WorldWideScience

Sample records for persistent sensory sensitivity

  1. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  2. Epac activation sensitizes rat sensory neurons via activation of Ras

    Science.gov (United States)

    Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.

    2015-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2′-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. PMID:26596174

  3. Epac activation sensitizes rat sensory neurons through activation of Ras.

    Science.gov (United States)

    Shariati, Behzad; Thompson, Eric L; Nicol, Grant D; Vasko, Michael R

    2016-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Central sensitization phenomena after third molar surgery: A quantitative sensory testing study

    DEFF Research Database (Denmark)

    Jensen, T.S.; Norholt, S.E.; Svensson, P.

    2008-01-01

    Background: Surgical removal of third molars may carry a risk of developing persistent orofacial pain, and central sensitization appears to play an important role in the transition from acute to chronic pain. Aim: The aim of this study was to investigate sensitization (primarily central sensitiza......Background: Surgical removal of third molars may carry a risk of developing persistent orofacial pain, and central sensitization appears to play an important role in the transition from acute to chronic pain. Aim: The aim of this study was to investigate sensitization (primarily central...... sensitization) after orofacial trauma using quantitative sensory testing (QST). Methods: A total of 32 healthy men (16 patients and 16 age-matched control subjects) underwent a battery of quantitative tests adapted to the trigeminal area at baseline and 2, 7, and 30 days following surgical removal of a lower...... impacted third molar. Results: Central sensitization for at least one week was indicated by significantly increased pain intensity evoked by intraoral repetitive pinprick and electrical stimulation (p

  5. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro

    Directory of Open Access Journals (Sweden)

    Brianna K. Swartwout

    2017-10-01

    Full Text Available Zika virus (ZIKV has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  6. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro.

    Science.gov (United States)

    Swartwout, Brianna K; Zlotnick, Marta G; Saver, Ashley E; McKenna, Caroline M; Bertke, Andrea S

    2017-10-13

    Zika virus (ZIKV) has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  7. Sensory sensitivity and identification and hedonic assessment ofolfactory stimuli

    Directory of Open Access Journals (Sweden)

    Borys Ruszpel

    2012-06-01

    Full Text Available Conducted research had an exploratory character. It was focused on connections between temperament and olfactory functioning – in particular, identification and affective assessment of olfactory stimuli. Main research question dealt with potential correlations between sensory sensitivity (dimension of temperamental questionnaire FCZ‑KT with declarative and objective ability to identify presented odours and their assessment. Fifty four schoolgirls from one of the Warsaw sec‑ ondary schools participated in the research and they were asked for filling in the FCZ‑KT questionnaire and evaluating each of 16 smell samples. Analyses revealed a significant positive correlation between declared familiarity and accurate odours’ identification (odours that were subjectively known were recognized more accurately than unknown and a posi‑ tive correlation between declared familiarity and affective assessment (odours that were known were assessed as more pleasant than unknown. Sensory sensitivity was not correlated neither with declarative nor real ability to identify smells, however sensory sensitivity was positively correlated with affective assessment (the higher scores on sensory sensitivity dimension, the more pleasantly assessed odours in general. Analyses revealed a number of connections between other dimensions of FCZ‑KT questionnaire (perseverance, liveliness, stamina and the ability (both objective and subjective to correctly identify odours which were most difficult to recognize. Completed project might be perceived as a starting point for further research concerning relationships between temperament, olfactory functioning, and food preferences among patients diagnosed with eating disorders such as anorexia nervosa, bulimia nervosa, and obesity.

  8. The Assessment of Cognitive Emotion Regulation Strategies, Sensory Processing Sensitivity and Anxiety Sensitivity in Patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Esmeil Soleymani

    2016-11-01

    Full Text Available Abstract Background: The purpose of this study was to compare the cognitive emotional regulation strategies, sensory processing sensitivity and anxiety sensitivity in patients with multiple sclerosis and normal people. Materials and Methods: Statistical population of this study was all of patients with multiple sclerosis that referred to M.S association of Iran in the tehran. Sample of this study was 30 individuals of patients with multiple sclerosis selected by available sampling method and were matched with 30 individuals of normal people. Two groups completed cognitive emotion regulation, high sensory processing sensitivity and anxiety sensitivity questionnaires. Data were analyzed by one-way analysis of variance and Multivariate Analysis of Variance. Results: The results indicated that there is significant difference between two groups in view of cognitive emotion regulation strategies in which the mean of scores of patients with multiple sclerosis in maladaptive strategies of self- blame, catastrophizing and other blame were more than normal people and mean of scores of them in adaptive strategies of positive refocusing, positive reappraisal and putting into perspective were less than normal people. The results also indicated that there is a significant difference between two groups in anxiety sensitivity and sensory processing sensitivity. Conclusion: The most of emotional problems in patients with multiple sclerosis can be the result of more application of maladaptive strategies of cognitive emotion regulation, high sensory processing sensitivity and high anxiety sensitivity.

  9. Characterization of persistent postoperative pain by quantitative sensory testing

    DEFF Research Database (Denmark)

    Werner, Mads U.; Kehlet, Henrik

    2010-01-01

    Postoperative pain remains inadequately treated, and it has been estimated that 5-10% undergoing surgery will develop moderate to severe persistent pain leading to chronic physical disability and psychosocial distress. Quantitative sensory testing (QST) is a graded, standardized activation...... research tool in studies investigating the correlation between responses to preoperatively applied experimental pain stimuli and clinical postoperative pain. Second, the use of QST as a valuable prognostic, sequential assessment tool in surgical procedure specific research is presented. Third......, the implications of these findings for use of QST in future research are discussed. More rational design of predictive studies in PPP, based on surgical procedure specific approaches, is needed in order to improve our understanding of prevention and management of this debilitating postsurgical condition....

  10. Characterization of persistent postoperative pain by quantitative sensory testing

    DEFF Research Database (Denmark)

    Werner, Mads U.; Kehlet, Henrik

    2010-01-01

    , the implications of these findings for use of QST in future research are discussed. More rational design of predictive studies in PPP, based on surgical procedure specific approaches, is needed in order to improve our understanding of prevention and management of this debilitating postsurgical condition.......Postoperative pain remains inadequately treated, and it has been estimated that 5-10% undergoing surgery will develop moderate to severe persistent pain leading to chronic physical disability and psychosocial distress. Quantitative sensory testing (QST) is a graded, standardized activation...... research tool in studies investigating the correlation between responses to preoperatively applied experimental pain stimuli and clinical postoperative pain. Second, the use of QST as a valuable prognostic, sequential assessment tool in surgical procedure specific research is presented. Third...

  11. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NARCIS (Netherlands)

    Dijkstra, Marcel; van Baar, J.J.J.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; de Boer, J.H.; Krijnen, Gijsbertus J.M.

    2005-01-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy

  12. Somatosensory sensitivity in patients with persistent idiopathic orofacial pain is associated with pain relief from hypnosis and relaxation.

    Science.gov (United States)

    Baad-Hansen, Lene; Abrahamsen, Randi; Zachariae, Robert; List, Thomas; Svensson, Peter

    2013-06-01

    In a recent study hypnosis has been found to relieve persistent idiopathic orofacial pain. Quantitative sensory testing (QST) is widely used to evaluate somatosensory sensitivity, which has been suggested as a possible predictor of management outcome. The objectives of this study were to examine: (1) possible associations between clinical pain relief and baseline somatosensory sensitivity and (2) the effect of hypnosis management on QST parameters. Forty-one patients with persistent idiopathic orofacial pain completed this randomized controlled study in 1 of 2 groups: hypnosis (hypnotic analgesia suggestions) or control (relaxation). QST at 2 intraoral (pain region and contralateral mirror image region) and 3 extraoral (hand and both cheeks) sites was performed at baseline and after the hypnosis/control management, together with pressure pain thresholds and pressure pain tolerance thresholds determined bilaterally at the masseter and temporalis muscles, the temporomandibular joints, and the third finger. Degree of pain relief was negatively correlated with a summary statistic of baseline somatosensory sensitivity (summed z-score), that is, high baseline somatosensory sensitivity was associated with low pain relief (r=-0.372, P=0.020). Hypnosis had no major effect on any QST measure compared with relaxation (P>0.063). High pain sensitivity at baseline may predict poor pain management outcome. In addition, despite clear clinical pain relief, hypnosis did not significantly or specifically influence somatosensory sensitivity. Future studies should further explore QST measures as possible predictors of different management response in orofacial pain conditions.

  13. Agreeable smellers and sensitive neurotics--correlations among personality traits and sensory thresholds.

    Science.gov (United States)

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N B; Hummel, Thomas

    2011-04-27

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.

  14. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    Science.gov (United States)

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV 1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV 1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV 1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV 1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV 1.1 , predominantly in sensory terminals together with NaV 1.6 and for NaV 1.7 , mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site

  15. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid.

    Science.gov (United States)

    Drewes, Asbjørn-Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-07-28

    Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization. Thirty healthy subjects were included. Distension of the distal esophagus with a balloon was performed before and after perfusion with 0.1 mol/L hydrochloric acid for 30 min. An impedance planimetry system was used to measure cross-sectional area, volume, pressure, and tension during the distensions. A new model allowed evaluation of the phasic contractions by the tension during contractions as a function of the initial muscle length before the contraction (comparable to the Frank-Starling law for the heart). Length-tension diagrams were used to evaluate the muscle tone before and after relaxation of the smooth muscle with butylscopolamine. The sensitization resulted in allodynia and hyperalgesia to the distension volumes, and the degree of sensitization was related to the infused volume of acid. Furthermore, a nearly 50% increase in the evoked referred pain was seen after sensitization. The mechanical analysis demonstrated hyper-reactivity of the esophagus following acid perfusion, with an increased number and force of the phasic contractions, but the muscle tone did not change. Acid perfusion of the esophagus sensitizes the sensory pathways and facilitates secondary contractions. The new model can be used to study abnormal sensory-motor mechanisms in visceral organs.

  16. Agreeable smellers and sensitive neurotics--correlations among personality traits and sensory thresholds.

    Directory of Open Access Journals (Sweden)

    Ilona Croy

    Full Text Available Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124 completed a personality inventory (NEO-FFI and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.

  17. From acute to persistent low back pain: a longitudinal investigation of somatosensory changes using quantitative sensory testing—an exploratory study

    Science.gov (United States)

    Marcuzzi, Anna; Wrigley, Paul J.; Dean, Catherine M.; Graham, Petra L.; Hush, Julia M.

    2018-01-01

    Abstract Introduction: Chronic low back pain (LBP) is commonly associated with generalised pain hypersensitivity. It is suggested that such somatosensory alterations are important determinants for the transition to persistent pain from an acute episode of LBP. Although cross-sectional research investigating somatosensory function in the acute stage is developing, no longitudinal studies designed to evaluate temporal changes have been published. Objectives: This exploratory study aimed to investigate the temporal development of somatosensory changes from the acute stage of LBP to up to 4 months from onset. Methods: Twenty-five people with acute LBP (pain-free controls were prospectively assessed at baseline using quantitative sensory testing with the assessor blinded to group allocation, and again at 2 and 4 months. Psychological variables were concurrently assessed. People with acute LBP were classified based on their average pain severity over the previous week at 4 months as recovered (≤1/10 numeric rating scale) or persistent (≥2/10 numeric rating scale) LBP. Results: In the persistent LBP group, (1) there was a significant decrease in pressure pain threshold between 2 and 4 months (P pain threshold was significantly different from the recovered LBP group (P pain-free control reference value. Pain-related psychological variables were significantly higher in those with persistent LBP compared with the recovered LBP group at all time points (P pain sensitivity occurring in the subacute stage warrant further longitudinal evaluation to better understand the role of somatosensory changes in the development of persistent LBP. Pain-related cognitions at baseline distinguished persistent from the recovered LBP groups, emphasizing the importance of concurrent evaluation of psychological contributors in acute LBP. PMID:29756087

  18. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid

    OpenAIRE

    Drewes, Asbjorn Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-01-01

    AIM: Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization.

  19. Heterogeneous sensory processing in persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Jensen, Troels Staehelin

    2010-01-01

    hinders evaluation of potential subgroups for further investigation and/or treatment allocation. Thus we used a standardized QST protocol to evaluate sensory functions in PPP and pain-free control patients, to allow individual sensory characterization of pain patients from calculated Z-values. Seventy PPP...... patients with pain related impairment of everyday activities were compared with normative data from 40 pain-free postherniotomy patients operated>1 year previously. Z-values showed a large variation in sensory disturbances ranging from pronounced detection hypoesthesia (Z=6, cold) to pain hyperalgesia (Z......=-8, pressure). Hyperalgesia for various modalities were found in 80% of patients, with pressure hyperalgesia in approximately 65%, and cutaneous (mechanical or thermal) hyperalgesia in approximately 35% of patients. The paradoxical combination of tactile hypoesthesia and hyperalgesia was seen...

  20. Agreeable Smellers and Sensitive Neurotics – Correlations among Personality Traits and Sensory Thresholds

    Science.gov (United States)

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N. B.; Hummel, Thomas

    2011-01-01

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality. PMID:21556139

  1. Sensory Processing Sensitivity as a Marker of Differential Susceptibility to Parenting

    Science.gov (United States)

    Slagt, Meike; Dubas, Judith Semon; van Aken, Marcel A. G.; Ellis, Bruce J.; Dekovic, Maja

    2018-01-01

    In this longitudinal multiinformant study negative emotionality and sensory processing sensitivity were compared as susceptibility markers among kindergartners. Participating children (N = 264, 52.9% boys) were Dutch kindergartners (M[subscript age] = 4.77, SD = 0.60), followed across three waves, spaced seven months apart. Results show that…

  2. The effects of negative emotions on sensory perception: fear but not anger decreases tactile sensitivity.

    Science.gov (United States)

    Kelley, Nicholas J; Schmeichel, Brandon J

    2014-01-01

    Emotions and sensory perceptions are closely intertwined. Of the five senses, sight has been by far the most extensively studied sense in emotion research. Relatively less is known about how emotions influence the other four senses. Touch is essential for nonverbal communication in both humans and other animals. The current investigation tested competing hypotheses about the effect of fear on tactile perception. One hypothesis based on evolutionary considerations predicts that fear enhances sensory perception, including tactile sensitivity. A competing hypothesis based on research on peripheral psychophysiology predicts that fear should decrease tactile sensitivity. Two experiments that induced negative emotional states and measured two-point discrimination ability at the fingertip found that fear reduces tactile sensitivity relative to anger or a neutral control condition (Studies 1 and 2). These findings did not appear to be driven by participants' naïve beliefs about the influence of emotions on touch (Study 3). The results represent the first evidence of the causal impact of emotional states on tactile sensitivity, are consistent with prior evidence for the peripheral physiological effects of fear, and offer novel empirical grounds for developing and advancing theories of emotional influences on sensory perception.

  3. Taste perception and sensory sensitivity: Relationship to feeding problems in boys with Barth Syndrome.

    Science.gov (United States)

    Reynolds, Stacey; Kreider, Consuelo M; Meeley, Lauren E; Bendixen, Roxanna M

    2015-03-01

    Feeding problems are common in boys with Barth syndrome and may contribute to the population's propensity for growth delay and muscle weakness. The purpose of this study was to quantify and describe these feeding issues and examine altered taste perception and sensory sensitivity as contributing factors. A cross-sectional, two-group comparison design was used to examine feeding preferences and behaviors, chemical taste perception, and sensory sensitivities in fifty boys with (n=24) and without (n=26) Barth ages 4-17 years. Taste perception was measured using chemical test strips saturated with phenylthiocarbamide (PTC) and sodium benzoate (NaB). Feeding problems were documented by parents using a Food Inventory, while sensory sensitivities were recorded using a Short Sensory Profile. Boys with Barth differed significantly from typical peers with regards to problem feeding behaviors. For boys with Barth, food refusal and food selectivity were identified as being present in 50% the sample, while 70% of had identified problems related to gagging or swallowing foods. About half of all Barth families noted that their child's eating habits did not match the family's and that separate meals were often prepared. As demonstrated in previous research, about 50% of boys with Barth demonstrated probable or definite differences in taste/smell sensitivity, which was significantly higher than controls. On tests of chemical taste perception, boys with Barth were significantly more likely to be supertasters to PTC and non-tasters to NaB. Taster-status did not directly relate to the presence of feeding problems, however, taste/smell sensitivity did significantly relate to food selectivity by type and texture. Results indicate feeding problems in at least 50-70% of boys with Barth syndrome, and suggest that behaviors are often present before 6 months of age. Differences in taste perception may influence dietary choices in boys with Barth, particularly their craving of salty foods

  4. Age differences in visual sensory memory.

    Science.gov (United States)

    Walsh, D A; Thompson, L W

    1978-05-01

    Age differences in visual sensory memory were studied using the direct measure procedure of Haber and Standing (1969) -- the longest interstimulus interval at which subjects reported a single stimulus as continuous was measured. The visual storage of the young (mean age 24 years) was found to persist for 289 msec compared to 248 for the old (mean age 67 years). Similar estimates of sensory memory duration were obtained when either monoptic or dichoptic stimulus presentations were employed, supporting the idea that visual storage is centrally mediated for both age groups. The relevance of these findings for age differences in the registration of information into primary and secondary memory and their implications for the stimulus persistence hypothesis are considered. The appropriateness and validity of the persistence of form task for studies of sensory memory and aging are also discussed.

  5. Interpersonal sensitivity and persistent attenuated psychotic symptoms in adolescence.

    Science.gov (United States)

    Masillo, Alice; Brandizzi, M; Valmaggia, L R; Saba, R; Lo Cascio, N; Lindau, J F; Telesforo, L; Venturini, P; Montanaro, D; Di Pietro, D; D'Alema, M; Girardi, P; Fiori Nastro, P

    2018-03-01

    Interpersonal sensitivity defines feelings of inner-fragility in the presence of others due to the expectation of criticism or rejection. Interpersonal sensitivity was found to be related to attenuated positive psychotic symptom during the prodromal phase of psychosis. The aims of this study were to examine if high level of interpersonal sensitivity at baseline are associated with the persistence of attenuated positive psychotic symptoms and general psychopathology at 18-month follow-up. A sample of 85 help-seeking individuals (mean age = 16.6, SD = 5.05) referred an Italian early detection project, completed the interpersonal sensitivity measure and the structured interview for prodromal symptoms (SIPS) at baseline and were assessed at 18-month follow-up using the SIPS. Results showed that individuals with high level of interpersonal sensitivity at baseline reported high level of attenuated positive psychotic symptoms (i.e., unusual thought content) and general symptoms (i.e., depression, irritability and low tolerance to daily stress) at follow-up. This study suggests that being "hypersensitive" to interpersonal interactions is a psychological feature associated with attenuated positive psychotic symptoms and general symptoms, such as depression and irritability, at 18-month follow-up. Assessing and treating inner-self fragilities may be an important step of early detection program to avoid the persistence of subtle but very distressing long-terms symptoms.

  6. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms.

    Directory of Open Access Journals (Sweden)

    Nicolas Barraud

    Full Text Available The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF, suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10-40 mM increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.

  7. Brief exposure to sensory cues elicits stimulus-nonspecific general sensitization in an insect.

    Directory of Open Access Journals (Sweden)

    Sebastian Minoli

    Full Text Available The effect of repeated exposure to sensory stimuli, with or without reward is well known to induce stimulus-specific modifications of behaviour, described as different forms of learning. In recent studies we showed that a brief single pre-exposure to the female-produced sex pheromone or even a predator sound can increase the behavioural and central nervous responses to this pheromone in males of the noctuid moth Spodoptera littoralis. To investigate if this increase in sensitivity might be restricted to the pheromone system or is a form of general sensitization, we studied here if a brief pre-exposure to stimuli of different modalities can reciprocally change behavioural and physiological responses to olfactory and gustatory stimuli. Olfactory and gustatory pre-exposure and subsequent behavioural tests were carried out to reveal possible intra- and cross-modal effects. Attraction to pheromone, monitored with a locomotion compensator, increased after exposure to olfactory and gustatory stimuli. Behavioural responses to sucrose, investigated using the proboscis extension reflex, increased equally after pre-exposure to olfactory and gustatory cues. Pheromone-specific neurons in the brain and antennal gustatory neurons did, however, not change their sensitivity after sucrose exposure. The observed intra- and reciprocal cross-modal effects of pre-exposure may represent a new form of stimulus-nonspecific general sensitization originating from modifications at higher sensory processing levels.

  8. Capsaicin-Sensitive Sensory Nerves Indirectly Modulate Motor Function of the Urinary Bladder

    Directory of Open Access Journals (Sweden)

    Hsi-Hsien Chang

    2018-06-01

    Full Text Available Purpose The urinary bladder (UB is innervated by both sensory and autonomic nerves. Recent studies have shown that sensory neuropeptides induced contractions in the detrusor muscle. Therefore, in a mouse model, we investigated the presence of interactions between the submucosal sensory nerves and the autonomic nerves that regulate the motor function of the detrusor muscle. Methods UB samples from male C57BL/6 mice were isolated, cut into strips, and mounted in an organ bath. Dose-response curves to norepinephrine and phenylephrine were studied in UB strips with and without mucosa, and the effects of preincubation with a receptor antagonist and various drugs on relaxation were also studied using tissue bath myography. Results Phenylephrine-induced relaxation of the UB strips showed concentration-related effects. This relaxation appeared in both mucosa-intact and mucosa-denuded UB strips, and was significantly inhibited by lidocaine, silodosin, and guanethidine (an adrenergic neuronal blocker. Meanwhile, phenylephrine-induced relaxation was inhibited by pretreatment with propranolol and calcitonin gene-related peptide (CGRP–depletory capsaicin in UB strips with and without mucosa. Conclusions The present study suggests that phenylephrine activates the α-1A adrenergic receptor (AR of the sensory nerve, and then activates capsaicin-sensitive sensory nerves to release an unknown substance that facilitates the release of norepinephrine from adrenergic nerves. Subsequently, norepinephrine stimulates β-ARs in the detrusor muscle in mice, leading to neurogenic relaxation of the UB. Further animal and human studies are required to prove this concept and to validate its clinical usefulness.

  9. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.

    Science.gov (United States)

    Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni

    2006-01-01

    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.

  10. Heterogeneous sensory processing in persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Jensen, Troels Staehelin

    2010-01-01

    (rho=0.58, p=0.002) to the hyperalgesic level on the painful side, again suggesting central nervous mechanisms in PPP. In conclusion, this study shows that a standardized trauma results in heterogeneous combinations of hypo- and hyperalgesia. Z-score evaluation of sensory function identifies...

  11. Pain sensitivity of children with Down syndrome and their siblings: quantitative sensory testing versus parental reports.

    Science.gov (United States)

    Valkenburg, Abraham J; Tibboel, Dick; van Dijk, Monique

    2015-11-01

    The aim of this study was to compare thermal detection and pain thresholds in children with Down syndrome with those of their siblings. Sensory detection and pain thresholds were assessed in children with Down syndrome and their siblings using quantitative testing methods. Parental questionnaires addressing developmental age, pain coping, pain behaviour, and chronic pain were also utilized. Forty-two children with Down syndrome (mean age 12y 10mo) and 24 siblings (mean age 15y) participated in this observational study. The different sensory tests proved feasible in 13 to 29 (33-88%) of the children with Down syndrome. These children were less sensitive to cold and warmth than their siblings, but only when measured with a reaction time-dependent method, and not with a reaction time-independent method. Children with Down syndrome were more sensitive to heat pain, and only 6 (14%) of them were able to adequately self-report pain, compared with 22 (92%) of siblings (pChildren with Down syndrome will remain dependent on pain assessment by proxy, since self-reporting is not adequate. Parents believe that their children with Down syndrome are less sensitive to pain than their siblings, but this was not confirmed by quantitative sensory testing. © 2015 Mac Keith Press.

  12. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    Science.gov (United States)

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral

  13. The Improved Sensitivity to Crossmodal Asynchrony Caused by Voluntary Action: Comparing Combinations of Sensory Modalities

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2011-10-01

    Full Text Available The brain has to assess the fine temporal relationship between voluntary actions and their sensory effects to achieve precise spatiotemporal control of body movement. Recently we found that voluntary action improved the subsequent perceptual temporal discrimination between somatosensory and auditory events. In voluntary condition, participants actively pressed a button and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either ‘sound-first’ or ‘touch-first’ responses. We found that the temporal order judgment performance in the voluntary condition (as indexed by just noticeable difference was significantly better than that when their finger was passively stimulated (passive condition. Temporal attention and comparable involuntary movement did not explain the improvement caused by the voluntary action. The results suggest that predicting sensory consequences via a ‘forward’ model enhances perceptual temporal resolution for precise control of the body. The present study examined whether this improved temporal sensitivity caused by the voluntary action is also observed for the other combinations of sensory modalities. We compared the effects of voluntary action on the temporal sensitivity between auditory-somatosensory, visual-somatosensory, and somatosensory-somatosensory stimulus pairs.

  14. Short-term depression and transient memory in sensory cortex.

    Science.gov (United States)

    Gillary, Grant; Heydt, Rüdiger von der; Niebur, Ernst

    2017-12-01

    Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.

  15. Effectiveness of Sensory Stimulation to Improve Arousal and Alertness of People in a Coma or Persistent Vegetative State After Traumatic Brain Injury: A Systematic Review.

    Science.gov (United States)

    Padilla, René; Domina, Anna

    2016-01-01

    This systematic review evaluates the effectiveness of sensory stimulation to improve arousal and alertness of people in a coma or persistent vegetative state after traumatic brain injury (TBI). Databases searched included Medline, PsycINFO, CINAHL, OTseeker, and the Cochrane Database of Systematic Reviews. The search was limited to outcomes studies published in English in peer-reviewed journals between 2008 and 2013. Included studies provide strong evidence that multimodal sensory stimulation improves arousal and enhances clinical outcomes for people in a coma or persistent vegetative state after TBI. Moderate evidence was also provided for auditory stimulation, limited evidence was provided for complex stimuli, and insufficient evidence was provided for median nerve stimulation. Interventions should be tailored to client tolerance and premorbid preferences. Bimodal or multimodal stimulation should begin early, be frequent, and be sustained until more complex activity is possible. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  16. Sensory irritation and multiple chemical sensitivity.

    Science.gov (United States)

    Anderson, R C; Anderson, J H

    1999-01-01

    Many of the symptoms described in Sick Building Syndrome (SBS) and multiple chemical sensitivity (MCS) resemble the symptoms known to be elicited by airborne irritant chemicals. Irritation of the eye, nose, and throat is common to SBS, MCS, and sensory irritation (SI). Difficulty of breathing is often seen with SBS, MCS, and pulmonary irritation (PI). We therefore asked the question: can indoor air pollutants cause SI and/or PI? In laboratory testing in which mice breathed the dilute volatile emissions of air fresheners, fabric softeners, colognes, and mattresses for 1 h, we measured various combinations of SI and PI as well as airflow decreases (analogous to asthma attacks). Air samples taken from sites associated with repeated human complaints of poor air quality also caused SI, PI, and airflow limitation (AFL) in the mice. In previous publications, we have documented numerous behavior changes in mice (which we formally studied with a functional observational battery) after exposure to product emissions or complaint site air; neurological complaints are a prominent part of SBS and MCS. All together, these data suggest that many symptoms of SBS and MCS can be described as SI, PI, AFL, and neurotoxicity. All these problems can be caused by airborne irritant chemicals such as those emitted by common commercial products and found in polluted indoor air. With some chemical mixtures (e.g., emissions of some fabric softeners, disposable diapers, and vinyl mattress covers) but not others (e.g., emissions of a solid air freshener), the SI response became larger (2- to 4-fold) when we administered a series of two or three 1-h exposures over a 24-h period. Since with each exposure the intensity of the stimulus was constant yet the magnitude of the response increased, we concluded that there was a change in the sensitivity of the mice to these chemicals. The response was not a generalized stress response because it occurred with only some mixtures of irritants and not others

  17. Sensory and sympathetic correlates of heat pain sensitization and habituation in men and women.

    Science.gov (United States)

    Breimhorst, M; Hondrich, M; Rebhorn, C; May, A; Birklein, F

    2012-10-01

    Habituation and sensitization are important behavioural responses to repeated exposure to painful stimuli, but little is known about the factors determining sensory, affective and sympathetic habituation to repeated pain stimulation in men and women. Thirty volunteers (15 women) underwent a standardized heat pain paradigm spread over 8 consecutive days. At the beginning of the experiment, personality dimensions, coping strategies and pain catastrophizing thoughts were determined. Receiving a series of 10 blocks of six painful heat stimuli a day, participants rated pain intensity and unpleasantness. Skin conductance was recorded throughout the sessions. The results show similar habituation of both the sensory and affective dimensions of pain in men and women, although skin conductance did not undergo a significant decrease across the eight days. When focusing on single daily sessions, women showed pain sensitization but sympathetic habituation, while men showed pain sensitization but stable sympathetic activation. Our findings therefore indicate that the process of long-term habituation to painful heat stimuli is a common feature in both genders, whereas men and women might differently recruit their sympathetic nervous system for short-term pain processing. This study could potentially help to better evaluate gender-specific mechanisms in pain perception. © 2012 European Federation of International Association for the Study of Pain Chapters.

  18. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms.

    Science.gov (United States)

    Yamamoto, A; Takahashi, K; Saito, S; Tominaga, M; Ohta, T

    2016-12-01

    Sensing the ambient temperature is an important function for survival in animals. Some TRP channels play important roles as detectors of temperature and irritating chemicals. There are functional differences of TRP channels among species. TRPM8 in mammals is activated by cooling compounds and cold temperature, but less information is available on the functional role of TRPM8 in avian species. Here we investigated the pharmacological properties and thermal sensitivities of chicken TRPM8 (cTRPM8) and cold-sensitive mechanisms in avian sensory neurons. In heterologously expressed cTRPM8, menthol and its derivative, WS-12 elicited [Ca 2+ ] i increases, but icilin did not. In chicken sensory neurons, icilin increased [Ca 2+ ] i, in a TRPA1-dependent manner. Icilin selectively stimulated heterologously expressed chicken TRPA1 (cTRPA1). Similar to mammalian orthologue, cTRPM8 was activated by cold. Both heterologous and endogenous expressed cTRPM8 were sensitive to mammalian TRPM8 antagonists. There are two types of cold-sensitive cells regarding menthol sensitivity in chicken sensory neurons. The temperature threshold of menthol-insensitive neurons was significantly lower than that of menthol-sensitive ones. The population of menthol-insensitive neurons was large in chicken but almost little in mammals. The cold-induced [Ca 2+ ] i increases were not abolished by the external Ca 2+ removal or by blockades of PLC-IP 3 pathways and ryanodine channels. The cold stimulation failed to evoke [Ca 2+ ] i increases after intracellular Ca 2+ store-depletion. These results indicate that cTRPM8 acts as a cold-sensor similar to mammals. It is noteworthy that TRPM8-independent cold-sensitive neurons are abundant in chicken sensory neurons. Our results suggest that most of the cold-induced [Ca 2+ ] i increases are mediated via Ca 2+ release from intracellular stores and that these mechanisms may be specific to avian species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Analgesic and Sensory Effects of the Pecs Local Anesthetic Block in Patients with Persistent Pain after Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Andersen, Kenneth Geving; Kehlet, Henrik

    2017-01-01

    proposes to block these nerves and has provided pain relief for patients undergoing breast cancer surgery, but has yet to be evaluated in patients with PPBCS. METHODS: The aim of this pilot study was to examine the effects of the Pecs block on summed pain intensity (SPI) and sensory function (through...... quantitative sensory testing [QST]) in eight patients with PPBCS. SPI and QST measurements were recorded before and 30 minutes after administration of the Pecs block (20 mL 0.25% bupivacaine). Pain intensity and sleep interference were measured daily before and after the block for 7 days. RESULTS: Patients...... experienced analgesia (P = 0.008) and reduced hypoesthesia areas to cold (P = 0.004) and warmth (P = 0.01) after 30 minutes. The reported pain relief (P = 0.02) and reduced sleep interference (P = 0.01) persisted for 7 days after the block. CONCLUSIONS: This pilot study suggests that the pectoral nerves play...

  20. Development of the "Highly Sensitive Dog" questionnaire to evaluate the personality dimension "Sensory Processing Sensitivity" in dogs.

    Directory of Open Access Journals (Sweden)

    Maya Braem

    Full Text Available In humans, the personality dimension 'sensory processing sensitivity (SPS', also referred to as "high sensitivity", involves deeper processing of sensory information, which can be associated with physiological and behavioral overarousal. However, it has not been studied up to now whether this dimension also exists in other species. SPS can influence how people perceive the environment and how this affects them, thus a similar dimension in animals would be highly relevant with respect to animal welfare. We therefore explored whether SPS translates to dogs, one of the primary model species in personality research. A 32-item questionnaire to assess the "highly sensitive dog score" (HSD-s was developed based on the "highly sensitive person" (HSP questionnaire. A large-scale, international online survey was conducted, including the HSD questionnaire, as well as questions on fearfulness, neuroticism, "demographic" (e.g. dog sex, age, weight; age at adoption, etc. and "human" factors (e.g. owner age, sex, profession, communication style, etc., and the HSP questionnaire. Data were analyzed using linear mixed effect models with forward stepwise selection to test prediction of HSD-s by the above-mentioned factors, with country of residence and dog breed treated as random effects. A total of 3647 questionnaires were fully completed. HSD-, fearfulness, neuroticism and HSP-scores showed good internal consistencies, and HSD-s only moderately correlated with fearfulness and neuroticism scores, paralleling previous findings in humans. Intra- (N = 447 and inter-rater (N = 120 reliabilities were good. Demographic and human factors, including HSP score, explained only a small amount of the variance of HSD-s. A PCA analysis identified three subtraits of SPS, comparable to human findings. Overall, the measured personality dimension in dogs showed good internal consistency, partial independence from fearfulness and neuroticism, and good intra- and inter

  1. Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory.

    Science.gov (United States)

    Appelbaum, L Gregory; Cain, Matthew S; Darling, Elise F; Mitroff, Stephen R

    2013-08-01

    Action video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers.

  2. Pain Sensitivity and Pain Catastrophizing are Associated with Persistent Pain and Disability after Lumbar Spine Surgery

    Science.gov (United States)

    Coronado, Rogelio A.; George, Steven Z.; Devin, Clinton J.; Wegener, Stephen T.; Archer, Kristin R.

    2015-01-01

    Objective To examine whether pain sensitivity and pain catastrophizing are associated with persistent pain and disability after lumbar spine surgery. Design Prospective observational cohort study. Setting Academic medical center. Participants Patients (N = 68, mean ± SD age = 57.9 ± 13.1 years, N female = 40 (58.8%)) undergoing spine surgery for a degenerative condition from March 1, 2012 to April 30, 2013 were assessed 6 weeks, 3 months, and 6 months after surgery. Interventions Not applicable. Main Outcome Measure(s) The main outcome measures were persistent back pain intensity, pain interference, and disability. Patients with persistent back pain intensity, pain interference, or disability were identified as those patients reporting Brief Pain Inventory scores ≥ 4 and Oswestry Disability Index scores ≥ 21 at all postoperative time points. Results From 6 weeks to 6 months after surgery, approximately 12.9%, 24.2%, and 46.8% of patients reported persistent back pain intensity, pain interference, or disability, respectively. Increased pain sensitivity at 6 weeks was associated with having persistent back pain intensity (OR = 2.0, 95% CI = 1.0; 4.1) after surgery. Increased pain catastrophizing at 6 weeks was associated with having persistent back pain intensity (OR = 1.1, 95% CI = 1.0; 1.2), pain interference (OR = 1.1, 95% CI = 1.0; 1.2), and disability (OR = 1.3, 95% CI = 1.1; 1.4). An interaction effect was not found between pain sensitivity and pain catastrophizing on persistent outcomes (p > 0.05). Conclusion(s) Findings suggest the importance of early postoperative screening for pain sensitivity and pain catastrophizing in order to identify patients at-risk for poor postoperative pain intensity, interference, and/or disability outcomes. Future research should consider the benefit of targeted therapeutic strategies for patients with these postoperative prognostic factors. PMID:26101845

  3. Clinical Interpretation of Quantitative Sensory Testing as a Measure of Pain Sensitivity in Patients with Sickle Cell Disease

    OpenAIRE

    Brandow, Amanda M.; Panepinto, Julie A.

    2016-01-01

    Patients with sickle cell disease (SCD) display significantly lower mean/median thermal and mechanical pain thresholds compared to controls. This suggests impaired pain sensitivity where stimuli produce exaggerated pain. Despite these mean/median differences, clinicians need to understand if patients meet criteria for impaired pain sensitivity. We defined thresholds for impaired cold, heat, and mechanical pain sensitivity in SCD patients. Using quantitative sensory testing (QST) we assessed c...

  4. Longitudinal Study of Sensory Features in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Lucia Perez Repetto

    2017-01-01

    Full Text Available Background. Between 45 and 95% of children with Autism Spectrum Disorder (ASD present sensory features that affect their daily functioning. However, the data in the scientific literature are not conclusive regarding the evolution of sensory features in children with ASD. The main objective of this study was to analyze the sensory features of children within the age of 3-4 (T1 when they received their ASD diagnosis and two years later (T2 when they started school. Methods. We conducted a prospective cohort study to assess sensory features in 34 children with ASD over time. The data were collected using a standardized assessment tool, the Sensory Profile. Results. Our analyses show that sensory features in children with ASD are stable from the age of three to six years. The stability of sensory scores is independent of correction by covariates, such as cognitive level and autism severity scores. Conclusions. Children with ASD have sensory features that persist from the time of diagnosis at the age of 3 to 4 years to school age. This persistence of sensory features from an early age underscores the need to support these children and their parents. Sensory features should be detected early and managed to improve functional and psychosocial outcomes.

  5. The Relationship between Intolerance of Uncertainty, Sensory Sensitivities, and Anxiety in Autistic and Typically Developing Children

    Science.gov (United States)

    Neil, Louise; Olsson, Nora Choque; Pellicano, Elizabeth

    2016-01-01

    Guided by a recent theory that proposes fundamental differences in how autistic individuals deal with uncertainty, we investigated the extent to which the cognitive construct "intolerance of uncertainty" and anxiety were related to parental reports of sensory sensitivities in 64 autistic and 85 typically developing children aged…

  6. Excessive Sensory Stimulation during Development Alters Neural Plasticity and Vulnerability to Cocaine in Mice.

    Science.gov (United States)

    Ravinder, Shilpa; Donckels, Elizabeth A; Ramirez, Julian S B; Christakis, Dimitri A; Ramirez, Jan-Marino; Ferguson, Susan M

    2016-01-01

    Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today's complex technological environment.

  7. High pain sensitivity is distinct from high susceptibility to non-painful sensory input at threshold level.

    Science.gov (United States)

    Hummel, Thomas; Springborn, Maria; Croy, Ilona; Kaiser, Jochen; Lötsch, Jörn

    2011-04-01

    Individuals may differ considerably in their sensitivity towards various painful stimuli supporting the notion of a person as stoical or complaining about pain. Molecular and functional imaging research provides support that this may extend also to other sensory qualities. Whether a person can be characterized as possessing a generally high or low sensory acuity is unknown. This was therefore assessed with thresholds to painful and non-painful stimuli, with a focus on chemical stimuli that besides pain may evoke clearly non-painful sensations such as taste or smell. In 36 healthy men and 78 women (ages 18 to 52 years), pain thresholds to chemo-somatosensory (intranasal gaseous CO(2)) and electrical stimuli (cutaneous stimulation) were significantly correlated (ρ(2)=0.2268, psensory qualities, i.e., for the rose-like odor phenyl ethyl alcohol and gustatory thresholds for sour (citric acid) and salty (NaCl). Similarly, pain clusters showed no differences in thresholds to other stimuli. Moreover, no clustering was obtained for thresholds to both painful and non-painful stimuli together. Thus, individuals could not be characterized as highly sensitive (or insensitive) to all chemical stimuli no matter of evoking pain. This suggests that pain is primarily a singular sensory perception distinct from others such as olfaction or taste. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Auditory sensory memory and language abilities in former late talkers: a mismatch negativity study.

    Science.gov (United States)

    Grossheinrich, Nicola; Kademann, Stefanie; Bruder, Jennifer; Bartling, Juergen; Von Suchodoletz, Waldemar

    2010-09-01

    The present study investigated whether (a) a reduced duration of auditory sensory memory is found in late talking children and (b) whether deficits of sensory memory are linked to persistent difficulties in language acquisition. Former late talkers and children without delayed language development were examined at the age of 4 years and 7 months using mismatch negativity (MMN) with interstimulus intervals (ISIs) of 500 ms and 2000 ms. Additionally, short-term memory, language skills, and nonverbal intelligence were assessed. MMN mean amplitude was reduced for the ISI of 2000 ms in former late talking children both with and without persistent language deficits. In summary, our findings suggest that late talkers are characterized by a reduced duration of auditory sensory memory. However, deficits in auditory sensory memory are not sufficient for persistent language difficulties and may be compensated for by some children.

  9. Is sensitivity to daily stress predictive of onset or persistence of psychopathology?

    NARCIS (Netherlands)

    Vaessen, T.; van Nierop, M.; Decoster, J.; Delespaul, P.; Derom, C.; de Hert, M.; Jacobs, N.; Menne-Lothmann, C.; Rutten, B.; Thiery, E.; van Os, J.; van Winkel, R.; Wichers, M.; Myin-Germeys, I.

    Purpose: The aim of the current study was to replicate findings in adults indicating that higher sensitivity to stressful events is predictive of both onset and persistence of psychopathological symptoms in a sample of adolescents and young adults. In addition, we tested the hypothesis that

  10. Analgesic and Sensory Effects of the Pecs Local Anesthetic Block in Patients with Persistent Pain after Breast Cancer Surgery: A Pilot Study.

    Science.gov (United States)

    Wijayasinghe, Nelun; Andersen, Kenneth G; Kehlet, Henrik

    2017-02-01

    Persistent pain after breast cancer surgery (PPBCS) develops in 15% to 25% of patients, sometimes years after surgery. Approximately 50% of PPBCS patients have neuropathic pain in the breast, which may be due to dysfunction of the pectoral nerves. The Pecs local anesthetic block proposes to block these nerves and has provided pain relief for patients undergoing breast cancer surgery, but has yet to be evaluated in patients with PPBCS. The aim of this pilot study was to examine the effects of the Pecs block on summed pain intensity (SPI) and sensory function (through quantitative sensory testing [QST]) in eight patients with PPBCS. SPI and QST measurements were recorded before and 30 minutes after administration of the Pecs block (20 mL 0.25% bupivacaine). Pain intensity and sleep interference were measured daily before and after the block for 7 days. Patients experienced analgesia (P = 0.008) and reduced hypoesthesia areas to cold (P = 0.004) and warmth (P = 0.01) after 30 minutes. The reported pain relief (P = 0.02) and reduced sleep interference (P = 0.01) persisted for 7 days after the block. This pilot study suggests that the pectoral nerves play a role in the maintenance of pain in the breast area in PPBCS and begs for further research. © 2016 World Institute of Pain.

  11. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    Science.gov (United States)

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  12. From acute to persistent low back pain: a longitudinal investigation of somatosensory changes using quantitative sensory testing—an exploratory study

    Directory of Open Access Journals (Sweden)

    Anna Marcuzzi

    2018-04-01

    Conclusion:. Changes in mechanical pain sensitivity occurring in the subacute stage warrant further longitudinal evaluation to better understand the role of somatosensory changes in the development of persistent LBP. Pain-related cognitions at baseline distinguished persistent from the recovered LBP groups, emphasizing the importance of concurrent evaluation of psychological contributors in acute LBP.

  13. Acquisition and processing method for human sensorial, sensitive, motory and phonatory circuits reaction times

    International Nuclear Information System (INIS)

    Doche, Claude

    1972-01-01

    This work describes a storage and acquisition device and a method for human sensorial and sensitive motory and phonatory reaction times. The considered circuits are those made with the visual, auditory and sensory receptor organs and the motory or phonatory effector organs. The anatomo-physiological localization of these circuits allows us to appreciate the possibilities of the central nervous system for different angles. The experimental population is made of normal and pathological individuals (individuals having tumoral or vascular, localized or diffused cerebral lesions or parkinsonian individuals). The parameter processing method is based on the multivariate analysis results and allows us to position each individual compared to a normal individual and to appreciate the weight of each circuit in this positioning. Clinical exploitation results give to this method a prognosis and therapeutic interest. It seems though untimely to talk about its diagnosis value. (author) [fr

  14. Sensory modulation disorders in childhood epilepsy.

    Science.gov (United States)

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), conditions in which altered behavioral responses to sensory stimuli have been firmly established. A continuum of sensory processing defects due to imbalanced neuronal inhibition and excitation across these disorders has been hypothesizedthat may lead to common symptoms of inadequate modulation of behavioral responses to sensory stimuli. Here, we investigated the prevalence of sensory modulation disorders among children with epilepsy and their relation with symptomatology of neurodevelopmental disorders. We used the Sensory Profile questionnaire to assess behavioral responses to sensory stimuli and categorize sensory modulation disorders in children with active epilepsy (aged 4-17 years). We related these outcomes to epilepsy characteristics and tested their association with comorbid symptoms of ASD (Social Responsiveness Scale) and ADHD (Strengths and Difficulties Questionnaire). Sensory modulation disorders were reported in 49 % of the 158 children. Children with epilepsy reported increased behavioral responses associated with sensory "sensitivity," "sensory avoidance," and "poor registration" but not "sensory seeking." Comorbidity of ASD and ADHD was associated with more severe sensory modulation problems, although 27 % of typically developing children with epilepsy also reported a sensory modulation disorder. Sensory modulation disorders are an under-recognized problem in children with epilepsy. The extent of the modulation difficulties indicates a substantial burden on daily functioning and may explain an important part of the behavioral distress associated with childhood epilepsy.

  15. Sensory Testing in Patients With Postthoracotomy Pain Syndrome

    DEFF Research Database (Denmark)

    Werner, Mads Utke; Ringsted, Thomas K; Kehlet, Henrik

    2013-01-01

    pain syndrome [PTPS (n=14)]. The primary outcome was investigation of the areas of sensory dysfunction, evaluated twice by dynamic sensory mapping with metal rollers and a brush. RESULTS:: In PTPS patients, sensory dysfunction was present on the surgical side, and in 12 of 14 patients MISD......OBJECTIVES:: Mirror-image sensory dysfunction (MISD) has not been systematically characterized in persistent postoperative pain. METHODS:: The presence of MISD was evaluated with standardized stimuli, in preoperative patients scheduled for a thoracotomy (n=14) and in patients with postthoracotomy...... of the PTPS patients experienced mirror pain. DISCUSSION:: MISD is a common finding in PTPS patients and deserves further study involving mechanism and clinical implications....

  16. Brief Report: Effects of Sensory Sensitivity and Intolerance of Uncertainty on Anxiety in Mothers of Children with Autism Spectrum Disorder

    Science.gov (United States)

    Uljarevic, Mirko; Carrington, Sarah; Leekam, Susan

    2016-01-01

    This study examined the relations between anxiety and individual characteristics of sensory sensitivity (SS) and intolerance of uncertainty (IU) in mothers of children with ASD. The mothers of 50 children completed the Hospital Anxiety and Depression Scale, the Highly Sensitive Person Scale and the IU Scale. Anxiety was associated with both SS and…

  17. Quantitative sensory testing in classical trigeminal neuralgia-a blinded study in patients with and without concomitant persistent pain

    DEFF Research Database (Denmark)

    Younis, Samaira; Maarbjerg, Stine; Reimer, Maren

    2016-01-01

    The diagnostic criteria of the third International Classification of Headache Disorders state that there should be no neurological deficits in patients with classical trigeminal neuralgia (TN) at clinical examination. However, studies demonstrating sensory abnormalities at bedside examination in TN...... scores were calculated to process frequency analyses and Z-profiles. We found increased mechanical detection threshold on the symptomatic side (47.2% vs 0%, P = 0.008), asymptomatic side (33.3% vs 0%, P = 0.011), and hand (36% vs 0%, P ... increased mechanical detection threshold on the symptomatic side compared with the asymptomatic side (-2.980 vs -2.166, P = 0.040). Thermal and mechanical hyperalgesia was detected bilaterally in the face and the hand. Trigeminal neuralgia patients with concomitant persistent pain tended to have higher mean...

  18. Sensory Sensitivity and Food Selectivity in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Chistol, Liem T.; Bandini, Linda G.; Must, Aviva; Phillips, Sarah; Cermak, Sharon A.; Curtin, Carol

    2018-01-01

    Few studies have compared atypical sensory characteristics and food selectivity between children with and without autism spectrum disorder (ASD). We compared oral sensory processing between children with (n = 53) and without ASD (n = 58), ages 3-11 years. We also examined the relationships between atypical oral sensory processing, food…

  19. Persistent pain, sensory disturbances and functional impairment after adjuvant chemotherapy for breast cancer

    DEFF Research Database (Denmark)

    Andersen, Kenneth Geving; Jensen, Maj-Britt; Kehlet, Henrik

    2012-01-01

    (CEF) and cyclophosphamide and epirubicin + docetaxel (CE + T) in relation to PPBCT, sensory disturbances, peripheral sensory disturbances and functional impairment. Material and methods. A comparative nationwide cross-sectional questionnaire study on two cohorts treated with CEF respectively CE + T...

  20. Persistent Pain and Sensory Abnormalities after Abdominoplasty

    DEFF Research Database (Denmark)

    Presman, Benjamin; Finnerup, Kenneth; Andresen, Sven Robert

    2015-01-01

    and characteristics of persistent pain after abdominoplasty, which is one of the most frequent cosmetic surgical procedures. METHODS: In September 2014, a link to a web-based questionnaire was mailed to 217 patients who had undergone abdominoplasty between 2006 and 2014 at the Department of Plastic Surgery, Aalborg...

  1. Pre-operative pain and sensory function in groin hernia

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Hansen, Jeanette B; Kehlet, Henrik

    2009-01-01

    BACKGROUND: Although persistent postherniotomy occurs in 5-10% of patients, pathogenic mechanisms remain debatable. Since pre-operative pain has been demonstrated to be a risk factor for persistent postherniotomy pain, pre-operative alterations in nociceptive function may be a potential pathogenic...... mechanism. AIMS: To investigate the correlation between pre-operative pain intensity and sensory functions in the groin hernia area. METHODS: Patients with unilateral groin hernia were examined preoperatively by quantitative sensory testing (thermal, mechanical, and pressure [detection and pain thresholds...... (7%), all whom experienced no pain or pain less than weekly. Only cool detection thresholds were significantly lower between the hernia vs. contralateral side (poperative groin hernia...

  2. Is the auditory sensory memory sensitive to visual information?

    Science.gov (United States)

    Besle, Julien; Fort, Alexandra; Giard, Marie-Hélène

    2005-10-01

    The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for any audiovisual event or whether this phenomenon is limited to specific domains in which strong audiovisual illusions occur. To highlight this issue, we have compared the topographies of MMNs elicited by non-speech audiovisual stimuli deviating from audiovisual standards on the visual, the auditory, or both dimensions. Contrary to what occurs with audiovisual illusions, each unimodal deviant elicited sensory-specific MMNs, and the MMN to audiovisual deviants included both sensory components. The visual MMN was, however, different from a genuine visual MMN obtained in a visual-only control oddball paradigm, suggesting that auditory and visual information interacts before the MMN process occurs. Furthermore, the MMN to audiovisual deviants was significantly different from the sum of the two sensory-specific MMNs, showing that the processes of visual and auditory change detection are not completely independent.

  3. The Sensory Perception Quotient (SPQ): development and validation of a new sensory questionnaire for adults with and without autism.

    Science.gov (United States)

    Tavassoli, Teresa; Hoekstra, Rosa A; Baron-Cohen, Simon

    2014-01-01

    Questionnaire-based studies suggest atypical sensory perception in over 90% of individuals with autism spectrum conditions (ASC). Sensory questionnaire-based studies in ASC mainly record parental reports of their child's sensory experience; less is known about sensory reactivity in adults with ASC. Given the DSM-5 criteria for ASC now include sensory reactivity, there is a need for an adult questionnaire investigating basic sensory functioning. We aimed to develop and validate the Sensory Perception Quotient (SPQ), which assesses basic sensory hyper- and hyposensitivity across all five modalities. A total of 359 adults with (n = 196) and without (n = 163) ASC were asked to fill in the SPQ, the Sensory Over-Responsivity Inventory (SensOR) and the Autism-Spectrum Quotient (AQ) online. Adults with ASC reported more sensory hypersensitivity on the SPQ compared to controls (P sensory hypersensitivity. The SPQ showed high internal consistency for both the total SPQ (Cronbach's alpha = .92) and the reduced 35-item version (alpha = .93). The SPQ was significantly correlated with the SensOR across groups (r = -.46) and within the ASC (r = -.49) and control group (r = -.21). The SPQ shows good internal consistency and concurrent validity and differentiates between adults with and without ASC. Adults with ASC report more sensitivity to sensory stimuli on the SPQ. Finally, greater sensory sensitivity is associated with more autistic traits. The SPQ provides a new tool to measure individual differences on this dimension.

  4. Sensory retraining: burden in daily life related to altered sensation after orthognathic surgery, a randomized clinical trial.

    Science.gov (United States)

    Phillips, C; Kim, S H; Tucker, M; Turvey, T A

    2010-08-01

    Assess the long-term effect of sensory retraining exercises, age, gender, type of surgery, and pre-surgical psychological distress on patients' perception of the interference related to altered sensation 2 years after orthognathic surgery. A total of 186 subjects with a developmental dentofacial disharmony were enrolled in a multicenter randomized clinical trial: one center was a community-based practice and the other a university-based center. Subjects were randomly allocated to two groups: standard of care mouth opening exercises after BSSO or a progressive series of sensory retraining facial exercises in addition to the opening exercises. At 1, 3, 6, 12, and 24 months after surgery, subjects scored unusual feelings on the face, numbness, and loss of lip sensitivity from 'no problem (1)' to 'serious problem (7)'. A marginal proportional odds model was fit for each of the ordinal outcomes. Up to 2 years after surgery, the opening exercise only group had a higher likelihood of reporting interference in daily activities related to numbness and loss of lip sensitivity than the sensory retraining exercise group. The difference between the two groups was relatively constant. Older subjects and those with elevated psychological distress before surgery reported higher burdens related to unusual facial feelings, numbness, and loss of lip sensitivity (p pre-surgical counseling regarding the impact on daily life of persistent altered sensation following a mandibular osteotomy.

  5. Persistence of Memory for Ignored Lists of Digits: Areas of Developmental Constancy and Change.

    Science.gov (United States)

    Cowan, Nelson; Nugent, Lara D.; Elliott, Emily M.; Saults, J. Scott

    2000-01-01

    Examined persistence of sensory memory by studying developmental differences in recall of attended and ignored lists of digits for second-graders, fifth-graders, and adults. Found developmental increase in the persistence of memory only for the final item in an ignored list, which is the item for which sensory memory is thought to be the most…

  6. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  7. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  8. Sensory memory of structure-from-motion is shape-specific.

    Science.gov (United States)

    Pastukhov, Alexander; Füllekrug, Jana; Braun, Jochen

    2013-08-01

    Perceptual priming can stabilize the phenomenal appearance of multistable visual displays (Leopold, Wilke, Maier, & Logothetis, Nature Neuroscience, 5, 605-609, 2002). Prior exposure to such displays induces a sensory memory of their appearance, which persists over long intervals and intervening stimulation, and which facilitates renewed perception of the same appearance. Here, we investigated perceptual priming for the apparent rotation in depth of ambiguous structure-from-motion (SFM) displays. Specifically, we generated SFM objects with different three-dimensional shapes and presented them in random order and with intervening blank periods. To assess perceptual priming, we established the probability that a perceived direction of rotation would persist between successive objects. In general, persistence was greatest between identical objects, intermediate between similar objects, and negligible between dissimilar objects. These results demonstrate unequivocally that sensory memory for apparent rotation is specific to three-dimensional shape, contrary to previous reports (e.g., Maier, Wilke, Logothetis, & Leopold, Current Biology, 13, 1076-1085, 2003). Because persistence did not depend on presentation order for any pair of objects, it provides a commutative measure for the similarity of object shapes. However, it is not clear exactly which features or aspects of object shape determine similarity. At least, we did not find simple, low-level features (such as volume overlap, heterogeneity, or rotational symmetry) that could have accounted for all observations. Accordingly, it seems that sensory memory of SFM (which underlies priming of ambiguous rotation) engages higher-level representations of object surface and shape.

  9. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases. PMID:29628915

  10. Persistent pain and sensory disturbances after treatment for breast cancer

    DEFF Research Database (Denmark)

    Mejdahl, Mathias Kvist; Andersen, Kenneth Geving; Gärtner, Rune

    2013-01-01

    To examine the development of persistent pain after treatment for breast cancer and to examine risk factors associated with continuing pain.......To examine the development of persistent pain after treatment for breast cancer and to examine risk factors associated with continuing pain....

  11. Persistent physical symptoms as perceptual dysregulation

    DEFF Research Database (Denmark)

    Henningsen, Peter; Gündel, Harald; Kop, Willem J

    2018-01-01

    OBJECTIVE: The mechanisms underlying the perception and experience of persistent physical symptoms are not well understood, and in the models, the specific relevance of peripheral input versus central processing, or of neurobiological versus psychosocial factors in general, is not clear.In this a......OBJECTIVE: The mechanisms underlying the perception and experience of persistent physical symptoms are not well understood, and in the models, the specific relevance of peripheral input versus central processing, or of neurobiological versus psychosocial factors in general, is not clear.......In this article, we propose a model for this clinical phenomenon that is designed to be coherent with an underlying, relatively new model of the normal brain functions involved in the experience of bodily signals. METHODS: Based on a review of recent literature we describe central elements of this model and its...... of predictions and sensory input. Two possibilities exist: adaptation of the generative model underlying the predictions or alteration of the sensory input via autonomic nervous activation (in the case of interoception). Following this model, persistent physical symptoms can be described as "failures...

  12. Pre-operative pain and sensory function in groin hernia

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Hansen, Jeanette B; Kehlet, Henrik

    2009-01-01

    (rho=-0.413, p=0.049), indicating a paradoxical association between level of mechanical pain threshold and magnitude of spontaneous pain. No other sensory modality was significantly correlated to pain intensity. New/increased pain during repetitive pinprick stimulation (wind-up) was seen in 3 patients...... mechanism. AIMS: To investigate the correlation between pre-operative pain intensity and sensory functions in the groin hernia area. METHODS: Patients with unilateral groin hernia were examined preoperatively by quantitative sensory testing (thermal, mechanical, and pressure [detection and pain thresholds...... pain is not related to findings of hyperalgesia or other changes in sensory function that may support pain-induced pre-operative neuroplasticity as a pathogenic mechanism for the development of persistent postherniotomy pain....

  13. Crocodylians evolved scattered multi-sensory micro-organs

    Science.gov (United States)

    2013-01-01

    Background During their evolution towards a complete life cycle on land, stem reptiles developed both an impermeable multi-layered keratinized epidermis and skin appendages (scales) providing mechanical, thermal, and chemical protection. Previous studies have demonstrated that, despite the presence of a particularly armored skin, crocodylians have exquisite mechanosensory abilities thanks to the presence of small integumentary sensory organs (ISOs) distributed on postcranial and/or cranial scales. Results Here, we analyze and compare the structure, innervation, embryonic morphogenesis and sensory functions of postcranial, cranial, and lingual sensory organs of the Nile crocodile (Crocodylus niloticus) and the spectacled caiman (Caiman crocodilus). Our molecular analyses indicate that sensory neurons of crocodylian ISOs express a large repertoire of transduction channels involved in mechano-, thermo-, and chemosensory functions, and our electrophysiological analyses confirm that each ISO exhibits a combined sensitivity to mechanical, thermal and pH stimuli (but not hyper-osmotic salinity), making them remarkable multi-sensorial micro-organs with no equivalent in the sensory systems of other vertebrate lineages. We also show that ISOs all exhibit similar morphologies and modes of development, despite forming at different stages of scale morphogenesis across the body. Conclusions The ancestral vertebrate diffused sensory system of the skin was transformed in the crocodylian lineages into an array of discrete multi-sensory micro-organs innervated by multiple pools of sensory neurons. This discretization of skin sensory expression sites is unique among vertebrates and allowed crocodylians to develop a highly-armored, but very sensitive, skin. PMID:23819918

  14. Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence.

    Science.gov (United States)

    Kanngiesser, Maike; Mair, Norbert; Lim, Hee-Young; Zschiebsch, Katja; Blees, Johanna; Häussler, Annett; Brüne, Bernhard; Ferreiròs, Nerea; Kress, Michaela; Tegeder, Irmgard

    2014-06-01

    The present study assessed the functions of the transcription factor hypoxia-inducible factor (HIF) in sensory neurons in models of acute, inflammatory, ischemic, and neuropathic pain. The alpha subunit, HIF1α, was specifically deleted in neurons of the dorsal root ganglia by mating HIF1α(fl/fl) mice with SNScre mice. SNS-HIF1α(-/-) mice were more sensitive to noxious heat and cold pain stimulation than were HIF1α(fl/fl) control mice. They also showed heightened first-phase nociceptive responses in the formalin and capsaicin tests with increased numbers of cFos-positive neurons in the dorsal horn, and intensified hyperalgesia in early phases after paw inflammation and hind limb ischemia/reperfusion. The behavioral cold and heat pain hypersensitivity was explained by increased calcium fluxes after transient receptor potential channel activation in primary sensory neurons of SNS-HIF1α(-/-) mice and lowered electrical activation thresholds of sensory fibers. SNS-HIF1α(-/-) mice however, developed less neuropathic pain after sciatic nerve injury, which was associated with an abrogation of HIF1-mediated gene up-regulation. The results suggest that HIF1α is protective in terms of acute heat and cold pain but in case of ongoing activation in injured neurons, it may promote the development of neuropathic pain. The duality of HIF1 in pain regulation may have an impact on the side effects of drugs targeting HIF1, which are being developed, for example, as anticancer agents. Specifically, in patients with cancer neuropathy, however, temporary HIF1 inhibition might provide a welcome combination of growth and pain reduction.

  15. Sensory Hair Cells: An Introduction to Structure and Physiology.

    Science.gov (United States)

    McPherson, Duane R

    2018-06-18

    Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian.Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.

  16. Sensory subtypes in children with autism spectrum disorder: latent profile transition analysis using a national survey of sensory features.

    Science.gov (United States)

    Ausderau, Karla K; Furlong, Melissa; Sideris, John; Bulluck, John; Little, Lauren M; Watson, Linda R; Boyd, Brian A; Belger, Aysenil; Dickie, Virginia A; Baranek, Grace T

    2014-08-01

    Sensory features are highly prevalent and heterogeneous among children with ASD. There is a need to identify homogenous groups of children with ASD based on sensory features (i.e., sensory subtypes) to inform research and treatment. Sensory subtypes and their stability over 1 year were identified through latent profile transition analysis (LPTA) among a national sample of children with ASD. Data were collected from caregivers of children with ASD ages 2-12 years at two time points (Time 1 N = 1294; Time 2 N = 884). Four sensory subtypes (Mild; Sensitive-Distressed; Attenuated-Preoccupied; Extreme-Mixed) were identified, which were supported by fit indices from the LPTA as well as current theoretical models that inform clinical practice. The Mild and Extreme-Mixed subtypes reflected quantitatively different sensory profiles, while the Sensitive-Distressed and Attenuated-Preoccupied subtypes reflected qualitatively different profiles. Further, subtypes reflected differential child (i.e., gender, developmental age, chronological age, autism severity) and family (i.e., income, mother's education) characteristics. Ninety-one percent of participants remained stable in their subtypes over 1 year. Characterizing the nature of homogenous sensory subtypes may facilitate assessment and intervention, as well as potentially inform biological mechanisms. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.

  17. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation.

    Science.gov (United States)

    Pastukhov, Alexander; Braun, Jochen

    2013-02-01

    In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T (blank) ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T (blank) ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.

  18. Sex differences in chemosensation: sensory or cognitive?

    Directory of Open Access Journals (Sweden)

    Kathrin eOhla

    2013-09-01

    Full Text Available Although the first sex-dependent differences for chemosensory processing were reported in the scientific literature over 60 years ago, the underlying mechanisms are still unknown. Generally, more pronounced sex-dependent differences are noted with increased task difficulty or with increased levels of intranasal irritation produced by the stimulus. Whether differences between the sexes arise from differences in chemosensory sensitivity of the two intranasal sensory systems involved or from differences in cognitive processing associated with emotional evaluation of the stimulants is still not known. We used simultaneous and complementary measures of electrophysiological (EEG, psychophysiological, and psychological responses to stimuli varying in intranasal irritation and oldorousness to investigate whether sex differences in the processing of intranasal irritation are mediated by varying sensitivity of the involved sensory systems or by differences in cognitive and/or emotional evaluation of the irritants. Women perceived all stimulants more irritating and they exhibited larger amplitudes of the late positive deflection of the event-related potential than men. No significant differences in sensory sensitivity, anxiety and arousal responses could be detected. Our findings suggest that men and women process intranasal irritation differently. Importantly, the differences cannot be explained by variation in sensory sensitivity to irritants, differences in anxiety or differences in physiological arousal. We propose that women allocate attention stronger to potentially noxious stimuli, which eventually causes differences in cognitive appraisal and subjective perception.

  19. Persisting nutritional neuropathy amongst former war prisoners.

    OpenAIRE

    Gill, G V; Bell, D R

    1982-01-01

    Of 898 former Far East prisoners of war, assessed between 1968 and 1981, 49 (5.5%) had evidence of persisting symptomatic neurological disease dating back to their periods of malnutrition in captivity. The commonest syndromes were peripheral neuropathy (often of "burning foot" type), optic atrophy, and sensori-neural deafness. Though nutritional neuropathies disappeared soon after release in most ex-Far East prisoners of war, in some they have persisted up to 36 years since exposure to the nu...

  20. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments.

    Science.gov (United States)

    Alvarez-Berdugo, Daniel; Rofes, Laia; Casamitjana, J Francesc; Padrón, Andreína; Quer, Miquel; Clavé, Pere

    2016-09-01

    Oropharyngeal dysphagia (OD) affects older and neurological patients, causing malnutrition and dehydration and increasing the risk for aspiration pneumonia. There is evidence that sensory deficits in those populations are closely related to swallowing disorders, and several research groups are developing new therapies based on sensory stimulation of this area. More information on the sensory innervation participating in the swallow response is needed to better understand the pathophysiology of OD and to develop new treatments. This review focuses on the sensory innervation of the human oropharynx and larynx in healthy people compared with patients with swallowing disorders in order to unravel the abnormalities that may lead to the loss of sensitivity in patients with OD. We also hypothesize the pathway through which active sensory-enhancement treatments may elicit their therapeutic effect on patients with swallowing dysfunctions. As far as we know, this is the first time a review covers the anatomy, histology, ultrastructure, and molecular biology of the sensory innervation of the swallowing function. © 2016 New York Academy of Sciences.

  1. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    Science.gov (United States)

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  2. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality.

    Directory of Open Access Journals (Sweden)

    Nicole David

    Full Text Available The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement's outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants' finger movements and (i the movement of the virtual hand or (ii the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action.

  3. Persisting nutritional neuropathy amongst former war prisoners.

    Science.gov (United States)

    Gill, G V; Bell, D R

    1982-01-01

    Of 898 former Far East prisoners of war, assessed between 1968 and 1981, 49 (5.5%) had evidence of persisting symptomatic neurological disease dating back to their periods of malnutrition in captivity. The commonest syndromes were peripheral neuropathy (often of "burning foot" type), optic atrophy, and sensori-neural deafness. Though nutritional neuropathies disappeared soon after release in most ex-Far East prisoners of war, in some they have persisted up to 36 years since exposure to the nutritional insult. PMID:6292369

  4. Age effects on sensory-processing abilities and their impact on handwriting.

    Science.gov (United States)

    Engel-Yeger, Batya; Hus, Sari; Rosenblum, Sara

    2012-12-01

    Sensory-processing abilities are known to deteriorate in the elderly. As a result, daily activities such as handwriting may be impaired. Yet, knowledge about sensory-processing involvement in handwriting characteristics among older persons is limited. To examine how age influences sensory-processing abilities and the impact on handwriting as a daily performance. The study participants were 118 healthy, independently functioning adults divided into four age groups: 31-45, 46-60, 61-75 and 76+ years. All participants completed the Adolescent/ Adult Sensory Profile (AASP). Handwriting process was documented using the Computerized Handwriting Penmanship Evaluation Tool (ComPET). Age significantly affects sensory processing and handwriting pressure as well as temporal and spatial measures. Both handwriting time and spatial organization of the written product were predicted by sensory seeking. When examining age contribution to the prediction of handwriting by sensory processing, sensory seeking showed a tendency for predicting handwriting pressure (p = .06), while sensory sensitivity significantly predicted handwriting velocity. Age appears to influence sensory-processing abilities and affect daily performance tasks, such as handwriting, for which sensitivity and seeking for sensations are essential. Awareness of clinicians to sensory-processing deficits among older adults and examining their impact on broader daily activities are essential to improve daily performance and quality of life.

  5. Sensory characteristics and consumer preference for chicken meat in Guinea.

    Science.gov (United States)

    Sow, T M A; Grongnet, J F

    2010-10-01

    This study identified the sensory characteristics and consumer preference for chicken meat in Guinea. Five chicken samples [live village chicken, live broiler, live spent laying hen, ready-to-cook broiler, and ready-to-cook broiler (imported)] bought from different locations were assessed by 10 trained panelists using 19 sensory attributes. The ANOVA results showed that 3 chicken appearance attributes (brown, yellow, and white), 5 chicken odor attributes (oily, intense, medicine smell, roasted, and mouth persistent), 3 chicken flavor attributes (sweet, bitter, and astringent), and 8 chicken texture attributes (firm, tender, juicy, chew, smooth, springy, hard, and fibrous) were significantly discriminating between the chicken samples (Pchicken, the live spent laying hen, and the ready-to-cook broiler (imported) were very well represented and clearly distinguished from the live broiler and the ready-to-cook broiler. One hundred twenty consumers expressed their preferences for the chicken samples using a 5-point Likert scale. The hierarchical cluster analysis of the preference data identified 4 homogenous consumer clusters. The hierarchical cluster analysis results showed that the live village chicken was the most preferred chicken sample, whereas the ready-to-cook broiler was the least preferred one. The partial least squares regression (PLSR) type 1 showed that 72% of the sensory data for the first 2 principal components explained 83% of the chicken preference. The PLSR1 identified that the sensory characteristics juicy, oily, sweet, hard, mouth persistent, and yellow were the most relevant sensory drivers of the Guinean chicken preference. The PLSR2 (with multiple responses) identified the relationship between the chicken samples, their sensory attributes, and the consumer clusters. Our results showed that there was not a chicken category that was exclusively preferred from the other chicken samples and therefore highlight the existence of place for development of

  6. Ecological aspects of pain in sensory modulation disorder.

    Science.gov (United States)

    Bar-Shalita, T; Deutsch, L; Honigman, L; Weissman-Fogel, I

    2015-01-01

    Sensory Modulation Disorder (SMD) interferes with the daily life participation of otherwise healthy individuals and is characterized by over-, under- or seeking responsiveness to naturally occurring sensory stimuli. Previous laboratory findings indicate pain hyper-sensitivity in SMD individuals suggesting CNS alteration in pain processing and modulation. However, laboratory studies lack ecological validity, and warrant clinical completion in order to elicit a sound understanding of the phenomenon studied. Thus, this study explored the association between sensory modulation and pain in a daily life context in a general population sample. Daily life context of pain and sensations were measured in 250 adults (aged 23-40 years; 49.6% males) using 4 self-report questionnaires: Pain Sensitivity Questionnaire (PSQ) and Pain Catastrophizing Scale (PCS) to evaluate the sensory and cognitive aspects of pain; the Sensory Responsiveness Questionnaire (SRQ) to appraise SMD; and the Short Form - 36 Health Survey, version 2 (SF36) to assess health related Quality of Life (QoL). Thirty two individuals (12.8%) were found with over-responsiveness type of SMD, forming the SOR-SMD group. While no group differences (SOR-SMD vs. Non-SMD) were found, low-to-moderate total sample correlations were demonstrated between the SRQ-Aversive sub-scale and i) PSQ total (r=0.31, pcognitive aspect. This indicates that SMD co-occurs with daily pain sensitivity, thus reducing QoL, but less with the cognitive-catastrophizing manifestation of pain perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Persistent myalgia following whiplash.

    Science.gov (United States)

    Dommerholt, Jan

    2005-10-01

    Persistent myalgia following whiplash is commonly considered the result of poor psychosocial status, illness behavior, or failing coping skills. However, there is much evidence that persistent myalgia may be due to neurophysiologic mechanisms involving peripheral and central sensitization. Myofascial trigger points may play a crucial role in maintaining sensitization. Recent research suggests that the chemical environment of myofascial trigger points is an important factor. Several consequences are reviewed when central pain mechanisms and myofascial trigger points are included in the differential diagnosis and in the management of patients with persistent pain following whiplash.

  8. Effects of Arousal on Mouse Sensory Cortex Depend on Modality

    Directory of Open Access Journals (Sweden)

    Daisuke Shimaoka

    2018-03-01

    Full Text Available Summary: Changes in arousal modulate the activity of mouse sensory cortex, but studies in different mice and different sensory areas disagree on whether this modulation enhances or suppresses activity. We measured this modulation simultaneously in multiple cortical areas by imaging mice expressing voltage-sensitive fluorescent proteins (VSFP. VSFP imaging estimates local membrane potential across large portions of cortex. We used temporal filters to predict local potential from running speed or from pupil dilation, two measures of arousal. The filters provided good fits and revealed that the effects of arousal depend on modality. In the primary visual cortex (V1 and auditory cortex (Au, arousal caused depolarization followed by hyperpolarization. In the barrel cortex (S1b and a secondary visual area (LM, it caused only hyperpolarization. In all areas, nonetheless, arousal reduced the phasic responses to trains of sensory stimuli. These results demonstrate diverse effects of arousal across sensory cortex but similar effects on sensory responses. : Shimaoka et al. use voltage-sensitive imaging to show that the effects of arousal on the mouse cortex are markedly different across areas and over time. In all the sensory areas studied, nonetheless, arousal reduced the phasic voltage responses to trains of sensory stimuli. Keywords: cerebral cortex, cortical state, locomotion, sensory processing, widefield imaging

  9. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    Science.gov (United States)

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  11. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    Science.gov (United States)

    Sameiro-Barbosa, Catia M; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.

  12. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  13. Role of secondary sensory cortices in emotional memory storage and retrieval in rats.

    Science.gov (United States)

    Sacco, Tiziana; Sacchetti, Benedetto

    2010-08-06

    Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mzeta activity and was associated with an increased activity of layers II-IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.

  14. Dermal safety assessment of Arm & Hammer laundry products formulated for sensitive skin.

    Science.gov (United States)

    Frederick, Douglas M; Vorwerk, Linda; Gupta, Archana; Ghassemi, Annahita

    2017-09-01

    product (Arm & Hammer Free & Clear) and other nonirritant controls. In the Wrist Band Wear test, exposure to laundered fabrics under exaggerated conditions gave similar results for the test and control products, with no objective signs of skin irritation, and no self-reported persistent adverse sensory effects. Very mild, transient and isolated sensory effects were noted in daily diaries by a small proportion of subjects, and were similar for the test and control products. The Safety In-Use tests evaluated 4-week exposure to product and laundered fabrics under realistic use conditions. There were no clinically objective signs of skin irritation, and reports of transitory, mild sensory effects were minimal and similar for the test and controls. A comprehensive skin safety program on a lightly scented sensitive skin laundry formulation (i.e. Arm & Hammer™ Sensitive Skin plus Skin-Friendly Fresh Scent) conducted among panels of self-assessed sensitive skin subjects demonstrated that the presence of a light fragrance did not adversely impact skin compatibility in any of the testing protocols when the product was compared to a similar product with no fragrance. The lightly fragranced product demonstrated overall skin compatibility and mildness when tested in a self-assessed sensitive skin population, and compared favorably to currently marketed sensitive skin products.

  15. Sensory-specific satiety in obese and normal-weight women

    NARCIS (Netherlands)

    Snoek, H.M.; Huntjens, L.; Gemert, L.J. van; Graaf, C. de; Weenen, H.

    2004-01-01

    Background: Sensory-specific satiety has been found to play an important role in food choice and meal termination, and it might be a factor contributing to obesity. Objective: We hypothesized that obese and normal-weight people have different sensitivities to sensory-specific satiety for high-fat

  16. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons.

    Science.gov (United States)

    Guo, Rui; Ge, Rongjing; Zhao, Shidi; Liu, Yulong; Zhao, Xin; Huang, Li; Guan, Sodong; Lu, Wei; Cui, Shan; Wang, Shirlene; Wang, Jin-Hui

    2017-01-01

    Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II-III of the barrel cortex and layers IV-V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC) decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.

  17. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2017-06-01

    Full Text Available Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II–III of the barrel cortex and layers IV–V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.

  18. Sea-anemone toxin ATX-II elicits A-fiber-dependent pain and enhances resurgent and persistent sodium currents in large sensory neurons

    Directory of Open Access Journals (Sweden)

    Klinger Alexandra B

    2012-09-01

    Full Text Available Abstract Background Gain-of-function mutations of the nociceptive voltage-gated sodium channel Nav1.7 lead to inherited pain syndromes, such as paroxysmal extreme pain disorder (PEPD. One characteristic of these mutations is slowed fast-inactivation kinetics, which may give rise to resurgent sodium currents. It is long known that toxins from Anemonia sulcata, such as ATX-II, slow fast inactivation and skin contact for example during diving leads to various symptoms such as pain and itch. Here, we investigated if ATX-II induces resurgent currents in sensory neurons of the dorsal root ganglion (DRGs and how this may translate into human sensations. Results In large A-fiber related DRGs ATX-II (5 nM enhances persistent and resurgent sodium currents, but failed to do so in small C-fiber linked DRGs when investigated using the whole-cell patch-clamp technique. Resurgent currents are thought to depend on the presence of the sodium channel β4-subunit. Using RT-qPCR experiments, we show that small DRGs express significantly less β4 mRNA than large sensory neurons. With the β4-C-terminus peptide in the pipette solution, it was possible to evoke resurgent currents in small DRGs and in Nav1.7 or Nav1.6 expressing HEK293/N1E115 cells, which were enhanced by the presence of extracellular ATX-II. When injected into the skin of healthy volunteers, ATX-II induces painful and itch-like sensations which were abolished by mechanical nerve block. Increase in superficial blood flow of the skin, measured by Laser doppler imaging is limited to the injection site, so no axon reflex erythema as a correlate for C-fiber activation was detected. Conclusion ATX-II enhances persistent and resurgent sodium currents in large diameter DRGs, whereas small DRGs depend on the addition of β4-peptide to the pipette recording solution for ATX-II to affect resurgent currents. Mechanical A-fiber blockade abolishes all ATX-II effects in human skin (e.g. painful and itch

  19. Prenatal VPA exposure and changes in sensory processing by the superior colliculus

    Directory of Open Access Journals (Sweden)

    Georgia eDendrinos

    2011-10-01

    Full Text Available Disorders involving dysfunctional sensory processing are characterized by an inability to filter sensory information, particularly simultaneously arriving multimodal inputs. We examined the effects of prenatal exposure to valproic acid (VPA, a teratogen linked to sensory dysfunction, on the behavior of juvenile and adult rats, and on the anatomy of the superior colliculus, a critical multisensory integration center in the brain. VPA-exposed rats showed deficits in colliculus-dependent behaviors including startle response, prepulse inhibition and nociceptive responses. Some deficits reversed with age. Stereological analyses revealed that colliculi of VPA-treated rats had significantly fewer parvalbumin-positive neurons, a subset of GABAergic cells. These results suggest that prenatal VPA treatment affects the development of the superior colliculus and leads to persistent anatomical changes evidenced by aberrant behavior in tasks that require sensory processing.

  20. Significance of hair-dye base-induced sensory irritation.

    Science.gov (United States)

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  1. Mismatch Negativity and P50 Sensory Gating in Abstinent Former Cannabis Users

    Directory of Open Access Journals (Sweden)

    Samantha J. Broyd

    2016-01-01

    Full Text Available Prolonged heavy exposure to cannabis is associated with impaired cognition and brain functional and structural alterations. We recently reported attenuated mismatch negativity (MMN and altered P50 sensory gating in chronic cannabis users. This study investigated the extent of brain functional recovery (indexed by MMN and P50 in chronic users after cessation of use. Eighteen ex-users (median 13.5 years prior regular use; median 3.5 years abstinence and 18 nonusers completed (1 a multifeature oddball task with duration, frequency, and intensity deviants and (2 a P50 paired-click paradigm. Trend level smaller duration MMN amplitude and larger P50 ratios (indicative of poorer sensory gating were observed in ex-users compared to controls. Poorer P50 gating correlated with prior duration of cannabis use. Duration of abstinence was positively correlated with duration MMN amplitude, even after controlling for age and duration of cannabis use. Impaired sensory gating and attenuated MMN amplitude tended to persist in ex-users after prolonged cessation of use, suggesting a lack of full recovery. An association with prolonged duration of prior cannabis use may indicate persistent cannabis-related alterations to P50 sensory gating. Greater reductions in MMN amplitude with increasing abstinence (positive correlation may be related to either self-medication or an accelerated aging process.

  2. A Community-Based Sensory Training Program Leads to Improved Experience at a Local Zoo for Children with Sensory Challenges

    Directory of Open Access Journals (Sweden)

    Michele Kong

    2017-09-01

    Full Text Available Sensory processing difficulties are common among many special needs children, especially those with autism spectrum disorder (ASD. The sensory sensitivities often result in interference of daily functioning and can lead to social isolation for both the individual and family unit. A quality improvement (QI project was undertaken within a local zoo to systematically implement a sensory training program targeted at helping special needs individuals with sensory challenges, including those with ASD, Down’s syndrome, attention-deficit/hyperactivity disorder, and speech delay. We piloted the program over a 2-year period. The program consisted of staff training, provision of sensory bags and specific social stories, as well as creation of quiet zones. Two hundred family units were surveyed before and after implementation of the sensory training program. In this pilot QI study, families reported increased visitation to the zoo, improved interactions with staff members, and the overall quality of their experience. In conclusion, we are able to demonstrate that a sensory training program within the community zoo is feasible, impactful, and has the potential to decrease social isolation for special needs individuals and their families.

  3. Monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization

    OpenAIRE

    Frost, William N.; Castellucci, Vincent F.; Hawkins, Robert D.; Kandel, Eric R.

    1985-01-01

    We have found that in the gill- and siphon- withdrawal reflex of Aplysia, the memory for short-term sensitization grades smoothly into long-term memory with increased amounts of sensitization training. One cellular locus for the storage of the memory underlying short-term sensitization is the set of monosynaptic connections between the siphon sensory cells and the gill and siphon motor neurons. We have now also found that these same monosynaptic connections participate in the storage of the m...

  4. Disentangling the role of floral sensory stimuli in pollination networks

    DEFF Research Database (Denmark)

    Kantsa, Aphrodite; Raguso, Robert A.; Dyer, Adrian G.

    2018-01-01

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use...... a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering...... period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role...

  5. Presynaptic learning and memory with a persistent firing neuron and a habituating synapse: a model of short term persistent habituation.

    Science.gov (United States)

    Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad

    2012-08-01

    Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.

  6. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila

    Science.gov (United States)

    Hampel, Stefanie; McKellar, Claire E

    2017-01-01

    A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al., 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response. PMID:28887878

  7. Slack channels expressed in sensory neurons control neuropathic pain in mice.

    Science.gov (United States)

    Lu, Ruirui; Bausch, Anne E; Kallenborn-Gerhardt, Wiebke; Stoetzer, Carsten; Debruin, Natasja; Ruth, Peter; Geisslinger, Gerd; Leffler, Andreas; Lukowski, Robert; Schmidtko, Achim

    2015-01-21

    Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain. Copyright © 2015 the authors 0270-6474/15/351125-11$15.00/0.

  8. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Science.gov (United States)

    Phan, Mimi L.; Bieszczad, Kasia M.

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129

  9. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation.

    Science.gov (United States)

    Phan, Mimi L; Bieszczad, Kasia M

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  10. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Directory of Open Access Journals (Sweden)

    Mimi L. Phan

    2016-01-01

    Full Text Available Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  11. Core Challenges of Autism. Sensory aspects of autism

    Directory of Open Access Journals (Sweden)

    Nason William

    2016-10-01

    Full Text Available An american clincal psychologist Bill Nason tells us about the differences in ways of functioning between people on the autistic spectrum and neurotypical people. The third part of his Blue book «The Autism Discussion Page» talks about the sensory differences in autistic people. Sensory hypersensitivity, fragmented or distorted perception, problems of sensoru processing — these are the differences that make the external world experience very special, overwhelming and even painful. The author gives the signs of hyper- and hypo-sensitivity in basical sensory areas. Translated from English by L.G. Borodina

  12. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain

    Directory of Open Access Journals (Sweden)

    Tillu Dipti V

    2012-01-01

    Full Text Available Abstract Background Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. Results To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6 is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. Conclusions These results highlight the importance of signaling

  13. The Differences in Serum Quantitative Specific IgE Levels Induced by Dermatophagoides pteronyssinus, Dermatophagoides farinae and Blomia tropicalis Sensitization in Intermittent and Persistent Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Agus Joko Susanto

    2018-01-01

    Full Text Available Background: house dust mites (HDM are an important inhalant allergen in allergic asthma. However, molecular diagnostic study of specific IgE to HDM allergens has not been done in Indonesia. In addition, the association of quantitative specific IgE measurement with asthma severity has not been investigatedd. This study aimed to investigate the difference of serum quantitative specific IgE levels induced by Dermatophagoides (D. pteronyssinus, D. farinae and Blomia tropicalis sensitization in intermittent and persistent allergic asthma. Methods: this was a cross-sectional study on adult allergic asthma patients who were invited for serum specific IgE testing. This study was a part of a larger study within the Division of Allergy and Immunology, Cipto Mangunkusumo Hospital. Asthma severity was defined based on Global Initiative on Asthma (GINA 2015 criteria and were grouped as intermittent or persistent. Quantitative specific IgE testing was done on blood serum using a multiple allergosorbent test (Polycheck Allergy, Biocheck GmbH, Munster, Germany. The HDM allergens tested were D. pteronyssinus, D. farinae, and Blomia tropicalis. Difference between two groups were analyze using Mann-Whitney test. Results: a total of 87 subjects were enrolled in this study; 69 (79.3% were women. Mean patients’ age was 40, 2 years. Sixty-three (72.4% subjects had asthma and allergic rhinitis. Fifty-eight (66.7% subjects were classified as persistent asthma. The prevalence of sensitization was 62.1% for D. farinae, 51.7% for D. pteronyssinus, and 48.3% for Blomia tropicalis. The median of specific IgE levels were significantly higher in persistent asthma compares to intermittent asthma induced by D. farinae (median 1.30 vs. 0.0 kU/L; p=0.024 and B. tropicalis (median 0.57 vs. 0.0 kU/L; p=0.015 sensitization. Level of Specific IgE  D. pteronyssinus was also to be higher in persistent asthma than the level measured in intermittent asthma (0.67 vs. 0.00 kU/L; p=0

  14. Sensory modulation disorders in childhood epilepsy

    NARCIS (Netherlands)

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    BACKGROUND: Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum

  15. Sensory hypersensitivity predicts enhanced attention capture by faces in the early development of ASD

    Directory of Open Access Journals (Sweden)

    E.J.H Jones

    2018-01-01

    Full Text Available Sensory sensitivity is prevalent among young children with ASD, but its relation to social communication impairment is unclear. Recently, increased sensory hypersensitivity has been linked to greater activity of the neural salience network (Green et al., 2016. Increased neural sensitivity to stimuli, especially social stimuli, could provide greater opportunity for social learning and improved outcomes. Consistent with this framework, in Experiment 1 we found that parent report of greater sensory hypersensitivity at 2 years in toddlers with ASD (N = 27 was predictive of increased neural responsiveness to social stimuli (larger amplitude event-related potential/ERP responses to faces at P1, P400 and Nc at 4 years, and this in turn was related to parent report of increased social approach at 4 years. In Experiment 2, parent report of increased perceptual sensitivity at 6 months in infants at low and high familial risk for ASD (N = 35 predicted larger ERP P1 amplitude to faces at 18 months. Increased sensory hypersensitivity in early development thus predicted greater attention capture by faces in later development, and this related to more optimal social behavioral development. Sensory hypersensitivity may index a child's ability to benefit from supportive environments during development. Early sensory symptoms may not always be developmentally problematic for individuals with ASD. Keywords: Autism, Sensory hypersensitivity, Social attention, Salience network, Infant, EEG

  16. Prenatal exposure to persistent organic pollutants and offspring allergic sensitization and lung function at 20 years of age

    DEFF Research Database (Denmark)

    Hansen, Susanne; Strøm, Marin; Olsen, Sjurdur F

    2016-01-01

    BACKGROUND: Prenatal exposures to persistent organic pollutants (POPs) have been associated with asthma medication use and self-reported symptoms, but associations with lung function and allergic sensitization have been minimally explored. The aim of the study was to examine associations between...... with reduced lung function (FEV1 %predicted valuediseases may have...

  17. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  18. Sensory cortex underpinnings of traumatic brain injury deficits.

    Directory of Open Access Journals (Sweden)

    Dasuni S Alwis

    Full Text Available Traumatic brain injury (TBI can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex. Brain injury (n=19 was induced using an impact acceleration method and sham controls received surgery only (n=15. Animals were tested in a range of sensorimotor behaviour tasks prior to and up to 6 weeks post-injury when there were still significant sensorimotor behaviour deficits. At 8-10 weeks post-trauma, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including motion that mimicked whisker motion observed in awake animals undertaking different tasks. In cortex, there were lamina-specific neuronal response alterations that appeared to reflect local circuit changes. Hyper-excitation was found only in supragranular layers involved in intra-areal processing and long-range integration, and only for stimulation with complex, naturalistic whisker motion patterns and not for stimulation with simple trapezoidal whisker motion. Thus TBI induces long-term directional changes in integrative sensory cortical layers that depend on the complexity of the incoming sensory information. The nature of these changes allow predictions as to what types of sensory processes may be affected in TBI and contribute to post-trauma sensorimotor deficits.

  19. Reeducação da sensibilidade da mão: desenvolvimento de um modelo de luva sensorial Retraining the sensitivity of the hand: development of a sensory glove model

    Directory of Open Access Journals (Sweden)

    Raquel Metzker Mendes

    2011-01-01

    Full Text Available OBJETIVO: Desenvolver um modelo de luva sensorial e testá-lo em indivíduos não portadores de alterações sensoriais dos membros superiores, treinados a substituir o tato pela audição. MÉTODOS: Para a confecção do equipamento foram utilizados: luva de tecido, minimicrofones, amplificador e fones de ouvido. Sete sujeitos do sexo feminino, idade média de 26,28 anos (±1,03, foram selecionados para utilizar o equipamento e diferenciar texturas após treinamento. O treinamento ocorreu por sete dias, quinze minutos diários e teve como objetivo a identificação de texturas pelo som, utilizando a luva sensorial. Ao final todos os sujeitos responderam a um questionário. RESULTADOS: Todos os sujeitos classificaram o uso da luva como "confortável". Três sujeitos (42% classificaram o aspecto estético do equipamento como "ótimo", dois sujeitos (28,57% como "bom", e dois sujeitos (28,57% como "regular". Seis sujeitos (85,7% identificaram as texturas apenas pelo som e um sujeito (14,3% relatou que foi auxiliado pelo tato. CONCLUSÃO: Foi viável a confecção de um modelo de luva sensorial com tecnologia nacional de fácil acesso e custo relativamente baixo, possibilitando a identificação de texturas pelo som durante o uso do equipamento por indivíduos treinados a substituir o tato pela audição. Nivel de Evidência II, Prospectivo Comparativo.OBJECTIVE: To develop a sensory glove model and test it in subjects with normal sensitivity in the upper limbs, who have been trained to replace hearing with touch. METHODS: To make the equipment, a glove, mini-microphones, amplifier and headphones were used. Seven female subjects, with a mean age of 26.28 years (± 1.03 were selected to use the equipment and differentiate textures after training. The training took place over seven days, fifteen minutes a day, with the aim of identifying textures through sound, using the sensory glove. At the end all subjects answered a questionnaire. RESULTS: All

  20. Do we care about sustainability? An analysis of time sensitivity of social preferences under environmental time-persistent effects.

    Science.gov (United States)

    Faccioli, Michela; Hanley, Nick; Torres, Cati; Font, Antoni Riera

    2016-07-15

    Environmental cost-benefit analysis has traditionally assumed that the value of benefits is sensitive to their timing and that outcomes are valued higher, the sooner in time they occur following implementation of a project or policy. Though, this assumption might have important implications especially for the social desirability of interventions aiming at counteracting time-persistent environmental problems, whose impacts occur in the long- and very long-term, respectively involving the present and future generations. This study analyzes the time sensitivity of social preferences for preservation policies of adaptation to climate change stresses. Results show that stated preferences are time insensitive, due to sustainability issues: individuals show insignificant differences in benefits they can experience within their own lifetimes compared to those which occur in the longer term, and which will instead be enjoyed by future generations. Whilst these results may be specific to the experimental design employed here, they do raise interesting questions regarding choices over time-persistent environmental problems, particularly in terms of the desirability of interventions which produce longer-term benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Persistent organic pollutants–are our methods sensitive and selective enough?

    NARCIS (Netherlands)

    de Boer, J.

    2012-01-01

    Due to the exponential growth of the world population and a strong worldwide economic development, humans are increasingly exposed to chemicals. This is particularly true for persistent, toxic chemicals that accumulate in organisms including humans. The presence of these persistent organic

  2. Sensory analysis and consumer acceptance of 140 high-quality extra virgin olive oils.

    Science.gov (United States)

    Valli, Enrico; Bendini, Alessandra; Popp, Martin; Bongartz, Annette

    2014-08-01

    Sensory analysis is a crucial tool for evaluating the quality of extra virgin olive oils. One aim of such an investigation is to verify if the sensory attributes themselves - which are strictly related to volatile and phenolic compounds - may permit the discrimination of high-quality products obtained by olives of different cultivars and/or grown in various regions. Moreover, a crucial topic is to investigate the interdependency between relevant parameters determining consumer acceptance and objective sensory characteristics evaluated by the panel test. By statistically analysing the sensory results, a grouping - but not discriminatory - effect was shown for some cultivars and some producing areas. The preference map shows that the most appreciated samples by consumers were situated in the direction of the 'ripe fruity' and 'sweet' axis and opposite to the 'bitter' and 'other attributes' (pungent, green fruity, freshly cut grass, green tomato, harmony, persistency) axis. Extra virgin olive oils produced from olives of the same cultivars and grown in the same areas shared similar sensorial attributes. Some differences in terms of expectation and interpretation of sensory characteristics of extra virgin olive oils might be present for consumers and panellists: most of the consumers appear unfamiliar with positive sensorial attributes, such as bitterness and pungency. © 2013 Society of Chemical Industry.

  3. The Sensory Striatum Is Permanently Impaired by Transient Developmental Deprivation

    Directory of Open Access Journals (Sweden)

    Todd M. Mowery

    2017-06-01

    Full Text Available Corticostriatal circuits play a fundamental role in regulating many behaviors, and their dysfunction is associated with many neurological disorders. In contrast, sensory disorders, like hearing loss (HL, are commonly linked with processing deficits at or below the level of the auditory cortex (ACx. However, HL can be accompanied by non-sensory deficits, such as learning delays, suggesting the involvement of regions downstream of ACx. Here, we show that transient developmental HL differentially affected the ACx and its downstream target, the sensory striatum. Following HL, both juvenile ACx layer 5 and striatal neurons displayed an excitatory-inhibitory imbalance and lower firing rates. After hearing was restored, adult ACx neurons recovered balanced excitatory-inhibitory synaptic gain and control-like firing rates, but striatal neuron synapses and firing properties did not recover. Thus, a brief period of abnormal cortical activity may induce cellular impairments that persist into adulthood and contribute to neurological disorders that are striatal in origin.

  4. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response.

    Science.gov (United States)

    Aron, Arthur; Ketay, Sarah; Hedden, Trey; Aron, Elaine N; Rose Markus, Hazel; Gabrieli, John D E

    2010-06-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies-observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences.

  5. Development of the “Highly Sensitive Dog” questionnaire to evaluate the personality dimension “Sensory Processing Sensitivity” in dogs

    Science.gov (United States)

    Asher, Lucy; Furrer, Sibylle; Lechner, Isabel; Würbel, Hanno; Melotti, Luca

    2017-01-01

    In humans, the personality dimension ‘sensory processing sensitivity (SPS)’, also referred to as “high sensitivity”, involves deeper processing of sensory information, which can be associated with physiological and behavioral overarousal. However, it has not been studied up to now whether this dimension also exists in other species. SPS can influence how people perceive the environment and how this affects them, thus a similar dimension in animals would be highly relevant with respect to animal welfare. We therefore explored whether SPS translates to dogs, one of the primary model species in personality research. A 32-item questionnaire to assess the “highly sensitive dog score” (HSD-s) was developed based on the “highly sensitive person” (HSP) questionnaire. A large-scale, international online survey was conducted, including the HSD questionnaire, as well as questions on fearfulness, neuroticism, “demographic” (e.g. dog sex, age, weight; age at adoption, etc.) and “human” factors (e.g. owner age, sex, profession, communication style, etc.), and the HSP questionnaire. Data were analyzed using linear mixed effect models with forward stepwise selection to test prediction of HSD-s by the above-mentioned factors, with country of residence and dog breed treated as random effects. A total of 3647 questionnaires were fully completed. HSD-, fearfulness, neuroticism and HSP-scores showed good internal consistencies, and HSD-s only moderately correlated with fearfulness and neuroticism scores, paralleling previous findings in humans. Intra- (N = 447) and inter-rater (N = 120) reliabilities were good. Demographic and human factors, including HSP score, explained only a small amount of the variance of HSD-s. A PCA analysis identified three subtraits of SPS, comparable to human findings. Overall, the measured personality dimension in dogs showed good internal consistency, partial independence from fearfulness and neuroticism, and good intra- and inter

  6. Sensory Neuropathy Due to Loss of Bcl-w

    Science.gov (United States)

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  7. Impacts of Ocean Acidification on Sensory Function in Marine Organisms.

    Science.gov (United States)

    Ashur, Molly M; Johnston, Nicole K; Dixson, Danielle L

    2017-07-01

    Ocean acidification has been identified as a major contributor to ocean ecosystem decline, impacting the calcification, survival, and behavior of marine organisms. Numerous studies have observed altered sensory perception of chemical, auditory, and visual cues after exposure to elevated CO2. Sensory systems enable the observation of the external environment and therefore play a critical role in survival, communication, and behavior of marine organisms. This review seeks to (1) summarize the current knowledge of sensory impairment caused by ocean acidification, (2) discuss potential mechanisms behind this disruption, and (3) analyze the expected taxa differences in sensitivities to elevated CO2 conditions. Although a lack of standardized methodology makes cross-study comparisons challenging, trends and biases arise from this synthesis including a substantial focus on vertebrates, larvae or juveniles, the reef ecosystem, and chemosensory perception. Future studies must broaden the scope of the field by diversifying the taxa and ecosystems studied, incorporating ontogenetic comparisons, and focusing on cryptic sensory systems such as electroreception, magnetic sense, and the lateral line system. A discussion of possible mechanisms reveals GABAA receptor reversal as the conspicuous physiological mechanism. However, the potential remains for alternative disruption through structure or cue changes. Finally, a taxonomic comparison of physiological complexity reveals few trends in sensory sensitivities to lowered pH, but we hypothesize potential correlations relating to habitat, life history or relative use of sensory systems. Elevated CO2, in concordance with other global and local stressors, has the potential to drastically shift community composition and structure. Therefore research addressing the extent of sensory impairment, the underlying mechanisms, and the differences between taxa is vital for improved predictions of organismal response to ocean acidification.

  8. Pain sensitivity profiles in patients with advanced knee osteoarthritis

    Science.gov (United States)

    Frey-Law, Laura A.; Bohr, Nicole L.; Sluka, Kathleen A.; Herr, Keela; Clark, Charles R.; Noiseux, Nicolas O.; Callaghan, John J; Zimmerman, M Bridget; Rakel, Barbara A.

    2016-01-01

    The development of patient profiles to subgroup individuals on a variety of variables has gained attention as a potential means to better inform clinical decision-making. Patterns of pain sensitivity response specific to quantitative sensory testing (QST) modality have been demonstrated in healthy subjects. It has not been determined if these patterns persist in a knee osteoarthritis population. In a sample of 218 participants, 19 QST measures along with pain, psychological factors, self-reported function, and quality of life were assessed prior to total knee arthroplasty. Component analysis was used to identify commonalities across the 19 QST assessments to produce standardized pain sensitivity factors. Cluster analysis then grouped individuals that exhibited similar patterns of standardized pain sensitivity component scores. The QST resulted in four pain sensitivity components: heat, punctate, temporal summation, and pressure. Cluster analysis resulted in five pain sensitivity profiles: a “low pressure pain” group, an “average pain” group, and three “high pain” sensitivity groups who were sensitive to different modalities (punctate, heat, and temporal summation). Pain and function differed between pain sensitivity profiles, along with sex distribution; however no differences in OA grade, medication use, or psychological traits were found. Residualizing QST data by age and sex resulted in similar components and pain sensitivity profiles. Further, these profiles are surprisingly similar to those reported in healthy populations suggesting that individual differences in pain sensitivity are a robust finding even in an older population with significant disease. PMID:27152688

  9. Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ogino

    Full Text Available The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.

  10. A piece of the action: modulation of sensory-motor regions by action idioms and metaphors.

    Science.gov (United States)

    Desai, Rutvik H; Conant, Lisa L; Binder, Jeffrey R; Park, Haeil; Seidenberg, Mark S

    2013-12-01

    The idea that the conceptual system draws on sensory and motor systems has received considerable experimental support in recent years. Whether the tight coupling between sensory-motor and conceptual systems is modulated by factors such as context or task demands is a matter of controversy. Here, we tested the context sensitivity of this coupling by using action verbs in three different types of sentences in an fMRI study: literal action, apt but non-idiomatic action metaphors, and action idioms. Abstract sentences served as a baseline. The result showed involvement of sensory-motor areas for literal and metaphoric action sentences, but not for idiomatic ones. A trend of increasing sensory-motor activation from abstract to idiomatic to metaphoric to literal sentences was seen. These results support a gradual abstraction process whereby the reliance on sensory-motor systems is reduced as the abstractness of meaning as well as conventionalization is increased, highlighting the context sensitive nature of semantic processing. © 2013.

  11. Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons.

    Science.gov (United States)

    van den Hoogen, Nynke J; Patijn, Jacob; Tibboel, Dick; Joosten, Bert A; Fitzgerald, Maria; Kwok, Charlie H T

    2018-03-08

    Noxious stimulation at critical stages of development has long-term consequences on somatosensory processing in later life, but it is not known whether this developmental plasticity is restricted to nociceptive pathways. Here, we investigate the effect of repeated neonatal noxious or innocuous hind paw stimulation on adult spinal dorsal horn cutaneous mechanical sensitivity. Neonatal Sprague-Dawley rats of both sexes received 4 unilateral left hind paw needle pricks (NPs, n = 13) or 4 tactile (cotton swab touch) stimuli, per day (TC, n = 11) for the first 7 days of life. Control pups were left undisturbed (n = 17). When adult (6-8 weeks), lumbar wide-dynamic-range neuron activity in laminae III-V was recorded using in vivo extracellular single-unit electrophysiology. Spike activity evoked by cutaneous dynamic tactile (brush), pinch and punctate (von Frey hair) stimulation, and plantar receptive field areas were recorded, at baseline and 2 and 5 days after left plantar hind paw incision. Baseline brush receptive fields, von Frey hair, and pinch sensitivity were significantly enhanced in adult NP and TC animals compared with undisturbed controls, although effects were greatest in NP rats. After incision, injury sensitivity of adult wide-dynamic-range neurons to both noxious and dynamic tactile hypersensitivity was significantly greater in NP animals compared with TC and undisturbed controls. We conclude that both repeated touch and needle-prick stimulation in the neonatal period can alter adult spinal sensory neuron sensitivity to both innocuous and noxious mechanical stimulation. Thus, spinal sensory circuits underlying touch and pain processing are shaped by a range of early-life somatosensory experiences.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  12. Subthalamic deep brain stimulation modulates small fiber-dependent sensory thresholds in Parkinson's disease.

    Science.gov (United States)

    Ciampi de Andrade, Daniel; Lefaucheur, Jean-Pascal; Galhardoni, Ricardo; Ferreira, Karine S L; Brandão Paiva, Anderson Rodrigues; Bor-Seng-Shu, Edson; Alvarenga, Luciana; Myczkowski, Martin L; Marcolin, Marco Antonio; de Siqueira, Silvia R D T; Fonoff, Erich; Barbosa, Egberto Reis; Teixeira, Manoel Jacobsen

    2012-05-01

    The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P=.019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  14. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients.

    Science.gov (United States)

    López-Solà, Marina; Pujol, Jesus; Wager, Tor D; Garcia-Fontanals, Alba; Blanco-Hinojo, Laura; Garcia-Blanco, Susana; Poca-Dias, Violant; Harrison, Ben J; Contreras-Rodríguez, Oren; Monfort, Jordi; Garcia-Fructuoso, Ferran; Deus, Joan

    2014-11-01

    Fibromyalgia (FM) is a disorder characterized by chronic pain and enhanced responses to acute noxious events. However, the sensory systems affected in FM may extend beyond pain itself, as FM patients show reduced tolerance to non-nociceptive sensory stimulation. Characterizing the neural substrates of multisensory hypersensitivity in FM may thus provide important clues about the underlying pathophysiology of the disorder. The aim of this study was to characterize brain responses to non-nociceptive sensory stimulation in FM patients and their relationship to subjective sensory sensitivity and clinical pain severity. Functional magnetic resonance imaging (MRI) was used to assess brain response to auditory, visual, and tactile motor stimulation in 35 women with FM and 25 matched controls. Correlation and mediation analyses were performed to establish the relationship between brain responses and 3 types of outcomes: subjective hypersensitivity to daily sensory stimulation, spontaneous pain, and functional disability. Patients reported increased subjective sensitivity (increased unpleasantness) in response to multisensory stimulation in daily life. Functional MRI revealed that patients showed reduced task-evoked activation in primary/secondary visual and auditory areas and augmented responses in the insula and anterior lingual gyrus. Reduced responses in visual and auditory areas were correlated with subjective sensory hypersensitivity and clinical severity measures. FM patients showed strong attenuation of brain responses to nonpainful events in early sensory cortices, accompanied by an amplified response at later stages of sensory integration in the insula. These abnormalities are associated with core FM symptoms, suggesting that they may be part of the pathophysiology of the disease. Copyright © 2014 by the American College of Rheumatology.

  15. The association between changes in pressure pain sensitivity and changes in cardiovascular physiological factors associated with persistent stress

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille B.; Harboe, Gitte S.

    2014-01-01

    Abstract Objectives. To evaluate the possible association between pressure pain sensitivity of the chest bone (PPS) and cardiovascular physiological factors related to persistent stress in connection with a three-month PPS-guided stress-reducing experimental intervention programme. Methods. Forty......-two office workers with an elevated PPS (≥ 60 arbitrary units) as a sign of increased level of persistent stress, completed a single-blinded cluster randomized controlled trial. The active treatment was a PPS (self-measurement)-guided stress management programme. Primary endpoints: Blood pressure (BP), heart...... between-group reductions were observed in respect to BP, HR, PRP, total and LDL cholesterol, and total number of elevated risk factors (p stress intervention method applied in this study induced a decrease in PPS which was associated with a clinically relevant decrease in resting...

  16. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    DEFF Research Database (Denmark)

    Horwitz, Anna; Mortensen, Erik L.; Osler, Merete

    2017-01-01

    -task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual...... found that the difference in anterior coherence (ΔCA ) is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory...

  17. Sensory optimization by stochastic tuning.

    Science.gov (United States)

    Jurica, Peter; Gepshtein, Sergei; Tyukin, Ivan; van Leeuwen, Cees

    2013-10-01

    Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system's preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  18. Multi-Sensory Integration Impairment in Patients with Minimal Hepatic Encephalopathy.

    Science.gov (United States)

    Seo, Kyoungwon; Jun, Dae Won; Kim, Jae-Kwan; Ryu, Hokyoung

    2017-11-02

    Paper-and-pencil-based psychometric tests are the gold standard for diagnosis of cognitive dysfunction in liver disease. However, they take time, can be affected by demographic factors, and lack ecological validity. This study explored multi-sensory integration ability to discriminate cognitive dysfunction in cirrhosis. Thirty-two healthy controls and 30 cirrhotic patients were recruited. The sensory integration test presents stimuli from two different modalities (e.g., image/sound) with a short time lag, and subjects judge which stimuli appeared first. Repetitive tests reveal the sensory integration capability. Performance in the sensory integration test, psychometric tests, and functional near-infrared spectroscopy for patients was compared to controls. Sensory integration capability, the perceptual threshold to discriminate the time gap between an image and sound stimulus, was significantly impaired in cirrhotic patients with minimal hepatic encephalopathy (MHE) compared to controls (p integration test showed good correlation with psychometric tests (NCT-A, r = 0.383, p = 0.002; NCT-B, r = 0.450, p integration test was not affected. The sensory integration test, where a cut-off value for the perceptual threshold was 133.3ms, recognized MHE patients at 90% sensitivity and 86.5% specificity.

  19. Sensory Gain Outperforms Efficient Readout Mechanisms in Predicting Attention-Related Improvements in Behavior

    Science.gov (United States)

    Ester, Edward F.; Deering, Sean

    2014-01-01

    Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking ∼80–130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking ∼230–330 ms poststimulus). A simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data. We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity primarily by modulating the gain of neural responses during early sensory processing PMID:25274817

  20. Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity.

    Science.gov (United States)

    Hu, Jiangyuan; Adler, Kerry; Farah, Carole Abi; Hastings, Margaret H; Sossin, Wayne S; Schacher, Samuel

    2017-03-08

    Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity. SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long

  1. The neuroecology of cartilaginous fishes: sensory strategies for survival.

    Science.gov (United States)

    Collin, Shaun P

    2012-01-01

    As apex predators, chondrichthyans, or cartilaginous fishes, hold an important position within a range of aquatic ecosystems and influence the balance between species' abundance and biodiversity. Having been in existence for over 400 million years and representing the earliest stages of the evolution of jawed vertebrates, this group also covers a diverse range of eco-morphotypes, occupying both marine and freshwater habitats. The class Chondrichthyes is divided into two subclasses: the Elasmobranchii (sharks, skates, and rays) and the Holocephali (elephant sharks and chimaeras). However, many of their life history traits, such as low fecundity, the production of small numbers of highly precocious young, slow growth rates, and late maturity, make them highly susceptible to human exploitation. To mitigate the negative effects of human impacts, it is important that we understand the sensory strategies that elasmobranchs use for navigating within their environment, forming reproductive aggregations, feeding, and even communicating. One approach to investigate the sensory bases of their behavior is to examine the peripheral sense organs mediating vision, olfaction, gustation, lateral line, electroreception, and audition in a large range of species in order to identify specific adaptations, the range of sensitivity thresholds, and the compromise between sensory spatial resolution and sensitivity. In addition, we can quantitatively assess the convergence of sensory input to the central nervous system and the relative importance of different sensory modalities. Using a comparative approach and often a combination of anatomical, electrophysiological, and molecular techniques, significant variation has been identified in the spatial and chromatic sampling of the photoreceptors in the eye, the surface area and the number of olfactory lamellae within the nasal cavity, the level of gustatory sampling within the oral cavity, the type and innervation of neuromasts of the lateral

  2. Sensory processing patterns, coping strategies, and quality of life among patients with unipolar and bipolar disorders

    Directory of Open Access Journals (Sweden)

    Batya Engel-Yeger

    2016-01-01

    Full Text Available Objective: To compare sensory processing, coping strategies, and quality of life (QoL in unipolar and bipolar patients; to examine correlations between sensory processing and QoL; and to investigate the relative contribution of sociodemographic characteristics, sensory processing, and coping strategies to the prediction of QoL. Methods: Two hundred sixty-seven participants, aged 16-85 years (53.6±15.7, of whom 157 had a diagnosis of unipolar major depressive disorder and 110 had bipolar disorder type I and type II, completed the Adolescent/Adult Sensory Profile, Coping Orientations to Problems Experienced, and 12-item Short-Form Health Survey version 2. The two groups were compared with multivariate analyses. Results: The unipolar and bipolar groups did not differ concerning sensory processing, coping strategies, or QoL. Sensory processing patterns correlated with QoL independently of mediation by coping strategies. Correlations between low registration, sensory sensitivity, sensation avoidance, and reduced QoL were found more frequently in unipolar patients than bipolar patients. Higher physical QoL was mainly predicted by lower age and lower sensory sensitivity, whereas higher mental QoL was mainly predicted by coping strategies. Conclusion: While age may predict physical QoL, coping strategies predict mental QoL. Future studies should further investigate the impact of sensory processing and coping strategies on patients’ QoL in order to enhance adaptive and functional behaviors related to affective disturbances.

  3. Persistent luminescence nanothermometers

    Science.gov (United States)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  4. Latent constructs underlying sensory subtypes in children with autism: A preliminary study.

    Science.gov (United States)

    Hand, Brittany N; Dennis, Simon; Lane, Alison E

    2017-08-01

    Recent reports identify sensory subtypes in ASD based on shared patterns of responses to daily sensory stimuli [Ausderau et al., 2014; Lane, Molloy, & Bishop, 2014]. Lane et al. propose that two broad sensory dimensions, sensory reactivity and multisensory integration, best explain the differences between subtypes, however this has yet to be tested. The present study tests this hypothesis by examining the latent constructs underlying Lane's sensory subtypes. Participants for this study were caregivers of children with autism spectrum disorder (ASD) aged 2-12 years. Caregiver responses on the Short Sensory Profile (SSP), used to establish Lane's sensory subtypes, were extracted from two existing datasets (total n = 287). Independent component analyses were conducted to test the fit and interpretability of a two-construct structure underlying the SSP, and therefore, the sensory subtypes. The first construct was largely comprised of the taste/smell sensitivity domain, which describes hyper-reactivity to taste and smell stimuli. The second construct had a significant contribution from the low energy/weak domain, which describes behaviors that may be indicative of difficulties with multisensory integration. Findings provide initial support for our hypothesis that sensory reactivity and multisensory integration underlie Lane's sensory subtypes in ASD. Autism Res 2017, 10: 1364-1371. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Upper-limb sensory impairments after stroke: Self-reported experiences of daily life and rehabilitation

    Directory of Open Access Journals (Sweden)

    Håkan Carlsson

    2017-10-01

    Full Text Available Objective: To describe stroke survivors’ experiences of sensory impairment in the upper limb, the influence of such impairment on daily life, coping strategies used, and sensory training for the affected hand. Design: A qualitative study with a content analysis approach. Subjects: Fifteen post-stroke patients interviewed individually. Results: Five categories emerged from the data: “Changed and varied perception of the sensation”; “Affected movement control”; “Problems using the hand in daily life”; “Various strategies to cope with upper limb disability”; and “Lack of sensory training”. Numbness and tingling, changes in temperature sensitivity, and increased sensitivity to touch and pain were reported. Many subjects had difficulty adjusting their grip force and performing movements with precision. It was problematic and mentally fatiguing managing personal care and carrying out household and leisure activities. Practical adaptations, compensation with vision, increased concentration, and use of the less affected hand were strategies used to overcome difficulties. Despite their problems very few subjects had received any specific sensory training for the hand. Conclusion: Stroke survivors perceive that sensory impairment of the upper limb has a highly negative impact on daily life, but specific rehabilitation for the upper limb is lacking. These findings imply that the clinical management of upper limb sensory impairment after stroke requires more attention.

  6. Visual perception of ADHD children with sensory processing disorder.

    Science.gov (United States)

    Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi

    2014-04-01

    The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.

  7. Sensory Impairments and Cognitive Function in Middle-Aged Adults.

    Science.gov (United States)

    Schubert, Carla R; Cruickshanks, Karen J; Fischer, Mary E; Chen, Yanjun; Klein, Barbara E K; Klein, Ronald; Pinto, A Alex

    2017-08-01

    Hearing, visual, and olfactory impairments have been associated with cognitive impairment in older adults but less is known about associations with cognitive function in middle-aged adults. Sensory and cognitive functions were measured on participants in the baseline examination (2005-2008) of the Beaver Dam Offspring Study. Cognitive function was measured with the Trail Making tests A (TMTA) and B (TMTB) and the Grooved Peg Board test. Pure-tone audiometry, Pelli-Robson letter charts, and the San Diego Odor Identification test were used to measure hearing, contrast sensitivity, and olfaction, respectively. There were 2,836 participants aged 21-84 years with measures of hearing, visual, olfactory, and cognitive function at the baseline examination. Nineteen percent of the cohort had one sensory impairment and 3% had multiple sensory impairments. In multivariable adjusted linear regression models that included all three sensory impairments, hearing impairment, visual impairment, and olfactory impairment were each independently associated with poorer performance on the TMTA, TMTB, and Grooved Peg Board (p cognitive function tests independent of the other sensory impairments and factors associated with cognition. Sensory impairments in midlife are associated with subtle deficits in cognitive function which may be indicative of early brain aging. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Sensory Dysfunction and Sexuality in the U.S. Population of Older Adults.

    Science.gov (United States)

    Zhong, Selena; Pinto, Jayant M; Wroblewski, Kristen E; McClintock, Martha K

    2018-04-01

    The sexual experience is shaped by sensory function; with aging, sensory dysfunction may interfere with sexuality and sexual behavior between partners. Specifically, older adults with age-related sensory dysfunction may have less sexual activity than those with better sensory function. In addition, since sexual desire and attraction rests in part upon sensory function, sensory dysfunction may also be associated with less sexual motivation. To test the association between sexual activity and motivation in older adults and their sensory dysfunction. Sensory dysfunction was measured both by global sensory impairment (a validated measure of dysfunction shared among the 5 classic senses: olfaction, vision, taste, touch, hearing) and by total sensory burden (cumulative sensory loss). Sexual activity was quantified by frequency and type of sexual behavior. Sexual motivation was measured by the frequency of sexual ideation and the importance of sex to the respondent. We used cross-sectional data from a nationally representative sample of community-dwelling older adults (aged 57-85 years) in the United States (National Social Life, Health, and Aging Project, N = 3,005) in logistic regression analyses. Sexual activity, sexual motivation, and satisfaction with the sexual relationship were self-reported. Older adults with sensory dysfunction were less likely to be sexually active-an association that persisted when accounting for other factors that also affected sexual activity (age, gender, partnered status, mental and physical health, and relationship satisfaction). Nonetheless, sensory dysfunction did not impair sexual motivation, nor affect the physical and emotional satisfaction with the sexual relationship. Among currently sexually active older adults, sensory dysfunction did not affect the frequency of sex or the type of sexual activity (foreplay, vaginal intercourse, or oral sex). These results were the same for 2 different measures of sensory dysfunction. This is the

  9. Sensory adaptation to electrical stimulation of the somatosensory nerves.

    Science.gov (United States)

    Graczyk, Emily Lauren; Delhaye, Benoit; Schiefer, Matthew A; Bensmaia, Sliman J; Tyler, Dustin J

    2018-03-19

    Sensory systems adapt their sensitivity to ambient stimulation levels to improve their responsiveness to changes in stimulation. The sense of touch is also subject to adaptation, as evidenced by the desensitization produced by prolonged vibratory stimulation of the skin. Electrical stimulation of nerves elicits tactile sensations that can convey feedback for bionic limbs. In this study, we investigate whether artificial touch is also subject to adaptation, despite the fact that the peripheral mechanotransducers are bypassed. Approach: Using well-established psychophysical paradigms, we characterize the time course and magnitude of sensory adaptation caused by extended electrical stimulation of the residual somatosensory nerves in three human amputees implanted with cuff electrodes. Main results: We find that electrical stimulation of the nerve also induces perceptual adaptation that recovers after cessation of the stimulus. The time course and magnitude of electrically-induced adaptation are equivalent to their mechanically-induced counterparts. Significance: We conclude that, in natural touch, the process of mechanotransduction is not required for adaptation, and artificial touch naturally experiences adaptation-induced adjustments of the dynamic range of sensations. Further, as it does for native hands, adaptation confers to bionic hands enhanced sensitivity to changes in stimulation and thus a more natural sensory experience. . Creative Commons Attribution license.

  10. Immediate and persistent transcriptional correlates of long-term sensitization training at different CNS loci in Aplysia californica.

    Directory of Open Access Journals (Sweden)

    Samantha Herdegen

    Full Text Available Repeated noxious stimulation produces long-term sensitization of defensive withdrawal reflexes in Aplysia californica, a form of long-term memory that requires changes in both transcription and translation. Previous work has identified 10 transcripts which are rapidly up-regulated after long-term sensitization training in the pleural ganglia. Here we use quantitative PCR to begin examining how these transcriptional changes are expressed in different CNS loci related to defensive withdrawal reflexes at 1 and 24 hours after long-term sensitization training. Specifically, we sample from a the sensory wedge of the pleural ganglia, which exclusively contains the VC nociceptor cell bodies that help mediate input to defensive withdrawal circuits, b the remaining pleural ganglia, which contain withdrawal interneurons, and c the pedal ganglia, which contain many motor neurons. Results from the VC cluster show different temporal patterns of regulation: 1 rapid but transient up-regulation of Aplysia homologs of C/EBP, C/EBPγ, and CREB1, 2 delayed but sustained up-regulation of BiP, Tolloid/BMP-1, and sensorin, 3 rapid and sustained up-regulation of Egr, GlyT2, VPS36, and an uncharacterized protein (LOC101862095, and 4 an unexpected lack of regulation of Aplysia homologs of calmodulin (CaM and reductase-related protein (RRP. Changes in the remaining pleural ganglia mirror those found in the VC cluster at 1 hour but with an attenuated level of regulation. Because these samples had almost no expression of the VC-specific transcript sensorin, our data suggests that sensitization training likely induces transcriptional changes in either defensive withdrawal interneurons or neurons unrelated to defensive withdrawal. In the pedal ganglia, we observed only a rapid but transient increase in Egr expression, indicating that long-term sensitization training is likely to induce transcriptional changes in motor neurons but raising the possibility of different

  11. Sensory exotropia due to keratoconus and review of the literature

    Directory of Open Access Journals (Sweden)

    Ciftci S

    2013-10-01

    Full Text Available Suleyman Ciftci,1 Ali Simsek,2 Eyup Dogan,1 Leyla Ciftci31Department of Ophthalmology, Diyarbakir Training and Research Hospital, Diyarbakir; 2Department of Ophthalmology, Faculty of Medicine, Adiyaman University, Adiyaman; 3Department of Cardiology, Faculty of Medicine, Dicle University, Diyarbakir, TurkeyAbstract: This case report describes a 17-year-old boy with sensory strabismus due to keratoconus and an ipsilateral nodular lesion of the bulbar conjunctiva. The aligned eye was the right eye and keratoconus in this eye was of late onset. Vision in the left eye was poor and keratoconus was advanced in this eye. Due to the longstanding nature of the keratoconus and its occurrence in a developmentally sensitive period, sensory exotropia had developed in the left eye. There was a nodular lesion of the bulbar conjunctiva in the ipsilateral eye. If keratoconus occurs before the age of 7 years and the prolonged visual loss is not corrected, sensory strabismus can develop, as in this patient.Keywords: keratoconus, sensory exotropia, childhood

  12. PROP sensitivity reflects sensory discrimination between custard desserts

    NARCIS (Netherlands)

    Wijk, R.A. de; Dijksterhuis, G.; Vereijken, P.; Prinz, J.F.; Weenen, H.

    2007-01-01

    Sensitivity to 6-n-propylthiouracil (PROP) for a group of 180 naïve consumers was related to their perception of 16 commercially available vanilla custard desserts. Rated intensities of taste and texture attributes varied moderately and inconsistently with PROP sensitivity. In contrast,

  13. Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons.

    OpenAIRE

    Bailey, C H; Chen, M

    1988-01-01

    The morphological consequences of long-term habituation and sensitization of the gill withdrawal reflex in Aplysia california were explored by examining the total number of presynaptic varicosities of single identified sensory neurons (a critical site of plasticity for the biochemical and biophysical changes that underlie both types of learning) in control and behaviorally trained animals. Sensory neurons from habituated animals had 35% fewer synaptic varicosities than did sensory neurons fro...

  14. Serotonin induces memory-like, rapamycin-sensitive hyperexcitability in sensory axons of aplysia that contributes to injury responses.

    Science.gov (United States)

    Weragoda, Ramal M S; Walters, Edgar T

    2007-09-01

    The induction of long-term facilitation (LTF) of synapses of Aplysia sensory neurons (SNs) by serotonin (5-HT) has provided an important mechanistic model of memory, but little is known about other long-term effects of 5-HT on sensory properties. Here we show that crushing peripheral nerves results in long-term hyperexcitability (LTH) of the axons of these nociceptive SNs that requires 5-HT activity in the injured nerve. Serotonin application to a nerve segment induces local axonal (but not somal) LTH that is inhibited by 5-HT-receptor antagonists. Blockade of crush-induced axonal LTH by an antagonist, methiothepin, provides evidence for mediation of this injury response by 5-HT. This is the first demonstration in any axon of neuromodulator-induced LTH, a phenomenon potentially important for long-lasting pain. Methiothepin does not reduce axonal LTH induced by local depolarization, so 5-HT is not required for all forms of axonal LTH. Serotonin-induced axonal LTH is expressed as reduced spike threshold and increased repetitive firing, whereas depolarization-induced LTH involves only reduced threshold. Like crush- and depolarization-induced LTH, 5-HT-induced LTH is blocked by inhibiting protein synthesis. Blockade by rapamycin, which also blocks synaptic LTF, is interesting because the eukaryotic protein kinase that is the target of rapamycin (TOR) has a conserved role in promoting growth by stimulating translation of proteins required for translation. Rapamycin sensitivity suggests that localized increases in translation of proteins that promote axonal conduction and excitability at sites of nerve injury may be regulated by the same signals that increase translation of proteins that promote neuronal growth.

  15. Laser heat stimulation of tiny skin areas adds valuable information to quantitative sensory testing in postherpetic neuralgia.

    Science.gov (United States)

    Franz, Marcel; Spohn, Dorothee; Ritter, Alexander; Rolke, Roman; Miltner, Wolfgang H R; Weiss, Thomas

    2012-08-01

    Patients suffering from postherpetic neuralgia often complain about hypo- or hypersensation in the affected dermatome. The loss of thermal sensitivity has been demonstrated by quantitative sensory testing as being associated with small-fiber (Aδ- and C-fiber) deafferentation. We aimed to compare laser stimulation (radiant heat) to thermode stimulation (contact heat) with regard to their sensitivity and specificity to detect thermal sensory deficits related to small-fiber dysfunction in postherpetic neuralgia. We contrasted detection rate of laser stimuli with 5 thermal parameters (thresholds of cold/warm detection, cold/heat pain, and sensory limen) of quantitative sensory testing. Sixteen patients diagnosed with unilateral postherpetic neuralgia and 16 age- and gender-matched healthy control subjects were tested. Quantitative sensory testing and laser stimulation of tiny skin areas were performed in the neuralgia-affected skin and in the contralateral homologue of the neuralgia-free body side. Across the 5 thermal parameters of thermode stimulation, only one parameter (warm detection threshold) revealed sensory abnormalities (thermal hypoesthesia to warm stimuli) in the neuralgia-affected skin area of patients but not in the contralateral area, as compared to the control group. In contrast, patients perceived significantly less laser stimuli both in the affected skin and in the contralateral skin compared to controls. Overall, laser stimulation proved more sensitive and specific in detecting thermal sensory abnormalities in the neuralgia-affected skin, as well as in the control skin, than any single thermal parameter of thermode stimulation. Thus, laser stimulation of tiny skin areas might be a useful diagnostic tool for small-fiber dysfunction. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  16. Cross-sensory mapping of feature values in the size-brightness correspondence can be more relative than absolute

    OpenAIRE

    Walker, Laura; Walker, Peter

    2016-01-01

    A role for conceptual representations in cross-sensory correspondences has been linked to the relative (context-sensitive) mapping of feature values, whereas a role for sensory-perceptual representations has been linked to their absolute (context-insensitive) mapping. Demonstrating the relative nature of the automatic mapping underlying a cross-sensory correspondence therefore offers one way of confirming its conceptual basis. After identifying several prerequisites for relative and absolute ...

  17. Stimulation of the sensory pudendal nerve increases bladder capacity in the rat.

    Science.gov (United States)

    Hokanson, James A; Langdale, Christopher L; Sridhar, Arun; Grill, Warren M

    2018-04-01

    Pudendal nerve stimulation is a promising treatment approach for lower urinary tract dysfunction, including symptoms of overactive bladder. Despite some promising clinical studies, there remain many unknowns as to how best to stimulate the pudendal nerve to maximize therapeutic efficacy. We quantified changes in bladder capacity and voiding efficiency during single-fill cystometry in response to electrical stimulation of the sensory branch of the pudendal nerve in urethane-anesthetized female Wistar rats. Increases in bladder capacity were dependent on both stimulation amplitude and rate. Stimulation that produced increases in bladder capacity also led to reductions in voiding efficiency. Also, there was a stimulation carryover effect, and increases in bladder capacity persisted during several nonstimulated trials following stimulated trials. Intravesically administered PGE 2 reduced bladder capacity, producing a model of overactive bladder (OAB), and sensory pudendal nerve stimulation again increased bladder capacity but also reduced voiding efficiency. This study serves as a basis for future studies that seek to maximize the therapeutic efficacy of sensory pudendal nerve stimulation for the symptoms of OAB.

  18. Embodied Space: a Sensorial Approach to Spatial Experience

    Science.gov (United States)

    Durão, Maria João

    2009-03-01

    A reflection is presented on the significance of the role of the body in the interpretation and future creation of spatial living structures. The paper draws on the body as cartography of sensorial meaning that includes vision, touch, smell, hearing, orientation and movement to discuss possible relationships with psychological and sociological parameters of 'sensorial space'. The complex dynamics of body-space is further explored from the standpoint of perceptual variables such as color, light, materialities, texture and their connections with design, technology, culture and symbology. Finally, the paper discusses the integration of knowledge and experimentation in the design of future habitats where body-sensitive frameworks encompass flexibility, communication, interaction and cognitive-driven solutions.

  19. H2S-induced HCO3- secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons.

    Science.gov (United States)

    Takeuchi, Koji; Ise, Fumitaka; Takahashi, Kento; Aihara, Eitaro; Hayashi, Shusaku

    2015-04-30

    Hydrogen sulfide (H2S) is known to be an important gaseous mediator that affects various functions under physiological and pathological conditions. We examined the effects of NaHS, a H2S donor, on HCO3(-) secretion in rat stomachs and investigated the mechanism involved in this response. Under urethane anesthesia, rat stomachs were mounted on an ex vivo chamber and perfused with saline. Acid secretion had been inhibited by omeprazole. The secretion of HCO3(-) was measured at pH 7.0 using a pH-stat method and by the addition of 10 mM HCl. NaHS (0.5-10 mM) was perfused in the stomach for 5 min. Indomethacin or L-NAME was administered s.c. before NaHS treatment, while glibenclamide (a KATP channel blocker), ONO-8711 (an EP1 antagonist), or propargylglycine (a cystathionine γ-lyase inhibitor) was given i.p. before. The mucosal perfusion of NaHS dose-dependently increased the secretion of HCO3(-), and this effect was significantly attenuated by indomethacin, L-NAME, and sensory deafferentation, but not by glibenclamide or ONO-8711. The luminal output of nitric oxide, but not the mucosal production of prostaglandin E2, was increased by the perfusion of NaHS. Mucosal acidification stimulated HCO3(-) secretion, and this response was inhibited by sensory deafferentation, indomethacin, L-NAME, and ONO-8711, but not by propargylglycine. These results suggested that H2S increased HCO3(-) secretion in the stomach, and this effect was mediated by capsaicin-sensitive afferent neurons and dependent on nitric oxide and prostaglandins, but not ATP-sensitive K(+) channels. Further study is needed to define the role of endogenous H2S in the mechanism underlying acid-induced gastric HCO3(-) secretion. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Think like a sponge: The genetic signal of sensory cells in sponges.

    Science.gov (United States)

    Mah, Jasmine L; Leys, Sally P

    2017-11-01

    A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the

  1. Sensory reactivity, empathizing and systemizing in autism spectrum conditions and sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Teresa Tavassoli

    2018-01-01

    Full Text Available Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD. To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ to measure autistic traits, and the Empathy Quotient (EQ and Systemizing Quotient (SQ to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Keywords: Autism spectrum conditions, Sensory processing disorder, Sensory symptoms, Empathy, Systemizing

  2. A clinician-administered observation and corresponding caregiver interview capturing DSM-5 sensory reactivity symptoms in children with ASD.

    Science.gov (United States)

    Siper, Paige M; Kolevzon, Alexander; Wang, A Ting; Buxbaum, Joseph D; Tavassoli, Teresa

    2017-06-01

    Sensory reactivity is a new criterion for autism spectrum disorder (ASD) in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). However, there is no consensus on how to reliably measure sensory reactivity, particularly in minimally verbal individuals. The current study is an initial validation of the Sensory Assessment for Neurodevelopmental Disorders (SAND), a novel clinician-administered observation and corresponding caregiver interview that captures sensory symptoms based on DSM-5 criteria for ASD. Eighty children between the ages of 2 and 12 participated in this study; 44 children with ASD and 36 typically developing (TD) children. Sensory reactivity symptoms were measured using the SAND and the already validated Short Sensory Profile (SSP). Initial psychometric properties of the SAND were examined including reliability, validity, sensitivity and specificity. Children with ASD showed significantly more sensory reactivity symptoms compared to TD children across sensory domains (visual, tactile, and auditory) and within sensory subtypes (hyperreactivity, hyporeactivity and seeking). The SAND showed strong internal consistency, inter-rater reliability and test-retest reliability, high sensitivity (95.5%) and specificity (91.7%), and strong convergent validity with the SSP. The SAND provides a novel method to characterize sensory reactivity symptoms based on DSM-5 criteria for ASD. This is the first known sensory assessment that combines a clinician-administered observation and caregiver interview to optimally capture sensory phenotypes characteristic of individuals with neurodevelopmental disorders. The SAND offers a beneficial new tool for both research and clinical purposes and has the potential to meaningfully enhance gold-standard assessment of ASD. Autism Res 2017, 10: 1133-1140. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  3. On Curating Multimodal Sensory Data for Health and Wellness Platforms

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal Amin

    2016-06-01

    Full Text Available In recent years, the focus of healthcare and wellness technologies has shown a significant shift towards personal vital signs devices. The technology has evolved from smartphone-based wellness applications to fitness bands and smartwatches. The novelty of these devices is the accumulation of activity data as their users go about their daily life routine. However, these implementations are device specific and lack the ability to incorporate multimodal data sources. Data accumulated in their usage does not offer rich contextual information that is adequate for providing a holistic view of a user’s lifelog. As a result, making decisions and generating recommendations based on this data are single dimensional. In this paper, we present our Data Curation Framework (DCF which is device independent and accumulates a user’s sensory data from multimodal data sources in real time. DCF curates the context of this accumulated data over the user’s lifelog. DCF provides rule-based anomaly detection over this context-rich lifelog in real time. To provide computation and persistence over the large volume of sensory data, DCF utilizes the distributed and ubiquitous environment of the cloud platform. DCF has been evaluated for its performance, correctness, ability to detect complex anomalies, and management support for a large volume of sensory data.

  4. On Curating Multimodal Sensory Data for Health and Wellness Platforms

    Science.gov (United States)

    Amin, Muhammad Bilal; Banos, Oresti; Khan, Wajahat Ali; Muhammad Bilal, Hafiz Syed; Gong, Jinhyuk; Bui, Dinh-Mao; Cho, Soung Ho; Hussain, Shujaat; Ali, Taqdir; Akhtar, Usman; Chung, Tae Choong; Lee, Sungyoung

    2016-01-01

    In recent years, the focus of healthcare and wellness technologies has shown a significant shift towards personal vital signs devices. The technology has evolved from smartphone-based wellness applications to fitness bands and smartwatches. The novelty of these devices is the accumulation of activity data as their users go about their daily life routine. However, these implementations are device specific and lack the ability to incorporate multimodal data sources. Data accumulated in their usage does not offer rich contextual information that is adequate for providing a holistic view of a user’s lifelog. As a result, making decisions and generating recommendations based on this data are single dimensional. In this paper, we present our Data Curation Framework (DCF) which is device independent and accumulates a user’s sensory data from multimodal data sources in real time. DCF curates the context of this accumulated data over the user’s lifelog. DCF provides rule-based anomaly detection over this context-rich lifelog in real time. To provide computation and persistence over the large volume of sensory data, DCF utilizes the distributed and ubiquitous environment of the cloud platform. DCF has been evaluated for its performance, correctness, ability to detect complex anomalies, and management support for a large volume of sensory data. PMID:27355955

  5. Probabilistic sensory recoding.

    Science.gov (United States)

    Jazayeri, Mehrdad

    2008-08-01

    A hallmark of higher brain functions is the ability to contemplate the world rather than to respond reflexively to it. To do so, the nervous system makes use of a modular architecture in which sensory representations are dissociated from areas that control actions. This flexibility however necessitates a recoding scheme that would put sensory information to use in the control of behavior. Sensory recoding faces two important challenges. First, recoding must take into account the inherent variability of sensory responses. Second, it must be flexible enough to satisfy the requirements of different perceptual goals. Recent progress in theory, psychophysics, and neurophysiology indicate that cortical circuitry might meet these challenges by evaluating sensory signals probabilistically.

  6. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke

    Directory of Open Access Journals (Sweden)

    Thais Botossi Scalha

    2011-08-01

    Full Text Available OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA, Nottingham Sensory Assessment (NSA, and several motor and sensory tests: Paper manipulation (PM, Motor Sequences (MS, Reaching and grasping (RG Tests Functional (TF, Tactile Discrimination (TD, Weight Discrimination (WD and Tactile Recognition of Objects (RO. RESULTS: We found moderate correlations between the FMA motor subscale and the tactile sensation score of the NSA. Additionally, the FMA sensitivity was correlated with the NSA total; and performance on the WD test items correlated with the NSA. CONCLUSION: There was a correlation between the sensory and motor functions of the upper limb in chronic hemiparetic stroke patients. Additionally, there was a greater reliance on visual information to compensate for lost sensory-motor skills.

  7. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    Science.gov (United States)

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  8. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. State-dependent changes in auditory sensory gating in different cortical areas in rats.

    Directory of Open Access Journals (Sweden)

    Renli Qi

    Full Text Available Sensory gating is a process in which the brain's response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject's behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM sleep and Non-REM (NREM sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.

  10. Neurological Manifestations Among US Government Personnel Reporting Directional Audible and Sensory Phenomena in Havana, Cuba.

    Science.gov (United States)

    Swanson, Randel L; Hampton, Stephen; Green-McKenzie, Judith; Diaz-Arrastia, Ramon; Grady, M Sean; Verma, Ragini; Biester, Rosette; Duda, Diana; Wolf, Ronald L; Smith, Douglas H

    2018-03-20

    From late 2016 through August 2017, US government personnel serving on diplomatic assignment in Havana, Cuba, reported neurological symptoms associated with exposure to auditory and sensory phenomena. To describe the neurological manifestations that followed exposure to an unknown energy source associated with auditory and sensory phenomena. Preliminary results from a retrospective case series of US government personnel in Havana, Cuba. Following reported exposure to auditory and sensory phenomena in their homes or hotel rooms, the individuals reported a similar constellation of neurological symptoms resembling brain injury. These individuals were referred to an academic brain injury center for multidisciplinary evaluation and treatment. Report of experiencing audible and sensory phenomena emanating from a distinct direction (directional phenomena) associated with an undetermined source, while serving on US government assignments in Havana, Cuba, since 2016. Descriptions of the exposures and symptoms were obtained from medical record review of multidisciplinary clinical interviews and examinations. Additional objective assessments included clinical tests of vestibular (dynamic and static balance, vestibulo-ocular reflex testing, caloric testing), oculomotor (measurement of convergence, saccadic, and smooth pursuit eye movements), cognitive (comprehensive neuropsychological battery), and audiometric (pure tone and speech audiometry) functioning. Neuroimaging was also obtained. Of 24 individuals with suspected exposure identified by the US Department of State, 21 completed multidisciplinary evaluation an average of 203 days after exposure. Persistent symptoms (>3 months after exposure) were reported by these individuals including cognitive (n = 17, 81%), balance (n = 15, 71%), visual (n = 18, 86%), and auditory (n = 15, 68%) dysfunction, sleep impairment (n = 18, 86%), and headaches (n = 16, 76%). Objective findings included cognitive (n

  11. Combined laryngeal inflammation and trauma mediate long-lasting immunoreactivity response in the brainstem sensory nuclei in the rat

    Directory of Open Access Journals (Sweden)

    Kristina eSimonyan

    2012-11-01

    Full Text Available Somatosensory feedback from the larynx plays a critical role in regulation of normal upper airway functions, such as breathing, deglutition and voice production, while altered laryngeal sensory feedback is known to elicit a variety of pathological reflex responses, including persistent coughing, dysphonia and laryngospasm. Despite its clinical impact, the central mechanisms underlying the development of pathological laryngeal responses remain poorly understood. We examined the effects of persistent vocal fold (VF inflammation and trauma, as frequent causes of long-lasting modulation of laryngeal sensory feedback, on brainstem immunoreactivity in the rat. Combined VF inflammation and trauma were induced by injection of lipopolysaccharide (LPS solution and compared to VF trauma alone from injection of vehicle solution and to controls without any VF manipulations. Using a c-fos marker, we found significantly increased Fos-like immunoreactivity (FLI in the bilateral intermediate/parvicellular reticular formation (IRF/PCRF with a trend in the left solitary tract nucleus (NTS only in animals with LPS-induced VF inflammation and trauma. Further, FLI in the right NTS was significantly correlated with the severity of LPS-induced VF changes. However, increased brainstem FLI response was not associated with FLI changes in the first-order neurons of the laryngeal afferents located in the nodose and jugular ganglia in either group. Our data indicate that complex VF alterations (i.e., inflammation/trauma vs. trauma alone may cause prolonged excitability of the brainstem nuclei receiving a direct sensory input from the larynx, which, in turn, may lead to (malplastic changes within the laryngeal central sensory control.

  12. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory

    Directory of Open Access Journals (Sweden)

    Michael A. Nees

    2016-12-01

    Full Text Available Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3 to 5 s are compared, and a same or different judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory—especially two-stimulus comparison tasks—may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  13. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory.

    Science.gov (United States)

    Nees, Michael A

    2016-01-01

    Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3-5 s) are compared, and a "same" or "different" judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory-especially two-stimulus comparison tasks-may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  14. UNCOMMON SENSORY METHODOLOGIES

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2015-02-01

    Full Text Available Sensory science is the young but the rapidly developing field of the food industry. Actually, the great emphasis is given to the production of rapid techniques of data collection, the difference between consumers and trained panel is obscured and the role of sensory methodologists is to prepare the ways for evaluation, by which a lay panel (consumers can achieve identical results as a trained panel. Currently, there are several conventional methods of sensory evaluation of food (ISO standards, but more sensory laboratories are developing methodologies that are not strict enough in the selection of evaluators, their mechanism is easily understandable and the results are easily interpretable. This paper deals with mapping of marginal methods used in sensory evaluation of food (new types of profiles, CATA, TDS, napping.

  15. Coral reef fish populations can persist without immigration

    KAUST Repository

    Salles, Océane C.

    2015-11-18

    Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase.

  16. Sensory description of marine oils through development of a sensory wheel and vocabulary.

    Science.gov (United States)

    Larssen, W E; Monteleone, E; Hersleth, M

    2018-04-01

    The Omega-3 industry lacks a defined methodology and a vocabulary for evaluating the sensory quality of marine oils. This study was conducted to identify the sensory descriptors of marine oils and organize them in a sensory wheel for use as a tool in quality assessment. Samples of marine oils were collected from six of the largest producers of omega-3 products in Norway. The oils were selected to cover as much variation in sensory characteristics as possible, i.e. oils with different fatty acid content originating from different species. Oils were evaluated by six industry expert panels and one trained sensory panel to build up a vocabulary through a series of language sessions. A total of 184 aroma (odor by nose), flavor, taste and mouthfeel descriptors were generated. A sensory wheel based on 60 selected descriptors grouped together in 21 defined categories was created to form a graphical presentation of the sensory vocabulary. A selection of the oil samples was also evaluated by a trained sensory panel using descriptive analysis. Chemical analysis showed a positive correlation between primary and secondary oxidation products and sensory properties such as rancidity, chemical flavor and process flavor and a negative correlation between primary oxidation products and acidic. This research is a first step towards the broader objective of standardizing the sensory terminology related to marine oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Persistent and non-persistent strains of Listeria monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers.

    Science.gov (United States)

    Magalhães, R; Ferreira, V; Brandão, T R S; Palencia, R Casquete; Almeida, G; Teixeira, P

    2016-08-01

    This study aimed to investigate the effect of different conditions, including temperature (37 °C, 22 °C, and 4 °C), NaCl concentrations (2.5%, 4%, and 8%), and acidity (pH = 5), on the growth response of persistent and non-persistent isolates of Listeria monocytogenes. The resistance to two common sanitizers (benzalkonium chloride and hydrogen peroxide) was also investigated. A selected group of 41 persistent and non-persistent L. monocytogenes isolates recovered from three cheese processing plants during a previous longitudinal study was assembled. Average lag time was similar for persistent and non-persistent isolates grown at 37 °C, 22 °C and 4 °C but significantly shorter (p < 0.05) for persistent isolates grown at 2.5%, 4% and 8% NaCl, and at pH 5. Average growth rates were significantly higher (p < 0.05) for persistent than for non-persistent isolates when grown at 22 °C, 2.5%, 4% and 8% NaCl, and at pH 5. These results suggest that persistent strains may be better adapted to grow under stressful conditions frequently encountered in food processing environments than non-persistent strains. No relation between persistence and resistance to the tested sanitizers was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  19. Motor and sensory alalia: diagnostic difficulties

    Directory of Open Access Journals (Sweden)

    M. Yu. Bobylova

    2017-01-01

    Full Text Available Alalia is a speech disorder that develops due to organic brain damage in children with normal hearing and intelligence during the first three year of life. Systemic speech underdevelopment in alalia is characterized by violations in the phonetic, phonemic, lexical, and grammatical structure. Patients with alalia can also have non-speech related impairments, including motor (impaired movement and coordination, sensory (impaired sensitivity and perception, and psychopathological disorders. There are three types of alalia: motor, sensory, and mixed. Children with motor alalia have expressive language disorders, speech praxis, poor speech fluency, impaired articulation, and other focal neurological symptoms; however, they understand speech directed to them. Patients with motor alalia are often left-handed. Regional slowing and epileptiform activity are often detected on their electroencephalogram.  Children with sensory alalia are characterized by poor speech understanding (despite normal hearing resulting in secondary underdevelopment of their own speech. These patients have problems with the analysis of sounds, including speech sounds (impaired speech gnosis, which prevents the development of association between the sound image and the object. Therefore, the child hears, but does not understand the speech directed at him/her (auditory agnosia. Differential diagnosis of alalia is challenging and may require several months of observation. It also implies the exclusion of hearing loss and mental disorders.

  20. P2X receptors, sensory neurons and pain.

    Science.gov (United States)

    Bele, Tanja; Fabbretti, Elsa

    2015-01-01

    Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.

  1. Effects of acupuncture on sensory perception: a systematic review and meta-analysis.

    Science.gov (United States)

    Baeumler, Petra I; Fleckenstein, Johannes; Takayama, Shin; Simang, Michael; Seki, Takashi; Irnich, Dominik

    2014-01-01

    The effect of acupuncture on sensory perception has never been systematically reviewed; although, studies on acupuncture mechanisms are frequently based on the idea that changes in sensory thresholds reflect its effect on the nervous system. Pubmed, EMBASE and Scopus were screened for studies investigating the effect of acupuncture on thermal or mechanical detection or pain thresholds in humans published in English or German. A meta-analysis of high quality studies was performed. Out of 3007 identified articles 85 were included. Sixty five studies showed that acupuncture affects at least one sensory threshold. Most studies assessed the pressure pain threshold of which 80% reported an increase after acupuncture. Significant short- and long-term effects on the pressure pain threshold in pain patients were revealed by two meta-analyses including four and two high quality studies, respectively. In over 60% of studies, acupuncture reduced sensitivity to noxious thermal stimuli, but measuring methods might influence results. Few but consistent data indicate that acupuncture reduces pin-prick like pain but not mechanical detection. Results on thermal detection are heterogeneous. Sensory threshold changes were equally frequent reported after manual acupuncture as after electroacupuncture. Among 48 sham-controlled studies, 25 showed stronger effects on sensory thresholds through verum than through sham acupuncture, but in 9 studies significant threshold changes were also observed after sham acupuncture. Overall, there is a lack of high quality acupuncture studies applying comprehensive assessments of sensory perception. Our findings indicate that acupuncture affects sensory perception. Results are most compelling for the pressure pain threshold, especially in pain conditions associated with tenderness. Sham acupuncture can also cause such effects. Future studies should incorporate comprehensive, standardized assessments of sensory profiles in order to fully characterize its

  2. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons

    Directory of Open Access Journals (Sweden)

    Langeslag Michiel

    2011-12-01

    Full Text Available Abstract Oncostatin M (OSM is a member of the interleukin-6 cytokine family and regulates eg. gene activation, cell survival, proliferation and differentiation. OSM binds to a receptor complex consisting of the ubiquitously expressed signal transducer gp130 and the ligand binding OSM receptor subunit, which is expressed on a specific subset of primary afferent neurons. In the present study, the effect of OSM on heat nociception was investigated in nociceptor-specific gp130 knock-out (SNS-gp130-/- and gp130 floxed (gp130fl/fl mice. Subcutaneous injection of pathophysiologically relevant concentrations of OSM into the hind-paw of C57BL6J wild type mice significantly reduced paw withdrawal latencies to heat stimulation. In contrast to gp130fl/fl mice, OSM did not induce heat hypersensitivity in vivo in SNS-gp130-/- mice. OSM applied at the receptive fields of sensory neurons in in vitro skin-nerve preparations showed that OSM significantly increased the discharge rate during a standard ramp-shaped heat stimulus. The capsaicin- and heat-sensitive ion channel TRPV1, expressed on a subpopulation of nociceptive neurons, has been shown to play an important role in inflammation-induced heat hypersensitivity. Stimulation of cultured dorsal root ganglion neurons with OSM resulted in potentiation of capsaicin induced ionic currents. In line with these recordings, mice with a null mutation of the TRPV1 gene did not show any signs of OSM-induced heat hypersensitivity in vivo. The present data suggest that OSM induces thermal hypersensitivity by directly sensitizing nociceptors via OSMR-gp130 receptor mediated potentiation of TRPV1.

  3. Relationships among Sensory Responsiveness, Anxiety, and Ritual Behaviors in Children with and without Atypical Sensory Responsiveness.

    Science.gov (United States)

    Bart, Orit; Bar-Shalita, Tami; Mansour, Hanin; Dar, Reuven

    2017-08-01

    To explore relationships between sensory responsiveness, anxiety, and ritual behaviors in boys with typical and atypical sensory responsiveness. Forty-eight boys, ages 5-9 participated in the study (28 boys with atypical sensory responsiveness and 20 controls). Atypical sensory responsiveness was defined as a score of ≤154 on the Short Sensory Profile. Parents completed the Sensory Profile, the Screen for Child Anxiety Related Emotional Disorders, and the Childhood Routines Inventory. Children with atypical sensory responsiveness had significantly higher levels of anxiety and a higher frequency of ritual behaviors than controls. Atypical sensory responsiveness was significantly related to both anxiety and ritual behaviors, with anxiety mediating the relationship between sensory modulation and ritual behaviors. The findings elucidate the potential consequences of atypical sensory responsiveness and could support the notion that ritual behaviors develop as a coping mechanism in response to anxiety stemming from primary difficulty in modulating sensory input.

  4. Partial coalescence as a tool to control sensory perception of emulsions

    NARCIS (Netherlands)

    Benjamins, J.; Vingerhoeds, M.H.; Zoet, F.D.; Hoog, de E.H.A.; Aken, van G.A.

    2009-01-01

    This study evaluates the role of partial coalescence of whey protein-stabilized emulsions on sensory perception. The selection of fats was restricted to vegetable fats that are essentially melted at oral temperatures. The sensitivity to partial coalescence was controlled by a variation in the fat

  5. Atypical sensory profiles as core features of adult ADHD, irrespective of autistic symptoms.

    Science.gov (United States)

    Bijlenga, D; Tjon-Ka-Jie, J Y M; Schuijers, F; Kooij, J J S

    2017-06-01

    Abnormal sensory sensitivity is a feature of autism-spectrum disorder (ASD), but is also reported in attention-deficit/hyperactivity disorder (ADHD). In many cases, ADHD and ASD are comorbid. This study investigated the prevalence of sensory hyper- and hyposensitivity among adults with ADHD, controlling for autistic symptoms. One hundred and sixteen adults diagnosed with ADHD completed the Adolescent/Adult Sensory Profile-NL (AASP-NL) and the Autism-spectrum Quotient (AQ) questionnaires. Prevalences of hyper- and hyposensitivity and autism-spectrum symptoms were compared to norm values. Multivariate binary logistic regressions were used to determine the association of autistic symptoms, age, gender, ADHD subtype, self-reported severity of ADHD symptoms, comorbid disorders, and use of medication on the sensory hypo- and hypersensitivity in adults with ADHD. Adults with ADHD had more autistic symptoms, and they had both more hyper- and hyposensitivity compared to norm groups. This was especially apparent in the Activity level and Auditory sensory modalities. Sensory hypo- and hypersensitivity were both related to an increased ADHD score, even showing a dose-response relationship, but not to any autistic symptom or comorbid disorder. As much as 43% of the females with ADHD reported sensory hypo- and/or hypersensitivity, compared to 22% of the men. Sensory hypo- and hypersensitivity may be viewed as key features of adult ADHD, especially in females, regardless of any autistic symptoms. Future research should be directed at the implications of this sensory dysregulation for the understanding of the pathophysiology of (female) ADHD, and on the usefulness of assessment of atypical sensory profiles in the diagnostic procedure of ADHD in adults. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Infrared sensing based sensitive skin

    Institute of Scientific and Technical Information of China (English)

    CAO Zheng-cai; FU Yi-li; WANG Shu-guo; JIN Bao

    2006-01-01

    Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors and periphery processing circuit, robotics sensitive skin can in real-time provide existence and distance information about obstacles for robots within sensory areas. The methodology of designing sensitive skin and the algorithm of a mass of IR data fusion are presented. The experimental results show that the multi-joint robot with this sensitive skin can work autonomously in an unknown environment.

  7. Sensory nerve action potentials and sensory perception in women with arthritis of the hand.

    Science.gov (United States)

    Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J

    2012-05-10

    Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.

  8. Spinal cord diffusion tensor imaging in patients with sensory neuronopathy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Casseb, Raphael [University of Campinas - UNICAMP, Department of Neurology, School of Medicine, Campinas, SP (Brazil); University of Campinas - UNICAMP, Neurophysics Group, Department of Cosmic Rays and Chronology, Institute of Physics Gleb Wataghin, Campinas, SP (Brazil); Ribeiro de Paiva, Jean Levi; Teixeira Branco, Lucas Melo; Muro Martinez, Alberto Rolim; Cavalcante Franca, Marcondes Jr. [University of Campinas - UNICAMP, Department of Neurology, School of Medicine, Campinas, SP (Brazil); Reis, Fabiano [University of Campinas - UNICAMP, Department of Radiology, School of Medicine, Campinas, SP (Brazil); Lima-Junior, Jose Carlos de [University of Campinas - UNICAMP, Laboratory of Cell Signaling, Department of Internal Medicine, Campinas, SP (Brazil); Castellano, Gabriela [University of Campinas - UNICAMP, Neurophysics Group, Department of Cosmic Rays and Chronology, Institute of Physics Gleb Wataghin, Campinas, SP (Brazil)

    2016-11-15

    We investigated whether MR diffusion tensor imaging (DTI) analysis of the cervical spinal cord could aid the (differential) diagnosis of sensory neuronopathies, an underdiagnosed group of diseases of the peripheral nervous system. We obtained spinal cord DTI and T2WI at 3 T from 28 patients, 14 diabetic subjects with sensory-motor distal polyneuropathy, and 20 healthy controls. We quantified DTI-based parameters and looked at the hyperintense T2W signal at the spinal cord posterior columns. Fractional anisotropy and mean diffusivity values at C2-C3 and C3-C4 levels were compared between groups. We also compared average fractional anisotropy (mean of values at C2-C3 and C3-C4 levels). A receiver operating characteristic (ROC) curve was used to determine diagnostic accuracy of average fractional anisotropy, and we compared its sensitivity against the hyperintense signal in segregating patients from the other subjects. Mean age and disease duration were 52 ± 10 and 11.4 ± 9.3 years in the patient group. Eighteen subjects had idiopathic disease and 6 dysimmune etiology. Fractional anisotropy at C3-C4 level and average fractional anisotropy were significantly different between patients and healthy controls (p < 0.001 and <0.001) and between patients and diabetic subjects (p = 0.019 and 0.027). Average fractional anisotropy presented an area under the curve of 0.838. Moreover, it had higher sensitivity than visual detection of the hyperintense signal (0.86 vs. 0.54), particularly for patients with short disease duration. DTI-based analysis enables in vivo detection of posterior column damage in sensory neuronopathy patients and is a useful diagnostic test for this condition. It also helps the differential diagnosis between sensory neuronopathy and distal polyneuropathies. (orig.)

  9. Spinal cord diffusion tensor imaging in patients with sensory neuronopathy

    International Nuclear Information System (INIS)

    Fernandes Casseb, Raphael; Ribeiro de Paiva, Jean Levi; Teixeira Branco, Lucas Melo; Muro Martinez, Alberto Rolim; Cavalcante Franca, Marcondes Jr.; Reis, Fabiano; Lima-Junior, Jose Carlos de; Castellano, Gabriela

    2016-01-01

    We investigated whether MR diffusion tensor imaging (DTI) analysis of the cervical spinal cord could aid the (differential) diagnosis of sensory neuronopathies, an underdiagnosed group of diseases of the peripheral nervous system. We obtained spinal cord DTI and T2WI at 3 T from 28 patients, 14 diabetic subjects with sensory-motor distal polyneuropathy, and 20 healthy controls. We quantified DTI-based parameters and looked at the hyperintense T2W signal at the spinal cord posterior columns. Fractional anisotropy and mean diffusivity values at C2-C3 and C3-C4 levels were compared between groups. We also compared average fractional anisotropy (mean of values at C2-C3 and C3-C4 levels). A receiver operating characteristic (ROC) curve was used to determine diagnostic accuracy of average fractional anisotropy, and we compared its sensitivity against the hyperintense signal in segregating patients from the other subjects. Mean age and disease duration were 52 ± 10 and 11.4 ± 9.3 years in the patient group. Eighteen subjects had idiopathic disease and 6 dysimmune etiology. Fractional anisotropy at C3-C4 level and average fractional anisotropy were significantly different between patients and healthy controls (p < 0.001 and <0.001) and between patients and diabetic subjects (p = 0.019 and 0.027). Average fractional anisotropy presented an area under the curve of 0.838. Moreover, it had higher sensitivity than visual detection of the hyperintense signal (0.86 vs. 0.54), particularly for patients with short disease duration. DTI-based analysis enables in vivo detection of posterior column damage in sensory neuronopathy patients and is a useful diagnostic test for this condition. It also helps the differential diagnosis between sensory neuronopathy and distal polyneuropathies. (orig.)

  10. Variable sensory perception in autism.

    Science.gov (United States)

    Haigh, Sarah M

    2018-03-01

    Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Risk-sensitivity in Bayesian sensorimotor integration.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

  12. Degree of skin denervation and its correlation to objective thermal sensory test in leprosy patients.

    Directory of Open Access Journals (Sweden)

    Ismael Alves Rodrigues Júnior

    Full Text Available BACKGROUND: Leprosy is an infectious disease affecting skin and peripheral nerves resulting in increased morbidity and physical deformities. Early diagnosis provides opportune treatment and reduces its complications, relying fundamentally on the demonstration of impaired sensation in suggestive cutaneous lesions. The loss of tactile sensitivity in the lesions is preceded by the loss of thermal sensitivity, stressing the importance of the thermal test in the suspicious lesions approach. The gold-standard method for the assessment of thermal sensitivity is the quantitative sensory test (QST. Morphological study may be an alternative approach to access the thin nerve fibers responsible for thermal sensitivity transduction. The few studies reported in leprosy patients pointed out a rarefaction of thin dermo-epidermal fibers in lesions, but used semi-quantitative evaluation methods. METHODOLOGY/PRINCIPAL FINDINGS: This work aimed to study the correlation between the degree of thermal sensitivity impairment measured by QST and the degree of denervation in leprosy skin lesions, evaluated by immunohistochemistry anti-PGP 9.5 and morphometry. Twenty-two patients were included. There were significant differences in skin thermal thresholds among lesions and contralateral skin (cold, warm, cold induced pain and heat induced pain. The mean reduction in the density of intraepidermal and subepidermal fibers in lesions was 79.5% (SD = 19.6 and 80.8% (SD = 24.9, respectively. CONCLUSIONS/SIGNIFICANCE: We observed a good correlation between intraepidermal and subepidermal fibers deficit, but no correlation between these variables and those accounting for the degree of impairment in thermal thresholds, since the thin fibers rarefaction was homogeneously intense in all patients, regardless of the degree of sensory deficit. We believe that the homogeneously intense denervation in leprosy lesions should be objective of further investigations focused on its

  13. Sensory dysfunction in fibromyalgia patients with implications for pathogenic mechanisms.

    Science.gov (United States)

    Kosek, E; Ekholm, J; Hansson, P

    1996-12-01

    This study, addressing etiologic and pathogenic aspects of fibromyalgia (FM), aimed at examining whether sensory abnormalities in FM patients are generalized or confined to areas with spontaneous pain. Ten female FM patients and 10 healthy, age-matched females participated. The patients were asked to rate the intensity of ongoing pain using a visual analogue scale (VAS) at the site of maximal pain, the homologous contralateral site and two homologous sites with no or minimal pain. Quantitative sensory testing was performed for assessment of perception thresholds in these four sites. Von Frey filaments were used to test low-threshold mechanoreceptive function. Pressure pain sensitivity was assessed with a pressure algometer and thermal sensitivity with a Thermotest. In addition the stimulus-response curve of pain intensity as a function of graded nociceptive heat stimulation was studied at the site of maximal pain and at the homologous contralateral site. FM patients had increased sensitivity to non-painful warmth (P painful sites and a tendency to increased sensitivity to non-painful cold (P pain (P pain (P pain (P tested sites. The stimulus-response curve was parallely shifted to the left of the curve obtained from controls (P pain (P pain compared to the homologous contralateral site. These findings could be explained in terms of sensitization of primary afferent pathways or as a dysfunction of endogenous systems modulating afferent activity. However, the generalized increase in sensitivity found in FM patients was unrelated to spontaneous pain and thus most likely due to a central nervous system (CNS) dysfunction. The additional hyperphenomena related to spontaneous pain are probably dependent on disinhibition/facilitation of nociceptive afferent input from normal (or ischemic) muscles.

  14. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  15. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  16. Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: A randomized controlled trial.

    Science.gov (United States)

    Boone, Kelly M; Gracious, Barbara; Klebanoff, Mark A; Rogers, Lynette K; Rausch, Joseph; Coury, Daniel L; Keim, Sarah A

    2017-12-01

    Despite advances in the health and long-term survival of infants born preterm, they continue to face developmental challenges including higher risk for autism spectrum disorder (ASD) and atypical sensory processing patterns. This secondary analysis aimed to describe sensory profiles and explore effects of combined dietary docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA) supplementation on parent-reported sensory processing in toddlers born preterm who were exhibiting ASD symptoms. 90-day randomized, double blinded, placebo-controlled trial. 31 children aged 18-38months who were born at ≤29weeks' gestation. Mixed effects regression analyses followed intent to treat and explored effects on parent-reported sensory processing measured by the Infant/Toddler Sensory Profile (ITSP). Baseline ITSP scores reflected atypical sensory processing, with the majority of atypical scores falling below the mean. Sensory processing sections: auditory (above=0%, below=65%), vestibular (above=13%, below=48%), tactile (above=3%, below=35%), oral sensory (above=10%; below=26%), visual (above=10%, below=16%); sensory processing quadrants: low registration (above=3%; below=71%), sensation avoiding (above=3%; below=39%), sensory sensitivity (above=3%; below=35%), and sensation seeking (above=10%; below=19%). Twenty-eight of 31 children randomized had complete outcome data. Although not statistically significant (p=0.13), the magnitude of the effect for reduction in behaviors associated with sensory sensitivity was medium to large (effect size=0.57). No other scales reflected a similar magnitude of effect size (range: 0.10 to 0.32). The findings provide support for larger randomized trials of omega fatty acid supplementation for children at risk of sensory processing difficulties, especially those born preterm. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A pain in the bud? Implications of cross-modal sensitivity for pain experience.

    Science.gov (United States)

    Perkins, Monica; de Bruyne, Marien; Giummarra, Melita J

    2016-11-01

    There is growing evidence that enhanced sensitivity to painful clinical procedures and chronic pain are related to greater sensitivity to other sensory inputs, such as bitter taste. We examined cross-modal sensitivities in two studies. Study 1 assessed associations between bitter taste sensitivity, pain tolerance, and fear of pain in 48 healthy young adults. Participants were classified as non-tasters, tasters and super-tasters using a bitter taste test (6-n-propythiouracil; PROP). The latter group had significantly higher fear of pain (Fear of Pain Questionnaire) than tasters (p=.036, effect size r = .48). There was only a trend for an association between bitter taste intensity ratings and intensity of pain at the point of pain tolerance in a cold pressor test (p=.04). In Study 2, 40 healthy young adults completed the Adolescent/Adult Sensory Profile before rating intensity and unpleasantness of innocuous (33 °C), moderate (41 °C), and high intensity (44 °C) thermal pain stimulations. The sensory-sensitivity subscale was positively correlated with both intensity and unpleasantness ratings. Canonical correlation showed that only sensitivity to audition and touch (not taste/smell) were associated with intensity of moderate and high (not innocuous) thermal stimuli. Together these findings suggest that there are cross-modal associations predominantly between sensitivity to exteroceptive inputs (i.e., taste, touch, sound) and the affective dimensions of pain, including noxious heat and intolerable cold pain, in healthy adults. These cross-modal sensitivities may arise due to greater psychological aversion to salient sensations, or from shared neural circuitry for processing disparate sensory modalities.

  18. Sensory perception: lessons from synesthesia: using synesthesia to inform the understanding of sensory perception.

    Science.gov (United States)

    Harvey, Joshua Paul

    2013-06-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition's existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of "normal" sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion - the binding problem - as well as how sensory perception develops.

  19. Neuromorphic sensory systems.

    Science.gov (United States)

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  20. Sensory Over-Responsiveness among Healthy Subjects is Associated with a Pronociceptive State.

    Science.gov (United States)

    Weissman-Fogel, Irit; Granovsky, Yelena; Bar-Shalita, Tami

    2018-04-01

    Chronic pain patients show hypersensitivity to sensory nonpainful stimuli. Sensory over-responsiveness (SOR) to innocuous daily stimuli, experienced as painful, is prevalent in 10% of the healthy population. This altered sensory processing may be an expression of overfacilitation, or a less efficient pain-inhibitory process in the pain pathways. We therefore aimed to investigate specifically the pain-inhibitory system of subjects with SOR who are otherwise healthy, not studied as of yet. Thirty healthy subjects, divided into an SOR group (n = 14) and a non-SOR group (n = 16) based on responses to the Sensory Responsiveness Questionnaire, were psychophysically tested in order to evaluate (1) hyperalgesic responses; (2) adaptation/sensitization to 14 phasic heat stimuli; (3) habituation; (4) 6-minute after-sensations; and (5) conditioned pain modulation (CPM) (ie, phasic heat stimuli applied with and without hand immersion in a hot water bath). The SOR group differed from the non-SOR group in (1) a steeper escalation in NPS ratings to temperature increase (P = 0.003), indicating hyperalgesia; (2) increased sensitization (P < 0.001); (3) habituation responses (P < 0.001); (4) enhanced pain ratings during the after-sensation (P = 0.006); and (5) no group difference was found in CPM. SOR is associated with a pronociceptive state, expressed by amplification of experimental pain, yet with sufficient inhibitory processes. Our results support previous findings of enhanced facilitation of pain-transmitting pathways but also reveal preserved inhibitory mechanisms, although they were slower to react. © 2017 World Institute of Pain.

  1. Test-retest Agreement and Reliability of Quantitative Sensory Testing 1 Year After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Andersen, Kenneth Geving; Kehlet, Henrik; Aasvang, Eske Kvanner

    2015-01-01

    .5 SD) than within-patient variation (0.23 to 3.55 SD). There were no significant differences between pain and pain-free patients. The individual test-retest variability was higher on the operated side compared with the nonoperated side. DISCUSSION: The QST protocol reliability allows for group......OBJECTIVES: Quantitative sensory testing (QST) is used to assess sensory dysfunction and nerve damage by examining psychophysical responses to controlled, graded stimuli such as mechanical and thermal detection and pain thresholds. In the breast cancer population, 4 studies have used QST to examine...... persistent pain after breast cancer treatment, suggesting neuropathic pain being a prominent pain mechanism. However, the agreement and reliability of QST has not been described in the postsurgical breast cancer population, hindering exact interpretation of QST studies in this population. The aim...

  2. Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.

    Science.gov (United States)

    Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T

    2018-06-13

    Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical

  3. Comparing Sensory Information Processing and Alexithymia between People with Substance Dependency and Normal.

    Science.gov (United States)

    Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab

    2015-01-01

    Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. The results showed that there are significance differences between two groups in low registration (P processing and difficulty in describing emotions (P process sensory information in a different way than normal people and show more alexithymia features than them.

  4. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  5. Temporal phases of activity-dependent plasticity and memory are mediated by compartmentalized routing of MAPK signaling in aplysia sensory neurons.

    Science.gov (United States)

    Shobe, Justin L; Zhao, Yali; Stough, Shara; Ye, Xiaojing; Hsuan, Vickie; Martin, Kelsey C; Carew, Thomas J

    2009-01-15

    An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF, lasting >24hr) requires protein synthesis dependent persistent mitogen-activated protein kinase (MAPK) activation and translocation to the SN nucleus. We now show that the induction of the earlier temporal phase (AD-ITM and AD-ITF), which is translation and transcription independent, requires the activation of a compartmentally distinct novel signaling cascade that links second messengers, MAPK and PKC into a unified pathway within tail SNs. Since both AD-ITM and AD-LTM require MAPK activity, these collective findings suggest that presynaptic SNs route the flow of molecular information to distinct subcellular compartments during the induction of activity-dependent long-lasting memories.

  6. Sensory functions in the foot soles in victims of generalized torture, in victims also beaten under the feet (falanga and in healthy controls – A blinded study using quantitative sensory testing

    Directory of Open Access Journals (Sweden)

    Prip Karen

    2012-12-01

    Full Text Available Abstract Background Falanga torture (beatings on the foot soles produces local chronic pain and severe walking difficulties. We have previously reported signs of neuropathic pain in the feet of falanga victims. The objective here was to clarify underlying pain mechanisms by quantifying sensory impairments in the feet of torture victims who had experienced both generalized torture and those who had been exposed to falanga in addition. An ethnically matched control group was available. Methods We employed quantitative sensory testing (QST by investigators blinded to whether the patients, 32 male torture victims from the Middle East, had (n=15, or had not (n=17 been exposed to falanga. Pain intensity, area and stimulus dependence were used to characterize the pain as were interview data on sensory symptoms. QST included thresholds for touch, cold, warmth, cold-pain, heat-pain, deep pressure pain and wind-up to cutaneous noxious stimuli in the foot soles. Clinical data on anxiety and depression were retrieved. Results Almost all falanga victims had moderate or strong pain in their feet and in twice as large an area of their foot soles as other torture victims. One-third of the latter had no pain in their feet and many reported slight pain; in spite of this, there were no differences in foot sole QST data between the tortured groups. A comparison with normal data indicated that both tortured groups had hypoesthesia for all cutaneous sensory fibre groups except those transmitting cold and heat pain, in addition to deep mechano-nociceptive hyperalgesia. Conclusion A comparison of the QST data between victims having been exposed to generalized torture and victims who in addition had been exposed to falanga, showed no differences on the group level. The sensory disturbances in relation to our control group are compatible with central sensitization and de-sensitization, pointing to a core role of central mechanisms. A further analysis to create individual

  7. Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese.

    Science.gov (United States)

    Goswami, Usha; Wang, H-L Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-02-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development.

  8. Sensory processing in autism spectrum disorders and Fragile X syndrome—From the clinic to animal models

    Science.gov (United States)

    Sinclair, D.; Oranje, B.; Razak, K.A.; Siegel, S.J.; Schmid, S.

    2017-01-01

    Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics. PMID:27235081

  9. SLOWLY ADAPTING SENSORY UNITS HAVE MORE RECEPTORS IN LARGE AIRWAYS THAN IN SMALL AIRWAYS IN RABBITS

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2016-12-01

    Full Text Available Sensory units of pulmonary slowly adapting receptors (SARs are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi vs small (bronchioles 0.05. However, the sensory structure contains more SARs in large airways than in small airways (9.6±0.6 vs 3.6±0.3; P<0.0001. Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  10. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  11. Sensory evaluation and electronic tongue for sensing flavored mineral water taste attributes.

    Science.gov (United States)

    Sipos, László; Gere, Attila; Szöllősi, Dániel; Kovács, Zoltán; Kókai, Zoltán; Fekete, András

    2013-10-01

    In this article a trained sensory panel evaluated 6 flavored mineral water samples. The samples consisted of 3 different brands, each with 2 flavors (pear-lemon grass and josta berry). The applied sensory method was profile analysis. Our aim was to analyze the sensory profiles and to investigate the similarities between the sensitivity of the trained human panel and an electronic tongue device. Another objective was to demonstrate the possibilities for the prediction of sensory attributes from electronic tongue measurements using a multivariate statistical method (Partial Least Squares regression [PLS]). The results showed that the products manufactured under different brand name but with the same aromas had very similar sensory profiles. The panel performance evaluation showed that it is appropriate (discrimination ability, repeatability, and panel consensus) to compare the panel's results with the results of the electronic tongue. The samples can be discriminated by the electronic tongue and an accurate classification model can be built. Principal Component Analysis BiPlot diagrams showed that Brand A and B were similar because the manufacturers use the same aroma brands for their products. It can be concluded that Brand C was quite different compared to the other samples independently of the aroma content. Based on the electronic tongue results good prediction models can be obtained with high correlation coefficient (r(2) > 0.81) and low prediction error (RMSEP sensory evaluation from 0 to 100). © 2013 Institute of Food Technologists®

  12. Sensory determinants of the autonomous sensory meridian response (ASMR): Understanding the triggers

    OpenAIRE

    Barratt, EL; Spence, CJ; Davis, NJ

    2017-01-01

    The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as...

  13. Sensory basis of lepidopteran migration: Focus on the monarch butterfly

    Science.gov (United States)

    Guerra, Patrick A.; Reppert, Steven M.

    2015-01-01

    In response to seasonal habitats, migratory lepidopterans, exemplified by the monarch butterfly, have evolved migration to deal with dynamic conditions. During migration, monarchs use orientation mechanisms, exploiting a time-compensated sun compasses and a light-sensitive inclination magnetic compass to facilitate fall migration south. The sun compass is bidirectional with overwintering coldness triggering the change in orientation direction for remigration northward in the spring. The timing of the remigration and milkweed emergence in the southern US have co-evolved for propagation of the migration. Current research is uncovering the anatomical and molecular substrates that underlie migratory-relevant sensory mechanisms with the antennae being critical components. Orientation mechanisms may be detrimentally affected by environmental factors such as climate change and sensory interference from human-generated sources. PMID:25625216

  14. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    Science.gov (United States)

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.

  15. Sensory profiling: a method for describing the sensory characteristics of virgin olive oil

    Directory of Open Access Journals (Sweden)

    Lyon, David H.

    1994-04-01

    Full Text Available Sensory profiling is an objective, descriptive technique which uses a panel of trained assessors. It was used at Campden to differentiate olive oil which differed in terms of the country of origin, variety, ripeness and extraction techniques. The data were related to similar results from the Netherlands and Italy. The results indicated that all three sensory panels perceived the samples in the same way, however, the differed in the way the oils were described.
    The new European legislation on olive oil is partially concerned with the sensory aspects of the oil. The sensory grading takes into account the 'positive' and 'negative' attributes in the oil before giving an overall quality grade. These attributes do not reflect the consumer requirements, therefore, the grading should be restricted to the assessment of the presence or absence of sensory defects.

  16. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel.

    Science.gov (United States)

    Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W

    2016-10-01

    Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  17. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  18. Predictive risk factors for persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Gmaehle, Eliza; Hansen, Jeanette B

    2010-01-01

    BACKGROUND: Persistent postherniotomy pain (PPP) affects everyday activities in 5-10% of patients. Identification of predisposing factors may help to identify the risk groups and guide anesthetic or surgical procedures in reducing risk for PPP. METHODS: A prospective study was conducted in 464...... patients undergoing open or laparoscopic transabdominal preperitoneal elective groin hernia repair. Primary outcome was identification of risk factors for substantial pain-related functional impairment at 6 months postoperatively assessed by the validated Activity Assessment Scale (AAS). Data on potential...... risk factors for PPP were collected preoperatively (pain from the groin hernia, preoperative AAS score, pain from other body regions, and psychometric assessment). Pain scores were collected on days 7 and 30 postoperatively. Sensory functions including pain response to tonic heat stimulation were...

  19. Persistent pain, sensory disturbances and functional impairment after immediate or delayed axillary lymph node dissection

    DEFF Research Database (Denmark)

    Geving Andersen, Kenneth; Jensen, Maj-Britt Raaby; Tvedskov, Tove Filtenborg

    2013-01-01

    BACKGROUND: Patients treated with 2-step axillary lymph node dissection (ALND) may be at increased risk of nerve damage due to more challenging surgery than an ALND immediately after a sentinel lymph node biopsy (SLNB), and thus more at risk for persistent pain after breast cancer treatment (PPBCT...

  20. Sensory adaptation for timing perception.

    Science.gov (United States)

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-04-22

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception.

  1. Heightened sensitivity to somatosensory stimuli in anorexia nervosa: an exploratory study with the SASTCA scale.

    Science.gov (United States)

    Calvo Sagardoy, Rosa; Gallego Morales, Luis T; Kassem García, Soledad; Codesal Julián, Rosana; Blanco Fernández, Ascensión; Solórzano Ostolaza, Gloria; Morales Martínez, Carmen

    2014-11-04

    To analyse the presence of heightened sensory sensitivity in patients with anorexia nervosa, which seems similar but not identical to that described in patients with unexplained somatic symptoms or body dysmorphic disorder. We developed a sensory sensitivity scale in eating disorders (SASTCA), which measures the intensity of the response to specific somatosensory stimuli. The scale was completed by 48 patients with anorexia and a control group of 31 participants matched in age, sex and social and educational level. The results were compared with those obtained with the Barsky Somatosensory Amplification Scale (SSAS). The reliability (Cronbach's/alpha, 0.946; Guttman/ split-half, 0.936) and validity (ROC, 0.933) of the SASTCA scale are indicative of its high sensitivity and specificity. The anorexia group had a significantly higher mean score on the SASTCA scale than the control group (pscales correlated positively (r=.634). These preliminary results suggest the presence in Anorexia of heightened sensory sensitivity which differs from the sensitivity of the control group. This sensitivity has a significant relationship with that described in patients with somatic complaints about health (SSD) or appearance (BDD). Could this heightened sensory sensitivity help us to explain the process of forming the distorted body self-concept (I'm fat, sick, ugly) in all these patients? Once its presence has been confirmed in other patients with anorexia, their relatives and other patients with somatic disorders this heightened sensitivity could constitute the somatic endophenotype of anorexia? Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. What is Sensory about Multi-Sensory Enhancement of Vision by Sounds?

    Directory of Open Access Journals (Sweden)

    Alexis Pérez-Bellido

    2011-10-01

    Full Text Available Can auditory input influence the sensory processing of visual information? Many studies have reported cross-modal enhancement in visual tasks, but the nature of such gain is still unclear. Some authors argue for ‘high-order’ expectancy or attention effects, whereas others propose ‘low-order’ stimulus-driven multisensory integration. The present study applies a psychophysical analysis of reaction time distributions in order to disentangle sensory changes from other kind of high-order (not sensory-specific effects. Observers performed a speeded simple detection task on Gabor patches of different spatial frequencies and contrasts, with and without accompanying sounds. The data were adjusted using chronometric functions in order to separate changes is sensory evidence from changes in decision or motor times. The results supported the existence of a stimulus unspecific auditory-induced enhancement in RTs across all types of visual stimuli, probably mediated by higher-order effects (eg, reduction of temporal uncertainty. Critically, we also singled out a sensory gain that was selective to low spatial frequency stimuli, highlighting the role of the magno-cellular visual pathway in multisensory integration for fast detection. The present findings help clarify previous mixed findings in the area, and introduce a novel form to evaluate cross-modal enhancement.

  3. Impact of innate and environmental factors on wheezing persistence during childhood.

    Science.gov (United States)

    Just, Jocelyne; Belfar, Samira; Wanin, Stéphanie; Pribil, Céline; Grimfeld, Alain; Duru, Gérard

    2010-05-01

    Persistent asthma in adults starts often early in childhood and is associated with alterations in respiratory function that occur early in life. The aim of this study was to evaluate the importance of innate and environmental factors associated with occurrence of asthma during childhood in a population of recurrent wheezing infants followed prospectively. A cohort of infants less than 30 months old with recurrent wheezing was established in order to assess severity of respiratory symptoms and to look for the presence of atopy and environmental risk factors. At the age of 6 years, they were reevaluated with respect to remission or persistence of wheezing over the previous 12-month period. Data were available for 219 subjects aged 15 +/- 5 months. In 27% of the infants with recurrent wheeze, wheezing persisted until the age of 6 years. In multivariate analysis, stepwise logit analysis showed that the risk factors for persistent wheezing are eosinophilia >or=470/mm(3), allergenic sensitization, and a father with asthma. Environmental factors present during the first year of life that protect from persistence of wheezing are ( 1 ) breastfeeding for longer than 3 months, ( 2 ) pets at home, and ( 3 ) >or=3 siblings. The detection rate for persistent wheezing in this model is 72%. The persistence score showed good specificity 91% but low sensitivity 35%. This study confirms the role of atopic host factors on wheezing persistence during childhood and detected protective environmental factors.

  4. Sensory perception in autism.

    Science.gov (United States)

    Robertson, Caroline E; Baron-Cohen, Simon

    2017-11-01

    Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.

  5. Effect of cluster thinning and prohexadione calcium applications on phenolic composition and sensory properties of red wines.

    Science.gov (United States)

    Avizcuri-Inac, José-Miguel; Gonzalo-Diago, Ana; Sanz-Asensio, Jesús; Martínez-Soria, María-Teresa; López-Alonso, Miguel; Dizy-Soto, Marta; Echávarri-Granado, José-Federico; Vaquero-Fernández, Luis; Fernández-Zurbano, Purificación

    2013-02-06

    The overall objective of this study was to investigate the effect of manual cluster thinning (CT) and the application of the growth regulator Prohexadione calcium (ProCa) on the phenolic composition and the sensory profile of Tempranillo and Grenache wines produced from treated vines in La Rioja (Spain). ProCa was applied at preblooming and CT was carried out at veraison in two consecutive years. Different physicochemical parameters and analyses of phenolic compounds were carried out in control, CT and ProCa grapes and wines and wine sensory was performed. Thinning treatments decreased crop yield, besides ProCa application reduced berry size, and berry weight. Color and phenolic composition of Grenache and Tempranillo wines in general were affected by thinning treatments, with an increase in anthocyanin, flavanol and flavonol concentrations. In sensory analysis, wines obtained from thinned vines presented higher values for several aromatic (e.g., white and yellow fruits, fresh flowers) and taste attributes (i.e., astringency, bitternes, persistence). CT and ProCa treatments resulted in an improvement in wine quality. In general, similar results in phenolic composition, sensory properties and quality of wines were obtained by manual and chemical cluster thinning. ProCa as a growth regulator may be an option for a quality vitiviniculture.

  6. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    Science.gov (United States)

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  7. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    Science.gov (United States)

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  8. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Science.gov (United States)

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, pmaintain balance compared to the controls.

  9. Maintaining the ties that bind: the role of an intermediate visual memory store in the persistence of awareness.

    Science.gov (United States)

    Ferber, Susanne; Emrich, Stephen M

    2007-03-01

    Segregation and feature binding are essential to the perception and awareness of objects in a visual scene. When a fragmented line-drawing of an object moves relative to a background of randomly oriented lines, the previously hidden object is segregated from the background and consequently enters awareness. Interestingly, in such shape-from-motion displays, the percept of the object persists briefly when the motion stops, suggesting that the segregated and bound representation of the object is maintained in awareness. Here, we tested whether this persistence effect is mediated by capacity-limited working-memory processes, or by the amount of object-related information available. The experiments demonstrate that persistence is affected mainly by the proportion of object information available and is independent of working-memory limits. We suggest that this persistence effect can be seen as evidence for an intermediate, form-based memory store mediating between sensory and working memory.

  10. Influence of local noxious heat stimulation on sensory nerve activity in the feline dental pulp.

    Science.gov (United States)

    Ahlberg, K F

    1978-05-01

    The present investigation was undertaken to develop an experimental model in which noxious heat stimulation was used to produce increased intradental sensory nerve activity in canine teeth of anesthetized cats. Two techniques were evaluated in which both the method of recording and the nature of the stimulus varied. Slow heating (approx 1 degree C/s) to 47 degree C of the tooth surface (combined with recording from electrodes in open dentinal cavities) did not produce any persistent nerve activity. Repeated periods of brief intense heating (approx 60 degrees C/s) (combined with recording from amalgam electrodes placed on cavity floors) resulted in an immediate response and an afterdischarge (phase 3) generally persisting for 20--60 min. Maximum phase 3 activity was characteristic for the individual cat and ranged from 0.2 to 50.2 imp/s. mean value 10.6 imp/s (S.D. +/- 9.2). A systematically higher phase 3 activity was recorded in lower compared to upper canine teeth (p less than 0.05). The maximum phase 3 response generally occurred after 3-8 stimulations; the median number of required stimuli was 3. Repeated brief heat stimulations combined with the closed cavity recording technique may be used as an experimental model by which the mechanisms behind increases in intradental sensory nerve activity associated with tissue damage can be studied.

  11. Sensitization of the Nociceptive System in Complex Regional Pain Syndrome

    Science.gov (United States)

    Diedrichs, Carolina; Baron, Ralf; Gierthmühlen, Janne

    2016-01-01

    Background Complex regional pain syndrome type I (CRPS-I) is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion. Objective Aims were to investigate how sensory, autonomic and motor function change in the course of the disease. Methods 19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1–33 months) were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms), motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16–53 months later). Results CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain. Conclusions The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients’ pain and disability. PMID:27149519

  12. Sensitization of the Nociceptive System in Complex Regional Pain Syndrome.

    Directory of Open Access Journals (Sweden)

    Maren Reimer

    Full Text Available Complex regional pain syndrome type I (CRPS-I is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion.Aims were to investigate how sensory, autonomic and motor function change in the course of the disease.19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1-33 months were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms, motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16-53 months later.CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain.The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients' pain and disability.

  13. The Chemical Background for Sensory Quality

    DEFF Research Database (Denmark)

    Zhang, Shujuan

    compounds and consequently change the sensory quality in wine which provide the useful information of wine quality management to winemakers to as well as knowledge on the behaviour of wine oxidation. Additional, studies focused on understanding the development of volatiles during accelerated cheese ripening......In the food industry, high sensory quality and stability of products are crucial factors for consumer satisfaction and market shares. Sensory quality is normally being evaluated by two major approaches: instrumental (volatile and nonvolatile compounds) approach and sensory approach by trained...... and sensory methods in understanding the pre-fermentation treatment on sensory quality of wine (Study 3). In Study 4, the RATA method was used to provide the intensity of significant sensory descriptors that discriminate the significant differences between chocolate samples. Part three step by step moves...

  14. Central sensitization as the mechanism underlying pain in joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    Science.gov (United States)

    Di Stefano, G; Celletti, C; Baron, R; Castori, M; Di Franco, M; La Cesa, S; Leone, C; Pepe, A; Cruccu, G; Truini, A; Camerota, F

    2016-09-01

    Patients with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type (JHS/EDS-HT) commonly suffer from pain. How this hereditary connective tissue disorder causes pain remains unclear although previous studies suggested it shares similar mechanisms with neuropathic pain and fibromyalgia. In this prospective study seeking information on the mechanisms underlying pain in patients with JHS/EDS-HT, we enrolled 27 consecutive patients with this connective tissue disorder. Patients underwent a detailed clinical examination, including the neuropathic pain questionnaire DN4 and the fibromyalgia rapid screening tool. As quantitative sensory testing methods, we included thermal-pain perceptive thresholds and the wind-up ratio and recorded a standard nerve conduction study to assess non-nociceptive fibres and laser-evoked potentials, assessing nociceptive fibres. Clinical examination and diagnostic tests disclosed no somatosensory nervous system damage. Conversely, most patients suffered from widespread pain, the fibromyalgia rapid screening tool elicited positive findings, and quantitative sensory testing showed lowered cold and heat pain thresholds and an increased wind-up ratio. While the lack of somatosensory nervous system damage is incompatible with neuropathic pain as the mechanism underlying pain in JHS/EDS-HT, the lowered cold and heat pain thresholds and increased wind-up ratio imply that pain in JHS/EDS-HT might arise through central sensitization. Hence, this connective tissue disorder and fibromyalgia share similar pain mechanisms. WHAT DOES THIS STUDY ADD?: In patients with JHS/EDS-HT, the persistent nociceptive input due to joint abnormalities probably triggers central sensitization in the dorsal horn neurons and causes widespread pain. © 2016 European Pain Federation - EFIC®

  15. Expression of insulin signalling components in the sensory epithelium of the human saccule

    DEFF Research Database (Denmark)

    Degerman, Eva; Rauch, Uwe; Lindberg, Sven

    2013-01-01

    signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also...

  16. Virtual Reality-Based Wii Fit Training in Improving Muscle Strength, Sensory Integration Ability, and Walking Abilities in Patients with Parkinson's Disease: A Randomized Control Trial

    Directory of Open Access Journals (Sweden)

    Ying-Yi Liao

    2015-12-01

    Conclusion: VRWii training is as beneficial as TE in improving walking abilities, sensory integration ability, and muscle strength in patients with PD, and such improvements persisted for at least for 1 month. VRWii training is thus suggested to be implemented in patients with PD.

  17. Ultrastructural age-related changes in the sensory corpuscles of the human genital skin.

    Science.gov (United States)

    Tammaro, A; Parisella, F R; Cavallotti, C; Persechino, S; Cavallotti, C

    2013-01-01

    In human genital skin the majority of superficial sensory corpuscles is represented by glomerular corpuscles. These corpuscles show an own morphology. Our aim is to compare the ultra-structure of superficial sensory corpuscles in the penis skin of younger and older subjects. In this report the ultra-structure of the sensitive corpuscle in the penis skin of the younger and older subjects was compared, showing that the genital skin of the older humans contains more simple complexes than the younger ones. Our findings support the view that the age-related changes that can be observed in human glomerular genital corpuscles are consistent with an increase of the simple complexes and a strong decrease of the poly-lamellar one in the older people. These findings demonstrate that human genital corpuscles underwent age-related changes. Moreover our morphological findings can be correlated in relation to the clinical evolution of the sensitivity in the genital skin.

  18. Evaluating Sensory Processing in Fragile X Syndrome: Psychometric Analysis of the Brain Body Center Sensory Scales (BBCSS).

    Science.gov (United States)

    Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W

    2018-06-01

    Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.

  19. Sensory impacts of food-packaging interactions.

    Science.gov (United States)

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  20. Why do unusual novel foods like insects lack sensory appeal? Investigating the underlying sensory perceptions

    NARCIS (Netherlands)

    Tan Hui Shan, Grace; Tibboel, Claudia Joyce; Stieger, Markus

    2017-01-01

    Unusual novel foods like insects generally hold little sensory appeal for consumers, but little is known about the underlying sensory perceptions and how the properties of the food contribute to acceptance. This study examined the sensory perceptions of 3 unusual novel foods (lamb brain, frog

  1. Sensory profiles as potential mediators of the association between hypomania and hopelessness in 488 major affective outpatients.

    Science.gov (United States)

    Engel-Yeger, Batya; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Serafini, Gianluca

    2018-01-01

    Extreme sensory processing patterns may contribute to the pathophysiology of major affective disorders. We aimed to examine whether significant correlations exist between sensory profiles, hypomania, self-reported depression, and hopelessness and whether sensory profiles may be potential mediators of the association between hypomania and depression/hopelessness. The sample consisted of 488 euthymic affective disorder patients of which 283 diagnosed with unipolar and 162 with bipolar disorder with an age ranging from 18 to 65 years (mean = 47.82 ± 11.67). Lower registration of sensory input and sensory sensitivity significantly correlated with elevated self-reported depression, hopelessness, and irritable/risk-taking hypomania while sensation seeking and avoiding significantly correlated with elevated depression and hopelessness but not with irritable/risk-taking hypomania. Moreover, individuals with lower ability to register sensory input and higher hypomania showed higher self-reported depression than those with good registration of sensory information. According to SEM analyses, there was both a direct/indirect effect of irritable/risk-taking on depression-hopelessness with the mediation model explaining 48% of the variance in depression-hopelessness. The relatively small sample size and the cross-sectional nature of the study design do not allow the generalization of the main findings. Low registration was associated with enhanced depressed mood and hopelessness while sensory seeking may be considered a resilient factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tic Modulation Using Sensory Tricks

    Directory of Open Access Journals (Sweden)

    Rebecca W. Gilbert

    2013-04-01

    Full Text Available Background: A sensory trick, or geste antagoniste, is defined as a physical gesture (such as a touch on a particular body part that mitigates the production of an involuntary movement. This phenomenon is most commonly described as a feature of dystonia. Here we present a case of successful modulation of tics using sensory tricks.Case Report:: A case report and video are presented. The case and video demonstrate a 19-year-old male who successfully controlled his tics with various sensory tricks.Discussion: It is underappreciated by movement disorder physicians that sensory tricks can play a role in tics. Introducing this concept to patients could potentially help in tic control. In addition, understanding the pathophysiological underpinnings of sensory tricks could help in the understanding of the pathophysiology of tics.

  3. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Directory of Open Access Journals (Sweden)

    Ya-Ling Teng

    Full Text Available Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99; controls (76.53±7.47; t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory

  4. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  5. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  6. Sensory characteristics of different cod products

    DEFF Research Database (Denmark)

    Sveinsdottir, K.; Martinsdottir, E.; Hyldig, Grethe

    2010-01-01

    atmosphere) were evaluated with quantitative descriptive analysis by a trained sensory panel. Signal-to-noise analysis, p*MSE (discrimination and repeatability) and line plots proved to be very useful in studying panelists' performance. Most sensory attributes described significant differences between...... the products, and principal component analysis provided an overview of the differences and similarities between the products with regard to sensory characteristics. Farmed cod had different sensory characteristics compared with wild cod, such as more meat flavor, and rubbery and meaty texture. Different...... storage methods had minor influence on sensory characteristics of cod fillets after short storage time, but after extended storage, the groups were different with regard to most attributes. PRACTICAL APPLICATIONS This paper presents different ways of analyzing sensory data. The process of analysis...

  7. Accessibility and sensory experiences

    DEFF Research Database (Denmark)

    Ryhl, Camilla

    2010-01-01

    and accessibility. Sensory accessibility accommodates aspects of a sensory disability and describes architectural design requirements needed to ensure access to architectural experiences. In the context of architecture accessibility has become a design concept of its own. It is generally described as ensuring...... physical access to the built environment by accommodating physical disabilities. While the existing concept of accessibility ensures the physical access of everyone to a given space, sensory accessibility ensures the choice of everyone to stay and be able to participate and experience....

  8. Modulation of C. elegans Touch Sensitivity Is Integrated at Multiple Levels

    Science.gov (United States)

    Chen, Xiaoyin

    2014-01-01

    Sensory systems can adapt to different environmental signals. Here we identify four conditions that modulate anterior touch sensitivity in Caenorhabditis elegans after several hours and demonstrate that such sensory modulation is integrated at multiple levels to produce a single output. Prolonged vibration involving integrin signaling directly sensitizes the touch receptor neurons (TRNs). In contrast, hypoxia, the dauer state, and high salt reduce touch sensitivity by preventing the release of long-range neuroregulators, including two insulin-like proteins. Integration of these latter inputs occurs at upstream neurohormonal cells and at the insulin signaling cascade within the TRNs. These signals and those from integrin signaling converge to modulate touch sensitivity by regulating AKT kinases and DAF-16/FOXO. Thus, activation of either the integrin or insulin pathways can compensate for defects in the other pathway. This modulatory system integrates conflicting signals from different modalities, and adapts touch sensitivity to both mechanical and non-mechanical conditions. PMID:24806678

  9. Modulation of network excitability by persistent activity: how working memory affects the response to incoming stimuli.

    Directory of Open Access Journals (Sweden)

    Elisa M Tartaglia

    2015-02-01

    Full Text Available Persistent activity and match effects are widely regarded as neuronal correlates of short-term storage and manipulation of information, with the first serving active maintenance and the latter supporting the comparison between memory contents and incoming sensory information. The mechanistic and functional relationship between these two basic neurophysiological signatures of working memory remains elusive. We propose that match signals are generated as a result of transient changes in local network excitability brought about by persistent activity. Neurons more active will be more excitable, and thus more responsive to external inputs. Accordingly, network responses are jointly determined by the incoming stimulus and the ongoing pattern of persistent activity. Using a spiking model network, we show that this mechanism is able to reproduce most of the experimental phenomenology of match effects as exposed by single-cell recordings during delayed-response tasks. The model provides a unified, parsimonious mechanistic account of the main neuronal correlates of working memory, makes several experimentally testable predictions, and demonstrates a new functional role for persistent activity.

  10. Effects of interferon on cultured cells persistently infected with viruses

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M

    1986-01-01

    The role of interferon (IFN) in viral persistence at the cellular level was investigated. Two types of persistent infections were chosen. The first type was cell lines which contained hepatitis B virus (HBV) DNA (PLC/PRF/5 and Hep 3B cells) uninfected control hepatoma cells, (Mahlavu, HA22T and Hep G2 cells) or simian virus 40 (SV40) DNA (C2, C6, C11 cells) and control uninfected (CV-1 cells). In the second type of infection Vero cells persistently infected with SSPE or Sendai virus were used. The aim of this work was to determine what effect IFN had in these infections in terms of its antiviral and antiproliferative effects; which of the two major IFN-induced pathways, E enzyme or protein kinase were induced; whether there were any differences in sensitivity to IFN between the DNA and RNA virus persistent infections. The anti-viral effect of IFN was examined by its ability to inhibit Sindbis virus replication using a radioimmunoassay system. The antiproliferative effect of IFN was determined by cell counting and /sup 3/H-thymidine incorporation. The activation of the ribonuclease F, determined by the inhibition of /sup 3/H-leucine incorporation after introduction of 2-5 actin into the cells, was variable, being activated in all cell lines with the exception of the PLC/PRF/5, Hep 3B and Hep G2 cells. Major differences between the two DNA persistent infections and the two RNA persistent infections were found. No correlation was found between the presence of HBV or SV40 persistent infections and the sensitivity of the cell lines to IFN. Both the SSPE and Sendai virus persistent infections were resistant to the antiviral and antiproliferative effect of IFN.

  11. Effect of surgery on sensory threshold and somatosensory evoked potentials after skin stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1990-01-01

    We have studied the effect of surgical injury on cutaneous sensitivity and somatosensory evoked potentials (SSEP) to dermatomal electrical stimulation in 10 patients undergoing hysterectomy. Forty-eight hours after surgery, sensory threshold increased from 2.2 (SEM 0.3) mA to 4.4 (1.1) mA (P less...

  12. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity.

    Science.gov (United States)

    Horwitz, Anna; Mortensen, Erik L; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (Δ C ).The correlation is most pronounced for the anterior brain region (Δ C A ).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of Δ C A for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (Δ C ) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. Δ C in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between Δ C and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (Δ C A ) is a better predictor of memory than power in multivariate models. The sensitivity of Δ C A for detecting low memory capacity is 92%. Finally, Δ C A was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the Δ C is a predictor of memory

  13. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    Directory of Open Access Journals (Sweden)

    Anna Horwitz

    2017-12-01

    Full Text Available HIGHLIGHTSMemory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC.The correlation is most pronounced for the anterior brain region (ΔCA.The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of ΔCA for detecting low memory capacity is 90%.Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz. The individual difference in coherence (ΔC between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. ΔC in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between ΔC and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (ΔCA is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the ΔC is a predictor of memory

  14. Development of auditory sensory memory from 2 to 6 years: an MMN study.

    Science.gov (United States)

    Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar

    2008-08-01

    Short-term storage of auditory information is thought to be a precondition for cognitive development, and deficits in short-term memory are believed to underlie learning disabilities and specific language disorders. We examined the development of the duration of auditory sensory memory in normally developing children between the ages of 2 and 6 years. To probe the lifetime of auditory sensory memory we elicited the mismatch negativity (MMN), a component of the late auditory evoked potential, with tone stimuli of two different frequencies presented with various interstimulus intervals between 500 and 5,000 ms. Our findings suggest that memory traces for tone characteristics have a duration of 1-2 s in 2- and 3-year-old children, more than 2 s in 4-year-olds and 3-5 s in 6-year-olds. The results provide insights into the maturational processes involved in auditory sensory memory during the sensitive period of cognitive development.

  15. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  16. Sensory Substitution and Multimodal Mental Imagery.

    Science.gov (United States)

    Nanay, Bence

    2017-09-01

    Many philosophers use findings about sensory substitution devices in the grand debate about how we should individuate the senses. The big question is this: Is "vision" assisted by (tactile) sensory substitution really vision? Or is it tactile perception? Or some sui generis novel form of perception? My claim is that sensory substitution assisted "vision" is neither vision nor tactile perception, because it is not perception at all. It is mental imagery: visual mental imagery triggered by tactile sensory stimulation. But it is a special form of mental imagery that is triggered by corresponding sensory stimulation in a different sense modality, which I call "multimodal mental imagery."

  17. A quantitative sensory analysis of peripheral neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy.

    Science.gov (United States)

    de Carvalho Barbosa, Mariana; Kosturakis, Alyssa K; Eng, Cathy; Wendelschafer-Crabb, Gwen; Kennedy, William R; Simone, Donald A; Wang, Xin S; Cleeland, Charles S; Dougherty, Patrick M

    2014-11-01

    Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aβ myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy. ©2014 American Association for Cancer Research.

  18. Palm to Finger Ulnar Sensory Nerve Conduction.

    Science.gov (United States)

    Davidowich, Eduardo; Nascimento, Osvaldo J M; Orsini, Marco; Pupe, Camila; Pessoa, Bruno; Bittar, Caroline; Pires, Karina Lebeis; Bruno, Carlos; Coutinho, Bruno Mattos; de Souza, Olivia Gameiro; Ribeiro, Pedro; Velasques, Bruna; Bittencourt, Juliana; Teixeira, Silmar; Bastos, Victor Hugo

    2015-12-29

    Ulnar neuropathy at the wrist (UNW) is rare, and always challenging to localize. To increase the sensitivity and specificity of the diagnosis of UNW many authors advocate the stimulation of the ulnar nerve (UN) in the segment of the wrist and palm. The focus of this paper is to present a modified and simplified technique of sensory nerve conduction (SNC) of the UN in the wrist and palm segments and demonstrate the validity of this technique in the study of five cases of type III UNW. The SNC of UN was performed antidromically with fifth finger ring recording electrodes. The UN was stimulated 14 cm proximal to the active electrode (the standard way) and 7 cm proximal to the active electrode. The normal data from amplitude and conduction velocity (CV) ratios between the palm to finger and wrist to finger segments were obtained. Normal amplitude ratio was 1.4 to 0.76. Normal CV ratio was 0.8 to 1.23.We found evidences of abnormal SNAP amplitude ratio or substantial slowing of UN sensory fibers across the wrist in 5 of the 5 patients with electrophysiological-definite type III UNW.

  19. Palm to finger ulnar sensory nerve conduction

    Directory of Open Access Journals (Sweden)

    Eduardo Davidowich

    2015-12-01

    Full Text Available Ulnar neuropathy at the wrist (UNW is rare, and always challenging to localize. To increase the sensitivity and specificity of the diagnosis of UNW many authors advocate the stimulation of the ulnar nerve (UN in the segment of the wrist and palm. The focus of this paper is to present a modified and simplified technique of sensory nerve conduction (SNC of the UN in the wrist and palm segments and demonstrate the validity of this technique in the study of five cases of type III UNW. The SNC of UN was performed antidromically with fifth finger ring recording electrodes. The UN was stimulated 14 cm proximal to the active electrode (the standard way and 7 cm proximal to the active electrode. The normal data from amplitude and conduction velocity (CV ratios between the palm to finger and wrist to finger segments were obtained. Normal amplitude ratio was 1.4 to 0.76. Normal CV ratio was 0.8 to 1.23.We found evidences of abnormal SNAP amplitude ratio or substantial slowing of UN sensory fibers across the wrist in 5 of the 5 patients with electrophysiological-definite type III UNW.

  20. Long-term potentiation (LTP) of human sensory-evoked potentials.

    Science.gov (United States)

    Kirk, Ian J; McNair, Nicolas A; Hamm, Jeffrey P; Clapp, Wesley C; Mathalon, Daniel H; Cavus, Idil; Teyler, Timothy J

    2010-09-01

    Long-term potentiation (LTP) is the principal candidate synaptic mechanism underlying learning and memory, and has been studied extensively at the cellular and molecular level in laboratory animals. Inquiry into the functional significance of LTP has been hindered by the absence of a human model as, until recently, LTP has only been directly demonstrated in humans in isolated cortical tissue obtained from patients undergoing surgery, where it displays properties identical to those seen in non-human preparations. In this brief review, we describe the results of paradigms recently developed in our laboratory for inducing LTP-like changes in visual-, and auditory-evoked potentials. We describe how rapid, repetitive presentation of sensory stimuli leads to a persistent enhancement of components of sensory-evoked potential in normal humans. Experiments to date, investigating the locus, stimulus specificity, and NMDA receptor dependence of these LTP-like changes suggest that they have the essential characteristics of LTP seen in experimental animals. The ability to elicit LTP from non-surgical patients will provide a human model system allowing the detailed examination of synaptic plasticity in normal subjects and may have future clinical applications in the assessment of cognitive disorders. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Sensory analysis of pet foods.

    Science.gov (United States)

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  2. 38 CFR 17.149 - Sensori-neural aids.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact lenses...

  3. Kinesthetic sensitivity and related measures of hand sensitivity in children with nonproficient handwriting.

    Science.gov (United States)

    Brink, Anne O'Leary; Jacobs, Anne Burleigh

    2011-01-01

    This study compared measures of hand sensitivity and handwriting quality in children aged 10 to 12 years identified by their teachers as having nonproficient or proficient handwriting. We hypothesized that children with nonproficient handwriting have decreased kinesthetic sensitivity of the hands and digits. Sixteen subjects without documented motor or cognitive concerns were tested for kinesthetic sensitivity, discriminate tactile awareness, diadochokinesia, stereognosis, and graphesthesia. Eight children were considered to have nonproficient handwriting; 8 had proficient handwriting. Nonparametric Mann-Whitney U tests were used to identify differences between groups on sensory tests. The 2 groups showed a statistically significant difference in handwriting legibility (P = .018). No significant difference was found on tests of kinesthetic sensitivity or other measures of sensation. Children presenting with handwriting difficulty as the only complaint have similar sensitivity in hands and digits as those with proficient handwriting. Failure to detect differences may result from a small sample size.

  4. Sensory feedback in upper limb prosthetics.

    Science.gov (United States)

    Antfolk, Christian; D'Alonzo, Marco; Rosén, Birgitta; Lundborg, Göran; Sebelius, Fredrik; Cipriani, Christian

    2013-01-01

    One of the challenges facing prosthetic designers and engineers is to restore the missing sensory function inherit to hand amputation. Several different techniques can be employed to provide amputees with sensory feedback: sensory substitution methods where the recorded stimulus is not only transferred to the amputee, but also translated to a different modality (modality-matched feedback), which transfers the stimulus without translation and direct neural stimulation, which interacts directly with peripheral afferent nerves. This paper presents an overview of the principal works and devices employed to provide upper limb amputees with sensory feedback. The focus is on sensory substitution and modality matched feedback; the principal features, advantages and disadvantages of the different methods are presented.

  5. Electrocutaneous sensitivity: effects of skin temperature.

    Science.gov (United States)

    Larkin, W D; Reilly, J P

    1986-01-01

    The effect of human skin temperature on electrocutaneous sensitivity was examined using brief capacitive discharges. Stimuli were designed to ensure that sensory effects would be independent of skin resistance and would reflect underlying neural excitability as closely as possible. Skin temperature was manipulated by immersing the forearm in circulating hot or cold air. Detection thresholds on the arm and fingertip were raised by cooling, but were not altered by heating. Temperature-related sensitivity shifts were described by the same multiplicative factors for both threshold and suprathreshold levels. The temperature coefficient (Q10) for cutaneous sensitivity under these conditions was approximately 1.3.

  6. Mechanisms of Acupuncture-Electroacupuncture on Persistent Pain

    Science.gov (United States)

    Zhang, Ruixin; Lao, Lixing; Ren, Ke; Berman, Brian M.

    2014-01-01

    In the last decade, preclinical investigations of electroacupuncture mechanisms on persistent tissue-injury (inflammatory), nerve-injury (neuropathic), cancer, and visceral pain have increased. These studies show that electroacupuncture activates the nervous system differently in health than in pain conditions, alleviates both sensory and affective inflammatory pain, and inhibits inflammatory and neuropathic pain more effectively at 2–10 Hz than at 100 Hz. Electroacupuncture blocks pain by activating a variety of bioactive chemicals through peripheral, spinal, and supraspinal mechanisms. These include opioids, which desensitize peripheral nociceptors and reduce pro-inflammatory cytokines peripherally and in the spinal cord, and serotonin and norepinephrine, which decrease spinal n-methyl-d-aspartate receptor subunit GluN1 phosphorylation. Additional studies suggest that electroacupuncture, when combined with low dosages of conventional analgesics, provides effective pain management that can forestall the side effects of often-debilitating pharmaceuticals. PMID:24322588

  7. A computational relationship between thalamic sensory neural responses and contrast perception.

    Science.gov (United States)

    Jiang, Yaoguang; Purushothaman, Gopathy; Casagrande, Vivien A

    2015-01-01

    Uncovering the relationship between sensory neural responses and perceptual decisions remains a fundamental problem in neuroscience. Decades of experimental and modeling work in the sensory cortex have demonstrated that a perceptual decision pool is usually composed of tens to hundreds of neurons, the responses of which are significantly correlated not only with each other, but also with the behavioral choices of an animal. Few studies, however, have measured neural activity in the sensory thalamus of awake, behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited and how the information from these neurons is pooled at subsequent cortical stages to form a perceptual decision. In a previous study we measured neural activity in the macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC) contrast detection task, and found that single LGN neurons were significantly correlated with the monkeys' behavioral choices, despite their relatively poor contrast sensitivity and a lack of overall interneuronal correlations. We have now computationally tested a number of specific hypotheses relating these measured LGN neural responses to the contrast detection behavior of the animals. We modeled the perceptual decisions with different numbers of neurons and using a variety of pooling/readout strategies, and found that the most successful model consisted of about 50-200 LGN neurons, with individual neurons weighted differentially according to their signal-to-noise ratios (quantified as d-primes). These results supported the hypothesis that in contrast detection the perceptual decision pool consists of multiple thalamic neurons, and that the response fluctuations in these neurons can influence contrast perception, with the more sensitive thalamic neurons likely to exert a greater influence.

  8. Characteristics of the local cutaneous sensory thermoneutral zone

    Science.gov (United States)

    Zhang, Hui; Arens, Edward A.

    2017-01-01

    Skin temperature detection thresholds have been used to measure human cold and warm sensitivity across the temperature continuum. They exhibit a sensory zone within which neither warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-state local skin temperatures between 32 and 34°C, but its underlying neurophysiology has been rarely investigated. In this study we employ two approaches to characterize the properties of sensory thermoneutrality, testing for each whether neutrality shifts along the temperature continuum depending on adaptation to a preceding thermal state. The focus is on local spots of skin on the palm. Ten participants (age: 30.3 ± 4.8 yr) underwent two experiments. Experiment 1 established the cold-to-warm inter-detection threshold range for the palm’s glabrous skin and its shift as a function of 3 starting skin temperatures (26, 31, or 36°C). For the same conditions, experiment 2 determined a thermally neutral zone centered around a thermally neutral point in which thermoreceptors’ activity is balanced. The zone was found to be narrow (~0.98 to ~1.33°C), moving with the starting skin temperature over the temperature span 27.5–34.9°C (Pearson r = 0.94; P cold-to-warm inter-threshold range (~2.25 to ~2.47°C) but is only half as wide. These findings provide the first quantitative analysis of the local sensory thermoneutral zone in humans, indicating that it does not occur only within a specific range of steady-state skin temperatures (i.e., it shifts across the temperature continuum) and that it differs from the inter-detection threshold range both quantitatively and qualitatively. These findings provide insight into thermoreception neurophysiology. NEW & NOTEWORTHY Contrary to a widespread concept in human thermoreception, we show that local sensory thermoneutrality is achievable outside the 32–34°C skin temperature range. We propose that sensory adaption underlies a new mechanism of temperature

  9. The significance of memory in sensory cortex

    OpenAIRE

    Muckli, Lars; Petro, Lucy S.

    2017-01-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing.

  10. Sensory retraining after orthognathic surgery: effect on patients' perception of altered sensation.

    Science.gov (United States)

    Phillips, Ceib; Essick, Greg; Preisser, John S; Turvey, Timothy A; Tucker, Myron; Lin, Dongming

    2007-06-01

    The primary research hypothesis was that the magnitude and duration of the perceived burden from altered sensation reported by patients after bilateral sagittal split osteotomy and trauma to the third division of the trigeminal nerve are decreased when facial sensory retraining exercises are performed in conjunction with standard opening exercises as compared with standard opening exercises alone. A total of 186 subjects were enrolled in a multicenter, double-blind, 2 parallel group-stratified block randomized clinical trial. Oral and facial pain, unusual sensations, numbness, and loss of sensitivity were scored from "no problem" to "serious problem" before surgery and 1 month, 3 months, and 6 months after surgery. A proportional odds model for the ordered multinomial response was used to compare the responses of the 2 exercise groups. The 2 exercise groups did not differ significantly at any postsurgical time in terms of perceived problem level from intraoral of facial pain. The difference between the 2 groups at each visit was not statistically significant for unusual sensations, although the trend was for the sensory retraining group to have a higher likelihood of reporting fewer problems. By 6 months, the likelihood of a subject reporting lower problem or interference level related to numbness or decreased lip sensitivity was significantly higher in the sensory-retraining group, approximately twice that of the opening exercise-only group. Our results support the premise that a simple noninvasive exercise program initiated shortly after orthognathic surgery can lessen the objectionable impression of negative altered sensations.

  11. Sensory Retraining following Orthognathic Surgery: Effect on Patient Perception of Altered Sensation

    Science.gov (United States)

    Phillips, Ceib; Essick, Greg; Preisser, John S; Turvey, Timothy A; Tucker, Myron; Lin, Dongming

    2007-01-01

    Purpose The primary research hypothesis was that the magnitude and duration of the perceived burden from altered sensation reported by patients following bilateral sagittal split osteotomy (BSSO) and trauma to the third division of the trigeminal nerve is lessened when facial sensory retraining exercises are performed in conjunction with standard opening exercises as compared to standard opening exercises alone. Subjects and Methods 186 subjects were enrolled in a multi-center double-blind two parallel group stratified block randomized clinical trial. Oral and facial pain, unusual sensations, numbness and loss of sensitivity, were scored from “no problem” to “serious problem” before surgery, 1,3, and 6 months after surgery. Analysis A proportional odds model for the ordered multinomial response was used to compare the responses of the two exercise groups. Results The two exercise groups did not differ significantly at any postsurgical time in the perceived problem level from mouth or face pain. The difference between the two groups at each visit was not statistically significant for unusual sensations although the trend was for the sensory retraining group to have a higher likelihood of reporting fewer problems. By 6 months, the likelihood of a subject reporting lower problem or interference level related to numbness or less lip sensitivity was significantly higher in the sensory-retraining group, approximately twice that of the opening exercise only group. Conclusion The results from this clinical trial support the premise that a simple noninvasive exercise program initiated shortly after orthognathic surgery can lessen the objectionable impression of negative altered sensations. PMID:17517301

  12. Good sensory recovery of the hand in brachial plexus surgery using the intercostobrachial nerve as the donor

    Directory of Open Access Journals (Sweden)

    Luciano Foroni

    Full Text Available ABSTRACT Objective: Restoration of the sensitivity to sensory stimuli in complete brachial plexus injury is very important. The objective of our study was to evaluate sensory recovery in brachial plexus surgery using the intercostobrachial nerve (ICBN as the donor. Methods: Eleven patients underwent sensory reconstruction using the ICBN as a donor to the lateral cord contribution to the median nerve, with a mean follow-up period of 41 months. A protocol evaluation was performed. Results: Four patients perceived the 1-green filament. The 2-blue, 3-purple and 4-red filaments were perceptible in one, two and three patients, respectively. According to Highet's scale, sensation recovered to S3 in two patients, to S2+ in two patients, to S2 in six patients, and S0 in one patient. Conclusion: The procedure using the ICBN as a sensory donor restores good intensity of sensation and shows good results in location of perception in patients with complete brachial plexus avulsion.

  13. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  14. Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations

    Science.gov (United States)

    2018-01-01

    Abstract Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing. PMID:29619408

  15. Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations.

    Science.gov (United States)

    Shuster, Anastasia; Levy, Dino J

    2018-01-01

    Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing.

  16. From acute to persistent low back pain: a longitudinal investigation of somatosensory changes using quantitative sensory testing-an exploratory study.

    Science.gov (United States)

    Marcuzzi, Anna; Wrigley, Paul J; Dean, Catherine M; Graham, Petra L; Hush, Julia M

    2018-03-01

    Chronic low back pain (LBP) is commonly associated with generalised pain hypersensitivity. It is suggested that such somatosensory alterations are important determinants for the transition to persistent pain from an acute episode of LBP. Although cross-sectional research investigating somatosensory function in the acute stage is developing, no longitudinal studies designed to evaluate temporal changes have been published. This exploratory study aimed to investigate the temporal development of somatosensory changes from the acute stage of LBP to up to 4 months from onset. Twenty-five people with acute LBP (testing with the assessor blinded to group allocation, and again at 2 and 4 months. Psychological variables were concurrently assessed. People with acute LBP were classified based on their average pain severity over the previous week at 4 months as recovered (≤1/10 numeric rating scale) or persistent (≥2/10 numeric rating scale) LBP. In the persistent LBP group, (1) there was a significant decrease in pressure pain threshold between 2 and 4 months ( P psychological variables were significantly higher in those with persistent LBP compared with the recovered LBP group at all time points ( P importance of concurrent evaluation of psychological contributors in acute LBP.

  17. Central Sensitization-Based Classification for Temporomandibular Disorders: A Pathogenetic Hypothesis

    Directory of Open Access Journals (Sweden)

    Annalisa Monaco

    2017-01-01

    Full Text Available Dysregulation of Autonomic Nervous System (ANS and central pain pathways in temporomandibular disorders (TMD is a growing evidence. Authors include some forms of TMD among central sensitization syndromes (CSS, a group of pathologies characterized by central morphofunctional alterations. Central Sensitization Inventory (CSI is useful for clinical diagnosis. Clinical examination and CSI cannot identify the central site(s affected in these diseases. Ultralow frequency transcutaneous electrical nerve stimulation (ULFTENS is extensively used in TMD and in dental clinical practice, because of its effects on descending pain modulation pathways. The Diagnostic Criteria for TMD (DC/TMD are the most accurate tool for diagnosis and classification of TMD. However, it includes CSI to investigate central aspects of TMD. Preliminary data on sensory ULFTENS show it is a reliable tool for the study of central and autonomic pathways in TMD. An alternative classification based on the presence of Central Sensitization and on individual response to sensory ULFTENS is proposed. TMD may be classified into 4 groups: (a TMD with Central Sensitization ULFTENS Responders; (b TMD with Central Sensitization ULFTENS Nonresponders; (c TMD without Central Sensitization ULFTENS Responders; (d TMD without Central Sensitization ULFTENS Nonresponders. This pathogenic classification of TMD may help to differentiate therapy and aetiology.

  18. Perception of olive oils sensory defects using a potentiometric taste device.

    Science.gov (United States)

    Veloso, Ana C A; Silva, Lucas M; Rodrigues, Nuno; Rebello, Ligia P G; Dias, Luís G; Pereira, José A; Peres, António M

    2018-01-01

    The capability of perceiving olive oils sensory defects and intensities plays a key role on olive oils quality grade classification since olive oils can only be classified as extra-virgin if no defect can be perceived by a human trained sensory panel. Otherwise, olive oils may be classified as virgin or lampante depending on the median intensity of the defect predominantly perceived and on the physicochemical levels. However, sensory analysis is time-consuming and requires an official sensory panel, which can only evaluate a low number of samples per day. In this work, the potential use of an electronic tongue as a taste sensor device to identify the defect predominantly perceived in olive oils was evaluated. The potentiometric profiles recorded showed that intra- and inter-day signal drifts could be neglected (i.e., relative standard deviations lower than 25%), being not statistically significant the effect of the analysis day on the overall recorded E-tongue sensor fingerprints (P-value = 0.5715, for multivariate analysis of variance using Pillai's trace test), which significantly differ according to the olive oils' sensory defect (P-value = 0.0084, for multivariate analysis of variance using Pillai's trace test). Thus, a linear discriminant model based on 19 potentiometric signal sensors, selected by the simulated annealing algorithm, could be established to correctly predict the olive oil main sensory defect (fusty, rancid, wet-wood or winey-vinegary) with average sensitivity of 75 ± 3% and specificity of 73 ± 4% (repeated K-fold cross-validation variant: 4 folds×10 repeats). Similarly, a linear discriminant model, based on 24 selected sensors, correctly classified 92 ± 3% of the olive oils as virgin or lampante, being an average specificity of 93 ± 3% achieved. The overall satisfactory predictive performances strengthen the feasibility of the developed taste sensor device as a complementary methodology for olive oils' defects analysis and subsequent

  19. Quantitative sensory testing somatosensory profiles in patients with cervical radiculopathy are distinct from those in patients with nonspecific neck-arm pain.

    Science.gov (United States)

    Tampin, Brigitte; Slater, Helen; Hall, Toby; Lee, Gabriel; Briffa, Noelle Kathryn

    2012-12-01

    The aim of this study was to establish the somatosensory profiles of patients with cervical radiculopathy and patients with nonspecific neck-arm pain associated with heightened nerve mechanosensitivity (NSNAP). Sensory profiles were compared to healthy control (HC) subjects and a positive control group comprising patients with fibromyalgia (FM). Quantitative sensory testing (QST) of thermal and mechanical detection and pain thresholds, pain sensitivity and responsiveness to repetitive noxious mechanical stimulation was performed in the maximal pain area, the corresponding dermatome and foot of 23 patients with painful C6 or C7 cervical radiculopathy, 8 patients with NSNAP in a C6/7 dermatomal pain distribution, 31 HC and 22 patients with FM. For both neck-arm pain groups, all QST parameters were within the 95% confidence interval of HC data. Patients with cervical radiculopathy were characterised by localised loss of function (thermal, mechanical, vibration detection Ppain area and dermatome (thermal detection, vibration detection, pressure pain sensitivity Ppain groups demonstrated increased cold sensitivity in their maximal pain area (Ppain groups differed from patients with FM, the latter characterised by a widespread gain of function in most nociceptive parameters (thermal, pressure, mechanical pain sensitivity Ppain characteristics between the 2 neck-arm pain groups, distinct sensory profiles were demonstrated for each group. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Cognitive implications of facilitating echoic persistence.

    Science.gov (United States)

    Baldwin, Carryl L

    2007-06-01

    Seventeen participants performed a tone-pattern-matching task at different presentation levels while concurrently engaged in a simulated-driving task. Presentation levels of 60, 65, and 70 dBC (SPL) were combined factorially with tone-matching delays of 2, 3, and 4 sec. Intensity had no effect on performance in single-task conditions and short-delay conditions. However, when the participants were engaged concurrently in the driving task, a significant interaction between presentation level and delay was observed. In the longest delay condition, the participants performed the tone-pattern-matching task more efficiently (more quickly and without additional errors) as presentation intensity increased. These findings demonstrate the interaction between sensory and cognitive processes and point to a direct-intensity relationship where intensity affects the persistence of echoic memory. Implications for facilitating auditory processing and improving auditory interfaces in complex systems (i.e., transportation environments), particularly for older and hearing-impaired listeners, are discussed.

  1. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  2. Effect of γ-irradiation on the physicochemical and sensory properties of hazelnuts ( Corylus avellana L.)

    Science.gov (United States)

    Mexis, S. F.; Kontominas, M. G.

    2009-06-01

    The present study evaluated the quality of hazelnuts as a function of irradiation dose to determine dose levels causing minimal undesirable changes to hazelnuts. Physicochemical (color, peroxide value (PV), hexanal content, fatty acid composition and volatile compounds) and sensory (color, texture, odor and taste) properties were determined. Results showed a twenty fold increase in peroxide value and twenty-eight fold increase in hexanal content after irradiation at a dose of 7 kGy. An increase was also observed in saturated fatty acids (10%-23%) with a parallel decrease in unsaturated fatty acids (90-77%). Volatile compounds such as ketones, alkanes, alcohols, aldehydes, furans, aromatic hydrocarbons, bicyclic monoterpenes and acids were produced mostly comprising secondary oxidation products of hazelnut lipids after irradiation. Color parameter b* increased ( pTaste, the most sensitive sensory attribute showed that hazelnuts retain acceptable sensory quality when irradiated up to a dose of 1.5 kGy.

  3. [Sensitivity of patients to immunomodulators in immunodeficiency diseases].

    Science.gov (United States)

    Stasenko, A A; Zhulaĭ, V V; Novopol'tseva, I Iu; Dontsova, L S; Zaiats, N V; Negievich, V I

    2014-08-01

    There were examined 198 patients, in whom immunodeficient (inflammatory, infectious and viral) diseases were revealed, as well as 10 healthy persons--for investigation of sensitivity of the blood neutrophils to immunomodulators (timalin, immunofan, polyoxidonium, timogen, erbisol). Most active one, in accordance to the investigation data, have evolved a synthetic preparation polyoxidonium, action mechanism of which is caused by direct activating impact on phagocytosis. Absence of sensitivity of the blood neutrophils towards activating stimuli (immunomodulators) in some patients was caused by a phenomenon, according to which the blood neutrophils, persisting durably in a preactivated state, further (while examining of the patients) have a reduced capacity for answering to stimulation. Such factors, as persisting in organism components of cellular wall of microorganisms or viruses, as well as antiinflammatory citokines, which are secreted in answer to the infectious agent introduction, are altogether promote the blood neutrophils preactivated state persistence. In patients, suffering viral infections, the blood neutrophils are mostly sensitive to immunofan and timalin. Immunologic preparations must be selected individually, taking into account the data of tests for sensitivity.

  4. Role of Predatory Mites in Persistent Nonoccupational Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Paloma Poza Guedes

    2016-01-01

    Full Text Available Mites can sensitize and induce atopic disease in predisposed individuals and are an important deteriorating factor in patients with allergic rhinitis, asthma, and atopic dermatitis. Although Pyroglyphidae mites have been extensively studied, very scarce reports are available on Cheyletidae spp. especially regarding human respiratory pathology. The main objective of the present study is to investigate the clinical role of this predator mite (Cheyletus eruditus as a respiratory antigen in a selected sensitized human population. Fifty-two adult patients were recruited from the outpatient allergy clinic to assess their eligibility for the study. The thirty-seven subjects with persistent allergic rhinitis (PAR who fulfilled the ARIA criteria had a positive IgE response confirmed by skin prick test (SPT to C. eruditus. Only those individuals (37/47 with a positive SPT to C. eruditus showed a positive nasal provocation test (NPT, while 10 patients with nonallergic mild-to-moderate persistent rhinitis, control group, had a negative NPT with C. eruditus. The present paper describes a new role for the predator mite Cheyletus eruditus as a respiratory allergen in a selected subset of patients in a subtropical environment afflicted with persistent nonoccupational allergic rhinitis.

  5. The Significance of Memory in Sensory Cortex.

    Science.gov (United States)

    Muckli, Lars; Petro, Lucy S

    2017-05-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes

    Directory of Open Access Journals (Sweden)

    Ben Steventon

    2016-11-01

    Full Text Available Cranial placodes contribute to sensory structures including the inner ear, the lens and olfactory epithelium and the neurons of the cranial sensory ganglia. At neurula stages, placode precursors are interspersed in the ectoderm surrounding the anterior neural plate before segregating into distinct placodes by as yet unknown mechanisms. Here, we perform live imaging to follow placode progenitors as they aggregate to form the lens and otic placodes. We find that while placode progenitors move with the same speed as their non-placodal neighbours, they exhibit increased persistence and directionality and these properties are required to assemble morphological placodes. Furthermore, we demonstrate that these factors are components of the transcriptional networks that coordinate placode cell behaviour including their directional movements. Together with previous work, our results support a dual role for Otx and Gbx transcription factors in both the early patterning of the neural plate border and the later segregation of its derivatives into distinct placodes.

  7. Active inference, sensory attenuation and illusions.

    Science.gov (United States)

    Brown, Harriet; Adams, Rick A; Parees, Isabel; Edwards, Mark; Friston, Karl

    2013-11-01

    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference

  8. Impaired insula functional connectivity associated with persistent pain perception in patients with complex regional pain syndrome

    Science.gov (United States)

    Jang, Joon Hwan; Lee, Do-Hyeong; Lee, Kyung-Jun; Lee, Won Joon; Moon, Jee Youn; Kim, Yong Chul

    2017-01-01

    Given that the insula plays a contributory role in the perception of chronic pain, we examined the resting-state functional connectivity between the insular cortex and other brain regions to investigate neural underpinnings of persisting perception of background pain in patients with complex regional pain syndrome (CRPS). A total of 25 patients with CRPS and 25 matched healthy controls underwent functional magnetic resonance imaging at rest. With the anterior and posterior insular cortices as seed regions, we compared the strength of the resting-state functional connectivity between the two groups. Functional connectivity between the anterior and posterior insular cortices and the postcentral and inferior frontal gyri, cingulate cortices was reduced in patients with CRPS compared with controls. Additionally, greater reductions in functional connectivity between the anterior insula and right postcentral gyrus were associated with more severe sensory pain in patients with CRPS (short-form McGill Pain Questionnaire sensory subscores, r = -.517, P = .023). The present results imply a possible role of the insula in aberrant processing of pain information in patients with CRPS. The findings suggest that a functional derangement of the connection between one of the somatosensory cortical functions of perception and one of the insular functions of awareness can play a significant role in the persistent experience of regional pain that is not confined to a specific nerve territory. PMID:28692702

  9. Effect of γ-irradiation on the physicochemical and sensory properties of hazelnuts (Corylus avellana L.)

    International Nuclear Information System (INIS)

    Mexis, S.F.; Kontominas, M.G.

    2009-01-01

    The present study evaluated the quality of hazelnuts as a function of irradiation dose to determine dose levels causing minimal undesirable changes to hazelnuts. Physicochemical (color, peroxide value (PV), hexanal content, fatty acid composition and volatile compounds) and sensory (color, texture, odor and taste) properties were determined. Results showed a twenty fold increase in peroxide value and twenty-eight fold increase in hexanal content after irradiation at a dose of 7 kGy. An increase was also observed in saturated fatty acids (10%-23%) with a parallel decrease in unsaturated fatty acids (90-77%). Volatile compounds such as ketones, alkanes, alcohols, aldehydes, furans, aromatic hydrocarbons, bicyclic monoterpenes and acids were produced mostly comprising secondary oxidation products of hazelnut lipids after irradiation. Color parameter b* increased (p<0.05) after irradiation at a dose of ≥5 kGy, while color parameters L* and a* remained unchanged by irradiation. Sensory evaluation showed that texture and color were not affected by irradiation. Taste, the most sensitive sensory attribute showed that hazelnuts retain acceptable sensory quality when irradiated up to a dose of 1.5 kGy.

  10. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers.

    Science.gov (United States)

    Yang, Chao-Yang; Wu, Cheng-Tse

    2017-03-01

    This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Acid sensitization of esophageal mucosal afferents: implication for symptom perception in patients across the gastroesophageal reflux disease spectrum.

    Science.gov (United States)

    Szczesniak, Michal Marcin; Fuentealba, Sergio Enrique; Cook, Ian J

    2013-01-01

    Sensitization of esophageal chemoreceptors, either directly by intermittent acid exposure or indirectly through esophagitis-associated inflammatory mediators, is likely to be the mechanism underlying the perception of heartburn. To compare basal esophageal sensitivity with electrical stimulation and acid, and to compare the degree of acid-induced sensitization in controls and in patient groups across the entire spectrum of gastroesophageal reflux disease: erosive oesophagitis (EO), nonerosive reflux disease (NERD), and functional heartburn (FH). Esophageal sensory and pain thresholds to electrical stimulation were measured before, 30, and 60 minutes after an intraesophageal infusion of saline or HCl. Patients received a 30-minute infusion of 0.15 M HCl and controls were randomized to receive either HCl (n = 11) or saline (n = 10). After electrical sensory threshold testing, participants received another 30-minute infusion of HCl to determine whether sensitivity to acid is increased by prior acid exposure All patient groups had higher basal sensory thresholds than healthy controls (controls, 13 ± 1.4 mA; FH, 20 ± 5.1 mA; NERD, 21 ± 5.1 mA; EO, 23 ± 5.4 mA; P acid exposure reduced sensory thresholds to electrical stimulation in FH and NERD patients (P acid sensitivity during the first HCl infusion was comparable between all patient groups and controls. The secondary infusion caused increased discomfort in all participants (P acid-induced sensitization to HCl was significantly elevated in the patient groups ( P acid infusion sensitizes it to subsequent electrical and chemical stimulation. (2) The acid-related sensitization is greater in gastroesophageal reflux disease than in controls and may influence in part symptom perception in this population. (3) Acid-related sensitization within the gastroesophageal reflux disease population is not dependant on mucosal inflammation.

  12. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Science.gov (United States)

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-12-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  13. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Directory of Open Access Journals (Sweden)

    Deborah Chiabrando

    2016-12-01

    Full Text Available Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs. Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1 gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  14. HST/WFC3 Characteristics: gain, post-flash stability, UVIS low-sensitivity pixels, persistence, IR flats and bad pixel table

    Science.gov (United States)

    Gunning, Heather C.; Baggett, Sylvia; Gosmeyer, Catherine M.; Long, Knox S.; Ryan, Russell E.; MacKenty, John W.; Durbin, Meredith

    2015-08-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, WFC3 is comprised of two observational channels covering wavelengths from UV/Visible (UVIS) to infrared (IR); both have been performing well on-orbit. We discuss the gain stability of both WFC3 channel detectors from ground testing through present day. For UVIS, we detail a low-sensitivity pixel population that evolves during the time between anneals, but is largely reset by the annealing procedure. We characterize the post-flash LED lamp stability, used and recommended to mitigate CTE effects for observations with less than 12e-/pixel backgrounds. We present mitigation options for IR persistence during and after observations. Finally, we give an overview on the construction of the IR flats and provide updates on the bad pixel table.

  15. Short report: persistent bradycardia caused by ciguatoxin poisoning after barracuda fish eggs ingestion in southern Taiwan.

    Science.gov (United States)

    Hung, Yao-Min; Hung, Shih-Yuan; Chou, Kang-Ju; Huang, Neng-Chyan; Tung, Chung-Ni; Hwang, Deng-Fwu; Chung, Hsiao-Min

    2005-12-01

    We report an outbreak of ciguatoxin poisoning after barracuda fish ingestion in southern Taiwan. Three members of a family developed nausea, vomiting, watery diarrhea, and myalgias about 1 hour after eating three to ten eggs of a barracuda fish. Numbness of the lips and extremities followed the gastrointestinal symptoms about 2 hours after ingestion. Other manifestations included hyperthermia, hypotension, bradycardia, and hyperreflexia. Bradycardia persisted for several days, and one patient required a continuous infusion of intravenous atropine totaling 40 mg over 2 days. Further follow-up of the patients disclosed improvement of neurologic sequelae and bradycardia, but sensory abnormalities resolved several months later. In conclusion, ciguatoxin poisoning causes mainly gastrointestinal and neurologic effects of variable severity. In two patients with ciguatoxin poisoning after barracuda fish egg ingestion, persistent bradycardia required prolonged atropine infusion.

  16. Topological data analysis as a morphometric method: using persistent homology to demarcate a leaf morphospace

    Science.gov (United States)

    Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in flowering plants and are sensitive to processing artifacts. Here we describe a persistent homology approach to measuring shape. Persistent homology is a topological method (concerned wit...

  17. The sensory side of post-stroke motor rehabilitation.

    Science.gov (United States)

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.

  18. Sensory profile of eleven peach cultivars Perfil sensorial de onze cultivares de pêssegos

    Directory of Open Access Journals (Sweden)

    Francine Lorena Cuquel

    2012-03-01

    Full Text Available The goal of this study was to evaluate the sensory profile of eleven peach cultivars grown in an experimental orchard located in the city of Lapa (PR, Brazil in two seasons. The peach cultivars analyzed were Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier, and Vanguarda. The sensory analysis was performed by previously trained panelists; 20 of them in the first season and 10 in the second season. The sensory evaluation was performed using Quantitative Descriptive Analysis, in which the following attributes were measured: appearance, aroma, flesh color, flesh firmness, flavor, and juiciness. The results showed preference for sweet, soft, and juicy fruits. Chimarrita, Chiripá, and Coral fruits showed better sensorial performance than the other peach cultivars. It was also verified that the analysis of the attributes aroma, flesh firmness, and flavor is enough for performing the sensory profile of peach fruits for in natura consumption.Este trabalho teve como objetivo avaliar o perfil sensorial de onze cultivares de pêssego produzidos em duas safras em um pomar experimental implantado na Lapa (PR, Brasil. Os cultivares analisados foram Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier e Vanguarda. As análises sensoriais foram realizadas por julgadores previamente treinados, sendo 20 julgadores na primeira safra e 10 na segunda. O método de avaliação empregado foi a Análise Descritiva Quantitativa na qual foram mensurados os atributos aparência, aroma, cor de polpa, firmeza de polpa, sabor e suculência dos frutos. Os resultados obtidos demonstraram a preferência por frutos de sabor adocicado, com polpa macia e suculenta. Os cultivares Chimarrita, Chiripá e Coral obtiveram o melhor desempenho nas análises sensoriais. Foi verificado ainda que os atributos aroma, firmeza de polpa e sabor são considerados suficientes para a avaliação do perfil sensorial de

  19. Sensorial analysis evaluation in cereal bars preserved by ionizing radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Araujo, M.M.; Fanaro, G.B.; Rela, P.R.; Mancini-Filho, J.

    2007-01-01

    Gamma-rays utilized as a food-processing treatment to eliminate insect contamination is well established in food industries. Recent troubles in Brazilian cereal bars commercialization require a special consumer's attention because some products were contaminated by insects. To solve the problem, food-irradiation treatment was utilized as a safe and effective solution. The final product was free of insect contamination. The aim of this study was to determine the best radiation dose processing utilized to disinfestations and detect some change on sensorial characteristic by sensorial analysis in cereal bars. In this study, three different kinds of cereal bars were purchased in Sao Paulo (Brazil) in supermarkets and irradiated with 1.0, 2.0 and 3.0 kGy at 'Instituto de Pesquisas Energeticas e Nucleares' (IPEN-CNEN/SP). The samples were treated with ionizing radiation using a 60 Co gamma-ray facility (Gammacell 220, A.E.C.L.). That radiation doses were used successfully as an anti-insect treatment in the cereal bars, since in some food industries doses up to 3.0 kGy are used to guarantee at least a dose of 1.0 kGy in internal cereal bars package. Sensorial analysis was necessary since cereal bars contain ingredients very sensitive to ionizing radiation process

  20. Prediction of persistent post-surgery pain by preoperative cold pain sensitivity: biomarker development with machine-learning-derived analysis.

    Science.gov (United States)

    Lötsch, J; Ultsch, A; Kalso, E

    2017-10-01

    To prevent persistent post-surgery pain, early identification of patients at high risk is a clinical need. Supervised machine-learning techniques were used to test how accurately the patients' performance in a preoperatively performed tonic cold pain test could predict persistent post-surgery pain. We analysed 763 patients from a cohort of 900 women who were treated for breast cancer, of whom 61 patients had developed signs of persistent pain during three yr of follow-up. Preoperatively, all patients underwent a cold pain test (immersion of the hand into a water bath at 2-4 °C). The patients rated the pain intensity using a numerical ratings scale (NRS) from 0 to 10. Supervised machine-learning techniques were used to construct a classifier that could predict patients at risk of persistent pain. Whether or not a patient rated the pain intensity at NRS=10 within less than 45 s during the cold water immersion test provided a negative predictive value of 94.4% to assign a patient to the "persistent pain" group. If NRS=10 was never reached during the cold test, the predictive value for not developing persistent pain was almost 97%. However, a low negative predictive value of 10% implied a high false positive rate. Results provide a robust exclusion of persistent pain in women with an accuracy of 94.4%. Moreover, results provide further support for the hypothesis that the endogenous pain inhibitory system may play an important role in the process of pain becoming persistent. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia.

  1. Sensory matched filters.

    Science.gov (United States)

    Warrant, Eric J

    2016-10-24

    As animals move through their environments they are subjected to an endless barrage of sensory signals. Of these, some will be of utmost importance, such as the tell-tale aroma of a potential mate, the distinctive appearance of a vital food source or the unmistakable sound of an approaching predator. Others will be less important. Indeed some will not be important at all. There are, for instance, wide realms of the sensory world that remain entirely undetected, simply because an animal lacks the physiological capacity to detect and analyse the signals that characterise this realm. Take ourselves for example: we are completely insensitive to the Earth's magnetic field, a sensory cue of vital importance as a compass for steering the long distance migration of animals as varied as birds, lobsters and sea turtles. We are also totally oblivious to the rich palette of ultraviolet colours that exist all around us, colours seen by insects, crustaceans, birds, fish and lizards (in fact perhaps by most animals). Nor can we hear the ultrasonic sonar pulses emitted by bats in hot pursuit of flying insect prey. The simple reason for these apparent deficiencies is that we either lack the sensory capacity entirely (as in the case of magnetoreception) or that our existing senses are incapable of detecting specific ranges of the stimulus (such as the ultraviolet wavelength range of light). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    Science.gov (United States)

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  3. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo

    2005-11-01

    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  4. Sensory determinants of the autonomous sensory meridian response (ASMR): understanding the triggers.

    Science.gov (United States)

    Barratt, Emma L; Spence, Charles; Davis, Nick J

    2017-01-01

    The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as timing and trigger load, atmosphere, and characteristics of ASMR content, ideal spatial distance from various types of stimuli, visual characteristics, context and use of ASMR triggers, and audio preferences are explored. Lower-pitched, complex sounds were found to be especially effective triggers, as were slow-paced, detail-focused videos. Conversely, background music inhibited the sensation for many respondents. These results will help in designing media for ASMR induction.

  5. Sensory determinants of the autonomous sensory meridian response (ASMR: understanding the triggers

    Directory of Open Access Journals (Sweden)

    Emma L. Barratt

    2017-10-01

    Full Text Available The autonomous sensory meridian response (ASMR is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as timing and trigger load, atmosphere, and characteristics of ASMR content, ideal spatial distance from various types of stimuli, visual characteristics, context and use of ASMR triggers, and audio preferences are explored. Lower-pitched, complex sounds were found to be especially effective triggers, as were slow-paced, detail-focused videos. Conversely, background music inhibited the sensation for many respondents. These results will help in designing media for ASMR induction.

  6. Rat model of cancer-induced bone pain: changes in nonnociceptive sensory neurons in vivo

    Directory of Open Access Journals (Sweden)

    Yong Fang Zhu

    2017-08-01

    Conclusion:. After induction of the CIBP model, Aβ-fiber LTMs at >2 weeks but not <1 week had undergone changes in electrophysiological properties. Importantly, changes observed are consistent with observations in models of peripheral neuropathy. Thus, Aβ-fiber nonnociceptive primary sensory neurons might be involved in the peripheral sensitization and tumor-induced tactile hypersensitivity in CIBP.

  7. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    Science.gov (United States)

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  8. Preparation of thermo-sensitive slow releasing material and its application in low tar tobacco

    Directory of Open Access Journals (Sweden)

    Tian Zhong

    2017-04-01

    Full Text Available To solve some sensory defects such as fragrance deficiency,strong dry sense,poor satisfaction in the development of ultra-low tar tobacco products,we prepared a new thermo sensitive slow releasing composite material with tobacco aroma.The characterization results showed that the as-prepared thermosensitive particles have better aroma enhancing and slow releasing effects.Also,the aroma components of the tip stick containing thermosensitive particles were detected and its sensory quality was evaluated.The results showed that composite tip stick could enhance the aroma and improve the sensory quality of the cigarettes.

  9. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    OpenAIRE

    Horwitz, Anna; Mortensen, Erik L.; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC). The correlation is most pronounced for the anterior brain region (ΔC A ). The correlation is not driven by birth size, education, speed of processing, or intelligence. The sensitivity of ΔC A for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may ...

  10. Perfil sensorial e aceitação de presuntos crus produzidos por métodos tradicionais e acelerado Sensory profile and acceptance of dry-cured hams produced by traditional and accelerated methods

    Directory of Open Access Journals (Sweden)

    Marcela de Rezende Costa

    2007-03-01

    Full Text Available Existem muitos tipos de presuntos crus com perfis sensoriais particulares, em decorrência de diferentes matérias-primas e técnicas de processamento, que são apreciados por seus sabores e texturas característicos. Este trabalho objetivou caracterizar o perfil sensorial de presuntos crus através da Análise Descritiva Quantitativa e verificar a aceitação dos produtos pelo consumidor. Foram avaliados dois presuntos crus experimentais, produzidos por processo acelerado (denominados CTC 3,5 e 5,0% devido ao teor inicial de sal adicionado, e quatro produtos comercializados no Brasil, um Serrano espanhol, um Italiano e dois brasileiros (Tipo Serrano e Tipo Parma. Os produtos diferiram pelos seguintes atributos: CTC 3,5% - sabor mais ácido, menor intensidade de sabor de ranço e aroma de ranço, aparência: menor intensidade de cor vermelha e menor intensidade de suculência; CTC 5,0% - mais fibrosidade, menores intensidade e persistência de sabor e maciez; Serrano - maiores aroma de ranço, cor vermelha, intensidade e persistência de sabor e menor sabor salgado; Tipo Serrano - maior sabor de ranço e menor sabor doce; Italiano - maiores sabor salgado e maciez; Tipo Parma - sabor de carne, marmoreado e amarelo da gordura mais intensos. Todos os produtos obtiveram boa aceitação pelo consumidor. O presunto Tipo Serrano foi o mais aceito e o Serrano foi o menos aceito pelos consumidores brasileiros entrevistados. Os produtos CTC foram considerados de boa qualidade, apresentando características típicas de um presunto cru, apesar do curto período de maturação.There are many types of dry cured hams with particular sensorial profiles resulting from different raw materials and processing techniques, which are appreciated by their characteristic flavors and textures. The objectives of this paper are to characterize the sensorial profile of dry cured hams through a Quantitative Descriptive Analysis, and to verify the products acceptance by the

  11. Sensory profile of eleven peach cultivars

    Directory of Open Access Journals (Sweden)

    Francine Lorena Cuquel

    2012-03-01

    Full Text Available The goal of this study was to evaluate the sensory profile of eleven peach cultivars grown in an experimental orchard located in the city of Lapa (PR, Brazil in two seasons. The peach cultivars analyzed were Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier, and Vanguarda. The sensory analysis was performed by previously trained panelists; 20 of them in the first season and 10 in the second season. The sensory evaluation was performed using Quantitative Descriptive Analysis, in which the following attributes were measured: appearance, aroma, flesh color, flesh firmness, flavor, and juiciness. The results showed preference for sweet, soft, and juicy fruits. Chimarrita, Chiripá, and Coral fruits showed better sensorial performance than the other peach cultivars. It was also verified that the analysis of the attributes aroma, flesh firmness, and flavor is enough for performing the sensory profile of peach fruits for in natura consumption.

  12. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda

    2016-02-01

    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  13. Experienced Sensory Modalities in Dream Recall

    OpenAIRE

    岡田, 斉

    2000-01-01

    The purpose of the present study is to survey the frequency of visual, auditory, kinaesthetic, cutaneous, organic, gustatory, and olfactory experience in dream recall. A total of 1267 undergraduate students completed a dream recall frequency questionnaire, which contained a question about dream recall frequency and about recall frequency of seven sensory modalities. Results showed that seven sensory modalities were divided into two groups; normally perceived sensory modalities in dreaming, wh...

  14. Sensory overload: A concept analysis.

    Science.gov (United States)

    Scheydt, Stefan; Müller Staub, Maria; Frauenfelder, Fritz; Nielsen, Gunnar H; Behrens, Johann; Needham, Ian

    2017-04-01

    In the context of mental disorders sensory overload is a widely described phenomenon used in conjunction with psychiatric interventions such as removal from stimuli. However, the theoretical foundation of sensory overload as addressed in the literature can be described as insufficient and fragmentary. To date, the concept of sensory overload has not yet been sufficiently specified or analyzed. The aim of the study was to analyze the concept of sensory overload in mental health care. A literature search was undertaken using specific electronic databases, specific journals and websites, hand searches, specific library catalogues, and electronic publishing databases. Walker and Avant's method of concept analysis was used to analyze the sources included in the analysis. All aspects of the method of Walker and Avant were covered in this concept analysis. The conceptual understanding has become more focused, the defining attributes, influencing factors and consequences are described and empirical referents identified. The concept analysis is a first step in the development of a middle-range descriptive theory of sensory overload based on social scientific and stress-theoretical approaches. This specification may serve as a fundament for further research, for the development of a nursing diagnosis or for guidelines. © 2017 Australian College of Mental Health Nurses Inc.

  15. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences.

    Science.gov (United States)

    Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R

    2018-05-16

    A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).

  16. The differential role of cortical protein synthesis in taste memory formation and persistence

    Science.gov (United States)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  17. Long-Term Sensitization Training Primes "Aplysia" for Further Learning

    Science.gov (United States)

    Cleary, Leonard J.; Byrne, John H.; Antzoulatos, Evangelos G.; Wainwright, Marcy L.

    2006-01-01

    Repetitive, unilateral stimulation of "Aplysia" induces long-term sensitization (LTS) of ipsilaterally elicited siphon-withdrawal responses. Whereas some morphological effects of training appear only on ipsilateral sensory neurons, others appear bilaterally. We tested the possibility that contralateral morphological modifications may have…

  18. National Survey of Sensory Features in Children with ASD: Factor Structure of the Sensory Experience Questionnaire (3.0)

    Science.gov (United States)

    Ausderau, Karla; Sideris, John; Furlong, Melissa; Little, Lauren M.; Bulluck, John; Baranek, Grace T.

    2014-01-01

    This national online survey study characterized sensory features in 1,307 children with autism spectrum disorder (ASD) ages 2-12 years using the Sensory Experiences Questionnaire Version 3.0 (SEQ-3.0). Using the SEQ-3.0, a confirmatory factor analytic model with four substantive factors of hypothesized sensory response patterns (i.e.,…

  19. MULTI-SENSORY BRANDING AS A TOOL FOR THE FORMATION OF A POSITIVE IMAGE OF THE HIGHER EDUCATION INSTITUTION

    Directory of Open Access Journals (Sweden)

    Natalya A. Spirina

    2015-01-01

    Full Text Available The purpose of this article is to study the relevance of the use of sensory branding in higher education and the development of an algorithm for educational brand, based on the use of the senses of the consumer: hearing, sight, touch, smell and taste.Methods. As a methodological basis author uses methods of scientific abstraction, modeling, analysis and synthesis, as well as the method of system analysis. Results. This article discusses the main directions of methodology for higher educational brand formation through the involvement of educational services’ consumers by using different sensory organs. The author presents the main advantages of the sensory branding over conventional not focused on the senses of consumers.Scientific novelty. The author proves the need for innovative approaches to educational branding in economy of values. Market congestion with advertising messages and information noises makes it impossible to win the commitment of consumers of educational services on the basis of the functional characteristics (high-quality education, focusing only on the vision or hearing of consumers (video and print advertising. It is necessary to focus on other senses of the consumer, such as touch, smell, taste. This will enhance the emotional connection with the consumer, make it possible to expand the range of services using an existing brand, and also allow defending against competitors. Multi-sensory branding creates a strong link with the consumer, since emotional commitment is stronger than functional. In other words, a sense of interaction with the brand persists much longer than simple physical satisfaction of needs.Practical significance. The author proposes a system of sensory perception channels of educational brand and their influence on the formation of the image of the higher education institution in the minds of consumers. The author also offers the algorithm of creation the educational brand, based on the five senses of

  20. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  1. Multivariate analysis of data in sensory science

    CERN Document Server

    Naes, T; Risvik, E

    1996-01-01

    The state-of-the-art of multivariate analysis in sensory science is described in this volume. Both methods for aggregated and individual sensory profiles are discussed. Processes and results are presented in such a way that they can be understood not only by statisticians but also by experienced sensory panel leaders and users of sensory analysis. The techniques presented are focused on examples and interpretation rather than on the technical aspects, with an emphasis on new and important methods which are possibly not so well known to scientists in the field. Important features of the book are discussions on the relationship among the methods with a strong accent on the connection between problems and methods. All procedures presented are described in relation to sensory data and not as completely general statistical techniques. Sensory scientists, applied statisticians, chemometricians, those working in consumer science, food scientists and agronomers will find this book of value.

  2. Desenvolvimento do perfil sensorial e avaliação sensorial/instrumental de suco de maracujá Sensory profile development and sensory/instrumental passion fruit juice evaluation

    Directory of Open Access Journals (Sweden)

    Regina C. Della Modesta

    2005-06-01

    Full Text Available As mais importantes frutas tropicais na categoria de sucos são maracujá e manga, especialmente desejadas por sua impressão aromática e intensa. O aroma e o sabor são resultados da presença de numerosos constituintes que se encontram em concentrações variáveis, extremamente sensíveis às mudanças durante o tratamento térmico na produção de suco. Há a necessidade do desenvolvimento dos perfis sensorial e de cor, que podem ser alterados durante o processamento do suco. O objetivo deste trabalho foi desenvolver esses perfis e avaliar os sucos de maracujá entamborado: despolpado, pasteurizado, entamborado e congelado; pronto para beber (formulado com açúcar e água; e pasteurizado. Treze atributos compuseram o perfil sensorial. O experimento de Análise Descritiva Quantitativa foi delineado com 2 fatores, sucos e provadores. Os resultados foram também submetidos a uma análise de componentes principais. Houve diferença significativa entre os três sucos nos atributos sensoriais, exceto para aromas de maracujá e doce. O aroma artificial, e os aromas e os sabores de cozido e fermentado aumentaram significativamente no suco processado. Os dois primeiros componentes principais concentraram 57% da variação nos atributos sensoriais. Os parâmetros de cor, à exceção do turbidez, apresentaram variações significativas entre os sucos. O suco entamborado foi o mais escuro. A intensidade de vermelho nos sucos entamborado e formulado foi similar, menos acentuada no pasteurizado, enquanto a intensidade de amarelo foi mais acentuada no formulado, decrescendo nos pasteurizado e entamborado.The most important tropical fruits used in juice production are passion fruit and mango. They are especially liked due to their intense aromas. Aroma and flavor are results of many constituents that are present in different concentrations, which are very sensitive to changes during thermal treatment used in the juice production. This work aimed at

  3. Thalamic control of sensory selection in divided attention.

    Science.gov (United States)

    Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M

    2015-10-29

    How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.

  4. Sensory quality criteria for five fish species

    DEFF Research Database (Denmark)

    Warm, Karin; Nielsen, Jette; Hyldig, Grethe

    2000-01-01

    Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation i...... variation and by presenting references, panel discussions and interpreting plots from multivariate data analysis. The developed profile can be used as a sensory wheel for these species, and with minor changes it may be adapted to similar species......Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation...

  5. Enhanced olfactory sensitivity in autism spectrum conditions.

    Science.gov (United States)

    Ashwin, Chris; Chapman, Emma; Howells, Jessica; Rhydderch, Danielle; Walker, Ian; Baron-Cohen, Simon

    2014-01-01

    People with autism spectrum conditions (ASC) report heightened olfaction. Previous sensory experiments in people with ASC have reported hypersensitivity across visual, tactile, and auditory domains, but not olfaction. The aims of the present study were to investigate olfactory sensitivity in ASC, and to test the association of sensitivity to autistic traits. We recruited 17 adult males diagnosed with ASC and 17 typical adult male controls and tested their olfactory sensitivity using the Alcohol Sniff Test (AST), a standardised clinical evaluation of olfactory detection. The AST involves varying the distance between subject and stimulus until an odour is barely detected. Participants with ASC also completed the Autism Spectrum Quotient (AQ) as a measure of autism traits. The ASC group detected the odour at a mean distance of 24.1 cm (SD =11.5) from the nose, compared to the control group, who detected it at a significantly shorter mean distance of 14.4 cm (SD =5.9). Detection distance was independent of age and IQ for both groups, but showed a significant positive correlation with autistic traits in the ASC group (r =0.522). This is the first experimental demonstration, as far as the authors are aware, of superior olfactory perception in ASC and showing that greater olfactory sensitivity is correlated with a higher number of autistic traits. This is consistent with results from previous findings showing hypersensitivity in other sensory domains and may help explain anecdotal and questionnaire accounts of heightened olfactory sensitivity in ASC. Results are discussed in terms of possible underlying neurophysiology.

  6. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    Science.gov (United States)

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  7. Return Persistence and Fund Flows in the Worst Performing Mutual Funds

    OpenAIRE

    Jonathan B. Berk; Ian Tonks

    2007-01-01

    We document that the observed persistence amongst the worst performing actively managed mutual funds is attributable to funds that have performed poorly both in the current and prior year. We demonstrate that this persistence results from an unwillingness of investors in these funds to respond to bad performance by withdrawing their capital. In contrast, funds that only performed poorly in the current year have a significantly larger (out)flow of funds/return sensitivity and consequently show...

  8. Evidence for distinct mechanisms underlying attentional priming and sensory memory for bistable perception.

    Science.gov (United States)

    Brinkhuis, M A B; Kristjánsson, Á; Brascamp, J W

    2015-08-01

    Attentional selection in visual search paradigms and perceptual selection in bistable perception paradigms show functional similarities. For example, both are sensitive to trial history: They are biased toward previously selected targets or interpretations. We investigated whether priming by target selection in visual search and sensory memory for bistable perception are related. We did this by presenting two trial types to observers. We presented either ambiguous spheres that rotated over a central axis and could be perceived as rotating in one of two directions, or search displays in which the unambiguously rotating target and distractor spheres closely resembled the two possible interpretations of the ambiguous stimulus. We interleaved both trial types within experiments, to see whether priming by target selection during search trials would affect the perceptual outcome of bistable perception and, conversely, whether sensory memory during bistable perception would affect target selection times during search. Whereas we found intertrial repetition effects among consecutive search trials and among consecutive bistable trials, we did not find cross-paradigm effects. Thus, even though we could ascertain that our experiments robustly elicited processes of both search priming and sensory memory for bistable perception, these same experiments revealed no interaction between the two.

  9. Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding

    Directory of Open Access Journals (Sweden)

    Rachel K Nauer

    2015-03-01

    Full Text Available Previous neuroimaging studies support a role for the medial temporal lobes (MTL in maintaining novel stimuli over brief working memory (WM delays, and suggest delay period activity predicts subsequent memory. Additionally, slice recording studies have demonstrated neuronal persistent spiking in entorhinal cortex (EC, perirhinal cortex (PrC, and hippocampus (CA1, CA3, subiculum. These data have led to computational models that suggest persistent spiking in parahippocampal regions could sustain neuronal representations of sensory information over many seconds. This mechanism may support both WM maintenance and encoding of information into long term episodic memory. The goal of the current study was to use high-resolution fMRI to elucidate the contributions of the MTL cortices and hippocampal subfields to WM maintenance as it relates to later episodic recognition memory. We scanned participants while they performed a delayed match to sample task with novel scene stimuli, and assessed their memory for these scenes post-scan. We hypothesized stimulus-driven activation that persists into the delay period—a putative correlate of persistent spiking—would predict later recognition memory. Our results suggest sample and delay period activation in the parahippocampal cortex (PHC, PrC, and subiculum (extending into DG/CA3 and CA1 was linearly related to increases in subsequent memory strength. These data extend previous neuroimaging studies that have constrained their analysis to either the sample or delay period by modeling these together as one continuous ongoing encoding process, and support computational frameworks that predict persistent activity underlies both WM and episodic encoding.

  10. Trigeminal pain and quantitative sensory testing in painful peripheral diabetic neuropathy.

    Science.gov (United States)

    Arap, Astrid; Siqueira, Silvia R D T; Silva, Claudomiro B; Teixeira, Manoel J; Siqueira, José T T

    2010-07-01

    To evaluate patients with Diabetes Mellitus type 2 and painful peripheral neuropathy in order to investigate oral complaints and facial somatosensory findings. Case-control study; 29 patients (12 women, mean age 57.86 yo) with Diabetes Mellitus type 2 and 31 age-gender-matched controls were evaluated with a standardized protocol for general characteristics, orofacial pain, research diagnostic criteria for temporomandibular disorders, visual analogue scale and McGill Pain questionnaire, and a systematic protocol of quantitative sensory testing for bilateral facial sensitivity at the areas innervated by the trigeminal branches, which included the thermal detection by ThermoSensi 2, tactile evaluation with vonFrey filaments, and superficial pain thresholds with a superficial algometer (Micromar). Statistical analysis was performed with Wilcoxon, chi-square, confidence intervals and Spearman (ppain was reported by 55.2% of patients, and the most common descriptor was fatigue (50%); 17.2% had burning mouth. Myofascial temporomandibular disorders were diagnosed in 9 (31%) patients. The study group showed higher sensory thresholds of pain at the right maxillary branch (p=0.017) but sensorial differences were not associated with pain (p=0.608). Glycemia and HbA(1c) were positively correlated with the quantitative sensory testing results of pain (ppain thresholds were correlated with higher glycemia and glycated hemoglobin (p=0.027 and p=0.026). There was a high prevalence of orofacial pain and burning mouth was the most common complaint. The association of loss of pain sensation and higher glycemia and glycated hemoglobin can be of clinical use for the follow-up of DM complications. 2010 Elsevier Ltd. All rights reserved.

  11. Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica.

    Directory of Open Access Journals (Sweden)

    Andrew T Kempsell

    Full Text Available The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT. Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.

  12. Desempenho motor e sensorial de lactentes com e sem síndrome de Down: estudo piloto Motor and sensory performance of infants with and without Down syndrome: a pilot study

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Campos

    2010-09-01

    detecting sensory stimuli, sensation seeking, excessive sensitivity to stimuli, and sensation avoiding behaviours. Results show that infants with DS had significantly lower scores in low registration when compared to typical infants, suggesting that their higher sensory threshold lead to longer reaction times. At the AIMS, infants with DS had lower performance when compared to typical infants at the prone subscale, which may be due to deficits in postural and antigravity control. No correlation was found between ITSP and AIMS scores. Results then suggest that infants with Down syndrome may less frequently engage in environmental interactions, probably due both to difficulty in perceiving day-to-day stimuli (like diverse sounds or people's and difficulty to explore the environment by using their limited motor abilities.

  13. RAW CHICKEN LEG AND BREAST SENSORY EVALUATION

    Directory of Open Access Journals (Sweden)

    Octavian Baston

    2010-01-01

    Full Text Available In the paper we presented a method of sensorial evaluation for chicken meat (red and white. This is a descriptive method of analysis. It was perform with trained assessors for chicken refrigerated raw meat organoleptical evaluation. The sensorial attributes considered were: external aspect of anatomical part of chicken analyzed by slime, the surface odor, the skin and muscle color and muscular elasticity. Color was determined for the skin and white and red muscles. Our scale of analysis is formed by three values that characterize each quality attribute. The trained assessor appreciated the sensorial quality of raw anatomical part of chicken as excellent, acceptable and unacceptable. The objectives were: to establish the sensorial attributes to be analyzed for each type of muscular fiber, to describe the quality of each considered attribute and to realize a sensorial scale of quantification for the considered sensorial attributes. Our purpose was to determine the quality of the red and white refrigerated raw chicken anatomical parts (respectively for legs and breasts after one week of storage.

  14. Genetics Home Reference: hereditary sensory neuropathy type IA

    Science.gov (United States)

    ... sensory neuropathy type IA Hereditary sensory neuropathy type IA Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Hereditary sensory neuropathy type IA is a condition characterized by nerve abnormalities in ...

  15. Spatial imagery relies on a sensory independent, though sensory sensitive, functional organization within the parietal cortex: a fMRI study of angle discrimination in sighted and congenitally blind individuals.

    Science.gov (United States)

    Bonino, Daniela; Ricciardi, Emiliano; Bernardi, Giulio; Sani, Lorenzo; Gentili, Claudio; Vecchi, Tomaso; Pietrini, Pietro

    2015-02-01

    Although vision offers distinctive information to space representation, individuals who lack vision since birth often show perceptual and representational skills comparable to those found in sighted individuals. However, congenitally blind individuals may result in impaired spatial analysis, when engaging in 'visual' spatial features (e.g., perspective or angle representation) or complex spatial mental abilities. In the present study, we measured behavioral and brain responses using functional magnetic resonance imaging in sighted and congenitally blind individuals during spatial imagery based on a modified version of the mental clock task (e.g., angle discrimination) and a simple recognition control condition, as conveyed across distinct sensory modalities: visual (sighted individuals only), tactile and auditory. Blind individuals were significantly less accurate during the auditory task, but comparable-to-sighted during the tactile task. As expected, both groups showed common neural activations in intraparietal and superior parietal regions across visual and non-visual spatial perception and imagery conditions, indicating the more abstract, sensory independent functional organization of these cortical areas, a property that we named supramodality. At the same time, however, comparisons in brain responses and functional connectivity patterns across experimental conditions demonstrated also a functional lateralization, in a way that correlated with the distinct behavioral performance in blind and sighted individuals. Specifically, blind individuals relied more on right parietal regions, mainly in the tactile and less in the auditory spatial processing. In sighted, spatial representation across modalities relied more on left parietal regions. In conclusions, intraparietal and superior parietal regions subserve supramodal spatial representations in sighted and congenitally blind individuals. Differences in their recruitment across non-visual spatial processing in

  16. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.

    Science.gov (United States)

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-12-01

    Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery

    Science.gov (United States)

    Maldiney, Thomas; Ballet, Benoit; Bessodes, Michel; Scherman, Daniel; Richard, Cyrille

    2014-10-01

    Based upon the ambitious idea that one single particle could serve multiple purposes at the same time, the combination and simultaneous use of imaging and therapeutics has lately arisen as one of the most promising prospects among nanotechnologies directed toward biomedical applications. Intended for both therapeutics and diagnostics in vivo, highly complex nanostructures were specifically designed to simultaneously act as optical imaging probes and delivery vehicles. Yet, such multifunctional photonic nanoplatforms usually exploit fluorescence phenomena which require constant excitation light through biological tissues and thus significantly reduce the detection sensitivity due to the autofluorescence from living animals. In order to overcome this critical issue, the present article introduces a novel multifunctional agent based on persistent luminescence mesoporous nanoparticles. Being composed of a hybrid chromium-doped zinc gallate core/mesoporous silica shell architecture, we show that this nanotechnology can be used as an efficient doxorubicin-delivery vehicle presenting a higher cytotoxicity toward U87MG cells than its unloaded counterpart in vitro. In addition, we demonstrate that a persistent luminescence signal from these doxorubicin-loaded mesoporous nanophosphors opens a new way to highly sensitive detection in vivo, giving access to the real-time biodistribution of the carrier without any autofluorescence from the animal tissues. This new persistent luminescence-based hybrid nanotechnology can be easily applied to the delivery of any therapeutic agent, thus constituting a versatile and sensitive optical nanotool dedicated to both therapeutic and diagnostic applications in vivo.Based upon the ambitious idea that one single particle could serve multiple purposes at the same time, the combination and simultaneous use of imaging and therapeutics has lately arisen as one of the most promising prospects among nanotechnologies directed toward biomedical

  18. Proficiency testing for sensory profile panels : measuring panel performance

    NARCIS (Netherlands)

    Mcewan, J.A.; Hunter, E.A.; Gemert, L.J. van; Lea, P.

    2002-01-01

    Proficiency testing in sensory analysis is an important step towards demonstrating that results from one sensory panel are consistent with the results of other sensory panels. The uniqueness of sensory analysis poses some specific problems for measuring the proficiency of the human instrument

  19. Neural correlates supporting sensory discrimination after left hemisphere stroke

    Science.gov (United States)

    Borstad, Alexandra; Schmalbrock, Petra; Choi, Seongjin; Nichols-Larsen, Deborah S.

    2012-01-01

    Background Nearly half of stroke patients have impaired sensory discrimination, however, the neural structures that support post-stroke sensory function have not been described. Objectives 1) To evaluate the role of the primary somatosensory (S1) cortex in post-stroke sensory discrimination and 2) To determine the relationship between post-stroke sensory discrimination and structural integrity of the sensory component of the superior thalamic radiation (sSTR). Methods 10 healthy adults and 10 individuals with left hemisphere stroke participated. Stroke participants completed sensory discrimination testing. An fMRI was conducted during right, impaired hand sensory discrimination. Fractional anisotropy and volume of the sSTR were quantified using diffusion tensor tractography. Results Sensory discrimination was impaired in 60% of participants with left stroke. Peak activation in the left (S1) did not correlate with sensory discrimination ability, rather a more distributed pattern of activation was evident in post-stroke subjects with a positive correlation between peak activation in the parietal cortex and discrimination ability (r=.70, p=.023). The only brain region in which stroke participants had significantly different cortical activation than control participants was the precuneus. Region of interest analysis of the precuneus across stroke participants revealed a positive correlation between peak activation and sensory discrimination ability (r=.77, p=.008). The L/R ratio of sSTR fractional anisotropy also correlated with right hand sensory discrimination (r=.69, p=.027). Conclusions Precuneus cortex, distributed parietal lobe activity, and microstructure of the sSTR support sensory discrimination after left hemisphere stroke. PMID:22592076

  20. Receptors for sensory neuropeptides in human inflammatory diseases: Implications for the effector role of sensory neurons

    International Nuclear Information System (INIS)

    Mantyh, P.W.; Catton, M.D.; Boehmer, C.G.; Welton, M.L.; Passaro, E.P. Jr.; Maggio, J.E.; Vigna, S.R.

    1989-01-01

    Glutamate and several neuropeptides are synthesized and released by subpopulations of primary afferent neurons. These sensory neurons play a role in regulating the inflammatory and immune responses in peripheral tissues. Using quantitative receptor autoradiography we have explored what changes occur in the location and concentration of receptor binding sites for sensory neurotransmitters in the colon in two human inflammatory diseases, ulcerative colitis and Crohn's disease. The sensory neurotransmitter receptors examined included bombesin, calcitonin gene related peptide-alpha, cholecystokinin, galanin, glutamate, somatostatin, neurokinin A (substance K), substance P, and vasoactive intestinal polypeptide. Of the nine receptor binding sites examined only substance P binding sites associated with arterioles, venules and lymph nodules were dramatically up-regulated in the inflamed tissue. These data suggest that substance P is involved in regulating the inflammatory and immune responses in human inflammatory diseases and indicate a specificity of efferent action for each sensory neurotransmitter in peripheral tissues

  1. Electromagnetic Characterization Of Metallic Sensory Alloy

    Science.gov (United States)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  2. A dual-trace model for visual sensory memory.

    Science.gov (United States)

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Believing and perceiving: authorship belief modulates sensory attenuation.

    Directory of Open Access Journals (Sweden)

    Andrea Desantis

    Full Text Available Sensory attenuation refers to the observation that self-generated stimuli are attenuated, both in terms of their phenomenology and their cortical response compared to the same stimuli when generated externally. Accordingly, it has been assumed that sensory attenuation might help individuals to determine whether a sensory event was caused by themselves or not. In the present study, we investigated whether this dependency is reciprocal, namely whether sensory attenuation is modulated by prior beliefs of authorship. Participants had to judge the loudness of auditory effects that they believed were either self-generated or triggered by another person. However, in reality, the sounds were always triggered by the participants' actions. Participants perceived the tones' loudness attenuated when they believed that the sounds were self-generated compared to when they believed that they were generated by another person. Sensory attenuation is considered to contribute to the emergence of people's belief of authorship. Our results suggest that sensory attenuation is also a consequence of prior belief about the causal link between an action and a sensory change in the environment.

  4. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus

    Science.gov (United States)

    Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels

    2006-01-01

    Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808

  5. Predicting Psychotic-Like Experiences during Sensory Deprivation

    Science.gov (United States)

    Daniel, Christina; Mason, Oliver J.

    2015-01-01

    Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs) reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis. PMID:25811027

  6. Predicting Psychotic-Like Experiences during Sensory Deprivation

    Directory of Open Access Journals (Sweden)

    Christina Daniel

    2015-01-01

    Full Text Available Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis.

  7. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre.

    Science.gov (United States)

    Smit, Jacoba E; Hanekom, Tania; Hanekom, Johan J

    2009-08-01

    The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.

  8. Monitoring levels of preservative sensitivity in Europe

    DEFF Research Database (Denmark)

    Wilkinson, J D; Shaw, S; Andersen, Klaus Ejner

    2002-01-01

    A 10-year multicentre analysis of the frequency of sensitivity to common preservatives collected in 16 centres in 11 countries has shown stable but persisting high levels of sensitivity to formaldehyde and 5-chloro-2-methyl-4-isothiazolin-3-one + 2-methyl-4-isothiazolin-3-one (MCI/MI). It has also...

  9. The sensory substrate of multimodal communication in brown-headed cowbirds: are females sensory 'specialists' or 'generalists'?

    Science.gov (United States)

    Ronald, Kelly L; Sesterhenn, Timothy M; Fernandez-Juricic, Esteban; Lucas, Jeffrey R

    2017-11-01

    Many animals communicate with multimodal signals. While we have an understanding of multimodal signal production, we know relatively less about receiver filtering of multimodal signals and whether filtering capacity in one modality influences filtering in a second modality. Most multimodal signals contain a temporal element, such as change in frequency over time or a dynamic visual display. We examined the relationship in temporal resolution across two modalities to test whether females are (1) sensory 'specialists', where a trade-off exists between the sensory modalities, (2) sensory 'generalists', where a positive relationship exists between the modalities, or (3) whether no relationship exists between modalities. We used female brown-headed cowbirds (Molothrus ater) to investigate this question as males court females with an audiovisual display. We found a significant positive relationship between female visual and auditory temporal resolution, suggesting that females are sensory 'generalists'. Females appear to resolve information well across multiple modalities, which may select for males that signal their quality similarly across modalities.

  10. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    Science.gov (United States)

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The effect of health/hedonic claims on consumer hedonic and sensory perception of sugar reduction: Case study with orange/passionfruit nectars.

    Science.gov (United States)

    Oliveira, Denize; Ares, Gastón; Deliza, Rosires

    2018-06-01

    Sugar reduction in beverages can contribute to reduce consumption of this nutrient and to improve the health status of the population. However, such reduction can negatively affect consumer perception. Label information can be an effective tool to increase consumer interest in sugar-reduced products. In this context, the aim of the present work was to study the influence of health/hedonic claims on consumer hedonic and sensory perception of sugar reduction in orange/passionfruit nectars under expected and informed conditions. Sugar-reduced orange/passionfruit nectars (20% and 40% reduced in added sugar) featuring different claims (none, health claim or hedonic claim) were evaluated, together with a control product without reduction. Following a between-subjects experimental design, 206 participants evaluated the nectars under two experimental conditions: (a) expected, looking at the packages, and (b) informed, looking at the packages and tasting the nectars. In each experimental condition, participants evaluated their overall liking using a 9-point hedonic scale and answered a check-all-that-apply questions related to the sensory characteristics of the nectars. Results showed that although consumers did not have negative expectations about sugar-reduced nectars, the sensory characteristics of the products were the main determinants of consumers' hedonic reaction towards the nectars. The influence of claims on consumers' perception was modulated by their hedonic sensitivity towards sugar-reduction. The hedonic claim increased overall liking of those consumers with low hedonic sensitivity towards sugar reduction, whereas it had the opposite effect on the most sensitive consumers. Results from the present work suggest that although hedonic claims hold potential for a consumer segment, care must be taken to avoid the generation of unrealistic expectations about the sensory characteristics of sugar-reduced products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Autistic traits associated with food neophobia but not olfactory sensitivity.

    Science.gov (United States)

    Stafford, Lorenzo D; Tsang, Irene; López, Beatriz; Severini, Martina; Iacomini, Silvia

    2017-09-01

    Food neophobia has been shown to be associated with a range of personality traits (including anxiety, lower sensation seeking) and additionally sensory aspects of food such as taste and texture. Running parallel to that work, research has demonstrated higher incidences of food neophobia in autistic populations and separately evidence of hypersensitivity in some sensory domains. The aim of the current study was to extend our understanding by exploring whether the broader aspects of autistic traits can predict food neophobia in a non-autistic population and whether this is mediated by differences in olfactory sensitivity. In the present study, student participants (N = 50) completed questionnaires measuring their food neophobia (FNS) and preferences for foreign cuisine, autistic traits (Autistic Quotient, AQ), and then completed an olfactory threshold test for a food related odour. The findings demonstrated a positive association between food neophobia and the magnitude of autistic traits and interestingly, an inverse relation between preference for foreign cuisine and olfactory sensitivity; those individuals less inclined toward foreign cuisine had poorer sensitivity to a food related odour. Since AQ was not related to olfactory sensitivity, these findings suggest the relation between autistic traits and food neophobia is unlikely to be mediated by olfactory sensitivity. More broadly however, our sense of smell is associated with experiencing a wider diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. THE ROLE OF EARNINGS PERSISTENCE IN VALUATION ACCURACY AND THE TIME HORIZON

    Directory of Open Access Journals (Sweden)

    Renê Coppe Pimentel

    2016-02-01

    Full Text Available Based on the assumption that earnings persistence has implications for both financial analysis and compensation contracts, the aim of this paper is to investigate the role of earnings persistence assuming that (i more persistent earnings are likely to be a better input to valuation models and (ii more persistent earnings are likely to serve as a proxy for long-term market and managerial orientation. The analysis is based on Brazilian listed firms from 1995 to 2013, and while we document strong support for the relevance of earnings persistence in financial analysis and valuation, we fail to document a significant relationship between earnings persistence and long-term value orientation. These results are sensitive to different specifications, and additional results suggest that firms’ idiosyncratic risk (total risk is relevant to explain the focus on short-term outcomes (short-termism across firms. The main contribution of this paper is to offer empirical evidence for the relevance of accounting numbers in both valuation and contractual theories in an emergent market.

  14. Sensory aspects in myasthenia gravis: A translational approach.

    Science.gov (United States)

    Leon-Sarmiento, Fidias E; Leon-Ariza, Juan S; Prada, Diddier; Leon-Ariza, Daniel S; Rizzo-Sierra, Carlos V

    2016-09-15

    Myasthenia gravis is a paradigmatic muscle disorder characterized by abnormal fatigue and muscle weakness that worsens with activities and improves with rest. Clinical and research studies done on nicotinic acetylcholine receptors have advanced our knowledge of the muscle involvement in myasthenia. Current views still state that sensory deficits are not "features of myasthenia gravis". This article discusses the gap that exists on sensory neural transmission in myasthenia that has remained after >300years of research in this neurological disorder. We outline the neurobiological characteristics of sensory and motor synapses, reinterpret the nanocholinergic commonalities that exist in both sensory and motor pathways, discuss the clinical findings on altered sensory pathways in myasthenia, and propose a novel way to score anomalies resulting from multineuronal inability associated sensory troubles due to eugenic nanocholinergic instability and autoimmunity. This medicine-based evidence could serve as a template to further identify novel targets for studying new medications that may offer a better therapeutic benefit in both sensory and motor dysfunction for patients. Importantly, this review may help to re-orient current practices in myasthenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The synaptic pharmacology underlying sensory processing in the superior colliculus.

    Science.gov (United States)

    Binns, K E

    1999-10-01

    The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on

  16. Indonesian Fire Activity and Smoke Pollution in 2015 Show Persistent Nonlinear Sensitivity to El Niño-induced Drought

    Science.gov (United States)

    Field, Robert D.; van der Werf, Guido R.; Fanin, Thierry; Fetzer, Eric; Fuller, Ryan; Jethva, Hiren; Levy, Robert; Livesey, Nathaniel; Luo, Ming; Torres, Omar; hide

    2016-01-01

    The 2015 fire season and related smoke pollution in Indonesia was more severe than the major 2006 episode, making it the most severe season observed by the NASA Earth Observing System satellites that go back to the early 2000s, namely active fire detections from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS), MODIS aerosol optical depth, Terra Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO), Aqua Atmospheric Infrared Sounder (AIRS) CO, Aura Ozone Monitoring Instrument (OMI) aerosol index, and Aura Microwave Limb Sounder (MLS) CO. The MLS CO in the upper troposphere showed a plume of pollution stretching from East Africa to the western Pacific Ocean that persisted for two months. Longer-term records of airport visibility in Sumatra and Kalimantan show that 2015 ranked after 1997 and alongside 1991 and 1994 as among the worst episodes on record. Analysis of yearly dry season rainfall from the Tropical Rainfall Measurement Mission (TRMM) and rain gauges shows that, due to the continued use of fire to clear and prepare land on degraded peat, the Indonesian fire environment continues to have non-linear sensitivity to dry conditions during prolonged periods with less than 4mmday of precipitation, and this sensitivity appears to have increased over Kalimantan. Without significant reforms in land use and the adoption of early warning triggers tied to precipitation forecasts, these intense fire episodes will re-occur during future droughts, usually associated with El Nio events.

  17. Sensory Alterations in Patients with Isolated Idiopathic Dystonia: An Exploratory Quantitative Sensory Testing Analysis.

    Science.gov (United States)

    Paracka, Lejla; Wegner, Florian; Blahak, Christian; Abdallat, Mahmoud; Saryyeva, Assel; Dressler, Dirk; Karst, Matthias; Krauss, Joachim K

    2017-01-01

    Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings.

  18. The effect of sensory-nutrient congruency on food intake after repeated exposure: do texture and/or energy density matter?

    Science.gov (United States)

    Hogenkamp, P S

    2014-09-01

    Sensory properties guide the amount that people eat. In particular, food texture plays an important role in a food's 'expected satiation', which in turn affects the food-related decision making process. One hypothesis is that incongruent pairing of a textural cue with a post-ingestive outcome compromises this process, leading to poor energy compensation. Several studies examined the effect of both energy density and sensory characteristics (i.e. increased creaminess and thickness) on expectations, subjective appetite and food intake. To add to this literature, a re-analysis of data assessed whether the effect of sensory-nutrient pairings on energy intake compensation persisted after repeated exposure to a food. In this cross-over design, 27 participants consumed two preloads with 'congruent' (low-energy/liquid; high-energy/semi-solid) and two preloads with 'incongruent' (low-energy/semi-solid; high-energy/liquid) texture-nutrient combinations for nine subsequent meals, during which ad libitum intake was measured. Intake at first exposure did not differ between the low-energy (280±150kcal) and high-energy preloads (292±183kcal) in the incongruent conditions. By contrast, it was greater after the low-energy (332±203kcal) than after the high-energy (236±132kcal) preload in the congruent conditions (energy∗incongruent/congruent, p=0.04). Post-exposure, this pattern changed: intake depended on the energy density of the preloads in all conditions, and was greater after low-energy preloads (day∗energy∗incongruent/congruent-interaction for breakfast: p=0.02). Thus, manipulating the sensory properties of a food influenced energy compensation and meal size, but only at initial exposure. Repeated exposure 'corrected' the initial lack of compensation observed in conditions with incongruent sensory-nutrient pairings. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Sensory profiling and consumer acceptability of new dark cocoa bars containing Tuscan autochthonous food products.

    Science.gov (United States)

    Cantini, Claudio; Salusti, Patrizia; Romi, Marco; Francini, Alessandra; Sebastiani, Luca

    2018-03-01

    A new set of cocoa bars named Toscolata ® were developed containing top-quality extra virgin olive oil, dried apples cultivars, and chestnut flour. The present work has been conducted to define the sensory profile of these products through tasting by trained experts and consumers to study the acceptability, preference, and quality perception. The four sensorial profiles of the bars differed in the level of persistence, bitterness, aromaticity, acidity, astringency, and tastiness. In particular, the sour attribute could be traced to the presence of dried apple. Bars containing apple and chestnut flour obtained higher acceptance ratings, compared to those with extra virgin olive oil. The bar with chestnut flour was preferred by consumers who considered it to be sweeter due to the presence of natural sugars, which lowered the bitter sensation of cocoa. These results showed that the selection of the preferred bar by consumers was mainly based on the level of bitterness and, in particular, elderly consumers expressed a strong preference for the sweetest product. As far as we know, this is the first study comparing the results of a panel of expert tasters with that of consumers in the tasting of dark chocolate.

  20. Breach of sensory integration in children and youth

    Directory of Open Access Journals (Sweden)

    Radziyevska Mariya.

    2012-04-01

    Full Text Available From the first moments of life, the child acquires the experience of being in the world around him through the senses such as touch, balance, proprioception, taste, sight, hearing and smell. The development of sensory integration of individual processes helps to effectively carry out every activity and function in society. Changes in the quality and quantity of sensory information may lead to sensory integration disorder child, which is immediately reflected in his behavior. In this paper we have presented information on the levels of sensory integration and testing of samples with a simple touch of activities that can be done without special equipment, both at home and in child care. Dissemination of knowledge about the processes of sensory integration, both among doctors, teachers, physiotherapists, occupational therapists and psychology as well as parents can contribute to early diagnosis of problems in children sensory-social development, further impeding the normal functioning of the child in society.

  1. Experimental orofacial pain and sensory deprivation lead to perceptual distortion of the face in healthy volunteers.

    Science.gov (United States)

    Dagsdóttir, Lilja Kristín; Skyt, Ina; Vase, Lene; Baad-Hansen, Lene; Castrillon, Eduardo; Svensson, Peter

    2015-09-01

    Patients suffering from persistent orofacial pain may sporadically report that the painful area feels "swollen" or "differently," a phenomenon that may be conceptualized as a perceptual distortion because there are no clinical signs of swelling present. Our aim was to investigate whether standardized experimental pain and sensory deprivation of specific orofacial test sites would lead to changes in the size perception of these face areas. Twenty-four healthy participants received either 0.2 mL hypertonic saline (HS) or local anesthetics (LA) into six regions (buccal, mental, lingual, masseter muscle, infraorbital and auriculotemporal nerve regions). Participants estimated the perceived size changes in percentage (0 % = no change, -100 % = half the size or +100 % = double the size), and somatosensory function was checked with tactile stimuli. The pain intensity was rated on a 0-10 Verbal Numerical Rating Scale (VNRS), and sets of psychological questionnaires were completed. HS and LA were associated with significant self-reported perceptual distortions as indicated by consistent increases in perceived size of the adjacent face areas (P ≤ 0.050). Perceptual distortion was most pronounced in the buccal region, and the smallest increase was observed in the auriculotemporal region. HS was associated with moderate levels of pain VNRS = 7.3 ± 0.6. Weak correlations were found between HS-evoked perceptual distortion and level of dissociation in two regions (P pain and transient sensory deprivation evoked perceptual distortions in all face regions and overall demonstrated the importance of afferent inputs for the perception of the face. We propose that perceptual distortion may be an important phenomenon to consider in persistent orofacial pain conditions.

  2. Sensory and motor innervation of the crural diaphragm by the vagus nerves.

    Science.gov (United States)

    Young, Richard L; Page, Amanda J; Cooper, Nicole J; Frisby, Claudine L; Blackshaw, L Ashley

    2010-03-01

    During gastroesophageal reflux, transient lower esophageal sphincter relaxation and crural diaphragm (CD) inhibition occur concomitantly. Modifying vagus nerve control of transient lower esophageal sphincter relaxation is a major focus of development of therapeutics for gastroesophageal reflux disease, but neural mechanisms that coordinate the CD are poorly understood. Nerve tracing and immunolabeling were used to assess innervation of the diaphragm and lower esophageal sphincter in ferrets. Mechanosensory responses of vagal afferents in the CD and electromyography responses of the CD were recorded in novel in vitro preparations and in vivo. Retrograde tracing revealed a unique population of vagal CD sensory neurons in nodose ganglia and CD motor neurons in brainstem vagal nuclei. Anterograde tracing revealed specialized vagal endings in the CD and phrenoesophageal ligament-sites of vagal afferent mechanosensitivity recorded in vitro. Spontaneous electromyography activity persisted in the CD following bilateral phrenicotomy in vivo, while vagus nerve stimulation evoked electromyography responses in the CD in vitro and in vivo. We conclude that vagal sensory and motor neurons functionally innervate the CD and phrenoesophageal ligament. CD vagal afferents show mechanosensitivity to distortion of the gastroesophageal junction, while vagal motor neurons innervate both CD and distal esophagus and may represent a common substrate for motor control of the reflux barrier. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Characterization of Sensory Differences in Mixing and Premium Rums Through the Use of Descriptive Sensory Analysis.

    Science.gov (United States)

    Ickes, Chelsea M; Cadwallader, Keith R

    2017-11-01

    This study identified and quantitated perceived sensory differences between 7 premium rums and 2 mixing rums using a hybrid of the Quantitative Descriptive Analysis and Spectrum methods. In addition, the results of this study validated the previously developed rum flavor wheel created from web-based materials. Results showed that the use of the rum flavor wheel aided in sensory term generation, as 17 additional terms were generated after the wheel was provided to panelists. Thirty-eight sensory terms encompassing aroma, aroma-by-mouth, mouthfeel, taste and aftertaste modalities, were generated and evaluated by the panel. Of the finalized terms, only 5 did not exist previously on the rum flavor wheel. Twenty attributes were found to be significantly different among rums. The majority of rums showed similar aroma profiles with the exception of 2 rums, which were characterized by higher perceived intensities of brown sugar, caramel, vanilla, and chocolate aroma, caramel, maple, and vanilla aroma-by-mouth and caramel aftertaste. These results demonstrate the previously developed rum flavor wheel can be used to adequately describe the flavor profile of rum. Additionally, results of this study document the sensory differences among premium rums and may be used to correlate with analytical data to better understand how changes in chemical composition of the product affect sensory perception. © 2017 Institute of Food Technologists®.

  4. [Treatment of sensory information in neurodevelopmental disorders].

    Science.gov (United States)

    Zoenen, D; Delvenne, V

    2018-01-01

    The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.

  5. Auditory-somatosensory temporal sensitivity improves when the somatosensory event is caused by voluntary body movement

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2016-12-01

    Full Text Available When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements.Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either 'sound-first' or 'touch-first' responses. We found that the performance of temporal order judgment (TOJ in the voluntary condition (as indexed by the just noticeable difference was significantly better (M=42.5 ms ±3.8 s.e.m than that when their finger was passively stimulated (passive condition: M=66.8 ms ±6.3 s.e.m. We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction, kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction. When the participant’s finger was moved passively to press the button (involuntary condition and when three noise bursts were presented before the target burst with regular intervals (predictable condition, the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity.

  6. Sensory Impairment and Health-Related Quality of Life

    Science.gov (United States)

    KWON, Hye-Jin; KIM, Ji-su; KIM, Yoon-jung; KWON, Su-jin; YU, Jin-Na

    2015-01-01

    Background: Sensory impairment is a common condition that exerts negative effects on health-related quality of life (HRQoL) in the elderly. This study aimed to determine the relationship between sensory impairment and HRQoL and identify sensory-specific differences in the HRQoL of elderly. Methods: This study used data from the Korean National Health and Nutrition Examination Survey V (2010–2012), analyzing 5,260 subjects over 60 years of age who completed ophthalmic and otologic examinations. Vision and hearing impairment were measured and classified. HRQoL was determined according to the European QoL five dimension test (EQ-5D). Multivariate logistic regression analysis and analysis of covariance were performed to identify relationships between sensory impairment and HRQoL dimensions as well as differences in HRQoL scores. Results: In the final adjusted multivariate model, there was a statistically higher proportion of those with dual sensory impairment who reported problems with mobility (adjusted odds ratio [aOR] 2.30, 95% confidence interval [CI] 1.45–5.03), usual activities (aOR 2.32, 95% CI 1.16–4.64), and pain/discomfort among EQ-5D subcategories (aOR 1.79, 95% CI 1.07–2.97). In the EQ-5D dimensions, the means and standard deviations of vision impairment (0.86 [0.01]) and dual sensory impairment (0.84 [0.02]) appeared meaningfully lower than those for no sensory impairment (0.88 [0.00]) or hearing impairment (0.88 [0.01]); P = .02). Conclusion: Sensory impairment reduces HRQoL in the elderly. Improvement of HRQoL in the elderly thus requires regular screening and appropriate management of sensory impairment. PMID:26258089

  7. Learning from sensory and reward prediction errors during motor adaptation.

    Science.gov (United States)

    Izawa, Jun; Shadmehr, Reza

    2011-03-01

    Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual's relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.

  8. Just do it: action-dependent learning allows sensory prediction.

    Directory of Open Access Journals (Sweden)

    Itai Novick

    Full Text Available Sensory-motor learning is commonly considered as a mapping process, whereby sensory information is transformed into the motor commands that drive actions. However, this directional mapping, from inputs to outputs, is part of a loop; sensory stimuli cause actions and vice versa. Here, we explore whether actions affect the understanding of the sensory input that they cause. Using a visuo-motor task in humans, we demonstrate two types of learning-related behavioral effects. Stimulus-dependent effects reflect stimulus-response learning, while action-dependent effects reflect a distinct learning component, allowing the brain to predict the forthcoming sensory outcome of actions. Together, the stimulus-dependent and the action-dependent learning components allow the brain to construct a complete internal representation of the sensory-motor loop.

  9. Specialized Cilia in Mammalian Sensory Systems

    Directory of Open Access Journals (Sweden)

    Nathalie Falk

    2015-09-01

    Full Text Available Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.

  10. Complete functional characterization of sensory neurons by system identification.

    Science.gov (United States)

    Wu, Michael C-K; David, Stephen V; Gallant, Jack L

    2006-01-01

    System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.

  11. Influence of Japanese consumer gender and age on sensory attributes and preference (a case study on deep-fried peanuts).

    Science.gov (United States)

    Miyagi, Atsushi

    2017-09-01

    Detailed exploration of sensory perception as well as preference across gender and age for a certain food is very useful for developing a vendible food commodity related to physiological and psychological motivation for food preference. Sensory tests including color, sweetness, bitterness, fried peanut aroma, textural preference and overall liking of deep-fried peanuts with varying frying time (2, 4, 6, 9, 12 and 15 min) at 150 °C were carried out using 417 healthy Japanese consumers. To determine the influence of gender and age on sensory evaluation, systematic statistical analysis including one-way analysis of variance, polynomial regression analysis and multiple regression analysis was conducted using the collected data. The results indicated that females were more sensitive to bitterness than males. This may affect sensory preference; female subjects favored peanuts prepared with a shorter frying time more than male subjects did. With advancing age, textural preference played a more important role in overall preference. Older subjects liked deeper-fried peanuts, which are more brittle, more than younger subjects did. In the present study, systematic statistical analysis based on collected sensory evaluation data using deep-fried peanuts was conducted and the tendency of sensory perception and preference across gender and age was clarified. These results may be useful for engineering optimal strategies to target specific segments to gain greater acceptance in the market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Diagnosis and neurologopedic therapy in a child with sensory-motor alalia

    Directory of Open Access Journals (Sweden)

    Marta Wawrzynów

    2018-01-01

    Full Text Available Introduction: Alalia sensory-motor mechanism is a disorder of understanding speech, words expressing thoughts, auditory perception, shaped on the basis of physical hearing, as well as mechanisms for creating movements and create their accuracy. Alalia is dysfunction, which reveals the source of difficulty for up to 2 years of age. The reason is usually damage to the structure of the cerebral cortex, which may take place during fetal life and perinatal time. Most often alalii sensory-motor are confused with autism spectrum disorders, of both are in fact similar. Objective: The aim of the study was to develop and apply individual therapy neurologopedic alalia a child with sensory-motor and the answer to the question whether such therapy can improve speech perception and the ability of the child. Material and methods: The research method of work is an individual case study. Diagnosis was obtained from intelligence, surveillance, indicative speech testing and research neurologopedic. The result has been supplemented with the child's medical records. Results: Therapy neurologopedic brought the desired results. Results achieved in the field of manual and motor skills and eye-hand coordination. Improved memory and perception of auditory-visual and extended the time attention. Significantly enriched vocabulary. Developed the ability to play, a desire to follow suit. Improved ability to eat independently and function of organs oral-facial area. The patient became me sensitive to stimulus, more stabile, the central muscle tone has been reinforced.

  13. Validity of Sensory Systems as Distinct Constructs

    OpenAIRE

    Su, Chia-Ting; Parham, L. Diane

    2014-01-01

    Confirmatory factor analysis testing whether sensory questionnaire items represented distinct sensory system constructs found, using data from two age groups, that such constructs can be measured validly using questionnaire data.

  14. Analyzing sensory data with R

    CERN Document Server

    Le, Sebastien

    2014-01-01

    Quantitative Descriptive Approaches When panelists rate products according to one single list of attributes Data, sensory issues, notations In practice For experienced users: Measuring the impact of the experimental design on the perception of the products? When products are rated according to one single list of attributesData, sensory issues, notations In practice For experienced users: Adding supplementary information to the product space When products are rated according to several lists

  15. Sensory Synergy as Environmental Input Integration

    Directory of Open Access Journals (Sweden)

    Fady eAlnajjar

    2015-01-01

    Full Text Available The development of a method to feed proper environmental inputs back to the central nervous system (CNS remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

  16. Sensory synergy as environmental input integration.

    Science.gov (United States)

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2014-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler.

  17. Superior short-term learning effect of visual and sensory organisation ability when sensory information is unreliable in adolescent rhythmic gymnasts.

    Science.gov (United States)

    Chen, Hui-Ya; Chang, Hsiao-Yun; Ju, Yan-Ying; Tsao, Hung-Ting

    2017-06-01

    Rhythmic gymnasts specialise in dynamic balance under sensory conditions of numerous somatosensory, visual, and vestibular stimulations. This study investigated whether adolescent rhythmic gymnasts are superior to peers in Sensory Organisation test (SOT) performance, which quantifies the ability to maintain standing balance in six sensory conditions, and explored whether they plateaued faster during familiarisation with the SOT. Three and six sessions of SOTs were administered to 15 female rhythmic gymnasts (15.0 ± 1.8 years) and matched peers (15.1 ± 2.1 years), respectively. The gymnasts were superior to their peers in terms of fitness measures, and their performance was better in the SOT equilibrium score when visual information was unreliable. The SOT learning effects were shown in more challenging sensory conditions between Sessions 1 and 2 and were equivalent in both groups; however, over time, the gymnasts gained marginally significant better visual ability and relied less on visual sense when unreliable. In conclusion, adolescent rhythmic gymnasts have generally the same sensory organisation ability and learning rates as their peers. However, when visual information is unreliable, they have superior sensory organisation ability and learn faster to rely less on visual sense.

  18. Emerging Role of Sensory Perception in Aging and Metabolism.

    Science.gov (United States)

    Riera, Celine E; Dillin, Andrew

    2016-05-01

    Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.

  19. Could persistency of current of injury forecast successful active-fixation pacing lead implantation?

    Science.gov (United States)

    Shali, Shalaimaiti; Su, Yangang; Qin, Shengmei; Ge, Junbo

    2018-05-01

    Presence of adequate current of injury (COI) was recognized as a sign of favorable pacemaker lead outcome. Little is known regarding the value of its dynamic behavior. We sought to test whether persistency of COI could predict active-fixation pacing lead performance. COI was monitored up to 10min after right ventricular (RV) pacing electrode fixation. COI persistency was defined as the percentage of COI magnitude relative to its initial measurement. An unacceptable pacing threshold (≥1.0V in acute evaluation or ≥2.0V over 2-year follow-up) with or without lead dislodgement was considered as lead failure. Lead implantation was attempted for 217 times in 174 patients (age 66.3±7.8years, 78 female). Acute lead failures occurred 43 times. Independent predictors of acute lead failure were RV enlargement (odds ratio [OR] 1.23, 95% confidential interval [CI] 1.11-2.04, P=0.033), absence of COI (OR 3.13, 95%CI 2.08-9.09, P=0.027), and COI persistency at 5min (OR 0.32, 95%CI 0.20-0.69, P=0.001) and 10min (OR 0.41, 95%CI 0.13-0.77, P=0.001). The optimal cutoffs were COI 5min persistency ≥50% (sensitivity 81.4%; specificity 81.9%) and COI 10min persistency ≥20% (sensitivity 86%; specificity 88.6%). There were 12 lead failures during 24.0±6.4months of follow-up. Patients with COI 5min persistency ≥50% had higher event-free survival compared to those with COI 5min persistency <50% (hazard ratio 3.54, 95% CI 1.04-12.06, P=0.043). COI persistency appears to be a valuable indicator for both acute and long-term outcome of active-fixation pacemaker leads. A precipitous decline in COI may require more attention to make sure of the lead performance. Copyright © 2018 Elsevier Ireland Ltd. All rights reserved.

  20. Sensory modulation and sleep quality among adults with learning disabilities: a quasi-experimental case-control design study.

    Directory of Open Access Journals (Sweden)

    Kineret Sharfi

    Full Text Available Following the International Classification of Functioning, Disability and Health (ICF concepts, this study examines body functions such as sensory modulation and sleep quality among adults with learning disabilities (LD.One hundred and ten participants, 55 adults with LD and 55 matched controls (mean age 30 years filled in a socio-demographic questionnaire, the Adults/Adolescents Sensory Profile (AASP, and the Mini Sleep Questionnaire (MSQ. Chi-tests, Mann-Whitney tests, and Kolmogorov-Smirnov tests were conducted to examine group differences related to socio-demographic characteristics and body functions. Correlation and regression analyses were conducted to examine relationships between body functions.Significant differences were found between the groups in: (a unique socio-demographic variables: high-schools attended, family status and number of children; (b body functions: low registration and sensory sensitivity (p < .001, sensory avoiding (p = .002, sensory seeking (p = .021 and sleep quality (p < .001. Significant correlations were found between AASP subscale scores and the MSQ final score in each group. Regression analysis revealed that for the entire sample (N = 108, low registration accounted for 10.2% of the variance of sleep quality above group membership (p < .001, while in a separate examination of adults with LD (n = 53, low registration accounted for 19.9% of the variance of sleep quality (p < .001.Adults with LD need to be studied through a health-related perspective such as the ICF model to gain further understanding of their unique characteristics and daily needs. Sensory and sleep functions of adults with LD should be further studied in the context of health related quality of life.

  1. A THEORY OF MAXIMIZING SENSORY INFORMATION

    NARCIS (Netherlands)

    Hateren, J.H. van

    1992-01-01

    A theory is developed on the assumption that early sensory processing aims at maximizing the information rate in the channels connecting the sensory system to more central parts of the brain, where it is assumed that these channels are noisy and have a limited dynamic range. Given a stimulus power

  2. Sensory evaluation techniques

    National Research Council Canada - National Science Library

    Meilgaard, Morten; Civille, Gail Vance; Carr, B. Thomas

    1991-01-01

    ..., #2 as a textbook for courses at the academic level, it aims to provide just enough theoretical background to enable the student to understand which sensory methods are best suited to particular...

  3. Sensitivity of the sigmoid colon and rectum in children treated for chronic constipation.

    Science.gov (United States)

    Loening-Baucke, V A

    1984-06-01

    Sensations in the sigmoid and rectum and the response of the anal canal to balloon distension were measured with a latex balloon and pressure transducer in 15 chronically constipated and 15 healthy control children. The constipated children received milk of magnesia and bowel training. Thirteen constipated children were restudied 7-12 months later and 11 were restudied 3 years later. Although thresholds of transient sensation and of the rectosphincteric reflex were not different in constipated and control children, the threshold of fullness, the critical volume, and the volume for constant relaxation were significantly higher in constipated than in control children (p less than 0.05), and remained higher 1 year and 3 years later, even in the children who recovered. The initial data support the concept of a sigmoid and rectum so enlarged that a normal fecal bolus may not cause a sensation of fullness or a sensory stimulus for defecation. Despite improvement in clinical manifestations and normal rectal size, the abnormalities in sensitivity of the sigmoid and rectum persisted in five of eight recovered children. This may explain why these children are so vulnerable to recurrence of constipation and fecal soiling.

  4. Assessment of the sensory and physical limitations imposed by leprosy in a Brazilian Amazon Population

    Directory of Open Access Journals (Sweden)

    Cintia Yolette Urbano Pauxis Aben-Athar

    Full Text Available Abstract INTRODUCTION Leprosy often results in sensory and physical limitations. This study aimed to evaluate these limitations using a quantitative approach in leprosy patients in Belém (Pará, Brazil. METHODS This epidemiological, cross-sectional study measured the sensory impairment of smell and taste through the use of a questionnaire and evaluated activity limitations of daily life imposed by leprosy through the Screening of Activity Limitation and Safety Awareness (SALSA Scale. Data were collected from 84 patients and associations between the degree of disability and clinical and epidemiological characteristics were assessed. RESULTS The majority of patients were men (64.3%, married (52.4%, age 31-40 years old (26.2%, had primary education (50%, and were independent laborers (36.9%. The multibacillary operational classification (81%, borderline clinical form (57.1%, and 0 degrees of physical disability (41.7% were predominant. SALSA scores ranged from 17 to 59 points, and being without limitations was predominant (53.6%. The risk awareness score ranged from 0 to 8, with a score of 0 (no awareness of risk being the most common (56%. Evaluation of smell and taste sensory sensitivities revealed that 70.2% did not experience these sensory changes. Patients with leprosy reactions were 7 times more likely to develop activity limitations, and those who had physical disabilities were approximately four times more likely to develop a clinical picture of activity limitations. CONCLUSIONS Most patients showed no sensory changes, but patients with leprosy reactions were significantly more likely to develop activity limitations. Finally, further studies should be performed, assessing a higher number of patients to confirm the present results.

  5. A Non-Invasive Bladder Sensory Test Supports a Role for Dysmenorrhea Increasing Bladder Noxious Mechanosensitivity

    Science.gov (United States)

    TU, Frank F.; EPSTEIN, Aliza E.; POZOLO, Kristen E.; SEXTON, Debra L.; MELNYK, Alexandra I.; HELLMAN, Kevin M.

    2012-01-01

    Objective Catheterization to measure bladder sensitivity is aversive and hinders human participation in visceral sensory research. Therefore, we sought to characterize the reliability of sonographically-estimated female bladder sensory thresholds. To demonstrate this technique’s usefulness, we examined the effects of self-reported dysmenorrhea on bladder pain thresholds. Methods Bladder sensory threshold volumes were determined during provoked natural diuresis in 49 healthy women (mean age 24 ± 8) using three-dimensional ultrasound. Cystometric thresholds (Vfs – first sensation, Vfu – first urge, Vmt – maximum tolerance) were quantified and related to bladder urgency and pain. We estimated reliability (one-week retest and interrater). Self-reported menstrual pain was examined in relationship to bladder pain, urgency and volume thresholds. Results Average bladder sensory thresholds (mLs) were Vfs (160±100), Vfu (310±130), and Vmt (500±180). Interrater reliability ranged from 0.97–0.99. One-week retest reliability was Vmt = 0.76 (95% CI 0.64–0.88), Vfs = 0.62 (95% CI 0.44–0.80), and Vfu = 0.63, (95% CI 0.47–0.80). Bladder filling rate correlated with all thresholds (r = 0.53–0.64, p dysmenorrhea pain had increased bladder pain and urgency at Vfs and increased pain at Vfu (p’s dysmenorrhea pain was unrelated to bladder capacity. Discussion Sonographic estimates of bladder sensory thresholds were reproducible and reliable. In these healthy volunteers, dysmenorrhea was associated with increased bladder pain and urgency during filling but unrelated to capacity. Plausibly, dysmenorrhea sufferers may exhibit enhanced visceral mechanosensitivity, increasing their risk to develop chronic bladder pain syndromes. PMID:23370073

  6. Pre-exposure to moving form enhances static form sensitivity.

    Directory of Open Access Journals (Sweden)

    Thomas S A Wallis

    Full Text Available BACKGROUND: Motion-defined form can seem to persist briefly after motion ceases, before seeming to gradually disappear into the background. Here we investigate if this subjective persistence reflects a signal capable of improving objective measures of sensitivity to static form. METHODOLOGY/PRINCIPAL FINDINGS: We presented a sinusoidal modulation of luminance, masked by a background noise pattern. The sinusoidal luminance modulation was usually subjectively invisible when static, but visible when moving. We found that drifting then stopping the waveform resulted in a transient subjective persistence of the waveform in the static display. Observers' objective sensitivity to the position of the static waveform was also improved after viewing moving waveforms, compared to viewing static waveforms for a matched duration. This facilitation did not occur simply because movement provided more perspectives of the waveform, since performance following pre-exposure to scrambled animations did not match that following pre-exposure to smooth motion. Observers did not simply remember waveform positions at motion offset, since removing the waveform before testing reduced performance. CONCLUSIONS/SIGNIFICANCE: Motion processing therefore interacts with subsequent static visual inputs in a way that can improve performance in objective sensitivity measures. We suggest that the brief subjective persistence of motion-defined forms that can occur after motion offsets is a consequence of the decay of a static form signal that has been transiently enhanced by motion processing.

  7. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory.

    Science.gov (United States)

    Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G

    2012-10-01

    Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.

  8. Sensory Dissonance Using Memory Model

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2015-01-01

    Music may occur concurrently or in temporal sequences. Current machine-based methods for the estimation of qualities of the music are unable to take into account the influence of temporal context. A method for calculating dissonance from audio, called sensory dissonance is improved by the use of ...... of a memory model. This approach is validated here by the comparison of the sensory dissonance using memory model to data obtained using human subjects....

  9. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  10. CHEMICAL, SENSORY AND MICROBIOLOGICAL CHANGES OF ...

    African Journals Online (AJOL)

    Dr Adesola Osibona

    Presently, there are numerous problems facing the field of fisheries, some of which are related to the keeping ... The two main methods of assessing fish quality are sensory and non-sensory ... MATERIALS AND METHODS. Sample ..... The initial lag phase of micro-organisms in the stored fish was followed by an increase in ...

  11. Sensory influences on food intake control: moving beyond palatability.

    Science.gov (United States)

    McCrickerd, K; Forde, C G

    2016-01-01

    The sensory experience of eating is an important determinant of food intake control, often attributed to the positive hedonic response associated with certain sensory cues. However, palatability is just one aspect of the sensory experience. Sensory cues based on a food's sight, smell, taste and texture are operational before, during and after an eating event. The focus of this review is to look beyond palatability and highlight recent advances in our understanding of how certain sensory characteristics can be used to promote better energy intake control. We consider the role of visual and odour cues in identifying food in the near environment, guiding food choice and memory for eating, and highlight the ways in which tastes and textures influence meal size and the development of satiety after consumption. Considering sensory characteristics as a functional feature of the foods and beverages we consume provides the opportunity for research to identify how sensory enhancements might be combined with energy reduction in otherwise palatable foods to optimize short-term energy intake regulation in the current food environment. Moving forward, the challenge for sensory nutritional science will be to assess the longer-term impact of these principles on weight management. © 2015 World Obesity.

  12. Optimization of a Liquid Crystal-based Sensory Platform for Monitoring Enzymatic Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yibin; Jang, Chang-Hyun [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    Managing glucose levels in human blood is extremely important for the treatment of diabetes. Here, an innovative sensory strategy has been developed to monitor the enzymatic activities of glucose and glucose oxidase by using confined liquid crystal (LC) birefringent droplet patterns. Acidic products released during the glucose oxidation process lead to a slight decrease in the pH of aqueous systems that can be monitored by pH-sensitive LC materials. Of the existing pH-sensitive LC materials, dodecanoic acid-doped 4-cyano-4'-pentylbiphenyl is inexpensive and easily adjusted to satisfy the 7.4 ± 0.05 pH requirement of human blood. Moreover, the orientational alignment of capillary-confined pH-responsive LCs can be disrupted at the aqueous/LC interface following a slight decrease in the critical pH of aqueous reaction systems, which results in an optical signal that can be observed with the naked eye by using polarizing optical microscopy. Based on the stable LC droplet patterns generated by the cylindrical confinement system, the functionalized LCs can selectively detect glucose at concentrations as low as 0.1 pM. This study further advances the previously reported LC-based glucose monitoring systems by reducing production costs and instituting a smarter LC sensory design. This improved system shows potential for the use in clinical bioassay applications.

  13. Hearing loss in fibromyalgia? Somatic sensory and non-sensory symptoms in patients with fibromyalgia and other rheumatic disorders

    NARCIS (Netherlands)

    Wolfe, Frederick; Rasker, Johannes J.; Häuser, W.

    2012-01-01

    OBJECTIVES: It has been proposed that fibromyalgia can be understood as a disorder of central sensitisation and dysregulation (CD) and that characteristic somatic symptoms are the result of `central augmentation`. We examined this hypothesis by analysing sensory and non-sensory variables in the

  14. Perceptual Sensitivity and Response to Strong Stimuli Are Related

    Directory of Open Access Journals (Sweden)

    Anna C. Bolders

    2017-09-01

    Full Text Available To shed new light on the long-standing debate about the (independence of sensitivity to weak stimuli and overreactivity to strong stimuli, we examined the relation between these tendencies within the neurobehavioral framework of the Predictive and Reactive Control Systems (PARCS theory (Tops et al., 2010, 2014. Whereas previous studies only considered overreactivity in terms of the individual tendency to experience unpleasant affect (punishment reactivity resulting from strong sensory stimulation, we also took the individual tendency to experience pleasant affect (reward reactivity resulting from strong sensory stimulation into account. According to PARCS theory, these temperamental tendencies overlap in terms of high reactivity toward stimulation, but oppose each other in terms of the response orientation (approach or avoid. PARCS theory predicts that both types of reactivity to strong stimuli relate to sensitivity to weak stimuli, but that these relationships are suppressed due to the opposing relationship between reward and punishment reactivity. We measured punishment and reward reactivity to strong stimuli and sensitivity to weak stimuli using scales from the Adult Temperament Questionnaire (Evans and Rothbart, 2007. Sensitivity was also measured more objectively using the masked auditory threshold. We found that sensitivity to weak stimuli (both self-reported and objectively assessed was positively associated with self-reported punishment and reward reactivity to strong stimuli, but only when these reactivity measures were controlled for each other, implicating a mutual suppression effect. These results are in line with PARCS theory and suggest that sensitivity to weak stimuli and overreactivity are dependent, but this dependency is likely to be obscured if punishment and reward reactivity are not both taken into account.

  15. Descriptive sensory evaluations

    DEFF Research Database (Denmark)

    Dehlholm, Christian

    A recent trend in descriptive sensory evaluation methodology has been the application of rapid evaluation techniques. The ease in use makes the techniques extremely easy to implement by industry and university environments. Thus, one might not consider validity in the choice of method. The overall...... aim of this thesis is to compare and evaluate selected rapid evaluation techniques for sensory profiling. Method variations have been suggested for evaluations in product development and quality control, and method insight is provided. The thesis includes three original studies, designed...... as a consequence of the current practices and needs faced in the industry. Study I compared applicability and validity of rapid methods across several panels of trained assessors. Two rapid approaches were introduced for the evaluation of foods. The first method, ‘Free Multiple Sorting’, allows subjects to perform...

  16. The Sensory Neocortex and Associative Memory.

    Science.gov (United States)

    Aschauer, Dominik; Rumpel, Simon

    2018-01-01

    Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.

  17. Sensory modulation in preterm children: Theoretical perspective and systematic review.

    Directory of Open Access Journals (Sweden)

    Tinka Bröring

    Full Text Available Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU. Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing problems and, in particular, sensory modulation problems, is scarce in preterm children.This review aims to integrate available evidence on sensory modulation problems in preterm infants and children (<37 weeks of gestation and their association with neurocognitive and behavioral problems.Relevant studies were extracted from PubMed, EMBASE.com and PsycINFO following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines. Selection criteria included assessment of sensory modulation in preterm born children (<37 weeks of gestation or with prematurity as a risk factor.Eighteen studies were included. Results of this review support the presence of sensory modulation problems in preterm children. Although prematurity may distort various aspects of sensory modulation, the nature and severity of sensory modulation problems differ widely between studies.Sensory modulation problems may play a key role in understanding neurocognitive and behavioral sequelae in preterm children. Some support is found for a dose-response relationship between both white matter brain injury and length of NICU stay and sensory modulation problems.

  18. Psychosocial Factors and Central Sensitivity Syndromes

    OpenAIRE

    Adams, Leah M.; Turk, Dennis C.

    2015-01-01

    Central sensitivity syndromes (CSSs) represent a heterogeneous group of disorders (e.g., fibromyalgia [FM], irritable bowel syndrome [IBS], chronic headache, temporomandibular disorders [TMDs], pelvic pain syndromes) that share common symptoms, with persistent pain being the most prominent feature.

  19. Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system

    Directory of Open Access Journals (Sweden)

    Alexander eVergara

    2012-01-01

    Full Text Available Over the past two decades, despite the tremendous research effort performed on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors, environment monitoring (widely distributed sensor networks, and security/threat detection (chemo/bio warfare agents, simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro/nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change.The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to adapt in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the

  20. Sensory processing disorders – diagnostic and therapeutic controversies

    Directory of Open Access Journals (Sweden)

    Aneta R. Borkowska

    2017-09-01

    Full Text Available This article presents the current state of knowledge regarding the controversial issue of sensory integration dysfunction/sensory processing disorder. Symptoms are defined as impairments in the accurate reception and registering of stimuli, differentiation of stimulus intensity, and adequate reactivity to stimulation. They can be of specific character and occur in isolation and can also be a nonspecific element of a clinical picture of another disease entity. Psychophysiological and neuroimaging studies confirm the existence of both a distinct group of children with symptoms of sensory processing disorder diagnosed based on descriptions of behaviours listed in questionnaires and of a specific neurobiological basis of this disorder. In clinical practice, it is of key importance to determine whether behavioural problems observed in children are caused by disorders other than sensory processing disorders. Results of meta-analyses regarding sensory integration therapy are inconclusive and do not allow this form of treatment to be considered fact-based. Future studies with high methodological standards are necessary in order to verify the effectiveness of different forms of sensory integration therapy. Parents should be informed about the existing limitations.

  1. Sensory analysis in grapes benitaka

    Energy Technology Data Exchange (ETDEWEB)

    Santillo, Amanda G.; Rodrigues, Flavio T.; Arthur, Paula B.; Villavicencio, Ana Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Abstract Sensory analysis is considered one of the main techniques when you want to know the organoleptic qualities of foods. Marketing strategies, showing that some foods produced organically is more nutritious, flavorful than conventional ones are affecting some consumers. The advantages of using radiation in sensory analysis are not the formation of waste, the less nutritional loss and little change in taste of food. The possibility that the fruit is harvested at more advanced maturity, when all characteristics of flavor and external appearance are fully developed is another advantage. The possibility of fruits being packed irradiated prevents contamination after processing. This type of study, ionizing radiation associated with sensory evaluation scarce, making it necessary for future discoveries. The objective this paper was to evaluate the quality of grapes Benitaka after the irradiation process with doses 0,5; 1; 1,5 e 2 kGy. (author)

  2. Sensory analysis in grapes benitaka

    International Nuclear Information System (INIS)

    Santillo, Amanda G.; Rodrigues, Flavio T.; Arthur, Paula B.; Villavicencio, Ana Lucia C.H.

    2011-01-01

    Abstract Sensory analysis is considered one of the main techniques when you want to know the organoleptic qualities of foods. Marketing strategies, showing that some foods produced organically is more nutritious, flavorful than conventional ones are affecting some consumers. The advantages of using radiation in sensory analysis are not the formation of waste, the less nutritional loss and little change in taste of food. The possibility that the fruit is harvested at more advanced maturity, when all characteristics of flavor and external appearance are fully developed is another advantage. The possibility of fruits being packed irradiated prevents contamination after processing. This type of study, ionizing radiation associated with sensory evaluation scarce, making it necessary for future discoveries. The objective this paper was to evaluate the quality of grapes Benitaka after the irradiation process with doses 0,5; 1; 1,5 e 2 kGy. (author)

  3. Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children

    Directory of Open Access Journals (Sweden)

    Tavassoli Teresa

    2012-07-01

    Full Text Available Abstract Background Autism spectrum conditions have a strong genetic component. Atypical sensory sensitivities are one of the core but neglected features of autism spectrum conditions. GABRB3 is a well-characterised candidate gene for autism spectrum conditions. In mice, heterozygous Gabrb3 deletion is associated with increased tactile sensitivity. However, no study has examined if tactile sensitivity is associated with GABRB3 genetic variation in humans. To test this, we conducted two pilot genetic association studies in the general population, analysing two phenotypic measures of tactile sensitivity (a parent-report and a behavioural measure for association with 43 SNPs in GABRB3. Findings Across both tactile sensitivity measures, three SNPs (rs11636966, rs8023959 and rs2162241 were nominally associated with both phenotypes, providing a measure of internal validation. Parent-report scores were nominally associated with six SNPs (P Conclusions This is the first human study to show an association between GABRB3 variation and tactile sensitivity. This provides support for the evidence from animal models implicating the role of GABRB3 variation in the atypical sensory sensitivity in autism spectrum conditions. Future research is underway to directly test this association in cases of autism spectrum conditions.

  4. Neuropathic pain: is quantitative sensory testing helpful?

    Science.gov (United States)

    Krumova, Elena K; Geber, Christian; Westermann, Andrea; Maier, Christoph

    2012-08-01

    Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system and is characterised by a combination of positive and negative sensory symptoms. Quantitative sensory testing (QST) examines the sensory perception after application of different mechanical and thermal stimuli of controlled intensity and the function of both large (A-beta) and small (A-delta and C) nerve fibres, including the corresponding central pathways. QST can be used to determine detection, pain thresholds and stimulus-response curves and can thus detect both negative and positive sensory signs, the second ones not being assessed by other methods. Similarly to all other psychophysical tests QST requires standardised examination, instructions and data evaluation to receive valid and reliable results. Since normative data are available, QST can contribute also to the individual diagnosis of neuropathy, especially in the case of isolated small-fibre neuropathy, in contrast to the conventional electrophysiology which assesses only large myelinated fibres. For example, detection of early stages of subclinical neuropathy in symptomatic or asymptomatic patients with diabetes mellitus can be helpful to optimise treatment and identify diabetic foot at risk of ulceration. QST assessed the individual's sensory profile and thus can be valuable to evaluate the underlying pain mechanisms which occur in different frequencies even in the same neuropathic pain syndromes. Furthermore, assessing the exact sensory phenotype by QST might be useful in the future to identify responders to certain treatments in accordance to the underlying pain mechanisms.

  5. Tracking Change in Children with Severe and Persisting Speech Difficulties

    Science.gov (United States)

    Newbold, Elisabeth Joy; Stackhouse, Joy; Wells, Bill

    2013-01-01

    Standardised tests of whole-word accuracy are popular in the speech pathology and developmental psychology literature as measures of children's speech performance. However, they may not be sensitive enough to measure changes in speech output in children with severe and persisting speech difficulties (SPSD). To identify the best ways of doing this,…

  6. A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke.

    Science.gov (United States)

    Kita, Kahori; Otaka, Yohei; Takeda, Kotaro; Sakata, Sachiko; Ushiba, Junichi; Kondo, Kunitsugu; Liu, Meigen; Osu, Rieko

    2013-06-13

    Sensory disturbance is common following stroke and can exacerbate functional deficits, even in patients with relatively good motor function. In particular, loss of appropriate sensory feedback in severe sensory loss impairs manipulation capability. We hypothesized that task-oriented training with sensory feedback assistance would improve manipulation capability even without sensory pathway recovery. We developed a system that provides sensory feedback by transcutaneous electrical nerve stimulation (SENS) for patients with sensory loss, and investigated the feasibility of the system in a stroke patient with severe sensory impairment and mild motor deficit. The electrical current was modulated by the force exerted by the fingertips so as to allow the patient to identify the intensity. The patient had severe sensory loss due to a right thalamic hemorrhage suffered 27 months prior to participation in the study. The patient first practiced a cylindrical grasp task with SENS for 1 hour daily over 29 days. Pressure information from the affected thumb was fed back to the unaffected shoulder. The same patient practiced a tip pinch task with SENS for 1 hour daily over 4 days. Pressure information from the affected thumb and index finger was fed back to the unaffected and affected shoulders, respectively. We assessed the feasibility of SENS and examined the improvement of manipulation capability after training with SENS. The fluctuation in fingertip force during the cylindrical grasp task gradually decreased as the training progressed. The patient was able to maintain a stable grip force after training, even without SENS. Pressure exerted by the tip pinch of the affected hand was unstable before intervention with SENS compared with that of the unaffected hand. However, they were similar to each other immediately after SENS was initiated, suggesting that the somatosensory information improved tip pinch performance. The patient's manipulation capability assessed by the Box

  7. Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk

    Directory of Open Access Journals (Sweden)

    Livia Cavaletti Corrêa da Silva

    2015-09-01

    Full Text Available Milk fraud has been a recurring problem in Brazil; thus, it is important to know the effect of most frequently used preservatives and neutralizing substances as well as the detection capability of official tests. The objective of this study was to evaluate the analytical sensitivity of legislation-described tests and nonspecific microbial inhibition tests, and to investigate the effect of such substances on microbial growth inhibition and the persistence of detectable residues after 24/48h of refrigeration. Batches of raw milk, free from any contaminant, were divided into aliquots and mixed with different concentrations of formaldehyde, hydrogen peroxide, sodium hypochlorite, chlorine, chlorinated alkaline detergent, or sodium hydroxide. The analytical sensitivity of the official tests was 0.005%, 0.003%, and 0.013% for formaldehyde, hydrogen peroxide, and hypochlorite, respectively. Chlorine and chlorinated alkaline detergent were not detected by regulatory tests. In the tests for neutralizing substances, sodium hydroxide could not be detected when acidity was accurately neutralized. The yogurt culture test gave results similar to those obtained by official tests for the detection of specific substances. Concentrations of 0.05% of formaldehyde, 0.003% of hydrogen peroxide and 0.013% of sodium hypochlorite significantly reduced (P

  8. The potential role of postsynaptic phospholipase C activity in synaptic facilitation and behavioral sensitization in Aplysia.

    Science.gov (United States)

    Fulton, Daniel; Condro, Michael C; Pearce, Kaycey; Glanzman, David L

    2008-07-01

    Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes IP3 formation, may play an important role in postsynaptic signaling during facilitation and learning in Aplysia. Using the PLC inhibitor U73122, we found that PLC activity is required for synaptic facilitation following a 10-min treatment with 5-HT, as measured at 20 min after 5-HT washout. Prior work has indicated that facilitation at this time is supported primarily by postsynaptic processes. To determine whether postsynaptic PLC activity is involved in 5-HT-mediated facilitatory actions, we examined the effect of U73122 on enhancement of the response of motor neurons isolated in cell culture to glutamate, the sensory neuron transmitter. A 10-min application of 5-HT induced persistent (>40 min) enhancement of glutamate-evoked potentials (Glu-EPs) recorded from isolated motor neurons, and this enhancement was blocked by U73122. Finally, we showed that injecting U73122 into intact animals before behavioral training impaired intermediate-term sensitization, indicating that PLC activity contributes to this form of nonassociative learning.

  9. Use of Temporary Implantable Biomaterials to Reduce Leg Pain and Back Pain in Patients with Sciatica and Lumbar Disc Herniation

    Directory of Open Access Journals (Sweden)

    Gere S. diZerega

    2010-05-01

    Full Text Available The principle etiology of leg pain (sciatica from lumbar disc herniation is mechanical compression of the nerve root. Sciatica is reduced by decompression of the herniated disc, i.e., removing mechanical compression of the nerve root. Decompression surgery typically reduces sciatica more than lumbar back pain (LBP. Decompression surgery reduces mechanical compression of the nerve root. However, decompression surgery does not directly reduce sensitization of the sensory nerves in the epidural space and disc. In addition, sensory nerves in the annulus fibrosus and epidural space are not protected from topical interaction with pain mediators induced by decompression surgery. The secondary etiology of sciatica from lumbar disc herniation is sensitization of the nerve root. Sensitization of the nerve root results from a mechanical compression, b exposure to cellular pain mediators, and/or c exposure to biochemical pain mediators. Although decompression surgery reduces nerve root compression, sensory nerve sensitization often persists. These observations are consistent with continued exposure of tissue in the epidural space, including the nerve root, to increased cellular and biochemical pain mediators following surgery. A potential contributor to lumbar back pain (LBP is stimulation of sensory nerves in the annulus fibrosus by a cellular pain mediators and/or b biochemical pain mediators that accompany annular tears or disruption. Sensory fibers located in the outer one-third of the annulus fibrosus increase in number and depth as a result of disc herniation. The nucleus pulposus is comprised of material that can produce an autoimmune stimulation of the sensory nerves located in the annulus and epidural space leading to LBP. The sensory nerves of the annulus fibrosus and epidural space may be sensitized by topical exposure to cellular and biochemical pain mediators induced by lumbar surgery. Annulotomy or annular rupture allows the nucleus pulposus

  10. Stratifying patients with peripheral neuropathic pain based on sensory profiles

    DEFF Research Database (Denmark)

    Vollert, Jan; Maier, Christoph; Attal, Nadine

    2017-01-01

    In a recent cluster analysis, it has been shown that patients with peripheral neuropathic pain can be grouped into 3 sensory phenotypes based on quantitative sensory testing profiles, which are mainly characterized by either sensory loss, intact sensory function and mild thermal hyperalgesia and...... populations that need to be screened to reach a subpopulation large enough to conduct a phenotype-stratified study. The most common phenotype in diabetic polyneuropathy was sensory loss (83%), followed by mechanical hyperalgesia (75%) and thermal hyperalgesia (34%, note that percentages are overlapping...

  11. Sensory classification of table olives using an electronic tongue: Analysis of aqueous pastes and brines.

    Science.gov (United States)

    Marx, Ítala; Rodrigues, Nuno; Dias, Luís G; Veloso, Ana C A; Pereira, José A; Drunkler, Deisy A; Peres, António M

    2017-01-01

    Table olives are highly appreciated and consumed worldwide. Different aspects are used for trade category classification being the sensory assessment of negative defects present in the olives and brines one of the most important. The trade category quality classification must follow the International Olive Council directives, requiring the organoleptic assessment of defects by a trained sensory panel. However, the training process is a hard, complex and sometimes subjective task, being the low number of samples that can be evaluated per day a major drawback considering the real needs of the olive industry. In this context, the development of electronic tongues as taste sensors for defects' sensory evaluation is of utmost relevance. So, an electronic tongue was used for table olives classification according to the presence and intensity of negative defects. Linear discrimination models were established based on sub-sets of sensor signals selected by a simulated annealing algorithm. The predictive potential of the novel approach was first demonstrated for standard solutions of chemical compounds that mimic butyric, putrid and zapateria defects (≥93% for cross-validation procedures). Then its applicability was verified; using reference table olives/brine solutions samples identified with a single intense negative attribute, namely butyric, musty, putrid, zapateria or winey-vinegary defects (≥93% cross-validation procedures). Finally, the E-tongue coupled with the same chemometric approach was applied to classify table olive samples according to the trade commercial categories (extra, 1 st choice, 2 nd choice and unsuitable for consumption) and an additional quality category (extra free of defects), established based on sensory analysis data. Despite the heterogeneity of the samples studied and number of different sensory defects perceived, the predictive linear discriminant model established showed sensitivities greater than 86%. So, the overall performance

  12. Parasympathetic functions in children with sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Roseann C Schaaf

    2010-03-01

    Full Text Available The overall goal of this study was to determine if Parasympathetic Nervous System Activity (PsNS is a significant biomarker of sensory processing difficulties in children. Several studies have demonstrated that PsNS activity is an important regulator of reactivity in children, and thus, it is of interest to study whether PsNS functioning affects sensory reactivity in children who have a type of condition associated with Sensory Processing Disorders (SPD termed Sensory Modulation Dysfunction (SMD. If so, this will have important implications for understanding the mechanisms underlying sensory processing problems of children. The primary aims of this project were to: (1 evaluate PsNS activity in children with SMD compared to typically developing (TYP children, and (2 determine if PsNS activity is a significant predictor of sensory behaviors and adaptive functions among children with SMD. As a secondary aim we examined whether subgroups of children with specific physiological and behavioral sensory reactivity profiles can be identified. Results indicate that the children with severe SMD demonstrated a trend for low baseline parasympathetic activity, compared to TYP children, suggesting this may be a biomarker for severe SMD. In addition, children with SMD demonstrated significantly poorer adaptive behavior. These results provide preliminary evidence that children who demonstrate SMD may have physiological responses that are different from children without SMD, and that these physiological and behavioral manifestations of SMD may affect a child’s ability to engage in everyday social, communication, and daily living skills.

  13. Perceptual load interacts with stimulus processing across sensory modalities.

    Science.gov (United States)

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  14. A diagnostic model incorporating P50 sensory gating and neuropsychological tests for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jia-Chi Shan

    Full Text Available OBJECTIVES: Endophenotypes in schizophrenia research is a contemporary approach to studying this heterogeneous mental illness, and several candidate neurophysiological markers (e.g. P50 sensory gating and neuropsychological tests (e.g. Continuous Performance Test (CPT and Wisconsin Card Sorting Test (WCST have been proposed. However, the clinical utility of a single marker appears to be limited. In the present study, we aimed to construct a diagnostic model incorporating P50 sensory gating with other neuropsychological tests in order to improve the clinical utility. METHODS: We recruited clinically stable outpatients meeting DSM-IV criteria of schizophrenia and age- and gender-matched healthy controls. Participants underwent P50 sensory gating experimental sessions and batteries of neuropsychological tests, including CPT, WCST and Wechsler Adult Intelligence Scale Third Edition (WAIS-III. RESULTS: A total of 106 schizophrenia patients and 74 healthy controls were enrolled. Compared with healthy controls, the patient group had significantly a larger S2 amplitude, and thus poorer P50 gating ratio (gating ratio = S2/S1. In addition, schizophrenia patients had a poorer performance on neuropsychological tests. We then developed a diagnostic model by using multivariable logistic regression analysis to differentiate patients from healthy controls. The final model included the following covariates: abnormal P50 gating (defined as P50 gating ratio >0.4, three subscales derived from the WAIS-III (Arithmetic, Block Design, and Performance IQ, sensitivity index from CPT and smoking status. This model had an adequate accuracy (concordant percentage = 90.4%; c-statistic = 0.904; Hosmer-Lemeshow Goodness-of-Fit Test, p = 0.64>0.05. CONCLUSION: To the best of our knowledge, this is the largest study to date using P50 sensory gating in subjects of Chinese ethnicity and the first to use P50 sensory gating along with other neuropsychological tests

  15. Sensory Processing Subtypes in Autism: Association with Adaptive Behavior

    Science.gov (United States)

    Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…

  16. Which sensory perception is primarily considered, in consumers’ hedonic evaluation of foods?

    DEFF Research Database (Denmark)

    Andersen, Barbara Vad; Brockhoff, Per B.; Hyldig, Grethe

    An analysis of the primary hedonic drivers of liking and sensory satisfaction will provide valuable information to product developers on which sensory properties to emphasise the most. The aims of the present study were: a) to study if liking of the sensory properties: appearance, odour, taste...... with sensory profiling. For data analysis mixed three-way analysis of variance and principal component analysis was applied to study and visualise sensory differences. The relative importance of liking of sensory properties; appearance, odour, taste and texture was analysed using slopes, when consumers rated...... and texture were considered equally, when consumers rated overall liking and sensory satisfaction b) to study if the relation depended on, whether liking of sensory properties were related to overall liking or sensory satisfaction, and c) to study individual differences in which sensory properties...

  17. Pain when walking: individual sensory profiles in the foot soles of torture victims - a controlled study using quantitative sensory testing

    Directory of Open Access Journals (Sweden)

    Prip Karen

    2012-12-01

    Full Text Available Abstract Background With quantitative sensory testing (QST we recently found no differences in sensory function of the foot soles between groups of torture victims with or without exposure to falanga (beatings under the feet. Compared to matched controls the torture victims had hyperalgesia to deep mechano-nociceptive stimuli and hypoesthesia to non-noxious cutaneous stimuli. The purpose of the present paper was to extend the group analysis into individual sensory profiles of victims’ feet to explore possible relations between external violence (torture, reported pain, sensory symptoms and QST data to help clarify the underlying mechanisms. Methods We employed interviews and assessments of the pain and sensory symptoms and QST by investigators blinded to whether the patients, 32 male torture victims from the Middle East, had (n=15, or had not (n=17 been exposed to falanga. Pain intensity, area and stimulus dependence were used to characterize the pain. QST included thresholds for touch, cold, warmth, cold-pain, heat-pain, deep pressure pain and wind-up to cutaneous noxious stimuli. An ethnically matched control group was available.The normality criterion, from our control group data, was set as the mean +/− 1.28SD, thus including 80% of all values.QST data were transformed into three categories in relation to our normality range; hypoesthesia, normoesthesia or hyperesthesia/hyperalgesia. Results Most patients, irrespective of having been exposed to falanga or not, reported severe pain when walking. This was often associated with hyperalgesia to deep mechanical pressure. Hypoesthesia to mechanical stimuli co-occurred with numbness, burning and with deep mechanical hyperalgesia more often than not, but otherwise, a hypoesthesia to cutaneous sensory modalities did not co-occur systematically to falanga, pain or sensory symptoms. Conclusion In torture victims, there seem to be overriding mechanisms, manifested by hyperalgesia to pressure pain

  18. Verification and clarification of patterns of sensory integrative dysfunction.

    Science.gov (United States)

    Mailloux, Zoe; Mulligan, Shelley; Roley, Susanne Smith; Blanche, Erna; Cermak, Sharon; Coleman, Gina Geppert; Bodison, Stefanie; Lane, Christianne Joy

    2011-01-01

    Building on established relationships between the constructs of sensory integration in typical and special needs populations, in this retrospective study we examined patterns of sensory integrative dysfunction in 273 children ages 4-9 who had received occupational therapy evaluations in two private practice settings. Test results on the Sensory Integration and Praxis Tests, portions of the Sensory Processing Measure representing tactile overresponsiveness, and parent report of attention and activity level were included in the analyses. Exploratory factor analysis identified patterns similar to those found in early studies by Ayres (1965, 1966a, 1966b, 1969, 1972b, 1977, & 1989), namely Visuodyspraxia and Somatodyspraxia, Vestibular and Proprioceptive Bilateral Integration and Sequencing, Tactile and Visual Discrimination, and Tactile Defensiveness and Attention. Findings reinforce associations between constructs of sensory integration and assist with understanding sensory integration disorders that may affect childhood occupation. Limitations include the potential for subjective interpretation in factor analysis and inability to adjust measures available in charts in a retrospective research.

  19. [Persistent diarrhea

    Science.gov (United States)

    Andrade, J A; Moreira, C; Fagundes Neto, U

    2000-07-01

    INTRODUCTION: Persistent diarrhea has high impact on infantile morbidity and mortality rates in developing countries. Several studies have shown that 3 to 20% of acute diarrheal episodes in children under 5 years of age become persistent. DEFINITION: Persistent diarrhea is defined as an episode that lasts more than 14 days. ETIOLOGY: The most important agents isolated in persistent diarrhea are: Enteropathogenic E. coli (EPEC), Salmonella, Enteroaggregative E. coli (EAEC), Klebisiella and Cryptosporidium. CLINICAL ASPECTS: In general, the clinical characteristics of patients with persistent diarrhea do not change with the pathogenic agent. Persistent diarrhea seems to represent the final result of a several insults a infant suffers that predisposes to a more severe episode of diarrhea due to a combination of host factors and high rates of enviromental contamination. Therefore, efforts should be made to promptly treat all episodes of diarrhea with apropriate follow-up. THERAPY: The aim of the treatment is to restore hydroelectrolytic deficits and to replace losses until the diarrheal ceases. It is possible in the majority of the cases, using oral rehydration therapy and erly an appropriate type of diet. PREVENTION: It is imperative that management strategies also focus on preventive aspects. The most effective diarrheal prevention strategy in young infants worldwide is promotion of exclusive breast feeding.

  20. Technique for Measuring Speed and Visual Motion Sensitivity in Lizards

    Science.gov (United States)

    Woo, Kevin L.; Burke, Darren

    2008-01-01

    Testing sensory characteristics on herpetological species has been difficult due to a range of properties related to physiology, responsiveness, performance ability, and the type of reinforcer used. Using the Jacky lizard as a model, we outline a successfully established procedure in which to test the visual sensitivity to motion characteristics.…

  1. A 100-Year Review: Sensory analysis of milk.

    Science.gov (United States)

    Schiano, A N; Harwood, W S; Drake, M A

    2017-12-01

    Evaluation of the sensory characteristics of food products has been, and will continue to be, the ultimate method for evaluating product quality. Sensory quality is a parameter that can be evaluated only by humans and consists of a series of tests or tools that can be applied objectively or subjectively within the constructs of carefully selected testing procedures and parameters. Depending on the chosen test, evaluators are able to probe areas of interest that are intrinsic product attributes (e.g., flavor profiles and off-flavors) as well as extrinsic measures (e.g., market penetration and consumer perception). This review outlines the literature pertaining to relevant testing procedures and studies of the history of sensory analysis of fluid milk. In addition, evaluation methods outside of traditional sensory techniques and future outlooks on the subject of sensory analysis of fluid milk are explored and presented. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Sensory Disturbances, but Not Motor Disturbances, Induced by Sensorimotor Conflicts Are Increased in the Presence of Acute Pain

    Directory of Open Access Journals (Sweden)

    Clémentine Brun

    2017-07-01

    disturbances evoked in a given individual. Contrary to what was hypothesized, acute pain does not appear to make people more sensitive to the conflict itself, but rather impacts on the type and amount of sensory disturbances that they experienced in response to that conflict. Moreover, the results suggest that some sensorimotor integration processes remain intact in presence of acute pain, allowing us to maintain adaptive motor behavior.

  3. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo

    Science.gov (United States)

    Fisher, Jonathan A. N.; Gumenchuk, Iryna

    2018-06-01

    Objective. The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam’s focus. Approach. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca2+ responses. Main results. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm‑2 (I sppa), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca2+ responses. Significance. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  4. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.

    Science.gov (United States)

    Fisher, Jonathan A N; Gumenchuk, Iryna

    2018-02-13

    The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam's focus. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca 2+ responses. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm -2 (I sppa ), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca 2+ responses. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  5. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells

    Science.gov (United States)

    Maldiney, Thomas; Bessière, Aurélie; Seguin, Johanne; Teston, Eliott; Sharma, Suchinder K.; Viana, Bruno; Bos, Adrie J. J.; Dorenbos, Pieter; Bessodes, Michel; Gourier, Didier; Scherman, Daniel; Richard, Cyrille

    2014-04-01

    Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.

  6. Sensori-neural hearing loss in patients treated with irradiation for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Grau, C.; Moller, K.; Overgaard, M.; Overgaard, J.; Elbrond, O.

    1991-01-01

    The present investigation has been carried out to evaluate the sensitivity of the inner ear to irradiation. Cochlear function was tested in a cohort of 22 patients before and 7-84 months after receiving external irradiation for nasopharyngeal carcinoma. The pre-irradiation sensori-neural hearing threshold at 500, 1000, 2000, and 4000 Hz was used as a baseline for the individual patient, and the observed sensori-neural hearing loss (SNHL) was calculated as the difference between pre- and post-irradiation values. The pre-irradiation hearing level or patient age was not correlated with the actual SNHL. In contrast, there was a significant correlation between the total radiation dose to the inner ear and the observed hearing impairment. SNHL was most pronounced in the high frequencies, with values up to 35 dB (4000 Hz) and 25 dB (2000 Hz) in some patients. The latent period for the complication appeared to be 12 months or more. The deleterious effect of irradiation on the hearing should be kept in mind both in treatment planning and in the follow-up after radiotherapy

  7. Application of sensory analysis in the enterprise of production of food

    Directory of Open Access Journals (Sweden)

    L. V. Berketova

    2018-01-01

    Full Text Available The article presents information on the relationship of the implementation of sensory analysis in food production enterprises with the activities of these enterprises: from the development of new products and technologies, from the quality control of food at all stages of the product life cycle, the study of the structure of consumer demand, and ending with the preparation of forecasts for the sale of products and other production and marketing issues. Touch analysis helps the manufacturer to determine how his product is consumed and to assume the reaction of a potential buyer to a new product. The use of sensory or organoleptic analysis in the food industry requires the presence of specially trained people or testers who are the instrument of organoleptic analysis, and the constant improvement of their testing techniques and their sensitivity through constant training. Regulatory documents that establish the rules and conditions for conducting organoleptic studies, according to the all-Russian classifier of standards, are in the group «67. Food production»" in particular in the subgroup “67.240-Organoleptic analysis”. This group of standards includes requirements for the laboratory in which the research is carried out, for testers, requirements for utensils and reagents, and methods of research. Modern methods of sensory analysis together with the use of mathematical statistics allow to obtain results of equal and sometimes greater reliability than the results obtained by chemical or physical methods in the evaluation of quality indicators of food products. There are two areas of research: analytical and consumer

  8. Learning Structure of Sensory Inputs with Synaptic Plasticity Leads to Interference

    Directory of Open Access Journals (Sweden)

    Joseph eChrol-Cannon

    2015-08-01

    Full Text Available Synaptic plasticity is often explored as a form of unsupervised adaptationin cortical microcircuits to learn the structure of complex sensoryinputs and thereby improve performance of classification and prediction. The question of whether the specific structure of the input patterns is encoded in the structure of neural networks has been largely neglected. Existing studies that have analyzed input-specific structural adaptation have used simplified, synthetic inputs in contrast to complex and noisy patterns found in real-world sensory data.In this work, input-specific structural changes are analyzed forthree empirically derived models of plasticity applied to three temporal sensory classification tasks that include complex, real-world visual and auditory data. Two forms of spike-timing dependent plasticity (STDP and the Bienenstock-Cooper-Munro (BCM plasticity rule are used to adapt the recurrent network structure during the training process before performance is tested on the pattern recognition tasks.It is shown that synaptic adaptation is highly sensitive to specific classes of input pattern. However, plasticity does not improve the performance on sensory pattern recognition tasks, partly due to synaptic interference between consecutively presented input samples. The changes in synaptic strength produced by one stimulus are reversed by thepresentation of another, thus largely preventing input-specific synaptic changes from being retained in the structure of the network.To solve the problem of interference, we suggest that models of plasticitybe extended to restrict neural activity and synaptic modification to a subset of the neural circuit, which is increasingly found to be the casein experimental neuroscience.

  9. Play with your food! Sensory play is associated with tasting of fruits and vegetables in preschool children.

    Science.gov (United States)

    Coulthard, Helen; Sealy, Annemarie

    2017-06-01

    The objective of the current study was to ascertain whether taking part in a sensory play activity with real fruits and vegetables (FV) can encourage tasting in preschool children, compared to a non-food activity or visual exposure to the activity. Three to four year old pre-school children (N = 62) were recruited from three preschool nursery classes from a school in Northamptonshire, UK. A between participants experimental study was conducted with each class assigned to one of three conditions; sensory FV play, sensory non-food play and visual FV exposure. Parental report of several baseline variables were taken; child baseline liking of the foods used in the study, parental and child FV consumption (portions/day), child neophobia and child tactile sensitivity. Outcome measures were the number of fruits and vegetables tasted in a post experiment taste test which featured (n = 5) or did not feature (n = 3) in the task. Analyses of covariance controlling for food neophobia and baseline liking of foods, showed that after the activity children in the sensory FV play condition tried more FV than both children in the non-food sensory play task (p foods used in the activity (p foods that were not used in the activity (p vegetables may encourage FV tasting in preschool children more than non food play or visual exposure alone. Long term intervention studies need to be carried out to see if these effects can be sustained over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Brief Report: Further Evidence of Sensory Subtypes in Autism

    Science.gov (United States)

    Lane, Alison E.; Dennis, Simon J.; Geraghty, Maureen E.

    2011-01-01

    Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the…

  11. Sensory testing of the human gastrointestinal tract.

    NARCIS (Netherlands)

    Brock, C.; Arendt-Nielsen, L.; Wilder-Smith, O.H.G.; Drewes, A.M.

    2009-01-01

    The objective of this appraisal is to shed light on the various approaches to screen sensory information in the human gut. Understanding and characterization of sensory symptoms in gastrointestinal disorders is poor. Experimental methods allowing the investigator to control stimulus intensity and

  12. Does the Superior Colliculus Control Perceptual Sensitivity or Choice Bias during Attention? Evidence from a Multialternative Decision Framework

    Science.gov (United States)

    Steinmetz, Nicholas A.; Moore, Tirin; Knudsen, Eric I.

    2017-01-01

    Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)—the central structure in the midbrain network—in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SC's contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or “sensitivity,” and those that alter the selective gating of sensory information or “choice bias.” Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention. SIGNIFICANCE STATEMENT Attention involves the selection of the most relevant information for differential sensory processing and decision making. While the mechanisms by which attention alters sensory encoding (sensitivity control) are well studied, the mechanisms by which attention alters decisional weighting of sensory evidence (choice

  13. The beauty of sensory ecology.

    Science.gov (United States)

    Otálora-Luna, Fernando; Aldana, Elis

    2017-08-10

    Sensory ecology is a discipline that focuses on how living creatures use information to survive, but not to live. By trans-defining the orthodox concept of sensory ecology, a serious heterodox question arises: how do organisms use their senses to live, i.e. to enjoy or suffer life? To respond to such a query the objective (time-independent) and emotional (non-rational) meaning of symbols must be revealed. Our program is distinct from both the neo-Darwinian and the classical ecological perspective because it does not focus on survival values of phenotypes and their functions, but asks for the aesthetic effect of biological structures and their symbolism. Our message recognizes that sensing apart from having a survival value also has a beauty value. Thus, we offer a provoking and inspiring new view on the sensory relations of 'living things' and their surroundings, where the innovating power of feelings have more weight than the privative power of reason.

  14. Monitoring based maintenance utilizing actual stress sensory technology

    Science.gov (United States)

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables

  15. Sensory Subtypes in Preschool Aged Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Tomchek, Scott D; Little, Lauren M; Myers, John; Dunn, Winnie

    2018-06-01

    Given the heterogeneity of autism spectrum disorder (ASD), research has investigated how sensory features elucidate subtypes that enhance our understanding of etiology and tailored treatment approaches. Previous studies, however, have not integrated core developmental behaviors with sensory features in investigations of subtypes in ASD. Therefore, we used latent profile analysis to examine subtypes in a preschool aged sample considering sensory processing patterns in combination with social-communication skill, motor performance, and adaptive behavior. Results showed four subtypes that differed by degree and quality of sensory features, age and differential presentation of developmental skills. Findings partially align with previous literature on sensory subtypes and extends our understanding of how sensory processing aligns with other developmental domains in young children with ASD.

  16. The neural career of sensory-motor metaphors.

    Science.gov (United States)

    Desai, Rutvik H; Binder, Jeffrey R; Conant, Lisa L; Mano, Quintino R; Seidenberg, Mark S

    2011-09-01

    The role of sensory-motor systems in conceptual understanding has been controversial. It has been proposed that many abstract concepts are understood metaphorically through concrete sensory-motor domains such as actions. Using fMRI, we compared neural responses with literal action (Lit; The daughter grasped the flowers), metaphoric action (Met; The public grasped the idea), and abstract (Abs; The public understood the idea) sentences of varying familiarity. Both Lit and Met sentences activated the left anterior inferior parietal lobule, an area involved in action planning, with Met sentences also activating a homologous area in the right hemisphere, relative to Abs sentences. Both Met and Abs sentences activated the left superior temporal regions associated with abstract language. Importantly, activation in primary motor and biological motion perception regions was inversely correlated with Lit and Met familiarity. These results support the view that the understanding of metaphoric action retains a link to sensory-motor systems involved in action performance. However, the involvement of sensory-motor systems in metaphor understanding changes through a gradual abstraction process whereby relatively detailed simulations are used for understanding unfamiliar metaphors, and these simulations become less detailed and involve only secondary motor regions as familiarity increases. Consistent with these data, we propose that anterior inferior parietal lobule serves as an interface between sensory-motor and conceptual systems and plays an important role in both domains. The similarity of abstract and metaphoric sentences in the activation of left superior temporal regions suggests that action metaphor understanding is not completely based on sensory-motor simulations but relies also on abstract lexical-semantic codes.

  17. Persistent current and transmission probability in the Aharonov-Bohm ring with an embedded quantum dot

    International Nuclear Information System (INIS)

    Wu Suzhi; Li Ning; Jin Guojun; Ma Yuqiang

    2008-01-01

    Persistent current and transmission probability in the Aharonov-Bohm (AB) ring with an embedded quantum dot (QD) are studied using the technique of the scattering matrix. For the first time, we find that the persistent current can arise in the absence of magnetic flux in the ring with an embedded QD. The persistent current and the transmission probability are sensitive to the lead-ring coupling and the short-range potential barrier. It is shown that increasing the lead-ring coupling or the short-range potential barrier causes the suppression of the persistent current and the increasing resonance width of the transmission probability. The effect of the potential barrier on the number of the transmission peaks is also investigated. The dependence of the persistent current and the transmission probability on the magnetic flux exhibits a periodic property with period of the flux quantum

  18. Neuropathic sensory symptoms: association with pain and psychological factors

    Directory of Open Access Journals (Sweden)

    Shaygan M

    2014-05-01

    Full Text Available Maryam Shaygan,1 Andreas Böger,2 Birgit Kröner-Herwig11Department of Clinical Psychology and Psychotherapy, University of Göttingen, Germany; 2Pain Management Clinic at the Red Cross Hospital, Kassel, GermanyBackground: A large number of population-based studies of chronic pain have considered neuropathic sensory symptoms to be associated with a high level of pain intensity and negative affectivity. The present study examines the question of whether this association previously found in non-selected samples of chronic pain patients can also be found in chronic pain patients with underlying pathology of neuropathic sensory symptoms.Methods: Neuropathic sensory symptoms in 306 patients with chronic pain diagnosed as typical neuropathic pain, radiculopathy, fibromyalgia, or nociceptive back pain were assessed using the Pain DETECT Questionnaire. Two separate cluster analyses were performed to identify subgroups of patients with different levels of self-reported neuropathic sensory symptoms and, furthermore, to identify subgroups of patients with distinct patterns of neuropathic sensory symptoms (adjusted for individual response bias regarding specific symptoms.Results: ANOVA (analysis of variance results in typical neuropathic pain, radiculopathy, and fibromyalgia showed no significant differences between the three levels of neuropathic sensory symptoms regarding pain intensity, pain chronicity, pain catastrophizing, pain acceptance, and depressive symptoms. However, in nociceptive back pain patients, significant differences were found for all variables except pain chronicity. When controlling for the response bias of patients in ratings of symptoms, none of the patterns of neuropathic sensory symptoms were associated with pain and psychological factors.Conclusion: Neuropathic sensory symptoms are not closely associated with higher levels of pain intensity and cognitive-emotional evaluations in chronic pain patients with underlying pathology of

  19. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation

    Directory of Open Access Journals (Sweden)

    Anna R. Chambers

    2016-08-01

    Full Text Available Neurons at higher stages of sensory processing can partially compensate for a sudden drop in input from the periphery through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where > 95% of synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore the cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, cortical processing and perception recover despite the absence of an auditory brainstem response (ABR or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC, an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the auditory cortex (ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB of awake mice. Sound-driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory

  20. An Online Cross-Sectional Comparison of Women With Symptoms of Persistent Genital Arousal, Painful Persistent Genital Arousal, and Chronic Vulvar Pain.

    Science.gov (United States)

    Jackowich, Robyn A; Pink, Leah; Gordon, Allan; Poirier, Évéline; Pukall, Caroline F

    2018-04-01

    Persistent genital arousal disorder (PGAD) is an understudied condition characterized by unwanted physiologic genital arousal in the absence of subjective sexual arousal. Markos and Dinsmore (Int J STD AIDS 2013;24:852-858) theorized that PGAD shares a number of similarities with vulvodynia (unexplained chronic vulvar pain [CVP]), including symptom characteristics and comorbidities. To compare medical histories, symptom characteristics, pain characteristics, and daily functioning among women with persistent genital pain (PGA) (n = 42), painful PGA (n = 37), and CVP (n = 42) symptoms. An online cross-sectional survey was conducted from October 2015 through April 2016. Self-report measures of symptoms, diagnosed medical conditions, pain characteristics (McGill Pain Questionnaire), catastrophizing (Pain Catastrophizing Scale), and daily functioning (Functional Status Questionnaire) were collected. All 3 groups reported similar medical diagnoses and high frequencies of other chronic pelvic pain conditions. Women in all 3 groups reported comparable ages at symptom onset and timing of symptom expression (ie, constant vs intermittent). Women in the 2 PGA groups reported significantly greater feelings of helplessness than women in the CVP group. Women in the painful PGA and CVP groups endorsed significantly more sensory terms to describe their symptoms compared with women in the PGA group, whereas women in the painful PGA group reported significantly more affective terms to describe their symptoms compared with women in the CVP group. Women in the 2 PGA groups reported that their symptoms interfered significantly with most areas of daily functioning. Given the similarities between PGA and CVP symptoms, women with PGA may benefit from similar assessment, treatment, and research approaches. Limitations of the present study include its sole use of self-report measures; the presence of PGA or CVP symptoms was not confirmed by clinical assessment. However, the anonymous

  1. Relation between sensory analysis and rheology of body lotions.

    Science.gov (United States)

    Moravkova, T; Filip, P

    2016-12-01

    Evaluation of sensory attributes of cosmetic products is traditionally based on sensory panels. However, in some cases, a suitable candidate method that can reduce time and costs is the use of instrumental analysis that can detect relatively very small changes of entry ingredients. Such approach has been already applied for emollients, salt content, stabilizers, etc. The aim of this contribution is to apply the relations between sensory analysis and rheology to a series of body lotions differing in the contents of emulsifiers and viscosity regulators. Sensory and rheological analyses are related. Rheological analysis can represent a good alternative to basic orientation in chosen customer's feelings. A rotational rheometer is the only instrumental device required for the measurements. An empirical rheological model was proposed by means of which the selected sensory attributes were evaluated using the numerical values of adjustable model parameters. This approach exhibited a very good agreement with the results obtained by the sensory panel. It was shown that a description of chosen sensory attributes can be responsibly carried out by rheological measurements, that is through the attained numerical values of the parameters appearing in a proposed empirical model characterizing shear viscosity of body lotions. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Sensory system plasticity in a visually specialized, nocturnal spider.

    Science.gov (United States)

    Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A

    2017-04-21

    The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.

  3. Discriminating aging and protein-to-fat ratio in Cheddar cheese using sensory analysis and a potentiometric electronic tongue.

    Science.gov (United States)

    Lipkowitz, Jackie B; Ross, Carolyn F; Diako, Charles; Smith, Denise M

    2018-03-01

    The objectives of this study were to evaluate the flavor and taste attributes of full-fat Cheddar cheeses with different protein-to-fat ratios (PFR) over aging time using a descriptive sensory analysis panel and a consumer panel, and to correlate these attributes with instrumental parameters obtained by the potentiometric electronic tongue. Three Cheddar cheese formulations (PFR of 0.74, 0.85, and 1.01) were produced in triplicate and composition was verified. Cheese was aged at 7.2°C and evaluated at 2, 5, 8, 10, 11, and 12 mo by a trained panel (n = 10) for 8 flavor and 5 taste attributes and using an electronic tongue for 7 nonvolatile taste attributes. Cheese aged for 12 mo was also evaluated by a consumer sensory panel for liking and intensity attributes. Principal component analysis was performed to discriminate cheese based on aging time and PFR, whereas correlation between sensory and instrumental attributes was assessed using partial least squares regression. Descriptive sensory analysis of flavor and taste attributes differentiated Cheddar cheeses over aging time, but not among PFR formulations. The electronic tongue distinguished changes among cheese samples due to PFR formulation and aging time. The electronic tongue proved successful in characterizing the nonvolatile flavor components in Cheddar cheese and correlated with taste perceptions measured by descriptive sensory analysis. Consumer evaluations showed distinctive attribute profiles for the 3 PFR Cheddar cheese formulations. Overall, higher fat content was associated with increased flavor intensities in Cheddar cheese and drove consumer acceptability and purchase intent ratings. The electronic tongue detected smaller changes in tastes (bitter, metallic, salty, sour, spicy, sweet, and umami) of the 3 PFR formulations over time when compared with the trained panelists, who detected no differences, suggesting that the electronic tongue may be more sensitive to tastants than humans and may have the

  4. Sensory Quality Preservation of Coated Walnuts.

    Science.gov (United States)

    Grosso, Antonella L; Asensio, Claudia M; Grosso, Nelson R; Nepote, Valeria

    2017-01-01

    The objective of this study was to evaluate the sensory stability of coated walnuts during storage. Four walnut samples were prepared: uncoated (NC), and samples coated with carboxymethyl cellulose (NCMC), methyl cellulose (NMC), or whey protein (NPS). The samples were stored at room temperature for 210 d and were periodically removed from storage to perform a sensory descriptive analysis. A consumer acceptance test was carried out on the fresh product (storage day 0) to evaluate flavor. All samples exhibited significant differences in their sensory attributes initially and after storage. Intensity ratings for oxidized and cardboard flavors increased during storage. NC showed the highest oxidized and cardboard intensity ratings (39 and 22, respectively) and NMC exhibited the lowest intensity ratings for these negative attributes (8 and 17, respectively) after 210 d of storage. Alternatively, the intensity ratings for sweetness and walnut flavors were decreased for all samples. NMC had the lowest decrease at the end of storage for these positive attributes (75.86 in walnut flavor and 12.09 in sweetness). The results of this study suggest a protective effect of the use of an edible coating to preserve sensory attributes during storage, especially for samples coated with MC. The results of the acceptance test showed that addition of the coating negatively affected the flavor acceptance for NMC and NCMC coated walnuts. Edible coatings help to preserve sensory attributes in walnuts, improving their shelf-life, however, these coatings may affect consumer acceptance in some cases. © 2016 Institute of Food Technologists®.

  5. Ultrasound-Guided Ilioinguinal/Iliohypogastric Nerve Blocks for Persistent Inguinal Postherniorrhaphy Pain

    DEFF Research Database (Denmark)

    Bischoff, Joakim Mutahi; Koscielniak-Nielsen, Zbigniew J; Kehlet, Henrik

    2012-01-01

    -guided blocks of the ilioinguinal and iliohypogastric nerves with lidocaine.Methods:A randomized, double-blind, placebo-controlled, crossover trial in 12 patients with severe persistent inguinal postherniorrhaphy pain, including a control group of 12 healthy controls, was performed. Assessments included pain...... was used. Outcomes were changes in pain ratings, sensory mapping, and QST compared with preblock values. Lidocaine responders were a priori defined by a pain reduction of =80% after lidocaine block and =25% after placebo block, nonresponders by pain reduction of 25% after placebo block.Results:One of 12...... pain patients was a lidocaine responder, 6 patients were nonresponders, and 5 patients were placebo responders. No consistent QST changes were observed in patients after the lidocaine block. In 10 of 12 healthy controls, a cool hypoesthesia area developed in the groin after the lidocaine block...

  6. Multisensory integration, sensory substitution and visual rehabilitation

    DEFF Research Database (Denmark)

    Proulx, Michael J; Ptito, Maurice; Amedi, Amir

    2014-01-01

    Sensory substitution has advanced remarkably over the past 35 years since first introduced to the scientific literature by Paul Bach-y-Rita. In this issue dedicated to his memory, we describe a collection of reviews that assess the current state of neuroscience research on sensory substitution...

  7. Sensory modulation of movement, posture and locomotion.

    Science.gov (United States)

    Saradjian, A H

    2015-11-01

    During voluntary movement, there exists a well known functional sensory attenuation of afferent inputs, which allows us to discriminate between information related to our own movements and those arising from the external environment. This attenuation or 'gating' prevents some signals from interfering with movement elaboration and production. However, there are situations in which certain task-relevant sensory inputs may not be gated. This review begins by identifying the prevalent findings in the literature with specific regard to the somatosensory modality, and reviews the many cases of classical sensory gating phenomenon accompanying voluntary movement and their neural basis. This review also focuses on the newer axes of research that demonstrate that task-specific sensory information may be disinhibited or even facilitated during engagement in voluntary actions. Finally, a particular emphasis will be placed on postural and/or locomotor tasks involving strong somatosensory demands, especially for the setting of the anticipatory postural adjustments observed prior the initiation of locomotion. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Sensory Pedagogy: Understanding and Encountering Children through the Senses

    Science.gov (United States)

    Johansson, Eva; Løkken, Gunvor

    2014-01-01

    In the present article we aim to explore the link between Merleau-Pontyan phenomenology and what we call sensory pedagogy. The latter connects to recent sensory ethnography as presented by S. Pink ("Sensory ethnography." London: Sage; 2009). We discuss how these thoughts can be put to work in toddler pedagogy. This kind of sensory…

  9. Effect of irradiation of sensory quality of cigarettes

    International Nuclear Information System (INIS)

    Feng Min; Zhu Jiating; Yang Ping; Wang Dening; Gu Guiqiang

    2012-01-01

    3 brands of cigarettes were irradiated and smoked to make sure the effect of irradiation on sensory qualities of cigarettes, luster, aroma, harmony, offensive taste, irritancy, after taste and total scores of irradiated cigarettes were studied. The results showed that, compared with each index of CK, some indexes changed after irradiation, sensory quality of cigarettes might be improved by suitable dose. The sensory qualities of cigarettes of different brands or different styles change differently, though they were irradiated by the same dose. There was no obvious relation between score of any index and irradiation dose, when cigarette of a same brand irradiated by different doses. Above all, the changes of sensory quality of cigarette may meet the requirements of different smokers on the palate. (authors)

  10. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    Science.gov (United States)

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  11. Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach

    OpenAIRE

    M.A. Lazim; M. Suriani

    2009-01-01

    Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data wer...

  12. Sensory neuropathy in two Border collie puppies.

    Science.gov (United States)

    Vermeersch, K; Van Ham, L; Braund, K G; Bhatti, S; Tshamala, M; Chiers, K; Schrauwen, E

    2005-06-01

    A peripheral sensory neuropathy was diagnosed in two Border collie puppies. Neurological, electrophysiological and histopathological examinations suggested a purely sensory neuropathy with mainly distal involvement. Urinary incontinence was observed in one of the puppies and histological examination of the vagus nerve revealed degenerative changes. An inherited disorder was suspected.

  13. Sensory dissociation in chronic low back pain: Two case reports.

    Science.gov (United States)

    Adamczyk, Wacław M; Luedtke, Kerstin; Saulicz, Oskar; Saulicz, Edward

    2018-08-01

    Patients with chronic low back pain often report that they do not perceive their painful back accurately. Previous studies confirmed that sensory dissociation and/or discrepancy between perceived body image and actual size is one of the specific traits of patients with chronic pain. Current approaches for measuring sensory dissociation are limited to two-point-discrimination or rely on pain drawings not allowing for quantitative analysis. This case study reports the sensory dissociation of two cases with chronic low back pain using a recently published test (point-to-point-test (PTP)) and a newly developed test (two-point-estimation (TPE)). Both patients mislocalized tactile stimuli delivered to the painful location compared to non-painful locations (PTP test). In addition, both patients perceived their painful lumbar region differently from non-painful sites above and below and contralateral to the painful site. TPE data showed two distinct clinical patterns of sensory dissociation: one patient perceived the two-point distance in the painful area as expanded, while the other patient perceived it as shrunk. The latter pattern of sensory dissociation (i.e., pattern shrunk) is likely to respond to sensory training. Whether enlarged patterns of sensory dissociation are more resistant to treatment remains unknown but would explain the low effectiveness of previous studies using sensory training in chronic low back pain populations. Subgrouping patients according to their sensory discrimination pattern could contribute to the choice and effectiveness of the treatment approach.

  14. Perspectives on sensory processing disorder: a call for translational research

    Directory of Open Access Journals (Sweden)

    Lucy J Miller

    2009-09-01

    Full Text Available This article explores the convergence of two fields, which have similar theoretical origins: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is Sensory Processing Disorder (SPD. In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term multisensory integration in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families.

  15. Auditory sensory processing deficits in sensory gating and mismatch negativity-like responses in the social isolation rat model of schizophrenia

    DEFF Research Database (Denmark)

    Witten, Louise; Oranje, Bob; Mørk, Arne

    2014-01-01

    Patients with schizophrenia exhibit disturbances in information processing. These disturbances can be investigated with different paradigms of auditory event related potentials (ERP), such as sensory gating in a double click paradigm (P50 suppression) and the mismatch negativity (MMN) component...... in an auditory oddball paradigm. The aim of the current study was to test if rats subjected to social isolation, which is believed to induce some changes that mimic features of schizophrenia, displays alterations in sensory gating and MMN-like response. Male Lister-Hooded rats were separated into two groups; one...... group socially isolated (SI) for 8 weeks and one group housed (GH). Both groups were then tested in a double click sensory gating paradigm and an auditory oddball paradigm (MMN-like) paradigm. It was observed that the SI animals showed reduced sensory gating of the cortical N1 amplitude. Furthermore...

  16. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    Science.gov (United States)

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  17. Sensory marketing strategies. Case study: Oltenia

    OpenAIRE

    Aurelia-Felicia STĂNCIOIU; Mihail-Cristian DIŢOIU; Nicolae TEODORESCU; Lucian-Florin ONIŞOR; Ion PÂRGARU

    2014-01-01

    From the perspective of the tourist, sensory marketing strategies may result in an experience improvement which leads, in time, to acquiring a positive destination image, and, from the perspective of the destination, to furthering its harmonious development. Even though it appears that sensory marketing strategies can be considered as alternatives for marketing strategies, they actually are complementary, and their objective (increasing product quality by “turning to the beginning”, where per...

  18. Reevaluating the Sensory Account of Visual Working Memory Storage.

    Science.gov (United States)

    Xu, Yaoda

    2017-10-01

    Recent human fMRI pattern-decoding studies have highlighted the involvement of sensory areas in visual working memory (VWM) tasks and argue for a sensory account of VWM storage. In this review, evidence is examined from human behavior, fMRI decoding, and transcranial magnetic stimulation (TMS) studies, as well as from monkey neurophysiology studies. Contrary to the prevalent view, the available evidence provides little support for the sensory account of VWM storage. Instead, when the ability to resist distraction and the existence of top-down feedback are taken into account, VWM-related activities in sensory areas seem to reflect feedback signals indicative of VWM storage elsewhere in the brain. Collectively, the evidence shows that prefrontal and parietal regions, rather than sensory areas, play more significant roles in VWM storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Understanding the sensory irregularities of esophageal disease.

    Science.gov (United States)

    Farmer, Adam D; Brock, Christina; Frøkjaer, Jens Brøndum; Gregersen, Hans; Khan, Sheeba; Lelic, Dina; Lottrup, Christian; Drewes, Asbjørn Mohr

    2016-08-01

    Symptoms relating to esophageal sensory abnormalities can be encountered in the clinical environment. Such sensory abnormalities may be present in demonstrable disease, such as erosive esophagitis, and in the ostensibly normal esophagus, such as non-erosive reflux disease or functional chest pain. In this review, the authors discuss esophageal sensation and the esophageal pain system. In addition, the authors provide a primer concerning the techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of esophageal sensory function. Such technological advances, whilst not readily available in the clinic may facilitate the stratification and individualization of therapy in disorders of esophageal sensation in the future.

  20. Transcendence and Sensoriness

    DEFF Research Database (Denmark)

    Protestant theology and culture are known for a reserved, at times skeptical, attitude to the use of art and aesthetic forms of expression in a religious context. In Transcendence and Sensoriness, this attitude is analysed and discussed both theoretically and through case studies considered...

  1. Sensory processing disorder: any of a nurse practitioner's business?

    Science.gov (United States)

    Byrne, Mary W

    2009-06-01

    Children who exhibit the confusing symptom patterns associated with sensory processing deficits are often seen first by primary care providers, including family and pediatric nurse practitioners (NPs). The purpose of this article is to alert NPs to the state of the science for these disorders and to the roles NPs could play in filling the knowledge gaps in assessment, treatment, education, and research. Literature searches using PubMed and MedLine databases and clinical practice observations. Sensory integration disorders have only begun to be defined during the past 35 years. They are not currently included in the DSM IV standard terminology, and are not yet substantively incorporated into most health disciplines' curricula or practice, including those of the NP. NPs are in a unique position to test hypothesized terminology for Sensory Processing Disorder (SPD) by contributing precise clinical descriptions of children who match as well as deviate from the criteria for three proposed diagnostic groups: Sensory Modulation Disorder (SMD), Sensory Discrimination Disorder (SDD), and Sensory-Based Motor Disorder (SBMD). Beyond the SPD diagnostic debate, for children with sensory deficit patterns the NP role can incorporate participating in interdisciplinary treatment plans, refining differential diagnoses, providing frontline referral and support for affected children and their families, and making both secondary prevention and critical causal research possible through validation of consistently accepted diagnostic criteria.

  2. Sensory evaluation of food: statistical methods and procedures

    National Research Council Canada - National Science Library

    O'Mahony, Michael

    1986-01-01

    The aim of this book is to provide basic knowledge of the logic and computation of statistics for the sensory evaluation of food, or for other forms of sensory measurement encountered in, say, psychophysics...

  3. The mental representation of living and nonliving things: differential weighting and interactivity of sensorial and non-sensorial features.

    Science.gov (United States)

    Ventura, Paulo; Morais, José; Brito-Mendes, Carlos; Kolinsky, Régine

    2005-02-01

    Warrington and colleagues (Warrington & McCarthy, 1983, 1987; Warrington & Shallice, 1984) claimed that sensorial and functional-associative (FA) features are differentially important in determining the meaning of living things (LT) and nonliving things (NLT). The first aim of the present study was to evaluate this hypothesis through two different access tasks: feature generation (Experiment 1) and cued recall (Experiment 2). The results of both experiments provided consistent empirical support for Warrington and colleagues' assumption. The second aim of the present study was to test a new differential interactivity hypothesis that combines Warrington and colleagueS' assumption with the notion of a higher number of intercorrelations and hence of a stronger connectivity between sensorial and non-sensorial features for LTs than for NLTs. This hypothesis was motivated by previoUs reports of an uncrossed interaction between domain (LTs vs NLTs) and attribute type (sensorial vs FA) in, for example, a feature verification task (Laws, Humber, Ramsey, & McCarthy, 1995): while FA attributes are verified faster than sensorial attributes for NLTs, no difference is observed for LTs. We replicated and generalised this finding using several feature verification tasks on both written words and pictures (Experiment 3), including in conditions aimed at minimising the intervention of priming biases and strategic or mnemonic processes (Experiment 4). The whole set of results suggests that both privileged relations between features and categories, and the differential importance of intercorrelations between features as a function of category, modulate access to semantic features.

  4. Development of Metallic Sensory Alloys

    Science.gov (United States)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  5. Disrupted sensory gating in pathological gambling.

    Science.gov (United States)

    Stojanov, Wendy; Karayanidis, Frini; Johnston, Patrick; Bailey, Andrew; Carr, Vaughan; Schall, Ulrich

    2003-08-15

    Some neurochemical evidence as well as recent studies on molecular genetics suggest that pathologic gambling may be related to dysregulated dopamine neurotransmission. The current study examined sensory (motor) gating in pathologic gamblers as a putative measure of endogenous brain dopamine activity with prepulse inhibition of the acoustic startle eye-blink response and the auditory P300 event-related potential. Seventeen pathologic gamblers and 21 age- and gender-matched healthy control subjects were assessed. Both prepulse inhibition measures were recorded under passive listening and two-tone prepulse discrimination conditions. Compared to the control group, pathologic gamblers exhibited disrupted sensory (motor) gating on all measures of prepulse inhibition. Sensory motor gating deficits of eye-blink responses were most profound at 120-millisecond prepulse lead intervals in the passive listening task and at 240-millisecond prepulse lead intervals in the two-tone prepulse discrimination task. Sensory gating of P300 was also impaired in pathologic gamblers, particularly at 500-millisecond lead intervals, when performing the discrimination task on the prepulse. In the context of preclinical studies on the disruptive effects of dopamine agonists on prepulse inhibition, our findings suggest increased endogenous brain dopamine activity in pathologic gambling in line with previous neurobiological findings.

  6. Mechano- and Chemo-Sensory Polycystins

    Science.gov (United States)

    Patel, Amanda; Delmas, Patrick; Honoré, Eric

    Polycystins belong to the superfamily of transient receptor potential (TRP) channels and comprise five PKD1-like and three PKD2-like (TRPP) subunits. In this chapter, we review the general properties of polycystins and discuss their specific role in both mechanotransduction and chemoreception. The heteromer PKD1/PKD2 expressed at the membrane of the primary cilium of kidney epithelial cells is proposed to form a mechano-sensitive calcium channel that is opened by physiological fluid flow. Dysfunction or loss of PKD1 or PKD2 polycystin genes may be responsible for the inability of epithelial cells to sense mechanical cues, thus provoking autosomal dominant polycystic kidney disease (ADPKD), one of the most prevalent genetic kidney disorders. pkd1 and pkd2 knock-out mice recapitulate the human disease. Similarly, PKD2 may function as a mechanosensory calcium channel in the immotile monocilia of the developing node transducing leftward flow into an increase in calcium and specifying the left-right axis. pkd2, unlike pkd1 knock-out embryos are characterized by right lung isomerism (situs inversus). Mechanical stimuli also induce cleavage and nuclear translocation of the PKD1 C-terminal tail, which enters the nucleus and initiates signaling processes involving the AP-1, STAT6 and P100 pathways. This intraproteolytic mechanism is implicated in the transduction of a change in renal fluid flow to a transcriptional long-term response. The heteromer PKD1L3/PKD2L1 is the basis for acid sensing in specialised sensory cells including the taste bud cells responsible for sour taste. Moreover, PKD1L3/PKD2L1 may be implicated in the chemosensitivity of neurons surrounding the spinal cord canal, sensing protons in the cerebrospinal fluid. These recent results demonstrate that polycystins fulfill a major sensory role in a variety of cells including kidney epithelial cells, taste buds cells and spinal cord neurons. Such mechanisms are involved in short- and long-term physiological

  7. Features functional activity kinesthetic and visual sensory systems in athletes of different specializations

    Directory of Open Access Journals (Sweden)

    Anatoliy Rovnyy

    2015-02-01

    Full Text Available Purpose: to establish specific effects of different sports on functional status and co mood kinesthetic and visual analyzers skilled athletes. Materials and Methods: the study was conducted on athletes qualified five sports: modern pentathlon, volleyball, basketball, handball and fencing. We used methods of difference sensometry and mathematical statistics. Results revealed that the sensitivity of sensor systems depend on the specifics of sports activities and sports equipment. Conclusions: the complex is set internally sensor and between sensory bonds that are formed on the basis of the specific sports activity.

  8. Localization of SSeCKS in unmyelinated primary sensory neurons

    Directory of Open Access Journals (Sweden)

    Siegel Sandra M

    2008-03-01

    Full Text Available Abstract Background SSeCKS (Src SupprEssed C Kinase Substrate is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%, calcitonin gene related peptide (95.3%, or fluoride resistant acid phosphatase (55.0% labeled cells. In the spinal cord, it was found that SSeCKS-immunoreactive axon collaterals terminate in the dorsal third of lamina II outer in a region similar to that of unmyelinated C-, or small diameter myelinated Aδ-, fibers. However, the precise characterization of the anatomical profile of the primary sensory neurons containing SSeCKS remains to be determined. Here, immunohistochemical labeling at the light and ultrastructural level is used to clarify the myelination status of SSeCKS-containing sensory neuron axons and to further clarify the morphometric, and provide insight into the functional, classification of SSeCKS-IR sensory neurons. Methods Colocalization studies of SSeCKS with myelination markers, ultrastructural localization of SSeCKS labeling and ablation of largely unmyelinated sensory fibers by neonatal capsaicin administration were all used to establish whether SSeCKS containing sensory neurons represent a subpopulation of unmyelinated primary sensory C-fibers. Results Double labeling studies of SSeCKS with CNPase in the dorsal horn and Pzero in the periphery showed that SSeCKS immunoreactivity was observed predominantly in association with unmyelinated primary sensory fibers. At the ultrastructural level, SSeCKS immunoreactivity was most commonly associated with axonal membrane margins of unmyelinated fibers. In capsaicin treated rats, SSeCKS immunoreactivity was essentially obliterated in the dorsal horn while in dorsal root ganglia quantitative analysis revealed a 43

  9. Thermal and mechanical pain sensitization in patients with osteoarthritis of the knee.

    Science.gov (United States)

    Bevilaqua-Grossi, Debora; Zanin, Marilia; Benedetti, Camila; Florencio, Lidiane; Oliveira, Anamaria

    2018-02-26

    The aim was to assess sensitization using quantitative sensory testing in mechanical and thermal modes in individuals with and without osteoarthritis (OA) of the knee. Pain thresholds were correlated with functionality, symptoms of depression and intensity of pain. Thirty control volunteers and 30 patients with OA of the knee were assessed. Punctate pain thresholds using Von Frey filaments and thermal pain thresholds using a Thermal Sensory Analyzer were evaluated in the periarticular region of the knee and forearm. Using a digital pressure algometer, pressure pain thresholds were assessed in the periarticular region of the knee and on the root exit zone on the lumbar and sacral spine. Punctate, pressure, and thermal pain thresholds differed significantly between participants with and without OA (p pain sensitization. Pressure pain thresholds also showed moderate and negative correlations with data on functionality, symptoms of depression and intensity of pain (-0.36  -0.56), contributing up to 30% of their variability. Allodynia and hyperalgesia were demonstrated in the OA group, suggesting central sensitization in patients with mild to moderate severity of joint damage. Correlation between mechanical hypersensitivity and psychosocial factors seems to be small, despite of its significance.

  10. Designing sensory-substitution devices: Principles, pitfalls and potential1.

    Science.gov (United States)

    Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar

    2016-09-21

    An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object.

  11. Studying Sensory Perception.

    Science.gov (United States)

    Ackerly, Spafford C.

    2001-01-01

    Explains the vestibular organ's role in balancing the body and stabilizing the visual world using the example of a hunter. Describes the relationship between sensory perception and learning. Recommends using optical illusions to illustrate the distinctions between external realities and internal perceptions. (Contains 13 references.) (YDS)

  12. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    Science.gov (United States)

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  13. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE

    Directory of Open Access Journals (Sweden)

    David ePerruchoud

    2014-06-01

    Full Text Available Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE. Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  14. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE).

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  15. Effect of irradiation on sensory quality of fermented spicy chicken feet

    International Nuclear Information System (INIS)

    Gao Meixu; Li Shurong; Pei Ying; Jiang Xiujie; Wang Zhidong; Deng Wenmin; Chen Xun; Huang Min; Chen Hao

    2010-01-01

    Irradiation could effectively control lactobacillus of fermented spicy chicken feet and extend its shelf life. Sensory evaluation standard of fermented spicy chicken feet was established to study the sensory change after irradiation according to related standards and research results. Color and shape (weight 30%), scent (weight 30%), texture and taste (weight 40%) were selected as sensory evaluation items. The sensory evaluation results after irradiation 3 days didn't show significance difference among control, 3, 5, 8 and 12 kGy irradiated samples, and the sensory evaluation score of 10 kGy irradiated sample was much higher then other sample groups. The results after irradiation 11d were almost as same as 3d results. It is indicated that the sensory quality of fermented spicy chicken feet would not destroyed by irradiation, and suitable dosage of irradiation may promote the sensory quality of fermented spicy chicken feet. (authors)

  16. Sensory outcome of fingertip replantations without nerve repair.

    Science.gov (United States)

    Ozcelik, Ismail Bulent; Tuncer, Serdar; Purisa, Husrev; Sezer, Ilker; Mersa, Berkan; Kabakas, Fatih; Celikdelen, Pinar

    2008-01-01

    The sensory recovery outcomes of fingertip replantations without nerve repair were retrospectively studied. Between 2000 and 2006, 112 fingertip replantations with only arterial repair were carried out in 98 patients. About 76 of the replants survived totally, with a success rate of 67.8%. Evaluation of sensory recovery was possible in 31 patients (38 replantations). Sensory evaluation was made with Semmes-Weinstein, static and dynamic two-point discrimination, and vibration sense tests. Fingertip atrophy, nail deformities, and return to work were also evaluated. According to the Semmes-Weinstein test, 29.0% (11/38) of the fingers had normal sense, 60.5% (23/38) had diminished light touch, 7.9% (3/38) had diminished protective sensation, and 2.6% (1/38) had loss of protective sensation. Mean static and dynamic two-point discriminations were 7.2 mm (3-11 mm), and 4.60 mm (3-6 mm), respectively. Vibratory testing revealed increased vibration in 42.1% of the fingers, decreased vibration in 36.8%, and equal vibration when compared with the non-injured fingers in 21.1%. Atrophy was present in 14 (36.8%) fingers and negatively affected the results. Nail deformities, cold intolerance, return to work, and the effect of sensory education were investigated. Comparison of crush and clean cut injuries did not yield any significant difference in any of the parameters. Patients who received sensory education had significantly better results in sensory testing. The results were classified as excellent, good, and poor based on results of two-point discrimination tests. The outcome was excellent in 18 fingers and good in 20 fingers. Overall, satisfactory sensory recovery was achieved in fingertip replantations without nerve repair. (c) 2008 Wiley-Liss, Inc.

  17. Sensory evaluation of gamma irradiated coconut cream powder

    International Nuclear Information System (INIS)

    Ros Anita Ahmad Ramli; Foziah Ali; Norimah Yusof; Zainab Harun

    2004-01-01

    A study was conducted to determine the effect of gamma irradiation (5, 10 and 15kGy) and storage on the sensory quality of coconut cream powder. Ageing process was achieved using GEER oven at 60 degree C for seven days, which is equivalent to one-year storage at room temperature. The sensory evaluation was conducted to determine the level of acceptance on four parameters, namely odour, colour, creamy taste and overall acceptance. Twenty (20) taste panelists gave their score from scale] (least acceptable) to 5 (most acceptable). The results showed that there was a significant different (P 0. 05) in all the sensory properties. The sensory evaluation of stored samples showed that there was significant different (P>0.05) in odour, creamy taste, colour and overall acceptance compared to the control. Based on the overall acceptance, gamma irradiation as low as 5 kGy could affect the sensory quality of coconut cream powder. The possibility of using doses lower than 5 kGy for decontamination of coconut cream powder could be considered in the future study. The irradiated product was not acceptable after one-year storage. (Author)

  18. Pain when walking: individual sensory profiles in the foot soles of torture victims - a controlled study using quantitative sensory testing

    DEFF Research Database (Denmark)

    Prip, K.; Persson, A. L.; Sjolund, B. H.

    2012-01-01

    Background: With quantitative sensory testing (QST) we recently found no differences in sensory function of the foot soles between groups of torture victims with or without exposure to falanga (beatings under the feet). Compared to matched controls the torture victims had hyperalgesia to deep mec...

  19. The role of selective venous sampling in the management of persistent hyperparathyroidism revisited

    NARCIS (Netherlands)

    Witteveen, Janneke E.; Kievit, Job; van Erkel, Arian R.; Morreau, Hans; Romijn, Johannes A.; Hamdy, Neveen A. T.

    2010-01-01

    Localization studies are mandatory prior to revision surgery in patients with persistent hyperparathyroidism in order to improve surgical outcome and reduce the risk of lengthy explorations. However, in this case, noninvasive localization studies are reported to have a poor sensitivity. The aim of

  20. The Sensorial Effect: Dynamics of Emotion in Pro-Environmental Behavior

    Science.gov (United States)

    Hipolito, Joana

    2011-01-01

    In this article, sensorial effects are introduced as emotional stimuli for shaping environmentally significant behaviors. This research provides a link between sensorial effect as ubiquitous environmental behavior feedback and the effect of sensorial stimuli on emotions that trigger individuals' pro-environment behavior. A case study of using…

  1. Prognostic factors in sensory recovery after digital nerve repair.

    Science.gov (United States)

    Bulut, Tuğrul; Akgün, Ulaş; Çıtlak, Atilla; Aslan, Cihan; Şener, Ufuk; Şener, Muhittin

    2016-01-01

    The prognostic factors that affect sensory nerve recovery after digital nerve repair are variable because of nonhomogeneous data, subjective tests, and different assessment/scoring methods. The aim of this study was to evaluate the success of sensory nerve recovery after digital nerve repair and to investigate the prognostic factors in sensorial healing. Ninety-six digital nerve repairs of 63 patients were retrospectively evaluated. All nerves were repaired with end-to-end neurorraphy. The static two-point discrimination (s2PD) and Semmes Weinstein monofilament (SWM) tests were performed to evaluate sensory recovery. The association between prognostic factors such as gender, age, involved digit, time from injury to repair, length of follow-up, smoking, concomitant injuries, type of injury, and sensory recovery results were assessed. The s2PD test demonstrated excellent results in 26 nerves (27%), good results in 61 nerves (64%), and poor results in 9 nerves (9%). The results of the SWM test according to Imai classification showed that 31 nerves (32%) were normal, light touch was diminished in 38 nerves (40%), protective sensation was diminished in 17 nerves (18%), loss of protective sensation occurred in 5 nerves (5%), and 5 nerves (5%) were anesthetic. There was a negative relationship between age, smoking, concomitant injuries, and sensory recovery. Our results demonstrate that concomitant tendon, bone and vascular injuries, older age, and smoking were associated with worse sensory nerve recovery results. However, all digital nerve injuries should be repaired, regardless of these prognostic factors.

  2. Extra-virgin olive oil: are consumers provided with the sensory quality they want? A hedonic price model with sensory attributes.

    Science.gov (United States)

    Cavallo, Carla; Caracciolo, Francesco; Cicia, Gianni; Del Giudice, Teresa

    2018-03-01

    Over the years, niche-differentiation strategies and food policies have pushed quality standards of European extra-virgin olive oil towards a product that has a sensory profile consisting of fruity, bitter and pungent notes, with such oils having excellent healthy features. However, it is unclear whether typical consumers are ready for a richer and more complex sensory profile than the neutral one historically found on the market. This potential discrepancy is investigated in the present study aiiming to determine whether current demand is able to appreciate this path of quality enhancement. Implicit prices for each and every attribute of extra-virgin olive oil with a focus on sensory characteristics were investigated using a hedonic price model. Although confirming the importance of origin and terroir for extra-virgin olive oil, the results of the present study strongly confirm the discrepancy between what is currently valued on the market and what novel supply trends are trying to achieve in terms of the sensory properties of such products. Increasing consumer awareness about the direct link between the health quality of oils and their sensory profile appears to be necessary to make quality enhancement programs more successful on the market and hence more effective for companies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Membrane potential correlates of sensory perception in mouse barrel cortex.

    Science.gov (United States)

    Sachidhanandam, Shankar; Sreenivasan, Varun; Kyriakatos, Alexandros; Kremer, Yves; Petersen, Carl C H

    2013-11-01

    Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.

  4. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... and equation-free techniques allow for a better reproduction and understanding of recent experimental findings. Talks: Olfaction as a Model System for Sensory-Processing Neural Networks (Jens Midtgaard, University of Copenhagen, Denmark) Nonlinear Effects of Signal Transduction in Olfactory Sensory Neurons...

  5. A quantitative analysis of 2-D gels identifies proteins in which labeling is increased following long-term sensitization in Aplysia

    International Nuclear Information System (INIS)

    Castellucci, V.F.; Kennedy, T.E.; Kandel, E.R.; Goelet, P.

    1988-01-01

    Long-term memory for sensitization of the gill- and siphon-withdrawal reflex in Aplysia, produced by 4 days of training, is associated with increased synaptic efficacy of the connection between the sensory and motor neurons. This training is also accompanied by neuronal growth; there is an increase in the number of synaptic varicosities per sensory neuron and in the number of active zones. Such structural changes may be due to changes in the rates of synthesis of certain proteins. We have searched for proteins in which the rates of [ 35 S]methionine labeling are altered during the maintenance phase of long-term memory for sensitization by using computer-assisted quantitative 2-D gel analysis. This method has allowed us to detect 4 proteins in which labeling is altered after 4 days of sensitization training

  6. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Science.gov (United States)

    2010-07-01

    ... to be measured in air. (5) Monitoring performance. Monitoring shall be performed when the equipment... devices in gas and vapor service) or § 63.1012(f) (compressors). (d) Sensory monitoring methods. Sensory... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Instrument and sensory monitoring for...

  7. Psychometric Properties of Dunn\\'s Sensory Profile School Companion

    Directory of Open Access Journals (Sweden)

    Guita Movallali

    2017-10-01

    Conclusion The results showed that Dunn's sensory profile has good reliability and validity. Dunn's sensory profile is a useful tool for assessing sensory processing patterns in school and kindergarten settings, and can be used by occupational therapists in clinical environments and by psychologists in educational environments. Information obtained from this profile can have diagnostic value and could also be used for the design of curriculum and classroom space.

  8. Methyl-accepting protein associated with bacterial sensory phodopsin I

    International Nuclear Information System (INIS)

    Spudich, E.N.; Hasselbacher, C.A.; Spudich, J.L.

    1988-01-01

    In vivo radiolabeling of Halaobacterium halobium phototaxis mutants and revertants with L-[methyl- 3 H] methionine implicated seven methyl-accepting protein bands with apparent molecular masses from 65 to 150 kilodaltons (kDa) in adaptation of the organism to chemo and photo stimuli, and one of these (94 kDa) was specifically implicated in photoaxis. The lability of the radiolabeled bands to mild base treatment indicated the the methyl linkages are carboxylmethylesters, as is the case in the eubacterial chemotaxis receptor-transducers. The 94-kDa protein was present in increased amounts in an overproducer of the apoprotein of sensory rhodopsin I, one of two retinal-containing photoaxis receptors in H. halobium. It was absent in a strain the contained sensory rhodopsin II and that lacked sensory rhodopsin I and was also absent in a mutant that lacked both photoreceptors. Based in the role of methyl-accepting proteins in chemotaxis in other bacteria, we suggest that the 94-kDa protein is the signal transducer for sensory rhodopsin I. By [ 3 H]retinal labeling studies, we previously identified a 25-kDa retinal-binding polypeptide that was derived from photochemically reactive sensory rhodopsin I. When H. halobium membranes containing sensory rhodopsin I were treated by a procedure that stably reduced [ 3 H] retinal onto the 25-kDa apoprotein, a 94-kDa protein was also found to be radiolabeled. Protease digestion confirmed that the 94-kDa retinal-labeled protein was the same as the methyl-accepting protein that was suggested above to be the siginal transducer for sensory rhodopsin I. Possible models are that the 25- and 94-kDa proteins are tightly interacting components of the photosensory signaling machinery or that both are forms of sensory rhodopsin I

  9. Uranium-induced sensory alterations in the zebrafish Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Faucher, K., E-mail: kfaucher@hotmail.fr [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France); Floriani, M.; Gilbin, R.; Adam-Guillermin, C. [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France)

    2012-11-15

    The effect of chronic exposure to uranium ions (UO{sub 2}{sup 2+}) on sensory tissues including the olfactory and lateral line systems was investigated in zebrafish (Danio rerio) using scanning electron microscopy. The aim of this study was to determine whether exposure to uranium damaged sensory tissues in fish. The fish were exposed to uranium at the concentration of 250 {mu}g l{sup -1} for 10 days followed by a depuration period of 23 days. Measurements of uranium uptake in different fish organs: olfactory rosettes and bulbs, brain, skin, and muscles, were also determined by ICP-AES and ICP-MS during the entire experimental period. The results showed that uranium displayed a strong affinity for sensory structures in direct contact with the surrounding medium, such as the olfactory and lateral line systems distributed on the skin. A decreasing gradient of uranium concentration was found: olfactory rosettes > olfactory bulbs > skin > muscles > brain. At the end of the experiment, uranium was present in non-negligible quantities in sensory tissues. In parallel, fish exposed to uranium showed severe sensory tissue alterations at the level of the olfactory and lateral line systems. In both sensory systems, the gross morphology was altered and the sensory hair cells were significantly damaged very early after the initiation of exposure (from the 3rd day). At the end of the experiment, after 23 days of depuration, the lateral line system still displayed slight tissue alterations, but approximately 80% of the neuromasts in this system had regenerated. In contrast, the olfactory system took more time to recover, as more than half of the olfactory rosettes observed remained destroyed at the end of the experiment. This study showed, for the first time, that uranium is able to damage fish sensory tissues to such an extent that tissue regeneration is delayed.

  10. Identification and Characterization of Mouse Otic Sensory Lineage Genes

    Directory of Open Access Journals (Sweden)

    Byron H. Hartman

    2015-03-01

    Full Text Available Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5 as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting

  11. Some Motivational Properties of Sensory Stimulation in Psychotic Children

    Science.gov (United States)

    Rincover, Arnold; And Others

    1977-01-01

    This experiment assessed the reinforcing properties of sensory stimulation for autistic children using three different types of sensory stimulation: music, visual flickering, and visual movement. (SB)

  12. Rapid and Persistent Suppression of Feeding Behavior Induced by Sensitization Training in "Aplysia"

    Science.gov (United States)

    Acheampong, Ama; Kelly, Kathleen; Shields-Johnson, Maria; Hajovsky, Julie; Wainwright, Marcy; Mozzachiodi, Riccardo

    2012-01-01

    In "Aplysia," noxious stimuli induce sensitization of defensive responses. However, it remains largely unknown whether such stimuli also alter nondefensive behaviors. In this study, we examined the effects of noxious stimuli on feeding. Strong electric shocks, capable of inducing sensitization, also led to the suppression of feeding. The use of…

  13. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    Science.gov (United States)

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  14. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    OpenAIRE

    Mimi L. Phan; Kasia M. Bieszczad

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the ...

  15. Physicochemical stability and sensory acceptance of a carbonated ...

    African Journals Online (AJOL)

    Physicochemical stability and sensory acceptance of a carbonated cashew beverage with fructooligosaccharide added. ... Physicochemical analyzes (pH, titratable acidity, soluble solids (°Brix), vitamin C, reducing sugars) and sensory evaluation (triangular test and acceptance test) were performed throughout 60 days of ...

  16. Insufficient sensitivity of joint aspiration during the two-stage exchange of the hip with spacers.

    Science.gov (United States)

    Boelch, Sebastian Philipp; Weissenberger, Manuel; Spohn, Frederik; Rudert, Maximilian; Luedemann, Martin

    2018-01-10

    Evaluation of infection persistence during the two-stage exchange of the hip is challenging. Joint aspiration before reconstruction is supposed to rule out infection persistence. Sensitivity and specificity of synovial fluid culture and synovial leucocyte count for detecting infection persistence during the two-stage exchange of the hip were evaluated. Ninety-two aspirations before planned joint reconstruction during the two-stage exchange with spacers of the hip were retrospectively analyzed. The sensitivity and specificity of synovial fluid culture was 4.6 and 94.3%. The sensitivity and specificity of synovial leucocyte count at a cut-off value of 2000 cells/μl was 25.0 and 96.9%. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values were significantly higher before prosthesis removal and reconstruction or spacer exchange (p = 0.00; p = 0.013 and p = 0.039; p = 0.002) in the infection persistence group. Receiver operating characteristic area under the curve values before prosthesis removal and reconstruction or spacer exchange for ESR were lower (0.516 and 0.635) than for CRP (0.720 and 0.671). Synovial fluid culture and leucocyte count cannot rule out infection persistence during the two-stage exchange of the hip.

  17. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  18. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    International Nuclear Information System (INIS)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-01-01

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L"−"1. Densitometric values of cONS, immunostained with anti-G _α_o_l_f, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G _

  19. Sensory ERPs predict differences in working memory span and fluid intelligence.

    Science.gov (United States)

    Brumback, Carrie R; Low, Kathy A; Gratton, Gabriele; Fabiani, Monica

    2004-02-09

    The way our brain reacts to sensory stimulation may provide important clues about higher-level cognitive function and its operation. Here we show that short-latency (memory span, as well as between subjects scoring high and low on a fluid intelligence test. Our findings also suggest that this link between sensory responses and complex cognitive tasks is modality specific (visual sensory measures correlate with visuo-spatial tasks whereas auditory sensory measures correlate with verbal tasks). We interpret these findings as indicating that people's effectiveness in controlling attention and gating sensory information is a critical determinant of individual differences in complex cognitive abilities.

  20. Low-frequency rTMS with language therapy over a 3-month period for sensory-dominant aphasia: case series of two post-stroke Japanese patients.

    Science.gov (United States)

    Kakuda, Wataru; Abo, Masahiro; Uruma, Go; Kaito, Nobuyoshi; Watanabe, Motoi

    2010-01-01

    To examine the safety and feasibility of therapeutic application of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with language therapy for post-stroke patients with sensory-dominant aphasia. Two post-stroke Japanese patients with sensory-dominant aphasia were studied. In both patients, 10 sessions of 20-minute low-frequency rTMS with 1 Hz to the Wernicke's area were provided throughout 6-day hospitalization, followed by weekly outpatient rTMS treatment for 3 months. The language therapy was also provided through the period of in- and out-patient treatment. Language function was evaluated using the Token test and the Standard Language Test of Aphasia (SLTA) at the start and end of the in-patient treatment and the end of the outpatient treatment. The therapeutic protocol was well tolerated throughout the in- and out-patient treatments, without any adverse effects. The scores of the Token test and certain sub-categories of SLTA increased in both patients after the in-patient rTMS treatment. Persistent improvement of the score was noted over the 3-month post-discharge period. The proposed protocol of long-term application of low-frequency rTMS to the Wernicke's area and language therapy is considered a safe and feasible therapeutic approach for post-stroke patients with sensory-dominant aphasia.