WorldWideScience

Sample records for periodic shape oscillations

  1. Bifurcations and Crises in a Shape Memory Oscillator

    Directory of Open Access Journals (Sweden)

    Luciano G. Machado

    2004-01-01

    Full Text Available The remarkable properties of shape memory alloys have been motivating the interest in applications in different areas varying from biomedical to aerospace hardware. The dynamical response of systems composed by shape memory actuators presents nonlinear characteristics and a very rich behavior, showing periodic, quasi-periodic and chaotic responses. This contribution analyses some aspects related to bifurcation phenomenon in a shape memory oscillator where the restitution force is described by a polynomial constitutive model. The term bifurcation is used to describe qualitative changes that occur in the orbit structure of a system, as a consequence of parameter changes, being related to chaos. Numerical simulations show that the response of the shape memory oscillator presents period doubling cascades, direct and reverse, and crises.

  2. Replicate periodic windows in the parameter space of driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.S., E-mail: esm@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Souza, S.L.T. de [Universidade Federal de Sao Joao del-Rei, Campus Alto Paraopeba, Minas Gerais (Brazil); Medrano-T, R.O. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo (Brazil); Caldas, I.L. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-11-15

    Highlights: > We apply a weak harmonic perturbation to control chaos in two driven oscillators. > We find replicate periodic windows in the driven oscillator parameter space. > We find that the periodic window replication is associated with the chaos control. - Abstract: In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

  3. Discontinuous Spirals of Stable Periodic Oscillations

    DEFF Research Database (Denmark)

    Sack, Achim; Freire, Joana G.; Lindberg, Erik

    2013-01-01

    We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...

  4. Quasi-period oscillations of relay feedback systems

    International Nuclear Information System (INIS)

    Wen Guilin; Wang Qingguo; Lee, T.H.

    2007-01-01

    This paper presents an analytical method for investigation of the existence and stability of quasi-period oscillations (torus solutions) for a class of relay feedback systems. The idea is to analyze Poincare map from one switching surface to the next based on the Hopf bifurcation theory of maps. It is shown that there exist quasi-period oscillations in certain relay feedback systems

  5. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  6. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  7. On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator

    International Nuclear Information System (INIS)

    Guo, Yu; Luo, Albert C.J.

    2015-01-01

    In this paper, analytically predicted are complex periodic motions in the periodically forced, damped, hardening Duffing oscillator through discrete implicit maps of the corresponding differential equations. Bifurcation trees of periodic motions to chaos in such a hardening Duffing oscillator are obtained. The stability and bifurcation analysis of periodic motion in the bifurcation trees is carried out by eigenvalue analysis. The solutions of all discrete nodes of periodic motions are computed by the mapping structures of discrete implicit mapping. The frequency-amplitude characteristics of periodic motions are computed that are based on the discrete Fourier series. Thus, the bifurcation trees of periodic motions are also presented through frequency-amplitude curves. Finally, based on the analytical predictions, the initial conditions of periodic motions are selected, and numerical simulations of periodic motions are carried out for comparison of numerical and analytical predictions. The harmonic amplitude spectrums are also given for the approximate analytical expressions of periodic motions, which can also be used for comparison with experimental measurement. This study will give a better understanding of complex periodic motions in the hardening Duffing oscillator.

  8. Quasi-periodic synchronisation of self-modulation oscillations in a ring chip laser by an external periodic signal

    International Nuclear Information System (INIS)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N

    2011-01-01

    The synchronisation of periodic self-modulation oscillations in a ring Nd:YAG chip laser under an external periodic signal modulating the pump power has been experimentally investigated. A new quasi-periodic regime of synchronisation of self-modulation oscillations is found. The characteristic features of the behaviour of spectral and temporal structures of synchronised quasi-periodic oscillations with a change in the external signal frequency are studied. (control of laser radiation parameters)

  9. Modification of shape oscillations of an attached bubble by surfactants

    Directory of Open Access Journals (Sweden)

    Tihon J.

    2013-04-01

    Full Text Available Surface-active agents (surfactants, e.g. washing agents strongly modifies properties of gas-liquid interface. We have carried out extensive experiments, in which we study effect of surfactants on the shape oscillations of a bubble, which is attached at a tip of a capillary. In the experiments, shape oscillations of a bubble are invoked by a motion of a capillary, to which the bubble is injected. Decaying oscillations are recorded and their frequency and damping are evaluated. By changing the excitation frequency, three lowest oscillation modes are studied. Experiments were repeated in aqueous solution of several surfactants (terpineol, SDS, CTAB, Triton X-100, Triton X-45 at various concentrations. Generally, these features are observed: Initially a surfactant addition leads to an increase of the oscillation frequency (though surface tension is decreasing; this effect can be attributed to the increasing interfacial elasticity. The decay time of oscillation is strongly decreasing, as a consequence of energy dissipation linked with Marangoni stresses. At a certain critical concentration, frequency decreases abruptly and the decay time passes by a minimum. With further addition of surfactant, frequency decreases, and the decay time slightly lengthens. Above critical micelle concentration, all these parameters stabilize. Interestingly, the critical concentration, at which frequency drop occurs, depends on mode order. This clearly shows that the frequency drop and minimum decay time are not a consequence of some abrupt change of interfacial properties, but are a consequence of some phenomena, which still need to be explained.

  10. Short periodic oscillations of the dwarf nova VW Hydri

    International Nuclear Information System (INIS)

    Haefner, R.; Schoembs, R.

    1977-01-01

    A coherent oscillation of approximately 88 s period and 0.m005 amplitude was detected during the decline stage at the end of the long eruption of VW Hyi in December 1975. The period changed erratically between 86 and 90 s during eight nights. There are indications that the amplitude depends on the phase of the orbital revolution. The new period favours models in which such oscillations are caused by the orbital motion of inhomogeneities in the disc. (orig.) [de

  11. A comparison of sawtooth oscillations in bean and oval shaped plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, E A [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Waelbroeck, F L [University of Texas, Austin, Texas 78712 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Austin, M E [University of Texas, Austin, Texas 78712 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Hyatt, A W [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Osborne, T H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Chu, M S [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Brennan, D P [Massachussets Institute of Technology, Cambridge, Massachusetts (United States); Gohil, P; Groebner, R J; Hsieh, C L [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Laboratory, Livermore, California (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Lohr, J [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, California (United States); Petty, C C; Politzer, P A; Prater, R [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Rhodes, T L [University of California-Los Angeles, Los Angeles, California (United States); Scoville, J T; Strait, E J; Turnbull, A D; Wade, M R [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Wang, G [University of California-Los Angeles, Los Angeles, California (United States); Reimerdes, H [Columbia University, New York, New York (United States); Zhang, C [ASIPP (China)

    2006-08-15

    The effect of plasma shape on sawtooth oscillations in the DIII-D tokamak plasmas is investigated by comparing discharges with cross-sections shaped like a bean and an oval. The two shapes are designed so that the Mercier instability threshold is reached when the axial safety factor is below unity for the bean and above unity for the oval cross-sections. This allows the role of interchange modes to be differentiated from that of the kink-tearing mode. The differences in the nature of the sawtooth oscillations in the bean and oval discharges are found to be determined primarily by extreme differences in the electron heat transport during the reheat. In both cases, the axial safety factor is found to be near unity following the crash. (letter to the editor)

  12. Rapid oscillations in cataclysmic variables. VI. Periodicities in erupting dwarf novae

    International Nuclear Information System (INIS)

    Patterson, J.

    1981-01-01

    We report an extensive study of the coherent oscillations observed in high-speed photometry of dwarf novae during eruption. The oscillations are in all cases singly periodic and sinusoidal to the limits of measurement. The detection of oscillations in 14 separate eruptions of AH Her and SY Cnc enables a general study of period variations. The stars trace out characteristic loops (''banana diagrams'') in the period-intensity plane. New detections are also reported for SS Cyg, EM Cyg, and HT Cas

  13. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  14. Bifurcation of forced periodic oscillations for equations with Preisach hysteresis

    International Nuclear Information System (INIS)

    Krasnosel'skii, A; Rachinskii, D

    2005-01-01

    We study oscillations in resonant systems under periodic forcing. The systems depend on a scalar parameter and have the form of simple pendulum type equations with ferromagnetic friction represented by the Preisach hysteresis nonlinearity. If for some parameter value the period of free oscillations of the principal linear part of the system coincides with the period of the forcing term, then one may expect the existence of unbounded branches of periodic solutions for nearby parameter values. We present conditions for the existence and nonexistence of such branches and estimates of their number

  15. Chaotic behavior of current-carrying plasmas in external periodic oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Noriyasu; Tanaka, Masayoshi; Komori, Akio; Kawai, Yoshinobu

    1989-01-01

    A set of cascading bifurcations and a chaotic state in the presence of an external periodic oscillation are experimentally investigated in a current-carrying plasma. The measured bifurcation sequence leading to chaos, which is controlled by changing plasma densities and the frequencies of external oscillations, is in qualitative agreement with a theory which describes anharmonic systems in periodic fields. (author).

  16. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    International Nuclear Information System (INIS)

    He, Zhiwei; Sun, Yong; Zhan, Meng

    2013-01-01

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weak coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators

  17. Effect of various periodic forces on Duffing oscillator

    Indian Academy of Sciences (India)

    Bifurcations and chaos in the ubiquitous Duffing oscillator equation with different external periodic forces are studied numerically. The external periodic forces considered are sine wave, square wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave, rectangular wave with amplitude-dependent ...

  18. Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm

    Science.gov (United States)

    Fletcher, Leigh N.; Guerlet, Sandrine; Orton, Glenn S.; Cosentino, Richard G.; Fouchet, Thierry; Irwin, Patrick G. J.; Li, Liming; Flasar, F. Michael; Gorius, Nicolas; Morales-Juberías, Raúl

    2017-11-01

    The equatorial middle atmospheres of the Earth1, Jupiter2 and Saturn3,4 all exhibit a remarkably similar phenomenon—a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system1,5,6, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection7,8. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an 15-year period3,9) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 201010-12, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years13. Far from the storm, the Cassini temperature measurements showed a dramatic 10 K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.

  19. Periodic synchronization and chimera in conformist and contrarian oscillators

    Science.gov (United States)

    Hong, Hyunsuk

    2014-06-01

    We consider a system of phase oscillators that couple with both attractive and repulsive interaction under a pinning force and explore collective behavior of the system. The oscillators can be divided into two subpopulations of "conformist" oscillators with attractive interaction and "contrarian" ones with repulsive interaction. We find that the interplay between the pinning force and the opposite relationship of the conformist and contrarian oscillators induce peculiar dynamic states: periodic synchronization, breathing chimera, and fully pinned state depending on the fraction of the conformists. Using the Watanabe-Strogatz transformation, we reduce the dynamics into a low-dimensional one and find that the above dynamic states are generated from the reduced dynamics.

  20. Can oscillating physics explain an apparently periodic universe?

    International Nuclear Information System (INIS)

    Hill, C.T.; Steinhardt, P.J.; Turner, M.S.; Chicago Univ., IL; Fermi National Accelerator Lab., Batavia, IL

    1990-01-01

    Recently, Broadhurst et al. have reported an apparent periodicity in a north-south pencil-beam red-shift survey of galaxies. We consider whether the periodicity may be an illusion caused by the oscillations of physical constants. Should the periodicity be disproven by subsequent observations, the same analysis can be used to derive new, stringent limits on the variations of physical constants. (orig.)

  1. Exact solutions of the Schrödinger equation with double ring-shaped oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang-Yuan, E-mail: yctcccy@163.net [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); You, Yuan; Wang, Xiao-Hua [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)

    2013-09-16

    We present the exact solutions of the Schrödinger equation with the double ring-shaped oscillator (DRSO) potential. By introducing a new variable x=cosθ and constructing super-universal associated Legendre polynomials we express the polar angular wave functions explicitly. We observe that the present DRSO has caused the symmetry breaking from the original spherical oscillator SU(3)⊃SO(3)⊃O(2) symmetries to the present O(2) symmetry due to the surrounded two ring-shaped inversed square potentials. Some special cases are also discussed.

  2. Exact solutions of the Schrödinger equation with double ring-shaped oscillator

    International Nuclear Information System (INIS)

    Chen, Chang-Yuan; You, Yuan; Wang, Xiao-Hua; Dong, Shi-Hai

    2013-01-01

    We present the exact solutions of the Schrödinger equation with the double ring-shaped oscillator (DRSO) potential. By introducing a new variable x=cosθ and constructing super-universal associated Legendre polynomials we express the polar angular wave functions explicitly. We observe that the present DRSO has caused the symmetry breaking from the original spherical oscillator SU(3)⊃SO(3)⊃O(2) symmetries to the present O(2) symmetry due to the surrounded two ring-shaped inversed square potentials. Some special cases are also discussed.

  3. Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms

    Science.gov (United States)

    Kallunki, J.; Riehokainen, A.

    2012-10-01

    In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.

  4. Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables

    International Nuclear Information System (INIS)

    Papaloizou, J.; Pringle, J.E.

    1978-01-01

    The usual hypothesis, that the short-period coherent oscillations seen in cataclysmic variables are attributable to g modes in a slowly rotating white dwarf, is considered. It is shown that this hypothesis is untenable for three main reasons: (i) the observed periods are too short for reasonable white dwarf models, (ii) the observed variability of the oscillations is too rapid and (iii) the expected rotation of the white dwarf, due to accretion, invalidates the slow rotation assumption on which standard g-mode theory is based. The low-frequency spectrum of a rotating pulsating star is investigated taking the effects of rotation fully into account. In this case there are two sets of low-frequency modes, the g modes, and modes similar to Rossby waves in the Earth's atmosphere and oceans, which are designated r modes. Typical periods for such modes are 1/m times the rotation period of the white dwarfs outer layers (m is the aximuthal wavenumber). It is concluded that non-radial oscillations of rotating white dwarfs can account for the properties of the oscillations seen in dwarf novae. Application of these results to other systems is also discussed. (author)

  5. Short-period oscillations in photoemission from thin films of Cr(100)

    Science.gov (United States)

    Vyalikh, Denis V.; Zahn, Peter; Richter, Manuel; Dedkov, Yu. S.; Molodtsov, S. L.

    2005-07-01

    Angle-resolved photoemission (PE) study of thin films of Cr grown on Fe(100) reveals thickness-dependent short-period oscillations of the PE intensity close to the Fermi energy at k‖˜0 . The oscillations are assigned to quantum-well states (QWS) caused by the nesting between the Fermi-surface sheets around the Γ and the X points in the Brillouin zone of antiferromagnetic Cr. The experimental data are confirmed by density-functional calculations applying a screened Korringa-Kohn-Rostoker Green’s function method. The period of the experimentally observed QWS oscillations amounts to about 2.6 monolayers and is larger than the fundamental 2-monolayer period of antiferromagnetic coupling in Cr.

  6. The origin of star-shaped oscillations of Leidenfrost drops

    Science.gov (United States)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  7. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    Science.gov (United States)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  8. Shape oscillations of microparticles on an optical microscope stage.

    Science.gov (United States)

    Zhu, Z M; Apfel, R E

    1985-11-01

    A modulated acoustic radiation pressure technique to produce quadrupole shape oscillations of drops ranging in diameter from 50-220 micron has been used by us. These drops have been suspended by acoustic levitation in a small chamber mounted on a stage of an optical microscope, which allowed easy viewing. The fission of drops and the deformation of sea urchin eggs were also observed.

  9. On the short periods oscillation in relativistic stars

    International Nuclear Information System (INIS)

    Aquilano, R.; Morales, S.; Navone, H.; Sevilla, D.; Zorzi, A.

    2009-01-01

    We expand the study of neutron and strange matter stars with general relativistic formalism. We analyze the correlation with the observational data short periods oscillations in these stars, and we intend to discriminate between them.

  10. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  11. Periodic auroral forms and geomagnetic field oscillations in the 1400 MLT region

    International Nuclear Information System (INIS)

    Potemra, T.A.; Vo, H.; Venkatesan, D.; Cogger, L.L.; Erlandson, R.E.; Zanetti, L.J.; Bythrow, P.F.; Anderson, B.J.

    1990-01-01

    The UV images obtained with the Viking satellite often show bright features which resemble beads or pearls aligned in the east-west direction between noon and 1800 MLT. Viking acquired a series of 25 UV images during a 28-min period on July 29, 1986, which showed a distinct series of periodic bright features in this region. Magnetic field and hot plasma measurements obtained by Viking confirm that the UV emissions are colocated with the field line projection of an upward-flowing region 1 Birkeland current and precipitating energetic (∼200 eV) electrons. The magnetic field and electric field measurements show transverse oscillations with a nearly constant period of about 3.5 min from 67 degree invariant latitude equatorward up to the location of the large-scale Birkeland current system near 76 degree invariant latitude. The electric field oscillations lead the magnetic field oscillations by about a quarter-period. The authors interpret the observed oscillations as standing Alfven waves driven at a frequency near the local resonance frequency by a large-scale wave in the boundary layer. They propose that the energy flux of the precipitating low-energy electrons in this afternoon region is modulated by this boundary wave and produces the periodic UV emission features. The results of this study support the view that large-scale oscillations of magnetospheric boundaries, possibly associated with the Kelvin-Helmholtz instability, can modulate currents, particles, and auroral forms

  12. A 20-day period standing oscillation in the northern winter stratosphere

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2013-04-01

    Full Text Available Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

  13. Periodic oscillation and exponential stability of delayed CNNs

    Science.gov (United States)

    Cao, Jinde

    2000-05-01

    Both the global exponential stability and the periodic oscillation of a class of delayed cellular neural networks (DCNNs) is further studied in this Letter. By applying some new analysis techniques and constructing suitable Lyapunov functionals, some simple and new sufficient conditions are given ensuring global exponential stability and the existence of periodic oscillatory solution of DCNNs. These conditions can be applied to design globally exponentially stable DCNNs and periodic oscillatory DCNNs and easily checked in practice by simple algebraic methods. These play an important role in the design and applications of DCNNs.

  14. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2017-10-20

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  15. Computation of periods of acoustical oscillations of the sun

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Zharkov, V.N.

    1977-01-01

    It is stated that regular pulsations of the Sun were first reported in 1975-76 by several investigators (see Nature 259:87 and 92 (1976)), and that these oscillations were difficult to identify. It was decided to compute the periods of some acoustical modes using experience gained in calculations of free oscillations of Jupiter and Saturn, employing some complete solar models for the interior, the convective zone and the solar atmosphere. The equations employed and the methods of computations are described, and the results are given. (U.K.)

  16. Analytical approximations for the amplitude and period of a relaxation oscillator

    Directory of Open Access Journals (Sweden)

    Golkhou Vahid

    2009-01-01

    Full Text Available Abstract Background Analysis and design of complex systems benefit from mathematically tractable models, which are often derived by approximating a nonlinear system with an effective equivalent linear system. Biological oscillators with coupled positive and negative feedback loops, termed hysteresis or relaxation oscillators, are an important class of nonlinear systems and have been the subject of comprehensive computational studies. Analytical approximations have identified criteria for sustained oscillations, but have not linked the observed period and phase to compact formulas involving underlying molecular parameters. Results We present, to our knowledge, the first analytical expressions for the period and amplitude of a classic model for the animal circadian clock oscillator. These compact expressions are in good agreement with numerical solutions of corresponding continuous ODEs and for stochastic simulations executed at literature parameter values. The formulas are shown to be useful by permitting quick comparisons relative to a negative-feedback represillator oscillator for noise (10× less sensitive to protein decay rates, efficiency (2× more efficient, and dynamic range (30 to 60 decibel increase. The dynamic range is enhanced at its lower end by a new concentration scale defined by the crossing point of the activator and repressor, rather than from a steady-state expression level. Conclusion Analytical expressions for oscillator dynamics provide a physical understanding for the observations from numerical simulations and suggest additional properties not readily apparent or as yet unexplored. The methods described here may be applied to other nonlinear oscillator designs and biological circuits.

  17. Bloch oscillations and accelerated Bose–Einstein condensates in an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it

    2017-01-30

    Highlights: • Discrete nonlinear Schrödinger model for accelerated BECs in optical lattices. • Numerical computation of wavefunction BECs dynamics. • Correlation between nonlinearity and the oscillating period of the BEC's center of mass. • Discussion of the validity of the Bloch Theorem for accelerated BECs in an optical lattice. - Abstract: We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations depends, in principle, on the initial shape of the BEC wavepacket. Here, by making use of the nearest-neighbor model for the numerical analysis of the BEC wavefunction, we show that in real experiments the period of the Bloch oscillations does not really depend on the shape of the initial wavepacket and that the relative uncertainty, due to the fact that the initial shape of the wavepacket may be asymmetrical, is smaller than the one due to experimental errors. Furthermore, we also show that the relation between the oscillation period and the scattering length of the BEC's atoms is linear; this fact suggests us a new experimental procedure for the measurement of the scattering length of atoms.

  18. Open-loop control of quasiperiodic thermoacoustic oscillations

    Science.gov (United States)

    Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.

    2017-11-01

    The open-loop application of periodic acoustic forcing has been shown to be a potentially effective strategy for controlling periodic thermoacoustic oscillations, but its effectiveness on aperiodic thermoacoustic oscillations is less clear. In this experimental study, we apply periodic acoustic forcing to a ducted premixed flame oscillating quasiperiodically at two incommensurate natural frequencies, f1 and f2. We find that (i) above a critical forcing amplitude, the system locks into the forcing by oscillating only at the forcing frequency ff, producing a closed periodic orbit in phase space with no evidence of the original T2 torus attractor; (ii) the critical forcing amplitude required for lock-in decreases as ff approaches either f1 or f2, resulting in characteristic ∨-shaped lock-in boundaries around the two natural modes; and (iii) for a wide range of forcing frequencies, the system's oscillation amplitude can be reduced to less than 20% of that of the unforced system. These findings show that the open-loop application of periodic acoustic forcing can be an effective strategy for controlling aperiodic thermoacoustic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  19. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    Science.gov (United States)

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of

  20. Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator

    International Nuclear Information System (INIS)

    Li Qun-Hong; Chen Yu-Ming; Qin Zhi-Ying

    2011-01-01

    The stick-slip behavior in friction oscillators is very complicated due to the non-smoothness of the dry friction, which is the basic form of motion of dynamical systems with friction. In this paper, the stick-slip periodic solution in a single-degree-of-freedom oscillator with dry friction is investigated in detail. Under the assumption of kinetic friction being the Coulomb friction, the existence of the stick-slip periodic solution is considered to give out an analytic criterion in a class of friction systems. A two-parameter unfolding diagram is also described. Moreover, the time and states of motion on the boundary of the stick and slip motions are semi-analytically obtained in a single stick-slip period. (general)

  1. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    Science.gov (United States)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  2. Analysis of diffusivity of the oscillating reaction components in a microreactor system

    Directory of Open Access Journals (Sweden)

    Martina Šafranko

    2017-01-01

    Full Text Available When performing oscillating reactions, periodical changes in the concentrations of reactants, intermediaries, and products take place. Due to the mentioned periodical changes of the concentrations, the information about the diffusivity of the components included into oscillating reactions is very important for the control of the oscillating reactions. Non-linear dynamics makes oscillating reactions very interesting for analysis in different reactor systems. In this paper, the analysis of diffusivity of the oscillating reaction components was performed in a microreactor, with the aim of identifying the limiting component. The geometry of the microreactor microchannel and a well defined flow profile ensure optimal conditions for the diffusion phenomena analysis, because diffusion profiles in a microreactor depend only on the residence time. In this paper, the analysis of diffusivity of the oscillating reaction components was performed in a microreactor equipped with 2 Y-shape inlets and 2 Y-shape outlets, with active volume of V = 4 μL at different residence times.

  3. Image Segmentation Based on Period Difference of the Oscillation

    Institute of Scientific and Technical Information of China (English)

    王直杰; 张珏; 范宏; 柯克峰

    2004-01-01

    A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected.Each group of the neurons that correspond to each object synchronizes while different gronps of the neurons oscillate at different period. Applying this period difference,different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper.

  4. Excitation of high numbers harmonics by flows of oscillators in a periodic potential

    International Nuclear Information System (INIS)

    Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.

    2005-01-01

    It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL

  5. Non-linear Shape Oscillations of Rising Drops and Bubbles: Experiments and Simulations.

    Czech Academy of Sciences Publication Activity Database

    Lalanne, B.; Abi Chebel, N.; Vejražka, Jiří; Tanguy, S.; Masbernat, O.; Risso, F.

    2015-01-01

    Roč. 27, č. 12 (2015), s. 123305 ISSN 1070-6631. [Conference of European Colloid and Interface Society /27./. Sofia, 01.09.2013-06.09.2013] R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : shape oscillations * nonlinearitites * interface dynamics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.017, year: 2015

  6. Nonlinear dynamics of a nonsmooth shape memory alloy oscillator

    International Nuclear Information System (INIS)

    Cardozo dos Santos, Bruno; Amorim Savi, Marcelo

    2009-01-01

    In the last years, there is an increasing interest in nonsmooth system dynamics motivated by different applications including rotor dynamics, oil drilling and machining. Besides, shape memory alloys (SMAs) have been used in various applications exploring their high dissipation capacity related to their hysteretic behavior. This contribution investigates the nonlinear dynamics of shape memory alloy nonsmooth systems considering a linear oscillator with a discontinuous support built with an SMA element. A constitutive model developed by Paiva et al. [Paiva A, Savi MA, Braga AMB, Pacheco PMCL. A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int J Solids Struct 2005;42(11-12):3439-57] is employed to describe the thermomechanical behavior of the SMA element. Numerical investigations show results where the SMA discontinuous support can dramatically change the system dynamics when compared to those associated with a linear elastic support system. A parametric study is of concern showing the system behavior for different system characteristics, forcing excitation and also gaps. These results show that smart materials can be employed in different kinds of mechanical systems exploring some of the remarkable properties of these alloys.

  7. Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium.

    Science.gov (United States)

    López-Sauri, D A; Veleva, L; Pérez-Ángel, G

    2015-09-14

    Cathodic current and potential oscillations were observed during electrodeposition of cadmium from a cyanide electrolyte on a vertical platinum electrode, in potentiostatic and galvanostatic experiments. Electrochemical impedance spectroscopy experiments revealed a region of negative real impedance in a range of non-zero frequencies, in the second descending branch with a positive slope of the N-shape current-potential curve. This kind of dynamical behaviour is characteristic of the HN-NDR oscillators (oscillators with the N-Shape current-potential curve and hidden negative differential resistance). The oscillations could be mainly attributed to the changes in the real active cathodic area, due to the adsorption of hydrogen molecules and their detachment from the surface. The instabilities of the electrochemical processes were characterized by time series, Fast Fourier Transforms and 2-D phase portraits showing quasi-periodic oscillations.

  8. Global Exponential Stability of Periodic Oscillation for Nonautonomous BAM Neural Networks with Distributed Delay

    Directory of Open Access Journals (Sweden)

    Hongli Liu

    2009-01-01

    Full Text Available We derive a new criterion for checking the global stability of periodic oscillation of bidirectional associative memory (BAM neural networks with periodic coefficients and distributed delay, and find that the criterion relies on the Lipschitz constants of the signal transmission functions, weights of the neural network, and delay kernels. The proposed model transforms the original interacting network into matrix analysis problem which is easy to check, thereby significantly reducing the computational complexity and making analysis of periodic oscillation for even large-scale networks.

  9. Planetary period oscillations in Saturn's magnetosphere: New results from the F-ring and proximal orbits

    Science.gov (United States)

    Provan, G.; Cowley, S. W. H.; Bunce, E. J.; Hunt, G. J.; Dougherty, M. K.

    2017-12-01

    We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field data during the high cadence ( 7 days) F-ring and proximal orbits. Previous results have shown that there are two PPO systems, one in each hemisphere. Both PPO periods show seasonal dependence, and since mid-2014 the Northern PPO period has been 10.8 h and the Southern PPO period 10.7 h. The beat period of the two oscillations is 45 days. Previous results demonstrated that in the Northern (Southern) polar region only pure Northern (Southern) oscillations can be observed, whilst in the equatorial region both oscillations are present and constructively and destructively interfere over the beat-cycle of the two oscillations. The PPOs are believed to be driven by twin-cell convection patterns in the polar ionosphere/thermosphere regions, with two systems of field-aligned currents transmitting the PPO flows to the magnetospheric plasma.The F-ring and proximal orbits uniquely observe the PPOs over 6 orbits during each PPO beat cycle. This high-cadence data demonstrates that over a beat cycle both the periods and amplitudes of the PPO observed within the each polar region are modulated by the PPO system from the opposite hemisphere. When the two oscillations are in phase (anti-phase) the `drag' of one system on the other acts to decrease (increase) the amplitude of the oscillations and the two PPO periods diverge (converge). We present a theoretical model showing that this coupling is due to the PPO flows from one hemisphere not just being communicated to the magnetosphere as previously assumed, but also to the opposite hemisphere. The result is inter-hemispheric coupling of the PPO flow systems within the ionosphere/thermosphere system, so that the northern PPO system drives a northern twin-cell convection pattern in the southern hemisphere, and vice versa, thus leading to the observed polar modulations of the PPOs.We will also present PPO phase models determined

  10. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  11. A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator

    International Nuclear Information System (INIS)

    Shukla, Anant Kant; Ramamohan, T R; Srinivas, S

    2014-01-01

    In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour. (papers)

  12. Periodic-impact motions and bifurcations in dynamics of a plastic impact oscillator with a frictional slider

    International Nuclear Information System (INIS)

    Luo, G.W.; Lv, X.H.; Ma, L.

    2008-01-01

    A two-degree-of-freedom plastic impact oscillator with a frictional slider is considered. Dynamics of the plastic impact oscillator are analyzed by a three-dimensional map, which describes free flight and sticking solutions of two masses of the system, between impacts, supplemented by transition conditions at the instants of impacts. Piecewise property and singularity are found to exist in the impact Poincare map. The piecewise property of the map is caused by the transitions of free flight and sticking motions of two masses immediately after the impact, and the singularity of the map is generated via the grazing contact of two masses immediately before the impact. These properties of the map have been shown to exhibit particular types of sliding and grazing bifurcations of periodic-impact motions under parameter variation. The influence of piecewise property, grazing singularity and parameter variation on dynamics of the vibro-impact system is analyzed. The global bifurcation diagrams of before-impact velocity as a function of the excitation frequency are plotted to predict much of the qualitative behavior of the system. The global bifurcations of period-N single-impact motions of the plastic impact oscillator are found to exhibit extensive and systematic characteristics. Dynamics of the impact oscillator, in the elastic impact case, is also analyzed. This type of impact is modelled by using the conditions of conservation of momentum and an instantaneous coefficient of restitution rule. The differences in periodic-impact motions and bifurcations are found by making a comparison between dynamic behaviors of the plastic and elastic impact oscillators with a frictional slider. The best progression of the plastic impact oscillator is found to occur in period-1 single-impact sticking motion with large impact velocity. The largest progression of the elastic impact oscillator occurs in period-1 multi-impact motion. The simulative results show that the plastic impact

  13. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)

    2016-11-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  14. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    International Nuclear Information System (INIS)

    Jiang, Yu; Baoyin, Hexi

    2016-01-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  15. 4. 7s nearly periodic oscillations superimposed on the solar microwave great burst of 28 March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P; Piazza, L R; Raffaelli, J C [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1977-09-01

    An unusual fast oscillation was found superimposed on the solar great burst on 28 March 1976, as measured at 7 GHz. The period of the oscillation was 4.7 +- 0.9 s, defined over the entire duration of the event. The amplitude of the oscillation was proportional to the flux density in the range 50periodic time structure.

  16. Periodic oscillations in linear continuous media coupled with nonlinear discrete systems

    International Nuclear Information System (INIS)

    Lupini, R.

    1998-01-01

    A general derivation of partial differential equations with boundary conditions in the form of ordinary differential equations is obtained using the principle of stationary action for a Lagrangian function composed of continuous plus discrete parts in interaction across the boundaries of a 1-dimensional medium. This approach leads directly to the theorem of energy conservation. For linear continuous medium, homogeneous Dirichlet condition at one boundary, and nonlinear oscillator at the other boundary, the entire differential problem reduces to a nonlinear differential-difference equation of neutral type and of the second order. The lag parameter is τ = l/c, where c is the phase speed, l the length of the continuum. The Author investigate the problem of the occurrence of periodic solutions of period integer multiple of the lag (super harmonic solutions) in the case of zero inertia of the boundary system. The problem for such oscillations is shown to reduce to systems of ordinary differential equations with matching conditions in a phase space of lower dimensionality: Phase-plane techniques are used to determine solutions of period 4τ, 8τ and 6τ

  17. Chaplygin sleigh with periodically oscillating internal mass

    Science.gov (United States)

    Bizyaev, Ivan A.; Borisov, Alexey V.; Kuznetsov, Sergey P.

    2017-09-01

    We consider the movement of Chaplygin sleigh on a plane that is a solid body with imposed nonholonomic constraint, which excludes the possibility of motions transversal to the constraint element (“knife-edge”), and complement the model with an attached mass, periodically oscillating relatively to the main platform of the sleigh. Numerical simulations indicate the occurrence of either unrestricted acceleration of the sleigh, or motions with bounded velocities and momenta, depending on parameters. We note the presence of phenomena characteristic to nonholonomic systems with complex dynamics; in particular, attractors occur responsible for chaotic motions. In addition, quasiperiodic regimes take place similar to those observed in conservative nonlinear dynamics.

  18. Bacterial mitosis: Partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell

    DEFF Research Database (Denmark)

    Ebersbach, G.; Gerdes, Kenn

    2004-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells......A-GFP oscillated in spiral-shaped structures. Amino acid substitutions in ParA simultaneously abolished ParA spiral formation, oscillation and either plasmid localization or plasmid separation at mid-cell. Therefore, our results suggest that ParA spirals position plasmids at the middle of the bacterial nucleoid...

  19. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  20. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Nakariakov, Valery M.

    2015-01-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s −1 for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s −1 ). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed

  1. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2015-05-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s{sup −1} for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s{sup −1}). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed.

  2. Dynamical Jumps in a Shape Memory Alloy Oscillator

    Directory of Open Access Journals (Sweden)

    H. S. Oliveira

    2014-01-01

    Full Text Available The dynamical response of systems with shape memory alloy (SMA elements presents a rich behavior due to their intrinsic nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.

  3. Cell enlargement of plant tissue explants oscillates with a temperature-compensated period of ca. 24 min

    Science.gov (United States)

    Morre, D. James; Ternes, Philipp; Morre, Dorothy M.

    2002-01-01

    Rate of plant cell enlargement, measured at intervals of 3 min using a sensitive linear transducer, oscillates with a minimum period of about 24 min that parallels the 24-min periodicity observed with the oxidation of NADH by the external plasma membrane NADH oxidase and of single cells measured previously by video-enhanced light microscopy. Also exhibiting 24-min oscillations is the steady-state rate of cell enlargement induced by the addition of the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges. The length of the 24-min period is temperature compensated and remains constant at 24 min when measured at 15, 25 or 35 degrees C, despite the fact that the rate of cell enlargement approximately doubles for each 10 degree C rise over this same range of temperatures.

  4. Experimental study of complex mixed-mode oscillations generated in a Bonhoeffer-van der Pol oscillator under weak periodic perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kuniyasu, E-mail: kuniyasu.shimizu@it-chiba.ac.jp [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino 275-0016 (Japan); Sekikawa, Munehisa [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki 214-8571 (Japan)

    2015-02-15

    Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

  5. Shape Memory Alloy-Based Periodic Cellular Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  6. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  7. Fundamental and Harmonic Oscillations in Neighboring Coronal Loops

    Science.gov (United States)

    Li, Hongbo; Liu, Yu; Vai Tam, Kuan

    2017-06-01

    We present observations of multimode (fundamental and harmonic) oscillations in a loop system, which appear to be simultaneously excited by a GOES C-class flare. Analysis of the periodic oscillations reveals that (1) the primary loop with a period of P a ≈ 4 minutes and a secondary loop with two periods of P a ≈ 4 minutes and P b ≈ 2 minutes are detected simultaneously in closely spaced loop strands; (2) both oscillation components have their peak amplitudes near the loop apex, while in the second loop the low-frequency component P a dominates in a loop segment that is two times larger than the high-frequency component P b ; (3) the harmonic mode P b shows the largest deviation from a sinusoidal loop shape at the loop apex. We conclude that multiple harmonic modes with different displacement profiles can be excited simultaneously even in closely spaced strands, similar to the overtones of a violin string.

  8. Periodic Cellular Structure Technology for Shape Memory Alloys

    Science.gov (United States)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  9. Shapes of nuclear configurations in a cranked harmonic oscillator model

    International Nuclear Information System (INIS)

    Troudet, T.; Arvieu, R.

    1980-05-01

    The shapes of nuclear configurations are calculated using Slater determinants built with cranked harmonic oscillator single particle states. The nuclear forces role is played by a volume conservation condition (of the potential or of the density) in a first part. In a second part, we have used the finite range, density dependent interaction of Cogny. A very simple classification of configurations emerges in the first part, the relevant parameter being the equatorial eccentricity of the nuclear density. A critical equatorial eccentricity is obtained which governs the accession to the case for which the nucleus is oblate and symmetric around its axis of rotation. Nuclear configurations calculated in the second part observe remarkably well these behaviors

  10. The periodicities in the infrared excess of G29-38 - An oscillating brown dwarf?

    International Nuclear Information System (INIS)

    Marley, M.S.; Lunine, J.I.; Hubbard, W.B.

    1990-01-01

    The oscillatory behavior of brown dwarfs has been investigated. The observed periodicities in the infrared excess of the white dwarf Giclas 29-38 are consistent with low-degree, intermediate radial order p-mode oscillations of a brown dwarf companion to the white dwarf. These oscillation modes have the correct frequencies, act on observable layers of the atmosphere, and may be excited to sufficient amplitudes to explain the observations. 14 refs

  11. Dry soil diurnal quasi-periodic oscillations in soil 222Rn concentrations

    International Nuclear Information System (INIS)

    Tommasone Pascale, F.; De Francesco, S.; Carbone, P.; Cuoco, E.; Tedesco, D.

    2014-01-01

    222 Rn concentrations have been monitored during the dry season in August 2009 and August 2010, in a reworked alluvial-pyroclastic soil of the Pietramelara Plain, in Southern Italy, with the aim of determining the role of atmospheric factors in producing the quasi-periodic oscillations in soil 222 Rn concentrations reported in the literature. In this study we present the results of a detailed analysis and matching of soil 222 Rn concentrations, meteorological and solar parameters where the observed oscillations feature a characteristic behavior with second order build-up and depletion limbs, separated by a daily maximum and minimum. All these features are clearly shown to be tied to sunrise and sunset timings and environmental radiative flux regimes. Furthermore, a significant, and previously unreported, second order correlation (r 2  = 0.73) between daily maximum hourly global radiation and the daily range of soil 222 Rn concentrations has been detected, allowing estimates of the amplitude of these oscillations to be made from estimated or measured solar radiation data. The correlation has been found to be valid even in the presence of persistent patchy daytime cloudiness. In this case a daytime prolongation of the night-time build up stage and an attenuation or even suppression of daytime depletion is observed (a previously unreported effect). Neither soil cracking, nor precipitation, both suggested in some studies as causative factors for these oscillations, during the dry season appear to be necessary in explaining their occurrence. We also report the results of an artificial shading experiment, conducted in August 2009, that further support this conclusion. As soil 222 Rn concentrations during the dry season show a characteristic daily cycle, radon monitoring in soils under these conditions necessarily has to be gauged to the timings of the daily maximum and minimum, as well as to the eventual occurrence of cloudiness and to its related effects, in order to

  12. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    Science.gov (United States)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  13. Increased alpha-band power during the retention of shapes and shape-location associations in visual short-term memory

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Johnson

    2011-06-01

    Full Text Available Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8-14 Hz power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task-relevance of shape information was systematically manipulated across trial blocks and EEG was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal delay-period alpha-band power in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape-location associations in short-term memory.

  14. Period doubling of azimuthal oscillations on a non-neutral magnetized electron column

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1985-01-01

    The low-frequency azimuthal oscillations on a non-neutral magnetized electron column of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large-amplitude fundamental-mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increased the wave form ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement. (author)

  15. Synchronization enhancement of indirectly coupled oscillators via periodic modulation in an optomechanical system.

    Science.gov (United States)

    Du, Lei; Fan, Chu-Hui; Zhang, Han-Xiao; Wu, Jin-Hui

    2017-11-20

    We study the synchronization behaviors of two indirectly coupled mechanical oscillators of different frequencies in a doublecavity optomechanical system. It is found that quantum synchronization is roughly vanishing though classical synchronization seems rather good when each cavity mode is driven by an external field in the absence of temporal modulations. By periodically modulating cavity detunings or driving amplitudes, however, it is possible to observe greatly enhanced quantum synchronization accompanied with nearly perfect classical synchronization. The level of quantum synchronization observed here is, in particular, much higher than that for two directly coupled mechanical oscillators. Note also that the modulation on cavity detunings is more appealing than that on driving amplitudes when the robustness of quantum synchronization is examined against the bath's mean temperature or the oscillators' frequency difference.

  16. Thickness periodicity in the auger line shape from epitaxial (111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Y; Vook, R W; Chao, S S

    1981-01-01

    The 61 eV MMM Cu Auger line doublet was recorded in the derivative mode as a function of thickness for epitaxial (111)Cu films approximately 1500 angstrom thick. The overlap of the doublet lines makes it possible to define a measure of the doublet profile called the ''R-factor'' as a ratio of the peak-to-peak heights of the small overlap oscillation to that of the major oscillation. To within the experimental error, it was found that the R-factor varies with a periodicity of approximately one monoatomic layer as the film thickens. Since these films grow by a layer growth mechaniism, the surface topography varies periodically with the number of monolayers deposited, going from a smooth to a rough to a smooth, etc. surface. It is believed that the occurrence of such a periodicity implies that there is a difference in the electronic structure at the surface of the flat areas of the film from that at the edges of monolayer high, flat islands. The amplitude of the oscillation in R is interpreted to be a measure of the relative amounts of edge area compared to flat area. These results show that it is possible to use Auger electron spectroscopy to monitor surface topography and the electronic structure changes that accompany the topographical changes occurring when epitaxial films grow by a layer growth mechanism.

  17. Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues

    NARCIS (Netherlands)

    Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.

    2011-01-01

    In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector

  18. Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues

    NARCIS (Netherlands)

    Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.; Michielsen, B.; Poirier, J.R.

    2012-01-01

    In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector

  19. Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Chen Lidi

    2005-01-01

    In this paper, an idealized, piecewise linear system is presented to model the vibration of gear transmission systems. Periodic motions in a generalized, piecewise linear oscillator with perfectly plastic impacts are predicted analytically. The analytical predictions of periodic motion are based on the mapping structures, and the generic mappings based on the discontinuous boundaries are developed. This method for the analytical prediction of the periodic motions in non-smooth dynamic systems can give all possible periodic motions based on the adequate mapping structures. The stability and bifurcation conditions for specified periodic motions are obtained. The periodic motions and grazing motion are demonstrated. This model is applicable to prediction of periodic motion in nonlinear dynamics of gear transmission systems

  20. Period and phase comparisons of near-decadal oscillations in solar, geomagnetic, and cosmic ray time series

    Science.gov (United States)

    Juckett, David A.

    2001-09-01

    A more complete understanding of the periodic dynamics of the Sun requires continued exploration of non-11-year oscillations in addition to the benchmark 11-year sunspot cycle. In this regard, several solar, geomagnetic, and cosmic ray time series were examined to identify common spectral components and their relative phase relationships. Several non-11-year oscillations were identified within the near-decadal range with periods of ~8, 10, 12, 15, 18, 22, and 29 years. To test whether these frequency components were simply low-level noise or were related to a common source, the phases were extracted for each component in each series. The phases were nearly identical across the solar and geomagnetic series, while the corresponding components in four cosmic ray surrogate series exhibited inverted phases, similar to the known phase relationship with the 11-year sunspot cycle. Cluster analysis revealed that this pattern was unlikely to occur by chance. It was concluded that many non-11-year oscillations truly exist in the solar dynamical environment and that these contribute to the complex variations observed in geomagnetic and cosmic ray time series. Using the different energy sensitivities of the four cosmic ray surrogate series, a preliminary indication of the relative intensities of the various solar-induced oscillations was observed. It provides evidence that many of the non-11-year oscillations result from weak interplanetary magnetic field/solar wind oscillations that originate from corresponding variations in the open-field regions of the Sun.

  1. Heater rod temperature change at boiling transition under flow oscillation

    International Nuclear Information System (INIS)

    Kasai, Shigeru; Toba, Akio; Takigawa, Yukio; Ebata, Shigeo; Morooka, Shin-ichi; Shirakawa, Ken-etsu; Utsuno, Hideaki.

    1986-01-01

    The experiments were performed to investigate the boiling transition phenomenon under flow oscillation (OSBT) during thermal hydraulic instability. It was found, from the experimental results, that the thermal hydraulic instability did not immediately lead to the boiling transition (BT) and, even when the BT occurred due to a power increase, the change in the heater rod temperature was periodically up and down with a saw-toothed shape and no excursion occurred. To investigate the temperature change characteristics, an analysis was also performed using the transient thermal hydraulics code. The analytical results showed that the shape of the heater rod temperature change was well simulated by presuming a repeat of alternate BT and rewetting. Based on these results, further analysis has been performed with the lumped parameter model to investigate the temperature profile characteristics as well as the effects of the post-BT heat transfer coefficient and the flow oscillation period on the maximum temperature. (author)

  2. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  3. Semiclassical analysis of long-wavelength multiphoton processes: The periodically driven harmonic oscillator

    International Nuclear Information System (INIS)

    Fox, Ronald F.; Vela-Arevalo, Luz V.

    2002-01-01

    The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances

  4. Resonance spiking by periodic loss in the double-sided liquid cooling disk oscillator

    Science.gov (United States)

    Nie, Rongzhi; She, Jiangbo; Li, Dongdong; Li, Fuli; Peng, Bo

    2017-03-01

    A double-sided liquid cooling Nd:YAG disk oscillator working at a pump repetition rate of 20 Hz is demonstrated. The output energy of 376 mJ is realized, corresponding to the optical-optical efficiency of 12.8% and the slope efficiency of 14%. The pump pulse width is 300 µs and the laser pulse width is 260 µs. Instead of being a damped signal, the output of laser comprises undamped spikes. A periodic intra-cavity loss was found by numerical analysis, which has a frequency component near the eigen frequency of the relaxation oscillation. Resonance effect will induce amplified spikes even though the loss fluctuates in a small range. The Shark-Hartmann sensor was used to investigate the wavefront aberration induced by turbulent flow and temperature gradient. According to the wavefront and fluid mechanics analysis, it is considered that the periodic intra-cavity loss can be attributed to turbulent flow and temperature gradient.

  5. Emission of SNF-oscillations by the plasma - periodic decelerating structure system

    International Nuclear Information System (INIS)

    Antonov, A.N.; Gestrina, G.N.; Kovpik, O.F.; Kornilov, E.A.; Moiseev, S.S.

    1983-01-01

    Emission of SHF-oscillations by a magnetoactive plasma inside a decelerating structure (annular waveguide), which is excited by an electron beam, has been studied. The electron beam is formed by a diode electron gun. Pulse duration was 400 μs, beam energy = 10 keV, current - up to 5 A. The beam 1.8 cm in diameter is injected into a glass interaction chamber. The chamber diameter is 20 cm, the length is 1 m. The interaction chamber and electron gun chamber were placed in a homogeneous magnetic field with intensity up to 2.5x10 5 axm -1 . The periodic deceleration structure was located in the interaction chamber coaxially with the electron beam. The structure total length was 40 cm. The working gas, argon, was fed into the structure through a needle injector. It is shown that the three-dimensional waves appearing in the plasma can be transformed by the structure to those emited without plasma density gradients and magnetic field. Conditions of effective separation of the energy of SHF-oscillations from the system: plasm-beam-narrow-slit decelerating structure are found. The above system can be used for amplification and generation of monochromatic oscillations in the millimeter waves range. Results of experimental studies are compared with theoretical calculations

  6. Evolution of the clock from yeast to man by period-doubling folds in the cellular oscillator.

    Science.gov (United States)

    Klevecz, R R; Li, C M

    2007-01-01

    Analysis of genome-wide oscillations in transcription reveals that the cell is an oscillator and an attractor and that the maintenance of a stable phenotype requires that maximums in expression in clusters of transcripts must be poised at antipodal phases around the steady state-this is the dynamic architecture of phenotype. Plots of the path through concentration phase space taken by all of the transcripts of Saccharomyces cerevisiae yield a simple three-dimensional surface. How this surface might change as period lengthens or as a cell differentiates is at the center of current work. We have shown that changes in gene expression in response to mutation or perturbation by drugs occur through a folding or unfolding of the surface described by this circle of transcripts and we suggest that the path from this 40-minute oscillation to the cell cycle and circadian rhythms takes place through a series of period-two or period-three bifurcations. These foldings in the surface of the putative attractor result in an increasingly dense set of nested trajectories in the concentrations of message and protein. Evolutionary advantage might accrue to an organism that could change period by changes in just one or a few genes as day length increased from 4 hours in the prebiotic Earth, through 8 hours during the expansion of photoautotrophs, to the present 24 hours.

  7. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    Science.gov (United States)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  8. Existence of periodic orbits in nonlinear oscillators of Emden–Fowler form

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C., E-mail: mancass@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico)

    2016-01-28

    The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an Emden–Fowler (EF) equation that is written as an autonomous two-dimensional ODE system for which we provide the phase-space analysis and the parametric solution. Through an invariant transformation we find periodic solutions to a certain class of EF equations that pass an integrability condition. We show that this condition is necessary to have periodic solutions and via the ODE analysis we also find the sufficient condition for periodic orbits. EF equations that do not pass integrability conditions can be made integrable via an invariant transformation which also allows us to construct periodic solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation and a positive power Emden–Fowler equation, are discussed in the same context. - Highlights: • An invariant transformation is used to find periodic solution of EF equations. • Phase plane study of the EF autonomous two-dimensional ODE system is performed. • Three examples are presented from the standpoint of the phase plane analysis.

  9. Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems.

    Science.gov (United States)

    Bae, Seul-A; Acevedo, Alison; Androulakis, Ioannis P

    2016-01-01

    Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered. We investigated established oscillatory mechanisms and designed a study to analyze the oscillatory characteristics of signaling molecules and system output in an effort to answer these questions. Two classic oscillators, Goodwin and PER, were selected as the model systems, and corresponding no-feedback models were created for each oscillator to discover the advantage of oscillating signals. Through simulating the original oscillators and the matching no-feedback models, we show that oscillating systems have the capability to achieve better resource-to-output efficiency, and we identify oscillatory characteristics that lead to improved efficiency.

  10. Synchronisation and desynchronisation of self-modulation oscillations in a ring chip laser under the action of a periodic signal and noise

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The effect of pump noise on the synchronisation of selfmodulation oscillations in a solid-state ring laser with periodic pump modulation is studied numerically and experimentally. It is found that, in contrast to desynchronisation that usually occurs under action of noise in the case of 1/1 synchronisation of self-oscillations by a periodic signal, the effect of noise on 1/2 synchronisation may be positive, namely, at a sufficiently low intensity, pump noise is favourable for synchronisation of self-oscillations, for narrowing of their spectrum, and for increasing the signal-to-noise ratio. (lasers)

  11. Quasi-periodic bifurcations and “amplitude death” in low-dimensional ensemble of van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emelianova, Yu.P., E-mail: yuliaem@gmail.com [Department of Electronics and Instrumentation, Saratov State Technical University, Polytechnicheskaya 77, Saratov 410054 (Russian Federation); Kuznetsov, A.P., E-mail: apkuz@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Turukina, L.V., E-mail: lvtur@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2014-01-10

    The dynamics of the four dissipatively coupled van der Pol oscillators is considered. Lyapunov chart is presented in the parameter plane. Its arrangement is discussed. We discuss the bifurcations of tori in the system at large frequency detuning of the oscillators. Here are quasi-periodic saddle-node, Hopf and Neimark–Sacker bifurcations. The effect of increase of the threshold for the “amplitude death” regime and the possibilities of complete and partial broadband synchronization are revealed.

  12. Aharonov-Bohm oscillations with fractional period in a multichannel Wigner crystal ring

    International Nuclear Information System (INIS)

    Krive, I.V.; Krokhin, A.A.

    1997-01-01

    We study the persistent current in a quasi 1D ring with strongly correlated electrons forming a multichannel Wigner crystal (WC). The influence of the Coulomb interaction manifests itself only in the presence of external scatterers that pin the WC. Two regimes of weak and strong pinning are considered. For strong pinning we predict the Aharonov-Bohm oscillations with fractional period. Fractionalization is due to the interchannel coupling in the process of quantum tunneling of the WC. The fractional period depends on the filling of the channels and may serve as an indicator of non-Fermi-liquid behaviour of interacting electrons in quasi 1D rings. (author). 20 refs

  13. Quasi-16-day period oscillations observed in middle atmospheric ozone and temperature in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Demissie, T.D.; Hibbins, R.E.; Espy, P.J. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway); Birkeland Centre for Space Science, Bergen (Norway); Kleinknecht, N.H.; Straub, C. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway)

    2013-09-01

    Nightly averaged mesospheric temperature derived from the hydroxyl nightglow at Rothera station (67 34' S, 68 08' W) and nightly midnight measurements of ozone mixing ratio obtained from Troll station (72 01' S, 2 32' E) in Antarctica have been used to investigate the presence and vertical profile of the quasi-16-day planetary wave in the stratosphere and mesosphere during the Antarctic winter of 2009. The variations caused by planetary waves on the ozone mixing ratio and temperature are discussed, and spectral and cross-correlation analyses are performed to extract the wave amplitudes and to examine the vertical structure of the wave from 34 to 80 km. The results show that while planetary-wave signatures with periods 3-12 days are strong below the stratopause, the oscillations associated with the 16-day wave are the strongest and present in both the mesosphere and stratosphere. The period of the wave is found to increase below 42 km due to the Doppler shifting by the strong eastward zonal wind. The 16-day oscillation in the temperature is found to be correlated and phase coherent with the corresponding oscillation observed in O{sub 3} volume mixing ratio at all levels, and the wave is found to have vertical phase fronts consistent with a normal mode structure. (orig.)

  14. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  15. Quasi-periodic oscillations and noise in low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Van der Klis, M.

    1989-01-01

    The phenomenology of quasi-periodic oscillations (QPOs) and noise in low-mass X-ray binaries (LMXBs) is discussed. Signal analysis aspects of QPO and noise are addressed along with the relationship between LMXBs and millisecond radio pulsars. The history and prehistory of QPOs and noise in LMXBs are examined. Universal noise components and normal and flaring branch QPOs in Z sources are described and the phenomenology of Z sources is discussed. Bright LMXBs known as atoll sources are considered, as are nonpersistently bright LMXBs accreting pulsars and black hole candidates. 162 refs

  16. Flame oscillations in tubes with nonslip at the walls

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, V' yacheslav; Bychkov, Vitaly; Petchenko, Arkady [Institute of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2006-06-15

    A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes. (author)

  17. Type I X-ray bursts, burst oscillations and kHz quasi-periodic oscillations in the neutron star system IGR J17191−2821

    NARCIS (Netherlands)

    Altamirano, D.; Linares, M.; Patruno, A.; Degenaar, N.; Wijnands, R.; Klein-Wolt, M.; van der Klis, M.; Markwardt, C.; Swank, J.

    2010-01-01

    We present a detailed study of the X-ray energy and power spectral properties of the neutron star transient IGR J17191−2821. We discovered four instances of pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The frequency difference between these kHz QPOs is between 315 and 362

  18. Numerical study on the effect of temperature oscillations on the crystallization front shape during Czochralski growth of gadolinium gallium garnet crystal

    Science.gov (United States)

    Faiez, Reza; Rezaei, Yazdan

    2017-10-01

    Time-dependent, finite volume method calculations of momentum and heat transfer were carried out to investigate the correlation between oscillatory convection and the crystallization front dynamics during the Czochralski (Cz) growth of an oxide material. The present modeling allows us to illustrate the modification of the interface shape during the time period of oscillation of the flow manifesting as the formation of a cold plume beneath the phase boundary. It was shown that the instability mechanism is associated with an irreversible dramatic change in the interface shape, which occurs at a critical Reynolds number significantly lower than that is predicted by the quasi-stationary global model analysis of the Cz growth system. The baroclinic term which appears in the vorticity equation in a rotating stratified fluid is used to describe the numerical results of the model. The properties of the thermal waves were studied in the monitoring points located nearby the interface. The waves are regular but not in fact vertically correlated as observed in the case of baroclinic waves. The Rayleigh-Benard dynamics is suggested to be the predominant mechanism even though the instability is primarily baroclinic.

  19. A powerful test for weak periodic signals with unknown light curve shape in sparse data

    International Nuclear Information System (INIS)

    Jager De, O.C.; Raubenheimer, B.C.; Swanepoel, J.W.H.

    1989-01-01

    A problem with most tests for periodicity is that they are powerful enough to detect only certain kinds of periodic shapes in the case of weak signals. This causes a selection effect with the identification of weak periodic signals. A new test for uniformity called the H-test is derived for which the probability distribution is an exponential function. This test is shown to have a very good power against most light curve shapes encountered in X- and γ-ray Astronomy and therefore makes the detection of sources with a larger variety of shapes possible. The use of the H-test is suggested if no a priori information about the light curve shape is available. It is also shown how the probability distribution of the test statistics changes when a periodicity search is conducted using very small steps in the period or frequency range. The flux sensitivity for various light curve shapes is also derived for a few tests and this flux is on average a minimum for the H-test

  20. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  1. Photoemission intensity oscillations in the valence bands of C70 film

    International Nuclear Information System (INIS)

    Li Yanjun; Wang Peng; Ni Jingfu; Meng Liang; Wang Xiaobo; Sheng Chunqi; Li Hongnian; Zhang Wenhua; Xu Yang; Xu Faqiang; Zhu Junfa

    2011-01-01

    Highlights: → The article develops a procedure for obtaining the accurate spectral intensities in the studies of the photoionization cross-section oscillation of C 70 . → The article fulfills the observation of all oscillating periods of the cross-section oscillation of C 70 . → The article reports the oscillating data for more molecular orbitals (feature C in the article) as compared with the published works. → The article reveals that some simple theoretical models based on the spherical symmetric approximation survive for the ellipsoidally shaped C 70 . - Abstract: We have measured and analyzed the photoemission spectra (PES) of a C 70 film in the photon energy region from 13.4 eV to 98.4 eV. The photoelectron intensities of two C 2p π-derived features (denoted by A and B) oscillate regularly in the whole energy region with some fine structures below ∼30 eV. To obtain the detailed information of the oscillations, we have developed a sophisticated but practical procedure for intensity calculation. The procedure consists of two core concepts. The first is ascribing the PES features to their corresponding molecular orbitals with the help of density functional calculations. The second is a background subtraction algorithm. With this procedure, we obtained the oscillating behavior for individual features (A and B), which is by and large consistent with the predictions based on the spherical symmetric approximation although C 70 has the ellipsoidal shape. Owing to the solid state effect, the oscillating amplitudes of the A/B intensity ratios are smaller than those of gas phase C 70 , but an orbital shift reported recently was not observed on our sample. The oscillating curve of a deeper feature, which consists of both σ and π states, are also reported.

  2. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  3. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  4. Mapping of the quasi-periodic oscillations at the flank magnetopause into the ionosphere

    Directory of Open Access Journals (Sweden)

    E. R. Dougal

    2013-11-01

    Full Text Available We have estimated the ionospheric location, area, and travel time of quasi-periodic oscillations originating from the magnetospheric flanks. This was accomplished by utilizing global and local MHD models and Tsyganenko semi-empirical magnetic field model on multiple published and four new cases believed to be caused by the Kelvin–Helmholtz Instability. Finally, we used auroral, magnetometer, and radar instruments to observe the ionospheric signatures. The ionospheric magnetic latitude determined using global MHD and Tsyganenko models ranged from 58.3–80.2 degrees in the Northern Hemisphere and −59.6 degrees to −83.4 degrees in the Southern Hemisphere. The ionospheric magnetic local time ranged between 5.0–13.8 h in the Northern Hemisphere and 1.3–11.9 h in the Southern Hemisphere. Typical Alfvén wave travel time from spacecraft location to the closest ionosphere ranged between 0.6–3.6 min. The projected ionospheric size calculated at an altitude of 100 km ranged from 47–606 km, the same order of magnitude as previously determined ionospheric signature sizes. Stationary and traveling convection vortices were observed in SuperDARN radar data in both hemispheres. The vortices were between 1000–1800 km in size. Some events were located within the ionospheric footprint ranges. Pc5 magnetic oscillations were observed in SuperMAG magnetometer data in both hemispheres. The oscillations had periods between 4–10 min with amplitudes of 3–25 nT. They were located within the ionospheric footprint ranges. Some ground magnetometer data power spectral density peaked at frequencies within one tenth of a mHz of the peaks found in the corresponding Cluster data. These magnetometer observations were consistent with previously published results.

  5. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  6. The impact of Mediterranean oscillations on periodicity and trend of temperature in the valley of the Nisava River: A fourier and wavelet approach

    Directory of Open Access Journals (Sweden)

    Martić-Bursać Nataša M.

    2017-01-01

    Full Text Available Periodicity of temperature on three stations in the Nisava River valley in period 1949-2014, has been analyzed by means of Fourier and wavelet transforms. Combined periodogram based on fast Fourier transform shows considerable similarity among individual series and identifies significant periods on 2.2, 2.7, 3.3, 5, 6-7, and 8.2 years in all datasets. Wavelet coherence analysis connects strongest 6-7 years spectral component to Mediterranean oscillation, starting in 1980s. Combined periodogram of Mediterranean oscillation index reveals 6-7 years spectral component as a dominant mode in period 1949-2014. Wavelet power spectra and partial combined periodograms show absence of 6-7 years component before 1975, after which this component becomes dominant in the spectrum. Consistency between alternation in temperature trend in the Nisava River valley and change in periodicity of Mediterranean oscillation was found. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI176008

  7. A Survey on Forced Oscillations in Power System

    OpenAIRE

    Ghorbaniparvar, Mohammadreza

    2016-01-01

    Oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations caught many attentions. Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system ...

  8. An easy trick to a periodic solution of relativistic harmonic oscillator

    Directory of Open Access Journals (Sweden)

    Jafar Biazar

    2014-04-01

    Full Text Available In this paper, the relativistic harmonic oscillator equation which is a nonlinear ordinary differential equation is investigated by Homotopy perturbation method. Selection of a linear operator, which is a part of the main operator, is one of the main steps in HPM. If the aim is to obtain a periodic solution, this choice does not work here. To overcome this lack, a linear operator is imposed, and Fourier series of sines will be used in solving the linear equations arise in the HPM. Comparison of the results, with those of resulted by Differential Transformation and Harmonic Balance Method, shows an excellent agreement.

  9. Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures

    DEFF Research Database (Denmark)

    Beermann, I.; Evlyukhin, A.; Boltasseva, Alexandra

    2008-01-01

    Fractal shaped periodic nanostructures formed with a 100 nm period square lattice of gold nanoparticles placed on a gold film are characterized using far-field nonlinear scanning optical microscopy, in which two-photon photoluminescence (TPL) excited with a strongly focused femtosecond laser beam...

  10. Power-level regulation and simulation of nonlinear pressurized water reactor core with xenon oscillation using H-infinity loop shaping control

    Directory of Open Access Journals (Sweden)

    Li Gang

    2016-01-01

    Full Text Available This investigation is to solve the power-level control issue of a nonlinear pressurized water reactor core with xenon oscillations. A nonlinear pressurized water reactor core is modeled using the lumped parameter method, and a linear model of the core is then obtained through the small perturbation linearization way. The H∞loop shapingcontrolis utilized to design a robust controller of the linearized core model.The calculated H∞loop shaping controller is applied to the nonlinear core model. The nonlinear core model and the H∞ loop shaping controller build the nonlinear core power-level H∞loop shaping control system.Finally, the nonlinear core power-level H∞loop shaping control system is simulatedconsidering two typical load processes that are a step load maneuver and a ramp load maneuver, and simulation results show that the nonlinear control system is effective.

  11. Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations

    Science.gov (United States)

    Muller, Andreas; Wang, Qu-Quan; Bianucci, Pablo; Xue, Qi-Kun; Shih, Chih-Kang

    2004-03-01

    By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot. We also measured the ground state radiative lifetimes of several quantum dots. The dipole moments calculated from the latter are in reasonable agreement with the dipole moments determined from the periodicity of the Rabi oscillations.

  12. Detection of very long period solar free oscillations in ambient seismic array noise

    Science.gov (United States)

    Caton, R.; Pavlis, G. L.; Thomson, D. J.; Vernon, F.

    2017-12-01

    For nearly two decades long-period seismologists have been aware that the Earth's free oscillations are in a constant state of excitement, even in the absence of large earthquakes. This phenomenon is now called the "Earth's hum," and much research has been done to determine what generates this hum. Here we examine a hypothesis first put forward by Thomson et al. in 2007 that a portion of the hum's energy comes from the sun. They hypothesized that solar free oscillations couple into the solid Earth, likely through electromagnetic processes, and produce signals that are observable in the frequency domain. If this is true, then at least some measurement of helioseismic oscillations may be possible using relatively cheap, ground-based instruments rather than spacecraft. In this project we attempt to improve upon previous studies by producing spectra from seismic arrays, rather than a single station. We use data from two arrays: The Homestake Mine 3D array in Lead, SD, and the Pinyon Flats array, which has seismometers in boreholes drilled into bedrock. Both have exceptionally low noise levels at ultra long periods and show easily visible earth tides on horizontal component data filtered to below the microseism band. In the Homestake data, below 500 μHz we have found evidence of what we suggest may be closely spaced solar g-mode lines. Such modes are produced by a density inversion at the top of the solar core. There is no sign of these modes in the Pinyon Flats data, but we find this is likely due to the signal-to-noise ratio of those data, which is significantly lower than Homestake. Significance tests of bands below 500 μHz indicate with probability levels as high as 40σ that these lines are not the result of random processes. Critical examination of our processing steps for sources of bias indicate that the observed line structure is not a processing artifact.

  13. Relaxation oscillations induced by amplitude-dependent frequency in dissipative trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Ware, A.S.; Newman, D.E.

    1994-01-01

    A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure for the coupled evolution of ion momentum and electron density response is developed to describe the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises from time-history integrals common to statistical closures. The memory associated with a finite time of energy transfer between coupled spectrum components does not sustain the oscillation in the simple model. Solutions of the model agree qualitatively with the time-dependent numerical solutions of the original dissipative trapped electron model, yielding oscillations with the proper phase relationship between the fluctuation energy and the frequency shift, the proper evolution of the wave number spectrum shape and particle flux, and a realistic period

  14. Pulsations of the Free Oscillations of the Earth in an Hourly Period Range

    Science.gov (United States)

    Sobolev, G. A.; Zakrzhevskaya, N. A.; Akatova, K. N.

    2018-05-01

    The records from 161 identical broadband seismic stations located in different regions of the world after the strong earthquakes off Sumatra Island on December 26, 2004 with magnitude M = 9.1, in Chile on February 27, 2010 with M = 8.8, and the Tohoku earthquake in Japan on March 11, 2011 with M = 9.0 are studied. Oscillations with a period of 11 h are analyzed. They are observed as pulsations in the free radial oscillations of the Earth lasting more than one week. The stations located a few hundred kilometers apart from each other demonstrate identical records. As the distance between the stations becomes larger, the structure of the records becomes different. At interstation distances of about 3800 km, the records at the stations have opposite phases, and at distances of 7600 km, the phases coincide. This is reflected in the spatial structure of the areas of the positive and negative phases of the oscillations on the Earth's surface. This structure recurs at the same time instant after the three considered earthquakes, which indicates that this effect is independent of the properties of the sources. The spatial positions of the areas of positive and negative phases are also not correlated to the geological conditions in the vicinity of the stations which are located both in the subduction zone and within the platform. The structure of the pulsations and their spatial distribution differ from the variations of the Earth's tides.

  15. Nonlinear oscillations of inviscid free drops

    Science.gov (United States)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  16. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  17. Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow

    International Nuclear Information System (INIS)

    Geld, C.W.M. van der; Berg, R. van de; Peukert, P.

    2009-01-01

    A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R m √(ρL/σ) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 ± 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R 0 , and C is √12, while for attached boiling bubbles C is found to amount 1.9√12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)

  18. Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow

    Energy Technology Data Exchange (ETDEWEB)

    Geld, C.W.M. van der; Berg, R. van de; Peukert, P. [Eindhoven University of Technology, Eindhoven (Netherlands). Faculty of Mechanical Engineering], e-mail: C.W.M._v.d.Geld@tue.nl

    2009-07-01

    A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R{sup m} {radical}({rho}L/{sigma}) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 {+-} 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R{sub 0}, and C is {radical}12, while for attached boiling bubbles C is found to amount 1.9{radical}12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)

  19. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  20. Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback.

    Science.gov (United States)

    Lin, Lyu-Chih; Liu, Ssu-Hsin; Lin, Fan-Yi

    2017-10-16

    We study the stability of period-one (P1) oscillations experimentally generated by semiconductor lasers subject to optical injection (OI) and by those subject to optical feedback (OF). With unique advantages of broad frequency tuning range and large sideband rejection ratio, P1 oscillations can be useful in applications such as photonic microwave generation, radio-over-fiber communication, and laser Doppler velocimeter. The stability of the P1 oscillations is critical for these applications, which can be affected by spontaneous emission and fluctuations in both temperature and injection current. Although linewidths of P1 oscillations generated by various schemes have been reported, the mechanisms and roles which each of the OI and the OF play have however not been investigated in detail. To characterize the stability of the P1 oscillations generated by the OI and the OF schemes, we measure the linewidths and linewidth reduction ratios (LRRs) of the P1 oscillations. The OF scheme has a narrowest linewidth of 0.21 ± 0.03 MHz compared to 4.7 ± 0.6 MHz in the OI scheme. In the OF scheme, a much larger region of LRRs higher than 90% is also found. The superior stability of the OF scheme is benefited by the fact that the P1 oscillations in the OF scheme are originated from the undamped relaxation oscillation of a single laser and can be phase-locked to one of its external cavity modes, whereas those in the OI scheme come from two independent lasers which bear no phase relation. Moreover, excess P1 linewidth broadening in the OI scheme caused by fluctuation in injection parameters associated with frequency jitter and relative intensity noise (RIN) is also minimized in the OF scheme.

  1. ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES

    International Nuclear Information System (INIS)

    Erkut, M. Hakan

    2011-01-01

    We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency κ to the orbital frequency Ω the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches Ω + κ and Ω to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio (Ω + κ)/(Ω) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.

  2. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies

    International Nuclear Information System (INIS)

    Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei

    2010-01-01

    A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)

  3. Controlling the optical properties of gold nanoparticles periodic arrays by changing their topologic shapes and substrate properties

    International Nuclear Information System (INIS)

    Li Ting; Yu Li; Lu Zhixin; Song Gang; Liu Bin

    2011-01-01

    We investigated the influence of extinction of gold nanoparticles periodic arrays by varying the substrate properties and the shapes of nanoparticles with the full vectorial three dimensional finite difference time domain method. Substrates of different thicknesses and dielectric constants and ten topologically different gold nanostructures including diamond, cycle ring, rectangle ring, pentagon ring, five-pointed star, flower shape, L, Y, T and X shapes are considered. The results show that substrate properties have a significant impact on the extinction spectrum due to coupling of the modes excited in substrates and the one excited by localized surface plasmon. The extinction spectra are changed with the different shapes of nanoparticles periodic array. However, with similar structure particles periodic arrays, the extinction spectra appear similar in the visible regime. Therefore we can find an eligible shape and substrate which can be used in integrated devises.

  4. eAMI: A Qualitative Quantification of Periodic Breathing Based on Amplitude of Oscillations

    Science.gov (United States)

    Fernandez Tellez, Helio; Pattyn, Nathalie; Mairesse, Olivier; Dolenc-Groselj, Leja; Eiken, Ola; Mekjavic, Igor B.; Migeotte, P. F.; Macdonald-Nethercott, Eoin; Meeusen, Romain; Neyt, Xavier

    2015-01-01

    Study Objectives: Periodic breathing is sleep disordered breathing characterized by instability in the respiratory pattern that exhibits an oscillatory behavior. Periodic breathing is associated with increased mortality, and it is observed in a variety of situations, such as acute hypoxia, chronic heart failure, and damage to respiratory centers. The standard quantification for the diagnosis of sleep related breathing disorders is the apnea-hypopnea index (AHI), which measures the proportion of apneic/hypopneic events during polysomnography. Determining the AHI is labor-intensive and requires the simultaneous recording of airflow and oxygen saturation. In this paper, we propose an automated, simple, and novel methodology for the detection and qualification of periodic breathing: the estimated amplitude modulation index (eAMI). Patients or Participants: Antarctic cohort (3,800 meters): 13 normal individuals. Clinical cohort: 39 different patients suffering from diverse sleep-related pathologies. Measurements and Results: When tested in a population with high levels of periodic breathing (Antarctic cohort), eAMI was closely correlated with AHI (r = 0.95, P Dolenc-Groselj L, Eiken O, Mekjavic IB, Migeotte PF, Macdonald-Nethercott E, Meeusen R, Neyt X. eAMI: a qualitative quantification of periodic breathing based on amplitude of oscillations. SLEEP 2015;38(3):381–389. PMID:25581914

  5. QUASI-PERIODIC OSCILLATIONS AND BROADBAND VARIABILITY IN SHORT MAGNETAR BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; Van der Horst, Alexander J.; Van der Klis, Michiel [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090-GE Amsterdam (Netherlands); Kouveliotou, Chryssa [Office of Science and Technology, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Goegues, Ersin [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Granot, Jonathan [The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Vaughan, Simon [X-Ray and Observational Astronomy Group, University of Leicester, Leicester LE1 7RH (United Kingdom); Finger, Mark H., E-mail: D.Huppenkothen@uva.nl [Universities Space Research Association, Huntsville, AL 35805 (United States)

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  6. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  7. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    Science.gov (United States)

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  8. A Search for Quasi-periodic Oscillations in the Blazar 1ES 1959+650

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Pan; Luo, Yu-Hui; Yang, Hai-Yan; Cai, Yan; Yang, Hai-Tao [Department of Physics, Zhaotong University, Zhaotong, 657000 (China); Yang, Cheng, E-mail: lxpzrc@163.com [College of Photoelectron and Communication Engineering, Yunnan Open University, Kunming, 650223 (China)

    2017-09-20

    We have searched quasi-periodic oscillations (QPOs) in the 15 GHz light curve of the BL Lac object 1ES 1959+650 monitored by the Owens Valley Radio Observatory 40 m telescope during the period from 2008 January to 2016 February, using the Lomb–Scargle Periodogram, power spectral density (PSD), discrete autocorrelation function, and phase dispersion minimization (PDM) techniques. The red noise background has been established via the PSD method, and no QPO can be derived at the 3 σ confidence level accounting for the impact of the red noise variability. We conclude that the light curve of 1ES 1959+650 can be explained by a stochastic red noise process that contributes greatly to the total observed variability amplitude, dominates the power spectrum, causes spurious bumps and wiggles in the autocorrelation function and can result in the variance of the folded light curve decreasing toward lower temporal frequencies when few-cycle, sinusoid-like patterns are present. Moreover, many early supposed periodicity claims for blazar light curves need to be reevaluated assuming red noise.

  9. Quasi-periodic luminosity variations in dwarf novae

    International Nuclear Information System (INIS)

    Robinson, E.L.; Nather, R.E.

    1979-01-01

    We have identified quasi-periodic oscillations in the light curves of five dwarf novae--U Gem, SS Cyg, RU Peg, KT Per, and VW Hyi-- and in the light curve of the quasi-periodic X-ray source Sco X-1. The mean periods of the quasi-periodic oscillations range from 32 s in SS Cyg to 147 s in KT Per and 165 s in Sco X-l. Their amplitudes are typically 0.005--0.0l mag. The properties of the quasi-periodic oscillations are represented well by a second-order autoregressive process. Use of this representation shows that the length of time over which the quasi-periodic oscillations maintain coherence is very short, typically 3--5 cycles of the oscillations. Thus the quasi-periodic oscillations can be distinguished from the short-period coherent oscillations in dwarf novae, which are usually interpreted as white dwarf pulsations, because t the periods of the quasi-periodic oscillations are 3--4 times longer and their coherence time is much shorter. The quasi-periodic oscillations occur in dwarf novae only during their eruptions and occur in Sco X-l only when the system is bright. The presence of the oscillations does not depend on the subclass to which a dwarf nova belongs or on the morphology of the individual eruptions. We argue that their short periods, their short coherence times, and their presence in Sco X-l require that the quasi-periodic oscillations be produced by the accretion disk, and not by the stars or by the boundary between the a accretion disk and its central star

  10. Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations.

    Science.gov (United States)

    Willett, R L; Pfeiffer, L N; West, K W

    2009-06-02

    A standing problem in low-dimensional electron systems is the nature of the 5/2 fractional quantum Hall (FQH) state: Its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be used to manipulate and measure quantum Hall edge excitations. Here we use a small-area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharonov-Bohm effect are observed for integer quantum Hall and FQH states (filling factors nu = 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these factors as charge calibrations, periodic transmission through the device consistent with quasiparticle charge e/4 is observed at nu = 5/2 and at lowest temperatures. The principal finding of this work is that, in addition to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 nu and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.

  11. Shape oscillations of elastic particles in shear flow.

    Science.gov (United States)

    Subramaniam, Dhananjay Radhakrishnan; Gee, David J

    2016-09-01

    Particle suspensions are common to biological fluid flows; for example, flow of red- and white-blood cells, and platelets. In medical technology, current and proposed methods for drug delivery use membrane-bounded liquid capsules for transport via the microcirculation. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid and investigate the time-dependent deformation using a numerical simulation. Specifically, a boundary element technique is used to investigate the motion and deformation of initially spherical or spheroidal particles in bounded linear shear flow. The resulting deformed shapes reveal a steady-state profile that exhibits a 'tank-treading' motion for initially spherical particles. Wall effects on particle trajectory are seen to include a modified Jeffrey׳s orbit for spheroidal inclusions with a period that varies inversely with the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a 'tumbling' or 'trembling' motion depending on the initial particle aspect ratio and the capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87 (approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect ratio. These oscillatory modes are consistent with experimental observations involving similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive model to perform relevant physiological flow calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Harmonic oscillations, chaos and synchronization in systems consisting of Van der Pol oscillator coupled to a linear oscillator

    International Nuclear Information System (INIS)

    Woafo, P.

    1999-12-01

    This paper deals with the dynamics of a model describing systems consisting of the classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. Both the forced and autonomous cases are considered. Harmonic response is investigated along with its stability boundaries. Condition for quenching phenomena in the autonomous case is derived. Neimark bifurcation is observed and it is found that our model shows period doubling and period-m sudden transitions to chaos. Synchronization of two and more systems in their chaotic regime is presented. (author)

  13. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  14. Quantum dot spin-V(E)CSELs: polarization switching and periodic oscillations

    Science.gov (United States)

    Li, Nianqiang; Alexandropoulos, Dimitris; Susanto, Hadi; Henning, Ian; Adams, Michael

    2017-09-01

    Spin-polarized vertical (external) cavity surface-emitting lasers [Spin-V(E)CSELs] using quantum dot (QD) material for the active region, can display polarization switching between the right- and left-circularly polarized fields via control of the pump polarization. In particular, our previous experimental results have shown that the output polarization ellipticity of the spin-V(E)CSEL emission can exhibit either the same handedness as that of the pump polarization or the opposite, depending on the experimental operating conditions. In this contribution, we use a modified version of the spin-flip model in conjunction with combined time-independent stability analysis and direct time integration. With two representative sets of parameters our simulation results show good agreement with experimental observations. In addition periodic oscillations provide further insight into the dynamic properties of spin-V(E)CSELs.

  15. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  16. Electronically tunable RC sinusoidal oscillators

    International Nuclear Information System (INIS)

    Florescu, Valeriu

    2008-01-01

    This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)

  17. Oscillations of the Outer Boundary of the Outer Radiation Belt During Sawtooth Oscillations

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2006-09-01

    Full Text Available We report three sawtooth oscillation events observed at geosynchronous orbit where we find quasi-periodic (every 2-3 hours sudden flux increases followed by slow flux decreases at the energy levels of ˜50-400 keV. For these three sawtooth events, we have examined variations of the outer boundary of the outer radiation belt. In order to determine L values of the outer boundary, we have used data of relativistic electron flux observed by the SAMPEX satellite. We find that the outer boundary of the outer radiation belt oscillates periodically being consistent with sawtooth oscillation phases. Specifically, the outer boundary of the outer radiation belt expands (namely, the boundary L value increases following the sawtooth particle flux enhancement of each tooth, and then contracts (namely, the boundary L value decreases while the sawtooth flux decreases gradually until the next flux enhancement. On the other hand, it is repeatedly seen that the asymmetry of the magnetic field intensity between dayside and nightside decreases (increases due to the dipolarization (the stretching on the nightside as the sawtooth flux increases (decreases. This implies that the periodic magnetic field variations during the sawtooth oscillations are likely responsible for the expansion-contraction oscillations of the outer boundary of the outer radiation belt.

  18. Quantum oscillations of conductivity in bismuth wires

    International Nuclear Information System (INIS)

    Condrea, Elena

    2011-01-01

    Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.

  19. Quasi-periodic oscillations in accreting magnetic white dwarfs. II. The asset of numerical modelling for interpreting observations

    Science.gov (United States)

    Busschaert, C.; Falize, É.; Michaut, C.; Bonnet-Bidaud, J.-M.; Mouchet, M.

    2015-07-01

    Context. Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. The high magnetic field strength leads to the formation of an accretion column instead of an accretion disk. High-energy radiation coming from those objects is emitted from the column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. Aims: We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. Methods: The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. Synthetic light curves and X-ray spectra were extracted from numerical simulations. A fast Fourier analysis was performed on the simulated light curves. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. Results: The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling instability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation

  20. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  1. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  2. Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity?

    Science.gov (United States)

    Queiroz-Claret, C; Valon, C; Queiroz, O

    1988-01-01

    An unconventional hypothesis to the molecular basis of enzyme rhythms is that the intrinsic physical instability of the protein molecules which, in an aqueous medium, tend to move continuously from one conformational state to another could lead, in the population of enzyme molecules, to sizeable long-period oscillations in affinity for substrate and sensitivity to ligands and regulatory effects. To investigate this hypothesis, malate dehydrogenase was extracted and purified from leaves of the plant Kalanchoe blossfeldiana. The enzyme solutions were maintained under constant conditions and sampled at regular intervals for up to 40 or 70 h for measurements of activity as a function of substrate concentration, Km for oxaloacetic acid and sensitivity to the action of 2,3-butanedione, a modifier of active site arginyl residues. The results show that continuous slow oscillations in the catalytic capacity of the enzyme occur in all the extracts checked, together with fluctuations in Km. Apparent circadian periodicities were observed in accordance with previous data established during long run (100 h) experiments. The saturation curves for substrate showed multiple kinetic functions, with various pronounced intermediary plateaus and "bumps" depending on the time of sampling. Variation in the response to the effect of butanedione indicated fluctuation in the accessibility to the active site. Taken together, the results suggest that, under constant conditions, the enzyme in solution shifts continuously and reversibly between different configurations. This was confirmed by parallel studies on the proton-NMR spectrum of water aggregates in the enzyme solution and proton exchange rates.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  4. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  5. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    Science.gov (United States)

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  6. Effect of section shape on frequencies of natural oscillations of tubular springs

    Science.gov (United States)

    Pirogov, S. P.; Chuba, A. Yu; Cherentsov, D. A.

    2018-05-01

    The necessity of determining the frequencies of natural oscillations of manometric tubular springs is substantiated. Based on the mathematical model and computer program, numerical experiments were performed that allowed us to reveal the effect of geometric parameters on the frequencies of free oscillations of manometric tubular springs.

  7. Chirality oscillation of primordial gravitational waves during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Wang, Yu-Tong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-03-06

    We show that if the gravitational Chern-Simons term couples to a massive scalar field (m>H), the primordial gravitational waves (GWs) will show itself the chirality oscillation, i.e., the amplitudes of the left- and right-handed GWs modes will convert into each other and oscillate in their propagations. This oscillation will eventually develop a permanent difference of the amplitudes of both modes, which leads to nearly opposite oscillating shapes in the power spectra of the left- and right-handed primordial GWs. We discuss its implication to the CMB B-mode polarization.

  8. Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing

    Science.gov (United States)

    Atsumi, Yu; Nakao, Hiroya

    2012-05-01

    A system of phase oscillators with repulsive global coupling and periodic external forcing undergoing asynchronous rotation is considered. The synchronization rate of the system can exhibit persistent fluctuations depending on parameters and initial phase distributions, and the amplitude of the fluctuations scales with the system size for uniformly random initial phase distributions. Using the Watanabe-Strogatz transformation that reduces the original system to low-dimensional macroscopic equations, we show that the fluctuations are collective dynamics of the system corresponding to low-dimensional trajectories of the reduced equations. It is argued that the amplitude of the fluctuations is determined by the inhomogeneity of the initial phase distribution, resulting in system-size scaling for the random case.

  9. pH-regulated chemical oscillators.

    Science.gov (United States)

    Orbán, Miklós; Kurin-Csörgei, Krisztina; Epstein, Irving R

    2015-03-17

    The hydrogen ion is arguably the most ubiquitous and important species in chemistry. It also plays a key role in nearly every biological process. In this Account, we discuss systems whose behavior is governed by oscillations in the concentration of hydrogen ion. The first chemical oscillators driven by changes in pH were developed a quarter century ago. Since then, about two dozen new pH oscillators, systems in which the periodic variation in pH is not just an indicator but an essential prerequisite of the oscillatory behavior, have been discovered. Mechanistic understanding of their behavior has grown, and new ideas for their practical application have been proposed and, in some cases, tested. Here we present a catalog of the known pH oscillators, divide them into mechanistically based categories based on whether they involve a single oxidant and reductant or an oxidant and a pair of reductants, and describe general mechanisms for these two major classes of systems. We also describe in detail the chemistry of one example from each class, hydrogen peroxide-sulfide and ferricyanide-iodate-sulfite. Finally, we consider actual and potential applications. These include using pH oscillators to induce oscillation in species that would otherwise be nonoscillatory, creating novel spatial patterns, generating periodic transitions between vesicle and micelle states, stimulating switching between folded and random coil states of DNA, building molecular motors, and designing pulsating drug delivery systems. We point out the importance for future applications of finding a batch pH oscillator, one that oscillates in a closed system for an extended period of time, and comment on the progress that has been made toward that goal.

  10. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  11. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  12. Mobility induces global synchronization of oscillators in periodic extended systems

    International Nuclear Information System (INIS)

    Peruani, Fernando; Nicola, Ernesto M; Morelli, Luis G

    2010-01-01

    We study the synchronization of locally coupled noisy phase oscillators that move diffusively in a one-dimensional ring. Together with the disordered and the globally synchronized states, the system also exhibits wave-like states displaying local order. We use a statistical description valid for a large number of oscillators to show that for any finite system there is a critical mobility above which all wave-like solutions become unstable. Through Langevin simulations, we show that the transition to global synchronization is mediated by a shift in the relative size of attractor basins associated with wave-like states. Mobility disrupts these states and paves the way for the system to attain global synchronization.

  13. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  14. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Jinmi Koo

    2015-09-01

    Full Text Available BackgroundIn mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN. Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions.MethodsWe examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2 gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC knock-in mice using a real-time bioluminescence measurement system.ResultsAdministration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms.ConclusionThese findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.

  15. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Science.gov (United States)

    Kološ, Martin; Tursunov, Arman; Stuchlík, Zdeněk

    2017-12-01

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10^{-5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.

  16. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Energy Technology Data Exchange (ETDEWEB)

    Kolos, Martin; Tursunov, Arman; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10{sup -5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge. (orig.)

  17. REPRODUCING THE CORRELATIONS OF TYPE C LOW-FREQUENCY QUASI-PERIODIC OSCILLATION PARAMETERS IN XTE J1550–564 WITH A SPIRAL STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Varniere, Peggy [APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Lonie Duquet, F-75205 Paris Cedex 13 (France); Vincent, Frederic H., E-mail: varniere@apc.univ-paris7.fr [Observatoire de Paris/LESIA, 5, place Jules Janssen, F-92195 Meudon Cedex (France)

    2017-01-10

    While it has been observed that the parameters intrinsic to the type C low-frequency quasi-periodic oscillations are related in a nonlinear manner among themselves, there has been, up to now, no model to explain or reproduce how the frequency, the FWHM, and the rms amplitude of the type C low-frequency quasi-periodic oscillations behave with respect to one another. Here we are using a simple toy model representing the emission from a standard disk and a spiral such as that caused by the accretion–ejection instability to reproduce the overall observed behavior and shed some light on its origin. This allows us to prove the ability of such a spiral structure to be at the origin of flux modulation over more than an order of magnitude in frequency.

  18. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam.

    Science.gov (United States)

    Kang, Minjung; Han, Heung Nam; Kim, Cheolhee

    2018-04-23

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  19. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam

    Directory of Open Access Journals (Sweden)

    Minjung Kang

    2018-04-01

    Full Text Available Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  20. Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field

    International Nuclear Information System (INIS)

    Vagin, Dmitry V.; Polyakov, Oleg P.

    2008-01-01

    Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems

  1. Low Frequency Quasi-periodic Oscillations in the High-eccentric LMXB Cir X-1: Extending the WK Correlation for Z Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Qingcui; Chen, Li [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Belloni, T. M. [INAF-Osservatorio Astronomico di Brera, Via E, Bianchi 46, I-23807 Merate (Italy); Qu, Jinlu, E-mail: buqc@mail.bnu.edu.cn, E-mail: tomaso.belloni@brera.inaf.it, E-mail: chenli@bnu.edu.cn, E-mail: qujl@ihep.ac.cn [Laboratory for Particle Astrophysics, CAS, Beijing 100049 (China)

    2017-06-01

    Using archival Rossi X-ray Timing Explorer ( RXTE ) data, we studied the low-frequency quasi-periodic oscillations (LFQPOs) in the neutron star low-mass X-ray binary (LMXB) Cir X-1 and examined their contribution to frequency–frequency correlations for Z sources. We also studied the orbital phase effects on the LFQPO properties and found them to be phase independent. Comparing LFQPO frequencies in different classes of LMXBs, we found that systems that show both Z and atoll states form a common track with atoll/BH sources in the so-called WK correlation, while persistent Z systems are offset by a factor of about two. We found that neither source luminosity nor mass accretion rate is related to the shift of persistent Z systems. We discuss the possibility of a misidentification of fundamental frequency for horizontal branch oscillations from persistent Z systems and interpreted the oscillations in terms of models based on relativistic precession.

  2. Periodic changes in the oxidation states of the center ion in the cobalt-histidine complex induced by the BrO3- - SO32- pH-oscillator

    Science.gov (United States)

    Kurin-Csörgei, Krisztina; Poros, Eszter; Csepiova, Julianna; Orbán, Miklós

    2018-05-01

    The coupling of acid-base type pH-dependent equilibria to pH-oscillators expanded significantly the number and type of species which can participate in oscillatory chemical processes. Here, we report a new version of oscillatory phenomena that can appear in coupled oscillators. Oscillations in the oxidation states of the center ion bound in a chelate complex were generated in a combined system, when the participants of the oscillator as dynamical unit and the components of the complex formation interacted with each other through redox reaction. It was demonstrated, when the BrO3- - SO32- pH-oscillator and the Co2+ - histidine complex were mixed in a continuous stirred tank reactor, periodic changes in the pH were accompanied with periodic transitions in the oxidation number of the cobalt ion between +2 and +3. The oscillatory build up and removal of the Co(III)-complex were followed by recording the light absorption at the wavelength characteristic for this species with simultaneous monitoring the pH-oscillations. The dual role of the SO32- ion in the explanation of this observation was pointed out. Its partial and consecutive total oxidations by BrO3- give rise to and maintain sustained pH-oscillations in the combined system and its presence induces the rapid conversion of the Co2+ to a highly inert Co(III)-histidine chelate when the system jumps to and remains in the high pH-state. The oscillatory cycle is completed when the Co(III)-complex is washed out from the reactor and the reagents are replenished by the flow during the time the system spends in the acidic range of pH. The idea, to couple a core oscillator to an equilibrium through a redox reaction that takes place between the constituents of the oscillator and the target species of the linked subsystem, may be generally used to bring about forced oscillations in many other combined chemical systems.

  3. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  4. LOW-FREQUENCY QUASI-PERIODIC OSCILLATION FROM THE 11 Hz ACCRETING PULSAR IN TERZAN 5: NOT FRAME DRAGGING

    International Nuclear Information System (INIS)

    Altamirano, D.; Van der Klis, M.; Wijnands, R.; Ingram, A.; Linares, M.; Homan, J.

    2012-01-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480–2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480–2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  5. Low-frequency Quasi-periodic Oscillation from the 11 Hz Accreting Pulsar in Terzan 5: Not Frame Dragging

    Science.gov (United States)

    Altamirano, D.; Ingram, A.; van der Klis, M.; Wijnands, R.; Linares, M.; Homan, J.

    2012-11-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  6. Numeric Simulation on the Performance of an Undulating Fin in the Wake of a Periodic Oscillating Plate

    Directory of Open Access Journals (Sweden)

    Zhang Yong-Hua

    2013-10-01

    Full Text Available A two-dimensional unsteady computational fluid dynamics (CFD method using an unstructured, grid-based and unsteady Navier-Stokes solver with automatic adaptive re-meshing to compute the unsteady flow was adopted to study the hydrodynamic interaction between a periodic oscillating plate and a rigid undulating fin in tandem arrangement. The user-defined function (UDF program was compiled to define the undulating and oscillating motion. First, the influence of the distance between the anterior oscillating plate and the posterior undulating fin on the non-dimensional drag coefficient of the fin was investigated. Ten different distances, D=0.2L, 0.4L, 0.6L, 0.8L, 1.0L, 1.2L, 1.4L, 1.6L, 1.8L and 2.0L, were considered. The performance of the fin for different distances (D is different. Second, the plate oscillating angle (5.7°, 10°, 20°, 30°, 40°, 45°, 50° and frequency (0.5 Hz, 1.0 Hz, 1.5 Hz, 2.0 Hz, 2.5 Hz, 3.0 Hz, 3.5 Hz, 4.0 Hz effects on the non-dimensional drag coefficient of the fin were also implemented. The pressure distribution on the fin was computed and integrated to provide fin forces, which were decomposed into lift and thrust. Meanwhile, the flow field was demonstrated and analysed. Based on the flow structures, the reasons for different undulating performances were discussed. It shows that the results largely depend on the distance between the two objects. The plate oscillating angle and frequency also make a certain contribution to the performance of the posterior undulating fin. The results are similar to the interaction between two undulating objects in tandem arrangement and they may provide a physical insight into the understanding of fin interaction in fishes or bio-robotic underwater propulsors that are propelled by multi fins.

  7. A Chaotic Oscillator Based on HP Memristor Model

    Directory of Open Access Journals (Sweden)

    Guangyi Wang

    2015-01-01

    Full Text Available This paper proposes a simple autonomous memristor-based oscillator for generating periodic signals. Applying an external sinusoidal excitation to the autonomous system, a nonautonomous oscillator is obtained, which contains HP memristor model and four linear circuit elements. This memristor-based oscillator can generate periodic, chaotic, and hyperchaotic signals under the periodic excitation and an appropriate set of circuit parameters. It also shows that the system exhibits alternately a hidden attractor with no equilibrium and a self-excited attractor with a line equilibrium as time goes on. Furthermore, some specialties including burst chaos, irregular periodic bifurcations, and nonintermittence chaos of the circuit are found by theoretical analysis and numerical simulations. Finally, a discrete model for the HP memristor is given and the main statistical properties of this memristor-based oscillator are verified via DSP chip experiments and NIST (National Institute of Standards and Technology tests.

  8. Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems

    International Nuclear Information System (INIS)

    Zhou, Peipei; Cai, Shuiming; Liu, Zengrong; Chen, Luonan; Wang, Ruiqi

    2013-01-01

    To understand how a complex biomolecular network functions, a decomposition or a reconstruction process of the network is often needed so as to provide new insights into the regulatory mechanisms underlying various dynamical behaviors and also to gain qualitative knowledge of the network. Unfortunately, it seems that there are still no general rules on how to decompose a complex network into simple modules. An alternative resolution is to decompose a complex network into small modules or subsystems with specified functions such as switches and oscillators and then integrate them by analyzing the interactions between them. The main idea of this approach can be illustrated by considering a bidirectionally coupled network in this paper, i.e., coupled Toggle switch and Repressilator, and analyzing the occurrence of various dynamics, although the theoretical principle may hold for a general class of networks. We show that various biomolecular signals can be shaped by regulating the coupling between the subsystems. The approach presented here can be expected to simplify and analyze even more complex biological networks

  9. Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Peipei [Institute of Systems Biology, Shanghai University, Shanghai 200444 (China); Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Cai, Shuiming [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Liu, Zengrong [Institute of Systems Biology, Shanghai University, Shanghai 200444 (China); Chen, Luonan [Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Center for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Collaborative Research Center for Innovative Mathematical Modeling, Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan); Wang, Ruiqi [Institute of Systems Biology, Shanghai University, Shanghai 200444 (China)

    2013-05-15

    To understand how a complex biomolecular network functions, a decomposition or a reconstruction process of the network is often needed so as to provide new insights into the regulatory mechanisms underlying various dynamical behaviors and also to gain qualitative knowledge of the network. Unfortunately, it seems that there are still no general rules on how to decompose a complex network into simple modules. An alternative resolution is to decompose a complex network into small modules or subsystems with specified functions such as switches and oscillators and then integrate them by analyzing the interactions between them. The main idea of this approach can be illustrated by considering a bidirectionally coupled network in this paper, i.e., coupled Toggle switch and Repressilator, and analyzing the occurrence of various dynamics, although the theoretical principle may hold for a general class of networks. We show that various biomolecular signals can be shaped by regulating the coupling between the subsystems. The approach presented here can be expected to simplify and analyze even more complex biological networks.

  10. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  11. Pure odd-order oscillators with constant excitation

    Science.gov (United States)

    Cveticanin, L.

    2011-02-01

    In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The excitation is assumed to be constant and the nonlinearity is pure (without a linear term). The mathematical model is a second-order nonhomogeneous differential equation with strong nonlinear term. Using the first integral, the exact value of period of vibration i.e., angular frequency of oscillator described with a pure nonlinear differential equation with constant excitation is analytically obtained. The closed form solution has the form of gamma function. The period of vibration depends on the value of excitation and of the order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the approximate solution of differential equation is obtained in the form of trigonometric function. The solution is based on the exact value of period of vibration. For the case when additional small perturbation of the pure oscillator acts, the so called 'Cveticanin's averaging method' for a truly nonlinear oscillator is applied. Two special cases are considered: one, when the additional term is a function of distance, and the second, when damping acts. To prove the correctness of the method the obtained results are compared with those for the linear oscillator. Example of pure cubic oscillator with constant excitation and linear damping is widely discussed. Comparing the analytically obtained results with exact numerical ones it is concluded that they are in a good agreement. The investigations reported in the paper are of special interest for those who are dealing with the problem of vibration reduction in the oscillator with constant excitation and pure nonlinear restoring force the examples of which can be found in various scientific and engineering systems. For example, such mechanical systems are seats in vehicles, supports for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The examples can be find in electronics

  12. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation

    Science.gov (United States)

    Vuille, M.

    1999-11-01

    The atmospheric circulation over the Bolivian Altiplano during composite WET and DRY periods and during HIGH and LOW index phases of the Southern Oscillation was investigated using daily radiosonde data from Antofagasta (Chile), Salta (Argentina), Lima (Peru) and La Paz (Bolivia), daily precipitation data from the Bolivian/Chilean border between 18° and 19°S and monthly NCEP (National Centers for Environmental Prediction) reanalysis data between 1960 and 1998. In austral summer (DJF) the atmosphere during WET periods is characterized by easterly wind anomalies in the middle and upper troposphere over the Altiplano, resulting in increased moisture influx from the interior of the continent near the Altiplano surface. The Bolivian High is intensified and displaced southward. On the other hand, westerly winds usually prevail during DRY summer periods, preventing the moisture transport from the east from reaching the western Altiplano. Precipitation tends to be deficient over the western Bolivian Altiplano during LOW index summers and above average during HIGH and LOW+1 summers, but the relation is weak and statistically insignificant. LOW summers feature broadly similar atmospheric circulation anomalies as DRY periods and can be regarded as an extended DRY period or as a summer with increased occurrence of DRY episodes. HIGH summers, and to a lesser degree LOW+1 summers, are characterized by broadly opposite atmospheric characteristics, featuring a more pronounced Bolivian High located significantly further south, and easterly wind anomalies over the Altiplano. In winter (JJA) precipitation events are rare; these are associated with increased northerly and westerly wind components, reduced pressure and temperature, and increased specific humidity over the entire Altiplano. Atmospheric circulation anomalies during LOW periods are less pronounced in austral winter (JJA) than in summer, but generally feature similar changes (increased temperatures and a vertically

  13. Self oscillating PWM modulators, a topological comparison

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2004-01-01

    or fs/ð range respectively, where fs is the switching frequency of the converter. For some applications this will require unacceptable high switching frequency to achieve enough control loop bandwidth for the desired dynamic performance. With self oscillating modulators, the open loop bandwidth is equal...... to fs which makes this type of modulators an excellent choice for a wide range of applications. Self oscillating PWM modulators can be made in a number of ways, either as voltage or current mode modulators, and the self oscillating behavior can be achieved either by using hysteresis control...... or by shaping the open loop function of the modulator so its gain and phase response causes a closed loop natural oscillation. The two main types of self oscillating modulators have many similarities, but differences in dynamic performance and linearity are present. The work presented is related to the author...

  14. Low-Vibration Oscillating Compressor

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  15. Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2008-01-01

    This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions

  16. Experimental study of a premixed oscillating flame stabilized inside the tube

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.I.; Shin, H.D. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    An experimental study of premixed oscillating flame stabilized inside the tube has been conducted in order to examine the kinematic behavior of premixed flame under the flow oscillation and flame/flow interaction. Flow oscillation is accomplished by an acoustic excitation. Oscillating nature of flow has been studied with and without the flame using velocity and pressure measurements by a LDV and microphone, respectively Kinematic behavior of the oscillating flame is examined using triggered ICCD camera system. Velocity oscillation and flame oscillation is the same frequency as that produced by the acoustic excitation and flame shape has a similarity at various phase of oscillation. Upstream velocity field near the flame zone is greatly influenced by the flame oscillation. This is the typical example of flame/flow interaction. (author). 9 refs., 7 figs.

  17. Long-Period Oscillations of Hydraulic Fractures: Attenuation, Scaling Relationships, and Flow Stability

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2013-12-01

    Long-period seismicity due to the excitation of hydraulic fracture normal modes is thought to occur in many geological systems, including volcanoes, glaciers and ice sheets, and hydrocarbon reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluid within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis that accounts for quasi-dynamic elasticity of the fracture wall, as well as fluid drag, inertia, and compressibility. We consider symmetric perturbations and neglect the effects of stratification and gravity. In the long-wavelength or thin-fracture limit, dispersive guided waves known as crack waves propagate with phase velocity cw=√(G*|k|w/ρ), where G* = G/(1-υ) for shear modulus G and Poisson ratio υ, w is the crack half-width, k is the wavenumber, and ρ is the fluid density. Restoring forces from elastic wall deformation drive wave motions. In the opposite, short-wavelength limit, guided waves are simply sound waves within the fluid and little seismic excitation occurs due to minimal fluid-solid coupling. We focus on long-wavelength crack waves, which, in the form of standing wave modes in finite-length cracks, are thought to be a common mechanism for long-period seismicity. The dispersive nature of crack waves implies several basic scaling relations that might be useful when interpreting statistics of long-period events. Seismic observations may constrain a characteristic frequency f0 and seismic moment M0~GδwR2, where δw is the change in crack width and R is the crack dimension. Resonant modes of a fluid-filled crack have associated frequencies f~cw/R. Linear elasticity provides a link between pressure changes δp in the crack and the induced opening δw: δp~G δw/R. Combining these, and assuming that pressure changes have no variation with crack dimension, leads to the scaling law relating seismic moment and oscillation frequency, M0~(Gwδp/ρ)f0

  18. Multiple-wavelength Variability and Quasi-periodic Oscillation of PMN J0948+0022

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhang, Hai-Ming; Zhu, Yong-Kai; Lu, Rui-Jing; Liang, En-Wei [Guangxi Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004 (China); Yi, Ting-Feng [Department of Physics, Yunnan Normal University, Kunming 650500 (China); Yao, Su, E-mail: jinzhang@bao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-11-01

    We present a comprehensive analysis of multiple-wavelength observational data of the first GeV-selected narrow-line Seyfert 1 galaxy PMN J0948+0022. We derive its light curves in the γ -ray and X-ray bands from the data observed with Fermi /LAT and Swift /XRT, and generate the optical and radio light curves by collecting the data from the literature. These light curves show significant flux variations. With the LAT data we show that this source is analogous to typical flat spectrum radio quasars in the L {sub γ} –Γ {sub γ} plane, where L {sub γ} and Γ {sub γ} are the luminosity and spectral index in the LAT energy band. The γ -ray flux is correlated with the V-band flux with a lag of ∼44 days, and a moderate quasi-periodic oscillation (QPO) with a periodicity of ∼490 days observed in the LAT light curve. A similar QPO signature is also found in the V-band light curve. The γ -ray flux is not correlated with the radio flux in 15 GHz, and no similar QPO signature is found at a confidence level of 95%. Possible mechanisms of the QPO are discussed. We propose that gravitational-wave observations in the future may clarify the current plausible models for the QPO.

  19. Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method

    Directory of Open Access Journals (Sweden)

    A. M. El-Naggar

    2015-11-01

    Full Text Available Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF and numerical solutions using Runge-Kutta method. The results show the presented method is potentially to solve high nonlinear oscillator equations.

  20. Exponentially tapered Josephson flux-flow oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    1996-01-01

    We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train...... of fluxons moving toward the unbiased smaller end, as in the standard flux-flow oscillator. An exponentially shaped junction provides several advantages over a rectangular junction including: (i) smaller linewidth, (ii) increased output power, (iii) no trapped flux because of the type of current injection...

  1. Free Oscillations of the Facula Node at the Stage of Slow Dissipation

    Science.gov (United States)

    Solov'ev, A. A.; Kirichek, E. A.; Efremov, V. I.

    2017-12-01

    A solar faculae having an appearance of quite long-lived magnetic nodes can perform (as well as sunspots, chromospheric filaments, coronal loops) free oscillations, i.e., they can oscillate about the stable equilibrium position as a single whole, changing quasi-periodically magnetic field averaged over the section with periods from 1 to 4 hours. Kolotkov et al. (2017) described the case in which the average magnetic field strength of the facula node considerably decreased during observations of SDO magnetograms (13 hours), and, at the same time, its oscillations acquired a specific character: the fundamental mode of free oscillations of the facula considerably increased in amplitude (by approximately two times), while the period of oscillations increased by three times. At the end of the process, the system dissipated. In this work, we present the exact solution of the equation of small-amplitude oscillations of the system with a time-variable rigidity, describing the oscillation behavior at which the elasticity of the system decreases with time, while the period and amplitude of oscillations grow.

  2. Periods, poles, and shapes of Saturn's irregular moons

    Science.gov (United States)

    Denk, Tilmann; Mottola, Stefano

    2016-10-01

    We report rotational-lightcurve observations of irregular moons of Saturn based on disk-integrated observations with the Narrow-Angle Camera of the Cassini spacecraft. From 24 measured rotation periods, 20 are now known with an accuracy of ~2% or better. The numbers are as follows (in hours; an '*' marks the less reliable periods): Hati 5.42; Mundilfari 6.74; Loge 6.94*; Skoll 7.26; Kari 7.70; Suttungr 7.82*, Bergelmir 8.13; Phoebe 9.274; Siarnaq 10.188; Narvi 10.21; Tarvos 10.69; Skathi 11.30; Ymir 11.922; Hyrrokkin 12.76; Greip 12.79*; Ijiraq 13.03; Albiorix 13.32; Bestla 14.624; Bebhionn 16.40; Paaliaq 18.75; Kiviuq 21.96; Erriapus 28.15; Thrymr 35 or >45* Tarqeq 76.8.More recent data strengthen the notion that objects in orbits with an inclination supplemental angle i' > 27° have significantly slower spin rates than those at i' 27°, Siarnaq, stands opposed to at least eight objects with faster spins and i' 27° bin contains all nine known prograde moons and four retrograde objects.A total of 25 out of 38 known outer moons has been observed with Cassini, and there is no chance to observe the 13 missing objects until end-of-mission. However, all unobserved objects are part of the i' 27° are known, and none of them is a fast rotator, with no exception.Several objects were observed repeatedly to determine pole directions, sidereal periods, and convex shapes. A few lightcurves have been observed to show three maxima and three minima even at low phase angles, suggesting objects with a triangular equatorial cross-section. Some objects with 2 maxima/ 2 minima are probably quite elongated. One moon even shows lightcurves with 4 maxima/ 4 minima.

  3. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  4. Propagation of a femtosecond laser pulse with duration of several optical oscillation periods in a medium with a quadratic nonlinearity

    International Nuclear Information System (INIS)

    Akopyan, A A; Oganesyan, D L

    1998-01-01

    It is shown that the wave equation can be solved by the method of unidirectional waves for a pulse with a duration of several oscillation periods in a medium with a quadratic nonlinearity, such as a group-3m crystal. The wave equation reduces to a system of two equations for waves with different polarisations. (laser applications and other topics in quantum electronics)

  5. Stochastic modeling of kHz quasi-periodic oscillation light curves

    DEFF Research Database (Denmark)

    Vio, R.; Rebusco, P.; Andreani, P.

    2006-01-01

    Kluzniak & Abramowicz explain the high frequency, double peak, "3:2" QPOs observed in neutron star and black hole sources in terms of a non-linear parametric resonance between radial and vertical epicyclic oscillations of an almost Keplerian accretion disk. The 3:2 ratio of epicyclic frequencies ...

  6. The phase of prestimulus alpha oscillations affects tactile perception.

    Science.gov (United States)

    Ai, Lei; Ro, Tony

    2014-03-01

    Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.

  7. NEAR-INFRARED AND X-RAY QUASI-PERIODIC OSCILLATIONS IN NUMERICAL MODELS OF Sgr A*

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Gammie, Charles F.; Shiokawa, Hotaka; Noble, Scott C.

    2012-01-01

    We report transient quasi-periodic oscillations (QPOs) on minute timescales in relativistic, radiative models of the galactic center source Sgr A*. The QPOs result from nonaxisymmetric m = 1 structure in the accretion flow excited by MHD turbulence. Near-infrared (NIR) and X-ray power spectra show significant peaks at frequencies comparable to the orbital frequency at the innermost stable circular orbit (ISCO) f o . The excess power is associated with inward propagating magnetic filaments inside the ISCO. The amplitudes of the QPOs are sensitive to the electron distribution function. We argue that transient QPOs appear at a range of frequencies in the neighborhood of f o and that the power spectra, averaged over long times, likely show a broad bump near f o rather than distinct, narrow QPO features.

  8. Quasi-periodic oscillations from post-shock accretion column of polars

    Science.gov (United States)

    Bera, Prasanta; Bhattacharya, Dipankar

    2018-02-01

    A set of strongly magnetized accreting white dwarfs (polars) shows quasi-periodic oscillations (QPOs) with frequency about a Hz in their optical luminosity. These Hz-frequency QPOs are thought to be generated by intensity variations of the emitted radiation originating at the post-shock accretion column. Thermal instability in the post-shock region, triggered by efficient cooling process at the base, is believed to be the primary reason behind the temporal variability. Here, we study the structure and the dynamical properties of the post-shock accretion column including the effects of bremsstrahlung and cyclotron radiation. We find that the presence of significant cyclotron emission in optical band reduces the overall variability of the post-shock region. In the case of a larger post-shock region above the stellar surface, the effects of stratification due to stellar gravity become important. An accretion column, influenced by the strong gravity, has a smaller variability as the strength of the thermal instability at the base of the column is reduced. On the other hand, the cool, dense plasma, accumulated just above the stellar surface, may enhance the post-shock variability due to the propagation of magnetic perturbations. These characteristics of the post-shock region are consistent with the observed properties of V834 Cen and in general with cataclysmic variable sources that exhibit QPO frequency of about a Hz.

  9. Strong gravity effects of rotating black holes: quasi-periodic oscillations

    International Nuclear Information System (INIS)

    Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir

    2013-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)

  10. Parametric oscillators from factorizations employing a constant-shifted Riccati solution of the classical harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Khmelnytskaya, K.V. [Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas s/n, C.P. 76010 Santiago de Queretaro, Qro. (Mexico)

    2011-09-19

    We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned. -- Highlights: → A particular Riccati solution of the classical harmonic oscillator is shifted by a constant. → Such a solution is used in the factorization brackets to get different equations of motion. → The properties of the parametric oscillators obtained in this way are examined.

  11. Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces

    Science.gov (United States)

    Niu, Yuying; Wang, Jicheng; Hu, Zhengda; Zhang, Feng

    2018-06-01

    The frequency tunable Plasmonic induced transparency (PIT) effect is researched with a periodically patterned T-shaped graphene array in mid-infrared region. We adjust the geometrical parameters to obtain the optimized combination for the realization of the PIT response and use the coupled Lorentz oscillator model to analysis the physical mechanism. Due to the properties of graphene, the PIT effect can be easily and markedly enhanced with the increase of chemical potential and carrier mobility. The frequency of PIT effect is also insensitive with the angle of incident light. In addition, we also propose the π shaped structure to realizing the double-peak PIT effect. The results offer a flexible approach for the development of tunable graphene-based photonic devices.

  12. Macroscopic description of normal quadrupole oscillations and shape of rotating nuclei (spheroids)

    International Nuclear Information System (INIS)

    Balbutsev, E.B.; Mikhailov, I.N.; Vaishvila, Z.

    1981-01-01

    The ''distorted-Fermi-surface'' model is generalized to study the rotating nuclei. The mathematical problems of the model are solved with the help of the tensor virial method by Chandrasekhar-Lebovitz. The parameters of a form and characteristic frequencies of the quadrupole oscillations are calculated as a function of angular velocity Ω for the rotating nuclei. The energy of Giant Quadrupole Resonance is in agreement with experiment for Ω=0. There are two low-lying modes of oscillations in the model. The critical angular momenta are calculated. The comparison with the liquid drop model is done [ru

  13. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  14. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  15. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data

  16. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  17. Experimental researches on the single-bubble rising behavior in the water excited by oscillation

    International Nuclear Information System (INIS)

    Cai Jiejin; Zhong Minghuang; Wang Ke; Zeng Xixiang; Lin Yongcheng; WATANABE Tadashi

    2014-01-01

    This study try to carry out experiments to research the bubble rising behavior in the water excited by oscillation and focus on its dynamics characteristics under the oscillation condition with different oscillation frequencies and amplitudes, and get the relationship between bubble's characteristic parameter, such as the bubble shape, rising velocity, etc, and the influence parameters of time, oscillation frequencies, amplitudes, etc. The rising rule of the single bubble in the water excited by oscillation has been concluded. (authors)

  18. Quantum oscillation and the Aharonov-Bohm effect in a multiply connected normal-conductor loop

    Science.gov (United States)

    Takai, Daisuke; Ohta, Kuniichi

    1994-12-01

    The magnetostatic and electrostatic Aharonov-Bohm (AB) effects in multiply connected normal-conductor rings are studied. A previously developed model of a single mesoscopic ring is generalized to include an arbitrary number of rings, and the oscillatory behavior of the total transmission coefficients for the serially connected N (N is equal to integer) rings are derived as a function of the magnetic flux threading each ring and as a function of the electrostatic potential applied to the rings. It is shown that quantum oscillation of multiple rings exhibits greater variety of behavior than in periodic superlattices. We investigate the influence of the scattering at a junction and the number of atoms in the ring in both magnetostatic and electrostatic oscillation of multiring systems. For the electrostatic AB effects, when scattering occurs at the junctions between the connecting wire and the ring, the conductance in the AB oscillation is modified to an N-1 peaked shape. It is shown that this oscillatory behavior is greatly influenced by the number of atoms in the ring and is controlled by the electrostatic potential or magnetic flux that is applied to the ring. We discuss the behavior of the quantum oscillations upon varying the number of connected rings and the number of minibands.

  19. Masking Period Patterns & Forward Masking for Speech-Shaped Noise: Age-related effects

    Science.gov (United States)

    Grose, John H.; Menezes, Denise C.; Porter, Heather L.; Griz, Silvana

    2015-01-01

    Objective The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to non-simultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Design Participants included younger (n = 11), middle-aged (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions, and assessed how well the temporal window fits accounted for these data. Results The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. Conclusions This study demonstrated an age-related increase in susceptibility to non-simultaneous masking, supporting the hypothesis that exacerbated non-simultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data suggesting an association between susceptibility to forward masking and speech understanding in modulated noise. PMID:26230495

  20. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    Science.gov (United States)

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  1. Forced oscillations of cracked beam under the stochastic cyclic loading

    Science.gov (United States)

    Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.

    2018-05-01

    An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.

  2. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing

    2018-05-25

    The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.

  3. Power oscillation and stability in water cooled reactors

    International Nuclear Information System (INIS)

    Por, G.; Kis, G.

    1998-01-01

    Periodic oscillation in measured temperature fluctuation was observed near to surface of a heated rod in certain heat transfer range. The frequency of the peak found in power spectral density of temperature fluctuation and period estimated from the cross correlation function for two axially placed thermocouples change linearly with linear energy (or surface heat) production. It was concluded that a resonance of such surface (inlet) temperature oscillation with the pole of the reactor transfer function can be responsible for power oscillation in BWR and PWR, thus instability is not solely due to reactor transfer function. (author)

  4. Oscillations of the energy, magnetic moment, and current with a period equal to the normal or superconducting flux quantum in cyclic systems

    International Nuclear Information System (INIS)

    Svirskii, M.S.

    1985-01-01

    Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies

  5. An alternating voltage battery with two salt-water oscillators

    Science.gov (United States)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  6. Masking Period Patterns and Forward Masking for Speech-Shaped Noise: Age-Related Effects.

    Science.gov (United States)

    Grose, John H; Menezes, Denise C; Porter, Heather L; Griz, Silvana

    2016-01-01

    The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to nonsimultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Participants included younger (n = 11), middle-age (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions and assessed how well the temporal window fits accounted for these data. The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. This study demonstrated an age-related increase in susceptibility to nonsimultaneous masking, supporting the hypothesis that exacerbated nonsimultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data, suggesting an association between susceptibility to forward masking and speech understanding in modulated noise.

  7. Temperature Oscillations in Loop Heat Pipes - A Revisit

    Science.gov (United States)

    Ku, Jentung

    2018-01-01

    Three types of temperature oscillation have been observed in the loop heat pipes. The first type is an ultra-high frequency temperature oscillation with a period on the order of seconds or less. This type of temperature oscillation is of little significance in spacecraft thermal control because the amplitude is in the noise level. The second type is a high frequency, low amplitude temperature oscillation with a period on the order of seconds to minutes and an amplitude on the order of one Kelvin. It is caused by the back-and-forth movement of the vapor front near the inlet or outlet of the condenser. The third type is a low frequency, high amplitude oscillation with a period on the order of hours and an amplitude on the order of tens of Kelvin. It is caused by the modulation of the net heat load into the evaporator by the attached large thermal mass which absorbs and releases energy alternately. Several papers on LHP temperature oscillation have been published. This paper presents a further study on the underlying physical processes during the LHP temperature oscillation, with an emphasis on the third type of temperature oscillation. Specifically, equations governing the thermal and hydraulic behaviors of LHP operation will be used to describe interactions among LHP components, heat source, and heat sink. The following sequence of events and their interrelationship will also be explored: 1) maxima and minima of reservoir and thermal mass temperatures; 2) the range of the vapor front movement inside the condenser; 3) rates of change of the reservoir and thermal mass temperatures; 4) the rate of heat absorption and heat release by the thermal mass and the rate of vapor front movement; and 5) inflection points of the reservoir and thermal mass temperatures.

  8. Improving the precision of noisy oscillators

    Science.gov (United States)

    Moehlis, Jeff

    2014-04-01

    We consider how the period of an oscillator is affected by white noise, with special attention given to the cases of additive noise and parameter fluctuations. Our treatment is based upon the concepts of isochrons, which extend the notion of the phase of a stable periodic orbit to the basin of attraction of the periodic orbit, and phase response curves, which can be used to understand the geometry of isochrons near the periodic orbit. This includes a derivation of the leading-order effect of noise on the statistics of an oscillator’s period. Several examples are considered in detail, which illustrate the use and validity of the theory, and demonstrate how to improve a noisy oscillator’s precision by appropriately tuning system parameters or operating away from a bifurcation point. It is also shown that appropriately timed impulsive kicks can give further improvements to oscillator precision.

  9. Radio and γ -Ray Variability in the BL Lac PKS 0219−164: Detection of Quasi-periodic Oscillations in the Radio Light Curve

    Energy Technology Data Exchange (ETDEWEB)

    Bhatta, Gopal, E-mail: gopalbhatta716@gmail.com [Astronomical Observatory of the Jagiellonian University, ul. Orla 171, 30-244 Kraków (Poland); Mt. Suhora Observatory, Pedagogical University, ul. Podchorazych 2, 30-084 Kraków (Poland)

    2017-09-20

    In this work, we explore the long-term variability properties of the blazar PKS 0219−164 in the radio and the γ -ray regime, utilizing the OVRO 15 GHz and the Fermi /LAT observations from the period 2008–2017. We found that γ -ray emission is more variable than the radio emission implying that γ -ray emission possibly originated in more compact regions while the radio emission represented continuum emission from the large-scale jets. Also, in the γ -ray, the source exhibited spectral variability, characterized by the softer-when-brighter trend, a less frequently observed feature in the high-energy emission by BL Lacs. In radio, using Lomb–Scargle periodogram and weighted wavelet z -transform, we detected a strong signal of quasi-periodic oscillation (QPO) with a periodicity of 270 ± 26 days with possible harmonics of 550 ± 42 and 1150 ± 157 day periods. At a time when detections of QPOs in blazars are still under debate, the observed QPO with high statistical significance (∼97%–99% global significance over underlying red-noise processes) and persistent over nearly 10 oscillations could make one of the strongest cases for the detection of QPOs in blazar light curves. We discuss various blazar models that might lead to the γ -ray and radio variability, QPO, and the achromatic behavior seen in the high-energy emission from the source.

  10. An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids

    Science.gov (United States)

    Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun

    2017-07-01

    Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.

  11. Oscillations in magnetoresistance and interlayer coupling in magnetic sandwich structures

    International Nuclear Information System (INIS)

    Barnas, J.; Bulka, B.

    1997-01-01

    Kubo formalism is used to calculate the magnetoresistance due to magnetization rotation in a structure consisting two magnetic films separated by nonmagnetic layer. In the approximation of an uniform relaxation time of each layer, the oscillatory term in magnetoresistance corresponds to the oscillation period which depends on the potential barriers at the interfaces. This period is longer than the oscillation period observed in the coupling parameter. (author)

  12. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  13. Optimal parameters uncoupling vibration modes of oscillators

    Science.gov (United States)

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  14. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule\\'s motion and its interaction with the resonator, the MC approach is by far the most accurate modeling approach for the modeling of squeeze-film damping in the free-molecule regime. The accuracy of this approach is demonstrated on several cases in which either analytical solutions or experimental measurements are available. It has been found that unlike the case when resonators oscillate in an unbounded domain, squeeze film damping is very sensitive to the mode shape, which implies that some of the existing modeling approaches based on rigid-resonator assumption may not be accurate when applied to model resonators oscillating at their deformed shape. ©2010 IEEE.

  15. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  16. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  17. Autonomous Oscillation of Nonthermoresponsive Polymers and Gels Induced by the Belousov–Zhabotinsky Reaction

    Directory of Open Access Journals (Sweden)

    Yusuke Hara

    2013-09-01

    Full Text Available This review introduces the self-oscillating behavior of two types of nonthermoresponsive polymer systems with Ru catalyst moieties for the Belousov-Zhabotinsky (BZ reaction: one with a poly-vinylpyrrolidone (PVP main chain, and the other with a poly(2-propenamide (polyacrylamide (PAM main chain. The amplitude of the VP-based self-oscillating polymer chain and the activation energy for self-oscillation are hardly affected by the initial concentrations of the BZ substrates. The influences of the initial concentrations of the BZ substrates and the temperature on the period of the swelling-deswelling self-oscillation are examined in detail. Logarithmic plots of the period against the initial concentration of one BZ substrate, when the concentrations of the other two BZ substrates are fixed, show good linear relationships. The period of the swelling-deswelling self-oscillation decreases with increasing temperature, in accordance with the Arrhenius equation. The maximum frequency (0.5 Hz of the poly(VP-co-Ru(bpy3 gel is 20 times that of the poly(NIPAAm-co-Ru(bpy3 gel. It is also demonstrated that the amplitude of the volume self-oscillation for the gel has a tradeoff with the self-oscillation period. In addition, this review reports the self-oscillating behavior of an AM-based self-oscillating polymer chain as compared to that of the VP-based polymer chain.

  18. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    Science.gov (United States)

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  20. Different types of bursting calcium oscillations in non-excitable cells

    International Nuclear Information System (INIS)

    Perc, Matjaz; Marhl, Marko

    2003-01-01

    In the paper different types of bursting Ca 2+ oscillations are presented. We analyse bursting behaviour in four recent mathematical models for Ca 2+ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic bursting Ca 2+ oscillations are classified into several subtypes. The classification is based on the dynamics of separated fast and slow subsystems, the so-called fast-slow burster analysis. For regular bursting Ca 2+ oscillations two types of bursting are specified: Point-Point and Point-Cycle bursting. In particular, the slow passage effect, important for the Hopf-Hopf and SubHopf-SubHopf bursting subtypes, is explained by local divergence calculated for the fast subsystem. Quasi-periodic bursting Ca 2+ oscillations can be found in only one of the four studied mathematical models and appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca 2+ oscillations, we found that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca 2+ oscillations provides better insight into mechanisms of complex intra- and intercellular Ca 2+ signalling. This improves our understanding of several important biological phenomena in cellular signalling like complex frequency-amplitude signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue

  1. Synchronization of Time-Continuous Chaotic Oscillators

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik

    2003-01-01

    Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...

  2. An Optical Low-frequency Quasi-Periodic Oscillation in the Kepler Light Curve of an Active Galaxy

    Science.gov (United States)

    Mushotzky, Richard; Smith, Krista Lynne; Boyd, Patricia; Wagoner, Robert

    2018-01-01

    We report the discovery of a candidate quasi-periodic oscillation (QPO) in the optical light curve of KIC 9650712, a Seyfert 1 galaxy in the original Kepler field. After the development and application of a pipeline for Kepler data specific to active galactic nuclei (AGN), one of our sample of 21 AGN selected by infrared photometry and X-ray flux demonstrates a peak in the power spectrum at 10-6.58 Hz, corresponding to a temporal period of 44 days. >From optical spectroscopy, we measure the black hole mass of this AGN as log M = 8.17 M_sun. Despite this high mass, the optical spectrum of KIC 9650712 bears many similarities to Narrow Line Seyfert 1 (NLS1) galaxies, including strong Fe II emission and a low [O III]/Hβ ratio. So far, X-ray QPOs have primarily been seen in NLS1 galaxies. Finally, we find that this frequency lies along a correlation between low-frequency QPOs and black hole mass from stellar and intermediate mass black holes to AGN, similar to the known correlation in high-frequency QPOs.

  3. A GABAergic Dysfunction in the Olivary–Cerebellar–Brainstem Network May Cause Eye Oscillations and Body Tremor. II. Model Simulations of Saccadic Eye Oscillations

    Directory of Open Access Journals (Sweden)

    Lance M. Optican

    2017-08-01

    Full Text Available Eye and body oscillations are shared features of several neurological diseases, yet their pathophysiology remains unclear. Recently, we published a report on two tennis players with a novel presentation of eye and body oscillations following self-administration of performance-enhancing substances. Opsoclonus/flutter and limb tremor were diagnosed in both patients. Common causes of opsoclonus/flutter were excluded. High-resolution eye movement recordings from one patient showed novel spindle-shaped, asymmetric saccadic oscillations (at ~3.6 Hz and ocular tremor (~40–60 Hz. Based on these findings, we proposed that the oscillations are the result of increased GABAA receptor sensitivity in a circuit involving the cerebellum (vermis and fastigial nuclei, the inferior olives, and the brainstem saccade premotor neurons (excitatory and inhibitory burst neurons, and omnipause neurons. We present a mathematical model of the saccadic system, showing that the proposed dysfunction in the network can reproduce the types of saccadic oscillations seen in these patients.

  4. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  5. Stochastic Resonance in a System of Coupled Chaotic Oscillators

    International Nuclear Information System (INIS)

    Krawiecki, A.

    1999-01-01

    Noise-free stochastic resonance is investigated numerically in a system of two coupled chaotic Roessler oscillators. Periodic signal is applied either additively or multiplicatively to the coupling term. When the coupling constant is varied the oscillators lose synchronization via attractor bubbling or on-off intermittency. Properly chosen signals are analyzed which reflect the sequence of synchronized (laminar) phases and non-synchronized bursts in the time evolution of the oscillators. Maximum of the signal-to-noise ratio as a function of the coupling constant is observed. Dependence of the signal-to-noise ratio on the frequency of the periodic signal and parameter mismatch between the oscillators is investigated. Possible applications of stochastic resonance in the recovery of signals in secure communication systems based on chaotic synchronization are briefly discussed. (author)

  6. A theory of an oscillating, periodic, speed-of-light as a possible limiting value converging to an average limit

    Directory of Open Access Journals (Sweden)

    S.W. Mason

    2018-06-01

    Full Text Available This paper seeks to adopt and solve the wave-equation for the radial propagation of light in three dimensions from the moment of the Big-Bang and during Earth-based experiments. The primary purpose is to model a propagating beam of light emitted from the singularity, outwards, and to show that its velocity is sinusoidal, meaning that its speed oscillates periodically, and is therefore variable rather than constant. It is additionally shown, by calculating an appropriate solution to the wave-equation, that the velocity of light is not only negatively damped according to the inverse radial law, 1/r, throughout its journey over space and time, but that this latter feature also exhibits amplitude convergence from a very large initial value to a value that is very close to what is now defined to be a constant, namely the current value denoted by c=299792458m/s. The possibility that such observations may also vary depending upon the inertial frame in which a measurement is carried out is similarly considered, along with a discussion of the related nature of mass and energy, and how the possible variability of the speed-of-light and the fabric of the space-time continuum may affect each other. Keywords: Wave-equation, Transverse, Electromagnetic-wave, Radial motion, Eigen-function, Radial-solution, Redshift-drift, Speed-of-light, Displacement, Variable-velocity, Periodic, Oscillation, Convergence, Limit, Big-bang, Space-time, Neutrinos, CERN, Gran Sasso, Experiment

  7. Oscillator phenomena in the solar atmosphere and radiation modulation in microwaves

    International Nuclear Information System (INIS)

    Vaz, A.M.Z.

    1983-05-01

    An overview of the principal known descriptions of oscillations in the solar atmosphere at different ranges of periods was developed. Particular attention was given to oscillations with time scale of seconds, associated to active regions or bursts. 1.5 quasi-periodic oscillations were detected by the first time at more than one microwave frequency simultaneously (22 GHz and 44 GHz), with high sensitivity and high time resolution, superimposed on a burst on Dec. 15, 1980. An advance phase of 0,3s between the oscillations in the frequencies of 22 GHz and 44 GHz was discovered. The proposed mechanism to explain such oscillations is based on oscillations of the magnetic field at the source. These oscillations modulate the gyro-synchrotron emission from high energy electrons trapped in the magnetic structure. The phase difference is attributed to the influence of the optical thickness of the gyro-synchrotron emission at 22 GHz. (Author) [pt

  8. Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays

    International Nuclear Information System (INIS)

    Bi, Ping; Ruan, Shigui; Zhang, Xinan

    2014-01-01

    In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical values and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations

  9. Synchronisation of self-oscillations in a solid-state ring laser with pump modulation in the region of parametric resonance between self-modulation and relaxation oscillations

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The synchronisation of the self-modulation oscillation frequency in a Nd : YAG ring laser by an external periodic signal modulating the pump power in the region of parametric resonance between self-modulation and relaxation oscillations is studied theoretically and experimentally. The characteristic features of synchronisation processes in lasers operating in the self-modulation regime of the first kind and in the regime with a doubled self-modulation period are considered. Two bistable branches of synchronisation of self-modulation oscillations are found by numerical calculation. The experimental data agree well with the numerical simulation results for one of these branches, but the other branch of bistable self-modulation oscillations was not observed experimentally. (control of laser radiation parameters)

  10. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  11. Classical Yang-Mills mechanics. Nonlinear colour oscillations

    International Nuclear Information System (INIS)

    Matinyan, S.G.; Savvidi, G.K.; Ter-Arutyunyan-Savvidi, N.G.

    1981-01-01

    A novel class of solutions of the classical Yang-Mills equations in the Minkowsky space which leads to nonlinear colour oscillations is studied. The system discribing these oscillations is apparently stochastic. Periodic trajectories corresponding to the solutions are found and studied and it is demonstrated that they constitute at least an enumerable set [ru

  12. Flashing oscillation in pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya

    1996-01-01

    This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis

  13. The effect of box shape on the dynamic properties of proteins simulated under periodic boundary conditions

    NARCIS (Netherlands)

    Wassenaar, T.A.; Mark, A.E.

    The effect of the box shape on the dynamic behavior of proteins simulated under periodic boundary conditions is evaluated. In particular, the influence of simulation boxes defined by the near-densest lattice packing (NDLP) in conjunction with rotational constraints is compared to that of standard

  14. Nonlinear effects on Turing patterns: Time oscillations and chaos

    KAUST Repository

    Aragó n, J. L.; Barrio, R. A.; Woolley, T. E.; Baker, R. E.; Maini, P. K.

    2012-01-01

    consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos

  15. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  16. Digital signal processing reveals circadian baseline oscillation in majority of mammalian genes.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2007-06-01

    Full Text Available In mammals, circadian periodicity has been described for gene expression in the hypothalamus and multiple peripheral tissues. It is accepted that 10%-15% of all genes oscillate in a daily rhythm, regulated by an intrinsic molecular clock. Statistical analyses of periodicity are limited by the small size of datasets and high levels of stochastic noise. Here, we propose a new approach applying digital signal processing algorithms separately to each group of genes oscillating in the same phase. Combined with the statistical tests for periodicity, this method identifies circadian baseline oscillation in almost 100% of all expressed genes. Consequently, circadian oscillation in gene expression should be evaluated in any study related to biological pathways. Changes in gene expression caused by mutations or regulation of environmental factors (such as photic stimuli or feeding should be considered in the context of changes in the amplitude and phase of genetic oscillations.

  17. Suppressing nonlinear resonances in an impact oscillator using SMAs

    International Nuclear Information System (INIS)

    Sitnikova, Elena; Pavlovskaia, Ekaterina; Ing, James; Wiercigroch, Marian

    2012-01-01

    In this paper, we study the resonant responses of an impact oscillator with a one sided SMA motion constraint operating in the pseudoelastic regime. The effectiveness of the SMA restraint in suppressing nonlinear resonances of the impact oscillator is assessed by comparing the dynamic responses of the impact oscillator with SMA and elastic restraints. It is shown that the hysteretic behaviour of the SMA restraint provides an overall vibration reduction in the resonant frequency ranges. Due to the softening behaviour of the SMA element, the resonant frequencies for the SMA oscillator were found to be lower than for the oscillator with an elastic restraint. At each resonance, a single periodic response for the oscillator with the elastic restraint corresponds to two co-existing periodic responses of the SMA oscillator. While at the first resonance peak the emergence of one of the co-existing responses is associated with the hardening effect of the SMA restraint when the pseudoelastic force varies over a complete transformation cycle, at higher frequency resonances incomplete phase transformations in the SMA were detected for both responses. The experimental study undertaken verified the response-modification effects predicted by the numerical analysis conducted under the isothermal approximation. The experimental results showed a good quantitative correspondence with the mathematical modelling. (paper)

  18. Circuit simulation and physical implementation for a memristor-based colpitts oscillator

    Science.gov (United States)

    Deng, Hongmin; Wang, Dongping

    2017-03-01

    This paper implements two kinds of memristor-based colpitts oscillators, namely, the circuit where the memristor is added into the feedback network of the oscillator in parallel and series, respectively. First, a MULTISIM simulation circuit for the memristive colpitts oscillator is built, where an emulator constructed by some off-the-shelf components is utilized to replace the memristor. Then the physical system is implemented in terms of the MULTISIM simulation circuit. Circuit simulation and experimental study show that this memristive colpitts oscillator can exhibit periodic, quasi-periodic, and chaotic behaviors with certain parameter's variances. Besides, in a sense, the circuit is robust with circuit parameters and device types.

  19. Emergent organization of oscillator clusters in coupled self ...

    Indian Academy of Sciences (India)

    Additionally, the maps are coupled sequentially and unidirectionally, to their nearest neighbor, through the difference of their parametric variations. Interestingly we find that this model asymptotically yields clusters of superstable oscillators with different periods. We observe that the sizes of these oscillator clusters have a ...

  20. GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    International Nuclear Information System (INIS)

    Tian, Hui; He, Jiansen; Young, Peter R.; Reeves, Katharine K.; Wang, Tongjiang; Antolin, Patrick; Chen, Bin

    2016-01-01

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s −1 and a derived electron density of at least 5.4 × 10 10 cm −3 , the observed short-period oscillation is most likely the global fast sausage mode of a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.

  1. Synchronization in chains of light-controlled oscillators

    International Nuclear Information System (INIS)

    Avila, G M RamIrez; Guisset, J L; Deneubourg, J L

    2005-01-01

    Using light-controlled oscillators (LCOs) and a mathematical model of them introduced in [1], we have analyzed a population of LCOs arranged in chains with nonperiodic (linear configuration) and periodic (ring configuration) boundary conditions in which we have solved numerically the corresponding equations for a broad interval of coupling strength values and for chains between 2 and 25 LCOs. We have considered three different situations, viz. identical LCOs, identical LCOs with simplifications (LCOs considered as integrate-and-fire (IF) oscillators), and finally nonidentical LCOs. We study synchronization under two criteria: the first takes into account the simultaneity of flashing events (phase difference criterion), and the second considers period-locking as a criterion for synchronization. For each case, we have identified regions of synchronization in the plane coupling strength versus number of oscillators. We observe different behaviors depending on the values of these variables

  2. ERATO-code analysis of vacuum magnetic field oscillations in JT-60 divertor configuration

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Tokuda, Shinji; Tsunematsu, Toshihide; Ishida, Shinichi; Neyatani, Yuzuru; Itami, Kiyoshi; Azumi, Masafumi

    1989-07-01

    Magnetic field oscillations caused by external kink instabilities are numerically studied by using the ideal MHD stability code ERATO-J. Dependence of a spatial distribution of their amplitude and phase on aspect-ratio, beta-poloidal, shaping of conducting shell and divertor/limiter configurations is examined in detail. In the low aspect ratio plasma, the amplitude of magnetic oscillations in the inner side of the torus is larger than that in the outer. On the contrary, as the poloidal beta increases, the amplitude in the outer side of the torus becomes larger than that in the inner. In the divertor configuration, the amplitude of oscillations reduces near the X-point and the phase is locally modulated. The coherent magnetic oscillations observed in JT-60 agree well with the theoretical results, where the vacuum vessel is assumed to be an ideal conducting shell. The non-uniformity of the poloidal distribution observed in JT-60 can be explained by the combined effects of the finite beta, the X-point and the shape of shell. (author)

  3. Taking a peek at Bloch oscillations

    Science.gov (United States)

    Morsch, Oliver

    2016-11-01

    Bloch oscillations arise when matter waves inside a periodic potential, such as a crystal lattice, are accelerated by a constant force. Keßler et al (2016 New J. Phys. 18 102001) have now experimentally tested a method that allows one to observe those oscillations continuously, without a destructive measurement on the matter wave. Their approach could help to make cold atom-based accelerometers and gravimeters more precise.

  4. Closed-loop suppression of chaos in nonlinear driven oscillators

    Science.gov (United States)

    Aguirre, L. A.; Billings, S. A.

    1995-05-01

    This paper discusses the suppression of chaos in nonlinear driven oscillators via the addition of a periodic perturbation. Given a system originally undergoing chaotic motions, it is desired that such a system be driven to some periodic orbit. This can be achieved by the addition of a weak periodic signal to the oscillator input. This is usually accomplished in open loop, but this procedure presents some difficulties which are discussed in the paper. To ensure that this is attained despite uncertainties and possible disturbances on the system, a procedure is suggested to perform control in closed loop. In addition, it is illustrated how a model, estimated from input/output data, can be used in the design. Numerical examples which use the Duffing-Ueda and modified van der Pol oscillators are included to illustrate some of the properties of the new approach.

  5. Analysis of Quasi-periodic Oscillations and Time Lag in Ultraluminous X-Ray Sources with XMM-Newton

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zi-Jian; Xiao, Guang-Cheng; Zhang, Shu; Ma, Xiang; Yan, Lin-Li; Qu, Jin-Lu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Chen, Li; Bu, Qing-Cui; Zhang, Liang, E-mail: lizijian@ihep.ac.cn, E-mail: qujl@ihep.ac.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-04-10

    We investigated the power density spectrum (PDS) and time lag of ultraluminous X-ray sources (ULXs) observed by XMM-Newton . We determined the PDSs for each ULX and found that five of them show intrinsic variability due to obvious quasi-periodic oscillations (QPOs) of mHz–1 Hz, consistent with previous reports. We further investigated these five ULXs to determine their possible time lag. The ULX QPOs exhibit a soft time lag that is linearly related to the QPO frequency. We discuss the likelihood of the ULX QPOs being type-C QPO analogs, and the time lag models. The ULXs might harbor intermediate-mass black holes if their QPOs are type-C QPO analogs. We suggest that the soft lag and the linearity may be due to reverberation.

  6. Magnetisation oscillations, boundary conditions and the Hofstadter butterfly in graphene flakes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Brada, Matej; Kusmartsev, Feodor V. [Department of Physics, Loughborough University (United Kingdom); Mele, Eugene J. [Department of Physics, Loughborough University (United Kingdom); Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States)

    2014-10-15

    New quantum oscillations in the magnetization of graphene flakes induced by magnetic fields, which depend on the shape of the flake, are described. At small values of the field they are due to the Aharonov-Bohm effect and with increasing field they are transformed into dHvA oscillations. The specific form of the dHvA oscillations is analyzed in terms of their energy spectrum, which has a form of Hofstadter's butterfly. Numerical results using a lattice tight-binding model and a continuum Dirac equation are presented and compared. Possible experiments to investigate the quantum oscillations in Moire and graphene anti-dot superlattices are discussed. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    Science.gov (United States)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  8. Prediction of unsteady separated flows on oscillating airfoils

    Science.gov (United States)

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  9. The quasi-biennial oscillation of 1.7 years in ground level enhancement events

    Science.gov (United States)

    Velasco Herrera, V. M.; Pérez-Peraza, J.; Soon, W.; Márquez-Adame, J. C.

    2018-04-01

    The so-called Ground Level Enhancement events are sporadic relativistic solar particles measured at ground level by a network of cosmic ray detectors worldwide. These sporadic events are typically assumed to occur by random chance. However, we find that by studying the last 56 ground level enhancement events reported from 1966 through 2014, these events occur preferentially in the positive phase of the quasi-biennial oscillation of 1.7 year periodicity. These discrete ground level enhancement events show that there is another type of solar emission (i.e., wavelike packets) that occurs only in a specific phase of a very particular oscillation. We interpret this empirical result to support that ground level enhancement events are not a result of purely stochastic processes. We used the Morlet wavelet to analyze the phase of each of the periodicities found by the wavelet analyses and local variations of power spectral density in these sporadic events. We found quasi-regular periodicities of 10.4, 6.55, 4.12, 2.9, 1.73, 0.86, 0.61, 0.4 and 0.24 years in ground level enhancements. Although some of these quasi-biennial oscillation periodicities (i.e., oscillations operating between 0.6 and 4 years) may be interpreted as simply harmonics and overtones of the fundamental solar cycle from the underlying sun-spot magnetism phenomenon. The sources of these periodicities are still unclear. Also there is no clear mechanism for the variability of the quasi-biennial oscillation periodicities itself. The quasi-biennial oscillation periodicities are broadly considered to be a variation of solar activity, associated with the solar dynamo process. Also, the intensity of these periodicities is more important around the years of maximum solar activity because the quasi-biennial oscillation periodicities are modulated by the solar cycle where the Sun is more energetically enhanced during activity maxima. To identify the relationships among ground level enhancement, solar, and cosmic

  10. Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Voskoboynikov, O., E-mail: vam@faculty.nctu.edu.tw [Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan (China)

    2016-07-15

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled In{sub c}Ga{sub 1−c}As/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape) under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in In{sub c}Ga{sub 1−c}As/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.

  11. Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belousov-Zhabotinsky reaction

    International Nuclear Information System (INIS)

    Li Qianshu; Zhu Rui

    2004-01-01

    A three-variable model of the Belousov-Zhabotinsky reaction system subject to external sinusoidal perturbations is investigated by means of frequency spectrum analysis. In the period-1 window of the model, the transitions from periodicity to chaos are observed; in the chaotic window, the transitions from chaos to periodicity are found. The former might be understood by the circle map of two coupled oscillators, and the latter is partly explained by the resonance between the main frequency of the chaos and the frequency of the external periodic perturbations

  12. Circuit simulation and physical implementation for a memristor-based colpitts oscillator

    Directory of Open Access Journals (Sweden)

    Hongmin Deng

    2017-03-01

    Full Text Available This paper implements two kinds of memristor-based colpitts oscillators, namely, the circuit where the memristor is added into the feedback network of the oscillator in parallel and series, respectively. First, a MULTISIM simulation circuit for the memristive colpitts oscillator is built, where an emulator constructed by some off-the-shelf components is utilized to replace the memristor. Then the physical system is implemented in terms of the MULTISIM simulation circuit. Circuit simulation and experimental study show that this memristive colpitts oscillator can exhibit periodic, quasi-periodic, and chaotic behaviors with certain parameter’s variances. Besides, in a sense, the circuit is robust with circuit parameters and device types.

  13. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Science.gov (United States)

    Mauche, Christopher W.

    2004-07-01

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  14. Matter Density Profile Shape Effects at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kevin J. [Northwestern U.; Parke, Stephen J. [Fermilab

    2018-02-19

    Quantum mechanical interactions between neutrinos and matter along the path of propagation, the Wolfenstein matter effect, are of particular importance for the upcoming long-baseline neutrino oscillation experiments, specifically the Deep Underground Neutrino Experiment (DUNE). Here, we explore specifically what about the matter density profile can be measured by DUNE, considering both the shape and normalization of the profile between the neutrinos' origin and detection. Additionally, we explore the capability of a perturbative method for calculating neutrino oscillation probabilities and whether this method is suitable for DUNE. We also briefly quantitatively explore the ability of DUNE to measure the Earth's matter density, and the impact of performing this measurement on measuring standard neutrino oscillation parameters.

  15. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  16. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  17. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  18. Regulating Cortical Oscillations in an Inhibition-Stabilized Network.

    Science.gov (United States)

    Jadi, Monika P; Sejnowski, Terrence J

    2014-04-21

    Understanding the anatomical and functional architecture of the brain is essential for designing neurally inspired intelligent systems. Theoretical and empirical studies suggest a role for narrowband oscillations in shaping the functional architecture of the brain through their role in coding and communication of information. Such oscillations are ubiquitous signals in the electrical activity recorded from the brain. In the cortex, oscillations detected in the gamma range (30-80 Hz) are modulated by behavioral states and sensory features in complex ways. How is this regulation achieved? Although several underlying principles for the genesis of these oscillations have been proposed, a unifying account for their regulation has remained elusive. In a network of excitatory and inhibitory neurons operating in an inhibition-stabilized regime, we show that strongly superlinear responses of inhibitory neurons facilitate bidirectional regulation of oscillation frequency and power. In such a network, the balance of drives to the excitatory and inhibitory populations determines how the power and frequency of oscillations are modulated. The model accounts for the puzzling increase in their frequency with the salience of visual stimuli, and a decrease with their size. Oscillations in our model grow stronger as the mean firing level is reduced, accounting for the size dependence of visually evoked gamma rhythms, and suggesting a role for oscillations in improving the signal-to-noise ratio (SNR) of signals in the brain. Empirically testing such predictions is still challenging, and implementing the proposed coding and communication strategies in neuromorphic systems could assist in our understanding of the biological system.

  19. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  20. SIMULTANEOUS OBSERVATION OF SOLAR OSCILLATIONS ASSOCIATED WITH CORONAL LOOPS FROM THE PHOTOSPHERE TO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Liu, S.; Zhang, Y. Z.; Zhao, H.; Xu, H. Q.; Xie, W. B. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012 (China); Liu, Y. [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-01-01

    The solar oscillations along one coronal loop in AR 11504 are observed simultaneously in white light emission and Doppler velocity by SDO/HMI, and in UV and EUV emissions by SDO/AIA. The technique of the time-distance diagram is used to detect the propagating oscillations of the emission intensities along the loop. We find that although all the oscillation signals were intercorrelated, the low chromospheric oscillation correlated more closely to the oscillations of the transition region and corona than to those of the photosphere. Situated above the sunspot, the oscillation periods were {approx}3 minutes in the UV/EUV emissions; however, moving away from the sunspot and into the quiet Sun, the periods became longer, e.g., up to {approx}5 minutes or more. In addition, along another loop we observe both the high-speed outflows and oscillations, which roughly had a one-to-one corresponding relationship. This indicates that the solar periodic oscillations may modulate the magnetic reconnections between the loops of the high and low altitudes that drive the high-speed outflows along the loop.

  1. Magma chamber interaction giving rise to asymmetric oscillations

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2017-12-01

    Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.

  2. Self-similar oscillations of a Z pinch

    International Nuclear Information System (INIS)

    Felber, F.S.

    1982-01-01

    A new analytic, self-similar solution of the equations of ideal magnetohydrodynamics describes cylindrically symmetric plasmas conducting constant current. The solution indicates that an adiabatic Z pinch oscillates radially with a period typically of the order of a few acoustic transit times. A stability analysis, which shows the growth rate of the sausage instability to be a saturating function of wavenumber, suggests that the oscillations are observable

  3. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    Science.gov (United States)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  4. Long-Period Solar Variability

    Energy Technology Data Exchange (ETDEWEB)

    GAUTHIER,JOHN H.

    2000-07-20

    Terrestrial climate records and historical observations of the Sun suggest that the Sun undergoes aperiodic oscillations in radiative output and size over time periods of centuries and millenia. Such behavior can be explained by the solar convective zone acting as a nonlinear oscillator, forced at the sunspot-cycle frequency by variations in heliomagnetic field strength. A forced variant of the Lorenz equations can generate a time series with the same characteristics as the solar and climate records. The timescales and magnitudes of oscillations that could be caused by this mechanism are consistent with what is known about the Sun and terrestrial climate.

  5. Granular Segregation by an Oscillating Ratchet Mechanism

    International Nuclear Information System (INIS)

    Igarashi, A.; Horiuchi, Ch.

    2004-01-01

    We report on a method to segregate granular mixtures which consist of two kinds of particles by an oscillating ''ratchet'' mechanism. The segregation system has an asymmetrical sawtooth-shaped base which is vertically oscillating. Such a ratchet base produces a directional current of particles owing to its transport property. It is a counterintuitive and interesting phenomenon that a vertically vibrated base transports particles horizontally. This system is studied with numerical simulations, and it is found that we can apply such a system to segregation of mixtures of particles with different properties (radius or mass). Furthermore, we find out that an appropriate inclination of the ratchet-base makes the quality of segregation high. (author)

  6. Sun oscillations and the problem of its internal structure

    International Nuclear Information System (INIS)

    Severnyj, A.B.; Kotov, V.A.; Tsap, T.T.

    1979-01-01

    Analysis of global solar oscillation measurements for five years (1974-1978, more than 1000 hours of observations, 215 days) is given. It is shown that the period of oscillations is 160sup(m)x0.10+-0sup(m)x004 and the amplitude is 1 m/s. The phases of oscillations, obtained at the Crimea, Stanford, Kitt Peak and Pic du Midi, are in good agreement, thus making the assumption on ''telluric origin'' of the oscillations improbable. It has been found: 1) slow, synchronous (at Crimea and Stanford) drift of the phase of velocity maximum from year to year and 2) the dependence of amplitude on the phase of 27-day rotational period of the Sun which favours the assumption on the quadrupole character of oscillations. It is pointed out that these facts, as well as the absence of oscillation waves in the telluric line observed simultaneously with the solar line, exclude the possibility of explaining the results as a statistical artifact. It has also been shown that the differential extinction effect produces an oscillation effect which is by an order of magnitude lower than the observed one. The following preliminary results are noted: a) the appearance of synchronous oscillations of the mean solar magnetic field of the brightness of the Sun and of the solar radio emission; b) the disappearance of the oscillations from time to time, possibly due to the effect of the supergranulation passage across the solar disk. The oscillations observed imply new important restrictions on the problem of the internal constitution of the Sun, and point to the possibility of non-radiative heat-transfer inside the Sun which might help the solution of the low neutrino flux problem

  7. Power system low frequency oscillation monitoring and analysis based on multi-signal online identification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The advance in the wide-area measurement system (WAMS) is driving the power system to the trend of wide-area monitoring and control.The Prony method is usually used for low frequency oscillation online identification.However,the identified amplitude and phase information is not sufficiently used.In this paper,the amplitude is adopted to detect the occurrence of the oscillation and to obtain the mode observability of the sites.The phase is adopted to identify the oscillation generator grouping and to obtain the mode shapes.The time varying characteristics of low frequency oscillations are studied.The behaviors and the characters of low frequency oscillations are displayed by dynamic visual techniques.Demonstrations on the "11.9" low frequency oscillation of the Guizhou Power Grid substantiate the feasibility and the validation of the proposed methods.

  8. Edge harmonic oscillations at the density pedestal in the H-mode discharges in CHS Heliotron measured using beam emission spectroscopy and magnetic probe

    Energy Technology Data Exchange (ETDEWEB)

    Kado, S. [High Temperature Plasma Center, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: kado@q.t.u-tokyo.ac.jp; Oishi, T. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoshinuma, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Takeuchi, M. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Toi, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Minami, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagaoka, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shimizu, A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Okamura, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tanaka, S. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2007-06-15

    Edge harmonic oscillations (EHO) offer the potential to relax the H-mode pedestal in a tokamak, thus avoiding edge localised modes (ELM). The mode structure of the EHO in CHS was investigated using a poloidal array of beam emission spectroscopy (BES) and a magnetic probe array. The EHO exhibited a peculiar characteristic in which the first, second and third harmonics show the same wavenumber, suggesting that the propagation velocities are different. Change in the phase of higher harmonics at the time when that of the first harmonic is zero can be described as a variation along the (m, n) = (-2, 1) mode structure, though the EHO lies on the {iota} = 1 surface. This behavior leads to an oscillation that exhibits periodic dependence of shape on spatial position.

  9. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  10. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene

    Science.gov (United States)

    Scafetta, Nicola; Milani, Franco; Bianchini, Antonio; Ortolani, Sergio

    2017-04-01

    An oscillation with a period of about 2100-2500 years, the Hallstatt cycle, is found in cosmogenic radioisotopes (14C and 10Be) and in paleoclimate records throughout the Holocene. This oscillation is typically associated with solar variations, but its primary physical origin remains uncertain. Herein we show strong evidences for an astronomical origin of this cycle. Namely, this oscillation is coherent to a repeating pattern in the periodic revolution of the planets around the Sun: the major stable resonance involving the four Jovian planets - Jupiter, Saturn, Uranus and Neptune - which has a period of about p=2318 yr. Inspired by the Milanković's theory of an astronomical origin of the glacial cycles, we test whether the Hallstatt cycle could derive from the rhythmic variation of the circularity of the solar system disk assuming that this dynamics could eventually modulate the solar wind and, consequently, the incoming cosmic ray flux and/or the interplanetary/cosmic dust concentration around the Earth-Moon system. The orbit of the planetary mass center (PMC) relative to the Sun is used as a proxy. We analyzed how the instantaneous eccentricity vector of this virtual orbit varies from 13,000 B. C. to 17,000 A. D.. We found that it undergoes a kind of pulsations and clearly presents rhythmic contraction and expansion patterns with a 2318 yr period together with a number of already known faster oscillations associated to the planetary orbital stable resonances. There exists a quasi π/2 phase shift between the 2100-2500 yr oscillation found in the 14C record and that of the calculated eccentricity function. Namely, at the Hallstatt-cycle time scale, a larger production of radionucleotide particles occurs while the Sun-PMC orbit evolves from more elliptical shapes (e≈0.598) to more circular ones (e≈0.590), that is while the orbital system is slowly imploding or bursting inward; a smaller production of radionucleotide particles occurs while the Sun-PMC orbit

  11. Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator

    International Nuclear Information System (INIS)

    Belendez, Augusto; Pascual, Carolina

    2007-01-01

    The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate frequency-amplitude relations for the relativistic oscillator for which the nonlinearity (anharmonicity) is a relativistic effect due to the time line dilation along the world line. Making a change of variable, a new nonlinear differential equation is obtained and two procedures are used to approximately solve this differential equation. In the first the differential equation is rewritten in a form that does not contain a square-root expression, while in the second the differential equation is solved directly. The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. The discrepancy between the first-order approximate frequency obtained by means of the second procedure and the exact frequency never exceeds 1.6%. We also obtained the approximate frequency by applying the second-order harmonic balance method and in this case the relative error is as low 0.31% for all the range of values of amplitude of oscillation A

  12. Periodic rotation noise induced by the crosstalk between two beat-frequency signals in multi-oscillator ring laser gyros

    International Nuclear Information System (INIS)

    Lu, Guangfeng; Wang, Zhiguo; Fan, Zhenfang; Luo, Hui

    2014-01-01

    Periodic rotation noise in the outputs of multi-oscillator ring laser gyros (MRLGs) is investigated in this paper for the first time. It is proved theoretically and experimentally that noise is induced by the crosstalk between two beat-frequency signals, which are combined from the left and right circularly polarized counter-propagating beams in MRLGs. Theoretical analysis and experimental results also indicate that the fundamental frequency of this noise is equal to the frequency difference between the two beat-frequency signals and the amplitude of the fundamental component is proportional to the crosstalk ratio between the two beat-frequency signals. Further, the amplitude of the nth-order component is proportional to the nth power of the crosstalk ratio. (paper)

  13. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  14. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  15. Synchronization ability of coupled cell-cycle oscillators in changing environments

    Science.gov (United States)

    2012-01-01

    Background The biochemical oscillator that controls periodic events during the Xenopus embryonic cell cycle is centered on the activity of CDKs, and the cell cycle is driven by a protein circuit that is centered on the cyclin-dependent protein kinase CDK1 and the anaphase-promoting complex (APC). Many studies have been conducted to confirm that the interactions in the cell cycle can produce oscillations and predict behaviors such as synchronization, but much less is known about how the various elaborations and collective behavior of the basic oscillators can affect the robustness of the system. Therefore, in this study, we investigate and model a multi-cell system of the Xenopus embryonic cell cycle oscillators that are coupled through a common complex protein, and then analyze their synchronization ability under four different external stimuli, including a constant input signal, a square-wave periodic signal, a sinusoidal signal and a noise signal. Results Through bifurcation analysis and numerical simulations, we obtain synchronization intervals of the sensitive parameters in the individual oscillator and the coupling parameters in the coupled oscillators. Then, we analyze the effects of these parameters on the synchronization period and amplitude, and find interesting phenomena, e.g., there are two synchronization intervals with activation coefficient in the Hill function of the activated CDK1 that activates the Plk1, and different synchronization intervals have distinct influences on the synchronization period and amplitude. To quantify the speediness and robustness of the synchronization, we use two quantities, the synchronization time and the robustness index, to evaluate the synchronization ability. More interestingly, we find that the coupled system has an optimal signal strength that maximizes the synchronization index under different external stimuli. Simulation results also show that the ability and robustness of the synchronization for the square

  16. Airfoil flow instabilities induced by background flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Selerowicz, W.C.; Szumowski, A.P. [Technical Univ. Warsaw (Poland)

    2002-04-01

    The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, {alpha}=4 and {alpha}=8.5 , which correspond to the attached and separated steady airfoil flows, respectively. (orig.)

  17. Preliminary oscillating fluxes current drive experiment in DIII-D tokamak

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Schaffer, M.; Kondoh, Y.

    1995-01-01

    A preliminary oscillating flux helicity injection experiment was done on DIII-D tokamak. The toroidal flux was modulated by programming the plasma elongation. Instead of programming the surface voltage directly, the plasma current was programmed with a periodic modulation at some phase shift. The theoretical basis of this modulation is discussed in terms of the helicity injection and also introduced by cross-field motion of the modulated plasma. Because the primary winding is well coupled with the plasma current and the power supply is strong, the plasma current behaves as programmed. However, as the plasma shape is not coupled strongly with the shaping and equilibrium coils, the elongation amplitude and phase are affected by the change of plasma current and do not behave as programmed. Because of this, the voltage induced by the helicity injection is low, and the experiment did not test the principle of helicity injection. The injection powers of helicity and energy, and the electric field intensity of the helicity injection model and the cross-field motion of plasma are compared with each other experimentally. The improvement necessary to do the experiment is also proposed. ((orig.))

  18. Temporal structure of neuronal population oscillations with empirical model decomposition

    International Nuclear Information System (INIS)

    Li Xiaoli

    2006-01-01

    Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation

  19. Interaction of Glycolysis and Mitochondrial Respiration in Metabolic Oscillations of Pancreatic Islets

    DEFF Research Database (Denmark)

    Bertram, Richard; Satin, Leslie S.; Pedersen, Morten Gram

    2007-01-01

    Insulin secretion from pancreatic ß-cells is oscillatory, with a typical period of 2–7 min, reflecting oscillations in membrane potential and the cytosolic Ca2+ concentration. Our central hypothesis is that the slow 2–7 min oscillations are due to glycolytic oscillations, whereas faster oscillati...

  20. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms

    Science.gov (United States)

    Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.

    2001-01-01

    NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.

  1. A Design Principle for a Posttranslational Biochemical Oscillator

    Directory of Open Access Journals (Sweden)

    Craig C. Jolley

    2012-10-01

    Full Text Available Multisite phosphorylation plays an important role in biological oscillators such as the circadian clock. Its general role, however, has been elusive. In this theoretical study, we show that a simple substrate with two modification sites acted upon by two opposing enzymes (e.g., a kinase and a phosphatase can show oscillations in its modification state. An unbiased computational analysis of this oscillator reveals two common characteristics: a unidirectional modification cycle and sequestering of an enzyme by a specific modification state. These two motifs cause a substrate to act as a coupled system in which a unidirectional cycle generates single-molecule oscillators, whereas sequestration synchronizes the population by limiting the available enzyme under conditions in which substrate is in excess. We also demonstrate the conditions under which the oscillation period is temperature compensated, an important feature of the circadian clock. This theoretical model will provide a framework for analyzing and synthesizing posttranslational oscillators.

  2. The Mechanical Transient Process at Asynchronous Motor Oscillating Mode

    Science.gov (United States)

    Antonovičs, Uldis; Bražis, Viesturs; Greivulis, Jānis

    2009-01-01

    The research object is squirrel-cage asynchronous motor connected to single-phase sinusoidal. There are shown, that by connecting to the stator windings a certain sequence of half-period positive and negative voltage, a motor rotor is rotated, but three times slower than in the three-phase mode. Changing the connecting sequence of positive and negative half-period voltage to stator windings, motor can work in various oscillating modes. It is tested experimentally. The mechanical transient processes had been researched in rotation and oscillating modes.

  3. THE ENERGY DEPENDENCE OF THE CENTROID FREQUENCY AND PHASE LAG OF THE QUASI-PERIODIC OSCILLATIONS IN GRS 1915+105

    International Nuclear Information System (INIS)

    Qu, J. L.; Lu, F. J.; Lu, Y.; Song, L. M.; Zhang, S.; Wang, J. M.; Ding, G. Q.

    2010-01-01

    We present a study of the centroid frequencies and phase lags of quasi-periodic oscillations (QPOs) as functions of photon energy for GRS 1915+105. It is found that the centroid frequencies of the 0.5-10 Hz QPOs and their phase lags are both energy dependent, and there exists an anticorrelation between the QPO frequency and phase lag. These new results challenge the popular QPO models, because none of them can fully explain the observed properties. We suggest that the observed QPO phase lags are partially due to the variation of the QPO frequency with energy, especially for those with frequency higher than 3.5 Hz.

  4. Nonstationary oscillations in gyrotrons revisited

    International Nuclear Information System (INIS)

    Dumbrajs, O.; Kalis, H.

    2015-01-01

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper

  5. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    KAUST Repository

    Ryu, Seol

    2010-01-01

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. © 2009 The Combustion Institute.

  6. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the ...

  7. Nonlinear resonance in Duffing oscillator with fixed and integrative ...

    Indian Academy of Sciences (India)

    2012-03-02

    Mar 2, 2012 ... Abstract. We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter α and the ...

  8. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  9. On one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations

    Science.gov (United States)

    Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin

    2018-01-01

    Twin-peak quasi-periodic oscillations (QPOs) are observed in several low-mass X-ray binary systems containing neutron stars. Timing the analysis of X-ray fluxes of more than dozen of such systems reveals remarkable correlations between the frequencies of two characteristic peaks present in the power density spectra. The individual correlations clearly differ, but they roughly follow a common individual pattern. High values of measured QPO frequencies and strong modulation of the X-ray flux both suggest that the observed correlations are connected to orbital motion in the innermost part of an accretion disc. Several attempts to model these correlations with simple geodesic orbital models or phenomenological relations have failed in the past. We find and explore a surprisingly simple analytic relation that reproduces individual correlations for a group of several sources through a single parameter. When an additional free parameter is considered within our relation, it well reproduces the data of a large group of 14 sources. The very existence and form of this simple relation support the hypothesis of the orbital origin of QPOs and provide the key for further development of QPO models. We discuss a possible physical interpretation of our relation's parameters and their links to concrete QPO models.

  10. Periodic variations of cosmic ray intensity with period of -37 minute observed on April 25th, 1984

    International Nuclear Information System (INIS)

    Sakai, Takasuke; Kato, Masahito; Takei, Ryoji; Tamai, Eiji

    1985-01-01

    Existence of cosmic ray variation with period ranging from a few hours to seconds during geomagnetically quiet and perturb period at different altitude with different detector, was reported previously. As short period variation is thought to be transient with small amplitude fluctuation, consequently high counting rate of cosmic ray and appropriate method for finding short periodicity, is required. Further, there is similar phenomenon in which short variation, followed by storm sudden commencement (SSC) and/or Forbush decrease (FD) occurs. In 1979, Kato et al. used 3 minutes data at Mt. Norikura and obtained -6 x 10 5 count/min, and tried to find out short periodicity of cosmic ray around SSC, but no clear conclusion was obtained. T. Sakai, et al., used plastic scintillation counter of Akeno observatory, following their preceding work. The counter has an area about 154 m 2 . High counting rate of -2 x 10 6 counts/min. was observed at Akeno which revealed the existence of -37 minute periodical oscillation with an amplitude of 0.1 % in p-p during the time period of 1300 - 1900 UT on April 25th 1984, one day before FD. Observed periodical oscillation of cosmic ray counting rate may be the result of the changes in magnetic field. But, it must be noted that there remains possibility of oscillation of cosmic ray intensity in the interplanetary space during the period, independent of geomagnetic field. (author)

  11. Saturation and oscillation of current in semiconductors subjected to uniaxial deformation

    International Nuclear Information System (INIS)

    Zdebskii, A.P.; Olikh, Yu.A.; Savchuk, A.U.

    1985-01-01

    The influence of an external uniaxial deformation on the saturation and oscillations of current in photosensitive CdS monocrystals is investigated. The specimens were subjected to uniaxial pressure up to 6 x 10 7 N/m 2 , the pressure being either parallel or perpendicular to the c axis in CdS. With application of external pressure, the shape of current oscillations and their amplitude changed. In the case where the pressure was perpendicular to the direction of current I, the amplitude of oscillations and the saturation depth of the volt-ampere characteristic, VAC, were increased. With pressure being parallel to the current direction, the reverse phenomenon was observed, i.e. the efficiency of the acousto-electronic interaction was reduced

  12. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  13. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  14. A Wnt Oscillator Model for Somitogenesis

    OpenAIRE

    Jensen, Peter B.; Pedersen, Lykke; Krishna, Sandeep; Jensen, Mogens H.

    2010-01-01

    We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by β-catenin, which in turn is degraded by a complex of GSK3β and Axin2. The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often sp...

  15. Even-Odd Differences and Shape Deformation of Metal Clusters

    OpenAIRE

    Hidetoshi, Nishioka; Yoshio, Takahashi; Department of Physics, Konan University; Faculty of General Education, Yamagata University

    1994-01-01

    The relation between even-odd difference of metal cluster and the deformation of equilibrium shape is studied in terms of two different models; (i) tri-axially deformed harmonic oscillator model, (ii) rectangular box model. Having assumed the matter density ρ kept constant for different shapes of a cluster, we can determine the equilibrium shape both for the two models. The enhancement of HOMO-LUMO gap is obtained and it is ascribed to Jahn-Teller effect. Good agreement of the calculated resu...

  16. Phase synchronization in a two-mode solid state laser: Periodic modulations with the second relaxation oscillation frequency of the laser output

    International Nuclear Information System (INIS)

    Hsu, Tzu-Fang; Jao, Kuan-Hsuan; Hung, Yao-Chen

    2014-01-01

    Phase synchronization (PS) in a periodically pump-modulated two-mode solid state laser is investigated. Although PS in the laser system has been demonstrated in response to a periodic modulation with the main relaxation oscillation (RO) frequency of the free-running laser, little is known about the case of modulation with minor RO frequencies. In this Letter, the empirical mode decomposition (EMD) method is utilized to decompose the laser time series into a set of orthogonal modes and to examine the intrinsic PS near the frequency of the second RO. The degree of PS is quantified by means of a histogram of phase differences and the analysis of Shannon entropy. - Highlights: • We study the intrinsic phase synchronization in a periodically pump-modulated two-mode solid state laser. • The empirical mode decomposition method is utilized to define the intrinsic phase synchronization. • The degree of phase synchronization is quantified by a proposed synchronization coefficient

  17. Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.

    Science.gov (United States)

    Samonds, Jason M; Bonds, A B

    2005-01-01

    Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.

  18. Collective motions of globally coupled oscillators and some probability distributions on circle

    Energy Technology Data Exchange (ETDEWEB)

    Jaćimović, Vladimir [Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put, bb., 81000 Podgorica (Montenegro); Crnkić, Aladin, E-mail: aladin.crnkic@hotmail.com [Faculty of Technical Engineering, University of Bihać, Ljubijankićeva, bb., 77000 Bihać, Bosnia and Herzegovina (Bosnia and Herzegovina)

    2017-06-28

    In 2010 Kato and Jones described a new family of probability distributions on circle, obtained as Möbius transformation of von Mises distribution. We present the model demonstrating that these distributions appear naturally in study of populations of coupled oscillators. We use this opportunity to point out certain relations between Directional Statistics and collective motion of coupled oscillators. - Highlights: • We specify probability distributions on circle that arise in Kuramoto model. • We study how the mean-field coupling affects the shape of distribution of phases. • We discuss potential applications in some experiments on cell cycle. • We apply Directional Statistics to study collective dynamics of coupled oscillators.

  19. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer; Oscillations dans l`amplitude de diffusion hadronique a haute energie et petites moments de transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, Pierre; Basarab Nicolescu [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Selyugin, O.V. [Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1999-10-01

    We show that the high precision dN/dt UA4/2 data at {radical} = 541 GeV are compatible with the presence of Auberson-Kinoshita-Martin (AKM) type of oscillations at very small momentum transfer. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 {center_dot}10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (authors) 1 ref., 2 figs.

  20. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  1. Local and global measures of shape dynamics

    International Nuclear Information System (INIS)

    Driscoll, Meghan K; Losert, Wolfgang; Fourkas, John T

    2011-01-01

    The shape and motion of cells can yield significant insights into the internal operation of a cell. We present a simple, yet versatile, framework that provides multiple metrics of cell shape and cell shape dynamics. Analysis of migrating Dictyostelium discoideum cells shows that global and local metrics highlight distinct cellular processes. For example, a global measure of shape shows rhythmic oscillations suggestive of contractions, whereas a local measure of shape shows wave-like dynamics indicative of protrusions. From a local measure of dynamic shape, or boundary motion, we extract the times and locations of protrusions and retractions. We find that protrusions zigzag, while retractions remain roughly stationary along the boundary. We do not observe any temporal relationship between protrusions and retractions. Our analysis framework also provides metrics of the boundary as whole. For example, as the cell speed increases, we find that the cell shape becomes more elongated. We also observe that while extensions and retractions have similar areas, their shapes differ

  2. Quasi-periodic latitudinal shift of Saturn's main auroral emission

    Science.gov (United States)

    Roussos, E.; Palmaerts, B.; Grodent, D. C.; Radioti, K.; Krupp, N.; Yao, Z.

    2017-12-01

    The main component of the ultraviolet auroral emissions at Saturn consists in a ring of emission around each pole of the planet. This main ring of emission has been revealed to oscillate by a few degrees in the prenoon-premidnight direction with a period of 10.8h. This auroral oscillation is thought to be induced by a rotating external magnetospheric current system associated with the planetary period oscillations. Here we report, by means of auroral imaging sequences obtained with the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft, the first direct observation of an additional motion of the main emission superimposed to this oscillation. The whole main emission ring exhibits step-like displacements in latitude mainly towards dayside, decoupled from the 10.8h oscillation. These latitude shifts recur around every hour, which is a typical short periodicity at Saturn previously identified in the aurora intensity, in the charged particle fluxes and in the magnetic field. This unique observation directly demonstrates what has been inferred from past in-situ and remote measurements: the 1-hour periodicities reveal a global and fundamental magnetospheric oscillation mode that acts independently of the local magnetospheric conditions. However, the magnetospheric mechanism responsible for these 1-hour auroral shifts is still unknown. It is possible that Alfvén waves inducing hourly magnetic fluctuations might also modify the place where the field-aligned electrons precipitate in the ionosphere and produce the main emission.

  3. Optimum design of A fluidic micro-oscillator

    International Nuclear Information System (INIS)

    Noh, Yoojeong; Youn, Sungkie; Kim, Moonuhn

    2002-01-01

    A fluidic micro-oscillator is used to control a linear tool as generating an oscillating fluid jet at its two output ports. The linear tool is a linear actuator that transforms the fluidic energy into mechanical energy via a double acting piston placed in linear actuator housing. Together the two devices form a dynamic microsystem that can be used in medical application. In this paper, we intend to optimize the geometry of the fluidic micro-oscillator. A basic oscillator design is varied in terms of supply nozzle geometry, length of the feedback channels, wall angle, control port width and etc. It was found that characteristics parameters such as frequency, volume flow and output pressure depends strongly on above mentioned design parameters. According to above the observations, we can determine an object function and design variables. Since we eventually have to maximize force to drive and steer a cutting tool, the output pressure difference is chosen as an object function and nozzle width, feedback channel, control port width, distance between splitter and nozzle can be chosen as the design variables. As a result of such design optimization, we can obtain the maximum force. At this time we maximize the output pressure difference using shape optimization

  4. Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs

    Science.gov (United States)

    Dewberry, Janosz W.; Latter, Henrik N.; Ogilvie, Gordon I.

    2018-05-01

    The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary systems present a window on to the intrinsic properties of stellar-mass black holes and hence a testbed for general relativity. One explanation for these features is that relativistic distortion of the accretion disc's differential rotation creates a trapping region in which inertial waves (r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-scale magnetic fields push this trapping region to the inner disc edge, where conditions may be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but fully global perspective, deriving linearized equations describing a relativistic, magnetized accretion flow, and calculating normal modes with and without vertical density stratification. In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the inner edge, though the effect depends on the choice of vertical wavenumber. In a global model we better quantify this susceptibility, and its dependence on the disc's vertical structure and thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100-300. We posit that the appearance of r-modes in observations may be more determined by a competition between excitation and damping mechanisms near the ISCO than by the modification of the trapping region by magnetic fields.

  5. The vertical oscillations of coupled magnets

    International Nuclear Information System (INIS)

    Li Kewei; Lin Jiahuang; Kang Zi Yang; Liang, Samuel Yee Wei; Juan, Jeremias Wong Say

    2011-01-01

    The International Young Physicists' Tournament (IYPT) is a worldwide, annual competition for high school students. This paper is adapted from the winning solution to Problem 14, Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of each other on a common axis. One was fixed, while the other could move vertically. Various parameters of interest were investigated, including the effective gravitational acceleration, the strength, size, mass and geometry of the magnets, and damping of the oscillations. Despite its simplicity, this setup yielded a number of interesting and unexpected relations. The first stage of the investigation was concerned only with the undamped oscillations of small amplitudes, and the period of small amplitude oscillations was found to be dependent only on the eighth root of important magnet properties such as its strength and mass. The second stage sought to investigate more general oscillations. A numerical model which took into account magnet size, magnet geometry and damping effects was developed to model the general oscillations. Air resistance and friction were found to be significant sources of damping, while eddy currents were negligible.

  6. EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2016-06-10

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  7. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    Science.gov (United States)

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  8. Molecular Design and Functional Control of Novel Self-Oscillating Polymers

    Directory of Open Access Journals (Sweden)

    Ryo Yoshida

    2010-02-01

    Full Text Available If we could realize an autonomous polymer system driven under biological conditions by a tailor-made molecular design, human beings could create unprecedented biomimetic functions and materials such as heartbeats, autonomous peristaltic pumps, etc. In order to achieve this objective, we have investigated the molecular design of such a polymer system. As a result, we were the first to demonstrate a self-oscillating polymer system driven in a solution where only malonic acid existed, which could convert the chemical energy of the Belousov-Zhabotinsky (BZ reaction into a change in the conformation of the polymer chain. To cause the self-oscillation in solution, we have attempted to construct a built-in system where the required BZ system substrates other than the organic acid are incorporated into the polymer itself. That is, the novel polymer chain incorporated the metal catalyst of the BZ reaction, a pH-control site and an oxidant supply site at the same time. As a result of introducing the pH control and oxidant supply sites into the conventional-type self-oscillating polymer chain, the novel polymer chain caused aggregation-disaggregation self-oscillations in the solution. We clarified that the period of the self-oscillation of the novel self-oscillating polymer chain was proportional to the concentration of the malonic acid. Therefore, the concentration of the malonic acid can be determined by measuring the period of the novel self-oscillating polymer solution. In this review, we introduce the detailed molecular design of the novel self-oscillating polymer chain and its self-oscillating behavior. Moreover, we report an autonomous self-oscillating polymer gel actuator that causes a bending-stretching motion under the constant conditions.

  9. Nonlinear oscillation system of mass with serial linear and nonlinear springs

    DEFF Research Database (Denmark)

    Seyedalizadeh Ganji,, S.R; Barari, Amin; Karimpour, S

    2013-01-01

    In this paper, two powerful methods called Max–Min and parameter expansion have been applied for the determination of the periodic solutions of the nonlinear free vibration of a conservative oscillator with inertia and static type cubic nonlinearities. It is found that these methods introduce two...... alternatives to overcome the difficulty of capturing the periodic behavior of the solution, as the most evident characteristic of oscillators. It can be clearly observed that approximate frequencies and periodic solutions are in excellent agreement with the exact ones. First approximation leads to high...

  10. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions.

    Science.gov (United States)

    Maurin, Isabelle; Bloch, Daniel

    2015-06-21

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor.

  11. Xenon oscillation tests in four-loop PWR cores

    International Nuclear Information System (INIS)

    Aoki, Norihiko; Osaka, Kenichi; Shimada, Shoichiro; Tochihara, Hiroshi; Machii, Seigo

    1980-01-01

    The Kansai Electric Power Co.'s OHI Unit 1 and 2 are the first 4-loop PWRs in Japan which use 17 x 17 fuel assemblies and have essentially the same plant parameters. A 4-loop core has larger core radius and higher power density than those of 2- or 3-loop cores, and is less stable for Xe oscillation. It is therefore important to confirm that Xe oscillations in radial direction are sufficiently stable in a 4-loop core. Radial and axial Xe oscillation tests were performed during the startup physics tests of OHI Unit 1 and 2; Xe oscillation was induced by perturbation of control rods and the Xe effect on power distribution observed periodically. The test results show that the transverse Xe oscillation in the 4-loop core is sufficiently stable and that the agreement between the measurement and the calculated prediction is good. (author)

  12. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm

    Science.gov (United States)

    Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu

    2018-06-01

    A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.

  13. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  14. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.

    2001-03-01

    We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)

  15. On the totality of periodic motions in the meridian plane of a magnetic dipole

    International Nuclear Information System (INIS)

    Markellos, V.V.; Halioulias, A.A.

    1977-01-01

    The structure of the periodic solutions of the Stoermer problem, representing the magnetic field of the Earth, is examined by considering the equatorial oscillations of the charged particle and their 'vertical' bifurcations with meridian periodic oscillations. An infinity of new families of simple-periodic oscillations are found to exist in the vicinity of the 'thalweg' and four such new families are actually established by numerical integration. (Auth.)

  16. Spin–orbit coupling induced magnetoresistance oscillation in a dc biased two-dimensional electron system

    International Nuclear Information System (INIS)

    Wang, C M; Lei, X L

    2014-01-01

    We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)

  17. Creation and perturbation of planar networks of chemical oscillators

    Science.gov (United States)

    Tompkins, Nathan; Cambria, Matthew Carl; Wang, Adam L.; Heymann, Michael; Fraden, Seth

    2015-01-01

    Methods for creating custom planar networks of diffusively coupled chemical oscillators and perturbing individual oscillators within the network are presented. The oscillators consist of the Belousov-Zhabotinsky (BZ) reaction contained in an emulsion. Networks of drops of the BZ reaction are created with either Dirichlet (constant-concentration) or Neumann (no-flux) boundary conditions in a custom planar configuration using programmable illumination for the perturbations. The differences between the observed network dynamics for each boundary condition are described. Using light, we demonstrate the ability to control the initial conditions of the network and to cause individual oscillators within the network to undergo sustained period elongation or a one-time phase delay. PMID:26117136

  18. Theory of quasi-biennial and some other oscillations in meteorological parameters

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-11-01

    We show that quasi-biennial and several other oscillations in meteorological parameters are caused by ''foldover distortions'' in the physical processes represented by the formulations contained in our recent theory. The periods of all these oscillations extend from about 50 days up to over 200,000 years. Additional oscillations within and outside this periodicity range are correspondingly generated primarily as a result of non-linearities in the earth-atmosphere system. Our analysis agrees quite well with past observations as well as results of analyses on climatic records from different locations on the earth and can, therefore, be useful in attempts to make climatic predictions as briefly indicated in the text. (author). 15 refs, 4 figs, 2 tabs

  19. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.

    Science.gov (United States)

    Einstein, Michael C; Polack, Pierre-Olivier; Tran, Duy T; Golshani, Peyman

    2017-05-17

    Low-frequency membrane potential ( V m ) oscillations were once thought to only occur in sleeping and anesthetized states. Recently, low-frequency V m oscillations have been described in inactive awake animals, but it is unclear whether they shape sensory processing in neurons and whether they occur during active awake behavioral states. To answer these questions, we performed two-photon guided whole-cell V m recordings from primary visual cortex layer 2/3 excitatory and inhibitory neurons in awake mice during passive visual stimulation and performance of visual and auditory discrimination tasks. We recorded stereotyped 3-5 Hz V m oscillations where the V m baseline hyperpolarized as the V m underwent high amplitude rhythmic fluctuations lasting 1-2 s in duration. When 3-5 Hz V m oscillations coincided with visual cues, excitatory neuron responses to preferred cues were significantly reduced. Despite this disruption to sensory processing, visual cues were critical for evoking 3-5 Hz V m oscillations when animals performed discrimination tasks and passively viewed drifting grating stimuli. Using pupillometry and animal locomotive speed as indicators of arousal, we found that 3-5 Hz oscillations were not restricted to unaroused states and that they occurred equally in aroused and unaroused states. Therefore, low-frequency V m oscillations play a role in shaping sensory processing in visual cortical neurons, even during active wakefulness and decision making. SIGNIFICANCE STATEMENT A neuron's membrane potential ( V m ) strongly shapes how information is processed in sensory cortices of awake animals. Yet, very little is known about how low-frequency V m oscillations influence sensory processing and whether they occur in aroused awake animals. By performing two-photon guided whole-cell recordings from layer 2/3 excitatory and inhibitory neurons in the visual cortex of awake behaving animals, we found visually evoked stereotyped 3-5 Hz V m oscillations that disrupt

  20. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Wook; Bak, Jeong Hyeon; Yoon, Jong Hyun; Park, Jong Hyeon [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of); Park, Jong Oh [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2016-12-15

    Cable-driven parallel robots (CDPRs) have many advantages over conventional link-based robot manipulators in terms of acceleration due to their low inertia. This paper concerns about under-constrained CDPRs, which have a less number of cables than six, often used favorably due to their simpler structures. Since a smaller number of cables than 6 are employed, however, their payloads have extra degrees of motion freedom and exhibit swaying motions or oscillation. In this paper, a scheme to suppress unwanted oscillatory motions of the payload of a 4-cable-driven CDPR based on a Zero-vibration (ZV) input-shaping scheme is proposed. In this method, a motion in the 3-dimensional space is projected onto the independent motions on two vertical planes perpendicular to each other. On each of the vertical plane, the natural frequency of the CDPR is computed based on a 2-cable-driven planar CDPR model. The precise dynamic model of a planar CDPR is obtained in order to find the natural frequency, which depends on the payload position. The advantage of the proposed scheme is that it is possible to generate an oscillation-free trajectory based on a ZV input-shaping scheme despite the complexity in the dynamics of the CDPR and the difficulty in computing the natural frequencies of the CDPR, which is required in any ZV input-shaping scheme. To verify the effectiveness of the proposed method, a series of computer simulations and experiments were conducted for 3- dimensional motions with a 4-cable-driven CDPR. Their results showed that the motions of the CDPR with the proposed method exhibited a significant reduction in oscillations of the payload. However, when the payload moves near the edges of its workspace, the improvement in oscillation reduction diminished as expected due to the errors in model projection.

  1. Short period sound speed oscillation measured by intensive XBT survey and its role on GNSS/acoustic positioning

    Science.gov (United States)

    Kido, M.; Matsui, R.; Imano, M.; Honsho, C.

    2017-12-01

    In the GNSS/acoustic measurement, sound speed in ocean plays a key role of accuracy of final positioning. We have shown than longer period sound speed undulation can be properly estimated from GNSS-A analysis itself in our previous work. In this work, we have carried out intensive XBT measurement to get temporal variation of sound speed in short period to be compared with GNSS-A derived one. In the individual temperature profile obtained by intensive XBT measurements (10 minutes interval up to 12 times of cast), clear vertical oscillation up to 20 m of amplitude in the shallow part were observed. These can be interpreted as gravitational internal wave with short-period and hence short wavelength anomaly. Kido et al. (2007) proposed that horizontal variation of the ocean structure can be considered employing five or more transponders at once if the structure is expressed by two quantities, i.e., horizontal gradient in x/y directions. However, this hypothesis requires that the variation must has a large spatial scale (> 2-5km) so that the horizontal variation can be regarded as linear within the extent of acoustic path to seafloor transponders. Therefore the wavelength of the above observed internal wave is getting important. The observed period of internal wave was 30-60 minute. However its wavelength cannot be directly measured. It must be estimate based on density profile of water column. In the comparison between sound speed change and positioning, the delay of their phases were 90 degree, which indicates that most steep horizontal slope of internal wave correspond to largest apparent positioning shift.

  2. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    Science.gov (United States)

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  3. Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts

    Science.gov (United States)

    Schäfer, Edith; Tarantola, Marco; Polo, Elena; Westendorf, Christian; Oikawa, Noriko; Bodenschatz, Eberhard; Geil, Burkhard; Janshoff, Andreas

    2013-01-01

    Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells. PMID:23349816

  4. Forward Period Analysis Method of the Periodic Hamiltonian System.

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    Full Text Available Using the forward period analysis (FPA, we obtain the period of a Morse oscillator and mathematical pendulum system, with the accuracy of 100 significant digits. From these results, the long-term [0, 1060] (time unit solutions, ranging from the Planck time to the age of the universe, are computed reliably and quickly with a parallel multiple-precision Taylor series (PMT scheme. The application of FPA to periodic systems can greatly reduce the computation time of long-term reliable simulations. This scheme provides an efficient way to generate reference solutions, against which long-term simulations using other schemes can be tested.

  5. Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model.

    Science.gov (United States)

    Shu, Hongying; Wang, Lin; Watmough, James

    2014-01-01

    Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.

  6. Phase-locking phenomena and excitation of damped and driven nonlinear oscillators

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker

    2009-01-01

    Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable...

  7. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.

  8. Directional Transverse Oscillation Vector Flow Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2017-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound...... beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively...... simulated using Field IIpro and implemented on the experimental SARUS scanner in connection with a BK Medical 8820e convex array transducer. Velocity estimates for DTO are found for beam-to-flow angles of 60, 75, and 90, and vessel depths from 24 to 156 mm. Using 16 emissions the Standard Deviation (SD...

  9. Very long period conduit oscillations induced by rockfalls at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Chouet, Bernard A.; Dawson, Phillip B.

    2013-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in 2010 and continuing to the present time is characterized by transient outgassing bursts accompanied by very long period (VLP) seismic signals triggered by rockfalls from the vent walls impacting a lava lake in a pit within the Halemaumau pit crater. We use raw data recorded with an 11-station broadband network to model the source mechanism of signals accompanying two large rockfalls on 29 August 2012 and two smaller average rockfalls obtained by stacking over all events with similar waveforms to improve the signal-to-noise ratio. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. We apply a new waveform inversion method that accounts for the contributions from both translation and tilt in horizontal seismograms through the use of Green's functions representing the seismometer response to translation and tilt ground motions. This method enables a robust description of the source mechanism over the period range 1–1000 s. The VLP signals associated with the rockfalls originate in a source region ∼1 km below the eastern perimeter of the Halemaumau pit crater. The observed waveforms are well explained by a simple volumetric source with geometry composed of two intersecting cracks including an east striking crack (dike) dipping 80° to the north, intersecting a north striking crack (another dike) dipping 65° to the east. Each rockfall is marked by a similar step-like inflation trailed by decaying oscillations of the volumetric source, attributed to the efficient coupling at the source centroid location of the pressure and momentum changes induced by the rock mass impacting the top of the lava column. Assuming a simple lumped parameter representation of the shallow magmatic system, the

  10. Low frequency temperature forcing of chemical oscillations.

    Science.gov (United States)

    Novak, Jan; Thompson, Barnaby W; Wilson, Mark C T; Taylor, Annette F; Britton, Melanie M

    2011-07-14

    The low frequency forcing of chemical oscillations by temperature is investigated experimentally in the Belousov-Zhabotinsky (BZ) reaction and in simulations of the Oregonator model with Arrhenius temperature dependence of the rate constants. Forcing with temperature leads to modulation of the chemical frequency. The number of response cycles per forcing cycle is given by the ratio of the natural frequency to the forcing frequency and phase locking is only observed in simulations when this ratio is a whole number and the forcing amplitude is small. The global temperature forcing of flow-distributed oscillations in a tubular reactor is also investigated and synchronisation is observed in the variation of band position with the external signal, reflecting the periodic modulation of chemical oscillations by temperature.

  11. A study of kinetic friction: The Timoshenko oscillator

    Science.gov (United States)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  12. Observation of a Short Period Quasi-periodic Pulsation in Solar X-Ray, Microwave, and EUV Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2017-02-10

    This paper presents the multiwavelength analysis of a 13 s quasi-periodic pulsation (QPP) observed in hard X-ray (12–300 keV) and microwave (4.9–34 GHz) emissions during a C-class flare that occurred on 2015 September 21. Atmospheric Image Assembly (AIA) 304 and 171 Å images show an emerging loop/flux tube (L1) moving radially outward, which interacts with the preexisting structures within the active region (AR). The QPP was observed during the expansion of and rising motion of L1. The Nobeyama Radioheliograph microwave images in 17/34 GHz channels reveal a single radio source that was co-spatial with a neighboring loop (L2). In addition, using AIA 304 Å images, we detected intensity oscillations in the legs of L2 with a period of about 26 s. A similar oscillation period was observed in the GOES soft X-ray flux derivative. This oscillation period seems to increase with time. We suggest that the observed QPP is most likely generated by the interaction between L2 and L3 observed in the AIA hot channels (131 and 94 Å). The merging speed of loops L2 and L3 was ∼35 km s{sup −1}. L1 was destroyed possibly by its interaction with preexisting structures in the AR, and produced a cool jet with the speed of ∼106–118 km s{sup −1} associated with a narrow CME (∼770 km s{sup −1}). Another mechanism of the QPP in terms of a sausage oscillation of the loop (L2) is also possible.

  13. A Wnt oscillator model for somitogenesis

    DEFF Research Database (Denmark)

    Jensen, Peter B; Pedersen, Lykke; Krishna, Sandeep

    2010-01-01

    We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by beta-catenin, which in turn is degraded by a complex of GSK3beta and Axin2....... The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often spiky, where low concentration values of beta-catenin are interrupted by sharp peaks. Necessary...

  14. Developmental Changes in Sleep Oscillations during Early Childhood

    Directory of Open Access Journals (Sweden)

    Eckehard Olbrich

    2017-01-01

    Full Text Available Although quantitative analysis of the sleep electroencephalogram (EEG has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n=8; 3 males at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., “ultrafast” spindle-like oscillations, theta oscillation incidence/frequency also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.

  15. Oscillation phenomena and operating limits of the closed two-phase thermosyphon

    International Nuclear Information System (INIS)

    Fukano, T.; Kadoguchi, K.; Tien, C.L.

    1986-01-01

    In a vertical thermosyphon an up-going vapor flow prevents a liquid film from flowing downward and causes flooding if the heat input exceeds a certain value. Then the evaporator wall partially dries out. The wall temperature in the evaporator and the system pressure are measured and their post-dryout behavior is classified into three types: (1) the periodic oscillation, and transient variations going asymptotically to (2) the higher and (3) the lower than the initial system pressure setting. The occurrence of the first type, periodic oscillation, is limited to when the amount of working fluid, methanol, is about one-third of the evaporator volume. To explain these changes in the system pressure and wall temperature a physical model, based on the alternating flooding and deflooding concept is proposed. In this work the effect of the tube diameter, amount of working fluid, and system pressure on these oscillations and the flow and heat transfer characteristics during the oscillations are also experimentally investigated

  16. Intra-Seasonal Monthly Oscillations in Stratospheric NCEP Data and Model Results

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.

    2009-01-01

    Intra-seasonal oscillations (ISO) are observed in the zonal-mean of mesospheric wind and temperature measurements-and the numerical spectral model (NSM) generates such oscillations. Relatively large temperature ISO are evident also in stratospheric CPC (NCEP) data at high latitudes, where the NSM produces amplitudes around 3 K at 30 km. Analyzing the NCEP data for the years 1996-2006, we find in Fourier spectra signatures of oscillations with periods between 1.7 and 3 months. With statistical confidence levels exceeding 70%, the spectral features are induced by nonlinear interactions involving the annual and semi-annual variations. The synthesized data show for the 10-year average that the temperature ISO peak in winter, having amplitudes close to 4 K. The synthesized complete spectrum for periods around 2 months produces oscillations, varying from year to year, which can reach peak amplitudes of 15 and 5 K respectively at northern and southern polar latitudes.

  17. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Laishun Shi

    2012-01-01

    Full Text Available In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  18. Synchronization of an ensemble of oscillators regulated by their spatial movement.

    Science.gov (United States)

    Sarkar, Sumantra; Parmananda, P

    2010-12-01

    Synchronization for a collection of oscillators residing in a finite two dimensional plane is explored. The coupling between any two oscillators in this array is unidirectional, viz., master-slave configuration. Initially the oscillators are distributed randomly in space and their autonomous time-periods follow a Gaussian distribution. The duty cycles of these oscillators, which work under an on-off scenario, are normally distributed as well. It is realized that random hopping of oscillators is a necessary condition for observing global synchronization in this ensemble of oscillators. Global synchronization in the context of the present work is defined as the state in which all the oscillators are rendered identical. Furthermore, there exists an optimal amplitude of random hopping for which the attainment of this global synchronization is the fastest. The present work is deemed to be of relevance to the synchronization phenomena exhibited by pulse coupled oscillators such as a collection of fireflies. © 2010 American Institute of Physics.

  19. The role of Ce(III) in BZ oscillating reactions

    Science.gov (United States)

    Nogueira, Paulo A.; Varela, Hamilton; Faria, Roberto B.

    2012-03-01

    Herein we present results on the oscillatory dynamics in the bromate-oxalic acid-acetone-Ce(III)/Ce(IV) system in batch and also in a CSTR. We show that Ce(III) is the necessary reactant to allow the emergence of oscillations. In batch, oscillations occur with Ce(III) and also with Ce(IV), but no induction period is observed with Ce(III). In a CSTR, no oscillations were found using a freshly prepared Ce(IV), but only when the cerium-containing solution was aged, allowing partial conversion of Ce(IV) to Ce(III) by reaction with acetone.

  20. Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed

  1. Coherent Phonon Dynamics in Short-Period InAs/GaSb Superlattices

    OpenAIRE

    Noe, G. T.; Haugan, H. J.; Brown, G. J.; Sanders, G. D.; Stanton, C. J.; Kono, J.

    2011-01-01

    We have performed ultrafast pump-probe spectroscopy studies on a series of InAs/GaSb-based short-period superlattice (SL) samples with periods ranging from 46 \\AA to 71 \\AA. We observe two types of oscillations in the differential reflectivity with fast ($\\sim$ 1- 2 ps) and slow ($\\sim$ 24 ps) periods. The period of the fast oscillations changes with the SL period and can be explained as coherent acoustic phonons generated from carriers photoexcited within the SL. This mode provides an accura...

  2. Persistence of the planetary wave type oscillations in foF2 over Europe

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2003-07-01

    Full Text Available Planetary waves are oscillations of very predominantly tropospheric origin with typical periods of about 2–30 days. Their dominant zonal wave numbers are 1, 2 and 3, i.e. the waves are of large-scale (global character. The planetary wave type oscillations have been observed in the lower and middle atmosphere but also in the ionosphere, including the ionospheric F2-layer. Here, we deal only with the oscillations analyzed for four European stations over a solar cycle with the use of the Meyer and Morlet wavelet transforms. Waves with periods near 5, 10 and 16 days are studied. Only events with a duration of three wave-cycles and more are considered. The 5-day period wave events display a typical duration of 4 cycles, while 10- and 16-day wave events are less persistent, with a typical duration of about 3.5 cycles and 3 cycles, respectively. The persistence pattern in terms of number of cycles and in terms of number of days is different. In terms of number of cycles, the typical persistence of oscillations decreases with increasing period. On the other hand, in terms of number of days the typical persistence evidently increases with increasing period. The spectral distribution of event duration is too broad to allow for a reasonable prediction of event duration. Thus, the predictability of the planetary wave type oscillations in foF2 seems to be very questionable.Key words. Ionosphere (ionosphere-atmosphere interaction, mid-latitude ionosphere, ionospheric disturbances – Meteorology and atmospheric dynamics (waves and tides

  3. Line shapes of atomic-candle-type Rabi resonances

    International Nuclear Information System (INIS)

    Coffer, J.G.; Camparo, J.C.; Sickmiller, B.; Presser, A.

    2002-01-01

    When atoms interact with a phase-modulated field, the probability of finding the atom in the excited-state oscillates at the second harmonic of the modulation frequency, 2ω m . The amplitude of this oscillating probability is a resonant function of the Rabi frequency Ω, and this is termed a β Rabi resonance. In this work, we examine the line shape of the β Rabi resonance both theoretically and experimentally. We find that a small-signal theory of the β-Rabi-resonance condition captures much of the line shape's character, and, in particular, that the resonance's 'line Q' (i.e., 2δΩ 1/2 /Ω) is proportional to the modulation frequency. This result can be applied to the atomic candle, where β Rabi resonances are employed to stabilize field strength. Considering our results in the context of developing an optical atomic candle, we find that a free-running diode laser's intensity noise could be improved by orders of magnitude using the atomic candle concept

  4. Ventilatory oscillations at exercise: effects of hyperoxia, hypercapnia, and acetazolamide.

    Science.gov (United States)

    Hermand, Eric; Lhuissier, François J; Larribaut, Julie; Pichon, Aurélien; Richalet, Jean-Paul

    2015-06-01

    Periodic breathing has been found in patients with heart failure and sleep apneas, and in healthy subjects in hypoxia, during sleep and wakefulness, at rest and, recently, at exercise. To unravel the cardiorespiratory parameters liable to modulate the amplitude and period of ventilatory oscillations, 26 healthy subjects were tested under physiological (exercise) and environmental (hypoxia, hyperoxia, hyperoxic hypercapnia) stresses, and under acetazolamide (ACZ) treatment. A fast Fourier transform spectral analysis of breath-by-breath ventilation (V˙E) evidenced an increase in V˙E peak power under hypercapnia (vs. normoxia and hyperoxia, P power was positively related to cardiac output (Q˙c) and V˙E in hyperoxia (P oscillations by increasing Q˙c and V˙E, whereas ACZ decreases ventilatory instability in part by a contrasting action on O2 and CO2 sensing. An intrinsic oscillator might modulate ventilation through a complex system where peripheral chemoreflex would play a key role. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    Science.gov (United States)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  6. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system

    Science.gov (United States)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    Experiments involving the Mercury Beating Heart (MBH) oscillator, exhibiting irregular (aperiodic) dynamics, are performed. In the first set of experiments, control over irregular dynamics of the MBH oscillator was obtained via a superimposed periodic voltage signal. These irregular (aperiodic) dynamics were recovered once the control was switched off. Subsequently, two MBH oscillators were coupled to attain synchronization of their aperiodic oscillations. Finally, two uncoupled MBH oscillators were subjected, repeatedly, to a common stochastic forcing, resulting in an enhancement of their mutual phase correlation.

  7. Oscillations in the dark energy equation of state: New MCMC lessons

    International Nuclear Information System (INIS)

    Lazkoz, Ruth; Salzano, Vincenzo; Sendra, Irene

    2010-01-01

    We study the possibility of detecting oscillating patterns in the equation of state (EoS) of the dark energy using different cosmological datasets. We follow a phenomenological approach and study three different oscillating models for the EoS, one of them periodic and the other two damped (proposed here for the first time). All the models are characterized by the amplitude, the center and the frequency of oscillations. In contrast to previous works in the literature, we do not fix the frequency to a fiducial value related to the time extension of chosen datasets, but consider a discrete set of values, so to avoid arbitrariness and try to detect any possible time period in the EoS. We test the models using a recent collection of SNeIa, direct Hubble data and Gamma Ray Bursts data. Main results are: I. even if constraints on the amplitude are not too strong, we detect a trend of it versus the frequency, i.e. decreasing (and even negatives) amplitudes for higher frequencies; II. the center of oscillation (which corresponds to the present value of the EoS parameter) is very well constrained, and phantom behavior seems statistically disfavored; III. the frequency is hard to constrain, showing similar statistical validity for all the values of the discrete set chosen, but the best fit of all the considered scenarios is associated with a period which is in the redshift range depicted by our cosmological data. The 'best' oscillating models are compared with ΛCDM using different dimensionally consistent and Bayesian-based information criteria; the conclusion is reached that at present, data cannot discriminate between a cosmological constant and oscillating equation of state.

  8. Passive control of thermoacoustic oscillations with adjoint methods

    Science.gov (United States)

    Aguilar, Jose; Juniper, Matthew

    2017-11-01

    Strict pollutant regulations are driving gas turbine manufacturers to develop devices that operate under lean premixed conditions, which produce less NOx but encourage thermoacoustic oscillations. These are a form of unstable combustion that arise due to the coupling between the acoustic field and the fluctuating heat release in a combustion chamber. In such devices, in which safety is paramount, thermoacoustic oscillations must be eliminated passively, rather than through feedback control. The ideal way to eliminate thermoacoustic oscillations is by subtly changing the shape of the device. To achieve this, one must calculate the sensitivity of each unstable thermoacoustic mode to every geometric parameter. This is prohibitively expensive with standard methods, but is relatively cheap with adjoint methods. In this study we first present low-order network models as a tool to model and study the thermoacoustic behaviour of combustion chambers. Then we compute the continuous adjoint equations and the sensitivities to relevant parameters. With this, we run an optimization routine that modifies the parameters in order to stabilize all the resonant modes of a laboratory combustor rig.

  9. Present state of the study of 160-minutes solar oscillation

    International Nuclear Information System (INIS)

    Severny, A.B.; Kotov, V.A.; Tsap, T.T.

    1981-01-01

    Global oscillation of the Sun with a period of 160 min were first discovered in 1974 and since observed in Crimea during the last 6 years; they were confirmed, in 1976-1979, by Doppler measurements at Stanford (Scherrer et al., 1980) and quite recently by observations of Fossat and Grec at the south geographic pole. The average amplitude of the oscillation is about 0.5 m s -1 . The phase shows remarkable stability at the period 160.010 min and good agreement between different sites on the Earth; therefore, this oscillation should now be recognized as definitely of solar origin. It is probably accompanied by synchronous fluctuations in the IR brightness and radio-emission of the Sun, and exhibits a dependence of the amplitude on the phase of solar rotation (with a peak of power at 27.2 days). In agreement with results of the Birmingham group and the South Pole observation we also find evidence in favour of a discrete spectrum within the 5 min global oscillations of the Sun, with the average splitting of about 69,5 μHz in frequency. Strict gas-dynamical equations being solved in the adiabatic approximation for a polytropic sphere n = 3 display the pattern of radial oscillations with wave separated by 120 m time-intervals filled with high frequency (and split by 117 μHz) oscillations implying a similarity with the observed pattern. (orig.)

  10. Correlator of the reactor oscillator; Korelator reaktorskog oscilatora

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Velickovic, Lj [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-07-01

    Reactor oscillator is used for materials testing. Mechanical oscillations of the samples in the core cause perturbations of the power distribution. The perturbation amplitude, i.e. phase angle between the perturbation and the mechanical movement of the sample is proportional to the properties of the tested material. Since the perturbation of the power is not a simple periodic function it is necessary to distinguish the principal harmonic. The size of amplitude gives information about the properties of the sample.

  11. Field and power dependence of auto-oscillations in yttrium-iron-garnet films

    International Nuclear Information System (INIS)

    McMichael, R.D.; Wigen, P.E.

    1988-01-01

    The nonlinear response of the magnetic spin system in yttrium-iron-garnet (YIG) thin films to high-power ferromagnetic resonance (FMR) at perpendicular resonance was studied and the results are presented. A diagram of the regions of auto-oscillation of the system as a function of field and power is presented which shows the modes that appear in low-power FMR becoming unstable to auto-oscillations with increased power. The auto-oscillations exhibit periodic, quasiperiodic, period doubling, and chaotic behavior with typical frequencies in the MHz range. The domains of oscillatory behavior due to individual resonance modes are seen to merge and shift to lower fields as power is increased. Possible mechanisms for the behavior are proposed

  12. Nonlinear behavior of nonradial oscillations in ε Per

    International Nuclear Information System (INIS)

    Smith, M.A.

    1987-01-01

    The authors conducted a simultaneous spectroscopic/photometric campaign of ε Per (BO.7 III) during five nights in November, 1984. The spectroscopic data consist of 300 observations of the Si III λλ4552-74 triplet, while the photometric data were obtained at two different observatories. In both sets of data they find a dominant 3.85+-.02 hr. period. The analysis of line profiles in the context of nonradial pulsation (NRP) indicates this oscillation is caused by a -m=iota =4 mode. In this context the line profiles also indicate the presence of a secondary -m=iota =6 mode with a period of 2.25+-.03 hr, an oscillation below the detection threshold in the photometric data. These periodicities and mode identifications have been reported by Penrod on other occasions. They may be considered to be stable except that their amplitudes vary from epoch to epoch

  13. Method for determining damping properties of materials using a suspended mechanical oscillator

    Science.gov (United States)

    Biscans, S.; Gras, S.; Evans, M.; Fritschel, P.; Pezerat, C.; Picart, P.

    2018-06-01

    We present a new approach for characterizing the loss factor of materials, using a suspended mechanical oscillator. Compared to more standard techniques, this method offers freedom in terms of the size and shape of the tested samples. Using a finite element model and the vibration measurements, the loss factor is deduced from the oscillator's ring-down. In this way the loss factor can be estimated independently for shear and compression deformation of the sample over a range of frequencies. As a proof of concept, we present measurements for EPO-TEK 353ND epoxy samples.

  14. Excitation of RF oscillations in a discharge with negative differential conductivity

    International Nuclear Information System (INIS)

    Antonov, A.N.; Kovpik, O.F.; Kornilov, E.A.

    2001-01-01

    The excitation of oscillations in a discharge with negative differential conductivity is studied experimentally. The possibility is demonstrated of amplifying oscillations in the cathode dark space at frequencies close to the electron plasma frequency of the positive-column plasma. The phase velocities of waves at these frequencies are determined. When the waves pass from the cathode dark space to the discharge positive column, their phase velocities decrease; the closer the frequency is to the electron plasma frequency, the more pronounced the decrease in the phase velocity. As the intensity of oscillations increases, the discharge becomes non-steady-state. This is confirmed by the time evolution of the current-voltage characteristic. The shape of the current-voltage characteristic, its splitting, and the rate at which it varies depend on the input RF power. The decrease in the cathode dark space indicates that the ionization processes in the discharge are strongly influenced by electron plasma oscillations excited due to the collective interaction of the electron beam formed at the cathode with the discharge plasma. It is these processes that determine the maximum values of both the frequency of the excited oscillations and the power that can be withdrawn from the discharge

  15. Universal quantum entanglement between an oscillator and continuous fields

    International Nuclear Information System (INIS)

    Miao Haixing; Danilishin, Stefan; Chen Yanbei

    2010-01-01

    Quantum entanglement has been actively sought in optomechanical and electromechanical systems. The simplest system is a mechanical oscillator interacting with a coherent optical field, while the oscillator also suffers from thermal decoherence. With a rigorous functional analysis, we develop a mathematical framework for treating quantum entanglement that involves infinite degrees of freedom. We show that the quantum entanglement is always present between the oscillator and continuous optical field--even when the environmental temperature is high and the oscillator is highly classical. Such a universal entanglement is also shown to be able to survive more than one mechanical oscillation period if the characteristic frequency of the optomechanical interaction is larger than that of the thermal noise. In addition, we introduce effective optical modes that are ordered by the entanglement strength to better understand the entanglement structure, analogously to the energy spectrum of an atomic system. In particular, we derive the optical mode that is maximally entangled with the mechanical oscillator, which will be useful for future quantum computing and encoding information into mechanical degrees of freedom.

  16. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition.

    Science.gov (United States)

    Onoda, Michika; Ueki, Takeshi; Tamate, Ryota; Shibayama, Mitsuhiro; Yoshida, Ryo

    2017-07-13

    In the field of polymer science, many kinds of polymeric material systems that show a sol-gel transition have been created. However, most systems are unidirectional stimuli-responsive systems that require physical signals such as a change in temperature. Here, we report on the design of a block copolymer solution that undergoes autonomous and periodic sol-gel transition under constant conditions without any on-off switching through external stimuli. The amplitude of this self-oscillation of the viscosity is about 2,000 mPa s. We also demonstrate an intermittent forward motion of a droplet of the polymer solution synchronized with the autonomous sol-gel transition. This polymer solution bears the potential to become the base for a type of slime-like soft robot that can transform its shape kaleidoscopically and move autonomously, which is associated with the living amoeba that moves forward by a repeated sol-gel transition.

  17. Chemotaxis of Dictyostelium discoideum: collective oscillation of cellular contacts.

    Directory of Open Access Journals (Sweden)

    Edith Schäfer

    Full Text Available Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.

  18. An electrical analogy relating the Atlantic multidecadal oscillation to the Atlantic meridional overturning circulation.

    Directory of Open Access Journals (Sweden)

    Bruce E Kurtz

    Full Text Available The Atlantic meridional overturning circulation (AMOC is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60-80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO. This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values.

  19. An oscillating dynamic model of collective cells in a monolayer

    Science.gov (United States)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  20. Improved Vector Velocity Estimation using Directional Transverse Oscillation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2015-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. Directional Transverse Oscillation (DTO) is selfcalibrating, which increase the estimation accuracy and finds the lateral oscillation period automatically. A normal...... focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound beam. A lateral oscillation is obtained by having a receive apodization waveform with two separate peaks. The IQ data are obtained by making a Hilbert transform of the directional signal...... transducer with a focal point at 105.6 mm (F#=5) for Vector Flow Imaging (VFI). A 6 mm radius tube in a circulating flow rig was scanned and the parabolic volume flow of 112.7 l/h (peak velocity 0.55 m/s) measured by a Danfoss Magnetic flow meter for reference. Velocity estimates for DTO are found for 32...

  1. Singular perturbation analysis of relaxation oscillations in reactor systems

    International Nuclear Information System (INIS)

    Ward, M.E.; Lee, J.C.

    1987-01-01

    A singular perturbation method for the analysis of large power oscillations in nuclear reactors is applied to obtain phase-plane solutions of the Ergen-Weinberg model. The system equations, recast in an appropriate form, directly give a first approximation to the closed trajectory in which the system behaviour is idealized as relaxation oscillations. Further approximations in the phase plane are determined using separate perturbation series on individual parts of the oscillation, with variations in the assignment of dependent and independent variables to consistently obtain convergent series. The accuracy of each order of the phase-plane solution increases with the magnitude of the power pulse in the actual physical situation. For realistic reactor conditions, both the trajectory and period of oscillation are well predicted using the first two terms of each perturbation series

  2. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  3. New neutrino physics and the altered shapes of solar neutrino spectra

    Science.gov (United States)

    Lopes, Ilídio

    2017-01-01

    Neutrinos coming from the Sun's core have been measured with high precision, and fundamental neutrino oscillation parameters have been determined with good accuracy. In this work, we estimate the impact that a new neutrino physics model, the so-called generalized Mikheyev-Smirnov-Wolfenstein (MSW) oscillation mechanism, has on the shape of some of leading solar neutrino spectra, some of which will be partially tested by the next generation of solar neutrino experiments. In these calculations, we use a high-precision standard solar model in good agreement with helioseismology data. We found that the neutrino spectra of the different solar nuclear reactions of the pp chains and carbon-nitrogen-oxygen cycle have quite distinct sensitivities to the new neutrino physics. The He P and 8B neutrino spectra are the ones in which their shapes are more affected when neutrinos interact with quarks in addition to electrons. The shapes of the 15O and 17F neutrino spectra are also modified, although in these cases the impact is much smaller. Finally, the impact in the shapes of the P P and 13N neutrino spectra is practically negligible.

  4. Entraining the topology and the dynamics of a network of phase oscillators

    Science.gov (United States)

    Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.

    2009-04-01

    We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.

  5. Periodic Solutions for Highly Nonlinear Oscillation Systems

    DEFF Research Database (Denmark)

    Ghadimi, M; Barari, Amin; Kaliji, H.D

    2012-01-01

    In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...

  6. Generating macroscopic chaos in a network of globally coupled phase oscillators

    Science.gov (United States)

    So, Paul; Barreto, Ernest

    2011-01-01

    We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case. PMID:21974662

  7. On the non-linear dynamics of potential relaxation oscillations in bounded plasmas

    International Nuclear Information System (INIS)

    Krssak, M.; Skalny, J.D.; Gyergyek, T.; Cercek, M.

    2007-01-01

    Plasma in a 1-dimensional diode is studied theoretically and the computer simulations are used for verification of the theoretical model. When collector in the diode is biased positively, a double-layer is created in the system and consequently, we are able to observe oscillations of the potential, density and other plasma parameters. When external periodic forcing is applied, spectra of these oscillations are changed and effects of synchronisation and periodic pulling can be observed. Both of these effects are of non-linear nature and a good explanation is found using the analogy with Van der Pol oscillators. Following [1] and [2] approximate analytical solutions are found and then compared with computer simulations obtained using a 1-dimensional particle-in-cell code XPDP1. (author)

  8. Rapid and Sustained Nuclear-Cytoplasmic ERK Oscillations Induced by Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Ippolito, Danielle L.; Chrisler, William B.; Resat, Haluk; Bollinger, Nikki; Opresko, Lee K.; Wiley, H. S.

    2009-12-01

    Mathematical modeling has predicted that ERK activity should oscillate in response to cell stimulation, but this has never been observed. To explore this inconsistency, we expressed an ERK1-GFP fusion protein in mammary epithelial cells. Following EGF stimulation, we observed rapid and continuous ERK oscillations between the nucleus and cytoplasm with a periodicity of approximately 15 minutes. These oscillations were remarkably persistent (>45 cycles), displayed an asymmetric waveform, and were highly dependent on cell density, essentially disappearing at confluency. We conclude that the ERK pathway is an intrinsic oscillator. Although the functional implications of the observed oscillations are uncertain, this property can be used to continuously monitor ERK activity in single cells.

  9. Seismology and geodesy of the sun: Low-frequency oscillations.

    Science.gov (United States)

    Dicke, R H

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  10. Power spectrum density of stochastic oscillating accretion disk

    Indian Academy of Sciences (India)

    46

    2015-11-11

    Nov 11, 2015 ... National Natural Science Foundation of. China. (11463007) .... may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (Wang ..... In this vision, we should revise our manuscript according.

  11. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  12. Application of He's homotopy perturbation method to conservative truly nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, A.; Belendez, T.; Marquez, A.; Neipp, C.

    2008-01-01

    We apply He's homotopy perturbation method to find improved approximate solutions to conservative truly nonlinear oscillators. This approach gives us not only a truly periodic solution but also the period of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters in the case of the cubic oscillator, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. For the second order approximation we have shown that the relative error in the analytical approximate frequency is approximately 0.03% for any parameter values involved. We also compared the analytical approximate solutions and the Fourier series expansion of the exact solution. This has allowed us to compare the coefficients for the different harmonic terms in these solutions. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems

  13. Analysis of friction self-oscillations of a drilling string with the exponential law of resistance

    Energy Technology Data Exchange (ETDEWEB)

    Belokobylskiy, S.V.; Prokopov, V.K.

    1982-01-01

    An analysis of the friction self-oscillations in the drilling string based on the exponential law of resistance with. A spasmodic law of resistance was obtained from it as a particular case. It is indicated that for definite parameters, the amplitude of self-oscillations with expoential law of resistance exceeds the scope of oscillations with spasmodic law. Dependences were constructed for the period of self-oscillations and time for motion from these parameters. Dangerous modes of friction self-oscillations were defined.

  14. A one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations

    Science.gov (United States)

    Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin

    2017-12-01

    Timing analysis of X-ray flux in more than a dozen low-mass X-ray binary systems containing a neutron star reveals remarkable correlations between frequencies of two characteristic peaks present in the power-density spectra. We find a simple analytic relation that well reproduces all these individual correlations. We link this relation to a physical model which involves accretion rate modulation caused by an oscillating torus.

  15. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-01-01

    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  16. Phenomenological analysis of reactor data for neutrino oscillations

    International Nuclear Information System (INIS)

    Silverman, D.; Soni, A.

    1981-01-01

    Reactor data from experiments performed at different distances is analyzed. We find that no distance independent reactor anti nu/sub e/ spectrum, irrespective of its shape, can account for all the data with a CL greater than or equal to .0028. Oscillation with 3(2)nu's yield fits to all the 4 experiments with CL approx. = .06 (.03) and to the two high statistics experiments with CL greater than or equal to .31

  17. Avoidance of transmission line pressure oscillations in discrete hydraulic systems – by shaping of valve opening characteristics

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Bech, Michael Møller

    2015-01-01

    The architecture of multi pressure line discrete fluid power force systems imposes rapid pressure shifts in the actuator volumes. These fast shifts between pressure levels often introduce pressure oscillations in the actuator chamber and connecting pipes. The topic of this paper is to perform...... pressure shifts by changing the connection between various fixed pressure lines without introducing significant pressure oscillation. As a case study a discrete force system is utilised is a Power Take Off(PTO) system of a wave energy converter. Four pressure shifting algorithms are proposed...

  18. Bifurcation analysis of delay-induced periodic oscillations

    NARCIS (Netherlands)

    Green, K.

    2010-01-01

    In this paper we consider a generic differential equation with a cubic nonlinearity and delay. This system, in the absence of delay, is known to undergo an oscillatory instability. The addition of the delay is shown to result in the creation of a number of periodic solutions with constant amplitude

  19. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Seidenkrantz, Marit-Solveig; Jacobsen, B. H.

    2011-01-01

    Understanding the internal ocean variability and its influence on climate is imperative for society. A key aspect concerns the enigmatic Atlantic Multidecadal Oscillation (AMO), a feature defined by a 60- to 90-year variability in North Atlantic sea-surface temperatures. The nature and origin...... of the AMO is uncertain, and it remains unknown whether it represents a persistent periodic driver in the climate system, or merely a transient feature. Here, we show that distinct, ~55- to 70-year oscillations characterized the North Atlantic ocean-atmosphere variability over the past 8,000 years. We test...... and reject the hypothesis that this climate oscillation was directly forced by periodic changes in solar activity. We therefore conjecture that a quasi-persistent ~55- to 70-year AMO, linked to internal ocean-atmosphere variability, existed during large parts of the Holocene. Our analyses further suggest...

  20. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2016-01-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are det......The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band......, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures...

  1. Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators

    Science.gov (United States)

    Shinjo, Ami; Hashiyama, Naoyuki; Koshio, Akane; Eto, Yujiro; Hirano, Takuya

    2016-10-01

    The continuous-variable (CV) Einstein-Podolsky-Rosen (EPR) paradox and steering are demonstrated using a pulsed light source and waveguides. We shorten the duration of the local oscillator (LO) pulse by using parametric amplification to improve the temporal mode-matching between the entangled pulse and the LO pulse. After correcting for the amplifier noise, the product of the measured conditional variance of the quadrature-phase amplitudes is 0.74 EPR-Reid criterion.

  2. Analysis of precision in chemical oscillators: implications for circadian clocks

    International Nuclear Information System (INIS)

    D'Eysmond, Thomas; De Simone, Alessandro; Naef, Felix

    2013-01-01

    Biochemical reaction networks often exhibit spontaneous self-sustained oscillations. An example is the circadian oscillator that lies at the heart of daily rhythms in behavior and physiology in most organisms including humans. While the period of these oscillators evolved so that it resonates with the 24 h daily environmental cycles, the precision of the oscillator (quantified via the Q factor) is another relevant property of these cell-autonomous oscillators. Since this quantity can be measured in individual cells, it is of interest to better understand how this property behaves across mathematical models of these oscillators. Current theoretical schemes for computing the Q factors show limitations for both high-dimensional models and in the vicinity of Hopf bifurcations. Here, we derive low-noise approximations that lead to numerically stable schemes also in high-dimensional models. In addition, we generalize normal form reductions that are appropriate near Hopf bifurcations. Applying our approximations to two models of circadian clocks, we show that while the low-noise regime is faithfully recapitulated, increasing the level of noise leads to species-dependent precision. We emphasize that subcomponents of the oscillator gradually decouple from the core oscillator as noise increases, which allows us to identify the subnetworks responsible for robust rhythms. (paper)

  3. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    Science.gov (United States)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  4. Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Levitov, Leonid

    2013-01-01

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....

  5. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations

    Directory of Open Access Journals (Sweden)

    Massihullah Hamidi

    2009-06-01

    Full Text Available A governing assumption about repetitive transcranial magnetic stimulation (rTMS has been that it interferes with task-related neuronal activity – in effect, by “injecting noise” into the brain – and thereby disrupts behavior. Recent reports of rTMS-produced behavioral enhancement, however, call this assumption into question. We investigated the neurophysiological effects of rTMS delivered during the delay period of a visual working memory task by simultaneously recording brain activity with electroencephalography (EEG. Subjects performed visual working memory for locations or for shapes, and in half the trials a 10-Hz train of rTMS was delivered to the superior parietal lobule or a control brain area. The wide range of individual differences in the effects of rTMS on task accuracy, from improvement to impairment, was predicted by individual differences in the effect of rTMS on power in the alpha-band of the EEG (~ 10 Hz: a decrease in alpha-band power corresponded to improved performance, whereas an increase in alpha-band power corresponded to the opposite. The EEG effect was localized to cortical sources encompassing the frontal eye fields and the intraparietal sulcus, and was specific to task (location, but not object memory and to rTMS target (superior parietal lobule, not control area. Furthermore, for the same task condition, rTMS-induced changes in cross-frequency phase synchrony between alpha- and gamma-band (> 40 Hz oscillations predicted changes in behavior. These results suggest that alpha-band oscillations play an active role cognitive processes and do not simply reflect absence of processing. Furthermore, this study shows that the complex effects of rTMS on behavior can result from biasing endogenous patterns of network-level oscillations.

  6. Emergence of noise-induced oscillations in the central circadian pacemaker.

    Directory of Open Access Journals (Sweden)

    Caroline H Ko

    2010-10-01

    Full Text Available Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.

  7. Chaos and routes to chaos in coupled Duffing oscillators with multiple degrees of freedom

    International Nuclear Information System (INIS)

    Musielak, D.E.; Musielak, Z.E.; Benner, J.W.

    2005-01-01

    New results are reported on the routes to chaos in increasingly complex Duffing oscillator systems, which are formed by coupling several oscillators, thereby increasing the number of degrees of freedom. Other forms of increasing system complexity through distributed excitation, different forcing function phasing, different excitation frequency ratios, and higher order coupling are also studied. Changes in the quantitative aspects of the chaotic regions and in the routes to chaos of complex Duffing systems are investigated by performing numerical simulations. It is shown that the number of chaotic regions in these systems is significantly reduced when compared to the original Duffing system, and that crisis replaces period doubling as the dominant route to chaos when the number of degrees of freedom is increased. A new discovered phenomenon is that chaos emerges in the symmetrically and asymmetrically coupled Duffing oscillators only after the quasi-periodic torus breaks down through a 3-periodic and 2-periodic window, respectively

  8. Application of fixed point theory to chaotic attractors of forced oscillators

    International Nuclear Information System (INIS)

    Stewart, H.B.

    1990-11-01

    A review of the structure of chaotic attractors of periodically forced second order nonlinear oscillators suggests that the theory of fixed points of transformations gives information about the fundamental topological structure of attractors. First a simple extension of the Levinson index formula is proved. Then numerical evidence is used to formulate plausible conjectures about absorbing regions containing chaotic attractors in forced oscillators. Applying the Levinson formula suggests a fundamental relation between the number of fixed points or periodic points in a section of the chaotic attractor on the one hand, and a topological invariant of an absorbing region on the other hand. (author)

  9. Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811

    Energy Technology Data Exchange (ETDEWEB)

    Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.; Silva Aguirre, V.; Kjeldsen, H.; Mosumgaard, J. R. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Sandquist, E. L., E-mail: toar@phys.au.dk [San Diego State University, Department of Astronomy, San Diego, CA 92182 (United States)

    2017-04-01

    Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four stars with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.

  10. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  11. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.

    Science.gov (United States)

    He, Yong

    2017-06-23

    We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.

  12. Precessional Periods of Long and Short Foucault Pendulums

    Science.gov (United States)

    Soga, Michitoshi

    1978-01-01

    Derives the precessional period of a Foucault pendulum without using small oscillation amplitudes. Shows that if the path of the pendulum passes through the origin, the periods for differing amplitudes are essentially the same. (GA)

  13. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  14. The dependence of the period on the angular amplitude of a simple ...

    African Journals Online (AJOL)

    The timing of the oscillation was done as the bob passed through its rest position. The time for 50 oscillations was recorded for different lengths and angular amplitudes. It was observed that the period depends on length and angular amplitude of the pendulum. The variation of the period with the angular amplitude is not a ...

  15. Building better oscillators using nonlinear dynamics and pattern ...

    Indian Academy of Sciences (India)

    Frequency and time references play an essential role in modern technology and in liv- ... of noise and improve the frequency precision of oscillators, with particular ..... signal is cyclostationary (the statistics is periodic rather than stationary) the ...

  16. Seismology and geodesy of the sun: low-frequency oscillations

    International Nuclear Information System (INIS)

    Dicke, R.H.

    1981-01-01

    The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ν -1 . Nothing significant is found for frequencies ν > 0.1 hr -1 but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun

  17. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    OpenAIRE

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-01-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enabl...

  18. Three-dimensional analyses of ultrasonic scaler oscillations.

    Science.gov (United States)

    Lea, Simon C; Felver, Bernhard; Landini, Gabriel; Walmsley, A Damien

    2009-01-01

    It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p0.207). All TFI-3 tips were different to each other (p0.867). Generator power increased all Slimline and P tip vibrations (pultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.

  19. DETECTION OF VERY LOW-FREQUENCY, QUASI-PERIODIC OSCILLATIONS IN THE 2015 OUTBURST OF V404 CYGNI

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Younes, G.; Kouveliotou, C. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Ingram, A.; Van der Klis, M. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Bachetti, M. [INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy); Sánchez-Fernández, C.; Kuulkers, E. [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691 Villanueva de la Cañada, Madrid (Spain); Chenevez, J. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327-328, DK-2800 Lyngby (Denmark); Motta, S. [University of Oxford, Department of Physics, Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Tomsick, J. A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Walton, D. J., E-mail: daniela.huppenkothen@nyu.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    In 2015 June, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time since 1989. Here, we present a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its recent outburst, utilizing data from six instruments on board five different X-ray missions: Swift /XRT, Fermi /GBM, Chandra /ACIS, INTEGRAL ’s IBIS/ISGRI and JEM-X, and NuSTAR . We report the detection of a QPO at 18 mHz simultaneously with both Fermi /GBM and Swift /XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital inclination. Additionally, we find a duo of QPOs in a Chandra /ACIS observation at 73 mHz and 1.03 Hz, as well as a QPO at 136 mHz in a single Swift /XRT observation that can be interpreted as standard Type-C QPOs. Aside from the detected QPOs, there is significant structure in the broadband power, with a strong feature observable in the Chandra observations between 0.1 and 1 Hz. We discuss our results in the context of current models for QPO formation.

  20. Dysrhythmias of the respiratory oscillator

    Science.gov (United States)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  1. Selective population rate coding: a possible computational role of gamma oscillations in selective attention.

    Science.gov (United States)

    Masuda, Naoki

    2009-12-01

    Selective attention is often accompanied by gamma oscillations in local field potentials and spike field coherence in brain areas related to visual, motor, and cognitive information processing. Gamma oscillations are implicated to play an important role in, for example, visual tasks including object search, shape perception, and speed detection. However, the mechanism by which gamma oscillations enhance cognitive and behavioral performance of attentive subjects is still elusive. Using feedforward fan-in networks composed of spiking neurons, we examine a possible role for gamma oscillations in selective attention and population rate coding of external stimuli. We implement the concept proposed by Fries ( 2005 ) that under dynamic stimuli, neural populations effectively communicate with each other only when there is a good phase relationship among associated gamma oscillations. We show that the downstream neural population selects a specific dynamic stimulus received by an upstream population and represents it by population rate coding. The encoded stimulus is the one for which gamma rhythm in the corresponding upstream population is resonant with the downstream gamma rhythm. The proposed role for gamma oscillations in stimulus selection is to enable top-down control, a neural version of time division multiple access used in communication engineering.

  2. The topological reconstruction of forced oscillators

    International Nuclear Information System (INIS)

    Solari, Hernan G.; Natiello, Mario A.

    2009-01-01

    Periodically forced oscillators are among the simplest dynamical systems capable to display chaos. They can be described by the variables position and velocity, together with the phase of the force. Their phase-space corresponds therefore to R 2 xS 1 . The organization of the periodic orbits can be displayed with braids having only positive crossings. Topological characterization of dynamical systems actually began to be explored in physics on this family of problems. In this work we show that, in general, it is not possible to produce a 3-dimensional imbedding of the solutions of a forced oscillator in terms of differential imbeddings based on sampling the position only. However, it may be possible to uncover a description of the phase variable from the sampled time-series, thus producing a faithful representation of the data. We proceed to formulate new tests in order to check whether proposed imbeddings can be accepted as such. We illustrate the manuscript throughout with an example corresponding to a model of Benard-Marangoni convection.

  3. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, B. [Institut de Physique Nucleaire, 91 - Orsay (France). Div. de Physique Theorique

    1997-12-31

    It is shown that the high precision dN/dt UA4/2 data at {radical}s = 541 GeV are compatible with the presence of Auberson - Kinoshita - Martin (AKM) type of oscillations at very small momentum transfers. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 x 10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. The necessity of specific future experiments in the crucially interesting TeV region of energy - at Tevatron, RHIC and LHC - is underlined. (author) 8 refs.

  4. Clusters in nonsmooth oscillator networks

    Science.gov (United States)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in

  5. High-frequency performance for a spiral-shaped piezoelectric bimorph

    Science.gov (United States)

    Huang, Fang Sheng; Feng, Zhi Hua; Ma, Yu Ting; Pan, Qiao Sheng; Zhang, Lian Sheng; Liu, Yong Bin; He, Liang Guo

    2018-04-01

    Piezoelectric cantilever is suitable as an actuator for micro-flapping-wing aircraft. Higher resonant frequency brings about stronger flight energy, and the flight amplitude can be compensated by displacement-amplification mechanism, such as lever. To obtain a higher resonant frequency, straight piezoelectric bimorph was rolled into spiral-shaped piezoelectric bimorph with identical effective length in this study, which is verified in COMSOL simulations. Simulation results show that compared with the straight piezoelectric bimorph, the spiral-shaped piezoelectric bimorph with two turns has higher inherent frequencies (from 204.79 Hz to 504.84 Hz in terms of axial oscillation mode, and from 319.77 Hz to 704.48 Hz in terms of tangential torsional mode). The spiral-shaped piezoelectric bimorph is fabricated by a precise laser cutting process and consists of two turns with effective length of 60 mm, width of 2.5 mm, and thickness of 1.6 mm, respectively. With the excitation voltage of 100 Vpp applying an electric field across the thickness of the bimorph, the tip displacement of the actuator in the axial oscillation and tangential torsional modes are 85 μm and 15 μm, respectively.

  6. Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2015-01-01

    In secondary valve controlled discrete fluid power force systems the valve opening trajectory greatly influences the pressure dynamics in the actuator chambers. For discrete fluid power systems featuring hoses of significant length pressure oscillations due to fast valve switching is well......-known. This paper builds upon theoretical findings on how shaping of the valve opening may reduce the cylinder pressure oscillations. The current paper extents the work by implementing the valve opening characteristics reducing the pressure oscillations on a full scale power take-off test-bench for wave energy...... will present measurements comparing pressure dynamics for two valve opening algorithms. In addition the paper will give a theoretical investigation of the energy loss during valve shifting and finally measurements of average power output from the power take-off system in various sea states are compared...

  7. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  8. THE ROLE OF SHAPING IN THE SAWTOOTH INSTABILITY

    International Nuclear Information System (INIS)

    LAZARUS, E.A.; WAELBROECK, F.L.; AUSTIN, M.E.; BURRELL, K.H.; FERRON, J.R.; HYATT, A.W.; LUCE, T.C.; OSBORNE, T.H.; CHU, M.S.; GOHIL, P.; GROEBNER, R.J.; HEIDBRINK, W.W.; HSIEH, C.L.; JAYAKUMAR, R.J.; LAO, L.L.; LOHR, J.; MAKOWSKI, M.A.; PETTY, C.C.; POLITZER, P.A.; PRATER, R.; REIMERDES, H.; RHODES, T.L.; SCOVILLE, J.T.; STRAIT, E.J.; TURNBULL, A.D.; WADE, M.R.; ZHANG, C.

    2004-01-01

    We report on experiments that attempt to clarify the role of interchange and internal kink modes in the sawtooth oscillations by comparing bean- and oval-shaped plasmas. We find that differences in the transport processes during the sawtooth ramp play an important role in determining the nature of the oscillations. For both shapes the crash flattens the q profile and returns q 0 to unity. A key difference between the two shapes, however, is that in the bean the safety factor rapidly drops below unity during the subsequent ramp while in the oval it remains very close to unity. As a result of this, a saturated quasi-interchange mode develops fairly early and grows steadily during the ramp of oval discharges. The crash appears to be triggered by a secondary instability that locks to the saturated quasi-interchange mode. In the bean, by contrast, the crash is consistent with a rapid reconnection process. FIR interferometry shows that the oval exhibits significant turbulence in the electron channel, consistent with the observation of large electron heat diffusivities. This is supported by examination of the impulse response to central ECH. The ion transport, however, is approximately neoclassical. In the bean, by contrast, the electron temperature rises steadily, while T i first saturates and then decreases during the last quarter of the ramp

  9. The role of shaping in the sawtooth instability

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Waelbroeck, F.L.; Austin, M.E.; Burrell, K.H.; Ferron, J.R.; Hyatt, A.W.; Luce, T.C.; Osborne, T.H.; Chu, M.S.; Gohil, P.; Groebner, R.J.; Hsieh, C.L.; Lao, L.L.; Lohr, J.; Petty, C.C.; Politzer, P.A.; Prater, R.; Scoville, J.T.; Strait, E.J.; Turnbull, A.D.; Heidbrink, W.W.; Jayakumar, R.J.; Makowski, M.A.; Reimerdes, H.; Rhodes, T.L.; Wang, G.; Wade, M.R.; Zhang, C.

    2005-01-01

    We report on experiments that attempt to clarify the role of interchange and internal kink modes in the sawtooth oscillations by comparing bean- and oval-shaped plasmas. We find that differences in the transport processes during the sawtooth ramp play an important role in determining the nature of the oscillations. For both shapes the crash flattens the q profile and returns q 0 to unity. A key difference between the two shapes, however, is that in the bean the safety factor rapidly drops below unity during the subsequent ramp while in the oval it remains very close to unity. As a result of this, a saturated quasi-interchange mode develops fairly early and grows steadily during the ramp of oval discharges. The crash appears to be triggered by a secondary instability that locks to the saturated quasi-interchange mode. In the bean, by contrast, the crash is consistent with a rapid reconnection process. FIR interferometry shows that the oval exhibits significant turbulence in the electron channel, consistent with the observation of large electron heat diffusivities. This is supported by examination of the impulse response to central ECH. The ion transport, however, is approximately neoclassical. In the bean, by contrast, the electron temperature rises steadily, while T i first saturates and then decreases during the last quarter of the ramp. (author)

  10. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating

  11. Strong-field effects in Rabi oscillations between a single state and a superposition of states

    International Nuclear Information System (INIS)

    Zhdanovich, S.; Milner, V.; Hepburn, J. W.

    2011-01-01

    Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.

  12. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    Science.gov (United States)

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  13. WATER HAMMER OSCILLATIONS IN THE IRRIGATION FACILITIES

    Science.gov (United States)

    Kurata, Kouichi; Sasaki, Katsuhito; Makihata, Toshiaki

    In case a gate installed at the end of discharge conduit is vibrating during discharge, or an air valve is vibrating during water-filling operation into the conduit pipe between main gate and auxiliary gate, and vibration period tv is larger than tc (water hammer propagation time) that is equivalent to the phenomenon of slow closure, there is a possibility that water hammer oscillation in the discharge conduit could be induced. In this paper, by using two case examples, vibration phenomena transmitted to each part are analyzed, on the basis of water pressure fluctuation and pressure wave propagation due to occurrence of water hammer oscillation.

  14. Conductance oscillations of core-shell nanowires in transversal magnetic fields

    Science.gov (United States)

    Manolescu, Andrei; Nemnes, George Alexandru; Sitek, Anna; Rosdahl, Tomas Orn; Erlingsson, Sigurdur Ingi; Gudmundsson, Vidar

    2016-05-01

    We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.

  15. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  16. Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations

    Science.gov (United States)

    Ignat'ev, Yu. G.; Samigullina, A. R.

    2017-11-01

    An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.

  17. Beta, but not gamma, band oscillations index visual form-motion integration.

    Directory of Open Access Journals (Sweden)

    Charles Aissani

    Full Text Available Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou's figure (bound percept or as pairs of bars oscillating independently along cardinal axes (unbound percept. We found that beta (15-25 Hz, but not gamma (55-85 Hz oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.

  18. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  19. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  20. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  1. Reactor oscillator - I - III, Part I; Reaktorski oscilator - I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction.

  2. Distinguishing quantum from classical oscillations in a driven phase qubit

    International Nuclear Information System (INIS)

    Shevchenko, S N; Omelyanchouk, A N; Zagoskin, A M; Savel'ev, S; Nori, Franco

    2008-01-01

    Rabi oscillations are coherent transitions in a quantum two-level system under the influence of a resonant drive, with a much lower frequency dependent on the perturbation amplitude. These serve as one of the signatures of quantum coherent evolution in mesoscopic systems. It was shown recently (Groenbech-Jensen N and Cirillo M 2005 Phys. Rev. Lett. 95 067001) that in phase qubits (current-biased Josephson junctions) this effect can be mimicked by classical oscillations arising due to the anharmonicity of the effective potential. Nevertheless, we find qualitative differences between the classical and quantum effects. Firstly, while the quantum Rabi oscillations can be produced by the subharmonics of the resonant frequency ω 10 (multiphoton processes), the classical effect also exists when the system is excited at the overtones, nω 10 . Secondly, the shape of the resonance is, in the classical case, characteristically asymmetric, whereas quantum resonances are described by symmetric Lorentzians. Thirdly, the anharmonicity of the potential results in the negative shift of the resonant frequency in the classical case, in contrast to the positive Bloch-Siegert shift in the quantum case. We show that in the relevant range of parameters these features allow us to distinguish confidently the bona fide Rabi oscillations from their classical Doppelgaenger

  3. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    Energy Technology Data Exchange (ETDEWEB)

    Barret, Didier, E-mail: didier.barret@irap.omp.eu [Universite de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

  4. Quantum oscillations in insulators with neutral Fermi surfaces

    Science.gov (United States)

    Sodemann, Inti; Chowdhury, Debanjan; Senthil, T.

    2018-02-01

    We develop a theory of quantum oscillations in insulators with an emergent Fermi sea of neutral fermions minimally coupled to an emergent U(1 ) gauge field. As pointed out by Motrunich [Phys. Rev. B 73, 155115 (2006), 10.1103/PhysRevB.73.155115], in the presence of a physical magnetic field the emergent magnetic field develops a nonzero value leading to Landau quantization for the neutral fermions. We focus on the magnetic field and temperature dependence of the analog of the de Haas-van Alphen effect in two and three dimensions. At temperatures above the effective cyclotron energy, the magnetization oscillations behave similarly to those of an ordinary metal, albeit in a field of a strength that differs from the physical magnetic field. At low temperatures, the oscillations evolve into a series of phase transitions. We provide analytical expressions for the amplitude and period of the oscillations in both of these regimes and simple extrapolations that capture well their crossover. We also describe oscillations in the electrical resistivity of these systems that are expected to be superimposed with the activated temperature behavior characteristic of their insulating nature and discuss suitable experimental conditions for the observation of these effects in mixed-valence insulators and triangular lattice organic materials.

  5. Solar filament material oscillations and drainage before eruption

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-01-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  6. Periodic-cylinder vesicle with minimal energy

    International Nuclear Information System (INIS)

    Xiao-Hua, Zhou

    2010-01-01

    We give some details about the periodic cylindrical solution found by Zhang and Ou-Yang in [1996 Phys. Rev. E 53 4206] for the general shape equation of vesicle. Three different kinds of periodic cylindrical surfaces and a special closed cylindrical surface are obtained. Using the elliptic functions contained in mathematic, we find that this periodic shape has the minimal total energy for one period when the period–amplitude ratio β ≈ 1.477, and point out that it is a discontinuous deformation between plane and this periodic shape. Our results also are suitable for DNA and multi-walled carbon nanotubes (MWNTs). (cross-disciplinary physics and related areas of science and technology)

  7. Self-synchronization of populations of nonlinear oscillators in the thermodynamic limit

    International Nuclear Information System (INIS)

    Bonilla, L.L.; Casado, J.M.; Morillo, M.

    1987-01-01

    A population of identical nonlinear oscillators, subject to random forces and coupled via a mean-field interaction, is studied in the thermodynamic limit. The model presents a nonequilibrium phase transition from a stationary to a time-periodic probability density. Below the transition line, the population of oscillators is in a quiescent state with order parameter equal to zero. Above the transition line, there is a state of collective rhythmicity characterized by a time-periodic behavior of the order parameter and all moments of the probability distribution. The information entropy of the ensemble is a constant both below and above the critical line. Analytical and numerical analyses of the model are provided

  8. Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall

    NARCIS (Netherlands)

    Stamhuis, Eize Jan

    2017-01-01

    A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or

  9. Rabi oscillations a quantum dot exposed to quantum light

    International Nuclear Information System (INIS)

    Magyarov, A.; Slepyan, G.Ya.; Maksimenko, S.A.; Hoffmann, A.

    2007-01-01

    The influence of the local field on the excitonic Rabi oscillations in an isolated quantum dot driven by the coherent state of light has been theoretically investigated. Local field is predicted to entail the appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime Rabi oscillations are periodic and do not reveal collapse-revivals phenomenon, while in the second one collapse and revivals appear, showing significant difference as compared to those predicted by the standard Jaynes-Cummings model

  10. An optimized oscillation analysis of MINOS beam data

    International Nuclear Information System (INIS)

    Culling, Andrew John

    2007-01-01

    This thesis presents results of the MINOS long baseline neutrino oscillation experiment. Charged Current interactions of ν μ from the NuMI beamline have been recorded in both the Near and Far Detectors between May 2005 and February 2006, corresponding to 1.27 x 10 20 protons being delivered to the NuMI target. Several techniques for improving the sensitivity of an oscillation measurement are discussed and their impact assessed. 378 events are observed in the Far Detector during this period, compared to a prediction of 459 ± 31 events are observed in the Far Detector during this period, compared to a prediction of 459 ± 31 events when the observed Near Detector spectrum is extrapolated to the Far Detector over the 735 km baseline with no oscillations. In addition to this deficit of observed events, there is also evidence for spectral distortion in the Far Detector. A maximum likelihood analysis is used to determine the best fit point and allowed regions in Δm 2 23 and sin 2 2θ 23 parameter space. The best fit values for Δm 2 23 and sin 2 2θ 23 are found to be 2.55 +0.39 -0.24 x 10 -3 eV 2 and > 0.87 (68% CL) respectively

  11. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  12. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    International Nuclear Information System (INIS)

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-01-01

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 ± 30 s and the damping time is 1000 ± 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  13. Beam-beam interaction and pacman effects in the SSC with momentum oscillation

    International Nuclear Information System (INIS)

    Mahale, N.K.; Ohnuma, S.

    1989-01-01

    In order to find the combined effects of beam-beam interaction (head-on and long-range) and random nonlinear multipoles in dipole magnets, the transverse oscillations of ''regular'' as well as ''pacman'' particles are traced for 256 synchrotron oscillation periods (corresponding to 135K revolutions) in the proposed SSC. Results obtained in this study do not show any obvious reduction of dynamic or linear apertures for pacman particles when compared with regular particles for (Δp/p) = 0. There are some indications of possible sudden or gradual increases in the oscillation amplitude, for pacman as well as regular particles, when the amplitude of momentum oscillation is as large as 3σ. 4 refs., 7 figs

  14. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  15. Role of vortex structures in excitation of self-oscillating combustion of condensed systems

    International Nuclear Information System (INIS)

    Samsonov, V.P.; Murunov, E.Yu.; Alekseev, M.V.

    2008-01-01

    One studied experimentally the effect of the free convection and the eddy structures occurring near the gasoline burner singing flame on the excitation conditions of thermal self-oscillations in a tube-resonator. One introduces a procedure to measure the gas column oscillation amplitude. The singing flame height and the flame mass speed at the excitation of the acoustic oscillations are revealed to reduce, while the gasoline burning efficiency is found to increase. By means of the digital photometry one studied the mechanisms of the singing flame temperature field changes within one oscillation period. One derived the hysteresis dependences of the amplitude of the acoustic oscillations on the gasoline diffusion flame thermal power. One brings to the notice a mechanism of the effect of the eddy structures of the excitation of the burning self-oscillation mode of the condensed systems [ru

  16. The dynamics of two linearly coupled Goodwin oscillators

    Science.gov (United States)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2017-10-01

    In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.

  17. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  18. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    Science.gov (United States)

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  19. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  20. Numerical Prediction of Turbulent Oscillating Flow and Heat Transfer in Pipes with Various End Geometries. Ph.D. Thesis, Final Report

    Science.gov (United States)

    Oseid, Kirk Leroi

    1995-01-01

    Unsteady flow is present in man, machine and nature. The flow of blood in arteries and capillaries in the human body is pulsatile-composed of a mean flow superposed with an oscillating component. The tides that wash in and out of rivers, harbors and estuaries are unsteady flows with very long periods of oscillation. Many engineering devices employ pulsatile and oscillating flow. Pulsating flow is defined here as a periodic flow with a net displacement of fluid over each flow cycle. Oscillating flow is defined as a period flow with a zero mean over each cycle. The subject of this thesis is oscillating flow and heat transfer in pipes which make up the heater and cooler sections of the NASA Space Power Research Engine (SPRE) currently under development. This engine uses the Stirling cycle as the thermal energy converter in a power plant for future space applications. The information presented in this thesis will of course be applicable to the design of many types of machinery which employ oscillating flow and heat transfer.

  1. Periodic pulling of the drift instability in a thermal plasma

    International Nuclear Information System (INIS)

    Abrams, R.H. Jr.

    1970-01-01

    The primary objective of this thesis is to show that a mode of oscillation in a plasma can be represented by a van der Pol oscillator. The results of an experiment performed on a drift wave in a Q-machine are interpreted in terms of a mechanism developed by Lashinsky. The mechanism, called periodic pulling, predicts a specific kind of spectrum for certain experimental conditions when a van der Pol oscillator is perturbed by a small signal. The observed spectrum, along with other observations, lends credence to the van der Pol oscillator model of a plasma mode

  2. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  3. Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator.

    Science.gov (United States)

    Weicker, Lionel; Erneux, Thomas; Jacquot, Maxime; Chembo, Yanne; Larger, Laurent

    2012-02-01

    An electro-optic oscillator subject to two distinct delayed feedbacks has been designed to develop pronounced broadband chaotic output. Its route to chaos starts with regular pulsating gigahertz oscillations that we investigate both experimentally and theoretically. Of particular physical interest are the transitions to various crenelated fast time-periodic oscillations, prior to the onset of chaotic regimes. The two-delay problem is described mathematically by two coupled delay-differential equations, which we analyze by using multiple-time-scale methods. We show that the interplay of a large delay and a relatively small delay is responsible for the onset of fast oscillations modulated by a slowly varying square-wave envelope. As the bifurcation parameter progressively increases, this envelope undergoes a sequence of bifurcations that corresponds to successive fixed points of a sine map.

  4. Numerical study of unsteady viscous flow past oscillating airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yan; Yuan Xin [Tsinghua Univ., Dept. of Thermal Engineering, Beijing (China)

    2001-07-01

    Accurate simulation of the dynamic stall of an oscillating airfoil is of major importance to wing and wind turbine blade design. However, dynamic stall is complicated and influenced by many factors, such as geometry shape of the airfoil, reduced frequency, etc. The difficulties of simulation are both mathematical (numerical method) and physical (turbulence model). The present paper has introduced a new numerical method (new LU-type scheme and fourth-order higher resolution MUSCL TVD scheme) and q-{omega} turbulence modelling to calculate the unsteady flowfields of an oscillating NACA0015 airfoil. The test targets include attached flow, light-stall and deep-stall of the airfoil. The calculated results for attached flow and light-stall are in good agreement with those of experiments. The calculated results for deep-stall also show improvement, especially during the downstroke of the oscillation. However, there is still a significant difference between the results of calculation and experiment in the hysteresis curves of the drag coefficient. One reason is that the q-{omega} turbulence model still has limitations. Another is that the drag coefficient is difficult to measure and the experiments are not reliable. (Author)

  5. Heat and Mass Transfer in the Drying of a Cylindrical Body in an Oscillating Magnetic Field

    Science.gov (United States)

    Rudobashta, S. P.; Zueva, G. A.; Kartashov, É. M.

    2018-01-01

    A problem on the heating of a cylindrical body of infinite length in an oscillating electromagnetic field in the process of its drying has been formulated and solved analytically with account of the intermittence of irradiation of the body defined by the Heaviside unit function, the exponential-law absorption of electromagnetic energy by it, and the convective heat and mass exchange between the surface of the body and the environment having constant parameters. The intensity of evaporation of moisture from the surface of the body was determined on the basis of analytical solution of the problem on the mass transfer (moisture diffusion) in it on the assumption that the phase transformations of the body proceed near its surface. Solutions of the problem on the heating of the cylindrical body have been obtained for the cases of nonuniform and uniform distributions of its local temperature, the temperature of the body averaged over its volume, and the temperature gradient near the surface of the body. The "serviceability" of these solutions was verified on the basis of numerical simulation, with them, of the drying of a seed shaped as a cylinder under the action of an oscillating infrared radiation. As a result of the numerical simulation performed, a technological regime of drying of seeds at minimum and maximum temperatures of their heating by on oscillating infrared radiation for a definite period of time in a cycle, providing not only the drying of the seeds but also substantial improvement of their sowing properties (the sprouting energy and the germination power), has been found. It is shown that the oscillating infrared heating of seeds can be used for their drying in pseudofluidized and vibrofluidized beds.

  6. Magnetic field mediated conductance oscillation in graphene p–n junctions

    Science.gov (United States)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  7. Refined rotational period, pole solution, and shape model for (3200) Phaethon

    Energy Technology Data Exchange (ETDEWEB)

    Ansdell, Megan; Meech, Karen J.; Kaluna, Heather [NASA Astrobiology Institute, Honolulu, HI 96822 (United States); Hainaut, Olivier [European Southern Observatory, Karl Schwarzschild Straße, 85748 Garching bei München (Germany); Buie, Marc W. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Bauer, James [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 183-401, Pasadena, CA 91109 (United States); Dundon, Luke, E-mail: mansdell@ifa.hawaii.edu [United States Navy, Washington, DC 20350 (United States)

    2014-09-20

    (3200) Phaethon exhibits both comet- and asteroid-like properties, suggesting it could be a rare transitional object such as a dormant comet or previously volatile-rich asteroid. This justifies detailed study of (3200) Phaethon's physical properties as a better understanding of asteroid-comet transition objects can provide insight into minor body evolution. We therefore acquired time series photometry of (3200) Phaethon over 15 nights from 1994 to 2013, primarily using the Tektronix 2048 × 2048 pixel CCD on the University of Hawaii 2.2 m telescope. We utilized light curve inversion to (1) refine (3200) Phaethon's rotational period to P = 3.6032 ± 0.0008 hr; (2) estimate a rotational pole orientation of λ = +85° ± 13° and β = –20° ± 10°; and (3) derive a shape model. We also used our extensive light curve data set to estimate the slope parameter of (3200) Phaethon's phase curve as G ∼ 0.06, consistent with C-type asteroids. We discuss how this highly oblique pole orientation with a negative ecliptic latitude supports previous evidence for (3200) Phaethon's origin in the inner main asteroid belt as well as the potential for deeply buried volatiles fueling impulsive yet rare cometary outbursts.

  8. Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light

    International Nuclear Information System (INIS)

    Ting, Li; Li, Yu; Zhi-Xin, Lu; Gang, Song; Kai, Zhang

    2011-01-01

    The effects of various parameters including thickness and dielectric constants of substrates, shapes of nanoparticles, and polarization direction of incident light, on the extinction spectra of periodic gold nanoparticle arrays are investigated by the full-vectorial three-dimensional (3D) finite difference time domain (FDTD) method. The calculated results show that the substrate affects the extinction spectra by coupling the fields co-excited by the substrate and gold nanoparticles. Extinction spectra are influenced by the shapes of the nanoparticles, but there are no obvious changes in extinction spectra for similar shapes. The polarization direction of incident light has a great influence on the extinction spectra. The implications of these results are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Quantitative analysis of circadian single cell oscillations in response to temperature.

    Science.gov (United States)

    Abraham, Ute; Schlichting, Julia Katharina; Kramer, Achim; Herzel, Hanspeter

    2018-01-01

    Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell's ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation.

  10. Critical heat flux of forced convection boiling in an oscilating acceleration field. Pt. 1

    International Nuclear Information System (INIS)

    Otsuji, T.; Kurosawa, A.

    1982-01-01

    The influence of periodically varying acceleration on critical heat flux (CHF) of Freon-113 flowing upward in a uniformly heated vertical annular channel has been studied experimentally. The freon loop was oscillated vertically to determine the ratio of CHF in the oscillating acceleration field to the corresponding stationary value. The amplitude of inlet flow oscillation induced by variation of acceleration, which causes early CHF, is proportional to the acceleration amplitude. The dependence of inlet flow rate on the oscillating acceleration decreases with increasing inlet subcooling, and no oscillation of inlet flow is observed in the case of negative exit quality (subcooled boiling). Nevertheless the degradation of CHF is more remarkable in the low quality region. This result suggests the necessity to introduce an other mechanism of early CHF than flow oscillation. (orig.)

  11. Laminar phase flow for an exponentially tapered Josephson oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    2000-01-01

    Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...

  12. C-type period-doubling transition in nephron autoregulation

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik

    2011-01-01

    The functional units of the kidney, called nephrons, utilize mechanisms that allow the individual nephron to regulate the incoming blood flow in response to fluctuations in the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscillations, period-doubling bif......The functional units of the kidney, called nephrons, utilize mechanisms that allow the individual nephron to regulate the incoming blood flow in response to fluctuations in the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscillations, period......-doubling bifurcations, mode-locking and other nonlinear dynamic phenomena in the tubular pressures and flows. Using a simplified nephron model, the paper examines how the regulatory mechanisms react to an external periodic variation in arterial pressure near a region of resonance with one of the internally generated...

  13. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  14. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  15. Secular variation of the Pacific Decadal Oscillation, the North Pacific Oscillation and climatic jumps in a multi-millennial simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, PO Box 1, Melbourne (Australia)

    2008-04-15

    Outputs from a 10,000-year simulation with a coupled global climatic model for present climatic conditions have been used to investigate the behaviour of the Pacific Decadal Oscillation (PDO), the North Pacific Oscillation (NPO) and related phenomena. The analysis reveals a wide range of temporal variability for these Oscillations, suggesting that observations to date provide only a limited sample of possible outcomes. In addition, the simulation suggests that the current observed phase relation between the PDO and NPO may not be typical of longer-term variability. Climatic jumps appear to be a ubiquitous feature of climatic variability, and while, as observed, the most common interval between such jumps is about 20 years, intervals of up to 100 years occur in the simulation. The probability density functions of the PDO and NPO are very close to Gaussian, with the PDO being represented by an auto-regressive function of order one, while the NPO consisted of white noise. An FFT analysis of PC1 of the PDO revealed periodicities concentrated near 10 years, while for the NPO the principal periodicities were decadal to bidecadal. Global distributions of the distributions of the correlations between PC1 or the NPO and selected climatic variables were similar, and in agreement with observations. These correlations highlight the inter-relationships between these two Oscillations. The above correlations were not necessarily stable in time for a given geographical point, with transitions occurring between positive and negative extremes. Climatic jumps were identified with transitions of both the PDO and NPO, with magnitudes of importance as regards climatic perturbations. Spatial patterns of the changes associated with such jumps have global scales, and the need to consider the implications of these jumps in regard to greenhouse induced climatic change is noted. (orig.)

  16. Simple membrane-based model of the Min oscillator

    International Nuclear Information System (INIS)

    Petrášek, Zdeněk; Schwille, Petra

    2015-01-01

    Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles. This process identifies the middle of the cell and enables symmetric cell division. In an experimental model system consisting of a flat membrane with effectively infinite supply of proteins and energy source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min concentration when the majority of protein detaches from the membrane, and even the narrow MinE maximum immediately preceding the detachment. The proposed model thus provides a possible mechanism for the formation of the MinE ring known from cells. The model is restricted to one dimension, with protein interactions described by chemical kinetics allowing at most bimolecular reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above the membrane is approximated as being well-mixed, with constant concentrations of all species. Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane. Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD dimer and its subsequent detachment from the membrane. We investigate which reaction schemes lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their stability. The suggested model qualitatively describes the shape of the Min waves observed on flat membranes, and agrees with the experimental dependence of the wave period on the MinE concentration. These results highlight the importance of MinE presence on the membrane without being bound to MinD, and of the reactions of Min proteins on the membrane. (paper)

  17. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  18. Effect of static deformation and external forces on the oscillations of levitated droplets

    Science.gov (United States)

    Suryanarayana, P. V. R.; Bayazitoglu, Y.

    1991-01-01

    The oscillations of an aspherical droplet subjected to different external forces are considered. For an arbitrary shape deformation, it is shown that the frequency spectrum splits into (2l - 1) peaks for a mode l oscillation, and the splitting of the frequency spectrum is calculated for mode 2, 3, and 4 oscillations. The deformation is then treated as a consequence of a general external force, and the frequency split is obtained in terms of the external force parameters. Droplets levitated by acoustic, electromagnetic, and combined acoustic-electromagnetic forces are considered in particular, and it is shown that the effects of asphericity adequately explain the splitting of the frequency spectrum observed commonly in experiments. The interpretation of spectra with regard to accurate surface tension measurement using the oscillations of levitated droplets is discussed, and the results applied to some previous experimental results. It is shown that the accuracy of surface tension measurements can improve if the asphericity caused by the levitating force, and the resulting frequency split, are taken into account.

  19. Local Dynamics of a Laser with Rapidly Oscillating Parameters

    Directory of Open Access Journals (Sweden)

    E. V. Grigorieva

    2013-01-01

    Full Text Available The dynamics of class B lasers with the incoherent optical feedback formed by quickly vibrating external mirrors is viewed. The problem of the stability of equilibrium in a model system with rapidly oscillating coefficients is studied. The averaged system with the distributed delay is received. It is determined that in the presence of fast delay oscillation the limit of instability of a balance state moves towards significantly greater values of the feedback coefficient. The dependence of the shift with increasing the amplitude modulation has a band structure, so the rapid oscillations of delay can stabilize or destabilize the equilibrium. Normal forms which show changes of the sign of Lyapunov quantityalong border are constructed. They describe characteristics of periodic and quasiperiodic modes close to the balance state.

  20. High-Performance Wireless via the Merger of CI Chip-Shaped DS-CDMA and Oscillating-Beam Smart Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Nassar Carl R

    2004-01-01

    Full Text Available We introduce a novel merger of direct sequence code division multiple access (DS-CDMA and smart antenna arrays. With regard to the DS-CDMA scheme, we employ carrier interferometry DS-CDMA (CI/DS-CDMA, a novel implementation of DS-CDMA where chips are decomposable into narrowband frequency components. With regard to the antenna array, we deploy the oscillating-beam smart array. Here, applying proper time-varying phases to the array elements, we create small movement (oscillation in the antenna array's pattern, while steering the antenna pattern main lobe to the position of the intended user. The oscillating antenna pattern creates a time-varying channel with a controllable coherence time. This, in turn, provides transmit diversity in the form of a time diversity gain at the mobile receiver side. At the receiver, three stages of combining are available: combining time components of the received signal within symbol duration (each experiencing a different fade to enhance performance via time diversity; combining frequency components which make up the CI/DS-CDMA chip to enhance the performance via frequency diversity; and combining across chips to eliminate the interfering users on the system. Merging CI/DS-CDMA with the oscillating-beam smart antenna at the base station, we achieve very high capacity via the merger of SDMA (available through directionality of the antenna array and code division multiple access (inherent in CI/DS-CDMA, and very high performance via the construction of receivers that exploit both transmit diversity and frequency diversity. We present the performance gains of the proposed merger.

  1. Regularization of the double period method for experimental data processing

    Science.gov (United States)

    Belov, A. A.; Kalitkin, N. N.

    2017-11-01

    In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.

  2. Equatorial annual oscillation with QBO-driven 5-year modulation in NCEP data

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2007-02-01

    Full Text Available An analysis is presented of the stratospheric zonal wind and temperature variations supplied by the National Center for Environmental Prediction (NCEP. The derived zonal-mean variations are employed. Stimulated by modeling studies, the data are separated into the hemispherically symmetric and anti-symmetric components, and spectral analysis is applied to study the 12-month annual oscillation (AO and the quasi-biennial oscillation (QBO. For data samples that cover as much as 40 years, the zonal wind results reveal a pronounced 5-year modulation of the symmetric AO in the lower stratosphere, which is confined to equatorial latitudes. This modulation is also seen in the temperature variations but extends to high latitudes, qualitatively consistent with published model results. A comparison between different time intervals of the data indicates that the signature of the 5-year oscillation is larger when the QBO of 30 months is more pronounced. Thus there is circumstantial evidence that this particular QBO period is involved in generating the oscillation as was shown in a modeling study (Mayr et al., 2000. In agreement with the model, the spectral analysis also reveals a weak anti-symmetric 5-year oscillation in the zonal wind data, which could interact with the strong anti-symmetric AO to produce the modulation of the symmetric AO. The 30-month QBO is well suited to be synchronized by, and phase-locked to, the equatorial semi-annual oscillation (SAO, and this may explain why this QBO periodicity and its 5-year spin-off are observed to persist for many cycles.

  3. A Hybrid Algorithm for Period Analysis from Multiband Data with Sparse and Irregular Sampling for Arbitrary Light-curve Shapes

    Science.gov (United States)

    Saha, Abhijit; Vivas, A. Katherina

    2017-12-01

    Ongoing and future surveys with repeat imaging in multiple bands are producing (or will produce) time-spaced measurements of brightness, resulting in the identification of large numbers of variable sources in the sky. A large fraction of these are periodic variables: compilations of these are of scientific interest for a variety of purposes. Unavoidably, the data sets from many such surveys not only have sparse sampling, but also have embedded frequencies in the observing cadence that beat against the natural periodicities of any object under investigation. Such limitations can make period determination ambiguous and uncertain. For multiband data sets with asynchronous measurements in multiple passbands, we wish to maximally use the information on periodicity in a manner that is agnostic of differences in the light-curve shapes across the different channels. Given large volumes of data, computational efficiency is also at a premium. This paper develops and presents a computationally economic method for determining periodicity that combines the results from two different classes of period-determination algorithms. The underlying principles are illustrated through examples. The effectiveness of this approach for combining asynchronously sampled measurements in multiple observables that share an underlying fundamental frequency is also demonstrated.

  4. A Few Simple Classroom Experiments with a Permanent U-Shaped Magnet

    Science.gov (United States)

    Babovic, Miloš; Babovic, Vukota

    2017-01-01

    A few simple experiments in the magnetic field of a permanent U-shaped magnet are described. Among them, pin oscillations inside the magnet are particularly interesting. These easy to perform and amusing measurements can help pupils understand magnetic phenomena and mutually connect knowledge of various physics branches.

  5. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    Science.gov (United States)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    2017-06-14

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply. This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.

  6. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  7. CHAOTIC DUFFING TYPE OSCILLATOR WITH INERTIAL DAMPING

    DEFF Research Database (Denmark)

    Tamaševicius, Arunas; Mykolaitis, Gytis; Kirvaitis, Raimundas

    2009-01-01

    A novel Duffing-Holmes type autonomous chaotic oscillator is described. In comparison with the well-known non-autonomous Duffing-Holmes circuit it lacks the external periodic drive, but includes two extra linear feedback sub-circuits, namely a direct positive feedback loop, and an inertial negati...... feedback loop. SPICE simulation and hardware experimental results are presented....

  8. Atmospheric circulation in northern hemisphere and north atlantic oscillation

    Directory of Open Access Journals (Sweden)

    Александр Вадимович Холопцев

    2015-08-01

    Full Text Available Conditions under which statistical connections of interannual changes of repitition duration periods in Northern hemisphere of elementary circulation mechanisms associated to meridional northern and meridional southern groups with variations of North Atlantic oscillation are significant were revealed. It is shown, that the characteristics changes of these connections taking place in modern period can be caused by distribution changes of distribution of sea surface temperatures

  9. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Becerra Gonzalez, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: David.J.Thompson@nasa.gov, E-mail: sara.cutini@asdc.asi.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: stefan@astro.su.se, E-mail: stamerra@oato.inaf.it [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  10. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Atwood, W. B.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Bonino, R.; Bregeon, J.; Bruel, P.

    2015-01-01

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity

  11. Sticky orbits in a kicked-oscillator model

    CERN Document Server

    Lowenstein, J H; Vivaldi, F

    2005-01-01

    We study a 4-fold symmetric kicked-oscillator map with sawtooth kick function. For the values of the kick amplitude $\\lambda=2\\cos(2\\pi p/q)$ with rational $p/q$, the dynamics is known to be pseudochaotic, with no stochastic web of non-zero Lebesgue measure. We show that this system can be represented as a piecewise affine map of the unit square ---the so-called local map--- driving a lattice map. We develop a framework for the study of long-time behaviour of the orbits, in the case in which the local map features exact scaling. We apply this method to several quadratic irrational values of $\\lambda$, for which the local map possesses a full Legesgue measure of periodic orbits; these are promoted to either periodic orbits or accelerator modes of the kicked-oscillator map. By constrast, the aperiodic orbits of the local map can generate various asymptotic behaviours. For some parameter values the orbits remain bounded, while others have excursions which grow logarithmically or as a power of the time. In the po...

  12. Magnetoresistance oscillations in topological insulator microwires contacted with normal and superconducting leads

    Science.gov (United States)

    Konopko, Leonid; Nikolaeva, Albina; Huber, Tito E.; Rogacki, Krzysztof

    2018-05-01

    Recent efforts to detect and manipulate Majorana fermions in solid state devices have employed topological insulator (TI) nanowires proximity coupled to superconducting (SC) leads. This combination holds some promises for the fundamental physics and applications. We studied the transverse magnetoresistance (MR) of polycrystal Bi2Te2Se and single-crystal Bi0.83Sb0.17 TI microwires contacted with superconducting In2Bi leads. Bi2Te2Se has a simple band structure with a single Dirac cone on the surface and a large non-trivial bulk gap of 300 meV. The semiconducting alloy Bi0.83Sb0.17 is a strong topological insulator due to the inversion symmetry of bulk crystalline Bi and Sb. To study the TI/SC interface, we prepared Bi2Te2Se and Bi0.83Sb0.17 glass-coated microwire samples using superconducting alloy In2Bi (Tc = 5.6 K) to provide a contact of one side of the microwires with copper leads and gallium to provide a contact of the other side of microwires with copper leads. The MR oscillations equidistant in a transverse magnetic field (up to 1 T) at the TI/SC interface were observed at various temperatures (4.2 K-1.5 K) in both the Bi2Te2Se and Bi0.83Sb0.17 samples. In the Bi2Te3 sample with a diameter of d = 17 μm, this oscillations exist with a period of ΔB = 18 mT; in the Bi0.83Sb0.17 sample with d = 1.7 μm MR oscillations are characterized by a period of ΔB = 46 mT. The observed oscillations cannot be referred to the Shubnikov de Haas oscillations because they are not periodic in an inverse magnetic field and their amplitude decreases with increasing magnetic field. Most probably, transverse MR oscillations arise owing to the appearance of highly conducting edge states on the planar boundary of SC/TI.

  13. Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion

    Science.gov (United States)

    Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi

    2011-01-01

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…

  14. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  15. Measurement of periodically varying ECE spectra using a Michelson interferometer

    International Nuclear Information System (INIS)

    Laurent, L.; Rodriguez, L.; Talvard, M.

    1987-01-01

    In some tokamak experiments the ECE spectrum is periodically varying. If the modulation frequency is small enough (less than 10 Hz) the plasma can be considered as quasi-stationary during the typical scan time of most of the Michelson interferometers. It is possible to measure simply ECE spectra at different times of the oscillation. We present here a technique which allows to measure smaller fluctuations at larger frequencies. However the analysis requires a large number of periods of oscillation at constant frequency and a scanning mirror moving at constant velocity

  16. Four-atom period in the conductance of monatomic al wires

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2003-01-01

    We present first-principles calculations based on density functional theory for the conductance of monatomic Al wires between Al(111) electrodes. In contrast to the even-odd oscillations observed in other metallic wires, the conductance of the Al wires is found to oscillate with a period of four ...... atoms as the length of the wire is varied. Although local charge neutrality can account for the observed period, it leads to an incorrect phase. We explain the conductance behavior using a resonant transport model based on the electronic structure of the infinite wire....

  17. Quantum infinite square well with an oscillating wall

    International Nuclear Information System (INIS)

    Glasser, M.L.; Mateo, J.; Negro, J.; Nieto, L.M.

    2009-01-01

    A linear matrix equation is considered for determining the time dependent wave function for a particle in a one-dimensional infinite square well having one moving wall. By a truncation approximation, whose validity is checked in the exactly solvable case of a linearly contracting wall, we examine the cases of a simple harmonically oscillating wall and a non-harmonically oscillating wall for which the defining parameters can be varied. For the latter case, we examine in closer detail the dependence on the frequency changes, and we find three regimes: an adiabatic behabiour for low frequencies, a periodic one for high frequencies, and a chaotic behaviour for an intermediate range of frequencies.

  18. Chemotaxis and Actin Oscillations

    Science.gov (United States)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  19. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  20. Measuring background by the DIN-1M spectrometer using the oscillating absorbing screen method

    International Nuclear Information System (INIS)

    Glazkov, Yu.Yu.; Liforov, V.G.; Novikov, A.G.; Parfenov, V.A.; Semenov, V.A.

    1982-01-01

    Technique for measuring background by a double pulse slow neutron spectrometer is described. To measure the background on oscillating absorbing screen (OAS) periodically overlapping primary neutron beam at the input of a mechanical interrupter was used. During the overlapping monochromatic neutrons conditioned the effect are removed out of the beam and general background conditions are not practically applied. Screen oscillation permits to realize the condition of simultaneous measurement of effect and background neutrons. The optimal period of oscillations amounts to approximately 3 min. Analysis of neutron spectra scattered with different materials and corresponding background curves measured by means of the OAS technique shows that the share of monochromatic neutrons passing through the screen constitutes less than 1% of elastic peak and relative decrease of the total background level doesn't exceed 1.5-2%

  1. Competition for synchronization in a phase oscillator system

    Science.gov (United States)

    Kazanovich, Yakov; Burylko, Oleksandr; Borisyuk, Roman

    2013-10-01

    A system of phase oscillators with a Central Oscillator (CO) and a set of n Peripheral Oscillators (POs) is considered. Feed-forward and feedback connections between the CO and POs are determined by two interaction functions which are assumed to be smooth, odd, and periodic. To describe the competition of POs for synchronization with the CO, we study the asymptotic stability of fixed points corresponding to in-phase synchronization of a group of k POs, while other POs are in anti-phase with the CO. It is shown that stability conditions can be formulated in terms of four parameters that describe the slopes of the interaction functions at zero and half-period points. Analytical description of stability in terms of the regions in 4-dimensional parameter space is given. Combining stability analysis with the detailed study of geometry of invariant manifolds, the bifurcations of fixed points are investigated. We show that various dynamical regimes such as multistability, heteroclinic orbits, and chaos are possible. Analytical stability conditions for global synchronization of POs with the CO are formulated for the systems with local connections between POs. It is shown that synchronization in a large system with local connections becomes unstable even under weak desynchronizing influence from the CO. The application of the results to modeling in neuroscience and, in particular, for modeling visual attention is discussed.

  2. A new kind of metal detector based on chaotic oscillator

    Science.gov (United States)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  3. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  4. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  5. The effect of loss of immunity on noise-induced sustained oscillations in epidemics.

    Science.gov (United States)

    Chaffee, J; Kuske, R

    2011-11-01

    The effect of loss of immunity on sustained population oscillations about an endemic equilibrium is studied via a multiple scales analysis of a SIRS model. The analysis captures the key elements supporting the nearly regular oscillations of the infected and susceptible populations, namely, the interaction of the deterministic and stochastic dynamics together with the separation of time scales of the damping and the period of these oscillations. The derivation of a nonlinear stochastic amplitude equation describing the envelope of the oscillations yields two criteria providing explicit parameter ranges where they can be observed. These conditions are similar to those found for other applications in the context of coherence resonance, in which noise drives nearly regular oscillations in a system that is quiescent without noise. In this context the criteria indicate how loss of immunity and other factors can lead to a significant increase in the parameter range for prevalence of the sustained oscillations, without any external driving forces. Comparison of the power spectral densities of the full model and the approximation confirms that the multiple scales analysis captures nonlinear features of the oscillations.

  6. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    Science.gov (United States)

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  7. Period doubling induced by thermal noise amplification in genetic circuits

    KAUST Repository

    Ruocco, G.

    2014-11-18

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.

  8. Effect of waveforms of inspired gas tension on the respiratory oscillations of carotid body discharge.

    Science.gov (United States)

    Kumar, P; Nye, P C; Torrance, R W

    1991-07-01

    The responses of carotid body chemoreceptor discharge to repeated ramps (20- to 60-s forcing cycle durations) of inspired gas tensions were studied in spontaneously breathing and in artificially ventilated pentobarbitone-anesthetized cats. In all animals the mean intensity of chemoreceptor discharge followed the frequency of the forcing cycle, and superimposed on this were oscillations at the frequency of ventilation (breath-by-breath oscillations). The amplitude of the breath-by-breath oscillations in discharge was often large, and it waxed and waned with the forcing cycle. It was greatest when the mean level of discharge was falling and smallest near the peak of mean discharge. No qualitative differences were observed between PO2-alone forcing in constant normocapnia and PCO2-alone forcing in constant hypoxia. The variation in the amplitudes of breath-by-breath oscillations was shown to be due primarily to variations in the amplitudes of the downslope component of the discharge oscillation. Variations in the upslope component of individual oscillations were small. The factors responsible for the breath-by-breath oscillations are discussed, and it is concluded that the shape of the waveform of arterial gas tensions that stimulate the peripheral chemoreceptors departs markedly from that of a line joining end-tidal gas tensions. This causes breath-by-breath oscillations of discharge to be very large after an "off" stimulus. Reflex studies involving the forcing of respiratory gases should therefore include consideration of these effects.

  9. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  10. Periodicity and quasi-periodicity for super-integrable hamiltonian systems

    International Nuclear Information System (INIS)

    Kibler, M.; Winternitz, P.

    1990-01-01

    Classical trajectories are calculated for two Hamiltonian systems with ring shaped potentials. Both systems are super-integrable, but not maximally super-integrable, having four globally defined single-valued integrals of motion each. All finite trajectories are quasi-periodical; they become truly periodical if a commensurability condition is imposed on an angular momentum component

  11. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy; Zhu, Y.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  12. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy

    2012-09-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  13. Synchronous long-term oscillations in a synthetic gene circuit.

    Science.gov (United States)

    Potvin-Trottier, Laurent; Lord, Nathan D; Vinnicombe, Glenn; Paulsson, Johan

    2016-10-27

    Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results suggest that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.

  14. Integrability and symmetries for the Helmholtz oscillator with friction

    International Nuclear Information System (INIS)

    Almendral, Juan A; Sanjuan, Miguel A F

    2003-01-01

    This paper deals with the Helmholtz oscillator, which is a simple nonlinear oscillator whose equation presents a quadratic nonlinearity and the possibility of escape. When a periodic external force is introduced, the width of the stochastic layer, which is a region around the separatrix where orbits may exhibit transient chaos, is calculated. In the absence of friction and external force, it is well known that analytical solutions exist since it is completely integrable. When only friction is included, there is no analytical solution for all parameter values. However, by means of the Lie theory for differential equations we find a relation between parameters for which the oscillator is integrable. This is related to the fact that the system possesses a symmetry group and the corresponding symmetries are computed. Finally, the analytical explicit solutions are shown and related to the basins of attraction

  15. Flow Patterns in the Sedimentation of a Capsule-Shaped Particle

    International Nuclear Information System (INIS)

    Nie De-Ming; Lin Jian-Zhong; Zhang Kai

    2012-01-01

    The main objective of this study is to numerically investigate the settling of a capsule-shaped particle in an infinitely long channel by the newly developed LB-DF/FD method. This work will focus on the effects of the particle orientation and particle/fluid density ratio on the flow patterns during sedimentation. As the density ratio is varied, our results show that there are four distinct modes of sedimentation: vertical sedimentation, horizontal sedimentation, periodically oscillating sedimentation and chaotic mode where the particle is released from the center of the domain with an initial inclination of π/4 to break the symmetry. Furthermore, we also numerically investigate the flow patterns where the particle is released with an initial inclination of 0, π/6, π/3 and π/2. We conduct a detailed study on the effects of density ratio on the transition from the vertical sedimentation mode to horizontal sedimentation mode. (fundamental areas of phenomenology(including applications))

  16. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change.

    Science.gov (United States)

    Shakya, S K; Goss, E M; Dufault, N S; van Bruggen, A H C

    2015-02-01

    Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P effects of global climate change on disease development.

  17. Quantum Transport in Solids: Bloch Dynamics and Role of Oscillating Fields

    National Research Council Canada - National Science Library

    Kim, Ki

    1997-01-01

    .... The specific areas of research are those of Bloch electron dynamics, quantum transport in oscillating electric fields or in periodic potentials, and the capacitive nature of atomic size structures...

  18. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2015-01-01

    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...... power transfer through permanent magnet generator wind turbine system. Considering the tower shadow and the wind shear effect, the mechanical and generator coupling model is developed by PSCAD. Simulation is done to analyze the impacts on output power of operation points and mechanical fluctuation...... components. It is shown that when the oscillation frequency of tower shadow coincides with the system natural frequency, it may cause forced oscillations, whereas, the wind shear and natural wind speed fluctuation are not likely to induce forced oscillations....

  19. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  20. ELMy-H mode as limit cycle and chaotic oscillations in tokamak plasmas

    International Nuclear Information System (INIS)

    Itoh Sanae, I.; Itoh, Kimitaka; Fukuyama, Atsushi; Miura, Yukitoshi.

    1991-05-01

    A model of Edge Localized Modes (ELMs) in tokamak plasmas is presented. A limit cycle solution is found in the transport equation (time-dependent Ginzburg-Landau type), which a has hysteresis curve between the gradient and flux. Periodic oscillation of the particle outflux and L/H intermediate state are predicted near the L/H transition boundary. A mesophase in spatial structure appears near edge. Chaotic oscillation is also predicted. (author)