International Nuclear Information System (INIS)
Mueller, A.H.
1986-03-01
A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)
The status of perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1988-10-01
The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs
A new perturbative approach to QCD
International Nuclear Information System (INIS)
Pervushin, V.N.; Kallies, W.; Sarikov, N.A.
1988-01-01
For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model
CERN. Geneva
2013-01-01
Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.
Nuclear properties from perturbative QCD
International Nuclear Information System (INIS)
Close, F.E.; Roberts, R.G.; Ross, G.G.
1986-01-01
Two apparently different descriptions of quark distributions in a nucleus may in fact be connected. A ''duality'' between the QCD approach and the conventional model of nucleon binding leads to nuclear properties being simply related to the anomalous dimensions of QCD. (orig.)
Analytic continuation in perturbative QCD
International Nuclear Information System (INIS)
Caprini, Irinel
2002-01-01
We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)
International Nuclear Information System (INIS)
Collins, J.C.
1985-01-01
Progress in quantum chromodynamics in the past year is reviewed in these specific areas: proof of factorization for hadron-hadron collisions, fast calculation of higher order graphs, perturbative Monte Carlo calculations for hadron-hadron scattering, applicability of perturbative methods to heavy quark production, and understanding of the small-x problem. 22 refs
Basics of QCD perturbation theory
International Nuclear Information System (INIS)
Soper, D.E.
1997-01-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs
Current issues in perturbative QCD
International Nuclear Information System (INIS)
Hinchliffe, I.
1994-12-01
This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets
New results in perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1986-01-01
Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures
Seven topics in perturbative QCD
International Nuclear Information System (INIS)
Buras, A.J.
1980-09-01
The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics
Reggeon interactions in perturbative QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-08-01
We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)
Basics of QCD perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
Explaining jet quenching with perturbative QCD alone
Zapp, Korinna C; Wiedemann, Urs A
2011-01-01
We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.
Perturbative QCD and exclusive processes
International Nuclear Information System (INIS)
Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.
1991-01-01
The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable
Perturbative QCD at finite temperature
International Nuclear Information System (INIS)
Altherr, T.
1989-03-01
We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
New Methods in Non-Perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)
2017-01-31
In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.
Death to perturbative QCD in exclusive processes?
Energy Technology Data Exchange (ETDEWEB)
Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)
1994-04-01
The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.
Resolution of ambiguities in perturbative QCD
International Nuclear Information System (INIS)
Nakkagawa, Hisao; Niegawa, Akira.
1984-01-01
In the perturbative QCD analyses of the deeply inelastic processes, the coupling constant depends on at least two mass-scales, the renormalization scale and the factorization scale. By integrating the coupled renormalization group equations with respect to these two mass-scales, the running coupling constant is defined. A perturbative approximation then introduces a new ambiguity, the integration-path dependence, into the theory. We show that the problem of this new ambiguity is resolved by imposing Stevenson's principle of minimal sensitivity. Together with the analogous analysis of the operator matrix element or the cut vertex, we can completely solve the problem of getting an unambiguous perturbative QCD prediction. (author)
Understanding Theoretical Uncertainties in Perturbative QCD Computations
DEFF Research Database (Denmark)
Jenniches, Laura Katharina
effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....
Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD
DEFF Research Database (Denmark)
Ryttov, Thomas A.
2016-01-01
order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...
Non-perturbative QCD and hadron physics
International Nuclear Information System (INIS)
Cobos-Martínez, J J
2016-01-01
A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)
Chiral perturbation theory for lattice QCD
International Nuclear Information System (INIS)
Baer, Oliver
2010-01-01
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Perturbative QCD and electromagnetic form factors
International Nuclear Information System (INIS)
Carlson, C.E.; Gross, F.
1987-01-01
We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs
On-Shell Methods in Perturbative QCD
International Nuclear Information System (INIS)
Bern, Zvi; Dixon, Lance J.; Kosower, David A.
2007-01-01
We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider
Colour singlets in perturbative QCD
International Nuclear Information System (INIS)
Bassetto, A.
1979-01-01
In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)
Recent progress on perturbative QCD fragmentation functions
International Nuclear Information System (INIS)
Cheung, K.
1995-05-01
The recent development of perturbative QCD (PQCD) fragmentation functions has strong impact on quarkonium production. I shall summarize B c meson production based on these PQCD fragmentation functions, as well as, the highlights of some recent activities on applying these PQCD fragmentation functions to explain anomalous J/ψ and ψ' production at the Tevatron. Finally, I discuss a fragmentation model based on the PQCD fragmentation functions for heavy quarks fragmenting into heavy-light mesons
Perturbative and nonperturbative renormalization in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)
2010-03-15
We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)
Small-x physics in perturbative QCD
International Nuclear Information System (INIS)
Lipatov, L.N.
1996-07-01
We review the parton model and the Regge approach to the QCD description of the deep-inelastic ep scattering at the small Bjorken variable x and demonstrate their relation with the DGLAP and BFKL evolution equations. It is shown, that in the leading logarithmic approximation the gluon is reggeized and the pomeron is a compound state of two reggeized gluons. The conformal invariance of the BFKL pomeron in the impact parameter space is used to investigate the scattering amplitudes at high energies and fixed momentum transfers. The remarkable properties of the Schroedinger equation for compound states of an arbitrary number of reggeized gluons in the multi-colour QCD are reviewed. The gauge-invariant effective action describing the gluon-Reggeon interactions is constructed. The known next-to-leading corrections to the QCD pomeron are discussed. (orig.)
Perturbative QCD effects in heavy meson decays
International Nuclear Information System (INIS)
Szezepaniak, A.; Henley, E.M.
1991-01-01
The amplitude for the exclusive nonleptonic decay of a heavy meson into two light pseudoscalar mesons is analyzed using the factorization formalism of perturbative QCD for exclusive reactions at large momentum transfer. We calculate the form factor b → u transition and compare it to the old quark model calculation and the new one based on the light cone formulation of the full quark model wave function. The new results we obtain are smaller by a factor of 2 - 3 as compared to the old value. (orig.)
Perturbative current quark masses in QCD
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
Neutral PCAC current quark masses follow from the covariant light plane of QCD requirement that α-m-circumflex(M), which is not inconsistent with the spontaneous breakdown of chiral symmetry. The resulting current quark mass ratio (m sub(s)/m-circumflex) sub(curr)=5 and scale m-circumflex sub(curr)=62 MeV at M=2 Gev are compatible with the observed πNσ - term, the Goldberger-Treiman discrepancy, the low-lying 0 - , 1/2 + , 1 - , 3/2 + hadron mass spectrum, the flavor independence of the dynamically generated quark mass and the perturbative weak binding limit. (author)
Non-leading contributions in QCD: Summing the perturbative series
International Nuclear Information System (INIS)
Trentadue, L.
1984-01-01
This paper presents the results of a systematic analysis of the leading and non-leading contributions in perturbative QCD and addresses the question of logarithmic contributions to all orders of the perturbative series
Asymptotic perturbative QCD in elastic scattering, color transparency and ANN
International Nuclear Information System (INIS)
Botts, J.
1989-01-01
Sorting out the various perturbative contributions to wide angel elastic hadron-hadron scattering has been the subject of recent enquiry. Distinguishing the various contributions are the transverse size of the external hadrons and the interaction region and restrictions on the internal momenta flows. For wide angle elastic hadron-hadron scattering, the interaction between two types of perturbative processes, multiple and single scattering, can be the source of interference phenomena and interesting physics. In the following, after a brief description of the leading and non-leading processes, we shall give a picture of what perturbative QCD may have to say about elastic scattering, color transparency and the spin asymmetry, A NN . 9 refs., 5 figs
A convergent reformulation of perturbative QCD
International Nuclear Information System (INIS)
Alves, R.J.G.
2000-10-01
We present and explore a new formulation of perturbative QCD based not on the renormalised coupling but on the dimensional transmutation parameter of the theory and the property of asymptotic scaling. The approach yields a continued function, the iterated function being that involved in the solution of the two-loop β-function equation. In the so-called large-b limit the continued function reduces to a continued fraction and the successive approximants are diagonal Pade approximants. We investigate numerically the convergence of successive approximants using the leading-b approximation, motivated by renormalons, to model the all-orders result. We consider the Adler D-function of vacuum polarisation, the Polarised Bjorken and Gross-LIewellyn Smith sum rules, the (unpolarised) Bjorken sum rule, and the Minkowskian quantities R τ and the R-ratio of e + e - annihilation. In contrast to diagonal Pade approximants the truncated continued function method gives remarkably stable large-order approximants in cases where infrared renormalon effects are important. We also use the new approach to determine the QCD fundamental parameters from the R τ and the R-ratio measurements, where we find Λ-tilde (3)/MS = 516 ± 48 MeV (which yields α s (μ = m τ ) = 0.360 -0.020 +0.021 ), and Λ-tilde (5)/MS = 299 -7 +6 MeV (which yields α s (μ = m z 0 ) = 0.1218 ± 0.0004), respectively. The evolution of the former value to the m z 0 energy results in α s (μ = m z 0 ) = 0.123 ± 0.002. These values are in line with other determinations available in the literature. We implement the Complete Renormalisation Group Improvement (CORGI) scheme throughout all the calculations. We report on how the mathematical concept of Stieltjes series can be used to assess the convergence of Pade approximants of perturbative series. We find that the combinations of UV renormalons which occur in perturbative QCD may or may not be Stieltjes series depending on the renormalisation scheme used. (author)
Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Atri [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Space sciences, Technologies and Astrophysics Research (STAR) Institute,Université de Liège,Bât. B5a, 4000 Liège (Belgium); Enberg, Rikard [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Jeong, Yu Seon [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); National Institute of Supercomputing and Networking, KISTI,245 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, C.S. [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); Reno, Mary Hall [Department of Physics and Astronomy, University of Iowa,Iowa City, Iowa 52242 (United States); Sarcevic, Ina [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Department of Astronomy, University of Arizona,933 N. Cherry Ave., Tucson, AZ 85721 (United States); Stasto, Anna [Department of Physics, 104 Davey Lab, The Pennsylvania State University,University Park, PA 16802 (United States)
2016-11-28
We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k{sub T} factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.
Non-perturbative QCD correlation functions
Energy Technology Data Exchange (ETDEWEB)
Cyrol, Anton Konrad
2017-11-27
Functional methods provide access to the non-perturbative regime of quantum chromo- dynamics. Hence, they allow investigating confinement and chiral symmetry breaking. In this dissertation, correlation functions of Yang-Mills theory and unquenched two-flavor QCD are computed from the functional renormalization group. Employing a self-consistent vertex expansion of the effective action, Yang-Mills correlation functions are obtained in four as well as in three spacetime dimensions. To this end, confinement and Slavnov-Taylor identities are discussed. Our numerical results show very good agreement with corresponding lattice results. Next, unquenched two-flavor QCD is considered where it is shown that the unquenched two-flavor gluon propagator is insensitive to the pion mass. Furthermore, the necessity for consistent truncations is emphasized. Finally, correlation functions of finite-temperature Yang-Mills theory are computed in a truncation that includes the splitting of the gluon field into directions that are transverse and longitudinal to the heat bath. In particular, it includes the splitting of the three- and four-gluon vertices. The obtained gluon propagator allows to extract a Debye screening mass that coincides with the hard thermal loop screening mass at high temperatures, but is meaningful also at temperatures below the phase transition temperature.
Resummation of perturbative QCD by pade approximants
International Nuclear Information System (INIS)
Gardi, E.
1997-01-01
In this lecture I present some of the new developments concerning the use of Pade Approximants (PA's) for resuming perturbative series in QCD. It is shown that PA's tend to reduce the renormalization scale and scheme dependence as compared to truncated series. In particular it is proven that in the limit where the β function is dominated by the 1-loop contribution, there is an exact symmetry that guarantees invariance of diagonal PA's under changing the renormalization scale. In addition it is shown that in the large β 0 approximation diagonal PA's can be interpreted as a systematic method for approximating the flow of momentum in Feynman diagrams. This corresponds to a new multiple scale generalization of the Brodsky-Lepage-Mackenzie (BLM) method to higher orders. I illustrate the method with the Bjorken sum rule and the vacuum polarization function. (author)
The Glauber approach in perturbative QCD: nucleon case
International Nuclear Information System (INIS)
Ayala Filho, A.L.; Pelotas Univ., RS; Ducaty, M.B. Gay; Levin, E.M.; Petersburg Nuclear Physics Inst.,
1997-01-01
We investigate the shadowing corrections for the nucleon gluon distribution predicted from Glauber (Mueller) approach in perturbative QCD. This work is a digest for the nucleon case of the extended work prior presented by the authors
Non-perturbative Aspects of QCD and Parameterized Quark Propagator
Institute of Scientific and Technical Information of China (English)
HAN Ding-An; ZHOU Li-Juan; ZENG Ya-Guang; GU Yun-Ting; CAO Hui; MA Wei-Xing; MENG Cheng-Ju; PAN Ji-Huan
2008-01-01
Based on the Global Color Symmetry Model, the non-perturbative QCD vacuum is investigated in theparameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenological QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter of# in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.
The Operator Product Expansion Beyond Perturbation Theory in QCD
International Nuclear Information System (INIS)
Dominguez, C. A.
2011-01-01
The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the τ-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.
Renormalisaton of composite operators in lattice QCD. Perturbative versus nonperturbative
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M.; Nakamura, Y. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)
2010-07-01
The perturbative and nonperturbative renormalisation of quark-antiquark operators in lattice QCD with two flavours of clover fermions is investigated within the research programme of the QCDSF collaboration. Operators with up to three derivatives are considered. The nonperturbative results based on the RI-MOM scheme are compared with estimates from one- and two-loop lattice perturbation theory. (orig.)
Non-perturbative supersymmetry anomaly in supersymmetric QCD
International Nuclear Information System (INIS)
Shamir, Y.
1991-03-01
The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs
Duality between QCD perturbative series and power corrections
International Nuclear Information System (INIS)
Narison, S.; Zakharov, V.I.
2009-01-01
We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of α s from τ-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.
Duality between QCD perturbative series and power corrections
Energy Technology Data Exchange (ETDEWEB)
Narison, S. [Laboratoire de Physique Theorique et Astroparticules, CNRS-IN2P3 and Universite de Montpellier II, Case 070, Place Eugene, 34095 Montpellier Cedex 05 (France)], E-mail: snarison@yahoo.fr; Zakharov, V.I. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation)], E-mail: xxz@mppmu.mpg.de
2009-08-31
We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of {alpha}{sub s} from {tau}-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.
Heavy flavour production in perturbative QCD
International Nuclear Information System (INIS)
Nason, P.; Ridolfi, G.; Frixione, S.; Mangano, M.L.
1994-01-01
The status of heavy flavour production in QCD is reviewed. Recent results on the doubly-differential cross section are discussed for the photoproduction of heavy flavours. Comparison of experimental results with theoretical calculation is discussed both for b production at hadron colliders and c production in fixed-target hadroproduction and photoproduction. The possibility of using photoproduction of heavy flavour in order to determine the gluon density in the proton is also discussed. (author). 38 refs., 8 figs
Photon-photon inclusive scattering and perturbative QCD
International Nuclear Information System (INIS)
Maor, U.
1988-01-01
Perturbative QCD expectations and problems associated with the study of the photon structure function data are reviewed. An assessment is given for the viability and sensitivity of photon-photon scattering as a decisive tool for the determination of the QCD scale. Particular attention is given to the theoretical problems of singularity cancellations at x = 0 and threshold-associated difficulties at x = 1 and their implications on the actual data analysis. It is concluded that the experimental results, while not providing a decisive verification of QCD at small distances, do add to other independent experiments which are all consistent with the theory and suggest a reasonably well defined QCD scale parameter. The importance of the small Q 2 limit to photon-photon analysis is discussed and the data are examined in an attempt to identify and isolate the contributions of the hadronic and point-like sectors of the target photon. 21 refs., 7 figs. (author)
Non-perturbative renormalization of HQET and QCD
International Nuclear Information System (INIS)
Sommer, Rainer
2003-01-01
We discuss the necessity of non-perturbative renormalization in QCD and HQET and explain the general strategy for solving this problem. A few selected topics are discussed in some detail, namely the importance of off shell improvement in the MOM-scheme on the lattice, recent progress in the implementation of finite volume schemes and then particular emphasis is put on the recent idea to carry out a non-perturbative renormalization of the Heavy Quark Effective Theory (HQET)
Heavy quark form factors at two loops in perturbative QCD
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Behring, A.; Falcioni, G.
2017-11-01
We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.
On ambiguities in the exponentiation of large QCD perturbative corrections
International Nuclear Information System (INIS)
Chyla, Jiri
1986-01-01
Ambiguities and some practical questions connected with the exponentiation of higher-order QCD perturbative corrections are discussed for the case of deep inelastic lepton-hadron scattering in the non-singlet channel. The importance of still higher-order calculations for resolving these ambiguities is stressed. (author)
Multiplicity and event shape in the perturbative QCD
International Nuclear Information System (INIS)
Tesima, K.
1995-01-01
The multiple hadroproduction in the perturbative QCD is briefly reviewed. There are a number of quantities which can be analysed with the use of the high-luminosity TRISTAN data. The analysis will contribute to clarifying some unsolved questions, and to the deeper understanding of the jet physics. (author)
Perturbative QCD lagrangian at large distances and stochastic dimensionality reduction
International Nuclear Information System (INIS)
Shintani, M.
1986-10-01
We construct a Lagrangian for perturbative QCD at large distances within the covariant operator formalism which explains the color confinement of quarks and gluons while maintaining unitarity of the S-matrix. It is also shown that when interactions are switched off, the mechanism of stochastic dimensionality reduction is operative in the system due to exact super-Lorentz symmetries. (orig.)
Heavy quark form factors at two loops in perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Nikhef, Amsterdam (Netherlands). Theory Group
2017-11-15
We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.
Perturbative QCD contributions to inclusive processes
International Nuclear Information System (INIS)
Ritbergen, T. van.
1996-01-01
This thesis treats the calculation of quantum corrections to a number of high energy processes that are measured in current and future accelerator experiments. The main objective of these experiments is to accurately verify the generally accepted theory of electro-weak and strong interactions, known as the Standard model, and to look for possible deviations. Most of the processes that are treated in this thesis are of a type for which the final state of of a highly energetic scattering or decay process is measured inclusively. The higher order quantum corrections discussed in this thesis are due to strong interactions. To the inclusive decay rate of Z 0 bosons into all possible final states consisting of hadrons third order QCD contributions have been obtained. Also in the third order QCD an expansion for the inclusive hadronic decay rate of a τ-lepton was obtained. Then the top-quark-mass effects on the decay channels of a Higgs boson: Higgs→b-quarks and Higgs→gluons, were investigated. Thereafter the calculation of 3-loop contributions to the deep-inelastic lepton-nucleon scattering process is discussed. Finally the 3-loop contributions to the q 2 -dependence of the lower moments ∫ 0 1 x N-1 F(x,q 2 )dx, N=2,4,6,8 of the structure functions F 2 and F L were obtained. (orig./HSI)
Perturbative QCD contributions to inclusive processes
Energy Technology Data Exchange (ETDEWEB)
Ritbergen, T. van
1996-09-24
This thesis treats the calculation of quantum corrections to a number of high energy processes that are measured in current and future accelerator experiments. The main objective of these experiments is to accurately verify the generally accepted theory of electro-weak and strong interactions, known as the Standard model, and to look for possible deviations. Most of the processes that are treated in this thesis are of a type for which the final state of of a highly energetic scattering or decay process is measured inclusively. The higher order quantum corrections discussed in this thesis are due to strong interactions. To the inclusive decay rate of Z{sup 0} bosons into all possible final states consisting of hadrons third order QCD contributions have been obtained. Also in the third order QCD an expansion for the inclusive hadronic decay rate of a {tau}-lepton was obtained. Then the top-quark-mass effects on the decay channels of a Higgs boson: Higgs{yields}b-quarks and Higgs{yields}gluons, were investigated. Thereafter the calculation of 3-loop contributions to the deep-inelastic lepton-nucleon scattering process is discussed. Finally the 3-loop contributions to the q{sup 2}-dependence of the lower moments {integral}{sub 0}{sup 1}x{sup N-1}F(x,q{sup 2})dx, N=2,4,6,8 of the structure functions F{sub 2} and F{sub L} were obtained. (orig./HSI).
Testing QCD in the non-perturbative regime
Energy Technology Data Exchange (ETDEWEB)
A.W. Thomas
2007-01-01
This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.
Non-perturbative Debye mass in finite-T QCD
Kajantie, Keijo; Peisa, J; Rajantie, A; Rummukainen, K; Shaposhnikov, Mikhail E
1997-01-01
Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.
Non-perturbative studies of QCD at small quark masses
Energy Technology Data Exchange (ETDEWEB)
Wennekers, J.
2006-07-15
We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)
Aspects of perturbative QCD in Monte Carlo shower models
International Nuclear Information System (INIS)
Gottschalk, T.D.
1986-01-01
The perturbative QCD content of Monte Carlo models for high energy hadron-hadron scattering is examined. Particular attention is given to the recently developed backwards evolution formalism for initial state parton showers, and the merging of parton shower evolution with hard scattering cross sections. Shower estimates of K-factors are discussed, and a simple scheme is presented for incorporating 2 → QCD cross sections into shower model calculations without double counting. Additional issues in the development of hard scattering Monte Carlo models are summarized. 69 references, 20 figures
Modification of the perturbative QCD towards confinement
International Nuclear Information System (INIS)
Arodz, H.
1981-01-01
Modification of the low momentum behaviour of the perturbative SU(2) gauge theory is proposed. The modification is closely related (although not equivalent) to a nonstandard choice of boundary condition for the Euclidean 2-point gluonic Green function. In the resulting theory already single graphs lead to the confining potential between heavy, static quarks, V(r) = ar 2 for r → infinity. (author)
Analytic continuation and perturbative expansions in QCD
Czech Academy of Sciences Publication Activity Database
Caprini, I.; Fischer, Jan
2002-01-01
Roč. 24, - (2002), s. 127-135 ISSN 1434-6044 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : perturbative expansion * quantum chromodynamics * infrared ambiguity * essential singularities Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.162, year: 2002
Perturbative ambiguities in Coulomb gauge QCD
International Nuclear Information System (INIS)
Doust, P.
1987-01-01
The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc
Charmless decays of the B-meson in perturbative QCD
International Nuclear Information System (INIS)
Libo Guo; Dongsheng Du; Lianshou Liu
1999-01-01
Using the perturbative QCD method and Chau's six-quark-graph scheme, we report a theoretical calculation of exclusive nonleptonic decays of the B meson into two light pseudoscalar mesons in the context of the low-energy effective Hamiltonian. The contributions from both tree-level and one-loop diagrams are taken into account. Under the approximation of neglecting light quark and light meson masses, we find that (i) within perturbative QCD there is no singularity which exists in the computation of spacelike penguin diagrams when the BSW model is used; (ii) the contributions from spacelike-type (W-annihilation, W-exchange, spacelike penguin and penguin-annihilation) graphs are strongly suppressed relative to those from timelike-type (external W-emission, internal W-emission and timelike penguin) ones; (iii) our results are well below the experimental upper limits but lower than the BSW ones. (author)
Calculation of the Odderon intercept in perturbative QCD
International Nuclear Information System (INIS)
Gauron, P.; Lipatov, L.; Nicolescu, B.; Paris-6 Univ., 75
1993-01-01
The question of the equality of hadron-hadron and hadron-antihadron cross sections at very high energies is investigated. By using a variational method combined with conformal invariant techniques it is shown that the Odderon J-plane singularity in the leading logarithmic approximation of QCD lies above 1. Therefore, in the perturbative theory the difference between hadron-hadron and antihadron-hadron interactions grows with energy. (K.A.) 11 refs
Analytic perturbation theory in analyzing some QCD observables
International Nuclear Information System (INIS)
Shirkov, D.V.
2001-01-01
The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory (APT) for analysis of some QCD observables. We start with the discussion of the main problem of the perturbative QCD - ghost singularities and with the resume of this trouble solution within the APT. By a few examples in the various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order of α s 3 ) is as a rule numerically inessential. This raises hope for practical solving the well-known problem of asymptotic nature of common QFT perturbation series. The second conclusion is that a common perturbative analysis of time-like events with the big π 2 term in the π 2 coefficient is not adequate at s ≤ 2 GeV 2 . In particular, this relates to τ decay. Then, for the 'high' (f = 5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10 GeV ≤ √s ≤ 170 GeV) for analysis of shape/events data contains a systematic negative error of a 1 - 2 per cent level for the extracted α bar s (2) values. Our physical conclusion is that the α bar s (M Z 2 ) value averaged over the f = 5 data s (M Z 2 )> APT; f= 5 ≅ 0.124 appreciably differs from the currently accepted 'world average' (= 0.118)
The accuracy of QCD perturbation theory at high energies
Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2016-01-01
We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Threshold resummation in SCET vs. perturbative QCD. An analytic comparison
International Nuclear Information System (INIS)
Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni
2012-01-01
We compare threshold resummation in QCD, as performed using soft-collinear effective theory (SCET), to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross-sections. We consider various forms of the SCET result, which correspond to different choices of the soft scale μ s that characterizes this approach. We derive a master formula that relates the SCET resummation to the QCD result for any choice of μ s . We then use it first, to show that if SCET resummation is performed in N-Mellin moment space by suitable choice of μ s it is equivalent to the standard perturbative approach. Next, we show that if SCET resummation is performed by choosing for μ s a partonic momentum variable, the perturbative result for partonic resummed cross-sections is again reproduced, but like its standard perturbative counterpart it is beset by divergent behaviour at the endpoint. Finally, using the master formula we show that when μ s is chosen as a hadronic momentum variable the SCET and standard approach are related through a multiplicative (convolutive) factor, which contains the dependence on the Landau pole and associated divergence. This factor depends on the luminosity in a non-universal way; it lowers by one power of log the accuracy of the resummed result, but it is otherwise subleading if one assumes the luminosity not to contain logarithmically enhanced terms. Therefore, the SCET approach can be turned into a prescription to remove the Landau pole from the perturbative result, but the price to pay for this is the reduction by one logarithmic power of the accuracy at each order and the need to make assumptions on the parton luminosity. (orig.)
Threshold resummation in SCET vs. perturbative QCD. An analytic comparison
Energy Technology Data Exchange (ETDEWEB)
Bonvini, Marco [Genoa Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Genoa (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Milan (Italy); Ghezzi, Margherita [Milano Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Milan (Italy); Rome Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Ridolfi, Giovanni [Genoa Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Genoa (Italy)
2012-01-15
We compare threshold resummation in QCD, as performed using soft-collinear effective theory (SCET), to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross-sections. We consider various forms of the SCET result, which correspond to different choices of the soft scale {mu}{sub s} that characterizes this approach. We derive a master formula that relates the SCET resummation to the QCD result for any choice of {mu}{sub s}. We then use it first, to show that if SCET resummation is performed in N-Mellin moment space by suitable choice of {mu}{sub s} it is equivalent to the standard perturbative approach. Next, we show that if SCET resummation is performed by choosing for {mu}{sub s} a partonic momentum variable, the perturbative result for partonic resummed cross-sections is again reproduced, but like its standard perturbative counterpart it is beset by divergent behaviour at the endpoint. Finally, using the master formula we show that when {mu}{sub s} is chosen as a hadronic momentum variable the SCET and standard approach are related through a multiplicative (convolutive) factor, which contains the dependence on the Landau pole and associated divergence. This factor depends on the luminosity in a non-universal way; it lowers by one power of log the accuracy of the resummed result, but it is otherwise subleading if one assumes the luminosity not to contain logarithmically enhanced terms. Therefore, the SCET approach can be turned into a prescription to remove the Landau pole from the perturbative result, but the price to pay for this is the reduction by one logarithmic power of the accuracy at each order and the need to make assumptions on the parton luminosity. (orig.)
Variational techniques in non-perturbative QCD
Kovner, Alex; Kovner, Alex
2004-01-01
We review attempts to apply the variational principle to understand the vacuum of non-abelian gauge theories. In particular, we focus on the method explored by Ian Kogan and collaborators, which imposes exact gauge invariance on the trial Gaussian wave functional prior to the minimization of energy. We describe the application of the method to a toy model -- confining compact QED in 2+1 dimensions -- where it works wonderfully and reproduces all known non-trivial results. We then follow its applications to pure Yang-Mills theory in 3+1 dimensions at zero and finite temperature. Among the results of the variational calculation are dynamical mass generation and the analytic description of the deconfinement phase transition.
Effective Lagrangians for SUSY QCD with properties seen in perturbation theory
International Nuclear Information System (INIS)
Sharatchandra, H.S.
1984-06-01
We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)
The scale of soft resummation in SCET vs perturbative QCD
International Nuclear Information System (INIS)
Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni
2013-01-01
We summarize and extend previous results on the comparison of threshold resummation, performed using soft-collinear effective theory (SCET) in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of the SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ s which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold
The scale of soft resummation in SCET vs perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Bonvini, Marco [Deutsches Elektronen-Synchroton, DESY, Notkestraße 85, D-22603 Hamburg (Germany); Forte, Stefano, E-mail: Stefano.Forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ghezzi, Margherita [Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sezione di Roma, Piazzale Aldo Moro 2, I-00185 Roma,Italy (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)
2013-08-15
We summarize and extend previous results on the comparison of threshold resummation, performed using soft-collinear effective theory (SCET) in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of the SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ{sub s} which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.
The scale of soft resummation in SCET vs perturbative QCD
International Nuclear Information System (INIS)
Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni
2013-01-01
We summarize and extend previous results on the comparison of threshold resummation, performed, using softcollinear effective theory (SCET), in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of this SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ s which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.
The scale of soft resummation in SCET vs perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Milano (Italy); Ghezzi, Margherita [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Roma (Italy); Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Genova (Italy)
2013-01-15
We summarize and extend previous results on the comparison of threshold resummation, performed, using softcollinear effective theory (SCET), in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of this SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale {mu}{sub s} which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.
Dynamical quark and gluon condensates from a modified perturbative QCD
International Nuclear Information System (INIS)
Cabo Montes de Oca, A.; Martinez Pedrera, D.
2004-12-01
As it was suggested by previous works on a modified perturbation expansion for QCD, the possibility for the generation of large quark condensates in the massless version of the theory is explored. For this purpose, it is firstly presented a way to well define the Feynman diagrams at any number of loops by just employing dimensional regularization. After that, the calculated zero and one loop corrections to the effective potential indicate a strong instability of the system under the generation of quark condensates even in the absence of the gluon one. The quark condensate dependence of particular two loop terms does not modify the instability picture arising at one loop. The results suggest a possible mechanism for a sort of Top Condensate Model to be a dynamically fixed effective action for massless QCD. The inability of lattice calculations in detecting this possibility could be related to the current limitations in treating the fermion determinants. (author)
Non-perturbative O(a) improvement of lattice QCD
Lüscher, Martin; Sommer, Rainer; Weisz, P; Wolff, U; Luescher, Martin; Sint, Stefan; Sommer, Rainer; Weisz, Peter; Wolff, Ulli
1997-01-01
The coefficients multiplying the counterterms required for O($a$) improvement of the action and the isovector axial current in lattice QCD are computed non-perturbatively, in the quenched approximation and for bare gauge couplings $g_0$ in the range $0 \\leq g_0 \\leq 1$. A finite-size method based on the Schrödinger functional is employed, which enables us to perform all calculations at zero or nearly zero quark mass. As a by-product the critical hopping parameter $\\kappa_c$ is obtained at all couplings considered.
Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD
International Nuclear Information System (INIS)
Machado, Magno V.T.
2011-01-01
The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization. (author)
The dual description of long-distance QCD (Dual QCD)
International Nuclear Information System (INIS)
Baker, M.
1990-01-01
We construct and solve a local field theory which describes in terms of dual variables a system having an A μ propagator behaving like M 2 /q 4 in the infrared and discuss how this theory can be used as a starting point for describing long-distance QCD. 3 refs
International Nuclear Information System (INIS)
Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen
2008-01-01
We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD
Pomeron in perturbative QCD - its elementary theory and possible phenomenology at HERA
International Nuclear Information System (INIS)
Kwiecinski, J.
1992-04-01
Theoretical ideas concerning the Pomeron in perturbative QCD are reviewed. The Lipatov equation with asymptotic freedom effects taken into account is recalled and the corresponding spectrum of eigenvalues controlling the bare Pomeron intercept analysed. Possible phenomenological implications of the perturbative QCD Pomeron for deep inelastic scattering at the HERA ep collider are briefly discussed. 9 figs., 49 refs. (author)
Static QCD potential at rQCD-1: Perturbative expansion and operator-product expansion
International Nuclear Information System (INIS)
Sumino, Y.
2007-01-01
We analyze the static QCD potential V QCD (r) in the distance region 0.1 fm QCD (r) analytically. Higher-order terms are estimated by large-β 0 approximation or by renormalization group, and the renormalization scale is varied around the minimal-sensitivity scale. A 'Coulomb'+linear potential can be identified with the scale-independent and renormalon-free part of the prediction and can be separated from the renormalon-dominating part. (II) In the frame of OPE, we define two types of renormalization schemes for the leading Wilson coefficient. One scheme belongs to the class of conventional factorization schemes. The other scheme belongs to a new class, which is independent of the factorization scale, derived from a generalization of the Coulomb+linear potential of (I). The Wilson coefficient is free from IR renormalons and IR divergences in both schemes. We study properties of the Wilson coefficient and of the corresponding nonperturbative contribution δE US (r) in each scheme. (III) We compare numerically perturbative predictions of the Wilson coefficient and lattice computations of V QCD (r) when n l =0. We confirm either correctness or consistency (within uncertainties) of the theoretical predictions made in (II). Then we perform fits to simultaneously determine δE US (r) and r 0 Λ MS 3-loop (relation between lattice scale and Λ MS ). As for the former quantity, we improve bounds as compared to the previous determination; as for the latter quantity, our analysis provides a new method for its determination. We find that (a) δE US (r)=0 is disfavored, and (b) r 0 Λ MS 3-loop =0.574±0.042. We elucidate the mechanism for the sensitivities and examine sources of errors in detail
International Nuclear Information System (INIS)
West, G.
1990-01-01
The main thrust of this talk is to review and discuss various topics in both perturbative and non-perturbative QCD that are, by and large, model independent. This inevitably means that we shall rely heavily on the renormalization group and asymptotic freedom. Although this usually means that one has to concentrate on high energy phenomena, there are some physical processes even involving bound states which are certainly highly non-perturbative, where one can make some progress without becoming overly model independent. Experience with the EMC effect, where there are about as many ''explanations'' as authors, has surely taught us that it may well be worth returning to ''basics'' and thinking about general properties of QCD rather than guessing, essentially arbitrarily, what we think is its low energy structure. No doubt we shall have to await further numerical progress or for some inspired theoretical insight before we can, with confidence, attack these extremely difficult problems. So, with this in mine, I shall review a smattering of problems which do have a non-perturbative component and where some rather modest progress can actually be made; I emphasize the adjective ''modest''exclamation point
Non-perturbative chiral corrections for lattice QCD
International Nuclear Information System (INIS)
Thomas, A.W.; Leinweber, D.B.; Lu, D.H.
2002-01-01
We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)
Infrared singularities of scattering amplitudes in perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Becher, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Neubert, Matthias [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany)
2013-11-01
An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.
Perturbative corrections to B → D form factors in QCD
Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian
2017-06-01
We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .
Topics in perturbative QCD beyond the leading order
International Nuclear Information System (INIS)
Buras, A.J.
1979-08-01
The basic structure of QCD formulae for various inclusive and semi-inclusive processes is presented. Next to leading order QCD corrections to inclusive deep-inelastic scattering are discussed in some detail. The methods for calculations of QCD corrections (leading, next to leading) to semi-inclusive processes are outlined. Some results of these calculations are discussed. 58 references
The gluon Reggeization in perturbative QCD at NLO
Energy Technology Data Exchange (ETDEWEB)
Fadin, V.S. [Novosibirsk State Univ., Institute for Nuclear Physics (Russian Federation)
2005-07-01
The gluon Reggeization is one of the outstanding properties of QCD. It is extremely important for description of high energy processes. In particular, it appears as the basis of the BFKL approach to summation of the terms strengthened by powers of log(1/x). The hypothesis is extremely powerful, since all scattering amplitudes are expressed in terms of the gluon trajectory and several Reggeon vertices. Now the hypothesis is proved in NLA (next-to leading approximation). The proof is based on bootstrap relations. It is shown that an infinite number of these relations is reduced to several bootstrap conditions on the gluon trajectory and the Reggeon vertices. It is shown that fulfillment of these conditions means a proof of the Reggeization hypothesis. All bootstraps conditions are formulated explicitly and are proved to be fulfilled.
The heavy quark-antiquark potential from lattice and perturbative QCD
Laschka, Alexander; Kaiser, Norbert; Weise, Wolfram
2009-01-01
The heavy quark-antiquark potential in perturbative QCD is subject to ambiguities. We show how to derive a well-defined and stable short-distance potential that can be matched to results from lattice QCD simulations at intermediate distances. The static potential as well as the order 1/m potential are discussed.
1999-01-01
Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions
High energy asymptotics of perturbative multi-color QCD
International Nuclear Information System (INIS)
Lipatov, L.N.
1993-01-01
The structure functions of deep-inelastic scattering at small-x satisfy two different equations in the leading logarithmic approximation (LLA). The first one -- the GLAP equation, describes the Q 2 -evolution of partonic distributions h i (x). The second one -- the BFKL, equation determines the x-dependence of parton densities H i (x, k perpendicular ). Analogous equations for matrix elements of higher twist operators were constructed in Refs. 3 and 4. Here the author discusses the possibility of finding an exact solution for multi-gluon compound states in LLA for the color group SU(N), in the limit N → ∞. The contributions of diagrams with many reggeized gluons are important for the unitarization of the perturbative Pomeron in QCD. It is shown that the Bethe-Salpeter equations for compound states of many reggeized gluons are conformally invariant in the two-dimensional impact parameter space. Their solutions can be written in holomorphically factorized form and there is a differential operator commuting with the holomorphic part of the corresponding Hamiltonian
Perturbative QCD Lagrangian at large distances and stochastic dimensionality reduction. Pt. 2
International Nuclear Information System (INIS)
Shintani, M.
1986-11-01
Using the method of stochastic dimensional reduction, we derive a four-dimensional quantum effective Lagrangian for the classical Yang-Mills system coupled to the Gaussian white noise. It is found that the Lagrangian coincides with the perturbative QCD at large distances constructed in our previous paper. That formalism is based on the local covariant operator formalism which maintains the unitarity of the S-matrix. Furthermore, we show the non-perturbative equivalence between super-Lorentz invariant sectors of the effective Lagrangian and two dimensional QCD coupled to the adjoint pseudo-scalars. This implies that stochastic dimensionality reduction by two is approximately operative in QCD at large distances. (orig.)
Fundamental parameters of QCD from non-perturbative methods for two and four flavors
International Nuclear Information System (INIS)
Marinkovic, Marina
2013-01-01
The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Λ parameter in the units of the scale L max defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Λ parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.
Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Fries, R.J.; Nonaka, C.
2011-07-01
We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.
Simultaneous analysis in renormalization and factorization scheme dependences in perturbative QCD
International Nuclear Information System (INIS)
Nakkagawa, Hisao; Niegawa, Akira.
1983-01-01
Combined and thorough investigations of both the factorization and the renormalization scheme dependences of perturbative QCD calculations are given. Our findings are that (i) by introducing a multiscale-dependent coupling the simultaneous parametrization of both scheme-dependences can be accomplished, (ii) Stevenson's optimization method works quite well so that it gives a remarkable prediction which forces us to exponentiate ''everything'' with uncorrected subprocess cross sections, and (iii) the perturbation series in QCD may converge when Stevenson's principle of minimal sensitivity is taken into account at each order of perturbative approximation. (author)
Non-perturbative QCD Effect on K-Factor of Drell-Yan Process
International Nuclear Information System (INIS)
Hou Zhaoyu; Zhi Haisu; Chen Junxiao
2006-01-01
By using a non-perturbative quark propagator with the lowest-dimensional condensate contributions from the QCD vacuum, the non-perturbative effect to K-factor of the Drell-Yan process is numerically investigated for 12 6 C- 12 6 C collision at the center-of-mass energy (s) 1/2 = 200 GeV, 630 GeV respectively. Calculated results show that the non-perturbative QCD effect has just a weak influence on K-factor in the two cases.
All-loops calculation of the structure function x→0 in perturbative QCD
International Nuclear Information System (INIS)
Catani, S.
1991-01-01
We study in perturbative QCD the initial-state radiation associated to hadron processes in the semi-hard region of small x (x is the Bjorken variable). A recent analysis of the exclusive multi-gluon distributions to double (infrared and collinear) logarithmic accuracy is extended to the case of inclusive distributions, which we evaluate to single (infrared) logarithmic accuracy. Thus the resulting x→0 structure function or N→1 gluon anomalous dimension is computed to all-loops accuracy. For the inclusive distributions we are able to perform a calculation to such an accuracy by extensively using cancellations which originate from coherence of QCD radiation and the infrared regularity of real-virtual singularities. We find that the x→0 structure function satisfies the Lipatov equation. With the present study we therefore provide a new derivation of the Lipatov result in the context of hard collisions together with a fully exclusive description. We discuss the structure of the Lipatov equation in relation with the x→0 exclusive distributions previously obtained and with the Altarelli-Parisi equation valid for finite values of x. (orig.)
Developments in perturbative QCD? challenges from collider physics
Energy Technology Data Exchange (ETDEWEB)
Zeppenfeld, Dieter [Valencia Univ. (Spain). Dept. de Fisica Teorica]. E-mail: dieter@phenom.physics.wisc.edu
1996-07-01
The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)
Developments in perturbative QCD? challenges from collider physics
International Nuclear Information System (INIS)
Zeppenfeld, Dieter
1996-01-01
The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)
Shadowing of gluons in perturbative QCD: A comparison of different models
International Nuclear Information System (INIS)
Jalilian-Marian, Jamal; Wang, Xin-Nian
2001-01-01
We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that, in the kinematic region appropriate to the BNL relativistic heavy ion collider experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to CERN large hadron collider (LHC), there is a sizable difference between the predictions of the different models. However, the uncertainties in gluon shadowing coming from a different parametrization of the gluon distribution in nucleons, are larger than those due to different perturbative QCD models of gluon shadowing. We also investigate the effect of initial nonperturbative shadowing on the magnitude of perturbative shadowing and show that the magnitudes of perturbative and nonperturbative shadowing are comparable at RHIC but perturbative shadowing dominates over nonperturbative shadowing at smaller values of x reached at LHC
Controlling quark mass determinations non-perturbatively in three-flavour QCD
Campos, Isabel
2017-01-01
The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used MS-bar scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf=3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.
Energy Technology Data Exchange (ETDEWEB)
Palombi, F.
2007-06-15
We carry out the renormalization and the Symanzik O(a)-improvement programme for the static vector current in quenched lattice QCD. The scale independent ratio of the renormalization constants of the static vector and axial currents is obtained non-perturbatively from an axial Ward identity with Wilson-type light quarks and various lattice discretizations of the static action. The improvement coefficients c{sub V}{sup stat} and b{sub V}{sup stat} are obtained up to O(g{sub 4}{sup 0})-terms by enforcing improvement conditions respectively on the axial Ward identity and a three-point correlator of the static vector current. A comparison between the non-perturbative estimates and the corresponding one-loop results shows a non-negligible effect of the O(g{sub 4}{sup 0})-terms on the improvement coefficients but a good accuracy of the perturbative description of the ratio of the renormalization constants. (orig.)
Resummation of the QCD perturbative series for hard processes
International Nuclear Information System (INIS)
Catani, S.
1989-01-01
We study the region of inhibited radiation in hard hadronic processes, as for jet cross sections and heavy flavour production near threshold. The cases of deep inelastic scattering and Drell-Yan annihilation are explicitly considered. A general method to exponentiate leading and next-to-leading logarithms to all orders in perturbation theory is developed. A complete formula for the large N-moments is given and shown to agree with previous two-loop calculations. The resummation procedure suggests how to connect the perturbative and nonperturbative regions. The natural limit within the perturbative phase is shown to be the intrinsic transverse momentum. (orig.)
Non-perturbative phenomena in QCD vacuum, hadrons, and quark-gluon plasma
International Nuclear Information System (INIS)
Shuryak, E.V.
1983-01-01
These lectures provide a brief review of recent progress in non-perturbative quantum chromodynamics (QCD). They are intended for non specialists, mainly experimentalists. The main object of discussion, the QCD vacuum, is a rather complicated medium. It may be studied either by infinitesimal probes producing microscopic excitations (=hadrons), or by finite excitations (say, heating some volume to a given temperature T). In the latter case, some qualitative changes (phase transitions) should take place. A summary is given of the extent to which such phenomena can be observed in the laboratory by proton-proton, proton-nucleus, and nucleus-nucleus collisions. (orig.)
Quasilocal quark models as effective theory of non-perturbative QCD
International Nuclear Information System (INIS)
Andrianov, A.A.
2006-01-01
We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated
Jet fragmentation and predictions of the resummed perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Safonov, Alexei Nikolayevich [Univ. of Florida, Gainesville, FL (United States)
2001-01-01
This dissertation is dedicated to the experimental analysis of jet fragmentation, the process of formation of jets of particles produced in high-energy collisions, and to the comparison of the results to the predictions of resummed perturbative calculations within Quantum Chromodynamics.
Numerical studies of QCD renormalons in high-order perturbative expansions
International Nuclear Information System (INIS)
Bauer, Clemens
2013-01-01
Perturbative expansions in four-dimensional non-Abelian gauge theories such as Quantum Chromodynamics (QCD) are expected to be divergent, at best asymptotic. One reason is that it is impossible to strictly exclude from the relevant Feynman diagrams those energy regions in which a perturbative treatment is inapplicable. The divergent nature of the series is then signaled by a rapid (factorial) growth of the perturbative expansion coefficients, commonly referred to as a renormalon. In QCD, the most severe divergences occur in the infrared (IR) limit and therefore they are classified as IR renormalons. Their appearance can be understood within the well-accepted Operator Product Expansion (OPE) framework. According to the OPE, the perturbative calculation of a physical observable must be amended by non-perturbative power corrections that come in the form of condensates, universal characteristics of the rich QCD vacuum structure. Adding up perturbative and non-perturbative contributions, the ambiguity due to the renormalon cancels and the physical observable is well-defined. Although the field has made considerable progress in the last twenty years, a proof of renormalon existence is still pending. It has only been tested assuming strong simplifications or in toy models. The aim of this thesis is to provide the first numerical evidence for renormalon existence in the gauge sector of QCD. We use Numerical Stochastic Perturbation Theory (NSPT) to directly obtain perturbative coefficients within lattice regularization, a means to replace continuum spacetime by a four-dimensional hypercubic lattice. A peculiar feature of NSPT are comparatively low simulation costs when reaching high expansion orders. We examine two distinct observables: the static self-energy of an isolated quark and the elementary plaquette. Following the OPE classification, the static quark self-energy is ideally suited for a renormalon study. Taking into account peculiarities of the lattice approach such
Quark content of the nucleon in QCD: Perturbative and nonperturbative aspects
International Nuclear Information System (INIS)
Stefanis, N.G.
1989-01-01
We elaborate on two proposed model distribution amplitudes for the nucleon, based on perturbative light-cone QCD supplemented by QCD sum rules. The novel nonperturbative features of these amplitudes are discussed in detail. Reasonable predictions for the Dirac form factor of the proton and the neutron are obtained, paying particular attention to the treatment of the effective coupling constant α s (Q 2 ) and the scale parameter Λ QCD . In addition, the stability properties of the sum rules for the moments of these model distribution amplitudes are analyzed. The range of values of the parameters entering the sum rules is estimated. Relying on expectation values of longitudinal-momentum fractions instead of moments, a heuristic interpretation of the physical content of the model distribution amplitudes is attempted
Nf=2 Lattice QCD and Chiral Perturbation Theory
International Nuclear Information System (INIS)
Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.
2006-01-01
By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit
The FLUKA Monte Carlo, Non-Perturbative QCD and Cosmic Ray Cascades
International Nuclear Information System (INIS)
Battistoni, G.
2005-01-01
The FLUKA Monte Carlo code, presently used in cosmic ray physics, contains packages to sample soft hadronic processes which are built according to the Dual Parton Model. This is a phenomenological model capable of reproducing many of the features of hadronic collisions in the non perturbative QCD regime. The basic principles of the model are summarized and, as an example, the associated Lambda-K production is discussed. This is a process which has some relevance for the calculation of atmospheric neutrino fluxes
Leading non-cancelling infra-red divergences in perturbative QCD
International Nuclear Information System (INIS)
Carneiro, C.E.; Frenkel, J.; Thomaz, M.T.; Day, M.; Taylor, J.C.
1980-01-01
In QCD in perturbative theory, for the inclusive cross-section for the scattering of two coloured particles, graphs which contribute to the general leading order αs(αs/nΛ)(sup n) are identified and these contributions are added (Λ is the IR cut-off). The work is done in the Coulomb gauge; an appendix discusses the Feynman gauge. (Author) [pt
Perturbative description of inclusive energy spectra
Energy Technology Data Exchange (ETDEWEB)
Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut
1996-03-01
The recent LEP-1.5 data of charged particle inclusive energy spectra are analyzed within the analytical QCD approach based on modified leading log approximation plus local parton hadron duality. The shape, the position of the maximum and the cumulant moments of the inclusive energy spectrum are well described within this model. The sensitivity of the results to the running of the coupling is pointed out. A scaling law for the one-particle invariant density E dn/d{sup 3}p at small momenta is observed, consistently with the predictions of colour coherence in soft gluon bremsstrahlung. (orig.).
Perturbative description of inclusive energy spectra
International Nuclear Information System (INIS)
Lupia, S.
1996-01-01
The recent LEP-1.5 data of charged particle inclusive energy spectra are analyzed within the analytical QCD approach based on modified leading log approximation plus local parton hadron duality. The shape, the position of the maximum and the cumulant moments of the inclusive energy spectrum are well described within this model. The sensitivity of the results to the running of the coupling is pointed out. A scaling law for the one-particle invariant density E dn/d 3 p at small momenta is observed, consistently with the predictions of colour coherence in soft gluon bremsstrahlung. (orig.)
Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies
International Nuclear Information System (INIS)
Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer; Humboldt-Universitaet, Berlin
2016-04-01
We discuss the determination of the strong coupling α_M_S(m_Z) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α_s(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α_s=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α_s∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies
Energy Technology Data Exchange (ETDEWEB)
Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration
2016-04-15
We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Towards a non-perturbative matching of HQET and QCD with dynamical light quarks
International Nuclear Information System (INIS)
Della Morte, M.; Simma, H.; Sommer, R.
2007-10-01
We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N f =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L∼0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)
Towards a non-perturbative matching of HQET and QCD with dynamical light quarks
Energy Technology Data Exchange (ETDEWEB)
Della Morte, M. [CERN, Geneva (Switzerland). Physics Dept.; Fritzsch, P.; Heitger, J. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Meyer, H.B. [Massachusets Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States); Simma, H.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2007-10-15
We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N{sub f} =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L{approx}0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)
Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-06-15
We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)
Applicability of perturbative QCD and NLO power corrections for the pion form factor
International Nuclear Information System (INIS)
Yeh Tsungwen
2002-01-01
As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order (NLO) power correction for the pion form factor. The corrected form factor contains nonperturbative parameters which are determined from a χ 2 fit to the data. Interpreting these parameters leads to the fact that the involved strong interaction coupling constant should be identified as an effective coupling constant under a nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as 2 Q 2 , then Q 2 , the momentum transfer square for the pion form factor to be measured, can have a value about 1 GeV 2 , and , the averaged momentum fraction variable, can locate around 0.5. This circumstance is consistent with the asymptotic model for the pion wave function
Introduction to non-perturbative quantum chromodynamics; Introduction a QCD non perturbatif
Energy Technology Data Exchange (ETDEWEB)
Pene, O. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies
1995-12-31
Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.) 39 refs.
Nearly perturbative lattice-motivated QCD coupling with zero IR limit
Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart; Kondrashuk, Igor
2018-03-01
The product of the gluon dressing function and the square of the ghost dressing function in the Landau gauge can be regarded to represent, apart from the inverse power corrections 1/{Q}2n, a nonperturbative generalization { \\mathcal A }({Q}2) of the perturbative QCD running coupling a({Q}2) (\\equiv {α }s({Q}2)/π ). Recent large volume lattice calculations for these dressing functions indicate that the coupling defined in such a way goes to zero as { \\mathcal A }({Q}2)∼ {Q}2 when the squared momenta Q 2 go to zero ({Q}2\\ll 1 {GeV}}2). In this work we construct such a QCD coupling { \\mathcal A }({Q}2) which fulfills also various other physically motivated conditions. At high momenta it becomes the underlying perturbative coupling a({Q}2) to a very high precision. And at intermediate low squared momenta {Q}2∼ 1 {GeV}}2 it gives results consistent with the data of the semihadronic τ lepton decays as measured by OPAL and ALEPH. The coupling is constructed in a dispersive way, resulting as a byproduct in the holomorphic behavior of { \\mathcal A }({Q}2) in the complex Q 2-plane which reflects the holomorphic behavior of the spacelike QCD observables. Application of the Borel sum rules to τ-decay V + A spectral functions allows us to obtain values for the gluon (dimension-4) condensate and the dimension-6 condensate, which reproduce the measured OPAL and ALEPH data to a significantly better precision than the perturbative \\overline{MS}} coupling approach.
Production of transverse energy from minijets in next-to-leading order perturbative QCD
Eskola, Kari J
2000-01-01
We compute in next-to-leading order (NLO) perturbative QCD the transverse energy carried into the central rapidity unit of hadron or nuclear collisions by the partons freed in the few-GeV subcollisions. The formulation is based on a rapidity window and a measurement function of a new type. The behaviour of the NLO results as a function of the minimum transverse momentum and as a function of the scale choice is studied. The NLO results are found to be stable relative to the leading-order ones even in the few-GeV domain.
Non-perturbative description of quantum systems
Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander
2015-01-01
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Heavy-quark fragmentation functions at next-to-leading perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Sartipi Yarahmadi, P. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)
2016-10-15
It is well known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models. (orig.)
Non-perturbative test of the Witten-Veneziano formula from lattice QCD
International Nuclear Information System (INIS)
Cichy, Krzysztof; Jansen, Karl; Ottnad, Konstantin; Urbach, Carsten; Bonn Univ.
2015-10-01
We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with N f =2 +1+1 dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the SU(2) chiral limits we compare both sides and find good agreement within uncertainties.
Non-Perturbative QCD Coupling and Beta Function from Light Front Holography
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab
2010-05-26
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).
Non-Perturbative QCD Coupling and Beta Function from Light Front Holography
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2010-01-01
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling α s AdS (Q 2 ). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ∼ 1 GeV. The resulting β-function appears to capture the essential characteristics of the full β-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on α s AdS (Q 2 ).
AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; de Teramond, Guy; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab
2010-04-29
The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.
Accelerated convergence of perturbative QCD by conformal mappings in the Borel plane
International Nuclear Information System (INIS)
Caprini, I.; Fischer, J.
1998-01-01
The behaviour of the large order terms in perturbative QCD received much attention in recent years. The presence of instantons and certain classes of Feynman diagrams lead to increasing coefficients of the perturbative expansion of the QCD Green functions, making this series divergent and even Borel non-summable. In the present paper we adopt a definite prescription for the Borel summation and investigate the improvement of the low order expansion by using some information about the behaviour of the large order coefficients. We use the technique of conformal mappings to extend the convergence region of the Borel series, and exploit the behaviour of the Borel transform near the first renormalons. Our approach improves previous work where only the ultraviolet renormalons were considered. The polarization function, relevant for the hadronic τ decay, which allows the determinations of the strong coupling constant a s (m τ 2 ) is used. We consider the Adler function D(s), i.e. the logarithmic derivative of the vacuum polarization for massless quarks, and its QCD perturbative expansion (D(a s )) in terms of the running coupling a s (-s). The first 3 coefficients D n of Adler function D(s) are known from explicit calculations, while for large n they are expected to have a factorial growth. By applying the Borel method with the Principal Value (PV) prescription to avoid the infrared renormalons, we write D(a s ) in terms of its Borel transform B(u). The Borel integral is given as a function of a s for a model function resembling the Borel transform of the Adler function in the large β 0 limit. The data obtained by truncating the expansion at N=3 which corresponds to the physical situation are presented. Even at such low values of N our method gives very good results (the improvement increases with N, since the optimality is an asymptotic feature). Using this technique we calculated also the running coupling constant a s (m τ 2 ), for which we obtained the value 0
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-01-01
Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)
Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.
2000-01-01
We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.
Perturbative corrections to Λ_b→Λ form factors from QCD light-cone sum rules
International Nuclear Information System (INIS)
Wang, Yu-Ming; Shen, Yue-Long
2016-01-01
We compute radiative corrections to Λ_b→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ_b-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ_b-baryon correlation function is justified at leading power in Λ/m_b, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α_s) shift the Λ_b→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ_b→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ_b→Λ ℓ"+ℓ"− transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ_b→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.
A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes
Energy Technology Data Exchange (ETDEWEB)
Boglione, M. [Univ. di Torino, Torino (Italy); INFN, Torino (Italy); Gonzalez Hernandez, J. O. [INFN, Torino (Italy); Melis, S. [Univ. di Torino, Torino (Italy); Prokudin, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-02-16
We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, _{qT}. In order to describe it over a wide region of _{qT}, soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. As a result, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.
Improved estimates of the B{sub (s)}→VV decays in perturbative QCD approach
Energy Technology Data Exchange (ETDEWEB)
Zou, Zhi-Tian; Li, Ying [Yantai Univ. (China). Dept. of Physics; Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lue, Cai-Dian [Institute of High Energy Physics, Beijing, BJ (China); Theoretical Physics Center for Science Facilities, CAS, Beijing (China); Liu, Xin [Jiangsu Normal Univ., Xuzhou (China). School of Physics and Electronic Engineering
2015-01-15
We reexamine the branching ratios, CP-asymmetries, and other observables in a large number of B{sub q}→VV(q=u,d,s) decays in the perturbative QCD (PQCD) approach, where V denotes a light vector meson (ρ,K{sup *},ω,φ). The essential difference between this work and the earlier similar works is of parametric origin and in the estimates of the power corrections related to the ratio r{sup 2}{sub i}=m{sup 2}{sub V{sub i}}/m{sup 2}{sub B} (i=2,3) (m{sub V} and m{sub B} denote the masses of the vector and B meson, respectively). In particular, we use up-to-date distribution amplitudes for the final state mesons and keep the terms proportional to the ratio r{sup 2}{sub i} in our calculations. Our updated calculations are in agreement with the experimental data, except for a limited number of decays which we discuss. We emphasize that the penguin annihilation and the hard-scattering emission contributions are essential to understand the polarization anomaly, such as in the B→φK{sup *} and B{sub s}→φφ decay modes. We also compare our results with those obtained in the QCD factorization (QCDF) approach and comment on the similarities and differences, which can be used to discriminate between these approaches in future experiments.
Non-perturbative running of quark masses in three-flavour QCD
Campos, Isabel; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios
2016-01-01
We present our preliminary results for the computation of the non-perturbative running of renormalized quark masses in $N_f = 3$ QCD, between the electroweak and hadronic scales, using standard finite-size scaling techniques. The computation is carried out to very high precision, using massless $\\mathcal{O}(a)$-improved Wilson quarks. Following the strategy adopted by the ALPHA Collaboration for the running coupling, different schemes are used above and below a scale $\\mu_0 \\sim m_b$, which differ by using either the Schr\\"odinger Functional or Gradient Flow renormalized coupling. We discuss our results for the running in both regions, and the procedure to match the two schemes.
S -wave K π contributions to the hadronic charmonium B decays in the perturbative QCD approach
Rui, Zhou; Wang, Wen-Fei
2018-02-01
We extend our recent works on the two-pion S -wave resonance contributions to the kaon-pion ones in the B meson hadronic charmonium decay modes based on the perturbative QCD approach. The S -wave K π timelike form factor in its distribution amplitudes is described by the LASS parametrization, which consists of the K0*(1430 ) resonant state together with an effective range nonresonant component. The predictions for the decays B →J /ψ K π in this work agree well with the experimental results from the BABAR and Belle collaborations. We also discuss theoretical uncertainties, indicating that the results of this work, which can be tested by the LHCb and Belle-II experiments, are reasonably accurate.
Quark masses from quark-gluon condensates in a modified perturbative QCD
Cabo-Montes de Oca, Alejandro
2003-01-01
In this note, it is argued that the mass matrix for the six quarks can be generated in first approximation by introducing fermion condensates on the same lines as was done before for gluons, within the modified perturbative expansion for QCD proposed in former works. Thus, the results point in the direction of the conjectured link of the approximate `Democratic' symmetry of the quark mass matrix and `gap' effects similar to the ones occuring in superconductivity. The condensates are introduced here non-dynamically and therefore the question of the possibility for their spontaneous generation remains open. However, possible ways out of the predicted lack of the `Democratic' symmetry of the condensates resulting from the spontaneous breaking of the flavour symmetry are suggested. They come from an analysis based on the Cornwall--Jackiw--Tomboulis (CJT) effective potential for composite operators
On the chiral perturbation theory for two-flavor two-color QCD at finite chemical potential
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš
2006-01-01
Roč. 21, č. 7 (2006), s. 559-569 ISSN 0217-7323 R&D Projects: GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10480505 Keywords : two-color QCD * chiral perturbation theory * chemical potential Subject RIV: BE - Theoretical Physics Impact factor: 1.564, year: 2006
A non-perturbative exploration of the high energy regime in Nf=3 QCD. ALPHA Collaboration
Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2018-05-01
Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schrödinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale 1/L_0≈ 4 GeV through \\bar{g}^2(L_0) =2.012, we quote L_0 Λ ^{N_f=3}_{{\\overline{MS}}} =0.0791(21). This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales 2^n/L_0 for n=0,1,\\ldots ,5. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests of perturbation theory some of which have been published in a letter (ALPHA collaboration, M. Dalla Brida et al. in Phys Rev Lett 117(18):182001, 2016). The results indicate that for our target precision of 3 per cent in L_0 Λ ^{N_f=3}_{{\\overline{MS}}}, a reliable estimate of the truncation error requires non-perturbative data for a sufficiently large range of values of α _s=\\bar{g}^2/(4π ). In the present work we reach this precision by studying scales that vary by a factor 2^5= 32, reaching down to α _s≈ 0.1. We here provide the details of our analysis and an extended discussion.
Scaling and χPT description of pions from Nf=2 twisted mass QCD
International Nuclear Information System (INIS)
Dimopoulos, Petros; Frezzotti, Roberto; Herdoiza, Gregorio; Jansen, Karl; Michael, Chris; Urbach, Carsten; Bonn Univ.
2009-12-01
We study light-quark observables by means of dynamical lattice QCD simulations using two flavours of twisted mass fermions at maximal twist. We employ chiral perturbation theory to describe our data for the pion mass and decay constant. In this way, we extract precise determinations for the low-energy constants of the effective theory as well as for the light-quark mass and the chiral condensate. (orig.)
Higher twist effects in QCD description of light meson exclusive formfactors
International Nuclear Information System (INIS)
Gorskij, A.S.
1987-01-01
The general approach to a quantitative description of higher twist effects in hard exclusive processes in QCD is proposed. The consistent calculations in coordinate space and the choice of special gauges for quantum and classical gluon fields are essential ingradients of this method. The self consistent system of twist three wave functions for π-meson has been built
An example of the interplay of nonextensivity and dynamics in the description of QCD matter
Energy Technology Data Exchange (ETDEWEB)
Rozynek, Jacek; Wilk, Grzegorz [National Centre for Nuclear Research, Department of Fundamental Research, Warsaw (Poland)
2016-09-15
Using a simple quasiparticle model of QCD matter, presented some time ago in the literature, in which interactions are modelled by some effective fugacities z, we investigate the interplay between the dynamical content of fugacities z and effects induced by nonextensivity in situations when this model is used in a nonextensive environment characterized by some nonextensive parameter q ≠ 1 (for the usual extensive case q = 1). This allows for a better understanding of the role of nonextensivity in the more complicated descriptions of dense hadronic and QCD matter recently presented (in which dynamics is defined by a Lagrangian, the form of which is specific to a given model). (orig.)
Dorney, Brian Lee
2013-01-01
Beauty quarks are pair-produced by strong interactions in multi-TeV proton- proton (pp) collisions at the CERN Large Hadron Collider (LHC). Such interactions allow for a test of perturbative Quantum Chromodynamics (QCD) in a new energy regime. The primary beauty-antibeauty quark b b pair production mechanisms in perturbative QCD are referred to as avor creation, avor excitation, and gluon splitting. These three mechanisms produce b b pairs with characteristic kinematic behavior, which contribute dierently to the shape of the dierential b b production cross section with respect to the dierence in the azimuthal angle and the combined separation variable R = p 2 + 2 between the beauty and antibeauty quarks ( b and b , respectively); with being the change in the pseudorapidity = ln ( tan ( = 2)), being the polar angle. These and R variables are collectively referred to as angular correlation variables and hence forth referred to as A . By measuring the shape and absolute normalization of the dierential prod...
CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Lue, Gang; Li, Sheng-Tao; Wang, Yu-Ting [Henan University of Technology, College of Science, Zhengzhou (China); Lu, Ye [Guangxi Normal University, Department of Physics, Guilin (China)
2017-08-15
In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process of anti B{sup 0}{sub s} → π{sup +}π{sup -}π{sup +}π{sup -} induced by the ρ and ω double resonance effect. Generally, the CP violation is small in the pure annihilation type decay process. However, we find that the CP violation can be enhanced by double ρ-ω interference when the invariant masses of the π{sup +}π{sup -} pairs are in the vicinity of the ω resonance. For the decay process of anti B{sup 0}{sub s} → π{sup +}π{sup -}π{sup +}π{sup -}, the CP violation can reach A{sub CP}(anti B{sup 0}{sub s} → π{sup +}π{sup -}π{sup +}π{sup -}) = 27.20{sup +0.05+0.28+7.13}{sub -0.15-0.31-6.11}%. (orig.)
Studies of the Triple Pomeron Vertex in perturbative QCD and its applications in phenomenology
International Nuclear Information System (INIS)
Kutak, K.
2006-12-01
We study the properties of the Triple Pomeron Vertex in the perturbative QCD using the twist expansion method. Such analysis allows us to find the momenta configurations preferred by the vertex. When the momentum transfer is zero, the dominant contribution in the limit when N c →∞ comes from anticollinear pole. This is in agreement with result obtained without expanding, but by direct averaging of the Triple Pomeron Vertex over angles. Resulting theta functions show that the anticollinear configuration is optimal for the vertex. In the finite N c case the collinear term also contributes. Using the Triple Pomeron Vertex we construct a pomeron loop and we also consider four gluon propagation between two Triple Pomeron Vertices. We apply the Triple Pomeron Vertex to construct the Hamiltonian from which we derive the Balitsky-Kovchegov equation for an unintegrated gluon density. In order to apply this equation to phenomenology, we apply the Kwiecinski-Martin-Stasto model for higher order corrections to a linear part of the Balitsky-Kovchegov equation. We introduce the definition of the saturation scale which reflects properties of this equation. Finally, we use it for computation of observables, such as the F 2 structure function and diffractive Higgs boson production cross section. The impact of screening corrections on F 2 is negligible, but those effects turn out to be significant for diffractive Higgs boson production at LHC
Studies of the Triple PomeronVertex in perturbative QCD and its applications in phenomenology
Energy Technology Data Exchange (ETDEWEB)
Kutak, K.
2006-12-15
We study the properties of the Triple Pomeron Vertex in the perturbative QCD using the twist expansion method. Such analysis allows us to find the momenta configurations preferred by the vertex. When the momentum transfer is zero, the dominant contribution in the limit when N{sub c}{yields}{infinity} comes from anticollinear pole. This is in agreement with result obtained without expanding, but by direct averaging of the Triple Pomeron Vertex over angles. Resulting theta functions show that the anticollinear configuration is optimal for the vertex. In the finite N{sub c} case the collinear term also contributes. Using the Triple Pomeron Vertex we construct a pomeron loop and we also consider four gluon propagation between two Triple Pomeron Vertices. We apply the Triple Pomeron Vertex to construct the Hamiltonian from which we derive the Balitsky-Kovchegov equation for an unintegrated gluon density. In order to apply this equation to phenomenology, we apply the Kwiecinski-Martin-Stasto model for higher order corrections to a linear part of the Balitsky-Kovchegov equation. We introduce the definition of the saturation scale which reflects properties of this equation. Finally, we use it for computation of observables, such as the F{sub 2} structure function and diffractive Higgs boson production cross section. The impact of screening corrections on F{sub 2} is negligible, but those effects turn out to be significant for diffractive Higgs boson production at LHC.
Penguin-dominated B→PV decays in NLO perturbative QCD
International Nuclear Information System (INIS)
Li Hsiangnan; Mishima, Satoshi
2006-01-01
We study the penguin-dominated B→PV decays, with P (V) representing a pseudoscalar (vector) meson, in the next-to-leading-order (NLO) perturbative QCD (PQCD) formalism, concentrating on the B→Kφ, πK*, ρK, and ωK modes. It is found that the NLO corrections dramatically enhance the B→ρK, ωK branching ratios, which were estimated to be small under the naive factorization assumption. The patterns of the direct CP asymmetries A CP (B 0 →ρ ± K ± )≅A CP (B ± →ρ 0 K ± ) and A CP (B 0 →π ± K* ± )>A CP (B ± →π 0 K* ± ) are predicted, differing from A CP (B 0 →π ± K ± )>>A CP (B ± →π 0 K ± ). The above patterns, if confirmed by data, will support the source of strong phases from the scalar penguin annihilation in PQCD. The results for the mixing-induced CP asymmetries S f are consistent with those obtained in the literature, except that our S ρ 0 K S is as low as 0.5
The non-perturbative QCD Debye mass from a Wilson line operator
Laine, Mikko
1999-01-01
According to a proposal by Arnold and Yaffe, the non-perturbative g^2T-contribution to the Debye mass in the deconfined QCD plasma phase can be determined from a single Wilson line operator in the three-dimensional pure SU(3) gauge theory. We extend a previous SU(2) measurement of this quantity to the physical SU(3) case. We find a numerical coefficient which is more accurate and smaller than that obtained previously with another method, but still very large compared with the naive expectation: the correction is larger than the leading term up to T ~ 10^7 T_c, corresponding to g^2 ~ 0.4. At moderate temperatures T ~ 2 T_c, a consistent picture emerges where the Debye mass is m_D ~ 6T, the lightest gauge invariant screening mass in the system is ~ 3T, and the purely magnetic operators couple dominantly to a scale ~ 6T. Electric (~ gT) and magnetic (~ g^2T) scales are therefore strongly overlapping close to the phase transition, and the colour-electric fields play an essential role in the dynamics.
International Nuclear Information System (INIS)
Bakulev, Alexander P.
2010-01-01
Using the results on the electromagnetic pion Form Factor (FF) obtained in the O(α s ) QCD sum rules with non-local condensates [A.P. Bakulev, A.V. Pimikov, and N.G. Stefanis, Phys. Rev. D79 (2009) 093010] we determine the effective continuum threshold for the local duality approach. Then we apply it to construct the O(α s 2 ) estimation of the pion FF in the framework of the fractional analytic perturbation theory.
DEFF Research Database (Denmark)
Sannino, Francesco
2009-01-01
We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...
Assuming Regge trajectories in holographic QCD: from OPE to Chiral Perturbation Theory
Cappiello, Luigi; Greynat, David
2015-01-01
The Soft Wall model in holographic QCD has Regge trajectories but wrong operator product expansion (OPE) for the two-point vectorial QCD Green function. We correct analytically this problem and describe the axial sector and chiral symmetry breaking. The low energy chiral parameters, $F_{\\pi}$ and $L_{10}$ , are well described analytically by the model in terms of Regge spacing and QCD condensates. The model nicely supports and extends previous theoretical analyses advocating Digamma function to study QCD two-point functions in different momentum regions.
International Nuclear Information System (INIS)
Kwiecinski, J.
1989-01-01
Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)
Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.
2011-01-01
We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)][M. M. Block, Eur. Phys. J. C 68, 683 (2010)] allow us to write fully decoupled solutions for the singlet structure function F s (x,Q 2 ) and G(x,Q 2 ) as F s (x,Q 2 )=F s (F s0 (x 0 ),G 0 (x 0 )) and G(x,Q 2 )=G(F s0 (x 0 ),G 0 (x 0 )), where the x 0 are the Bjorken x values at Q 0 2 . Here F s and G are known functions--found using LO DGLAP splitting functions--of the initial boundary conditions F s0 (x)≡F s (x,Q 0 2 ) and G 0 (x)≡G(x,Q 0 2 ), i.e., the chosen starting functions at the virtuality Q 0 2 . For both G(x) and F s (x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy--a computational fractional precision of O(10 -9 ). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet F s distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)], starting from their initial values at Q 0 2 =1 GeV 2 and 1.69 GeV 2 , respectively, using their choice of α s (Q 2 ). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and F s satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of the starting functions on the evolved gluon and singlet structure functions, as functions of both Q
Experimental investigations of strong interaction in the non-perturbative QCD region
International Nuclear Information System (INIS)
Lindenbaum, S.J.; Samuel, S.
1993-09-01
A critical investigation of non-perturbative QCD require investigating glueballs, search for a Quark Gluon Plasma (OGP), and search for strangelets. In the glueball area the data obtained (E- 881) at 8 GeV/c were analyzed for π - + p → φφn (OZI forbidden), φK + K - n (OZI allowed), K - p → φφ(ΛΣ) (OZI allowed), and bar pp → φφ → φφπ 0 (OZI forbidden), φK + K - π 0 (OZI allowed). By comparing the OZI forbidden (glueball filter reactions) with the OZI allowed and previous 22 GeV/c π - p → φφn or φK + K - n data a further critical test of the so far unsuccessfully challenged hypothesis that our g T (2010), g T '(2300) and g T double-prime(2340) all with I G J PC = 0 + 2 ++ are produced by 1-3 2 ++ glueballs will be made. In the QGP search with a large-solid-angle TPC a good Ξ signal was observed. The ratio of Ξ to single strange quark particles such as λ is a better indication of strangeness enhancement in QGP formation. The data indicate enhancement by a factor ∼ 2 over cascade model (corrected to observed strangeness) predictions, but it is definitely far from conclusive at this stage since the result is model dependent. Double λ topologies of the type needed to discover light strangelets in the nanosecond lifetime region were found. In addition, research has been accomplished in three main areas: bosonic technicolor and strings, buckministerfullerene C 60 and neutrino oscillations in a dense neutrino gas
Non-perturbative investigation of current correlators in twisted mass lattice QCD
International Nuclear Information System (INIS)
Petschlies, Marcus
2013-01-01
We present an investigation of hadronic current-current correlators based on the first principles of Quantum Chromodynamics. Specifically we apply the non-perturbative methods of twisted mass lattice QCD with dynamical up and down quark taking advantage of its automatic O(a) improvement. As a special application we discuss the calculation of the hadronic leading order contribution to the muon anomalous magnetic moment. The latter is regarded as a promising quantity for the search for physics beyond the standard model. The origin of the strong interest in the muon anomaly lies in the persistent discrepancy between the standard model estimate and its experimental measurement. In the theoretical determination the hadronic leading order part is currently afflicted with the largest uncertainty and a dedicated lattice investigation of the former can be of strong impact on future estimates. We discuss our study of all systematic uncertainties in the lattice calculation, including three lattice volumes, two lattice spacings, pion masses from 650 MeV to 290 MeV and the quark-disconnected contribution. We present a new method for the extrapolation to the physical point that softens the pion mass dependence of a μ hlo and allows for a linear extrapolation with small statistical uncertainty at the physical point. We determine the contribution of up and down quark as a μ hlo (N f =2)=5.69(15)10 -8 . The methods used for the muon are extended to the electron and tau lepton and we find a e hlo (N f =2)=1.512(43)10 -12 and a τ hlo (N f =2)=2.635(54)10 -6 . We estimate the charm contribution to a μ hlo in partially quenched tmLQCD with the result a μ hlo (charm)=1.447(24)(30)10 -9 in very good agreement with a dispersion-relation based result using experimental data for the hadronic R-ratio.
Perturbative corrections to sigma sub(tot) (e+e- -> hadrons) in supersymmetric QCD
International Nuclear Information System (INIS)
Kataev, A.L.; Pivovarov, A.A.
1983-11-01
sigmasub(tot) (e + e - -> γsup(*) -> hadrons) have been calculated in QCD at two-loop level. Three-loop corrections due to gluon pair production are quoted accompanied by quark-antiquark two-jet events. (orig.)
Lattice QCD at the physical point meets S U (2 ) chiral perturbation theory
Dürr, Stephan; Fodor, Zoltán; Hoelbling, Christian; Krieg, Stefan; Kurth, Thorsten; Lellouch, Laurent; Lippert, Thomas; Malak, Rehan; Métivet, Thibaut; Portelli, Antonin; Sastre, Alfonso; Szabó, Kálmán; Budapest-Marseille-Wuppertal Collaboration
2014-12-01
We perform a detailed, fully correlated study of the chiral behavior of the pion mass and decay constant, based on 2 +1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O (a )-improved Wilson fermions, at four values of the lattice spacing down to 0.054 fm and all the way down to below the physical value of the pion mass. They allow a sharp comparison with the predictions of S U (2 ) chiral perturbation theory (χ PT ) and a determination of some of its low energy constants. In particular, we systematically explore the range of applicability of next-to-leading order (NLO) S U (2 ) χ PT in two different expansions: the first in quark mass (x expansion), and the second in pion mass (ξ expansion). We find that these expansions begin showing signs of failure for Mπ≳300 MeV , for the typical percent-level precision of our Nf=2 +1 lattice results. We further determine the LO low energy constants (LECs), F =88.0 ±1.3 ±0.2 and BMS ¯(2 GeV )=2.61 (6 )(1 ) GeV , and the related quark condensate, ΣMS ¯(2 GeV )=(272 ±4 ±1 MeV )3 , as well as the NLO ones, ℓ¯3=2.6 (5 )(3 ) and ℓ¯4=3.7 (4 )(2 ), with fully controlled uncertainties. We also explore the next-to-next-to-leading order (NNLO) expansions and the values of NNLO LECs. In addition, we show that the lattice results favor the presence of chiral logarithms. We further demonstrate how the absence of lattice results with pion masses below 200 MeV can lead to misleading results and conclusions. Our calculations allow a fully controlled, ab initio determination of the pion decay constant with a total 1% error, which is in excellent agreement with experiment.
QCD non-perturbative study in radiative and pure-leptonic decays of Bc by wave function
International Nuclear Information System (INIS)
Guo Peng; Hou Zhaoyu; Zhi Haisu
2012-01-01
The radiative and pure-leptonic decays of B c mesons are of hadrons uncertainty in theoretical calculations. Using three types of the B c meson wave functions which describe the characteristics of the QCD non-perturbative and by controlling the parameters in them, the uncertainties of B c meson decay caused by the hadron decay model are studied in detail. The theoretical results show the branching ratios are (1.81981∼3.18961) × 10 -5 , which are sensitive to the type of wave functions. (authors)
J /ψ →Ds ,dπ , Ds ,dK decays with perturbative QCD approach
Sun, Junfeng; Yang, Yueling; Gao, Jie; Chang, Qin; Huang, Jinshu; Lu, Gongru
2016-08-01
Besides the conventional strong and electromagnetic decay modes, the J /ψ particle can also decay via the weak interaction in the standard model. In this paper, nonleptonic J /ψ →Ds ,dπ , Ds ,dK weak decays, corresponding to the externally emitted virtual W boson process, are investigated with the perturbative QCD approach. It is found that the branching ratio for the Cabibbo-favored J /ψ →Dsπ decay can reach up to O (10-10), which might be potentially measurable at the future high-luminosity experiments.
Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log
Li, Shiyong; Yee, Ho-Ung
2018-03-01
We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).
International Nuclear Information System (INIS)
Kwiecinski, J.
1996-01-01
The perturbative QCD predictions for the small x behaviour of the nucleon structure functions F 2L (x,Q 2 ) and g 1 (x,Q 2 ) are summarized. The importance of the double logarithmic terms for the small x behaviour of the spin structure function g 1 (x,Q 2 ) is emphasized. These terms correspond to the contributions containing the leading powers of α s ln 2 (1/x) at each order of the perturbative expansion. In the non-singlet case they can be approximately accounted for by the ladder diagrams with quark (antiquark) exchange. We solve the corresponding integral equation with the running coupling effects taken into account and present estimate of the effective slope controlling the small x behaviour of the non-singlet spin structure function g 1 (x,Q 2 ) of a nucleon. (author)
A comparison of jet production rates on the Z0 resonance to perturbative QCD
International Nuclear Information System (INIS)
Abreu, P.; Adam, W.; Adami, F.
1990-01-01
The production rates for 2-, 3-, 4- and 5-jet hardronic final states have been measured with the DELPHI detector at the e + e - storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α s 2 ) QCD matrix element calculations and the QCD scale parameter Λsub(anti Manti S) is determined for different parametrizations of the renormalization scale μ 2 . Including all uncertainties our result is α s (M Z 2 )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.]. (orig.)
Description of highly perturbed bands in rare earth nuclei
International Nuclear Information System (INIS)
Joshi, P.C.; Sood, P.C.
1976-01-01
Recently some highly perturbed positive parity bands have been populated in odd-mass rare earth nuclei. The energy spacings and sometimes even the spin sequences are drastically different from the usual strong coupling rotational model picture. The levels belonging to 'odd and even' I+1/2 are found to make separate groupings. The levels belonging to odd values of I+1/2 are seen to be very much favoured in comparison to the levels for which I+1/2 is even. In some cases only the favoured levels have been identified. These bands have been studied in the frame-work of rotation aligned coupling scheme in which the odd neutron in the unique parity orbital (in this case the isub(13/2) orbital) is strongly decoupled from the body fixed symmetry axis by the Coriolis force so as to make the projection of its angular momentum α on the rotation axis approximately a good quantum number. A description of the energy levels is suggested by assigning the quantum number α-j to the favoured levels and α-j-1 to the unfavoured levels. The intraband transitions of the favoured and unfavoured bands are examined in comparison with those in the adjacent ground state bands in even-even nuclei. (author)
Investigation of the factorization scheme dependence of finite order perturbative QCD calculations
Czech Academy of Sciences Publication Activity Database
Kolář, Karel
-, č. 11 (2011), 005/1-005/44 ISSN 1126-6708 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : QCD * parton distribution functions * factorization schemes * NLO Monte Carlo event generators Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.831, year: 2011
Stochastic processes and the non-perturbative structure of the QCD vacuum
International Nuclear Information System (INIS)
Vilela Mendes, R.
1992-01-01
Based on a local Gaussian evaluation of the functional integral representation, a method is developed to obtain ground state functionals. The method is applied to the gluon sector of QCD. For the leading term in the ground state functional, stochastic techniques are used to check consistency of the quantum theory, finiteness of the mass gap and the scaling relation in the continuum limit. The functional also implies strong chromomagnetic fluctuations which constrain the propagators in the fermion sector. (orig.)
Structure of Nonlocal quark vacuum condensate in non-perturbative QCD vacuum
International Nuclear Information System (INIS)
Xiang Qianfei; Ma Weixing; Zhou Lijuan; Jiang Weizhou
2014-01-01
Based on the Dyson-Schwinger Equations (DSEs) with the rainbow truncation, and Operator Product Expansion, the structure of nonlocal quark vacuum condensate in QCD, described by quark self-energy functions A_f and B_f given usually by the solutions of the DSEs of quark propagator, is predicted numerically. We also calculate the local quark vacuum condensate, quark-gluon mixed local vacuum condensate, and quark virtuality. The self-energy functions A_f and B_f are given by the parameterized quark propagator functions σ_v"f (p"2) and σ_s"f (p"2) of Roberts and Williams, instead of the numerical solutions of the DSEs. Our calculated results are in reasonable agreement with those of QCD sum rules, Lattice QCD calculations, and instanton model predictions, although the resulting local quark vacuum condensate for light quarks, u, d, s, are a little bit larger than those of the above theoretical predictions. We think the differences are caused by model dependence. The larger of strange quark vacuum condensate than u, d quark is due to the s quark mass which is more larger than u, d quark masses. Of course, the Roberts-Williams parameterized quark propagator is an empirical formulism, which approximately describes quark propagation. (authors)
Perturbative corrections to Λ{sub b}→Λ form factors from QCD light-cone sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Yu-Ming [Fakultät für Physik, Universität Wien,Boltzmanngasse 5, 1090 Vienna (Austria); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Road 238, Qingdao, Shandong 266100 (China)
2016-02-29
We compute radiative corrections to Λ{sub b}→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ{sub b}-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ{sub b}-baryon correlation function is justified at leading power in Λ/m{sub b}, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α{sub s}) shift the Λ{sub b}→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ{sub b}→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ{sub b}→Λ ℓ{sup +}ℓ{sup −} transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ{sub b}→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.
International Nuclear Information System (INIS)
Radyushkin, A.V.; Slepchenko, L.A.
1983-01-01
Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed
Study of B0→J/ψD(*) and ηcD(*) in perturbative QCD
International Nuclear Information System (INIS)
Eilam, Gad; Ladisa, Massimo; Yang Yadong
2002-01-01
Motivated by recent interest in soft J/ψ production in B decays, we investigate B 0 →J/ψ D ( * ) and η c D ( * ) decays in perturbative QCD. We find that, within that framework, these decays are calculable since the heavy cc(bar sign) pair in the final states is created by a hard gluon. The branching ratios are estimated to be around 10 -7 -10 -8 , too small to be consistent with the data, suggesting that other mechanism(s) contribute to the observed excess of soft J/ψ in B 0 →J/ψ+X decays. The possibility of the production of a hybrid sd(bar sign)g meson with a mass of about 2 GeV is briefly entertained
Hemodynamic Perturbations in Deep Brain Stimulation Surgery: First Detailed Description
Directory of Open Access Journals (Sweden)
Tumul Chowdhury
2017-08-01
Full Text Available Background: Hemodynamic perturbations can be anticipated in deep brain stimulation (DBS surgery and may be attributed to multiple factors. Acute changes in hemodynamics may produce rare but severe complications such as intracranial bleeding, transient ischemic stroke and myocardium infarction. Therefore, this retrospective study attempts to determine the incidence of hemodynamic perturbances (rate and related risk factors in patients undergoing DBS surgery.Materials and Methods: After institutional approval, all patients undergoing DBS surgery for the past 10 years were recruited for this study. Demographic characteristics, procedural characteristics and intraoperative hemodynamic changes were noted. Event rate was calculated and the effect of all the variables on hemodynamic perturbations was analyzed by regression model.Results: Total hemodynamic adverse events during DBS surgery was 10.8 (0–42 and treated in 57% of cases.Conclusion: Among all the perioperative variables, the baseline blood pressure including systolic, diastolic, and mean arterial pressure was found to have highly significant effect on these intraoperative hemodynamic perturbations.
Nonperturbative calculations in the framework of variational perturbation theory in QCD
Solovtsova, O. P.
2017-07-01
We discuss applications of the method based on the variational perturbation theory to perform calculations down to the lowest energy scale. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. We apply this method to investigate the Borel representation of the light Adler function constructed from the τ data and to determine the residual condensates. It is shown that within the method suggested the optimal values of these lower dimension condensates are close to zero.
13. international QCD conference (QCD 06)
International Nuclear Information System (INIS)
2006-01-01
This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations
13. international QCD conference (QCD 06)
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.
Non-perturbative QCD Effects and the Top Mass at the Tevatron
Wicke, Daniel
2008-01-01
The modelling of non-perturbative effects is an important part of modern collider physics simulations. In hadron collisions there is some indication that the modelling of the interactions of the beam remnants, the underlying event, may require non-trivial colour reconnection effects to be present. We recently introduced a universally applicable toy model of such reconnections, based on hadronising strings. This model, which has one free parameter, has been implemented in the Pythia event generator. We then considered several parameter sets (`tunes'), constrained by fits to Tevatron minimum-bias data, and determined the sensitivity of a simplified top mass analysis to these effects, in exclusive semi-leptonic top events at the Tevatron. A first attempt at isolating the genuine non-perturbative effects gave an estimate of order +-0.5GeV from non-perturbative uncertainties. The results presented here are an update to the original study and include recent bug fixes of Pythia that influenced the tunings investigat...
An algebraic description of perturbation theory in quantum electrodynamics
International Nuclear Information System (INIS)
Wright, J.D.
1982-01-01
An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation
The {β}-expansion formalism in perturbative QCD and its extension
Energy Technology Data Exchange (ETDEWEB)
Kataev, A.L. [Institute for Nuclear Research of the Academy of Sciences of Russia,60th October Anniversary Prospect 7a, 117312, Moscow (Russian Federation); Moscow Institute of Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Mikhailov, S.V. [Bogoliubov Laboratory of Theoretical Physics, JINR,Joliot-Curie 6, 141980 Dubna (Russian Federation)
2016-11-11
We discuss the {β}-expansion for renormalization group invariant quantities tracing this expansion to the different contractions of the corresponding incomplete BPHZ R-operation. All of the coupling renormalizations, which follow from these contractions, should be taken into account for the {β}-expansion. We illustrate this feature considering the nonsinglet Adler function D{sup NS} in the third order of perturbation. We propose a generalization of the {β}-expansion for the renormalization group covariant quantities — the {β,γ}-expansion.
The perturbative (QCD) Pomeron and Odderon in the photon initiated reactions
International Nuclear Information System (INIS)
Ginzburg, I.F.
1992-07-01
The cross sections of neutral meson M production in the exclusive γγ → MM', γq → Mq or semiexclusive γγ → MX processes (two or three gluon exchange) in the semihard region s≥|t|>1 GeV 2 , μ 2 ≤M X 2 <|t| are calculated. The relation of investigated processes to the problem of the perturbative Pomeron and Odderon is discussed. The possibility of measurements is also discussed. (author) 23 refs.; 3 figs
Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD
Guagnelli, M; Peña, C; Sint, S; Vladikas, A
2006-01-01
We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Dynamical effects of QCD vacuum structure
International Nuclear Information System (INIS)
Ferreira, Erasmo
1994-01-01
The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig
Semileptonic decays of B{sub c} meson to S-wave charmonium states in the perturbative QCD approach
Energy Technology Data Exchange (ETDEWEB)
Rui, Zhou; Li, Hong; Wang, Guang-xin [North China University of Science and Technology, College of Sciences, Tangshan (China); Xiao, Ying [North China University of Science and Technology, College of Information Engineering, Tangshan (China)
2016-10-15
Inspired by the recent measurement of the ratio of B{sub c} branching fractions to J/ψπ{sup +} and J/ψμ{sup +}ν{sub μ} final states at the LHCb detector, we study the semileptonic decays of B{sub c} meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions B{sub c} → P,V, where P and V denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for the B{sub c} meson. It is found that the predicted branching ratios range from 10{sup -7} up to 10{sup -2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions (BR(B{sub c}{sup +}→J/Ψπ{sup +}))/(BR(B{sub c}{sup +}→J/Ψμ{sup +}ν{sub μ})) is in good agreement with the data. For B{sub c} → Vlν{sub l} decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments. (orig.)
Maelger, J.; Reinosa, U.; Serreau, J.
2018-04-01
We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.
Semileptonic decays of B_c meson to S-wave charmonium states in the perturbative QCD approach
International Nuclear Information System (INIS)
Rui, Zhou; Li, Hong; Wang, Guang-xin; Xiao, Ying
2016-01-01
Inspired by the recent measurement of the ratio of B_c branching fractions to J/ψπ"+ and J/ψμ"+ν_μ final states at the LHCb detector, we study the semileptonic decays of B_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions B_c → P,V, where P and V denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for the B_c meson. It is found that the predicted branching ratios range from 10"-"7 up to 10"-"2 and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions (BR(B_c"+→J/Ψπ"+))/(BR(B_c"+→J/Ψμ"+ν_μ)) is in good agreement with the data. For B_c → Vlν_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments. (orig.)
arXiv A non-perturbative exploration of the high energy regime in $N_\\text{f}=3$ QCD
Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schr\\"odinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale $1/L_0\\approx 4$ GeV through $\\bar{g}^2(L_0) =2.012$, we quote $L_0 \\Lambda^{N_{\\rm f}=3}_{\\overline{\\rm MS}} =0.0791(21)$. This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales $2^n/L_0$ for $n=0,1,\\ldots,5$. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests ...
Lectures on perturbative QCD, jets and the standard model: collider phenomenology
International Nuclear Information System (INIS)
Ellis, S.D.
1988-01-01
Applications of the Standard Model to the description of physics at hadron colliders are discussed. Particular attention is paid to the use of jets to characterize this physics. The issue of identifying physics beyond the Standard Model is also discussed. 59 refs., 6 figs., 4 tabs
B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bernardoni, Fabio; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Blossier, Benoit; Gerardin, Antoine [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; CNRS, Orsay (France); Bulava, John [CERN, Geneva (Switzerland). Physics Department; Della Morte, Michele; Hippel, Georg M. von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Trinity College, Dublin (Ireland). School of Mathematics; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Collaboration: ALPHA Collaboration
2012-10-15
We report on the ALPHA Collaboration's lattice B-physics programme based on N{sub f}=2 O(a) improved Wilson fermions and HQET, including all NLO effects in the inverse heavy quark mass, as well as non-perturbative renormalization and matching, to fix the parameters of the effective theory. Our simulations in large physical volume cover 3 lattice spacings a {approx} (0.08-0.05) fm and pion masses down to 190 MeV to control continuum and chiral extrapolations. We present the status of results for the b-quark mass and the B{sub (s)}-meson decay constants, f{sub B} and f{sub B{sub s}}.
Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory
International Nuclear Information System (INIS)
Sommer, R.
2006-11-01
We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)
Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory
Energy Technology Data Exchange (ETDEWEB)
Sommer, R.
2006-11-15
We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)
International Nuclear Information System (INIS)
Lupia, S.
1999-01-01
The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)
International Nuclear Information System (INIS)
Lupia, S.
1998-01-01
The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1990-01-01
This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
Perturbative QCD description of mean jet and particle multiplicities in e+e- annihilation
International Nuclear Information System (INIS)
Lupia, S.; Ochs, W.
1999-01-01
A complete numerical solution of the evolution equation for parton multiplicities in quark and gluon jets with initial conditions at threshold is presented. Data on both hadron and jet multiplicities in e + e - annihilation are well described with a common normalization, giving further support to the picture of local parton hadron duality. Predictions for LEP-II energies are presented. Furthermore we study the sensitivity to the cutoff parameter Q 0 and the scale of α s . (orig.)
Perturbative QCD description of mean jet and particle multiplicities in e+e- annihilation
International Nuclear Information System (INIS)
Lupia, Sergio; Ochs, Wolfgang
1999-01-01
A complete numerical solution of the evolution equation for parton multiplicities in quark and gluon jets with initial conditions at threshold is presented. Data on both hadron and jet multiplicities in e + e - annihilation are well described with a common normalization, giving further support to the picture of Local Parton Hadron Duality. Predictions for LEP-II energies are presented. Furthermore we study the sensitivity to the cutoff parameter Q 0 and the scale of α s
Energy Technology Data Exchange (ETDEWEB)
Brambilla, M.; Di Renzo, F. [Universita di Parma (Italy); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy); Hasegawa, M. [Universita di Parma (Italy); Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy)
2014-07-15
This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and n{sub f} Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and n{sub f} Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme. (orig.)
International Nuclear Information System (INIS)
Burenin, A.V.
1994-01-01
A possibility is shown of substantial expansion of the choice of asymptotic behaviour of optimal fraction-rational series of the perturbation theory on description of molecular rotational spectra. The expansion permits to hope for substantial improvement of results of using the conception of effective rotational hamiltonian in a fraction-rational form on the description of highly perturbed vibrational states
Challenges for QCD theory: some personal reflections
International Nuclear Information System (INIS)
Sjöstrand, T
2013-01-01
At the LHC all processes are QCD ones, whether ‘signal’ or ‘background’. In this review the frontiers of current QCD research are addressed, towards increased understanding, improved calculational precision, and role in potential future discoveries. Issues raised include: - the limits of perturbative QCD calculations and parton distribution usage,; - the nature of multiparton interactions,; - the impact of colour reconnection on physical observables,; - the need for progress on hadronization modelling,; - the improvements of parton showers and their combination with the matrix-element description,; - the use of QCD concepts in Beyond-the-Standard-Model scenarios and; - the key position of event generators and other software in the successful exploration of LHC physics. On the way, several questions are posed, where further studies are needed. (paper)
International Nuclear Information System (INIS)
Kikkawa, Keiji
1983-01-01
The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)
QCD: Renormalization for the practitioner
International Nuclear Information System (INIS)
Pascual, P.; Tarrach, R.
1984-01-01
These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
International Nuclear Information System (INIS)
Kang, Kai; Qin, Shaojing; Wang, Chuilin
2011-01-01
We calculated numerically the localization length of one-dimensional Anderson model with diagonal disorder. For weak disorder, we showed that the localization length changes continuously as the energy changes from the band center to the boundary of the anomalous region near the band edge. We found that all the localization lengths for different disorder strengths and different energies collapse onto a single curve, which can be fitted by a simple equation. Thus the description of the perturbation theory and the band center anomaly were unified into this equation. -- Highlights: → We study the band center anomaly of one-dimensional Anderson localization. → We study numerically the Lyapunov exponent through a parametrization method of the transfer matrix. → We give a unified equation to describe the band center anomaly and perturbation theory.
Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.
2018-02-01
Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.
Gazing into the multiparton distribution equations in QCD
International Nuclear Information System (INIS)
Shelest, V.P.; Sinigirev, A.M.; Zinovjev, G.M.
1982-01-01
Using a parton interpretation of the leading logarithm diagrams of perturbative QCD theory we obtain the equations for the multiparton distribution and fragmentation functions. These equations are not identical but the solutions are the same on the definite initial conditions and coincide with the jet calculus rules. The difference is crucial when we generalize these equations for a hardron-jet description. (orig.)
Hou, Wei-Shu; Li, Hsiang-nan; Mishima, Satoshi; Nagashima, Makiko
2007-03-30
We study the effect from a sequential fourth generation quark on penguin-dominated two-body nonleptonic B meson decays in the next-to-leading order perturbative QCD formalism. With an enhancement of the color-suppressed tree amplitude and possibility of a new CP phase in the electroweak penguin amplitude, we can account better for A(CP)(B(0)-->K+ pi-)-A(CP)(B+-->K+ pi0). Taking |V(t's)V(t'b)| approximately 0.02 with a phase just below 90 degrees, which is consistent with the b-->sl+ l- rate and the B(s) mixing parameter Deltam(B)(s), we find a downward shift in the mixing-induced CP asymmetries of B(0)-->K(S)(pi 0) and phi(K)(S). The predicted behavior for B(0)-->rho(0)(K)(S) is opposite.
International Nuclear Information System (INIS)
Sivers, D.
1979-10-01
Some aspects of a simple strategy for testing the validity of QCD perturbation theory are examined. The importance of explicit evaluation of higher-order contributions is illustrated by considering Z 0 decays. The recent progress toward understanding exclusive processes in QCD is discussed and some simple examples are given of how to isolate and test the separate components of the perturbation expansion in a hypothetical series of jet experiments
International Nuclear Information System (INIS)
Retey, A.; Vermaseren, J.A.M.
2001-01-01
We present the analytic next-to-next-to-leading QCD calculation of some higher moments of deep inelastic structure functions in the leading twist approximation. We give results for the moments N=1,3,5,7,9,11,13 of the structure function F 3 . Similarly we present the moments N=10,12 for the flavour singlet and N=12,14 for the non-singlet structure functions F 2 and F L . We have calculated both the three-loop anomalous dimensions of the corresponding operators and the three-loop coefficient functions of the moments of these structure functions
The multiparton distribution equations in QCD
International Nuclear Information System (INIS)
Shelest, V.P.; Snigirev, A.M.; Zinovjev, G.M.
1982-01-01
The equations for multiparton distribution functions of deep-inelastic lepton-hadron scattering and fragmentation functions of e + e - annihilation are obtained by using parton interpretation of the leading logarithm diagrams of perturbative QCD theory. These equations have essentially different structute but the solutions are the same on the definite initial conditions and coincide with the jet calculus rules. The difference is crucial when these equations for hadron jets description are generalized [ru
Nonperturbative QCD and elastic processes at CEBAF energies
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, A.V. [Old Dominion Univ., Norfolk, VA (United States)]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)
1994-04-01
The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.
Nonperturbative QCD and elastic processes at CEBAF energies
International Nuclear Information System (INIS)
Radyushkin, A.V.
1994-01-01
The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author's point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood (open-quotes knownclose quotes) short-distance effects and nonperturbative (open-quotes unknownclose quotes) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q 2 closer to 10 GeV 2 and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes
Hadronic and nuclear interactions in QCD
International Nuclear Information System (INIS)
1982-01-01
Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics
Czech Academy of Sciences Publication Activity Database
Abbas, G.; Ananthanarayan, B.; Caprini, I.; Fischer, Jan
2013-01-01
Roč. 87, č. 1 (2013), "014008-1"-"014008-14" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 Keywords : perturbative expansion * Borel transformation * Adler function Subject RIV: BE - Theoretical Physics Impact factor: 4.864, year: 2013
Perturbed Newtonian description of the Lemaître model with non-negligible pressure
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Kazuhiro [Department of Physical Sciences, Hiroshima University, Higashi-hiroshima, Kagamiyama 1-3-1, 739-8526 (Japan); Marra, Valerio [Departamento de Física, Universidade Federal do Espírito Santo, Av. F. Ferrari, 514, 29075-910, Vitória, ES (Brazil); Mukhanov, Viatcheslav [Theoretical Physics, Ludwig Maxmillians University, Theresienstr. 37, 80333 Munich (Germany); Sasaki, Misao, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: valerio.marra@me.com, E-mail: Viatcheslav.Mukhanov@physik.lmu.de, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 (Japan)
2016-03-01
We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ{sup 2})—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ{sup 2}),O(c{sub s}{sup 2φ} δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c{sub s} are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ{sup 2}) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1.
Perturbed Newtonian description of the Lemaître model with non-negligible pressure
International Nuclear Information System (INIS)
Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao
2016-01-01
We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ 2 )—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ 2 ),O(c s 2φ δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c s are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ 2 ) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1
AAMQS: a non-linear QCD description of new HERA data at small-x
Quiroga-Arias, Paloma; Armesto, Nestor; Milhano, Jose Guilherme; Salgado, Carlos A
2011-01-01
We present a global analysis of available data on inclusive structure functions measured in electron-proton scattering at small values of Bjorken-x, including the latest data from the combined HERA analysis on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling BK equation for the description of the small-x dynamics. With the resulting parametrization we are able to describe the latest FL data measured by the H1 collaboration. Further, we discuss the kinematical domain where significant deviations from NLO-DGLAP should be expected and the ability of non-linnear physics to account for such deviations.
Simulation of QCD with N_f=2+1 flavors of non-perturbatively improved Wilson fermions
International Nuclear Information System (INIS)
Bruno, Mattia; Djukanovic, Dalibor; Engel, Georg P.; Francis, Anthony; Herdoiza, Gregorio; Horch, Hanno; Korcyl, Piotr; Korzec, Tomasz; Papinutto, Mauro; Schaefer, Stefan; Scholz, Enno E.; Simeth, Jakob; Simma, Hubert; Söldner, Wolfgang
2015-01-01
We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N_f=2+1 flavors of non-perturbatively improved Wilson fermions in the sea with the Lüscher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t_0.
Non-perturbative renormalisation of {delta}F=2 four-fermion operators in two-flavour QCD
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, P.; Vladikas, A. [INFN, Sezione di Roma II (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Herdoiza, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Palombi, F.; Papinutto, M. [CERN, Geneva (Switzerland). Physics Dept., TH Division; Pena, C. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica C-XI]|[Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC C-XVI; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-12-15
Using Schroedinger Functional methods, we compute the non-perturbative renormalisation and renormalisation group running of several four-fermion operators, in the framework of lattice simulations with two dynamical Wilson quarks. Two classes of operators have been targeted: (i) those with left-left current structure and four propagating quark fields; (ii) all operators containing two static quarks. In both cases, only the parity-odd contributions have been considered, being the ones that renormalise multiplicatively. Our results, once combined with future simulations of the corresponding lattice hadronic matrix elements, may be used for the computation of phenomenological quantities of interest, such as B{sub K} and B{sub B} (the latter also in the static limit). (orig.)
Skands, Peter
2011-01-01
These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...
Factorization and pion form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1979-01-01
The behaviour of the pion electromagnetic form factor (EMFF) in the framework of quantum chromodynamics (QCD) is discussed. Pion is considered to be a quark-antiquark bound state. It is proposed to use an OPE description of the bound state structure by matrix elements of certain local gauge-invariant operators. Short-distance quark interactions is proved using a direct analysis of perturbation theory in the α-parametric representation of the Feynman diagrams. It is shown that the short-distance parton picture privides a self-consistent description of the large Q 2 momentum behaviour of the pion EMFF in QCD. Pion EMFF asymptotics is expressed in terms of fu fundamental constants of the theory
Insights on non-perturbative aspects of TMDs from models
Energy Technology Data Exchange (ETDEWEB)
H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada
2009-12-01
Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.
Yan, Da-Cheng; Yang, Ping; Liu, Xin; Xiao, Zhen-Jun
2018-06-01
In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bbars0 → PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide ∼ 40% enhancement to the LO PQCD predictions for B (Bbars0 →K0K bar * 0) and B (Bbars0 →K±K*∓), or a ∼ 37% reduction to B (Bbars0 →π-K*+); and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements; (b) the total effects on the PQCD predictions for the relevant Bs0 → P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% enhancement respect to the leading order result; (c) for the "tree" dominated decay Bbars0 →K+ρ- and the "color-suppressed-tree" decay Bbars0 →π0K*0, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C and AP: constructive for the first decay but destructive for the second one; and (d) for Bbars0 → V (η ,η‧) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude A (Vηq) and A (Vηs) due to the η-η‧ mixing.
Quasi-two-body decays B→ηc(1S,2S [ρ(770,ρ(1450,ρ(1700→] ππ in the perturbative QCD approach
Directory of Open Access Journals (Sweden)
Ya Li
2017-11-01
Full Text Available In this paper, we calculated the branching ratios of the quasi-two-body decays B→ηc(1S,2S [ρ(770,ρ(1450,ρ(1700→]ππ by employing the perturbative QCD (PQCD approach. The contributions from the P-wave resonances ρ(770, ρ(1450 and ρ(1700 were taken into account. The two-pion distribution amplitude ΦππP is parameterized by the vector current time-like form factor Fπ to study the considered decay modes. We found that (a the PQCD predictions for the branching ratios of the considered quasi-two-body decays are in the order of 10−7∼10−6, while the two-body decay rates B(B→ηc(1S,2S(ρ(1450,ρ(1700 are extracted from those for the corresponding quasi-two-body decays; (b the whole pattern of the pion form factor-squared |Fπ|2 measured by the BABAR Collaboration could be understood based on our theoretical results; (c the general expectation based on the similarity between B→ηcππ and B→J/ψππ decays are confirmed: R2(ηc≈0.45 is consistent with the measured R2(J/ψ≈0.56±0.09 within errors; and (d new ratios R3(ηc(1S and R4(ηc(2S among the branching ratios of the considered decay modes are defined and could be tested by future experiments.
Quantum chromodynamics (QCD) and collider physics
International Nuclear Information System (INIS)
Ellis, R.K.; Stirling, W.J.
1990-01-01
This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks
Energy Technology Data Exchange (ETDEWEB)
Lupia, Sergio; Ochs, Wolfgang
1999-03-01
A complete numerical solution of the evolution equation for parton multiplicities in quark and gluon jets with initial conditions at threshold is presented. Data on both hadron and jet multiplicities in e{sup +}e{sup -} annihilation are well described with a common normalization, giving further support to the picture of Local Parton Hadron Duality. Predictions for LEP-II energies are presented. Furthermore we study the sensitivity to the cutoff parameter Q{sub 0} and the scale of {alpha}{sub 0}00.
Energy Technology Data Exchange (ETDEWEB)
Lupia, S.; Ochs, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut
1999-03-01
A complete numerical solution of the evolution equation for parton multiplicities in quark and gluon jets with initial conditions at threshold is presented. Data on both hadron and jet multiplicities in e{sup +}e{sup -} annihilation are well described with a common normalization, giving further support to the picture of local parton hadron duality. Predictions for LEP-II energies are presented. Furthermore we study the sensitivity to the cutoff parameter Q{sub 0} and the scale of {alpha}{sub s}. (orig.) 11 refs.
Meyer, C; The ATLAS collaboration
2014-01-01
The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Lattice QCD. A critical status report
International Nuclear Information System (INIS)
Jansen, Karl
2008-10-01
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
International Nuclear Information System (INIS)
Glover, N.
2008-01-01
The need for predictions of standard model processes at the LHC at leading order and beyond is motivated. Recent developments in computing scattering amplitudes are reviewed. I describe the limitations of tree-level predictions, and how they may be improved at next-to-leading order. The current status of the field is discussed. (author)
International Nuclear Information System (INIS)
Konishi, K.
1980-01-01
The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)
International Nuclear Information System (INIS)
Furmanski, W.
1981-08-01
The effects of scaling violation in QCD are discussed in the perturbative scheme, based on the factorization of mass singularities in the light-like gauge. Some recent applications including the next-to-leading corrections are presented (large psub(T) scattering, numerical analysis of the leptoproduction data). A proposal is made for extending the method on the higher twist sector. (author)
Perturbation theory in light-cone gauge
International Nuclear Information System (INIS)
Vianello, Eliana
2000-01-01
Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories
Perturbative description of the fermionic projector: Normalization, causality, and Furry's theorem
Finster, Felix; Tolksdorf, Jürgen
2014-05-01
The causal perturbation expansion of the fermionic projector is performed with a contour integral method. Different normalization conditions are analyzed. It is shown that the corresponding light-cone expansions are causal in the sense that they only involve bounded line integrals. For the resulting loop diagrams we prove a generalized Furry theorem.
Perturbative description of the fermionic projector: Normalization, causality, and Furry's theorem
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix, E-mail: finster@ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany); Tolksdorf, Jürgen, E-mail: Juergen.Tolksdorf@mis.mpg.de [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany)
2014-05-15
The causal perturbation expansion of the fermionic projector is performed with a contour integral method. Different normalization conditions are analyzed. It is shown that the corresponding light-cone expansions are causal in the sense that they only involve bounded line integrals. For the resulting loop diagrams we prove a generalized Furry theorem.
Perturbative description of the fermionic projector: Normalization, causality, and Furry's theorem
International Nuclear Information System (INIS)
Finster, Felix; Tolksdorf, Jürgen
2014-01-01
The causal perturbation expansion of the fermionic projector is performed with a contour integral method. Different normalization conditions are analyzed. It is shown that the corresponding light-cone expansions are causal in the sense that they only involve bounded line integrals. For the resulting loop diagrams we prove a generalized Furry theorem
International Nuclear Information System (INIS)
Sagar, B.; Connelly, M.P.; Long, P.E.
1988-05-01
The Hanford site located in southeastern Washington state was under consideration for the location of a high-level nuclear waste repository. As a part of site investigation, a borehole of depth > 3000 ft was drilled using reverse circulation drilling technique with water as the drilling fluid. After completion of drilling, seven piezometers were to be installed in the borehole with their lower ends at different depths to measure equilibrated hydraulic heads and aquifer response during future pumping tests. The hydrologic perturbations caused during the drilling, clean up, and piezometer installation process were of primary concern. A numerical model was used to predict these perturbations and determine efficiency of borehole cleanup. It was found that the boundary condition at the borehole was the most difficult to model. 9 refs., 5 figs
Light-cone quantization and QCD phenomenology
International Nuclear Information System (INIS)
Brodsky, S.J.; Robertson, D.G.
1995-01-01
In principle, quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of their elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. A crucial tool in analyzing such phenomena is the use of relativistic light-cone quantum mechanics and Fock state methods to provide tractable and consistent treatments of relativistic many-body systems. In this article we present an overview of this formalism applied to QCD, focusing in particular on applications to the final states in deep inelastic lepton scattering that will be relevant for the proposed European Laboratory for Electrons (ELFE), HERMES, HERA, SLAC, and CEBAF. We begin with a brief introduction to light-cone field theory, stressing how it many allow the derivation of a constituent picture, analogous to the constituent quark model, from QCD. We then discuss several applications of the light-cone Fock state formalism to QCD phenomenology. The Fock state representation includes all quantum fluctuations of the hadron wavefunction, including far off-shell configurations such as intrinsic charm and, in the case of nuclei, hidden color. In some applications, such as exclusive processes at large momentum transfer, one can make first-principle predictions using factorization theorems which separate the hard perturbative dynamics from the nonpertubative physics associated with hadron binding. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer
From Faddeev-Kulish to LSZ. Towards a non-perturbative description of colliding electrons
Dybalski, Wojciech
2017-12-01
In a low energy approximation of the massless Yukawa theory (Nelson model) we derive a Faddeev-Kulish type formula for the scattering matrix of N electrons and reformulate it in LSZ terms. To this end, we perform a decomposition of the infrared finite Dollard modifier into clouds of real and virtual photons, whose infrared divergencies mutually cancel. We point out that in the original work of Faddeev and Kulish the clouds of real photons are omitted, and consequently their wave-operators are ill-defined on the Fock space of free electrons. To support our observations, we compare our final LSZ expression for N = 1 with a rigorous non-perturbative construction due to Pizzo. While our discussion contains some heuristic steps, they can be formulated as clear-cut mathematical conjectures.
Tests of hard and soft QCD with $e^{+}e^{-}$ Annihilation Data
Kluth, S
2002-01-01
Experimental tests of QCD predictions for event shape distributions combining contributions from hard and soft processes are discussed. The hard processes are predicted by perturbative QCD calculations. The soft processes cannot be calculated directly using perturbative QCD, they are treated by a power correction model based on the analysis of infrared renormalons. Furthermore, an analysis of the gauge structure of QCD is presented using fits of the colour factors within the same combined QCD predictions.
Color-magnetic permeability of QCD vacuum
Energy Technology Data Exchange (ETDEWEB)
Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K
1980-03-01
In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.
Recent developments in QCD for LHC physics
International Nuclear Information System (INIS)
Anastasiou, C.
2006-01-01
We will review recent theoretical developments in QCD, attempting to assess the phenomenological impact of new theoretical results and to identify potentially useful directions for the future. A part of the talk will be devoted to new imaginative ideas which are rapidly changing the traditional approach to QCD computations, and surprising theoretical discoveries from perturbative calculations on the structure of gauge theories. (author)
Understanding of QCD through solvable models
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, G.
1980-07-01
Various aspects of strong interaction physics are discussed. It is shown that several nontrivial features arise from non-perturbative 'solutions' of QCD-like models in (1+1) dimensions. An attempt is made to bring these features in (3+1) dimensional semiclassical treatments of QCD.
International Nuclear Information System (INIS)
Anisovich, V.V.
1989-06-01
Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs
The time development of QCD jets
International Nuclear Information System (INIS)
Caneschi, L.
1979-01-01
The time development of jets in perturbative QCD is studied. In spite of the fact that the total time for the jet to develop increases indefinitely with increasing energy, quark antiquark pairs remain unscreened only an infinitesimal time. (author)
Perturbative quantum chromodynamics
1989-01-01
This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu
Perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Radyushkin, A.V.
1987-01-01
The latest achievements in perturbative quantum chromodynamics (QCD) relating to the progress in factorization of small and large distances are presented. The following problems are concerned: Development of the theory of Sudakov effects on the basis of mean contour formalism. Development of nonlocal condensate formalism. Calculation of hadron wave functions and hadron distribution functions using QCD method of sum rules. Development of the theory of Regge behaviour in QCD, behaviour of structure functions at small x. Study of polarization effects in hadron processes with high momentum transfer
Non-perturbative effective interactions in the standard model
Arbuzov, Boris A
2014-01-01
This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...
Monte-Carlo code PARJET to simulate e+e--annihilation events via QCD jets
International Nuclear Information System (INIS)
Ritter, S.
1983-01-01
The Monte-Carlo code PARJET simulates exclusive hadronic final states produced in e + e - -annihilation via a virtual photon by two steps: (i) the fragmentation of the original quark-antiquark pair into further partons using results of perturbative QCD in the leading logarithmic approximation (LLA), and (ii) the transition of these parton jets into hadrons on the basis of a chain decay model. Program summary and code description are given. (author)
QCD contributions to vacuum polarization
International Nuclear Information System (INIS)
Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.
1980-01-01
We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)
CERN. Geneva
2006-01-01
The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.
LHC physics: challenges for QCD
Frixione, S.
2003-01-01
I review the status of the comparisons between a few measurements at hadronic colliders and perturbative QCD predictions, which emphasize the need for improving the current computations. Such improvements will be mandatory for a satisfactory understanding of high-energy collisions at the LHC
Thermodynamics of QCD from Sakai-Sugimoto model
International Nuclear Information System (INIS)
Isono, Hiroshi; Mandal, Gautam; Morita, Takeshi
2015-01-01
Till date, the only consistent description of the deconfinement phase of the Sakai-Sugimoto model appears to be provided by the analysis of http://dx.doi.org/10.1007/JHEP09(2011)073. The current version of the analysis, however, has a subtlety regarding the monodromy of quarks around the Euclidean time circle. In this note, we revisit and resolve this issue by considering the effect of an imaginary baryon chemical potential on quark monodromies. With this ingredient, the proposal of http://dx.doi.org/10.1007/JHEP09(2011)073 for investigating finite temperature QCD using holography is firmly established. Additionally, our technique allows a holographic computation of the free energy as a function of the imaginary chemical potential in the deconfinement phase; we show that our result agrees with the corresponding formula obtained from perturbative QCD, namely the Roberge-Weiss potential.
Observations on discretization errors in twisted-mass lattice QCD
International Nuclear Information System (INIS)
Sharpe, Stephen R.
2005-01-01
I make a number of observations concerning discretization errors in twisted-mass lattice QCD that can be deduced by applying chiral perturbation theory including lattice artifacts. (1) The line along which the partially conserved axial current quark mass vanishes in the untwisted-mass-twisted-mass plane makes an angle to the twisted-mass axis which is a direct measure of O(a) terms in the chiral Lagrangian, and is found numerically to be large; (2) Numerical results for pionic quantities in the mass plane show the qualitative properties predicted by chiral perturbation theory, in particular, an asymmetry in slopes between positive and negative untwisted quark masses; (3) By extending the description of the 'Aoki regime' (where m q ∼a 2 Λ QCD 3 ) to next-to-leading order in chiral perturbation theory I show how the phase-transition lines and lines of maximal twist (using different definitions) extend into this region, and give predictions for the functional form of pionic quantities; (4) I argue that the recent claim that lattice artifacts at maximal twist have apparent infrared singularities in the chiral limit results from expanding about the incorrect vacuum state. Shifting to the correct vacuum (as can be done using chiral perturbation theory) the apparent singularities are summed into nonsingular, and furthermore predicted, forms. I further argue that there is no breakdown in the Symanzik expansion in powers of lattice spacing, and no barrier to simulating at maximal twist in the Aoki regime
Duality and BPS spectra in N = 2 supersymmetric QCD
International Nuclear Information System (INIS)
Ferrari, F.
1997-01-01
I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.)
Duality and BPS spectra in N = 2 supersymmetric QCD
Energy Technology Data Exchange (ETDEWEB)
Ferrari, F. [Ecole Normale Superieure, 75 - Paris (France). Lab. de Physique Theorique
1997-05-01
I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.).
Method of analytic continuation by duality in QCD: Beyond QCD sum rules
International Nuclear Information System (INIS)
Kremer, M.; Nasrallah, N.F.; Papadopoulos, N.A.; Schilcher, K.
1986-01-01
We present the method of analytic continuation by duality which allows the approximate continuation of QCD amplitudes to small values of the momentum variables where direct perturbative calculations are not possible. This allows a substantial extension of the domain of applications of hadronic QCD phenomenology. The method is illustrated by a simple example which shows its essential features
International Nuclear Information System (INIS)
Aurenche, P.; Douiri, A.; Baier, R.; Fontannaz, M.; Schiff, D.
1985-01-01
We calculate the corrections of order αsub(s) to the process γγ->HX where both initial photons are real. The analytic expressions are given and a detailed discussion of the variation of the corrections with psub(T) and rapidity is presented. The dependence on the factorization prescription and scale is also discussed. Using the equivalent photon approximation the cross-section for e + e - ->e + e - HX is calculated both in the PEP/PETRA and LEP energy range. Based on the vector meson dominance model the non perturbative background is estimated and its importance for present and future experiments is emphasized. (orig.)
Generalized chiral perturbation theory
International Nuclear Information System (INIS)
Knecht, M.; Stern, J.
1994-01-01
The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs
Higher order QCD corrections in exclusive charmless B decays
International Nuclear Information System (INIS)
Bell, G.
2006-10-01
addressed in perturbation theory. We perform a NLO analysis of these form factors and discuss some open questions of the general factorization formula which is obtained from the heavy-quark expansion in QCD. These include the origin and resummation of large logarithms and the non-factorization of soft and collinear effects in the so-called soft-overlap contribution. We show that the latter can be calculated in our set-up and address the issue of endpoint singularities. As a byproduct of our analysis, we calculate leading-twist light-cone distribution amplitudes for non-relativistic bound states which can be applied for the description of B c and η c mesons. (orig.)
Higher order QCD corrections in exclusive charmless B decays
Energy Technology Data Exchange (ETDEWEB)
Bell, G.
2006-10-15
-relativistic bound states which can be addressed in perturbation theory. We perform a NLO analysis of these form factors and discuss some open questions of the general factorization formula which is obtained from the heavy-quark expansion in QCD. These include the origin and resummation of large logarithms and the non-factorization of soft and collinear effects in the so-called soft-overlap contribution. We show that the latter can be calculated in our set-up and address the issue of endpoint singularities. As a byproduct of our analysis, we calculate leading-twist light-cone distribution amplitudes for non-relativistic bound states which can be applied for the description of B{sub c} and {eta}{sub c} mesons. (orig.)
International Nuclear Information System (INIS)
Zazula, J.M.
1984-01-01
This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs
International Nuclear Information System (INIS)
Reya, E.
1982-01-01
The some of motivations for color and the numerous qualitative successes of QCD are presented. Non-leading higher order contributions to the (x, Q 2 )-dependence of scaling violations of non-singlet and singlet structure functions are discussed, especially non-perturbative correction to deep inelastic processes such as higher twist contributions. Finally the topic of how to account theoretically for the existence of free fractionally charged particles by concentrating mainly on spontaneously breaking SU(3) color is presented. (M.F.W.)
Instantaneous stochastic perturbation theory
International Nuclear Information System (INIS)
Lüscher, Martin
2015-01-01
A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.
The supercritical pomeron in QCD
International Nuclear Information System (INIS)
White, A. R.
1998-01-01
Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory
Neutron star structure from QCD
Fraga, Eduardo S; Vuorinen, Aleksi
2016-01-01
In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.
Hadron scattering, resonances, and QCD
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Holographic models and the QCD trace anomaly
International Nuclear Information System (INIS)
Goity, Jose L.; Trinchero, Roberto C.
2012-01-01
Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
QCD and Light-Front Holography
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.
2010-10-27
The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.
Energy Technology Data Exchange (ETDEWEB)
Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dimopoulos, P. [Roma ' ' La Sapienza' ' Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Frezzotti, R. [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Fisica; INFN, Roma (IT)] (and others)
2010-06-15
We present results for the renormalization constants of bilinear quark operators obtained b4>UNL<426>UNL using the tree-level Symanzik improved gauge action and the N{sub f}=2 twisted mass fermion action at maximal twist, which guarantees automatic O(a)- improvement. Our results are also relevant for the corresponding standard (untwisted) Wilson fermionic action since the two actions only differ, in the massless limit, by a chiral rotation of the quark fields. The scale-independent renormalization constants Z{sub V}, Z{sub A} and the ratio Z{sub P}/Z{sub S} have been computed using the RI-MOM approach, as well as other alternative methods. For Z{sub A} and Z{sub P}/Z{sub S}, the latter are based on both standard twisted mass and Osterwalder-Seiler fermions, while for Z{sub V} a Ward Identity has been used. The quark field renormalization constant Z{sub q} and the scale dependent renormalization constants Z{sub S}, Z{sub P} and Z{sub T} are determined in the RI-MOM scheme. Leading discretization effects of O(g{sup 2}a{sup 2}), evaluated in one-loop perturbation theory, are explicitly subtracted from the RI-MOM estimates. (orig.)
Perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-12-01
The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures
Self-consistent areas law in QCD
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Migdal, A.A.
1980-01-01
The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution
International Nuclear Information System (INIS)
Brodsky, S.J.
1992-09-01
The quantization of gauge theory at fixed light-cone time τ = t - z/c provides new perspectives for solving non-perturbative problems in quantum chromodynamics. The light-cone Fock state expansion provides both a precise definition of the relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a general calculus for predicting QCD processes at the amplitude level. Applications to exclusive processes and weak decay amplitudes are discussed. The problem of computing the hadronic spectrum and the corresponding light-cone wavefunctions of QCD in one space and one time dimension has been successfully reduced to the diagonalization of a discrete representation of the light-cone Hamiltonian. The problems confronting the solution of gauge theories in 3 + 1 dimensions in the light-cone quantization formalism,, including zero modes and non-perturbative renormalization, are reviewed
Testing QCD with Hypothetical Tau Leptons
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.
1998-10-21
We construct new tests of perturbative QCD by considering a hypothetical {tau} lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e{sup +}e{sup -} annihilation cross section ratio, R{sub e{sup +}e{sup -}}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical {tau}. This method allows the wide range of the R{sub e{sup +}e{sup -}} data to be used as a probe of perturbative QCD.
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of
The running QCD coupling in the pre-asymptotic region
Energy Technology Data Exchange (ETDEWEB)
Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C
1999-03-01
We study deviations from the perturbative asymptotic behaviour in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at low momenta (p {approx} 2 GeV) as obtained from the lattice three-gluon vertex. Our exploratory study provides some evidence for power corrections to the perturbative running proportional to 1/p{sup 2}.
The running coupling of QCD with four flavors
International Nuclear Information System (INIS)
Tekin, Fatih; Wolff, Ulli; Sommer, Rainer
2010-06-01
We have calculated the step scaling function and the running coupling of QCD in the Schroedinger functional scheme with four flavors of O(a) improved Wilson quarks. Comparisons of our non-perturbative results with 2-loop and 3-loop perturbation theory as well as with non-perturbative data for only two flavors are made. (orig.)
Measuring infrared contributions to the QCD pressure
Kajantie, Keijo; Rummukainen, K; Schröder, Y
2002-01-01
For the pressure (or free energy) of QCD, four-dimensional (4d) lattice data is available at zero baryon density up to a few times the critical temperature $T_c$. Perturbation theory, on the other hand, has serious convergence problems even at very high temperatures. In a combined analytical and three-dimensional (3d) lattice method, we show that it is possible to compute the QCD pressure from about $2 T_c$ to infinity. The numerical accuracy is good enough to resolve in principle, e.g., logarithmic contributions related to 4-loop perturbation theory.
A unified BFKL/DGLAP description of deep inelastic scattering
International Nuclear Information System (INIS)
Kwiecinski, J.; Stasto, A. M.; Martin, A. D.
1997-01-01
We introduce a coupled pair of evolution equations for the unintegrated gluon distribution and the sea quark distribution which incorporate both the resummed leading ln(1/x) BFKL contributions and the resummed leading ln(Q 2 ) DGLAP contributions. We solve these unified equations in the perturbative QCD domain. With only two physically motivated parameters we obtain an excellent description of the HERA F 2 data
Strong coupling QCD and the (π+,π-) reaction
International Nuclear Information System (INIS)
Miller, G.A.; Washington Univ., Seattle, WA
1989-01-01
Previous six-quark bag model calculations are in disagreement with new (π + , π - ) data, but conventional nucleonic calculations are generally successful. Six-quark bag models are related to perturbative QCD. I argue that the strong coupling limit of QCD (SCQCD) is a more appropriate starting point for nuclear physics. 15 refs., 3 figs
Pion form factor within QCD instanton vacuum model
International Nuclear Information System (INIS)
Dorokhov, A.E.
1997-01-01
Instanton induced pion wave function is constructed. It provides an intrinsic k 1 dependence which suppress soft virtual one-gluon exchanges and thus legitimate the perturbative QCD (pQCD) calculations of the pion electromagnetic form factor in the region of momentum transfers above the scale. (author)
The QCD form factor of massive quarks and applications
International Nuclear Information System (INIS)
Moch, S.
2009-11-01
We review the electromagnetic form factor of heavy quarks with emphasis on the QCD radiative corrections at two-loop order in the perturbative expansion. We discuss important properties of the heavy-quark form factor such as its exponentiation in the high-energy limit and its role in QCD factorization theorems for massive n-parton amplitudes. (orig.)
QCD with jets and photons at ATLAS and CMS
AUTHOR|(INSPIRE)INSPIRE-00265099; The ATLAS collaboration
2017-01-01
A selection of recent QCD measurements by the ATLAS and CMS collaborations in final states with photons and jets is presented. New results with improved precision provide a probe of perturbative QCD, allowing to perform PDF fits and extracting the strong coupling constant $\\alpha_{S}$.
Instantons in the QCD vacuum and in deep inelastic scattering
International Nuclear Information System (INIS)
Ringwald, A.; Schrempp, F.
1999-01-01
We give a brief status report on our on-going investigation of the prospects to discover QCD instantons in deep inelastic scattering (DIS) at HERA. A recent high-quality lattice study of the topological structure of the QCD vacuum is exploited to provide crucial support of our predictions for DIS, based on instanton perturbation theory
Determinations of the QCD strong coupling αsub(s) and the scale Λsub(QCD)
International Nuclear Information System (INIS)
Duke, D.W.; Roberts, R.G.
1984-08-01
The authors review determinations, via experiment of the strong coupling of QCD, αsub(s). In almost every case, the results are used of perturbative QCD to make the necessary extraction from data. These include scaling violations of deep inelastic scattering, e + e - annihilation experiments (including quarkonium decays) and lepton pair production. Finally estimates for Λ from lattice calculations are listed. (author)
International Nuclear Information System (INIS)
Pivovarov, A.A.
2003-01-01
The analytic structure in the strong coupling constant that emerges for some observables in QCD after duality averaging of renormalization-group-improved amplitudes is discussed, and the validity of the infrared renormalon hypothesis for the determination of this structure is critically reexamined. A consistent description of peculiar features of perturbation theory series related to hypothetical infrared renormalons and corresponding power corrections is considered. It is shown that perturbation theory series for the spectral moments of two-point correlators of hadronic currents in QCD can explicitly be summed in all orders using the definition of the moments that avoids integration through the infrared region in momentum space. Such a definition of the moments relies on the analytic properties of two-point correlators in the momentum variable that allows for shifting the integration contour into the complex plane of the momentum. For definiteness, an explicit case of gluonic current correlators is discussed in detail
Non-perturbative inputs for gluon distributions in the hadrons
Energy Technology Data Exchange (ETDEWEB)
Ermolaev, B.I. [Ioffe Physico-Technical Institute, Saint Petersburg (Russian Federation); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)
2017-03-15
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K{sub T}-and collinear factorizations. (orig.)
Non-perturbative inputs for gluon distributions in the hadrons
International Nuclear Information System (INIS)
Ermolaev, B.I.; Troyan, S.I.
2017-01-01
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations. (orig.)
Non-Perturbative Aspects of Thermal QCD
Energy Technology Data Exchange (ETDEWEB)
Greensite, Jeff [San Francisco State Univ., CA (United States); Golterman, Maarten F. l. [San Francisco State Univ., CA (United States)
2015-09-30
This report summarizes research in theoretical high energy physics carried out under grant support by Mithat Unsal, Jeff Greensite and Maarten Golterman, together with a list of publications generated under this grant.
Gribov-Lipatov relation in perturbative QCD
International Nuclear Information System (INIS)
Pavlenko, O.P.; Snigipev, A.M.; Zinov'ev, G.M.
1982-01-01
It is shown that at small X the violation of the Gribov-Lipatov relation between the distribution Dsub(A)sup(B)(X, Qsup(2)) (where X is a fraction of parton longitudinal momentum, Q 2 is a square of momentum transfer) and fragmentation anti Dsub(A)sup(B)(X, Qsup(2)) functions depends on the order in which their X- and Q 2 -asymptotic behaviours are investigated
Solving QCD via multi-Regge theory
International Nuclear Information System (INIS)
White, A. R.
1998-01-01
To solve QCD at high-energy the authors must simultaneously find the hadronic states and the exchanged pomeron (IP) giving UNITARY scattering amplitudes. Experimentally, the IP ∼ a Regge pole at small Q 2 and a single gluon at larger Q 2 . (F 2 D -H1, dijets-ZEUS). In the solution which the author describes, these non-perturbative properties of the IP are directly related to the non-perturbative confinement and chiral symmetry breaking properties of hadrons
Calculating hadronic properties in strong QCD
International Nuclear Information System (INIS)
Pennington, M.R.
1996-01-01
This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)
Deuteron transverse densities in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)
2017-05-15
We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)
On microscopic structure of the QCD vacuum
Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.
2018-05-01
We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.
Alkofer, Reinhard; von Smekal, Lorenz
2001-11-01
Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....
The ADS/QCD correspondence and exclusive processes
International Nuclear Information System (INIS)
Brodsky, Stanley J.; De Teramond, Guy F.; Deur, Alexandre
2011-01-01
The AdS/CFT correspondence between theories in AdS space and conformal field theories in physical space-time provides an analytic, semi-classical, color-confining model for strongly-coupled QCD. The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics at zero quark mass, including a zero-mass pion and meson and baryon Regge spectra of linear trajectories with the same slope in orbital angular momentum L and radial quantum number n. One also predicts the form of the non-perturbative effective coupling alpha AdS/s (Q) and its Beta-function which agrees with the effective coupling alphag1 extracted from the Bjorken sum rule. Light-front holography, which connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable zeta, allows one to compute the analytic form of the frame-independent light-front wave functions, the fundamental entities which encode hadron properties as well as decay constants, form factors, deeply-virtual Compton scattering, exclusive heavy hadron decays, and other exclusive scattering amplitudes. One thus obtains a relativistic description of hadrons in QCD at the amplitude level with dimensional counting for exclusive reactions at high momentum transfer. As specific examples, we discuss the behavior of the pion and nucleon form factors in the space-like and time-like regions. We also review the phenomenology of exclusive processes including some anomalous empirical results.
The AdS/QCD Correspondence and Exclusive Processes
International Nuclear Information System (INIS)
Brodsky, Stanley
2010-01-01
The AdS/CFT correspondence between theories in AdS space and conformal field theories in physical space-time provides an analytic, semi-classical, color-confining model for strongly-coupled QCD. The soft-wall AdS/QCD model modified by a positive-sign dilaton metric leads to a remarkable one-parameter description of nonperturbative hadron dynamics at zero quark mass, including a zero-mass pion and a Regge spectrum of linear trajectories with the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. One also predicts the form of the non-perturbative effective coupling α s AdS (q) and its β-function which agrees with the effective coupling α ga extracted from the Bjorken sum rule. Light-front holography, which connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable ζ, allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties as well as decay constants, form factors, deeply virtual Compton scattering, exclusive heavy hadron decays and other exclusive scattering amplitudes. One thus obtains a relativistic description of hadrons in QCD at the amplitude level with dimensional counting for hard exclusive reactions at high momentum transfer. As specific examples we discuss the behavior of the pion and nucleon form factors in the space-like and time-like regions. We also review the phenomenology of exclusive processes including some anomalous empirical results.
Towards the chiral limit in QCD
International Nuclear Information System (INIS)
Shailesh Chandrasekharan
2006-01-01
Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led
Nuclear matter descriptions including quark structure of the hadrons
International Nuclear Information System (INIS)
Huguet, R.
2008-07-01
It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
Heterotic Pomeron: high energy hadronic collisions in QCD
International Nuclear Information System (INIS)
Chung-I Tan
1993-01-01
A unified treatment of high energy collisions in QCD is presented. Using a probabilistic approach, both perturbative (hard) and non-perturbative (soft) components are incorporated in a consistent fashion, leading to a ''Heterotic Pomeron''. As a Regge trajectory, it is non linear, approaching 1 in the limit t → -∞. 2 tabs., 9 refs
The impact of quark masses on pQCD thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Graf, Thorben; Schaffner-Bielich, Juergen [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil)
2016-07-15
We present results for several thermodynamic quantities within the next-to-leading order calculation of the thermodynamic potential in perturbative QCD at finite temperature and chemical potential including non-vanishing quark masses. These results are compared to lattice data and to higher-order optimized perturbative calculations to investigate the trend brought about by mass corrections. (orig.)
The instanton liquid model of QCD
International Nuclear Information System (INIS)
Blotz, A.
1998-01-01
Within a microscopic model for the non-perturbative vacuum of QCD, hadronic correlation functions are calculated. In the model the vacuum is a statistical, interacting ensemble of instantons and anti-instantons at the scale of Λ QCD . Hadronic two-point as well as three-point correlation functions are evaluated and compared with phenomenological information about the spectra, couplings and form factors. Especially the electro magnetic form factor of the pion is obtained and new predictions for the charm contribution to DIS structure functions are made
Exclusive hadronic and nuclear processes in QCD
International Nuclear Information System (INIS)
Brodsky, S.J.
1985-12-01
Hadronic and nuclear processes are covered, in which all final particles are measured at large invariant masses compared with each other, i.e., large momentum transfer exclusive reactions. Hadronic wave functions in QCD and QCD sum rule constraints on hadron wave functions are discussed. The question of the range of applicability of the factorization formula and perturbation theory for exclusive processes is considered. Some consequences of quark and gluon degrees of freedom in nuclei are discussed which are outside the usual domain of traditional nuclear physics. 44 refs., 7 figs
Playing with QCD I: effective field theories
International Nuclear Information System (INIS)
Fraga, Eduardo S.
2009-01-01
The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)
QCD physics with the CMS experiment
Cerci, Salim
2017-01-01
Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant $\\alpha_{S}$. The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.
QCD Physics with the CMS Experiment
Cerci, S.
2017-12-01
Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant αS . The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.
A Bayesian analysis of QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A new technique has recently been developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. This approach has the virtue of being able to directly generate the spectral function of a given operator, without the need of making an assumption about its specific functional form. To investigate whether useful results can be extracted within this method, we have first studied the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results show a significant peak in the region of the experimentally observed ρ-meson mass, which is in agreement with earlier QCD sum rules studies and suggests that the Maximum Entropy Method is a strong tool for analyzing QCD sum rules.
On the description of exclusive processes beyond the leading twist approximation
International Nuclear Information System (INIS)
Anikin, I.V.; Ivanov, D.Yu.; Pire, B.; Szymanowski, L.; Wallon, S.
2010-01-01
We describe hard exclusive processes beyond the leading twist approximation in a framework based on the Taylor expansion of the amplitude around the dominant light-cone directions. This naturally introduces an appropriate set of non-perturbative correlators whose number is minimalized after taking into account QCD equations of motion and the invariance under rotation on the light-cone. We exemplify this method at the twist 3 level and show that the coordinate and momentum space descriptions are fully equivalent.
On the description of exclusive processes beyond the leading twist approximation
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Ivanov, D.Yu. [Institute of Mathematics, 630090 Novosibirsk (Russian Federation); Pire, B., E-mail: pire@cpht.polytechnique.f [CPhT, Ecole Polytechnique, CNRS, F-91128 Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Wallon, S. [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France); UPMC Univ. Paris 6, Faculte de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)
2010-01-04
We describe hard exclusive processes beyond the leading twist approximation in a framework based on the Taylor expansion of the amplitude around the dominant light-cone directions. This naturally introduces an appropriate set of non-perturbative correlators whose number is minimalized after taking into account QCD equations of motion and the invariance under rotation on the light-cone. We exemplify this method at the twist 3 level and show that the coordinate and momentum space descriptions are fully equivalent.
Hot QCD equations of state and relativistic heavy ion collisions
Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.
2007-11-01
We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.
The QCD phase transition. From the microscopic mechanism to signals
International Nuclear Information System (INIS)
Shuryak, E.V.
1997-01-01
This talk consists of two very different parts: the first one deals with non-perturbative QCD and physics of the chiral restoration, the second with rather low-key (and still unfinished) work aiming at obtaining EOS and other properties of hot/dense hadronic matter from data on heavy ion collisions. The microscopic mechanism for chiral restoration phase transition is a transition from randomly placed tunneling events (instantons) at low T to a set of strongly correlated tunneling-anti-tunneling events (known as instanton-anti-instanton molecules) at high T. Many features of the transition can be explained in this simple picture, especially the critical line and its dependence on quark masses. This scenario predicts qualitative change of the basic quark-quark interactions around the phase transition line, with some states (such as pion-sigma ones) probably surviving event at T > T c . In the second half of the talk experimental data on collective flow in heavy ion collision are discussed its hydro-based description and relation to equation of state (EOS). A distinct feature of the QCD phase transition region is high degree of 'softness', (small ratio pressure/energy density). (author)
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
International Nuclear Information System (INIS)
Brodsky, Stanley J.; de Teramond, Guy F.
2007-01-01
The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
Non-perturbative effective interactions in the standard model
Energy Technology Data Exchange (ETDEWEB)
Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2014-07-01
This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.
Non-perturbative quark mass renormalization
Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.
1998-01-01
We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.
Academic Training: QCD: are we ready for the LHC
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.
Energy Technology Data Exchange (ETDEWEB)
Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)
2016-11-14
We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
Dynamical chiral-symmetry breaking in dual QCD
International Nuclear Information System (INIS)
Krein, G.; Williams, A.G.
1991-01-01
We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ
Properties of the quark gluon plasma from lattice QCD
International Nuclear Information System (INIS)
Mages, Simon Wolfgang
2015-01-01
Quantum Chromodynamics (QCD) is the theory of the strong interaction, the theory of the interaction between the constituents of composite elementary particles (hadrons). In the low energy regime of the theory, standard methods of theoretical physics like perturbative approaches break down due to a large value of the coupling constant. However, this is the region of most interest, where the degrees of freedom of QCD, the color charges, form color-neutral composite elementary particles, like protons and neutrons. Also the transition to more energetic states of matter like the quark gluon plasma (QGP), is difficult to investigate with perturbative approaches. A QGP is a state of strongly interacting matter, which existed shortly after the Big Bang and can be created with heavy ion collisions for example at the LHC at CERN. In a QGP the color charges of QCD are deconfined. This thesis explores ways how to use the non-perturbative approach of lattice QCD to determine properties of the QGP. It focuses mostly on observables which are derived from the energy momentum tensor, like two point correlation functions. In principle these contain information on low energy properties of the QGP like the shear and bulk viscosity and other transport coefficients. The thesis describes the lattice QCD simulations which are necessary to measure the correlation functions and proposes new methods to extract these low energy properties. The thesis also tries to make contact to another non-perturbative approach which is Improved Holographic QCD. The aim of this approach is to use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to make statements about QCD with calculations of a five dimensional theory of gravity. This thesis contributes to that work by constraining the parameters of the model action by comparing the predictions with those of measurements with lattice QCD.
The QCD/SM Working Group: Summary Report
International Nuclear Information System (INIS)
Dobbs, M.
2004-01-01
Among the many physics processes at TeV hadron colliders, we look most eagerly for those that display signs of the Higgs boson or of new physics. We do so however amid an abundance of processes that proceed via Standard Model (SM) and in particular Quantum Chromodynamics (QCD) interactions, and that are interesting in their own right. Good knowledge of these processes is required to help us distinguish the new from the known. Their theoretical and experimental study teaches us at the same time more about QCD/SM dynamics, and thereby enables us to further improve such distinctions. This is important because it is becoming increasingly clear that the success of finding and exploring Higgs boson physics or other New Physics at the Tevatron and LHC will depend significantly on precise understanding of QCD/SM effects for many observables. To improve predictions and deepen the study of QCD/SM signals and backgrounds was therefore the ambition for our QCD/SM working group at this Les Houches workshop. Members of the working group made significant progress towards this on a number of fronts. A variety of tools were further developed, from methods to perform higher order perturbative calculations or various types of resummation, to improvements in the modeling of underlying events and parton showers. Furthermore, various precise studies of important specific processes were conducted. A significant part of the activities in Les Houches revolved around Monte Carlo simulation of collision events. A number of contributions in this report reflect the progress made in this area. At present a large number of Monte Carlo programs exist, each written with a different purpose and employing different techniques. Discussions in Les Houches revealed the need for an accessible primer on Monte Carlo programs, featuring a listing of various codes, each with a short description, but also providing a low-level explanation of the underlying methods. This primer has now been compiled and a
International Nuclear Information System (INIS)
Ali, A.
1981-04-01
The promise of e + e - annihilation as an ideal laboratory to test Quantum Chromodynamics, QCD, has been the dominating theme in elementary particle physics during the last several years. An attempt is made to partially survey the subject in deep perturbative region in e + e - annihilation where theoretical ambiguities are minimal. Topics discussed include a review of the renormalization group methods relevant for e + e - annihilation, total hadronic cross section, jets and large-psub(T) phenomena, non-perturbative quark and gluon fragmentation effects and analysis of the jet distributions measured at DORIS, SPEAR and PETRA. My hope is to review realistic tests of QCD in e + e - annihilation - as opposed to the ultimate tests, which abound in literature. (orig.)
High momentum transfer processes in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1978-01-01
A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example
Large x Behaviour and the Non-Perturbative Structure of Hadronic Systems
Energy Technology Data Exchange (ETDEWEB)
Anthony W. Thomas
2005-02-01
While the traditional interest in structure functions has been the confirmation of the predictions of perturbative QCD, this data also contains a wealth of information on how QCD works in the infrared, or confinement, region. As the challenge of the strong force now turns to the study of QCD in the non-perturbative region, such information is extremely valuable.We outline some of the key issues for both nucleon and nuclear structure functions.
The effective QCD theory at low energy; La theorie effective de QCD a basse energie
Energy Technology Data Exchange (ETDEWEB)
Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
1995-12-31
Quantum chromodynamics is studied here in the range of low energies. The Chiral perturbation theory is presented, this theory is based on a thorough study of QCD symmetry, of general field theory principles and of S-matrices. Ward identities are defined within the scope of current algebras and by using functional method. Their consequences on Chiral structure of QCD emptiness and on strong interaction at low energies are studied. The pion-pion diffusion at low energies is treated as an example. (A.C.) 70 refs.
Studying the perturbative Reggeon
International Nuclear Information System (INIS)
Griffiths, S.; Ross, D.A.
2000-01-01
We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ''reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q 2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel. (orig.)
QCD in hadron-hadron collisions
International Nuclear Information System (INIS)
Albrow, M.
1997-03-01
Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E T jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction
Multiparton interactions and multiparton distributions in QCD
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus
2011-11-15
After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multiparton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multiparton distributions as a laboratory to test and improve our understanding of hadron structure. (orig.)
A QCD motivated model for soft processes
International Nuclear Information System (INIS)
Kormilitzin, A.; Levin, E.
2009-01-01
In this talk we give a brief description of a QCD motivated model for both hard and soft interactions at high energies. In this model the long distance behaviour of the scattering amplitude is determined by the dipole scattering amplitude in the saturation domain.
Multiparton interactions and multiparton distributions in QCD
International Nuclear Information System (INIS)
Diehl, Markus
2011-11-01
After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multiparton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multiparton distributions as a laboratory to test and improve our understanding of hadron structure. (orig.)
Freezing of the QCD coupling constant and the pion form factor
International Nuclear Information System (INIS)
Aguilar, A.C.; Mihara, A.; Natale, A.A.
2003-01-01
The possibility that the QCD coupling constant (α s ) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the 'frozen' the QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment. (author)
QCD Factorizations in Exclusive γ*γ*→ρL0ρL0
International Nuclear Information System (INIS)
Pire, B.; Segond, M.; Szymanowski, L.; Wallon, S.
2008-01-01
The exclusive process e + e - →e + e - ρ L 0 ρ L 0 allows to study various dynamics and factorization properties of perturbative QCD. At moderate energy, we demonstrate how collinearQCD factorization emerges, involving either generalized distribution amplitudes (GDA) or transition distribution amplitudes (TDA). At higher energies, in the Regge limit of QCD, we show that it offers a promising probe of the BFKL resummation effects to be studied at ILC
Forward and Small-x QCD Physics Results from CMS Experiment at LHC
AUTHOR|(CDS)2079608
2016-01-01
The Compact Muon Solenoid (CMS) is one of the two large, multi-purpose experiments at the Large Hadron Collider (LHC) at CERN. During the Run I Phase a large pp collision dataset has been collected and the CMS collaboration has explored measurements that shed light on a new era. Forward and small-$x$ quantum chromodynamics (QCD) physics measurements with CMS experiment covers a wide range of physics subjects. Some of highlights in terms of testing the very low-$x$ QCD, underlying event and multiple interaction characteristics, photon-mediated processes, jets with large rapidity separation at high pseudo-rapidities and the inelastic proton-proton cross section dominated by diffractive interactions are presented. Results are compared to Monte Carlo (MC) models with different parameter tunes for the description of the underlying event and to perturbative QCD calculations. The prominent role of multi-parton interactions has been confirmed in the semihard sector but no clear deviation from the standard DGLAP parto...
Probing QCD in low energy anti pp collisions
International Nuclear Information System (INIS)
Brodsky, S.J.
1986-06-01
A number of exclusive and inclusive antiproton reactions are discussed which could provide useful constraints or test novel features of quantum chromodynamics in the intermediate momentum transfer domain involving both perturbative and non-perturbative dynamics. High momentum transfer reactions are briefly reviewed. Inclusive antiproton reactions and the QCD critical length, QCD predictions for proton-antiproton exclusive processes, and studies of the Compton amplitude in proton-antiproton annihilation are covered. Testing hadron helicity conservation in heavy quark resonance is discussed. Also covered are heavy hadron pair production in proton-antiproton exclusive interactions, exclusive nuclear reactions, and quasi-exclusive nuclear processes
Alvarez-Gaumé, Luís; Kounnas, Costas; Marino, M; Alvarez-Gaume, Luis; Distler, Jacques; Kounnas, Costas; Marino, Marcos
1996-01-01
We analyze the possible soft breaking of N=2 supersymmetric Yang-Mills theory with and without matter flavour preserving the analyticity properties of the Seiberg-Witten solution. For small supersymmetry breaking parameter with respect to the dynamical scale of the theory we obtain an exact expression for the effective potential. We describe in detail the onset of the confinement transition and some of the patterns of chiral symmetry breaking. If we extrapolate the results to the limit where supersymmetry decouples, we obtain hints indicating that perhaps a description of the QCD vacuum will require the use of Lagrangians containing simultaneously mutually non-local degrees of freedom (monopoles and dyons).
Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions
International Nuclear Information System (INIS)
Kovchegov, Yuri V.
2006-01-01
We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system
Energy Technology Data Exchange (ETDEWEB)
Anon.
1979-10-15
Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics.
International Nuclear Information System (INIS)
Simonov, Yu.A.
1989-01-01
To apply QCD to nuclear physics one needs methods of long-distance QCD. A new method, method of Confining Background Fields, CBF, which incorporates confinement, is presented with applications to heavy and light quarks, both in mesons and baryons. Spin-dependent forces are calculated for light and heavy quarks. The quark potential model in some limiting case is derived. 25 refs
International Nuclear Information System (INIS)
Anon.
1979-01-01
Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics
High energy asymptotics of multi-colour QCD and two-dimensional conformal field theories
International Nuclear Information System (INIS)
Lipatov, L.N.; Deutsches Elektronen-Synchrotron
1993-04-01
In the multi-colour limit of perturbative QCD the holomorphic factorization of wave functions of compound states of n reggeized gluons in the impact parameter space is shown. The conformally invariant Hamiltonian for each holomorphic factor has a nontrivial integral of motion. The odderon in QCD is the simplest example of the composite system with these properties. (orig.)
'Fixed point' QCD analysis of the CCFR data on deep inelastic neutrino-nucleon scattering
International Nuclear Information System (INIS)
Sidorov, A.V.; Stamenov, D.B.
1995-01-01
The results of LO Fixed point QCD (FP-QCD) analysis of the CCFR data for the nucleon structure function xF 3 (x,Q 2 ) are presented. The predictions of FP-QCD, in which α S (Q 2 ) tends to a nonzero coupling constant α 0 as Q 2 → ∞, are in good agreement with the data. The description of the data is even better than that in the case of LO QCD. The FP-QCD parameter α 0 is determined with a good accuracy: α 0 0.198 ± 0.009. Having in mind the recent QCD fits to the same data we conclude that unlike the high precision and large (x,Q 2 ) kinematic range of the CCFR data they cannot discriminate between QCD and FP-QCD predictions for xF 3 (x,Q 2 ). 11 refs., 1 tab
Studies in the renormalization-prescription dependence of perturbative calculations
International Nuclear Information System (INIS)
Celmaster, W.; Sivers, D.
1981-01-01
Now that the quantitative testing of perturbative quantum chromodynamics (QCD) has become a major experimental and theoretical effort, it is important to understand the renormalization-prescription dependence of perturbative calculations. We stress the phenomenological importance of finding a definition of the QCD expansion parameter which reduces the magnitude of high-order corrections. We give explicit arguments suggesting that a choice of coupling based on momentum-space subtraction can be phenomenologically useful. Examples from QCD and QED are used to illustrate these arguments, and we also discuss possibilities for refining them
International Nuclear Information System (INIS)
Suslov, I.M.
2005-01-01
Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed
International Nuclear Information System (INIS)
Smith, W.H.
1997-01-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F 2 , which is used to determine the gluon momentum distribution. Both low and high Q 2 regimes are discussed. The low Q 2 transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure α s , and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs
Energy Technology Data Exchange (ETDEWEB)
Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.
1997-06-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Energy Technology Data Exchange (ETDEWEB)
Curci, G [European Organization for Nuclear Research, Geneva (Switzerland); Greco, M; Srivastava, Y [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati
1979-11-19
A recently proposed approach to the problem of infrared and mass singularities in QCD based on the formalism of coherent states, is extended to discuss massless quark and gluon jets. The present results include all leading (ln delta) terms as well as finite terms in the energy loss epsilon, in addition to the usual ln epsilon associated with ln delta. The formulae agree with explicit perturbative calculations, whenever available. Explicit expressions for the total Ksub(T) distributions are given which take into account transverse-momentum conservation. Predictions are also made for the Q/sup 2/ dependence of the mean Ksub(T)/sup 2/ for quark and gluon jets. The jet ksub(T) distributions are extrapolated for low ksub(T) and shown to describe with good accuracy the data for eanti e..-->..qanti q..-->.. hadrons. Numerical predictions are also presented for the forthcoming PETRA, PEP and LEP machines.
QCD sum rules in a Bayesian approach
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A novel technique is developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. The main advantage of this approach lies in its ability of directly generating the spectral function of a given operator. This is done without the need of making an assumption about the specific functional form of the spectral function, such as in the 'pole + continuum' ansatz that is frequently used in QCD sum rule studies. Therefore, with this method it should in principle be possible to distinguish narrow pole structures form continuum states. To check whether meaningful results can be extracted within this approach, we have first investigated the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results exhibit a significant peak in the region of the experimentally observed ρ-meson mass, which agrees with earlier QCD sum rules studies and shows that the Maximum Entropy Method is a useful tool for analyzing QCD sum rules.
2017-01-01
This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.
International Nuclear Information System (INIS)
Kronfeld, Andreas
2005-01-01
Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.
International Nuclear Information System (INIS)
Ingelman, Gunnar
1994-01-01
The traditional annual DESY Theory Workshop highlights a topical theory sector. The most recent was under the motto 'Quantum Chromo-Dynamics' - QCD, the field theory of quarks and gluons. The organizers had arranged a programme covering most aspects of current QCD research. This time the workshop was followed by a topical meeting on 'QCD at HERA' to look at the electron-proton scattering experiments now in operation at DESY's new HERA collider
Aurenche , P; Guillet , J.-Ph; Pilon , E
2016-01-01
3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...
AUTHOR|(INSPIRE)INSPIRE-00337682; Dasgupta, Mrinal
This thesis presents phenomenological studies of a state-of-the-art NNLL+NLO theoretical calculation of a novel collider observable known as 'phi star'. In these studies the 'phi star' observable, a measure of azimuthal decorrelation, is applied directly to the leptons in the production of massive lepton pairs in hadron collisions (the Drell-Yan process). This provides an alternate measure of the recoil of the massive vector boson (Z/gamma) against initial state QCD radiation, but with distinct experimental advantages over the traditional boson transverse momentum. Attention is focused on the small-'phi star' regime (the quasi-back-to-back regime) where the infrared dynamics of soft/collinear gluon emissions become important. These phenomenological studies are followed up with the presentation of a measurement of 'phi star' in 'Z to mu mu' events using 20.3 fb^-1 of collision data collected by the ATLAS experiment in 2012. Finally, studies directly related to the ATLAS absolute luminosity calibration by the v...
Hard And Soft QCD Physics In ATLAS
Directory of Open Access Journals (Sweden)
Adomeit Stefanie
2014-04-01
Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.
Conformal Symmetry as a Template for QCD
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2004-08-04
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.
The Top Quark, QCD, And New Physics.
Dawson, S.
2002-06-01
The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.
Conformal Symmetry as a Template for QCD
International Nuclear Information System (INIS)
Brodsky, S
2004-01-01
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero β function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as τ decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized
Early Run 2 Hard QCD Results from the ATLAS Collaboration
Directory of Open Access Journals (Sweden)
Orlando Nicola
2016-01-01
Full Text Available We provide an overview of hard QCD results based on data collected with the ATLAS detector in proton-proton collision at √s = 13 TeV at the Large Hadron Collider. The production of high transverse momentum jets, photons and photon-pairs were studied; the inclusive jet cross section is found to agree well with the prediction of perturbative QCD calculations performed at next-to-leading accuracy. The production cross sections for W and Z bosons in their e and μ decays was measured; in general, agreement is found with the expectation of next-to-next-to leading order QCD calculations and interesting sensitivities to the proton structure functions are already observed. The top production cross sections were measured in different top decay channels and found to agree with the state of the art QCD predictions.
Higher order corrections in perturbative quantum chromodynamics
Indian Academy of Sciences (India)
Since the discovery of asymptotic freedom in non-abelian gauge field theories, like quan- tum chromodynamics (QCD), many perturbative calculations have been performed to ..... The integral above appears in the partial integration with respect to the momentum. &½ of the expression below (see figure 2). ¼. Т&½. ґѕπµТ.
QCD in gauge-boson production at the LHC
Schott, Matthias; The ATLAS collaboration
2018-01-01
Measurements of the Drell-Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS and CMS collaborations have performed several high precision measurements at different center-of-mass energies, ranging from single to triple differential cross sections. These measurements are the key in improving physics modelling uncertainties of electroweak precision measurements at the LHC. Moreover, perturbative QCD can be tested further in a multi-scale environment, when studying the production of jets in association with single and di-bosons final states. In this talk, we review the latest measurements, discuss the compatibility between the experiments and compare the results to the state-of-the-art QCD calculations and Monte Carlo simulations, as well their potential impact on improving our understanding PDFs.
The strong coupling constant of QCD with four flavors
International Nuclear Information System (INIS)
Tekin, Fatih
2010-01-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
The strong coupling constant of QCD with four flavors
Energy Technology Data Exchange (ETDEWEB)
Tekin, Fatih
2010-11-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
International Nuclear Information System (INIS)
Kaplan, D.B.
1995-01-01
I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it
Sykora, Tomas; The ATLAS collaboration
2018-01-01
Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.
International Nuclear Information System (INIS)
Dominguez, C.A.
1987-02-01
The scalar (0 ++ ) and the tensor (2 ++ ) gluonium spectrum is analyzed in the framework of QCD sum rules. Stable eigenvalue solutions, consistent with duality and low energy theorems, are obtained for the mass and width of these glueballs. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
International Nuclear Information System (INIS)
Christ, Norman H
2000-01-01
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
A nucleon description based on confinement and a dynamic generation of the quark masses
International Nuclear Information System (INIS)
Caillon, J.C.
2010-01-01
We have considered the nucleon as an MIT bag, but instead of a perturbative vacuum, we use a QCD vacuum modified as compared to the outside space and hence a modified quark-condensate. Quarks acquire their constituent-masses through their interactions with this modified QCD vacuum in a framework of an NJL model. The value of the quark condensate modified in the nucleon is then determined self-consistently by the equilibrium condition for the bag: the outward pressure due to both the motion of three quarks and the modified vacuum in the nucleon must be counterbalanced by the inward pressure of the vacuum outside the bag. We are able to pass continuously from a nucleon description in a pure MIT bag model to a description using constituent quark masses determined in an NJL model.
Basics of thermal field theory a tutorial on perturbative computations
Laine, Mikko
2016-01-01
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...
A non-perturbative approach to jet cross-sections and a new model for hadron-hadron interactions
International Nuclear Information System (INIS)
Andersson, B.
1986-01-01
The author discusses two subjects in this work. The first is a description of a non-perturbative approach to calculate the probabilities to obtain a particular state of confined force field in a hard interaction like e/sup +/e/sup -/ annihilation. This approach has been discussed previously by the author. There are at this time many more results of the program, in particular, some rather puzzling and disturbing ones as compared to the results obtained in perturbative QCD. The second subject is a new approach to hadron-hadron inelastic scattering. A model for these interactions based upon multiple perturbative parton interactions and subsequent string-stretching and breaking has been formulated by others in earlier works
International Nuclear Information System (INIS)
Neubert, Matthias
2001-01-01
The QCD factorization approach provides the theoretical basis for a systematic analysis of nonleptonic decay amplitudes of B mesons in the heavy-quark limit. After recalling the basic ideas underlying this formalism, several tests of QCD factorization in the decays B→D (*) L, B→K * γ, and B→πK, ππ are discussed. It is then illustrated how factorization can be used to obtain new constraints on the parameters of the unitarity triangle
Schuster, Theodor
2013-01-01
We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\\mathcal{N}=4$ super Yang-Mills theory.
Masses and couplings of open beauty states in QCD
International Nuclear Information System (INIS)
Rubinstein, H.R.; Reinders, L.J.; Yazaki, S.
1981-05-01
Masses and couplings of open beauty states (strange and non-strange) with Jsup(PC) = 0 ++ , 0 -+ , 1 -- . and 1 ++ are calculated using the QCD sum rule formalism. Non-perturbative effects due to quark and gluon condensate operators are shown to be important, confirming earlier calculations for equal quark mass systems. (author)
Probing QCD and new physics with dijets
CERN. Geneva
2014-01-01
Dijets are the most abundant final state in hadron collisions. During the last 30 years dijets have been used to probe QCD and also search for new phenomena beyond the Standard Model. Recent results from Tevatron and LHC are discussed that reveal the full physics potential of dijets. Precise measurements of cross sections and angular observables, made possible thanks to the excellent understanding of the jet objects, confront the perturbative QCD predictions at the multi-TeV regime and constrain the PDFs. At the same time, the dijet invariant mass spectrum is used as a means of searching for resonances and for contact interactions between the quarks. Following the success of the LHC Run I physics program, dijets will once again play a central role in the quest for exciting discoveries at Run II, and we are prepared to exploit this powerful final state.
Compositeness and QCD at the SSC
International Nuclear Information System (INIS)
Barnes, V.; Blumenfeld, B.; Cahn, R.
1987-01-01
Compositeness may be signaled by an increase in the production of high transverse momentum hadronic jet pairs or lepton pairs. The hadronic jet signal competes with the QCD production of jets, a subject of interest in its own right. Tests of perturbative QCD at the SSC will be of special interest because the calculations are expected to be quite reliable. Studies show that compositeness up to a scale of 20 to 35 TeV would be detected in hadronic jets at the SSC. Leptonic evidence would be discovered for scales up to 10 to 20 TeV. The charge asymmetry for leptons would provide information on the nature of the compositeness interaction. Calorimetry will play a crucial role in the detection of compositeness in the hadronic jet signal. Deviations from an e/h response of 1 could mask the effect. The backgrounds for lepton pair production seem manageable. 30 refs., 19 figs., 10 tabs
Exactly soluble QCD and confinement of quarks
International Nuclear Information System (INIS)
Rusakov, B.
1997-01-01
An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)
Hadronization of QCD and effective interactions
International Nuclear Information System (INIS)
Frank, M.R.
1994-01-01
An introductory treatment of hadronization through functional integral calculus and bifocal Bose fields is given. Emphasis is placed on the utility of this approach for providing a connection between QCD and effective hadronic field theories. The hadronic interactions obtained by this method are nonlocal due to the QCD substructure, yet, in the presence of an electromagnetic field, maintain the electromagnetic gauge invariance manifest at the quark level. A local chiral model which is structurally consistent with chiral perturbation theory is obtained through a derivative expansion of the nonlocalities with determined, finite coefficients. Tree-level calculations of the pion form factor and π - π scattering, which illustrate the dual constituent-quark-chiral-model nature of this approach, are presented
QCD collinear factorization, its extensions and the partonic distributions
Szymanowski, Lech
2012-01-01
I review the basics of the collinear factorization theorem applied primarily to deep inelastic scattering (DIS) involving forward parton distributions (PDFs) and the extensions of this theorem for exclusive processes probing non-forward parton distributions (GPDs), the generalized distribution amplitudes (GDAs) and the transition distribution amplitudes (TDAs). These QCD factorization theorem is an important tool in the description of hard processes in QCD. Whenever valid, it permits to repre...
International Nuclear Information System (INIS)
Harada, Masayasu
2009-01-01
Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Probing the perturbative NLO parton evolution in the small-x region
International Nuclear Information System (INIS)
Glueck, M.; Pisano, C.; Reya, E.
2005-01-01
A dedicated test of the perturbative QCD NLO parton evolution in the very small-x region is performed. We find a good agreement with recent precision HERA data for F 2 p (x,Q 2 ), as well as with the present determination of the curvature of F 2 p . Characteristically, perturbative QCD evolutions result in a positive curvature which increases as xdecreases. Future precision measurements in the very small x-region, x -4 , could provide a sensitive test of the range of validity of perturbative QCD. (orig.)
International Nuclear Information System (INIS)
Bartlett, R.; Kirtman, B.; Davidson, E.R.
1978-01-01
After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references
Is QCD relevant to nuclear physics
International Nuclear Information System (INIS)
Thomas, A.W.
1985-01-01
A review is given of recent work on baryon structure in a number of QCD-motivated models. After establishing a prima facie case that the quark model should be relevant in a consistent description of the nucleus over a wide range of momentum transfer, the author looks for experimental confirmation. The discussion includes the search for exotic states, for a six quark component of the deuteron, and an up to date report on the interpretation of the EMC effect. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Roessner, Simon
2009-04-09
Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)
International Nuclear Information System (INIS)
Roessner, Simon
2009-01-01
Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)
QCD machines - present and future
International Nuclear Information System (INIS)
Christ, N.H.
1991-01-01
The present status of the currently working and nearly working dedicated QCD machines is reviewed and proposals for future machines are discussed with particular emphasis on the QCD Teraflop Project in the US. (orig.)
Threshold resummation and higher order effects in QCD
International Nuclear Information System (INIS)
Ringer, Felix Maximilian
2015-01-01
Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.
The renormalization group and lattice QCD
International Nuclear Information System (INIS)
Gupta, R.
1989-01-01
This report discusses the following topics: scaling of thermodynamic quantities and critical exponents; scaling relations; block spin idea of Kadanoff; exact RG solution of the 1-d Ising model; Wilson's formulation of the renormalization group; linearized transformation matrix and classification of exponents; derivation of exponents from the eigenvalues of Τ αβ ; simple field theory: the gaussian model; linear renormalization group transformations; numerical methods: MCRG; block transformations for 4-d SU(N) LGT; asymptotic freedom makes QCD simple; non-perturbative β-function and scaling; and the holy grail: the renormalized trajectory
Moments of structure functions in full QCD
International Nuclear Information System (INIS)
Dolgov, D.; Brower, R.; Capitani, S.; Negele, J.W.; Pochinsky, A.; Renner, D.; Eicker, N.; Lippert, T.; Schilling, K.; Edwards, R.G.; Heller, U.M.
2001-01-01
Moments of the quark density distribution, moments of the quark helicity distribution, and the tensor charge are calculated in full QCD. Calculations of matrix elements of operators from the operator product expansion have been performed on 16 3 x 32 lattices for Wilson fermions at β = 5.6 using configurations from the SESAM collaboration and at β = 5.5 using configurations from SCRI. One-loop perturbative renormalization corrections are included. Selected results are compared with corresponding quenched calculations and with calculations using cooled configurations
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others
2016-04-15
We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
International Nuclear Information System (INIS)
Zou, L.P.; Zhang, P.M.; Pak, D.G.
2013-01-01
We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed
Energy Technology Data Exchange (ETDEWEB)
Iancu, Edmond [IPhT, Saclay (France)
2014-07-01
These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.
International Nuclear Information System (INIS)
Iancu, Edmond
2014-01-01
These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry
International Nuclear Information System (INIS)
Brodsky, Stanley J.; SLAC
2007-01-01
I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
International Nuclear Information System (INIS)
Hansl-Kozanecka, T.
1992-01-01
The phenomenological aspects of Quantum Chromodynamics (QCD) are examined which are relevant for lepton-hadron, electron-positron and hadron-hadron collisions. In deep inelastic scattering the virtual γ or W/Z is used as a probe of the nucleon structure. The strong coupling constant (α s ) measurements via deep inelastic scattering and e + e - annihilation are discussed. Parton-parton collisions (e.g., hard hadron-hadron collisions) are examined as the third regime for QCD tests. (K.A.) 122 refs., 84 figs., 4 tabs
International Nuclear Information System (INIS)
Lippert, Matthew
2009-01-01
We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
QCD effects on the event structure in leptoproduction
International Nuclear Information System (INIS)
Bengtsson, M.; Sjoestrand, T.
1988-01-01
Perturbative QCD corrections to leptoproduction events can be introduced either in the form of matrix elements or of parton showers. Each of these approaches has its advantages and disadvantages, making a comparison of the two interesting. At present energies, both methods can be made to agree reasonably well with data, whereas differences appear at higher energies. The influence of these QCD effects on the expected event structure at ep colliders, HERA in particular, is investigated in detail. This includes multiplicity and momentum distributions transverse momentum flow and correlations, as well as jet properties. (orig.)
Light-cone quantized QCD and novel hadron phenomenology
International Nuclear Information System (INIS)
Brodsky, S.J.
1997-09-01
The authors reviews progress made in solving gauge theories such as collinear quantum chromodynamics using light-cone Hamiltonian methods. He also shows how the light-cone Fock expansion for hadron wavefunctions can be used to compute operator matrix elements such as decay amplitudes, form factors, distribution amplitudes, and structure functions, and how it provides a tool for exploring novel features of QCD. The author also reviews commensurate scale relations, leading-twist identities which relate physical observables to each other, thus eliminating renormalization scale and scheme ambiguities in perturbative QCD predictions
Suppressing the QCD axion abundance by hidden monopoles
International Nuclear Information System (INIS)
Kawasaki, Masahiro
2015-11-01
We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 10 12 GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei-Quinn symmetry is spontaneously broken after inflation.
Non-perturbative plaquette in 3d pure SU(3)
Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y
2005-01-01
We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.
Hadronic Structure from Perturbative Dressing
Energy Technology Data Exchange (ETDEWEB)
Arash, Firooz [Physics Department, Tafresh University, Tafresh, Iran and Center for theoretical physics and Mathematics, AEOI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: farash@cic.aut.ac.ir
2005-09-15
Perturbative dressing of a valence quark in QCD produces the internal structure of an extended object, the so-called Valon. The valon structure is universal and independent of the hosting hadron. Polarized and unpolarized proton and pion structure functions are calculated in the valon representation. One finds that although all the available data on g{sub 1}{sup p,n,d} are easily reproduced, a sizable orbital angular momentum associated with the partonic structure of the valon is required in order to have a spin 1/2 valon.
QCD in heavy quark production and decay
International Nuclear Information System (INIS)
Wiss, J.
1997-01-01
The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs
Energy Technology Data Exchange (ETDEWEB)
Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)
2013-09-15
Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)
QCD in heavy quark production and decay
Energy Technology Data Exchange (ETDEWEB)
Wiss, J. [Univ. of Illinois, Urbana, IL (United States)
1997-06-01
The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
Stirling, William James
1991-12-01
1. Some basic theory. 2. Two important applications: - e+ e- annihilation (LEPSLS) ; deep inelastic scattering (HERA). 3. Other applications..., large Pt jets, W and Z, heavy quark production..., (pp- colliders). In this lecture: some basic theory. 1. QCD as a non abelian gauge field theory. 2. Asymptotic freedom. 3. Beyond leading order - renormalisation schemes. 4. MS.
Renormalization of Hamiltonian QCD
International Nuclear Information System (INIS)
Andrasi, A.; Taylor, John C.
2009-01-01
We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.
Phenomenology Using Lattice QCD
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
International Nuclear Information System (INIS)
Cahill, R.T.
1992-01-01
A review is given of progress in deriving the effective action for hadronic physics, S[π, ρ, ω, .., anti N, N, ..], from the fundamental defining action of QCD, S[anti q, q, A μ a ]. This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling. (orig.)
Observables of QCD diffraction
Mieskolainen, Mikael; Orava, Risto
2017-03-01
A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.
Metzger, W.J.
2003-01-01
Several preliminary QCD results from e+e- interactions at LEP are reported. These include studies of event shape variables, which are used to determine alpha_s and for studies of the validity of power corrections. Further, a study of color reconnection effects in 3-jet Z decays is reported.
International Nuclear Information System (INIS)
Nathan Isgur
1997-01-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2003-11-19
Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.
Form factors and QCD in spacelike and timelike region
International Nuclear Information System (INIS)
A.P. Bakulev; A.V. Radyushkin; N.G. Stefanis
2000-01-01
The authors analyze the basic hard exclusive processes: πγ * γ-transition, pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 > 0 of the relevant momentum transfers. They describe the construction of the timelike version of the coupling constant α s . They show that due to the analytic continuation of the collinear logarithms each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. They found no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, they use a QCD sum rule inspired model and show that there are non-canceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region
Form factors and QCD in spacelike and timelike regions
International Nuclear Information System (INIS)
Bakulev, A. P.; Radyushkin, A. V.; Stefanis, N. G.
2000-01-01
We analyze the basic hard exclusive processes, the πγ * γ-transition and the pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 >0 of the relevant momentum transfers. We describe the construction of the timelike version of the coupling constant α s . We show that due to the analytic continuation of the collinear logarithms, each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. We find no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, we use a QCD sum rule inspired model and show that there are noncanceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region
Mechanism for confinement in massive quark QCD
International Nuclear Information System (INIS)
Adler, S.L.
1981-01-01
The first part of this talk reviews the mean field approach to quark statics and the leading log model for bag formation was given in a recent paper. The second part treats two new topics. First, a flux function reformulation of the leading log model which leads to a stable iterative numerical method is given. Second, it is shown that when the running coupling constant is defined so that the β-function terminates at 1- or 2-loop order, QCD has two perturbative regions: the standard asymptotically free region F 2 much greater than kappa 2 (with kappa/sup 1/2/ the scale mass), and a second asymptotically free region where vertical bar F 2 vertical bar much less than kappa 2 . The existence of this second region gives a perturbative QCD justification for the weak-field behavior of the leading log model which is responsible for confinement. A possible starting point is suggested for an attempt at a general confinement proof
Winter Workshop on Recent QCD Advances at the LHC, Slides of the presentations
International Nuclear Information System (INIS)
D'Enterria, D.; Skands, P.; Siodmok, A.K.; Hoeth, H.; Jung, H.; Caforio, D.; Poghosyan, M.; Aquines, O.; Mitsuka, G.; Toia, A.; Jalilian-Marian, J.; Watt, G.; Guzzi, M.; Sarkar, A.; Paukkunen, H.; Kucharczyk, M.; Gouzevitch, M.; Bartels, J.; Lopez Albacete, J.; Teixeira de Almeida Milhano, G.; Marquet, C.; Kosower, D.; Guillet, J.P.; Arleo, F.; Hance, M.; Kolberg, T.R.; Weber, M.A.; Delsart, P.A.; Hinzmann, A.; Vincter, M.; Soyez, G.; Busch, O.; Nguyen, M.; Rybar, M.; Schienbein, I.; Lansberg, J.P.; Britsch, M.; Dorigo, T.; De Capua, S.; Greco, V.; Prino, F.; Panikashvili, N.; Park, W.J.; Ulrich, R.M.; Pecjak, B.; Silvestre, C.; Van Eldik, N.
2012-01-01
With the recent startup of operation at the Large Hadron Collider (LHC), the physics of the strong interaction described by the theory of Quantum Chromodynamics (QCD) explores a new territory in proton-proton and Pb-Pb collisions at energies never reached before: √(s)=7 TeV for p-p collisions and √=2.76 TeV for Pb-Pb collisions. The topics of the workshop are organized around 3 main axes: perturbative QCD (including jets, high-P T , direct photons, heavy quarks, quarkonia,...), QCD in the non-perturbative regime (including inclusive hadron production, diffraction,...) and low-x QCD. This document gathers the slides of all the presentations
International Nuclear Information System (INIS)
Olsson, Magnus.
1993-02-01
A model is proposed for the production of transverse jets from diffractively excited protons. We propose that transverse jets can be obtained from gluonic bremsstrahlung in a way similar to the emission in DIS. Qualitative agreement is obtained between the model and the uncorrected data published by the UA8 collaboration. Perturbative QCD in the MLLA approximation is applied to multiple jet production in e + e - -annihilation. We propose modified evolution equations for deriving the jet cross sections, defined in the 'k t ' or 'Durham' algorithm. The mean number of jets as a function of the jet resolution is studied, and analytical predictions are compared to the results of MC simulations. We also study a set of differential-difference equations for multiplicity distributions in e + e - -annihilations, supplemented with appropriate boundary conditions. These equations take into account nonsingular terms in the GLAP splitting functions as well as kinematical constraints related to recoil effects. The presence of retarded terms imply that the cascade develops more slowly and reduces the fluctuations. The solutions agree well with MC simulations and experimental data. (authors)
International Nuclear Information System (INIS)
Griffiths, S.
1999-06-01
We consider the description of deep inelastic scattering by perturbative quantum chromo dynamics in the Regge-limit, specifically via the Reggeization of fundamental particles (gluons and quarks) and the description of processes by integro-differential equations such as the BFKL equation. We review the Reggeization of the gluon via Feynman diagrams in the leading-log approximation and then extend this to an original demonstration of the quark's Reggeization. In analogy to the hard Pomeron's description in terms of Reggeized gluons we consider the ρ-meson's trajectory in terms of the exchange of Reggeized quarks and derive the evolution equation describing this. The solutions of this equation, both analytic and numeric, are then looked at in some detail, and we demonstrate how the low-x behaviour is enhanced. We then make modifications to include a running coupling constant and massive propagators, and investigate the effects that these have on the asymptotics of the ρ-trajectory. (author)
The generalized scheme-independent Crewther relation in QCD
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.
2017-07-01
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar
Hadronic corrections to electroweak observables from twisted mass lattice QCD
International Nuclear Information System (INIS)
Pientka, Grit
2015-01-01
For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.
Higher-Twist Distribution Amplitudes of the K Meson in QCD
Ball, P; Lenz, A; Ball, Patricia
2006-01-01
We present a systematic study of twist-3 and twist-4 light-cone distribution amplitudes of the K meson in QCD. The structure of SU(3)-breaking corrections is studied in detail. Non-perturbative input parameters are estimated from QCD sum rules and renormalons. As a by-product, we give a complete reanalysis of the twist-3 and -4 parameters of the pi-meson distribution amplitudes; some of the results differ from those usually quoted in the literature.
QCD at low Q2 - a correspondence relation for moments of structure functions
International Nuclear Information System (INIS)
Schrempp, B.; Schrempp, F.
1980-01-01
The precocious validity of QCD predictions in deep inelastic lepton nucleon scattering and e + e - annihilation is interpreted as a signal for an underlying 'correspondence principle' relating perturbative and nonperturbative physics on the Q 2 average. Correspondence relations for nonsinglet moments of deep inelastic structure functions are formulated, discussed and successfully tested against experiment. The relations provide an independent determination of the QCD Λ-parameter from low Q 2 data in perfect agreement with results from large Q 2 analyses. (author)
Perturbative Universality in Soft Particle Production
Khoze, V A; Ochs, Wolfgang; Khoze, Valery A.; Lupia, Sergio; Ochs, Wolfgang
1998-01-01
The spectrum of partons in a QCD jet becomes independent of the primary energy in the low momentum limit. This follows within the perturbative QCD from the colour coherence in soft gluon branching. Remarkably, the hadrons follow such behaviour closely, suggesting the parton hadron duality picture to be appropriate also for the low momentum particles. More generally, this scaling property holds for particles of low transverse and arbitrary longitudinal momentum, which explains an old experimental observation (``fan invariance''). Further tests of the perturbatively based picture for soft particle production are proposed for three-jet events in e+e- annihilation and di-jet production events in gamma p, gamma-gamma and p\\bar p collisions. They are based upon the difference in the intensity of the soft radiation from primary q\\bar q and gg antennae.
Academic training: QCD: are we ready for the LHC
2006-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply ...
A Precise determination of B(K) in quenched QCD
Dimopoulos, P.; Palombi, F.; Pena, C.; Sint, S.; Vladikas, A.
2006-01-01
The $B_K$ parameter is computed in quenched lattice QCD with Wilson twisted mass fermions. Two variants of tmQCD are used; in both of them the relevant $\\Delta S = 2$ four-fermion operator is renormalised multiplicatively. The renormalisation adopted is non-perturbative, with a Schroedinger functional renormalisation condition. Renormalisation group running is also non-perturbative, up to very high energy scales. In one of the two tmQCD frameworks the computations have been performed at the physical $K$-meson mass, thus eliminating the need of mass extrapolations. Simulations have been performed at several lattice spacings and the continuum limit was reached by combining results from both tmQCD regularisations. Finite volume effects have been partially checked and turned out to be small. Exploratory studies have also been performed with non-degenerate valence flavours. The final result for the RGI bag parameter, with all sources of uncertainty (except quenching) under control, is $\\hat B_K =0.789 \\pm 0.046$.
International Nuclear Information System (INIS)
Kovacs, E.
1996-02-01
We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E T >200 GeV, or dijet masses > 400 GeV/c 2 . We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k T smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution
International Nuclear Information System (INIS)
Espriu, D.
2003-01-01
QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)
C. Colloca TS/FM
2004-01-01
TS/FM group informs you that, for the progress of the works at the Prévessin site entrance, some perturbation of the traffic may occur during the week between the 14th and 18th of June for a short duration. Access will be assured at any time. For more information, please contact 160239. C. Colloca TS/FM
International Nuclear Information System (INIS)
Kharzeev, D.
2004-01-01
In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well
International Nuclear Information System (INIS)
Nachtmann, O.
1992-01-01
The modern theory of strong interactions - Quantum Chromodynamics (QCD), where quarks and gluons carrying the 'colour' quantum number play the essential role, is twenty years old. This birthday was duly celebrated at RWTH Aachen from 9-13 June, where recurring themes were - what has been achieved in the past twenty years?, where do we stand?, and what are the perspectives for the future?
International Nuclear Information System (INIS)
Bjorken, J.D.
1996-10-01
New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC
International Nuclear Information System (INIS)
Gervais, J.L.; Neveu, A.
1980-01-01
Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)
Skands, Peter
2012-01-01
These lectures were originally given at TASI and are directed at a level suitable for graduate students in High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD), focusing on collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into five main areas: 1) fundamentals, 2) fixed-order pertu...
International Nuclear Information System (INIS)
Gottlieb, S.
1992-01-01
Increased computer power is essential for future progress in lattice gauge theory and for other Grand challenge applications. We address the physics that can be done with a computer capable of sustaining 1 Teraflops for QCD and the technology that will make it possible to construct such a computer within the next three years. Our collaboration has proposed to build a computer based on the Thinking Machines CM5 communication network, but with nodes 10 times faster
International Nuclear Information System (INIS)
Baker, M.; Ball, J.S.; Zachariasen, F.
1991-01-01
We review the attempts to use dual (electric) vector potentials rather than the standard magnetic vector potentials to describe QCD, particularly in the infrared regime. The use of dual potentials is motivated by the fact that in classical electrodynamics, in a medium with a dielectric constant vanishing at small momenta (as is believed to be the case in QCD), electric potentials provide a far more convenient language than do magnetic potentials. To begin with, we outline attempts to construct the QCD Lagrangian in terms of dual potentials and describe the various possibilities, their shortcomings and advantages, which so far exist. We then proceed to use the most attractive (albeit consistent as a field theory only at the tree level) of these Lagrangians in a number of applications. We show that it describes a non-Abelian dual superconductor (so that it automatically confines color), derive the static quark-antiquark potential, and various temperature dependent effects, such as deconfinement and chiral symmetry breaking. (orig.)
Experimental application of QCD antennas
International Nuclear Information System (INIS)
Bobrovskyi, Sergei
2010-02-01
A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)
Experimental application of QCD antennas
Energy Technology Data Exchange (ETDEWEB)
Bobrovskyi, Sergei
2010-02-15
A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)
Renormalization of Extended QCD2
International Nuclear Information System (INIS)
Fukaya, Hidenori; Yamamura, Ryo
2015-01-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region
Scaling violations and perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Barbieri, R.; d'Emilio, E.; Caneschi, L.; Curci, G.
1979-01-01
The authors try to understand the meaning of the recent data on scaling violations of the moments of the structure function F 3 measured in γ and anti γ deep inelastic scattering, and their relevance as a test of QCD. This is done by reducing to the minimum the theoretical machinery and prejudices and stressing the perturbative nature of the problem. This leads to a definition of the perturbation coupling constant αsub(s) (Q = 2.5 GeV) = 0.61 +- 0.06, in terms of which the corrective terms for all quantities computed so far turn out to be relatively small. (Auth.)
Three-particle correlations in QCD parton showers
International Nuclear Information System (INIS)
Perez-Ramos, Redamy; Mathieu, Vincent; Sanchis-Lozano, Miguel-Angel
2011-01-01
Three-particle correlations in quark and gluon jets are computed for the first time in perturbative QCD. We give results in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. We thus provide a further test of the local parton hadron duality and make predictions for the LHC.
On the collinear singularity problem of hot QCD
International Nuclear Information System (INIS)
Candelpergher, B.; Grandou, T.
2002-01-01
The collinear singularity problem of hot QCD is revisited within a perturbative resummation scheme (PR) of the leading thermal fluctuations. On the basis of actual calculations, new aspects are discovered concerning the origin of the singularity plaguing the soft real photon emission rate out of a quark-gluon plasma at thermal equilibrium, when the latter is calculated by means of the Resummation Program (RP)
Uses of Effective Field Theory in Lattice QCD
Kronfeld, Andreas S.
2002-01-01
Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...
The nucleon axial charge in full lattice QCD
International Nuclear Information System (INIS)
Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, P.; Technische Univ. Muenchen, Garching; Negele, J.W.; Pochinsky, A.V.; Orginos, K.; College of William and Mary, Williamsburg, VA; Renner, D.B.; Schroers, W.
2005-10-01
The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm) 3 . We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors. (orig.)
Efficient analytic computation of higher-order QCD amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.
1995-01-01
The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints
QCD constraints for the electromagnetic form factor of the pion
International Nuclear Information System (INIS)
Machet, B.
1980-07-01
Using the modulus representation, we derive constraints for the behaviour of the electromagnetic form factor of the pion in the time like region [1 GeV 2 , + infinity[, from information given by perturbative QCD in the space like region [-μ 2 , - infinity[. A phenomenological μ dependent upper bound for the exponent of the first non leading logarithmic correction is deduced. Restrictions and problems of the method are discussed
Fermionic green function and functional determinant in QCD2
International Nuclear Information System (INIS)
Nielsen, N.K.; Rothe, K.D.; Schroer, B.
1979-01-01
We obtain a closed representation for the QCD 2 fermion determinant, euclidean Green functions and induced current in generic external fields. In the absence of zero modes the results are representable as sums over tree diagrams which as we show, can also be obtained from the original Feynman perturbation series via resummation and integration over loop variables. We also investigate the modifications due to the presence of zero modes. (orig.)
IR subtraction schemes. Integrating the counterterms at NNLO in QCD
Energy Technology Data Exchange (ETDEWEB)
Bolzoni, Paolo; Somogyi, Gabor
2010-06-15
We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)
IR subtraction schemes. Integrating the counterterms at NNLO in QCD
International Nuclear Information System (INIS)
Bolzoni, Paolo; Somogyi, Gabor
2010-06-01
We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)
Correlations in double parton distributions: perturbative and non-perturbative effects
Energy Technology Data Exchange (ETDEWEB)
Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)
2016-10-12
The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.
Multi parton interactions and multi parton distributions in QCD
International Nuclear Information System (INIS)
Diehl, M.
2012-01-01
After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multi parton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multi parton distributions as a laboratory to test and improve our understanding of hadron structure. (author)
Diffraction scattering and the parton model in QCD
International Nuclear Information System (INIS)
White, A.
1985-01-01
Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described
International Nuclear Information System (INIS)
Wilczek, F.
1998-01-01
After a very brief overview recollecting the 'classic' parts of QCD, that is its application to describe hard processes and static properties of hadrons, I survey recent work - some very recent - on QCD at non-zero temperature and density. At finite temperature and zero density there is a compelling theoretical framework allowing us to predict highly specific, non-trivial dependence of the phase structure on the number of flavors and colors. Several aspects have been rigorously, and successfully, tested against massive numerical realizations of the microscopic theory. The theoretical description of high density is nowhere near as mature, but some intriguing possibilities have been put forward. The color/flavor locked state recently proposed for three flavors has many remarkable features connected to its basic symmetry structure, notably including chiral symmetry re-breaking and the existence (unlike for two flavors) of a gauge invariant order parameter. I survey potential applications to heavy ion collisions, astrophysics, and cosmology. A noteworthy possibility is that stellar explosions are powered by release of QCD latent heat. (orig.)
Effective methods in QCD and the phenomenology of hadrons
International Nuclear Information System (INIS)
Chemtob, M.
1989-01-01
To place the problem in perspective I will first discuss the decoupling of heavy quarks in QCD which is a simpler perturbative problem. Then, I will review two experimental observables (the σ-term in πN scattering and the polarised deep inelastic scattering) which diagnose the possibility of non-perturbative effects associated with the decoupling of the strange quark and will next discuss their possible interpretation on the basis of the skyrme model. I will also present some simple-minded results for a related low-energy application to the meson-nucleon scattering lengths obtained in a chiral effective lagrangian approach
Second-order QCD analysis of the photon structure function
International Nuclear Information System (INIS)
Antoniadis, I.; Grunberg, G.
1983-01-01
The QCD predictions for the photon structure function are reexamined with particular emphasis on the small-x behavior. A simple parametrization of the real photon structure function, free of 1/x singularity, is derived. The structure function is found to be sensitive at small x to the non-perturbatively calculable constant term in the n=2 moment, and we show that the problem of a negative structure function can be solved on the basis of the knowledge of this single non-perturbative parameter. (orig.)
Direct calculations of the odderon intercept in perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Braun, M.A.; Gauron, P.; Nicolescu, B
1999-03-08
The odderon intercept is calculated directly, from its expression via an average energy of the odderon Hamiltonian, using both trial wave functions in the variational approach and the wave function recently constructed by Janik and Wosiek. The results confirm their reported value for the energy. Variational calculations give energies some 30% higher. However, they also predict the odderon intercept to be quite close to unity. In fact, for realistic values of {alpha}{sub s}, the intercept calculated variationally is at most 2% lower than the exact one: 0.94 instead of 0.96. It is also found that the solution for q{sub 3} = 0 does not belong to the odderon spectrum. The diffusion parameter is found to be of the order 0.6.
Energy Technology Data Exchange (ETDEWEB)
Li, Ya; Ma, Ai-Jun; Xiao, Zhen-Jun [Nanjing Normal University, Department of Physics, Institute of Theoretical Physics, Nanjing, Jiangsu (China); Wang, Wen-Fei [Shanxi University, Department of Physics, Institute of Theoretical Physics, Taiyuan, Shanxi (China)
2016-12-15
In this paper, we study the three-body decays B{sup 0}/B{sup 0}{sub s} → η{sub c}f{sub 0}(X) → η{sub c}π{sup +}π{sup -} by employing the perturbative QCD (PQCD) factorization approach. We evaluate the S-wave resonance contributions by using the two-pion distribution amplitude Φ{sub ππ}{sup S}. The Breit-Wigner formula for the f{sub 0}(500), f{sub 0}(1500), and f{sub 0}(1790) resonances and the Flatte model for the f{sub 0}(980) resonance are adopted to parameterize the time-like scalar form factors F{sub s}(ω{sup 2}). We also use the Bugg model to parameterize the f{sub 0}(500) and compare the relevant theoretical predictions from different models. We found the following results: (a) the PQCD predictions for the branching ratios are B(B{sup 0} → η{sub c}f{sub 0}(500)[π{sup +}π{sup -}]) = (1.53{sup +0.76}{sub -0.35}) x 10{sup -6} for Breit-Wigner model and B(B{sup 0} → η{sub c}f{sub 0}(500)[π{sup +}π{sup -}]) = (2.31{sup +0.96}{sub -0.48}) x 10{sup -6} for Bugg model; (b) B(B{sub s} → η{sub c}f{sub 0}(X)[π{sup +}π{sup -}]) =(5.02{sup +1.49}{sub -1.08}) x 10{sup -5} when the contributions from f{sub 0}(X) = (f{sub 0}(980), f{sub 0}(1500), f{sub 0}(1790)) are all taken into account; and (c) The considered decays could be measured at the ongoing LHCb experiment, consequently, the formalism of two-hadron distribution amplitudes could also be tested by such experiments. (orig.)
International Nuclear Information System (INIS)
Davies, J.; Vogt, A.
2016-06-01
We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.
Towards 4-loop NSPT result for a 3-dimensional condensate-contribution to hot QCD pressure
Torrero, C.; Schroder, Y.; Di Renzo, F.; Miccio, V.
2007-01-01
Thanks to dimensional reduction, the contributions to the hot QCD pressure coming from so-called soft modes can be studied via an effective three-dimensional theory named Electrostatic QCD (spatial Yang-Mills fields plus an adjoint Higgs scalar). The poor convergence of the perturbative series within EQCD suggests to perform lattice measurements of some of the associated gluon condensates. These turn out, however, to be plagued by large discretization artifacts. We discuss how Numerical Stochastic Perturbation Theory can be exploited to determine the full lattice spacing dependence of one of these condensates up to 4-loop order, and sharpen our tools on a concrete 2-loop example.
The IR sector of QCD: lattice versus Schwinger-Dyson equations
International Nuclear Information System (INIS)
Binosi, Daniele
2010-01-01
Important information about the infrared dynamics of QCD is encoded in the behavior of its (of-shell) Green's functions, most notably the gluon and the ghost propagators. Due to recent improvements in the quality of lattice data and the truncation schemes employed for the Schwinger-Dyson equations we have now reached a point where the interplay between these two non-perturbative tools can be most fruitful. In this talk several of the above points will be reviewed, with particular emphasis on the implications for the ghost sector, the non-perturbative effective charge of QCD, and the Kugo-Ojima function.
The lowest Landau level in QCD
Directory of Open Access Journals (Sweden)
Bruckmann Falk
2017-01-01
Full Text Available The thermodynamics of Quantum Chromodynamics (QCD in external (electro-magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL. Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.
QCD: Questions, challenges, and dilemmas
International Nuclear Information System (INIS)
Bjorken, J.
1996-11-01
An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs
Experimental Summary Moriond QCD 2007
Rolandi, Gigi
2007-01-01
More than 90 speakers gave a presentation at this years Moriond QCD conference and more than 60 talks reported the experimental status and perspectives on Standard Model, especially QCD, search for new physics, quark spectroscopy and Heavy Ions physics. I summarize what I consider the highlights of these presentations.
Quarklei: nuclear physics from QCD
International Nuclear Information System (INIS)
Goldman, T.
1985-01-01
The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.
2004-11-30
In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.
International Nuclear Information System (INIS)
Sonoda, Hidenori
1992-01-01
We give a formula for the derivatives of a correlation function of composite operators with respect to the parameters (i.e. the strong fine structure constant and the quark mass) of QCD in four- dimensional euclidean space. The formula is given as spatial integration of the operator conjugate to a parameter. The operator product of a composite operator and a conjugate operator has an unintegrable part, and the formula requires divergent subtractions. By imposing consistency conditions we drive a relation between the anomalous dimensions of the composite operators and the unintegrable part of the operator product coefficients. (orig.)
Fermion determinants in lattice QCD
International Nuclear Information System (INIS)
Johnson, Christopher Andrew
2001-01-01
The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniques, reducing the variance by a factor of order 100 with a further, equal amount of work. The variance reduction method is a two-stage process, involving a Chebyshev approximation to the quantity in question and then the subtraction of traceless operators. The method is applied to the fermion determinant for non-perturbatively improved Wilson fermions on a 16 3 x 32 lattice. It is also applicable to a wider class of matrix operators. Finally we discuss how dynamical quark effects may be simulated in a Monte Carlo process with an effective partitioning of low and high eigenmodes. This may be done via selective updating of a trial configuration which highlights the physically relevant effects of light quark modes. (author)
International Nuclear Information System (INIS)
Dzierba, A.R.
1995-01-01
One of the open questions in non-perturbative QCD has to do with the existence of meson states predicted by the theory other than qq states. These include four-quark states (q 2 q 2 or molecules like KK), states of pure glue (glueballs: gg or ggg) and mixed or hybrid states (qqg). The prima facie candidate for a non-qq state would be one possessing exotic quantum numbers, J PC , not consistent with a qq combination. Examples include J PC =0 +- , 0-- , -+ ,hor-ellipsis Remarkably, states with exotic quantum numbers have not been found despite intensive searches. The case for a possible sighting of an exotic J Jc = 1 -+ state decaying into ηπ O , made a few years ago, seems to be dissolving. Yet, the evidence for non-qq states is clearly present. Conventional qq nonets are over-subscribed, states have been found with decay modes or production characteristics peculiar for qq. The experimental lesson we have learned is that information from a number of complementary processes must be brought together in order to understand the meson spectrum. Information has come from e + e - ,γγ, γγ, and pp collisions, from vector meson decays and from peripheral and central hadroproduction. This talk will review the status of the experimental search. I will especially point out how new technology is being brought to bear on the re-visit of the light quark sector. New instrumentation allows for sophisticated and selective triggers. The recent explosion in computing power allows us to analyze data with unprecedented statistics. Preliminary results from a recently completed, ultra-high statistics experiment using the Multiparticle Spectrometer at Brookhaven Lab will be presented. I will also describe the extension of the search to CEBAF, where an approved experiment there will study the sub-structure of scalar mesons via the radiative decays of the ER meson
Perturbative quantum chromodynamic analysis of deep inelastic scattering
International Nuclear Information System (INIS)
Herrod, R.T.
1982-01-01
This is an account of the field theoretic description of the deep inelastic scattering of leptons from nucleons. Starting from simple parton model description, using the assumption of an SU(3) colour confining field theory, for the quarks comprising hadronic matter, the well known prediction of Bjorken scaling is obtained. Field theoretic predictions for deviations from Bjorken scaling are formally introduced, with particular reference to quantum chromodynamics (QCD). This treatment is purely perturbative, although the renormalisation group is used to improve convergence. Scaling violations at both leading order, and next-to-leading order are discussed, and it is shown how these lead to predictions regarding the dependence of the moments of observable structure functions, on the square of the 4-momentum transferred (Q 2 ). Evolution equations for the moments of structure functions are then derived. The intuitive approach of Altarelli and Parisi (AP), which leads to predictions for the Q 2 dependence of the structure functions themselves, is introduced. The corresponding equations are derived to next-to-leading order. The results of an extensive analysis of current data are presented.. Both weak and electromagnetic structure functions are compared with the predictions of leading order, and higher order formulae. Methods for incorporating heavy quark flavours into the AP equations are discussed. (author)
QCD phenomenology of the large P/sub T/ processes
International Nuclear Information System (INIS)
Stroynowski, R.
1979-11-01
Quantum Chromodynamics (QCD) provides a framework for the possible high-accuracy calculations of the large-p/sub T/ processes. The description of the large-transverse-momentum phenomena is introduced in terms of the parton model, and the modifications expected from QCD are described by using as an example single-particle distributions. The present status of available data (π, K, p, p-bar, eta, particle ratios, beam ratios, direct photons, nuclear target dependence), the evidence for jets, and the future prospects are reviewed. 80 references, 33 figures, 3 tables
Quenching parameter in a holographic thermal QCD
Patra, Binoy Krishna; Arya, Bhaskar
2017-01-01
We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.
Quenching parameter in a holographic thermal QCD
Directory of Open Access Journals (Sweden)
Binoy Krishna Patra
2017-01-01
Full Text Available We have calculated the quenching parameter, qˆ in a model-independent way using the gauge–gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov–Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover qˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge–gravity duality. Thus we use an appropriate definition of qˆ: qˆL−=1/L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause qˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L− with an additional (1/L− correction term in the short-distance limit whereas in the long-distance limit, qˆ depends only linearly on L− with no correction term. These observations agree with other holographic calculations directly or indirectly.
The gauge-independent QCD effective charge
International Nuclear Information System (INIS)
Watson, N.J.
1999-01-01
It is shown how the QCD concept of a gauge-, scale-and scheme-independent one-loop effective charge can be extended directly at the diagrammatic level to QCD, thus justifying explicitly the 'naive non-abelialization' prescription used in renormalon calculus. It is first argued that, for one-shell external fields and at the strictly one-loop level, the required gluon self-energy-like function is precisely that obtained from S-matrix elements via the pinch technique. The generalization of the pinch technique to explicitly off-shell processes is then introduced. It is shown how, as a result of a fundamental cancellation among conventional perturbation theory diagrams encoded in the QCD Ward identities, the pinch technique one-loop gluon self-energy iΠ μν ab (q) remains gauge-independent and universal regardless of the fact that the 'external' fields in the given process are off-shell. This demonstration involves a simple technique enabling the isolation in a arbitrary gauge, of iΠ μν ab (q) from subclasses of up to several hundreds diagrams at once. Furthermore, it is shown how this one-loop cancellation mechanism iterates for the subclasses of n-loop diagrams containing implicitly the Dyson chains of n-loop self energies iΠ μν ab (q). The gauge cancellation required for the Dyson summation of iΠ μν ab (q) is thus demonstrated explicitly in the class of ghost-free gauges for all orders n. (authors)
Tests of perturbative quantum chromodynamics in photon-photon collisions
International Nuclear Information System (INIS)
Brodsky, S.J.
1979-01-01
The production of hadrons in the collision of two photons via the process e + e - → e + e - X can provide an ideal laboratory for testing many of the features of the photon's hadronic interactions, especially its short-distance aspects. That part of two-photon physics which is particularly relevant to tests of perturbative QCD is reviewed here. 6 figures
Description of hadrons using string theory
International Nuclear Information System (INIS)
Sugimoto, Shigeki
2013-01-01
We give a brief overview of 'holographic QCD' for JPS members. Applying the idea of gauge/string duality to QCD, We obtain a description of hadrons based on string theory. Using this description, a lot of properties of hadrons can be analyzed and the results are in reasonable agreement with the observations. We try to explain the basic idea and some of the interesting results in a way accessible to non-experts. (author)
International Nuclear Information System (INIS)
Ali, A.; Kramer, G.
2010-12-01
The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2010-12-15
The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)
International Nuclear Information System (INIS)
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-01-01
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results
Hagler, P; Schäfer, A; Szymanowski, L; Teryaev, O V
2000-01-01
QCD dynamics at small quark and gluon momentum fractions or large total energy, which plays a major role for DESY HERA, the Fermilab Tevatron, BNL RHIC and CERN LHC physics, is still poorly understood. For one of the simplest processes, namely bb production, next-to- leading-order perturbation theory fails. We show that the combination of two recently developed theoretical concepts, the k/sub perpendicular to / factorization and the next-to-leading-logarithmic- approximation Balitskii-Fadin-Kuraev-Lipatov vertex, gives perfect agreement with data. One can therefore hope that these concepts provide a valuable foundation for the description of other high energy processes. (18 refs).
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Cundy, N. [Seoul National Univ. (Korea, Republic of). Lattice Gauge Theory Research Center; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y. [Tsukuba Univ., Ibaraki (Japan). Center for Computational Sciences; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-03-15
The {delta}-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the {delta}-expansion - applies, based on a quantum mechanical treatment of the quasi onedimensional system. In particular, for vanishing quark masses one obtains a residual pion mass M{sup R}{sub {pi}}, which has been computed to the third order in the {delta}-expansion. A comparison with numerical measurements of this residual mass allows for a new determination of some Low Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to simulate 2-flavour QCD directly in the {delta}-regime. This is very tedious, but results compatible with the predictions for M{sup R}{sub {pi}} have been obtained. Then we show that an extrapolation of pion masses measured in a larger volume towards the {delta}-regime leads to good agreement with the theoretical predictions. From those results, we also extract a value for the (controversial) sub-leading Low Energy Constant anti l{sub 3}. (orig.)
International Nuclear Information System (INIS)
Bietenholz, W.; Rakow, P.E.L.
2011-03-01
The δ-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the δ-expansion - applies, based on a quantum mechanical treatment of the quasi onedimensional system. In particular, for vanishing quark masses one obtains a residual pion mass M R π , which has been computed to the third order in the δ-expansion. A comparison with numerical measurements of this residual mass allows for a new determination of some Low Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to simulate 2-flavour QCD directly in the δ-regime. This is very tedious, but results compatible with the predictions for M R π have been obtained. Then we show that an extrapolation of pion masses measured in a larger volume towards the δ-regime leads to good agreement with the theoretical predictions. From those results, we also extract a value for the (controversial) sub-leading Low Energy Constant anti l 3 . (orig.)
The lightest hybrid meson supermultiplet in QCD
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef J
2011-10-01
We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.
QCD in the color-flow representation
Energy Technology Data Exchange (ETDEWEB)
Kilian, W. [Siegen Univ. (Germany). Fachbereich 7 - Physik; Ohl, T. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Speckner, C. [Freiburg Univ. (Germany). Physikalisches Inst.
2012-06-15
For many practical purposes, it is convenient to formulate unbroken nonabelian gauge theories like QCD in a color-flow basis. We present a new derivation of SU(N) interactions in the color-flow basis by extending the gauge group to U(N) x U(1)' in such a way that the two U(1) factors cancel each other. We use the quantum action principles to show the equivalence to the usual basis to all orders in perturbation theory. We extend the known Feynman rules to exotic color representations (e.g. sextets) and interactions (e.g. {epsilon}{sub ijk}). We discuss practical applications as they occur in automatic computation programs.
QCD-instantons at LHC. Theoretical aspects
International Nuclear Information System (INIS)
Petermann, M.
2007-06-01
Instantons are nonperturbative, topologically nontrivial field configurations, which occur in every nonabelian gauge theory. They can be understood as tunneling processes between topologically distinct vacua. Although being a basic theoretical aspect of the Standard Model, a direct experimental verification of instanton processes is still lacking. In this thesis the general discovery potential for QCD-instantons at the LHC is studied in detail by means of instanton perturbation theory. In this context the close correspondence between the leading instanton induced processes at HERA and at LHC becomes important. Essential aspects and differences to deep inelastic scattering can already be revealed by studying the simplest process. Based on these results inclusive cross sections are calculated including the emission of final state gluons. Compared to deep inelastic scattering, a large enhancement of the cross section is found. (orig.)
QCD in the color-flow representation
International Nuclear Information System (INIS)
Kilian, W.; Speckner, C.
2012-06-01
For many practical purposes, it is convenient to formulate unbroken nonabelian gauge theories like QCD in a color-flow basis. We present a new derivation of SU(N) interactions in the color-flow basis by extending the gauge group to U(N) x U(1)' in such a way that the two U(1) factors cancel each other. We use the quantum action principles to show the equivalence to the usual basis to all orders in perturbation theory. We extend the known Feynman rules to exotic color representations (e.g. sextets) and interactions (e.g. ε ijk ). We discuss practical applications as they occur in automatic computation programs.
Probing QCD with the ATLAS Detector
Kulchitsky, Yuri; The ATLAS collaboration
2018-01-01
Perturbative QCD calculations at next-to-next-to leading order (NNLO) are available for many processes since several years and can be rigorously tested with a large variety of final states. In this talk, we present the latest results from the ATLAS collaboration involving jets, dijets, photons in association with heavy flavors and vector bosons in association with jets, measured at center of mass energies of 8 and 13 TeV. All measured cross-sections are compared to state-of-the art theory predictions. Moreover, we present two measurements of dijet energy correlations allowing to test the renormalization group equation and to extract the strong coupling constant. The talk concludes with the latest results of jet-substructure studies at 13 TeV, in particular the measurement of the jet soft-drop mass.
The pressure of hot QCD up to $g^{6}$ ln(1/g)
Kajantie, Keijou; Rummukainen, K; Schröder, Y
2003-01-01
The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the resummed coupling constant series down to surprisingly low temperatures.
Factorization of exclusive processes in perturbative quantum-chromodynamics
International Nuclear Information System (INIS)
Segond, M.
2007-12-01
The work carried out in this thesis presents various theoretical and phenomenological studies of the exclusive production of longitudinally polarized neutral vector rho mesons in virtual photons collisions, within the framework of quantum-chromodynamics (QCD). The virtuality of the photons makes it possible to locate our approach in the perturbative area of the theory. The kinematical regimes considered allow the use of varied theoretical tools which reveal various properties of factorization of the scattering amplitude: two types of collinear factorization (at short distance) for this process are discussed in chapter 1, revealing - according to the polarization of the virtual photons and the kinematical limit considered- Generalized Distribution Amplitudes (GDA) or Transition Distribution Amplitudes (TDA), tools commonly used in the description of exclusive processes. We introduce into the Chapter 2 in a self-consistent way, the foundations of the BFKL (Balitskii, Fadin, Kuraev and Lipatov) formalism valid within the high energy limit (Regge limit) of QCD, for its phenomenological use detailed in Chapter 3: the scattering amplitude of the process is described in this formalism by exploiting the factorization in the two-dimensional transverse momentum space, or kT-factorization. We predict the value of the cross section of the process at Born order of the BFKL resummation and we discuss its possible observation at the future international linear collider (ILC). We consider also the differential cross sections of the process without momentum transfer with complete BFKL evolution at the order of the leading logarithms (Leading-Order) and also at the Next-to-Leading-Order to establish a fine test of this process with hard BFKL Pomeron exchange, observable at the future ILC. (author)
Heavy flavor production in QCD
International Nuclear Information System (INIS)
Hoyer, P.
1989-01-01
In this paper a brief survey is given of the status of heavy quark hadroproduction in QCD. The next-to-leading order calculation allows an estimate of the theoretical uncertainties to be made. They are manageable for top, but considerable for charm. The data on charm continues to show an excess of events at large x F , compared to QCD expectations. This may be linked to the measured anomalous A-dependence of the cross section on nuclear targets, also present at large x F . QCD models for the diffractive production of heavy quarks remain to be tested experimentally
International Nuclear Information System (INIS)
Ellis, J.
1978-05-01
A review is given of reliable quantum chromodynamics predictions which either have or soon can be verified by experiment. Included are a discussion of the classic application of quantum chromodynamics perturbation theory and asymptotic freedom to predict scaling violations in deep inelastic leptoproduction experiments, with emphasis on the first direct experimental confirmation of the numerical values of the anomalous dimensions; a review of recent advances in developing and justifying quantum chromodynamics perturbation theory predictions for a number of physical applications not underwritten by the operator product expansion and renormalization group arguments; and mention of attempts to consider the reliability of quantum chromodynamics perturbation theory predictions, given the fact that nonperturbative effects are presumably crucial in quantum chromodynamics. 100 references
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Precision Light Flavor Physics from Lattice QCD
Murphy, David
In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its
International Nuclear Information System (INIS)
Gross, D.
1979-01-01
An overview of QCD is given, and some of the dynamical issues that arise in attempts to solve this theory are discussed. In particular, attention is focused on the problems that appear in attempts to discuss the structure of low-lying hadrons, e.g. nucleons, on the basis of a color gauge theory of quarks. The picture of hadronic structure developed by Callan, Dashen, and Gross is reviewed; this picture maintains that it presents the qualitative features of hadronic structure emerging in a direct way from first principles. Finally, the relevance of the emerging understanding of the structure of hadrons to the question of what hadronic matter (nuclear or quark matter) might look like at high densities is discussed
Light-front QCD. II. Two-component theory
International Nuclear Information System (INIS)
Zhang, W.; Harindranath, A.
1993-01-01
The light-front gauge A a + =0 is known to be a convenient gauge in practical QCD calculations for short-distance behavior, but there are persistent concerns about its use because of its ''singular'' nature. The study of nonperturbative field theory quantizing on a light-front plane for hadronic bound states requires one to gain a priori systematic control of such gauge singularities. In the second paper of this series we study the two-component old-fashioned perturbation theory and various severe infrared divergences occurring in old-fashioned light-front Hamiltonian calculations for QCD. We also analyze the ultraviolet divergences associated with a large transverse momentum and examine three currently used regulators: an explicit transverse cutoff, transverse dimensional regularization, and a global cutoff. We discuss possible difficulties caused by the light-front gauge singularity in the applications of light-front QCD to both old-fashioned perturbative calculations for short-distance physics and upcoming nonperturbative investigations for hadronic bound states
QCD improved exclusive rare B-decays at the heavy b-quark limit
International Nuclear Information System (INIS)
Liu Dongsheng.
1993-09-01
The renormalization effects from the b-quark scale down to the non-perturbative QCD regime are studied for rare B-decays at the heavy b-quark limit. Phenomenological consequences of these effects are investigated. We find that the anomalous scaling behaviour plays a positive role in making non-perturbative model calculations consistent with recent CLEO measurements of B → K*γ. (author). 21 refs, 3 tabs