensity or LACs of biological tissue. Thus, direct conversion to LAC data is not possible making AC more challenging in simultaneous MRI-PET scanning. In addition to these constraints simultaneous MRI-PET acquisitions also improve on some solutions to well-known challenges of hybrid imaging techniques, such as limitations in motion correction. This article reports on initial clinical experiences with simultaneously acquired MRI-PET data, focusing on the potential benefits and limitations of MRI with respect to motion correction as well as metal and attenuation correction artefacts. (orig.) [German] Die klinische Implementierung der neuen Hybridtechnologie MR-Positronenemissionstomographie (MR-PET) bietet durch die Kombination aus hochaufloesender Morphologie, Funktion und Metabolismus bisher ungeahnte diagnostische Moeglichkeiten, die nicht nur fuer die Diagnose und die Verlaufskontrolle onkologischer und psychiatrischer Erkrankungen von hoher Bedeutung sind. Verglichen mit der PET-CT wird dies mit reduzierter Strahlenbelastung fuer den Patienten moeglich, was wiederum insbesondere fuer Patienten in der Tumornachsorge, die

  3. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  4. Compton scatter tomography in TOF-PET

    Science.gov (United States)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  5. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  6. Clinical evaluation of female pelvic tumors. Application fields of integrated PET/MRI; Lokal- und Ganzkoerperdiagnostik weiblicher Beckentumore. Anwendungsfelder der integrierten PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Grueneisen, J.; Umutlu, L. [Universitaetsklinikum Essen, Institut fuer diagnostische und interventionelle Radiologie und Neuroradiologie, Essen (Germany)

    2016-07-15

    Integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) scanning has recently become established in clinical imaging. Various studies have demonstrated the great potential of this new hybrid imaging procedure for applications in the field of oncology and the diagnostics of inflammatory processes. With initial studies demonstrating the feasibility and high diagnostic potential of PET/MRI comparable to PET-computed tomography (CT), the focus of future studies should be on the identification of application fields with a potential diagnostic benefit of PET/MRI over other established diagnostic tools. Both MRI and PET/CT are widely used in the diagnostic algorithms for malignancies of the female pelvis. A simultaneous acquisition of PET and MRI data within a single examination provides complementary information which can be used for a more comprehensive evaluation of the primary tumor as well as for whole body staging. Therefore, the aim of this article is to outline potential clinical applications of integrated PET/MRI for the diagnostic work-up of primary or recurrent gynecological neoplasms of the female pelvis. (orig.) [German] Integrierte Positronenemissionstomographie-Magnetresonanztomographen (PET-MRT) stehen seit wenigen Jahren fuer die klinische Diagnostik zur Verfuegung. Diverse Arbeiten konnten bereits das grosse Potenzial dieser neuen hybriden Bildgebungsmodalitaet zur Anwendung in der onkologischen und inflammatorischen Diagnostik aufzeigen. Nachdem initiale Studien die Durchfuehrbarkeit und diagnostische Vergleichbarkeit der PET-MRT zur etablierten PET-Computertomographie (PET-CT) gezeigt haben, sollte fuer eine Implementierung in der Routinediagnostik der Fokus zukuenftiger Studien darin liegen, eindeutige Indikationen zu definieren, in denen die simultane PET-MRT-Bildgebung einen definitiven Vorteil verglichen mit den etablierten diagnostischen Verfahren bietet. Sowohl die MRT als auch die PET-CT finden bereits eine

  7. [Clinical evaluation of female pelvic tumors : Application fields of integrated PET/MRI].

    Science.gov (United States)

    Grueneisen, J; Umutlu, L

    2016-07-01

    Integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) scanning has recently become established in clinical imaging. Various studies have demonstrated the great potential of this new hybrid imaging procedure for applications in the field of oncology and the diagnostics of inflammatory processes. With initial studies demonstrating the feasibility and high diagnostic potential of PET/MRI comparable to PET-computed tomography (CT), the focus of future studies should be on the identification of application fields with a potential diagnostic benefit of PET/MRI over other established diagnostic tools. Both MRI and PET/CT are widely used in the diagnostic algorithms for malignancies of the female pelvis. A simultaneous acquisition of PET and MRI data within a single examination provides complementary information which can be used for a more comprehensive evaluation of the primary tumor as well as for whole body staging. Therefore, the aim of this article is to outline potential clinical applications of integrated PET/MRI for the diagnostic work-up of primary or recurrent gynecological neoplasms of the female pelvis.

  8. List-mode PET image reconstruction for motion correction using the Intel XEON PHI co-processor

    Science.gov (United States)

    Ryder, W. J.; Angelis, G. I.; Bashar, R.; Gillam, J. E.; Fulton, R.; Meikle, S.

    2014-03-01

    List-mode image reconstruction with motion correction is computationally expensive, as it requires projection of hundreds of millions of rays through a 3D array. To decrease reconstruction time it is possible to use symmetric multiprocessing computers or graphics processing units. The former can have high financial costs, while the latter can require refactoring of algorithms. The Xeon Phi is a new co-processor card with a Many Integrated Core architecture that can run 4 multiple-instruction, multiple data threads per core with each thread having a 512-bit single instruction, multiple data vector register. Thus, it is possible to run in the region of 220 threads simultaneously. The aim of this study was to investigate whether the Xeon Phi co-processor card is a viable alternative to an x86 Linux server for accelerating List-mode PET image reconstruction for motion correction. An existing list-mode image reconstruction algorithm with motion correction was ported to run on the Xeon Phi coprocessor with the multi-threading implemented using pthreads. There were no differences between images reconstructed using the Phi co-processor card and images reconstructed using the same algorithm run on a Linux server. However, it was found that the reconstruction runtimes were 3 times greater for the Phi than the server. A new version of the image reconstruction algorithm was developed in C++ using OpenMP for mutli-threading and the Phi runtimes decreased to 1.67 times that of the host Linux server. Data transfer from the host to co-processor card was found to be a rate-limiting step; this needs to be carefully considered in order to maximize runtime speeds. When considering the purchase price of a Linux workstation with Xeon Phi co-processor card and top of the range Linux server, the former is a cost-effective computation resource for list-mode image reconstruction. A multi-Phi workstation could be a viable alternative to cluster computers at a lower cost for medical imaging

  9. Comparison of the performance of {sup 18}F-FP-CIT brain PET/MR and simultaneous PET/CT: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Don; Chun, Kyung Ah [Dept. of Nuclear Medicine, Yeungnam University Hospital, Daegu (Korea, Republic of)

    2016-09-15

    {sup 18}F-FP-CIT [{sup 1'}8F-fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane] has been well established and used for the differential diagnosis of atypical parkinsonian disorders. Recently, combined positron emission tomography (PET)/magnetic resonance (MR) was proposed as a viable alternative to PET/computed tomography (CT). The aim of this study was to compare the performances of conventional {sup 18}F-FP-CIT brain PET/CT and simultaneous PET/MR by visual inspection and quantitative analysis. Fifteen consecutive patients clinically suspected of having Parkinson's disease were recruited for the study.{sup 18}F-FP-CIT PET was performed during PET/CT and PET/MR. PET/CT image acquisition was started 90 min after intravenous injection of {sup 18}F-FP-CIT and then PET/MR images were acquired. Dopamine transporter (DAT) density in bilateral striatal subregions was assessed visually. Quantitative analyses were performed on bilateral striatal volumes of interest (VOIs) using average standardized uptake values (SUVmeans). Intraclass correlation coefficients (ICCs) and their 95 % confidence intervals (CIs) were assessed to compare PET/CT and PET/MR data. Bland-Altman plots were drawn to perform method-comparisons. All subjects showed a preferential decrease in DAT binding in the posterior putamen (PP), with relative sparing of the ventral putamen (VP). Bilateral striatal subregional binding ratio (BR) determined PET/CT and PET/MR demonstrated close interequipment correspondence (BRright caudate - ICC, 0.944; 95 % CI, 0.835-0.981, BRleft caudate - ICC, 0.917; 95 % CI, 0.753-0.972, BRright putamen - ICC, 0.976; 95 % CI, 0.929-0.992 and BRleft putamen - ICC, 0.970; 95 % CI, 0.911-0.990, respectively), and Bland-Altman plots showed interequipment agreement between the two modalities. It is known that MR provides more information about anatomical changes associated with brain diseases and to enable the anatomical allocations of

  10. An update on technical and methodological aspects for cardiac PET applications

    International Nuclear Information System (INIS)

    PRESOTTO, Luca; BUSNARDO, Elena; GIANOLLI, Luigi; BETTINARDI, Valentino

    2016-01-01

    Positron emission tomography (PET) is indicated for a large number of cardiac diseases: perfusion and viability studies are commonly used to evaluate coronary artery disease; PET can also be used to assess sarcoidosis and endocarditis, as well as to investigate amyloidosis. Furthermore, a hot topic for research is plaque characterization. Most of these studies are technically very challenging. High count rates and short acquisition times characterize perfusion scans while very small targets have to be imaged in inflammation/infection and plaques examinations. Furthermore, cardiac PET suffers from respiratory and cardiac motion blur. Each type of studies has specific requirements from the technical and methodological point of view, thus PET systems with overall high performances are required. Furthermore, in the era of hybrid PET/computed tomography (CT) and PET/Magnetic Resonance Imaging (MRI) systems, the combination of complementary functional and anatomical information can be used to improve diagnosis and prognosis. Moreover, PET images can be qualitatively and quantitatively improved exploiting information from the other modality, using advanced algorithms. In this review we will report the latest technological and methodological innovations for PET cardiac applications, with particular reference to the state of the art of the hybrid PET/CT and PET/MRI. We will also report the most recent advancements in software, from reconstruction algorithms to image processing and analysis programs.

  11. Hybrid PET/MRI insert: B0 field optimization by applying active and passive shimming on PET detector level

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jakob [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany); Weissler, Bjoern [Philips Research Europe, Aachen (Germany); Schulz, Volkmar [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany); Philips Research Europe, Aachen (Germany)

    2014-07-29

    Combining PET and MRI into a hybrid device is challenging since both systems might influence each other. A typical interference problem of such a combined device is the distortion of the MRI’s B{sub 0} field distribution due to the material brought inside the MRI’s FOV which is in particular challenging for small-bore PET-systems. High field homogeneity is needed for a good MRI acquisition in general as well as in certain applications. Typically, active shimming using dedicated coils is applied to improve the field homogeneity. However, these techniques are limited especially for localized distortion profiles with higher-order characteristics caused by PET/MRI inserts. As a consequence, we are exploring the potential application of shimming on PET detector level (for the Hyperion-II{sup D} PET/MRI insert), meaning that the distortion profile caused by PET modules is compensated using additional magnetic materials (passive shimming) and DC coils (active shimming). To explore the technique, B{sub 0} field measurements have been performed using a whole-body phantom in combination with the MRI body coil. An FFE sequence was used to measure distortion maps of DC loops and small magnetic objects (capacitors, ferrites). These distortion maps served as input for a software framework which has been written to perform the field optimization. The implementation was verified by measurements and fits were performed to extract characteristic parameters of the tested objects. Finally, the implemented software framework was used to homogenize a measured distortion map produced by a single PET module by superimposing distortion corrections from additional simulated materials. The resulting superimposed distortion map showed a significantly improved B{sub 0} field map quality (reduced spectral width and improved homogeneity). The simulated susceptibility distribution will be applied on PET module level and tested in experiments. Results and details about this study will be

  12. Prospective evaluation of 18F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial).

    Science.gov (United States)

    Jambor, Ivan; Kuisma, Anna; Kähkönen, Esa; Kemppainen, Jukka; Merisaari, Harri; Eskola, Olli; Teuho, Jarmo; Perez, Ileana Montoya; Pesola, Marko; Aronen, Hannu J; Boström, Peter J; Taimen, Pekka; Minn, Heikki

    2018-03-01

    The purpose of this study was to evaluate 18 F-FACBC PET/CT, PET/MRI, and multiparametric MRI (mpMRI) in detection of primary prostate cancer (PCa). Twenty-six men with histologically confirmed PCa underwent PET/CT immediately after injection of 369 ± 10 MBq 18 F-FACBC (fluciclovine) followed by PET/MRI started 55 ± 7 min from injection. Maximum standardized uptake values (SUV max ) were measured for both hybrid PET acquisitions. A separate mpMRI was acquired within a week of the PET scans. Logan plots were used to calculate volume of distribution (V T ). The presence of PCa was estimated in 12 regions with radical prostatectomy findings as ground truth. For each imaging modality, area under the curve (AUC) for detection of PCa was determined to predict diagnostic performance. The clinical trial registration number is NCT02002455. In the visual analysis, 164/312 (53%) regions contained PCa, and 41 tumor foci were identified. PET/CT demonstrated the highest sensitivity at 87% while its specificity was low at 56%. The AUC of both PET/MRI and mpMRI significantly (p PET/CT while no differences were detected between PET/MRI and mpMRI. SUV max and V T of Gleason score (GS) >3 + 4 tumors were significantly (p PET/CT and PET/MRI demonstrated true-positive findings in only 1/7 patients with metastatic lymph nodes. Quantitative 18 F-FACBC imaging significantly correlated with GS but failed to outperform MRI in lesion detection. 18 F-FACBC may assist in targeted biopsies in the setting of hybrid imaging with MRI.

  13. Fast implementations of 3D PET reconstruction using vector and parallel programming techniques

    International Nuclear Information System (INIS)

    Guerrero, T.M.; Cherry, S.R.; Dahlbom, M.; Ricci, A.R.; Hoffman, E.J.

    1993-01-01

    Computationally intensive techniques that offer potential clinical use have arisen in nuclear medicine. Examples include iterative reconstruction, 3D PET data acquisition and reconstruction, and 3D image volume manipulation including image registration. One obstacle in achieving clinical acceptance of these techniques is the computational time required. This study focuses on methods to reduce the computation time for 3D PET reconstruction through the use of fast computer hardware, vector and parallel programming techniques, and algorithm optimization. The strengths and weaknesses of i860 microprocessor based workstation accelerator boards are investigated in implementations of 3D PET reconstruction

  14. Image reconstruction of mMR PET data using the open source software STIR

    Energy Technology Data Exchange (ETDEWEB)

    Markiewicz, Pawel [Centre for Medical Image Computing, University College London, London (United Kingdom); Thielemans, Kris [Institute of Nuclear Medicine, University College London, London (United Kingdom); Burgos, Ninon [Centre for Medical Image Computing, University College London, London (United Kingdom); Manber, Richard [Institute of Nuclear Medicine, University College London, London (United Kingdom); Jiao, Jieqing [Centre for Medical Image Computing, University College London, London (United Kingdom); Barnes, Anna [Institute of Nuclear Medicine, University College London, London (United Kingdom); Atkinson, David [Centre for Medical Imaging, University College London, London (United Kingdom); Arridge, Simon R [Centre for Medical Image Computing, University College London, London (United Kingdom); Hutton, Brian F [Institute of Nuclear Medicine, University College London, London (United Kingdom); Ourselin, Sébastien [Centre for Medical Image Computing, University College London, London (United Kingdom); Dementia Research Centre, University College London, London (United Kingdom)

    2014-07-29

    Simultaneous PET and MR acquisitions have now become possible with the new hybrid Biograph Molecular MR (mMR) scanner from Siemens. The purpose of this work is to create a platform for mMR 3D and 4D PET image reconstruction which would be freely accessible to the community as well as fully adjustable in order to obtain optimal images for a given research task in PET imaging. The proposed platform is envisaged to prove useful in developing novel and robust image bio-markers which could then be adapted for use on the mMR scanner.

  15. Image reconstruction of mMR PET data using the open source software STIR

    International Nuclear Information System (INIS)

    Markiewicz, Pawel; Thielemans, Kris; Burgos, Ninon; Manber, Richard; Jiao, Jieqing; Barnes, Anna; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sébastien

    2014-01-01

    Simultaneous PET and MR acquisitions have now become possible with the new hybrid Biograph Molecular MR (mMR) scanner from Siemens. The purpose of this work is to create a platform for mMR 3D and 4D PET image reconstruction which would be freely accessible to the community as well as fully adjustable in order to obtain optimal images for a given research task in PET imaging. The proposed platform is envisaged to prove useful in developing novel and robust image bio-markers which could then be adapted for use on the mMR scanner.

  16. Demons versus level-set motion registration for coronary 18F-sodium fluoride PET

    Science.gov (United States)

    Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.

    2016-03-01

    Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically

  17. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  18. External radioactive markers for PET data-driven respiratory gating in positron emission tomography.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Hamill, James; Eich, Hans T; Schober, Otmar; Schäfers, Michael; Schäfers, Klaus P

    2013-04-01

    Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion

  19. Wide-range bipolar pulse conductance instrument employing current and voltage modes with sampled or integrated signal acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, R K; Holler, F J [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Geiger, jr, R F; Nieman, T A [Illinois Univ., Urbana, IL (United States). Dept. of Chemistry; Caserta, K J [Procter and Gamble Co., Cincinnati, OH (United States)

    1991-11-05

    An instrument for measuring solution conductance using the bipolar pulse technique is described. The instrument is capable of measuring conductances in the range of 5x10{sup -9}-10{Omega}{sup -1} with 1% accuracy or better in as little as 32 {mu}s. Accuracy of 0.001-0.01% is achievable over the range 1x10{sup -6}-1{Omega}{sup -1}. Circuitry and software are described that allow the instrument to adjust automatically the pulse height, pulse duration, excitation mode (current or voltage pulse) and data acquisition mode (sampled or integrated) to acquire data of optimum accuracy and precision. The urease-catalyzed decomposition of urea is used to illustrate the versality of the instrument, and other applications are cited. (author). 60 refs.; 7 figs.; 2 tabs.

  20. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Pan, Tinsu; Zaidi, Habib

    2013-01-01

    This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4 dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list mode data acquisition in 4 dimensional PET and introduces 4 dimensional CT popular in thoracic treatment planning to 4 dimensional PET/CT. ...

  1. Dynamic PET/CT measurements of induced positron activity in a prostate cancer patient after 50-MV photon radiation therapy.

    Science.gov (United States)

    Janek Strååt, Sara; Jacobsson, Hans; Noz, Marilyn E; Andreassen, Björn; Näslund, Ingemar; Jonsson, Cathrine

    2013-01-23

    The purpose of this work was to reveal the research interest value of positron emission tomography (PET) imaging in visualizing the induced tissue activity post high-energy photon radiation treatment. More specifically, the focus was on the possibility of retrieving data such as tissue composition and physical half-lives from dynamic PET acquisitions, as positron-emitting radionuclides such as 15O, 11C, and 13N are produced in vivo during radiation treatment with high-energy photons (>15 MeV). The type, amount, and distribution of induced positron-emitting radionuclides depend on the irradiated tissue cross section, the photon spectrum, and the possible perfusion-driven washout. A 62-year-old man diagnosed with prostate cancer was referred for palliative radiation treatment of the pelvis minor. A total dose of 8 Gy was given using high-energy photon beams (50 MV) with a racetrack microtron, and 7 min after the end of irradiation, the patient was positioned in a PET/computed tomography (CT) camera, and a list-mode acquisition was performed for 30 min. Two volumes of interests (VOIs) were positioned on the dynamic PET/CT images, one in the urinary bladder and the other in the subcutaneous fat. Analysis of the measured relative count rate was performed in order to compute the tissue compositions and physical half-lives in the two regions. Dynamic analysis from the two VOIs showed that the decay constants of activated oxygen and carbon could be deduced. Calculation of tissue composition from analyzing the VOI containing subcutaneous fat only moderately agreed with that of the tabulated International Commission on Radiation Units & Measurements (ICRU) data of the adipose tissue. However, the same analysis for the bladder showed a good agreement with that of the tabulated ICRU data. PET can be used in visualizing the induced activity post high-energy photon radiation treatment. Despite the very low count rate in this specific application, wherein 7 min after treatment

  2. Image quality and dose analysis for a PA chest X-ray: Comparison between AEC mode acquisition and manual mode using the 10 kVp ‘rule’

    International Nuclear Information System (INIS)

    Reis, Cláudia; Gonçalves, João; Klompmaker, Corrie; Bárbara, Ana Rita; Bloor, Chloe; Hegarty, Ryan; Lagrange, Tania; Temming, Noëlle; Sønnesyn, Mathilde; Røkeness, Henriette; Yamasathien, Amandine; Hogg, Peter

    2014-01-01

    Purpose: To compare the image quality and effective dose applying the 10 kVp rule with manual mode acquisition and AEC mode in PA chest X-ray. Method: 68 images (with and without lesions) were acquired using an anthropomorphic chest phantom using a Wolverson Arcoma X-ray unit. These images were compared against a reference image using the 2 alternative forced choice (2AFC) method. The effective dose (E) was calculated using PCXMC software using the exposure parameters and the DAP. The exposure index (lgM provided by Agfa systems) was recorded. Results: Exposure time decreases more when applying the 10 kVp rule with manual mode (50%–28%) when compared with automatic mode (36%–23%). Statistical differences for E between several ionization chambers' combinations for AEC mode were found (p = 0.002). E is lower when using only the right AEC ionization chamber. Considering the image quality there are no statistical differences (p = 0.348) between the different ionization chambers' combinations for AEC mode for images with no lesions. Considering lgM values, it was demonstrated that they were higher when the AEC mode was used compared to the manual mode. It was also observed that lgM values obtained with AEC mode increased as kVp value went up. The image quality scores did not demonstrate statistical significant differences (p = 0.343) for the images with lesions comparing manual with AEC mode. Conclusion: In general the E is lower when manual mode is used. By using the right AEC ionising chamber under the lung the E will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the visibility of the lesions or image quality

  3. Continued Data Acquisition Development

    Energy Technology Data Exchange (ETDEWEB)

    Schwellenbach, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-11-27

    This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muon tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.

  4. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  5. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  6. Simulation of time curves in small animal PET using GATE

    International Nuclear Information System (INIS)

    Simon, Luc; Strul, Daniel; Santin, Giovanni; Krieguer, Magalie; Morel, Christian

    2004-01-01

    The ClearPET project of the Crystal Clear Collaboration (CCC) is building spin-off technology for high resolution small animal Positron Emission Tomography (PET). Monte Carlo simulation is essential for optimizing the specifications of these systems with regards to their most important characteristics, such as spatial resolution, sensitivity, or count rate performance. GATE, the Geant4 Application for Tomographic Emission simulates the passing of time during real acquisitions, allowing to handle dynamic systems such as decaying source distributions or moving detectors. GATE output is analyzed on an event-by-event basis. The time associated with each single event allows to sort coincidences and to model dead-time. This leads to the study of time curves for a prospective small animal PET scanner design. The count rates of true, and random coincidences are discussed together with the corresponding Noise Equivalent Count (NEC) rates as a function of some PET scanner specifications such as detector dead time, or coincidence time window

  7. Estudo comparativo da qualidade de imagem dos modos de aquisição da PET: validação de um protocolo para reduzir a dose de radiação Comparative study on imaging quality in PET acquisition modes: validation of a protocol for reducing the radiation dose

    Directory of Open Access Journals (Sweden)

    Solange Amorim Nogueira

    2009-04-01

    Full Text Available OBJETIVO: O presente experimento visa a validar um protocolo de aquisição em 3D na tomografia por emissão de pósitrons, em substituição ao modo 2D, de forma a reduzir a dose de radiação nos pacientes, sem perda da qualidade de imagens. MATERIAIS E MÉTODOS: Foram realizadas 27 simulações em equipamento Discovery ST, nos modos 2D com quatro minutos de aquisição e 3D com dois e quatro minutos. Utilizou-se um simulador do protocolo da National Electrical Manufacturers Association. No interior deste simulador estão inseridas seis esferas com diferentes diâmetros para a determinação da qualidade de imagem. As aquisições foram comparadas por três médicos nucleares, sem que eles identificassem o modo de aquisição. Cada observador atribuiu o valor igual a 1 quando alguma esfera não foi identificada ou valor 2 para esferas visíveis. RESULTADOS: A análise qualitativa pelo kappa generalizado demonstrou que a frequência de esferas visíveis foi maior no modo 3D com quatro minutos (85% e a porcentagem de concordância também foi maior (88,9%, com kappa generalizado = 0,725 [0,507;0,942]. CONCLUSÃO: O modo 3D com quatro minutos de aquisição e com menores atividades de FDG-18F pode ser utilizado em pacientes com biótipo equivalente ao simulador, sem perda de qualidade de imagem.OBJECTIVE: The present study is aimed at validating a 3D acquisition protocol for positron emission tomography as a replacement for the 2D mode, to reduce the radiation dose delivered to patients, without any loss in the quality of images. MATERIALS AND METHODS: The study comprised 27 simulations in a Discovery ST equipment with four-minute 2D acquisitions, and two-minute and four-minute 3D acquisitions, utilizing a chest phantom according to the National Electrical Manufacturers Association protocol. Six spheres with different diameters were inserted into this phantom as a means for determining the images quality. The images were blindly reviewed by three

  8. Program design of data acquisition in Windows

    International Nuclear Information System (INIS)

    Cai Jianxin; Yan Huawen

    2004-01-01

    Several methods for the design of data acquisition program based on Microsoft Windows are introduced. Then their respective advantages and disadvantages are totally analyzed. At the same time, the data acquisition modes applicable to each method are also pointed out. It is convenient for data acquisition programmers to develop data acquisition systems. (authors)

  9. Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Dawood, Mohammad; Kraxner, Peter; Schäfers, Michael; Schober, Otmar; Schäfers, Klaus P

    2010-12-01

    Respiratory motion of organs during PET scans is known to degrade PET image quality, potentially resulting in blurred images, attenuation artefacts and erroneous tracer quantification. List mode-based gating has been shown to reduce these pitfalls in cardiac PET. This study evaluates these intrinsic gating methods for tumour PET scans. A total of 34 patients with liver or lung tumours (14 liver tumours and 27 lung tumours in all) underwent a 15-min single-bed list mode PET scan of the tumour region. Of these, 15 patients (8 liver and 11 lung tumours in total) were monitored by a video camera registering a marker on the patient's abdomen, thus capturing the respiratory motion for PET gating (video method). Further gating information was deduced by dividing the list mode stream into 200-ms frames, determining the number of coincidences (sensitivity method) and computing the axial centre of mass of the measured count rates in the same frames (centre of mass method). Additionally, these list mode-based methods were evaluated using only coincidences originating from the tumour region by segmenting the tumour in sinogram space (segmented sensitivity/centre of mass method). Measured displacement of the tumours between end-expiration and end-inspiration and the increase in apparent uptake in the gated images served as a measure for the exactness of gating. To estimate the accuracy, a thorax phantom study with moved activity sources simulating small tumours was also performed. All methods resolved the respiratory motion with varying success. The best results were seen in the segmented centre of mass method, on average leading to larger displacements and uptake values than the other methods. The simple centre of mass method performed worse in terms of displacements due to activities moving into the field of view during the respiratory cycle. Both sensitivity- and video-based methods lead to similar results. List mode-driven PET gating, especially the segmented centre of mass

  10. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    A high-resolution positron emission tomography (PET) scanner, dedicated to brain studies, was developed and its performance was evaluated. A four-layer depth of interaction detector was designed containing five detector units axially lined up per layer board. Each of the detector units consists of a finely segmented (1.2 mm) LYSO scintillator array and an 8  ×  8 array of multi-pixel photon counters. Each detector layer has independent front-end and signal processing circuits, and the four detector layers are assembled as a detector module. The new scanner was designed to form a detector ring of 430 mm diameter with 32 detector modules and 168 detector rings with a 1.2 mm pitch. The total crystal number is 655 360. The transaxial and axial field of views (FOVs) are 330 mm in diameter and 201.6 mm, respectively, which are sufficient to measure a whole human brain. The single-event data generated at each detector module were transferred to the data acquisition servers through optical fiber cables. The single-event data from all detector modules were merged and processed to create coincidence event data in on-the-fly software in the data acquisition servers. For image reconstruction, the high-resolution mode (HR-mode) used a 1.2 mm2 crystal segment size and the high-speed mode (HS-mode) used a 4.8 mm2 size by collecting 16 crystal segments of 1.2 mm each to reduce the computational cost. The performance of the brain PET scanner was evaluated. For the intrinsic spatial resolution of the detector module, coincidence response functions of the detector module pair, which faced each other at various angles, were measured by scanning a 0.25 mm diameter 22Na point source. The intrinsic resolutions were obtained with 1.08 mm full width at half-maximum (FWHM) and 1.25 mm FWHM on average at 0 and 22.5 degrees in the first layer pair, respectively. The system spatial resolutions were less than 1.0 mm FWHM throughout the whole FOV, using a

  11. Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I-III

    International Nuclear Information System (INIS)

    Desseroit, Marie-Charlotte; Visvikis, Dimitris; Majdoub, Mohamed; Hatt, Mathieu; Tixier, Florent; Perdrisot, Remy; Cheze Le Rest, Catherine; Guillevin, Remy

    2016-01-01

    Our goal was to develop a nomogram by exploiting intratumour heterogeneity on CT and PET images from routine 18 F-FDG PET/CT acquisitions to identify patients with the poorest prognosis. This retrospective study included 116 patients with NSCLC stage I, II or III and with staging 18 F-FDG PET/CT imaging. Primary tumour volumes were delineated using the FLAB algorithm and 3D Slicer trademark on PET and CT images, respectively. PET and CT heterogeneities were quantified using texture analysis. The reproducibility of the CT features was assessed on a separate test-retest dataset. The stratification power of the PET/CT features was evaluated using the Kaplan-Meier method and the log-rank test. The best standard metric (functional volume) was combined with the least redundant and most prognostic PET/CT heterogeneity features to build the nomogram. PET entropy and CT zone percentage had the highest complementary values with clinical stage and functional volume. The nomogram improved stratification amongst patients with stage II and III disease, allowing identification of patients with the poorest prognosis (clinical stage III, large tumour volume, high PET heterogeneity and low CT heterogeneity). Intratumour heterogeneity quantified using textural features on both CT and PET images from routine staging 18 F-FDG PET/CT acquisitions can be used to create a nomogram with higher stratification power than staging alone. (orig.)

  12. First in situ TOF-PET study using digital photon counters for proton range verification.

    Science.gov (United States)

    Cambraia Lopes, P; Bauer, J; Salomon, A; Rinaldi, I; Tabacchini, V; Tessonnier, T; Crespo, P; Parodi, K; Schaart, D R

    2016-08-21

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong (15)O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  10(8) protons s(-1), and 10(10) total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results

  13. Real-Time Imaging System for the OpenPET

    Science.gov (United States)

    Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga

    2012-02-01

    The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.

  14. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    Science.gov (United States)

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-07-08

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons

  15. Ultra-low dose CT attenuation correction for PET/CT

    International Nuclear Information System (INIS)

    Xia Ting; Kinahan, Paul E; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. (paper)

  16. Ultra-low dose CT attenuation correction for PET/CT

    Science.gov (United States)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for PET/CT quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently-available, lowest dose CT techniques, extended duration CINE CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. Methods We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. Results CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. Conclusion When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  17. Prospective evaluation of {sup 18}F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial)

    Energy Technology Data Exchange (ETDEWEB)

    Jambor, Ivan [University of Turku, Department of Diagnostic Radiology, Turku (Finland); University of Massachusetts Medical School - Baystate, Department of Radiology, Springfield, MA (United States); Turku PET Centre, Turku (Finland); Kuisma, Anna [Turku University Hospital, Department of Oncology and Radiotherapy, Turku (Finland); Kaehkoenen, Esa; Bostroem, Peter J. [Turku University Hospital, Department of Urology, Turku (Finland); Kemppainen, Jukka [Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku (Finland); Merisaari, Harri [University of Turku, Department of Diagnostic Radiology, Turku (Finland); Turku PET Centre, Turku (Finland); University of Turku, Department of Information Technology, Turku (Finland); Eskola, Olli; Teuho, Jarmo [Turku PET Centre, Turku (Finland); Montoya Perez, Ileana [University of Turku, Department of Diagnostic Radiology, Turku (Finland); University of Turku, Department of Information Technology, Turku (Finland); Turku University Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Pesola, Marko [University of Turku, Department of Diagnostic Radiology, Turku (Finland); Aronen, Hannu J. [University of Turku, Department of Diagnostic Radiology, Turku (Finland); Turku University Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Taimen, Pekka [University of Turku and Turku University Hospital, Department of Pathology, Turku (Finland); Minn, Heikki [Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Oncology and Radiotherapy, Turku (Finland)

    2018-03-15

    The purpose of this study was to evaluate {sup 18}F-FACBC PET/CT, PET/MRI, and multiparametric MRI (mpMRI) in detection of primary prostate cancer (PCa). Twenty-six men with histologically confirmed PCa underwent PET/CT immediately after injection of 369 ± 10 MBq {sup 18}F-FACBC (fluciclovine) followed by PET/MRI started 55 ± 7 min from injection. Maximum standardized uptake values (SUV{sub max}) were measured for both hybrid PET acquisitions. A separate mpMRI was acquired within a week of the PET scans. Logan plots were used to calculate volume of distribution (V{sub T}). The presence of PCa was estimated in 12 regions with radical prostatectomy findings as ground truth. For each imaging modality, area under the curve (AUC) for detection of PCa was determined to predict diagnostic performance. The clinical trial registration number is NCT02002455. In the visual analysis, 164/312 (53%) regions contained PCa, and 41 tumor foci were identified. PET/CT demonstrated the highest sensitivity at 87% while its specificity was low at 56%. The AUC of both PET/MRI and mpMRI significantly (p < 0.01) outperformed that of PET/CT while no differences were detected between PET/MRI and mpMRI. SUV{sub max} and V{sub T} of Gleason score (GS) >3 + 4 tumors were significantly (p < 0.05) higher than those for GS 3 + 3 and benign hyperplasia. A total of 442 lymph nodes were evaluable for staging, and PET/CT and PET/MRI demonstrated true-positive findings in only 1/7 patients with metastatic lymph nodes. Quantitative {sup 18}F-FACBC imaging significantly correlated with GS but failed to outperform MRI in lesion detection. {sup 18}F-FACBC may assist in targeted biopsies in the setting of hybrid imaging with MRI. (orig.)

  18. Value of coincidence gamma camera PET for diagnosing head and neck tumors: functional imaging and image coregistration

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Hahn, K.

    2001-01-01

    54 patients suffering from head and neck tumors (30 m, 24 f, age: 32-67 years) were examined using dedicated PET and coincidence gamma camera PET after injection of 185-350 MBq [ 18 F]FDG. Examinations were carried out on the dedicated PET first (Siemens ECAT Exact HR+) followed by a scan on the coincidence gamma camera PET (Picker Prism 2000 XP-PCD, Marconi Axis g-PET 2 AZ). Dedicated PET was acquired in 3D mode, coincidence gamma camera PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and coincidence gamma camera PET. All patients received a CT scan in multislice technique (Siemens Somatom Plus 4, Marconi MX 8000). Image coregistration was performed on an Odyssey workstation (Marconi). All findings have been verified by the gold standard histology or in case of negative histology by follow-up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using coincidence gamma camera PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with coincidence gamma camera PET and in 15/18 with CT. False-positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and hybrid PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastatic lesions were seen with dedicated PET and with coincidence gamma camera PET elsewhere in the body (lung: n = 7, bone: n = 3, liver: n = 1). Additional malignant disease other than the head and neck tumor was found in 4 patients. (orig.) [de

  19. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely...... on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with $^{11}{\\rm C}$-racolopride on the high resolution research tomograph (HRRT) PET...... in contrast recovery of small structures....

  20. Bringing physiology into PET of the liver.

    Science.gov (United States)

    Keiding, Susanne

    2012-03-01

    Several physiologic features make interpretation of PET studies of liver physiology an exciting challenge. As with other organs, hepatic tracer kinetics using PET is quantified by dynamic recording of the liver after the administration of a radioactive tracer, with measurements of time-activity curves in the blood supply. However, the liver receives blood from both the portal vein and the hepatic artery, with the peak of the portal vein time-activity curve being delayed and dispersed compared with that of the hepatic artery. The use of a flow-weighted dual-input time-activity curve is of importance for the estimation of hepatic blood perfusion through initial dynamic PET recording. The portal vein is inaccessible in humans, and methods of estimating the dual-input time-activity curve without portal vein measurements are being developed. Such methods are used to estimate regional hepatic blood perfusion, for example, by means of the initial part of a dynamic (18)F-FDG PET/CT recording. Later, steady-state hepatic metabolism can be assessed using only the arterial input, provided that neither the tracer nor its metabolites are irreversibly trapped in the prehepatic splanchnic area within the acquisition period. This is used in studies of regulation of hepatic metabolism of, for example, (18)F-FDG and (11)C-palmitate.

  1. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  2. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Claudio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); Chiaravalloti, Agostino; Schillaci, Orazio [University of Rome ' Tor Vergata' , Department of Biomedicine and Prevention, Rome (Italy); IRCSS Neuromed, Pozzilli (Italy); Sancesario, Giuseppe; Stefani, Alessandro [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Sancesario, Giulia Maria [IRCCS Fondazione Santa Lucia, Rome (Italy); Mercuri, Nicola Biagio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Pierantozzi, Mariangela [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy)

    2016-10-15

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  3. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    International Nuclear Information System (INIS)

    Liguori, Claudio; Chiaravalloti, Agostino; Schillaci, Orazio; Sancesario, Giuseppe; Stefani, Alessandro; Sancesario, Giulia Maria; Mercuri, Nicola Biagio; Pierantozzi, Mariangela

    2016-01-01

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  4. Experience with PET FDG - Preliminary analysis

    International Nuclear Information System (INIS)

    Massardo, Teresa; Jofre, Josefina; Canessa, Jose; Gonzalez, Patricio; Humeres, Pamela; Sierralta, Paulina; Galaz, Rodrigo; Miranda, Karina

    2004-01-01

    Full text: The objective of this preliminary communication was to analyse the indications and data in initial group of patients studied with first dedicated PET scanner in the country at Hospital Militar in Santiago Chile. The main application of positron emission tomography (PET) with 18-Fluoro deoxyglucose (FDG) is related with oncological patients management. We studied 136 patients, 131 (97%) with known or suspected malignant disease and remaining 5 for cardiological or neuropsychiatric disease. Ten patients were controlled diabetics (1 insulin dependent). Their mean age was 51.6±18 years ranging from 6 to 84 years and 65% were females. A total of 177 scans were acquired using a dedicated PET (Siemens HR + with 4mm resolution) system. Mean F18-FDG injected dose was 477±107 MBq (12.9±2.9 mCi). Mean blood glucose levels, performed prior the injection, were 94±17mg/dl (range 62-161). F18-FDG was obtained from the cyclotron IBA Cyclone 18/9 installed in the Chilean Agency of Nuclear Energy, distant about 15 miles away from the clinical PET facility. PET studies were analyzed by at least 4 independent observers visually. Standardized uptake value (SUV) was calculated in some cases. Image fusion of FDG images with recent anatomical (CT, MRI) studies was performed where available. Data acquisition protocol consisted in 7-8 beds/study from head to mid-thighs, with 6-7-min/bed acquisitions, 36% transmission with germanium 68 rods. Data was reconstructed with standard OSEM protocol. The main indications included pulmonary lesions in 31%, gastrointestinal cancers in 21%, melanoma in 13% and lymphoma in 9% patients. The remaining were of breast, thyroid, testes, ovary, musculoskeletal (soft tissue and bone), brain tumour etc. Abnormal focal tracer uptake was observed in 83/131 oncological patients, 54% corroborating with clinical diagnosis of primary tumor or recurrence while 46% showed new metastatic localization. FDG scans were normal 36/131 patients. In 9 patients

  5. Experience with PET FDG - Preliminary analysis

    Energy Technology Data Exchange (ETDEWEB)

    Massardo, Teresa; Jofre, Josefina; Canessa, Jose; Gonzalez, Patricio; Humeres, Pamela; Sierralta, Paulina; Galaz, Rodrigo; Miranda, Karina [Centro PET de Imagenes Moleculares, Hospital Militar de Santiago, Santiago (Chile)

    2004-01-01

    Full text: The objective of this preliminary communication was to analyse the indications and data in initial group of patients studied with first dedicated PET scanner in the country at Hospital Militar in Santiago Chile. The main application of positron emission tomography (PET) with 18-Fluoro deoxyglucose (FDG) is related with oncological patients management. We studied 136 patients, 131 (97%) with known or suspected malignant disease and remaining 5 for cardiological or neuropsychiatric disease. Ten patients were controlled diabetics (1 insulin dependent). Their mean age was 51.6{+-}18 years ranging from 6 to 84 years and 65% were females. A total of 177 scans were acquired using a dedicated PET (Siemens HR + with 4mm resolution) system. Mean F18-FDG injected dose was 477{+-}107 MBq (12.9{+-}2.9 mCi). Mean blood glucose levels, performed prior the injection, were 94{+-}17mg/dl (range 62-161). F18-FDG was obtained from the cyclotron IBA Cyclone 18/9 installed in the Chilean Agency of Nuclear Energy, distant about 15 miles away from the clinical PET facility. PET studies were analyzed by at least 4 independent observers visually. Standardized uptake value (SUV) was calculated in some cases. Image fusion of FDG images with recent anatomical (CT, MRI) studies was performed where available. Data acquisition protocol consisted in 7-8 beds/study from head to mid-thighs, with 6-7-min/bed acquisitions, 36% transmission with germanium 68 rods. Data was reconstructed with standard OSEM protocol. The main indications included pulmonary lesions in 31%, gastrointestinal cancers in 21%, melanoma in 13% and lymphoma in 9% patients. The remaining were of breast, thyroid, testes, ovary, musculoskeletal (soft tissue and bone), brain tumour etc. Abnormal focal tracer uptake was observed in 83/131 oncological patients, 54% corroborating with clinical diagnosis of primary tumor or recurrence while 46% showed new metastatic localization. FDG scans were normal 36/131 patients. In 9

  6. Recovery and normalization of triple coincidences in PET.

    Science.gov (United States)

    Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L

    2015-03-01

    Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak

  7. Recovery and normalization of triple coincidences in PET

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Eduardo, E-mail: elage@mit.edu; Parot, Vicente; Dave, Shivang R.; Herraiz, Joaquin L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Moore, Stephen C.; Sitek, Arkadiusz; Park, Mi-Ae [Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Udías, Jose M. [Grupo de Física Nuclear, Departamento de Física Atómica Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Vaquero, Juan J. [Departamento de Ingeniería Biomédica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911 (Spain)

    2015-03-15

    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the

  8. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    International Nuclear Information System (INIS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18 F or 11 C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38 K or 60 Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections

  9. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    Energy Technology Data Exchange (ETDEWEB)

    Andreyev, Andriy, E-mail: andriy.andreyev-1@philips.com [Philips Healthcare, Highland Heights, Ohio 44143 (United States); Sitek, Arkadiusz [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1M9 (Canada)

    2014-02-15

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and

  10. Optimization of brain PET imaging for a multicentre trial: the French CATI experience.

    Science.gov (United States)

    Habert, Marie-Odile; Marie, Sullivan; Bertin, Hugo; Reynal, Moana; Martini, Jean-Baptiste; Diallo, Mamadou; Kas, Aurélie; Trébossen, Régine

    2016-12-01

    CATI is a French initiative launched in 2010 to handle the neuroimaging of a large cohort of subjects recruited for an Alzheimer's research program called MEMENTO. This paper presents our test protocol and results obtained for the 22 PET centres (overall 13 different scanners) involved in the MEMENTO cohort. We determined acquisition parameters using phantom experiments prior to patient studies, with the aim of optimizing PET quantitative values to the highest possible per site, while reducing, if possible, variability across centres. Jaszczak's and 3D-Hoffman's phantom measurements were used to assess image spatial resolution (ISR), recovery coefficients (RC) in hot and cold spheres, and signal-to-noise ratio (SNR). For each centre, the optimal reconstruction parameters were chosen as those maximizing ISR and RC without a noticeable decrease in SNR. Point-spread-function (PSF) modelling reconstructions were discarded. The three figures of merit extracted from the images reconstructed with optimized parameters and routine schemes were compared, as were volumes of interest ratios extracted from Hoffman acquisitions. The net effect of the 3D-OSEM reconstruction parameter optimization was investigated on a subset of 18 scanners without PSF modelling reconstruction. Compared to the routine parameters of the 22 PET centres, average RC in the two smallest hot and cold spheres and average ISR remained stable or were improved with the optimized reconstruction, at the expense of slight SNR degradation, while the dispersion of values was reduced. For the subset of scanners without PSF modelling, the mean RC of the smallest hot sphere obtained with the optimized reconstruction was significantly higher than with routine reconstruction. The putamen and caudate-to-white matter ratios measured on 3D-Hoffman acquisitions of all centres were also significantly improved by the optimization, while the variance was reduced. This study provides guidelines for optimizing quantitative

  11. MR-guided PET motion correction in LOR space using generic projection data for image reconstruction with PRESTO

    International Nuclear Information System (INIS)

    Scheins, J.; Ullisch, M.; Tellmann, L.; Weirich, C.; Rota Kops, E.; Herzog, H.; Shah, N.J.

    2013-01-01

    The BrainPET scanner from Siemens, designed as hybrid MR/PET system for simultaneous acquisition of both modalities, provides high-resolution PET images with an optimum resolution of 3 mm. However, significant head motion often compromises the achievable image quality, e.g. in neuroreceptor studies of human brain. This limitation can be omitted when tracking the head motion and accurately correcting measured Lines-of-Response (LORs). For this purpose, we present a novel method, which advantageously combines MR-guided motion tracking with the capabilities of the reconstruction software PRESTO (PET Reconstruction Software Toolkit) to convert motion-corrected LORs into highly accurate generic projection data. In this way, the high-resolution PET images achievable with PRESTO can also be obtained in presence of severe head motion

  12. The data acquisition system used in one-dimension multichannel fast electron energy loss spectrometer

    International Nuclear Information System (INIS)

    Jiang Weichun; Zhu Linfan; Zhang Yijun; Xu Kezuo

    2010-01-01

    It describes a data acquisition system used in one dimension multichannel fast electron energy loss spectrometer, which can work in scan acquisition mode and static acquisition mode. The timing precision of the scan mode is less than 4 μs by utilizing the gated signal generated by data acquisition card DAQ2010 and an AND logic circuit. A timer card PCI8554 is used to synchronize the data acquisition card and the personal computer. The scan voltage supply is controlled by the personal computer through the RS232 interface. The multithreading technology is used in the acquisition software in order to improve the accommodating-err ability of the acquisition system. A satisfactory test result is given. (authors)

  13. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET.

    Science.gov (United States)

    Hammes, Jochen; Leuwer, Isabel; Bischof, Gérard N; Drzezga, Alexander; van Eimeren, Thilo

    2017-12-01

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.

  14. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET

    International Nuclear Information System (INIS)

    Hammes, Jochen; Leuwer, Isabel; Bischof, Gerard N.; Drzezga, Alexander; Eimeren, Thilo van

    2017-01-01

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET. (orig.)

  15. Respiratory Motion Management in PET/CT: Applications and Clinical Usefulness.

    Science.gov (United States)

    Guerra, Luca; Ponti, Elena De; Morzenti, Sabrina; Spadavecchia, Chiara; Crivellaro, Cinzia

    2017-01-01

    Breathing movement can introduce heavy bias in both image quality and quantitation in PET/CT. The aim of this paper is a review of the literature to evaluate the benefit of respiratory gating in terms of image quality, quantification and lesion detectability. A review of the literature published in the last 10 years and dealing with gated PET/CT technique has been performed, focusing on improvement in quantification, lesion detectability and diagnostic accuracy in neoplastic lesion. In addition, the improvement in the definition of radiotherapy planning has been evaluated. There is a consistent increase of the Standardized Uptake Value (SUV) in gated PET images when compared to ungated ones, particularly for lesions located in liver and in lung. Respiratory gating can also increase sensitivity, specificity and accuracy of PET/CT. Gated PET/CT can be used for radiation therapy planning, reducing the uncertainty in target definition, optimizing the volume to be treated and reducing the possibility of "missing" during the dose delivery. Moreover, new technologies, able to define the movement of lesions and organs directly from the PET sinogram, can solve some problems that currently are limiting the clinical use of gated PET/CT (i.e.: extended acquisition time, radiation exposure). The published li