WorldWideScience

Sample records for period measurement techniques

  1. Work of adhesion measurements by a periodic cracking technique

    International Nuclear Information System (INIS)

    Davutoglu, A.; Aksay, I.A.

    1981-01-01

    In a recent study, Chow et al. introduced a technique for determining the energy associated with interfacial separation of a two-layer composite which consisted of a polymeric substrate and a brittle film overcoat. The technique is based on a model which assumes a perfectly elastic composite. In the present study, it s shown that as long as only the film component of the composite is brittle, the technique is also applicable to the composites where the substrates may display plastic deformation prior to adhesive failure of the film. Strain measurements, instead of load, eliminate the difficulties introduced by the plastic behavior of the substrate. Experimental work was performed on systems containing brittle amorphous selenium films on aluminum and Mylar substrates. These systems with selenium films were of interest due to their usage in photoreceptor technology

  2. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique.

    Science.gov (United States)

    Xie, Chuanqi; Li, Xiaoli; Shao, Yongni; He, Yong

    2014-01-01

    This study investigated the feasibility of using hyperspectral imaging technique for nondestructive measurement of color components (ΔL*, Δa* and Δb*) and classify tea leaves during different drying periods. Hyperspectral images of tea leaves at five drying periods were acquired in the spectral region of 380-1030 nm. The three color features were measured by the colorimeter. Different preprocessing algorithms were applied to select the best one in accordance with the prediction results of partial least squares regression (PLSR) models. Competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to identify the effective wavelengths, respectively. Different models (least squares-support vector machine [LS-SVM], PLSR, principal components regression [PCR] and multiple linear regression [MLR]) were established to predict the three color components, respectively. SPA-LS-SVM model performed excellently with the correlation coefficient (rp) of 0.929 for ΔL*, 0.849 for Δa*and 0.917 for Δb*, respectively. LS-SVM model was built for the classification of different tea leaves. The correct classification rates (CCRs) ranged from 89.29% to 100% in the calibration set and from 71.43% to 100% in the prediction set, respectively. The total classification results were 96.43% in the calibration set and 85.71% in the prediction set. The result showed that hyperspectral imaging technique could be used as an objective and nondestructive method to determine color features and classify tea leaves at different drying periods.

  3. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique.

    Directory of Open Access Journals (Sweden)

    Chuanqi Xie

    Full Text Available This study investigated the feasibility of using hyperspectral imaging technique for nondestructive measurement of color components (ΔL*, Δa* and Δb* and classify tea leaves during different drying periods. Hyperspectral images of tea leaves at five drying periods were acquired in the spectral region of 380-1030 nm. The three color features were measured by the colorimeter. Different preprocessing algorithms were applied to select the best one in accordance with the prediction results of partial least squares regression (PLSR models. Competitive adaptive reweighted sampling (CARS and successive projections algorithm (SPA were used to identify the effective wavelengths, respectively. Different models (least squares-support vector machine [LS-SVM], PLSR, principal components regression [PCR] and multiple linear regression [MLR] were established to predict the three color components, respectively. SPA-LS-SVM model performed excellently with the correlation coefficient (rp of 0.929 for ΔL*, 0.849 for Δa*and 0.917 for Δb*, respectively. LS-SVM model was built for the classification of different tea leaves. The correct classification rates (CCRs ranged from 89.29% to 100% in the calibration set and from 71.43% to 100% in the prediction set, respectively. The total classification results were 96.43% in the calibration set and 85.71% in the prediction set. The result showed that hyperspectral imaging technique could be used as an objective and nondestructive method to determine color features and classify tea leaves at different drying periods.

  4. The HyMeX Special Observation Period in Central Italy: precipitation measurements, retrieval techniques and preliminary results

    Science.gov (United States)

    Silvio Marzano, Frank; Baldini, Luca; Picciotti, Errico; Colantonio, Matteo; Barbieri, Stefano; Di Fabio, Saverio; Montopoli, Mario; Vulpiani, Gianfranco; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Anagnostou, Marios N.; Kalogiros, John; Anagnostou, Emmanouil N.; Ferretti, Rossella; Gatlin, Patrick.; Wingo, Matt; Petersen, Walt

    2013-04-01

    The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. The capability to predict such high-impact events remains weak because of the contribution of very fine-scale processes and their non-linear interactions with the larger scale processes. These societal and science issues motivate the HyMeX (Hydrological cycle in the Mediterranean Experiment, http://www.hymex.org/) experimental programme. HyMeX aims at a better quantification and understanding of the water cycle in the Mediterranean with emphasis on intense events. The observation strategy of HyMEX is organized in a long-term (4 years) Enhanced Observation Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). HyMEX has identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE). Within each target area several hydrometeorological sites for heavy rainfall and flash flooding have been set up. The hydrometeorological site in Central Italy (CI) is interested by both western and eastern fronts coming from the Atlantic Ocean and Siberia, respectively. Orographic precipitations play an important role due to the central Apennine range, which reaches nearly 3000 m (Gran Sasso peak). Moreover, convective systems commonly develop in CI during late summer and beginning of autumn, often causing localized hailstorms with cluster organized cells. Western fronts may heavily hit the Tiber basin crossing large urban areas (Rome), whereas eastern fronts can cause flash floods along the Adriatic coastline. Two major basins are involved within CI region: Tiber basin (1000 km long) and its tributary Aniene and the Aterno-Pescara basin (300 km long). The first HyMeX SOP1.1 was carried out from Sept. till Nov. 2012 in the NW target area. The Italian SOP1.1 was coordinated by the Centre of Excellence CETEMPS, University of L'Aquila, a city located in the CI heart. The CI area

  5. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  6. The attribute measurement technique

    International Nuclear Information System (INIS)

    MacArthur, Duncan W.; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  7. 4. Measuring technique

    International Nuclear Information System (INIS)

    2006-01-01

    It is noted that in nuclear medicine a most widely the scintillation detectors are applying. Action of these detectors is based on registration of light flares in visible and ultraviolet field arising in scintillator under ionizing radiation action. In the chapter following subchapters are included: gamma-spectrometer and gamma radiation detectors; counter of whole body; measuring of accumulated activity (uptake measurements); scanner; scintillation chamber; single-photon emission computed tomography; positron emission computed tomography; magnet resonance tomography; computer technique, images making

  8. Investigation of periodical instabilities of confined turbulent swirl flames with laser based measurement techniques; Untersuchung periodischer Instabilitaeten von eingeschlossenen turbulenten Drallflammen mit Lasermessverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, P.

    2007-07-01

    Swirl flames tend under certain operating conditions to exhibit strong pressure oscillations known as 'thermo-acoustic oscillations'. In this thesis a non-premixed, globally lean swirl flame that was close to industrial gas turbine design, was investigated with phase-resolution over an oscillation cycle using different laser based measurement techniques. Microphone probes were used to characterize the acoustic behaviour of the flame. Measurement of the Laser induced fluorescence of the CH-radical provided information of the structure of the flame zone and of the varying position and intensity of the heat release rate. The velocity field was measured by 3D Laser Doppler Anemometry and analysed with phase resolution. For the first time spontaneous Laser Raman Scattering was applied phase-resolved in an oscillating swirl flame to gain quantitatively correlated information of the concentrations of the main species, the temperature and the mixture fraction. The results give for the first time a quantitative insight of the changes and interactions in an oscillating swirl flame during an oscillation cycle. The data are so far unique with respect to the quantity and quality of the measured data and are thus of high value for the validation of numerical simulation programs. (orig.)

  9. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  10. Experimental techniques and measurement accuracies

    International Nuclear Information System (INIS)

    Bennett, E.F.; Yule, T.J.; DiIorio, G.; Nakamura, T.; Maekawa, H.

    1985-02-01

    A brief description of the experimental tools available for fusion neutronics experiments is given. Attention is paid to error estimates mainly for the measurement of tritium breeding ratio in simulated blankets using various techniques

  11. Measurements Techniques for Gyrotron characterization

    International Nuclear Information System (INIS)

    Castro, P.J. de.

    1987-08-01

    Experiments planned for the characterization of the 35GHz girotron, which is being built at the Plasma Laboratory of INPE, are described. The methods of the measurements are presented and the required instrumentation and devices are specified. Special attention is given to the measurement techniques of the resonator electric field profile. (author) [pt

  12. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  13. Interference pattern period measurement at picometer level

    Science.gov (United States)

    Xiang, Xiansong; Wei, Chunlong; Jia, Wei; Zhou, Changhe; Li, Minkang; Lu, Yancong

    2016-10-01

    To produce large scale gratings by Scanning Beam Interference Lithography (SBIL), a light spot containing grating pattern is generated by two beams interfering, and a scanning stage is used to drive the substrate moving under the light spot. In order to locate the stage at the proper exposure positions, the period of the Interference pattern must be measured accurately. We developed a set of process to obtain the period value of two interfering beams at picometer level. The process includes data acquisition and data analysis. The data is received from a photodiode and a laser interferometer with sub-nanometer resolution. Data analysis differs from conventional analyzing methods like counting wave peaks or using Fourier transform to get the signal period, after a preprocess of filtering and envelope removing, the mean square error is calculated between the received signal and ideal sinusoid waves to find the best-fit frequency, thus an accuracy period value is acquired, this method has a low sensitivity to amplitude noise and a high resolution of frequency. With 405nm laser beams interfering, a pattern period value around 562nm is acquired by employing this process, fitting diagram of the result shows the accuracy of the period value reaches picometer level, which is much higher than the results of conventional methods.

  14. Spectrometry techniques for radioactivity measurements

    International Nuclear Information System (INIS)

    Anilkumar, S.

    2016-01-01

    The energy of the radiation emission following the nuclear decay is unique and the characteristic of the radio nuclide which undergoes decay. Thus measurement of the energy of the radiation offers a method of identifying the radio nuclides. The prime requirement of the energy measurement is a suitable detector which shows response proportional to the energy of the radiation rather than the presence of the radiation. The response from such detectors are suitably processed and distributed with respect to the signal strength which is proportional to incident energy. This distribution is normally referred as energy spectrum and is recorded in the multichannel analyser. The measurement of energy and intensity of radiation from the spectrum is called radiation spectrometry. Thus the radiation spectrometry allows the identification and quantification of radioactive isotopes in variety of matrices. The radiation spectrometry has now become a popular radioanalytical technique in wide area of nuclear fuel cycle programs. The popular spectrometry techniques commonly used for the radioactivity measurement and analysis are Alpha spectrometry, Gamma ray spectrometry and Beta spectrometry

  15. Measurements techniques for transportation noise

    International Nuclear Information System (INIS)

    Brambilla, G.

    2001-01-01

    The noise from transport systems (roads, railways and aircraft) are increasing more and more both in space and in time and, therefore, they are still the major factor responsible for environmental noise pollution. The population exposed to transport noise is also increasing, and the corresponding health effects on people (i.e. annoyance and sleep disturbance) become more severe. Due to this current situation international and national legislation has been issued and implemented to reduce the harmful effects of such noise. This paper describes the techniques prescribed by recent Italian legislation to measure road, railway and aircraft noise. (author)

  16. Measurement of periodically varying ECE spectra using a Michelson interferometer

    International Nuclear Information System (INIS)

    Laurent, L.; Rodriguez, L.; Talvard, M.

    1987-01-01

    In some tokamak experiments the ECE spectrum is periodically varying. If the modulation frequency is small enough (less than 10 Hz) the plasma can be considered as quasi-stationary during the typical scan time of most of the Michelson interferometers. It is possible to measure simply ECE spectra at different times of the oscillation. We present here a technique which allows to measure smaller fluctuations at larger frequencies. However the analysis requires a large number of periods of oscillation at constant frequency and a scanning mirror moving at constant velocity

  17. A poloidal field measurement technique

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He + ions injected into the plasma by a perpendicular He 0 beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b x and b y , respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to δb x , which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs

  18. Measurement Techniques for Clock Jitter

    Science.gov (United States)

    Lansdowne, Chatwin; Schlesinger, Adam

    2012-01-01

    NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.

  19. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  20. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  1. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  2. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  3. Industrial level measurement techniques - a review

    International Nuclear Information System (INIS)

    Schaudel, D.E.

    1984-01-01

    The outlined methods of industrial level measurement technique are nowadays in current use. In correspondence with the technical evolution the mechanical techniques are mentioned first, followed by a description of the more modern electronic methods. These measurement methods comply especially to the requirements of computer aided process guiding systems, i.e. compatibility of signals, self-checking and reliability. (orig.) [de

  4. Periods found in heat measurements obtained by calorimetry

    International Nuclear Information System (INIS)

    Jordan, K.C.

    1984-01-01

    During a span of 640 days, a periodicity of 1.5158 +- 0.0008 days was discovered in successive heater equilibria on Calorimeter No. 127. Measurements were taken at 12-h intervals, with occasional changes of exactly 3 or 6 h in the schedule of measurements. This schedule eliminated all other possible periods except a period of 0.150156 days. Periods of 1.519125 and 1.511283 days were discovered in data on the excess length of day as obtained by the US Naval Observatory over a period of 24 y. These two periods could equally well represent periods of 0.150189 and 0.150112 days, since measurements were obtained only once every 24 h. It is suggested that periods observed in sensitive calorimeters and in length of day data may be related. 1 reference, 6 figures, 5 tables

  5. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  6. A generalized, periodic nonlinearity-reduced interferometer for straightness measurements

    International Nuclear Information System (INIS)

    Wu Chienming

    2008-01-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. However, an interferometer with a displacement measurement accuracy of less than 1 nm is required in nanometrology and in fundamental scientific research. To meet this requirement, a generalized, periodic nonlinearity-reduced interferometer, based on three construction principles has been developed for straightness measurements. These three construction principles have resulted in an interferometer with a highly stable design with reduced periodic nonlinearity. Verifications by a straightness interferometer have demonstrated that the periodic nonlinearity was less than 40 pm. The results also demonstrate that the interferometer design is capable of subnanometer accuracy and is useful in nanometrology

  7. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  8. Recent developments in magnet measuring techniques

    International Nuclear Information System (INIS)

    Billan, J.; Henrichsen, K.N.; Walckiers, L.

    1985-01-01

    The main problems related to magnetic measurements of particle accelerator components are discussed. Measurements of the properties of magnetic materials as well as the measurements of field distribution in the electromagnets for the Large Electron-Positron Collider (LEP) are illustrated. The fluxmeter method is extensively employed in this work. The impact of recent advances in electronic technology on measurement techniques is explained. Magnetic measurements (including the harmonic coil method) can be performed with improved accuracy applying modern technology to the classical methods. New methods for the non-destructive testing of magnetic materials and for the measurement of magnetic geometry are described. (orig.) [de

  9. Complex technique for materials hardness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Krashchenko, V P; Oksametnaya, O B

    1984-01-01

    A review of existing methods of measurement of material hardness in national and foreign practice has been made. A necessity of improving the technique of material hardness measurement in a wide temperature range and insuring load change with indenting, continuity of imprint application, smooth changing of temperatures along a sample length, and deformation rate control has been noted.

  10. Isotope measurement techniques for atmospheric methane

    International Nuclear Information System (INIS)

    Lowe, D.; White, J.; Levin, I.; Wahlen, M.; Miller, J.B.; Bergamaschi, P.

    2002-01-01

    Measurement techniques for the carbon isotopic composition of atmospheric methane (δ 13 C) are described in detail as applied in several leading institutions active in this field since many years. The standard techniques with offline sample preparation and subsequent measurement by dual inlet isotope ratio mass spectrometry (IRMS) are compared with continuous flow IRMS. The potential use of infrared absorption spectroscopy is briefly discussed. Details on quality control and calibration are provided. Basic analytical aspects for the measurement of other species, 2 H and 14 C, are also given. (author)

  11. Alternative technique for biodiesel quality control using an optical fiber long-period grating sensor

    International Nuclear Information System (INIS)

    Falate, Rosane; Nike, Karen; Costa Neto, Pedro Ramos da; Cacao Junior, Eduardo; Muller, Marcia; Kalinowski, Hypolito Jose; Fabris, Jose Luis

    2007-01-01

    We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method. (author)

  12. Alternative technique for biodiesel quality control using an optical fiber long-period grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Falate, Rosane [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Informatica; Nike, Karen; Costa Neto, Pedro Ramos da [Universidade Tecnologica Federal do Parana, Curitiba (Brazil). Dept. de Quimica; Cacao Junior, Eduardo; Muller, Marcia; Kalinowski, Hypolito Jose; Fabris, Jose Luis [Universidade Tecnologica Federal do Parana, Curitiba (Brazil). Dept. de Fisica]. E-mail: fabris@utfpr.edu.br

    2007-07-01

    We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method. (author)

  13. A new technique for infrared scintillation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chiossi, F., E-mail: federico.chiossi@studenti.unipd.it [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Brylew, K. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Borghesani, A.F. [CNISM Unit and Dip. di Fisica e Astronomia, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C.; Carugno, G. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Drozdowski, W. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Guarise, M. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy)

    2017-05-21

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu{sub 0.75}Y{sub 0.25}){sub 3}Al{sub 5}O{sub 12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  14. A new technique for infrared scintillation measurements

    International Nuclear Information System (INIS)

    Chiossi, F.; Brylew, K.; Borghesani, A.F.; Braggio, C.; Carugno, G.; Drozdowski, W.; Guarise, M.

    2017-01-01

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu_0_._7_5Y_0_._2_5)_3Al_5O_1_2 sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  15. A review on creatinine measurement techniques.

    Science.gov (United States)

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. VALUATION TECHNIQUES USED IN FAIR VALUE MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Cristina-Aurora, BUNEA-BONTAS

    2013-12-01

    Full Text Available Valuation of assets and liabilities involves significant judgements and estimates, especially when fair value measurement is required. Currently, IFRS 13 Fair Value Measurement offers a single and more comprehensive source of guidance that is applied to almost all fair value estimates. When measuring fair value of fixed assets, intangible assets, specified financial assets or liabilities, different valuation techniques may be used: the market approach, the cost approach and the income approach. This article reviews these techniques and points out that different valuation practices may provide different results depending on the item being fair valued and on the inputs used. Also it emphasizes that, in particular circumstances, there is the possibility that a certain technique may be more appropriate than other.

  17. Solar Cell Calibration and Measurement Techniques

    Science.gov (United States)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  18. Optimization of periodical interrogation of transducers of radioisotope measuring systems

    International Nuclear Information System (INIS)

    Ivashchenko, A.S.; Kaznakov, V.P.; Korolev, V.M.

    1978-01-01

    Certain methods are examined of optimizing periodic interrogation of sensors connected in a definite sequence to device for data processing in a system for controlling production processes. It is shown that in designing multiinput radioisotope measurement systems with a centralized data processing, the choice of the method of organizing periodic interrogation should be made with account for the conditions existing in each specific case

  19. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    Science.gov (United States)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  20. Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes

    Directory of Open Access Journals (Sweden)

    E. Petronijevic

    2017-02-01

    Full Text Available We apply photo-acoustic (PA technique to examine plasmonic properties of 2D periodic arrays of nanoholes etched in gold/chromium layer upon a glass substrate. The pitch of these arrays lies in the near IR, and this, under appropriate wave vector matching conditions in the visible region, allows for the excitation of surface plasmon polaritons (SPP guided along a dielectric – metal surface. SPP offered new approaches in light guiding and local field intensity enhancement, but their detection is often difficult due to the problematic discrimination of their contribution from the overall scattering. Here PA measures the energy absorbed due to the non-radiative decay of SPPs. We report on the absorption enhancement by presenting the spatial mapping of absorption under the incidence angles and wavelength that correspond to the efficient excitation of SPPs. Moreover, a comparison with optical transmission measurements is carried out, underlining the applicability and sensitivity of PA technique.

  1. Performance of the periodic pulse technique--4. Periodic pulse reaction kinetics of oxidative dehydrogenation of isobutyraldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Ii, M.; Murakami, Y.

    1980-07-01

    The periodic pulse method was used to study the reaction mechanism and kinetics of the oxidative dehydrogenation of isobutyraldehyde (IBA) by following the formation rates of methacrolein (MA), carbon monoxide and dioxide (CO/sub x/), and other products (P) as a function of pulse widths and reactant partial pressures at 350/sup 0/C over a 2:3 antimony oxide/molybdenum trioxide catalyst. The results were consistent with a mechanism according to which IBA reacts with oxygen retained by the catalyst to form MA, causing reduction of the catalyst. The IBA also adsorbed on the surface as an oxygenated species which either reacted with gas-phase oxygen to form CO/sub x/ or desorbed as an oxygenated P. The reduced catalyst surface was reoxidized by oxygen adsorption. Implications of catalyst tailoring for increased MA yields by improving the redox mechanism and inhibiting the surface reactions, are discussed.

  2. Measurement techniques for radio frequency nanoelectronics

    CERN Document Server

    Wallis, T Mitch

    2017-01-01

    Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials.• Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides• Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy• Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materialsFeaturing numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to ...

  3. Neutron flux measurement utilizing Campbell technique

    International Nuclear Information System (INIS)

    Kropik, M.

    2000-01-01

    Application of the Campbell technique for the neutron flux measurement is described in the contribution. This technique utilizes the AC component (noise) of a neutron chamber signal rather than a usually used DC component. The Campbell theorem, originally discovered to describe noise behaviour of valves, explains that the root mean square of the AC component of the chamber signal is proportional to the neutron flux (reactor power). The quadratic dependence of the reactor power on the root mean square value usually permits to accomplish the whole current power range of the neutron flux measurement by only one channel. Further advantage of the Campbell technique is that large pulses of the response to neutrons are favoured over small pulses of the response to gamma rays in the ratio of their mean square charge transfer and thus, the Campbell technique provides an excellent gamma rays discrimination in the current operational range of a neutron chamber. The neutron flux measurement channel using state of the art components was designed and put into operation. Its linearity, accuracy, dynamic range, time response and gamma discrimination were tested on the VR-1 nuclear reactor in Prague, and behaviour under high neutron flux (accident conditions) was tested on the TRIGA nuclear reactor in Vienna. (author)

  4. High-voltage test and measuring techniques

    CERN Document Server

    Hauschild, Wolfgang

    2014-01-01

    It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.

  5. Vibrating wire apparatus for periodic magnetic structure measurement

    International Nuclear Information System (INIS)

    Temnykh, A.B.

    2003-01-01

    Devices with periodic magnetic structures such as wigglers and undulators are often key elements in synchrotron radiation sources. In applications where the coherence of the emitted radiation is important, magnetic field errors distorting the periodicity of the field can significantly reduce the performance of the devices. Thus, the measurement, localization, and correction of the field errors can be a critical issue. This article presents a new method for magnetic field measurements in periodic magnetic structures. The method uses a vibrating taut wire passing through the magnetic structure, and it involves measurements of the amplitudes and phases of the standing waves excited on the wire by the Lorentz force between an AC current in the wire and the surrounding magnetic field. For certain arrangements of the wire, vibrations in the wire will be excited by only non-periodic magnetic field component, i.e., by the error field. By measuring the phase and amplitude of these waves, one can reconstruct the error field distribution and then correct it. The method was tested on a permanent magnet wiggler with 19.8 cm period and a peak field of ∼7000G. It demonstrated ∼0.6G RMS sensitivity, δB rms /B rms ∼1.2x10 -4 and spatial resolution sufficient to identify poles generating the field error. Good agreement was found between field error measurements obtained with the vibrating wire method and with traditional Hall probe field mapping

  6. Seminar on Detectors and measurements techniques

    International Nuclear Information System (INIS)

    Holm, E.

    2002-01-01

    A Nordic Seminar on detectors and radionuclide measurement techniques was held in Lund, Sweden, May 3-4, 2001. The objective was to highlight recent progress and problems for techniques to study environmental radioactivity. It covered the aspect of detector sample geometry's and methods for evaluation of gamma gamma pulse height distributions. Within the field of alpha-spectrometric techniques gridded ionisation chambers, semiconductor detectors and a general description for analysis of alpha-particle-spectra were presented. Recent development in mass spectrometric techniques, AMS (Accelerator Mass Spectrometry) and ICPMS (Inductively Coupled Plasma mass Spectrometry) for long-lived radionuclides was described. Principles for analysis of beta particle emitters, especially by liquid scintillation were presented. The seminar also covered radiochemistry such advantages and disadvantages between ion exchange, solvent extraction and extraction chromatography. The use of controlled laboratory conditions for discerning the dynamics of accumulation in organisms was demonstrated. Other techniques such as neutron activation were also shown to be useful analytical tool for certain long-lived radionuclides. The results of the intercalibration exercises within the Nordic countries showed the importance of such analytical quality control. (au)

  7. Seminar on Detectors and measurements techniques

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E. (ed.) [Risoe National Lab., Roskilde (Denmark)

    2002-07-01

    A Nordic Seminar on detectors and radionuclide measurement techniques was held in Lund, Sweden, May 3-4, 2001. The objective was to highlight recent progress and problems for techniques to study environmental radioactivity. It covered the aspect of detector sample geometry's and methods for evaluation of gamma gamma pulse height distributions. Within the field of alpha-spectrometric techniques gridded ionisation chambers, semiconductor detectors and a general description for analysis of alpha-particle-spectra were presented. Recent development in mass spectrometric techniques, AMS (Accelerator Mass Spectrometry) and ICPMS (Inductively Coupled Plasma mass Spectrometry) for long-lived radionuclides was described. Principles for analysis of beta particle emitters, especially by liquid scintillation were presented. The seminar also covered radiochemistry such advantages and disadvantages between ion exchange, solvent extraction and extraction chromatography. The use of controlled laboratory conditions for discerning the dynamics of accumulation in organisms was demonstrated. Other techniques such as neutron activation were also shown to be useful analytical tool for certain long-lived radionuclides. The results of the intercalibration exercises within the Nordic countries showed the importance of such analytical quality control. (au)

  8. Phase Retrieval Techniques In Coordinates Measurement

    International Nuclear Information System (INIS)

    Harizanova, J. I.; Stoykova, E. V.; Sainov, V. C.

    2007-01-01

    A precise pattern projection profilometry for three-dimensional shape measurements with different methods of fringe generation is presented. The application of phase-shifting algorithm along with two-spacing illumination allow for phase retrieval and estimation of relative and absolute coordinates of the tested samples. The following experimental approaches for fringe generation are investigated: interferometric approach based on a classical Michelson interferometer, digital computation with a DMD projection and light modulation by a sinusoidal phase grating. The theoretical background, experimental results as well as comparison of the applied generation methods are analyzed. The obtained outcomes successfully display the applicability of this technique for surface profile measurement. The application of the proposed techniques for remote, non-destructive in-situ inspection of real objects from cultural heritage is discussed

  9. Description of measurement techniques for surface contaminations

    International Nuclear Information System (INIS)

    Bourrez, E.

    2001-01-01

    The needs of evaluation of the surface contamination are numerous in the processes of production and management of radioactive waste. The market of radiation protection materials proposes a lot of devices answering to the almost all these needs. These device have however their conditions and particular limits for use. To realize correct measurements it is use the device, the technique and the methods adapted to the need, by taking into account the optimization of economical aspect. (N.C.)

  10. Optical techniques for in-core measurements

    International Nuclear Information System (INIS)

    Brichard, B.

    2007-01-01

    The in-situ measurement of dimensional changes is a key issue for advanced irradiation programs in Material Test Reactors. It is for example crucial to monitor the changes of the dimensions of nuclear fuel assemblies as well as those of mechanically stressed structural material samples during in-pile irradiations. Different techniques already exist to carry out such measurements but they all come with a number of drawbacks. SCK-CEN and CEA have therefore decided to share the development of a measurement system that was never applied before in the core of a nuclear reactor. It relies on optical dimensional measurements and brings along unprecedented non-intrusiveness combined with high resolution. A clear advantage in using compact optical sensors results in a more efficient occupation of the irradiation volume available for target testings as well as a significant reduction of the gamma-heating associated with the in-pile instrumentation. The objectives of these shared studies are to design, develop, test and qualify an in-pile dimensional measurement system based on optical techniques, with the goal to implement this system in future MTR irradiation experiments. In 2006, we focussed our activities on sensor analysis, selection of the sensor prototypes, procurement and first irradiation experiment

  11. Intercomparison test of various aerosol measurement techniques

    International Nuclear Information System (INIS)

    Cherdron, W.; Hassa, C.; Jordan, S.

    1984-01-01

    At the suggestion of the CONT group (Containment Loading and Response), which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee, a group of experts undertook a comparison of the techniques of sodium aerosol measurement used in various laboratories in the EC. The following laboratories took part in the exercise: CEN-Mol (Belgium), CEA-Cadarache (France), CEA-Fontenay-aux-Roses (France), KfK-Karlsruhe (Federal Republic of Germany), ENEA-Bologna (Italy), and UKAEA-Winfrith (United Kingdom). The objective of the aerosol measurement workshop was to assess the applicability and reliability of specific aerosol measuring instruments. Measurements performed with equipment from the participating laboratories were evaluated using a standard procedure. This enabled an estimate of the accuracy of the experimental data to be provided for the verification of aerosol codes. Thus these results can be used as input for the physical modelling of aerosol behaviour, and the work reported here is a contribution to the definition of the radioactive source term for severe accidents in LMFBRs. The aerosol experts participating in the exercise agreed to concentrate on the techniques of measuring aerosol particle size distributions. The tests were performed at the FAUNA test facility using the aerosol loop. A sodium spray fire, which provides a continuous aerosol source of variable concentration, was produced under open-loop conditions in this facility. Although the primary objective of the workshop was to determine the particle size distributions of the aerosols, measurements of the sodium mass concentration were also made

  12. Lessons learnt from the first EMEP intensive measurement periods

    Directory of Open Access Journals (Sweden)

    W. Aas

    2012-09-01

    Full Text Available The first EMEP intensive measurement periods were held in June 2006 and January 2007. The measurements aimed to characterize the aerosol chemical compositions, including the gas/aerosol partitioning of inorganic compounds. The measurement program during these periods included daily or hourly measurements of the secondary inorganic components, with additional measurements of elemental- and organic carbon (EC and OC and mineral dust in PM1, PM2.5 and PM10. These measurements have provided extended knowledge regarding the composition of particulate matter and the temporal and spatial variability of PM, as well as an extended database for the assessment of chemical transport models. This paper summarise the first experiences of making use of measurements from the first EMEP intensive measurement periods along with EMEP model results from the updated model version to characterise aerosol composition. We investigated how the PM chemical composition varies between the summer and the winter month and geographically.

    The observation and model data are in general agreement regarding the main features of PM10 and PM2.5 composition and the relative contribution of different components, though the EMEP model tends to give slightly lower estimates of PM10 and PM2.5 compared to measurements. The intensive measurement data has identified areas where improvements are needed. Hourly concurrent measurements of gaseous and particulate components for the first time facilitated testing of modelled diurnal variability of the gas/aerosol partitioning of nitrogen species. In general, the modelled diurnal cycles of nitrate and ammonium aerosols are in fair agreement with the measurements, but the diurnal variability of ammonia is not well captured. The largest differences between model and observations of aerosol mass are seen in Italy during winter, which to a large extent may be

  13. Progress in automation, robotics and measuring techniques

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2015-01-01

    This book presents recent progresses in control, automation, robotics, and measuring techniques. It includes contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.    .

  14. Measuring techniques in emission computed tomography

    International Nuclear Information System (INIS)

    Jordan, K.; Knoop, B.

    1988-01-01

    The chapter reviews the historical development of the emission computed tomography and its basic principles, proceeds to SPECT and PET, special techniques of emission tomography, and concludes with a comprehensive discussion of the mathematical fundamentals of the reconstruction and the quantitative activity determination in vivo, dealing with radon transformation and the projection slice theorem, methods of image reconstruction such as analytical and algebraic methods, limiting conditions in real systems such as limited number of measured data, noise enhancement, absorption, stray radiation, and random coincidence. (orig./HP) With 111 figs., 6 tabs [de

  15. Techniques for beam impedance measurements above cutoff

    International Nuclear Information System (INIS)

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz

  16. Neutron measurement techniques for tokamak plasmas

    International Nuclear Information System (INIS)

    Jarvis, O.N.

    1994-01-01

    The present article reviews the neutron measurement techniques that are currently being applied to the study of tokamak plasmas. The range of neutron energies of primary interest is limited to narrow bands around 2.5 and 14 MeV, and the variety of measurements that can be made for plasma diagnostic purposes is also restricted. To characterize the plasma as a neutron source, it is necessary only to measure the total neutron emission, the relative neutron emissivity as a function of position throughout the plasma, and the energy spectra of the emitted neutrons. In principle, such measurements might be expected to be relatively easy. That this is not the case is, in part, attributable to practical problems of accessibility to a harsh environment but is mostly a consequence of the time-scale on which the measurements have to be made and of the wide range of neutron emission intensities that have to be covered: for tokamak studies, the time-scale is of the order of 1 to 100 ms and the neutron intensity ranges from 10 12 to 10 19 s -1 . (author)

  17. Measurement and characterization techniques for thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  18. Philtrum length and intercommissural distance measurements at mixed dentition period.

    Science.gov (United States)

    Mostafa, Mostafa; Hassib, Nehal; Sayed, Inas; Neamat, Amany; Ramzy, Magda; El-Badry, Tarek; ElGabry, Hisham; Salem, Haidy; Omar, Nada; Ismail, Amira; Ibrahim, Yousra; Shebaita, Amr; Allam, Ahmed; Mostafa, Magdy

    2018-05-01

    Anthropometric measurements of the lip and mouth are of great importance in clinical dysmorphology as well as reconstructive plastic surgery. In this study, the philtrum length (PhL) and intercommissural distance (ICmD) nomograms for Egyptian children in the mixed dentition period were established. A group of 1,338 Egyptian students in primary schools (735 boys and 603 girls) were included in the study. The students were at mixed dentition period and their ages ranged from 7 to 12 years. Anthropometric norms of PhL and ICmD were developed with significant sex difference in certain groups. A ratio between PhL and ICmD was developed. These data will help facilitate both objective and subjective evaluation of the lip and mouth for proper diagnosis of orofacial anomalies and variations as well as for ideal treatment plans. © 2018 Wiley Periodicals, Inc.

  19. Uncertainty analysis technique for OMEGA Dante measurements

    International Nuclear Information System (INIS)

    May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.

    2010-01-01

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  20. Uncertainty Analysis Technique for OMEGA Dante Measurements

    International Nuclear Information System (INIS)

    May, M.J.; Widmann, K.; Sorce, C.; Park, H.; Schneider, M.

    2010-01-01

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  1. Measurement technique developments for LBE flows

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, D., E-mail: d.buchenau@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Eckert, S.; Gerbeth, G. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Stieglitz, R. [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Dierckx, M. [SCK-CEN, Belgian Nuclear Research Centre, 2400 Mol (Belgium)

    2011-08-31

    We report on the development of measurement techniques for flows in lead-bismuth eutectic alloys (LBE). This paper covers the test results of newly developed contactless flow rate sensors as well as the development and test of the LIDAR technique for operational free surface level detection. The flow rate sensors are based on the flow-induced disturbance of an externally applied AC magnetic field which manifests itself by a modified amplitude or a modified phase of the AC field. Another concept of a force-free contactless flow meter uses a single cylindrical permanent magnet. The electromagnetic torque on the magnet caused by the liquid metal flow sets the magnet into rotation. The operation of those sensors has been demonstrated at liquid metal test loops for which comparative flow rate measurements are available, as well as at the LBE loops THESYS at KIT and WEBEXPIR at SCK-CEN. For the level detection a commercial LIDAR system was successfully tested at the WEBEXPIR facility in Mol and the THEADES loop in Karlsruhe.

  2. A technique of measuring neutron spectrum

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Kirthi, K.N.; Ganguly, A.K.

    1975-01-01

    Plastic scintillators have been used to measure fast neutron spectrum from various sources. Gamma background discrimination has been done by selecting thin scintillators and thereby achieving near 100% transmission of Compton-edge electrons. The measured distribution has been unfolded by using an iterative least square technique. This gives minimum variance and maximum likelihood estimate with error minimised. Smoothening of the observed distribution has been done by Fourier and time series analyses. The method developed is applicable in principle for the determination of spectra of high energy neutrons ranging from 1 MeV to 70 MeV and beyond. However, practical application of the method is limited by the non-availability of cross-section data for various neutron induced reactions with carbon and hydrogen present in the polymerised polystyrene scintillator. This procedure has been adopted in the present work for spectral determination up to 14 MeV neutrons using the published value of reaction and scattering cross-sections. The spectra of Po-Be, Pu-Be, Am-Be and Ra-Be arrived at agree well with the published spectra obtained by other methods. Spectrum from spontaneous fission of Cf-252 have also been measured and fitted to the expression N(E)=Esup(1/2)exp(-E/T). The fitted parameter T and spectral details agree well with those in published literature

  3. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  4. Nondestructive hall coefficient measurements using ACPD techniques

    Science.gov (United States)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  5. Evaluation of Uranium-235 Measurement Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dibert, Mark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-23

    Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution in U-Mo cast plates.

  6. Hyperfine interactions measured by nuclear orientation technique

    International Nuclear Information System (INIS)

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  7. A digital method for period measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Mundim, Sergio Gorretta

    1971-02-01

    The present paper begins by giving a theoretical treatment for the nuclear reactor period. The conventional method of measuring the period is analysed and some previously developed digital methods are described. The paper criticises the latter, pointing out some deficiencies which the proposed process is able to eliminate. All errors connected with this process are also analysed. The paper presents suitable solutions to reduce them to a minimum. The total error is found to he less than the error presented by the other methods described. A digital period meter is designed with memory resources and an automatic scaler changer. Integrated circuits specifications are used in it. Real time experiments with nuclear reactors were made in order to check te validity of the method. The data acquired were applied to a simulated digital period meter implemented in a general purpose computer. The nuclear part of the work was developed at the 'Comissao Nacional de Energia Nuclear' and the simulation work was dane at the 'Departamento de Calculo Cientifico' of COPPE, which also advised the author in the completion of this thesis. (author)

  8. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  9. The research of period measuring instruments on zero power assembly based on DSP

    International Nuclear Information System (INIS)

    Bai Zhongxiong

    2007-12-01

    In order to improving measure precision and anti-interference capacity, and respond to the digital trend, a new technique to measure reactor period is promoted, which is based on the DSP technique, calculate period with least-squares-fitting method. The systematic design is promoted, in which TMS320F2812 chip is chosen as the Central Processing/Controlling unit and software design is based on DSP/BIOS embedded operating system. Testing of both a simulation of the lab environment and an experiment shows that, as expected, the new TMS320F2812 based reactor period inspection equipment has excellent anti-interference capacity, high precision and fast response time, all of which prove that it has good prospective. (authors)

  10. Optimal ground motion intensity measure for long-period structures

    International Nuclear Information System (INIS)

    Guan, Minsheng; Du, Hongbiao; Zeng, Qingli; Cui, Jie; Jiang, Haibo

    2015-01-01

    This paper aims to select the most appropriate ground motion intensity measure (IM) that is used in selecting earthquake records for the dynamic time history analysis of long-period structures. For this purpose, six reinforced concrete frame-core wall structures, designed according to modern seismic codes, are studied through dynamic time history analyses with a set of twelve selected earthquake records. Twelve IMs and two types of seismic damage indices, namely, the maximum seismic response-based and energy-based parameters, are chosen as the examined indices. Selection criteria such as correlation, efficiency, and proficiency are considered in the selection process. The optimal IM is identified by means of a comprehensive evaluation using a large number of data of correlation, efficiency, and proficiency coefficients. Numerical results illustrate that peak ground velocity is the optimal one for long-period structures and peak ground displacement is also a close contender. As compared to previous reports, the spectral-correlated parameters can only be taken as moderate IMs. Moreover, the widely used peak ground acceleration in the current seismic codes is considered inappropriate for long-period structures. (paper)

  11. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... in the period 2005–2006 following a series of investigatory measurements and facility updates during 2003–2005. Antenna diagnostics by a SWE-to-PWE transformation presents a case where highly accurate antenna measurements and a plane wave back-projection enable antenna diagnostics by examination...

  12. Techniques for transparent lattice measurement and correction

    Science.gov (United States)

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  13. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  14. A measurement technique for counting processes

    International Nuclear Information System (INIS)

    Cantoni, V.; Pavia Univ.; De Lotto, I.; Valenziano, F.

    1980-01-01

    A technique for the estimation of first and second order properties of a stationary counting process is presented here which uses standard instruments for analysis of a continuous stationary random signal. (orig.)

  15. Mechanical seal monitoring technique by acoustic emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Tadashi; Fujita, Yoshihiro; Kawaguchi, Kazunori; Saito, Kazuhiro; Yokota, Setsuo; Hisada, Yasuhide; Masahiro, Komatsu

    1987-09-20

    This report describes a technique for mechanical seal monitoring through acoustic emission (AE) measurement. The equipment consists of an AE sensor, preamplifier, multiplexer, main amplifier, effective value transducer and computer system. When the sealed liquid pressure undergoes a large change, the seal surface configuration is monitored and evaluated accurately through AE measurement. If the mechanical seal surface id damaged or worn, the AE level is kept high or continues to fluctuate largely for a rather long period. When leak occurs, the AE value shows great fluctuations either at extremely low levels or at high levels. The former trend is considered to result from a decrease in solid contact due to an excessive amount of liquid film being formed at the seal surface during leak. In the latter case, the leak is attributed to severe damage to the seal surface. (18 figs, 1 tab, 5 photos, 3 refs)

  16. Consideration of tidal influences in determining measurement periods when monitoring built-environment radon levels

    International Nuclear Information System (INIS)

    Crockett, R.G.M.; Phillips, P.S.; Gillmore, G.K.; Denman, A.R.; Groves-Kirkby, C.J.

    2006-01-01

    Using three hourly-sampling continuous radon monitors, deployed at separate locations in and around the town of Northampton, UK, during the period May 2002 to September 2005, evidence has been identified of tidal influences on built environment radon levels. The data-sets from these deployments, together with additional data-sets collected from a house in Devon, UK, over the period May 1994 to October 1996, and made available by the UK Building Research Establishment, have been analysed using a number of analytical techniques, including a novel correlation technique developed during the investigation. Radon concentration levels in all of the investigated sites exhibit cyclic variation with a period of approximately 14-15 days, equivalent to the spring-tide interval, and lag the corresponding new and full moons by varying periods. The tide/radon lag interval for the two public-sector buildings changes abruptly in September/October, indicating that a significant characteristic of these buildings changes at this time. For domestic properties, the lag is relatively unchanged during the year, but is greater in Devon, in the South-West of England, than in Northampton, in the English East Midlands. These differences are attributed to location relative to coastlines (the South-West experiences greater tidal-loading than the Midlands), underlying geology and rock/soil hydration. Depending on its position within the local 14 to 15-day tidally-induced radon cycle, an individual 7-day radon measurement may yield an erroneous estimate of longer term average levels, up to 46% higher or lower than the average level for one of the reported data-sets. Thus a building with a mean radon concentration below the local Action Level could appear to be unsafe if measured around a tidal-cyclic radon maximum: conversely, a building with a mean radon concentration above the Action Level could appear to be safe when measured around a tidal-cyclic radon minimum. A minimum radon-measurement

  17. Infrared technique for measuring steam density

    International Nuclear Information System (INIS)

    Snyder, S.C.; Baker, A.G.

    1982-01-01

    A prototype infrared steam densitometer using a two-wavelength, dual-beam technique was developed. Tests were performed on dry steam flows with this technique, which uses two narrow bandwidths of infrared light in the region of 0.9 to 3.0 μm. One wavelength is absorbed by steam, while the other is not. The latter wavelength is used to account for nonabsorptive light losses. In addition to the beam that traverses the steam flow, a reference beam that does not traverse the flow allows the light source to be monitored. The theory of the device is presented, along with a description of the components and of the system's operation. Test results are also presented

  18. The evolution of radioprotection measuring techniques

    International Nuclear Information System (INIS)

    Blanc, D.

    1995-01-01

    We have reviewed the main issues that must now be faced in radiological protection. Many of them are linked to the ICRP recommendations in the report number 60. The impact of microelectronics in this field is significant and is leading to rapidly improved techniques and increasing sensitivity. A particularly important advance is the ''credit card'' dosemeter for X and gamma rays. (author). 2 refs., 4 figs., 2 tab

  19. SPEED ROLLER STAND MEASUREMENT SYSTEM CHECKING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Y. Zybtsev

    2011-01-01

    Full Text Available The study has shown that the accuracy of brakes checking by inertial stands depends upon the applied methods of measurement of braking parameters (stand slowing down, braking distance, brakes triggering time, current speed as well as the methods of metrological checking of measuring system canals.

  20. Liquidus temperature and optical properties measurement by containerless techniques

    Science.gov (United States)

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  1. Measurement techniques of LC display systems

    Science.gov (United States)

    Kosmowski, Bogdan B.; Becker, Michael E.; Neumeier, Juergen

    1993-10-01

    The strong increase of applications of liquid crystal displays in various areas (measuring, medical equipment, automotive, telecommunication, office, etc.) has forced the demand for the adequate specification of the LCDs performances. The optical, electro-optical and spectral properties of LCDs are strongly dependent on viewing direction, electrical driving conditions, illumination and temperature. All these quantities have to be precisely controlled, when one of them is varied, the resulting optical response of the object is recorded. In this paper we present measuring methods proposed for LCD panels and the computer controlled measuring system (DMS) for their evaluation.

  2. A novel technique for partial discharge measurement

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Ahmad, Zentabchi; Mehdi, Rashidi

    2005-01-01

    Full text : Partial discharges are a sensitive measure of local electrical stress and therefore the measurements is very often used as a quality check of the insulation. The inception of partial discharges gives information on the limit of the electrical strength of the insulating material before a complete discharge between the conductors takes place. Therefore the insulating material can be tested with high stress but without damaging or reducing the performance of the insulation. Also, for partial discharge measurements it should be taken into account that every stress of the insulation will have an influence on the life expectancy of the material, but a reasonable compromise between the stress during the measurement in order to get reliable results and the influence of he lifetime should be found and established in the relevant standard for the particular equipment, for example transformers, cables and so on

  3. Spectroscopic technique for measuring atmospheric CO2

    International Nuclear Information System (INIS)

    Stokes, G.M.; Stokes, R.A.

    1979-01-01

    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  4. Measuring techniques for continuous monitoring of bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlmann, W; Meyer, H D; Schuegerl, K

    1982-01-01

    Control apparatus for fermentation reactors is described. In the example of alcohol fermentation by Saccharomyces cerevisiae, mass spectrometry is used for measuring soluble volatile components (CO/sub 2/, EtOH, and H/sub 2/O) and low-molecular-weight soluble components are separated by cross flow membrane filtration for measurement: D glucose by polarimetry, phosphate by photometry, and NH/sup 4 +/ by potentiometry.

  5. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  6. Applying Data-mining techniques to study drought periods in Spain

    Science.gov (United States)

    Belda, F.; Penades, M. C.

    2010-09-01

    Data-mining is a technique that it can be used to interact with large databases and to help in the discovery relations between parameters by extracting information from massive and multiple data archives. Drought affects many economic and social sectors, from agricultural to transportation, going through urban water deficit and the development of modern industries. With these problems and drought geographical and temporal distribution it's difficult to find a single definition of drought. Improving the understanding of the knowledge of climatic index is necessary to reduce the impacts of drought and to facilitate quick decisions regarding this problem. The main objective is to analyze drought periods from 1950 to 2009 in Spain. We use several kinds of information, different formats, sources and transmission mode. We use satellite-based Vegetation Index, dryness index for several temporal periods. We use daily and monthly precipitation and temperature data and soil moisture data from numerical weather model. We calculate mainly Standardized Precipitation Index (SPI) that it has been used amply in the bibliography. We use OLAP-Mining techniques to discovery of association rules between remote-sensing, numerical weather model and climatic index. Time series Data- Mining techniques organize data as a sequence of events, with each event having a time of recurrence, to cluster the data into groups of records or cluster with similar characteristics. Prior climatological classification is necessary if we want to study drought periods over all Spain.

  7. Waste Measurement Techniques For Lean Companies

    Directory of Open Access Journals (Sweden)

    Maciej Pieńkowski

    2014-12-01

    Full Text Available The paper is dedicated to answer the problem of measuring waste in companies, which are implementing Lean Manufacturing concept. Lack of complex identification, quantification an visualization of waste significantly impedes Lean transformation efforts. This problem can be solved by a careful investigation of Muda, Muri and Mura, which represent the essence of waste in the Toyota Production System. Measuring them facilitates complete and permanent elimination of waste in processes. The paper introduces a suggestion of methodology, which should enable company to quantify and visualize waste at a shop floor level.

  8. On the theory of SODAR measurement techniques

    DEFF Research Database (Denmark)

    Antoniou, I.; Ejsing Jørgensen, Hans; Bradley, S.

    2003-01-01

    The need for alternative means to measure the wind speed for wind energy purposes has increased with the increase of the size of wind turbines. The cost and the technical difficulties for performing wind speed measurements has also increased with the sizeof the wind turbines, since it is demanded...... the objective has been to present and achieve thefollowing: An accurate theoretic model that describes all the relevant aspects of the interaction of the sound beam with the atmosphere in the level of detail needed for wind energy applications. Understanding of dependence of SODAR performance on hard...

  9. On the Transmission Line Pulse Measurement Technique

    OpenAIRE

    X. Rodriguez; M. Eduardo; M. Harington

    2015-01-01

    Transmission Line Pulse is a short pulse (25ns to 150ns) measurement of the current-voltage (I/V) characteristics of the ESD protection built into an integrated circuit. The short TLP pulses are used to simulate the short ESD pulse threats and integrated circuit must tolerate without being damaged. In this work the fundamental principles of how the TLP pulse is generated and used to create I-V characteristic plots will be explored. The measurement will be then used to characterize the I-V cha...

  10. Model measurements for new accelerating techniques

    International Nuclear Information System (INIS)

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs

  11. Solid Layer Thermal-conductivity Measurement Techniques

    Science.gov (United States)

    1994-03-01

    deposited on the sample, and the absorption of laser radiation. Temperature-measurement tools include thermocouples, infrared (IR) pyrometers , and...A, Nishimura H, and Sawada T (1990), Laser-Induc~d Surface Acoustic Waves and Photothc:rmal Surfitce Gratings Generated by Crossing Two Pulsed

  12. Comparison of cardiac output measurement techniques

    DEFF Research Database (Denmark)

    Espersen, K; Jensen, E W; Rosenborg, D

    1995-01-01

    Simultaneously measured cardiac output obtained by thermodilution (TD), transcutaneous suprasternal ultrasonic Doppler (DOP), CO2-rebreathing (CR) and the direct Fick method (FI) were compared in eleven healthy subjects in a supine position (SU), a sitting position (SI), and during sitting exercise...

  13. Techniques for measuring customers’ satisfaction in Banks

    Directory of Open Access Journals (Sweden)

    Elena Lidia MELNIC

    2016-07-01

    Full Text Available The major concern of banks today is to recover and maintain customer trust. Customers need to feel that banks are considering their best interests. Customers are seeking for easy and personalized information. They want to better understand their financial situation and to control it. They want to know both the benefits, as well as the risks. Clients want to work with banks that are concerned about them and about their personal goals. However, only an attractive offer of banks is not the key to success today if is not supported by a superior service culture, that can make notable differentiation in the market. Many banks all over the world are systematically measuring how well they treat customers, identifying the factors shaping satisfaction, and changing operations and marketing as a result. Wise banks measure customer satisfaction regularly because it is one key to customer retention.

  14. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  15. Transient particle emission measurement with optical techniques

    Science.gov (United States)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  16. Optimality Measures for Monotone Equivariant Cluster Techniques.

    Science.gov (United States)

    1980-09-01

    complete linkage, u-clustering (u - .3, .5, .7), uv-clustering (uv = (.2,.4), (.2,.6), (.4,.6)) as well as the UPGMA algorithm. The idea will be to...Table 15. Notice that these measure-- do indeed pioduce difftxent verdicts. OPI rates UPGMA as best with uv = (.2,.4) R € second. By OP2, UPGMA is best...By OPI, UPGQA and uv = (.4,.6) are tied for first place, while by OP2, UPGMA is best with uv = (.2,.6), uv = (.2,.4) and uv = (.4,.6) close behind

  17. Characteristics of Laser Flash Technique for Thermal Diffusivity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M.; Hong, G. P

    2008-08-15

    In relation to selection of thermal conductivity measurement technology, various thermal conductivity measurement technique are investigated for characteristics of each technique and it's measurable range. For the related laser flash techniques, various technical characteristics are reviewed and discussed. Especially, Parker adiabatic model are reviewed because of importance for basic theory of the thermal diffusivity determination. Finite pulse time effect, heat loss effect and non-uniform heating effect, which are main technical factors for laser flash technique, are considered. Finally, characteristics of constituent elements for laser flash measurement system are reviewed and investigated in detail.

  18. Frequency Adaptive Control Technique for Periodic Runout and Wobble Cancellation in Optical Disk Drives

    Directory of Open Access Journals (Sweden)

    Yee-Pien Yang

    2006-10-01

    Full Text Available Periodic disturbance occurs in various applications on the control of the rotational mechanical systems. For optical disk drives, the spirally shaped tracks are usually not perfectly circular and the assembly of the disk and spindle motor is unavoidably eccentric. The resulting periodic disturbance is, therefore, synchronous with the disk rotation, and becomes particularly noticeable for the track following and focusing servo system. This paper applies a novel adaptive controller, namely Frequency Adaptive Control Technique (FACT, for rejecting the periodic runout and wobble effects in the optical disk drive with dual actuators. The control objective is to attenuate adaptively the specific frequency contents of periodic disturbances without amplifying its rest harmonics. FACT is implemented in a plug-in manner and provides a suitable framework for periodic disturbance rejection in the cases where the fundamental frequencies of the disturbance are alterable. It is shown that the convergence property of parameters in the proposed adaptive algorithm is exponentially stable. It is applicable to both the spindle modes of constant linear velocity (CLV and constant angular velocity (CAV for various operation speeds. The experiments showed that the proposed FACT has successful improvement on the tracking and focusing performance of the CD-ROM, and is extended to various compact disk drives.

  19. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  20. Tear film measurement by optical reflectometry technique

    Science.gov (United States)

    Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao

    2014-01-01

    Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  1. Development of radioimmunoassay techniques for measurement of gonadotrophins and other hormones with application in pharmacological studies of the anterior hypophysis in man. Part of a coordinated programme on in vitro assay techniques. Final report for the period 1 September 1972--30 September 1975

    Energy Technology Data Exchange (ETDEWEB)

    Simionescu, L

    1975-01-01

    Human studies were performed on psychiatric patients, patients under thyroidectolmy stress and normal individuals. Radioimmunoassay determined HGH, insulin, LH, FSH and testosterone in basal condition in psychiatric patients and in normal subjects. The same hormones were also measured in untreated psychiatric patients during and acute administration of chlorpromazine (CPZ). Changes in insulin, LH, FSH and testosterone remained within the limits of variation generally observed in or between individuals. The HGH level was increased paradoxically after CPZ administration in some parapsychiatric untreated patients. Constant increase in prolactin was observed both in chronic treated patients and during acute administration of CPZ. Measuring HGH, insulin, LH, FSH or testosterone during acute administration of CPZ does not appear to be relevant model for studying the influence of this drug on hormone release. The release of GH during thyroidectomy for hyperthyroidia proved similar to release during general surgery, while release of prolactin is lower. The reasons for this are discussed. Radioimmunoassay gave data on GH in infants, children and adolescents. Measurement of GH levels during an acute test (insulin and glucagon) allowed classification of hypostatural children into ''pituitary dwarfism'', ''non-pituitary dwarfism'' and ''limited response dwarfism''. A doubling of LH levels appeared at the 13-14 year age interval for both sexes. The hypophyseal and serum TSH was investigated in male adult rats exposed to cold, under immobilization stress or receiving substances acting as chemical suppressors (methyliouracyls) or neurotropic substances. The variations were classified in the percentual and multiplicative area in animals receiving neurotropic substances or exposed to metabolic sollicitations. The TSH determined by radioimmunoassay are evidence for the hypophysis-thyroidal feedback. The preparation of anti-testosterone sera and anti-HGH sera is described.

  2. Determination of retention period of sewage in a filtration plant using radiotracer technique

    International Nuclear Information System (INIS)

    Eapen, A.C.; Jain, S.K.; Kirti

    1979-01-01

    A radiotracer investigation was carried out at Dadar sewage purification plant, Bombay, for measuring the retention period of a trickling filter unit. The method is based on the addition of 82 Br tracer in the form of NH 4 Br solution at the inlet and continuous recording of the tracer at the flow stream. Results obtained in the actual investigation are also given. (auth.)

  3. Measurement uncertainty analysis techniques applied to PV performance measurements

    International Nuclear Information System (INIS)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results

  4. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  5. New portable pipe wall thickness measuring technique

    Science.gov (United States)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  6. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  7. Review of lattice measurement techniques at the SLC

    International Nuclear Information System (INIS)

    Barklow, T.; Emma, P.; Krejcik, P.; Walker, N.

    1991-11-01

    A technique is described for reconstructing the first order transport matrix (R) for a given beam line. Emphasis is placed on the rigorous error analysis of the data, and the use of powerful statistical techniques to estimate unknown systematic errors. The application of the technique to the measurement and subsequent correction of the SLC Arcs is briefly described. 5 refs., 4 figs

  8. Measurement uncertainty analysis techniques applied to PV performance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  9. Measurement uncertainty analysis techniques applied to PV performance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wells, C

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  10. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  11. Soil measurements during HAPEX-Sahel intensive observation period.

    NARCIS (Netherlands)

    Cuenca, R.H.; Brouwer, J.; Chanzy, A.; Droogers, P.; Galle, S.; Gaze, S.R.; Sicot, M.; Stricker, J.N.M.; Angulo-Jaramillo, R.; Boyle, S.A.; Bromley, J.; Chebhouni, A.G.

    1997-01-01

    This article describes measurements made at each site and for each vegetation cover as part of the soils program for the HAPEX-Sahel regional scale experiment. The measurements were based on an initial sampling scheme and included profile soil water content, surface soil water content, soil water

  12. Hole Drilling Technique – on site stress measurement

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  13. The Sine Method: An Alternative Height Measurement Technique

    Science.gov (United States)

    Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer

    2011-01-01

    Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...

  14. Hospitals Productivity Measurement Using Data Envelopment Analysis Technique.

    Science.gov (United States)

    Torabipour, Amin; Najarzadeh, Maryam; Arab, Mohammad; Farzianpour, Freshteh; Ghasemzadeh, Roya

    2014-11-01

    This study aimed to measure the hospital productivity using data envelopment analysis (DEA) technique and Malmquist indices. This is a cross sectional study in which the panel data were used in a 4 year period from 2007 to 2010. The research was implemented in 12 teaching and non-teaching hospitals of Ahvaz County. Data envelopment analysis technique and the Malmquist indices with an input-orientation approach, was used to analyze the data and estimation of productivity. Data were analyzed using the SPSS.18 and DEAP.2 software. Six hospitals (50%) had a value lower than 1, which represents an increase in total productivity and other hospitals were non-productive. the average of total productivity factor (TPF) was 1.024 for all hospitals, which represents a decrease in efficiency by 2.4% from 2007 to 2010. The average technical, technologic, scale and managerial efficiency change was 0.989, 1.008, 1.028, and 0.996 respectively. There was not a significant difference in mean productivity changes among teaching and non-teaching hospitals (P>0.05) (except in 2009 years). Productivity rate of hospitals had an increasing trend generally. However, the total average of productivity was decreased in hospitals. Besides, between the several components of total productivity, variation of technological efficiency had the highest impact on reduce of total average of productivity.

  15. Reactivity change measurements on plutonium-uranium fuel elements in hector experimental techniques and results

    International Nuclear Information System (INIS)

    Tattersall, R.B.; Small, V.G.; MacBean, I.J.; Howe, W.D.

    1964-08-01

    The techniques used in making reactivity change measurements on HECTOR are described and discussed. Pile period measurements were used in the majority of oases, though the pile oscillator technique was used occasionally. These two methods are compared. Flux determinations were made in the vicinity of the fuel element samples using manganese foils, and the techniques used are described and an error assessment made. Results of both reactivity change and flux measurements on 1.2 in. diameter uranium and plutonium-uranium alloy fuel elements are presented, these measurements being carried out in a variety of graphite moderated lattices at temperatures up to 450 deg. C. (author)

  16. New measurement techniques correct PU inventory in Japanese reprocessing plant

    International Nuclear Information System (INIS)

    2003-01-01

    random basis, of the HALW transferred in the past to the storage tanks. The results of the sampling activities, which were conveyed to the Japanese authorities in 1998, indicated differences between IAEA measurements of the material and the operator declarations. During the period in which TRP was shut down (1997-2000), studies were undertaken by the IAEA, State authorities and JNC, resulting in further improvements in the techniques used by the operator for sample preparation and analysis to more accurately measure the plutonium content of the material transferred to the HALW storage tanks. JNC began implementing these improved techniques in March 2002. The corrected accountancy reports on the inventory of the HALW are expected to be in line with IAEA verification data. In November 2002, a group of IAEA experts have performed a six-week review of historical data including a detailed analysis of operator declarations since 1977 to further increase the Agency's confidence in its conclusion that no nuclear material has been diverted from the facility. (IAEA)

  17. Vessel size measurements in angiograms: A comparison of techniques

    International Nuclear Information System (INIS)

    Hoffmann, Kenneth R.; Nazareth, Daryl P.; Miskolczi, Laszlo; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2002-01-01

    As interventional procedures become more complicated, the need for accurate quantitative vascular information increases. In response to this need, many commercial vendors provide techniques for measurement of vessel sizes, usually based on derivative techniques. In this study, we investigate the accuracy of several techniques used in the measurement of vessel size. Simulated images of vessels having circular cross sections were generated and convolved with various focal spot distributions taking into account the magnification. These vessel images were then convolved with Gaussian image detector line spread functions (LSFs). Additionally, images of a phantom containing vessels with a range of diameters were acquired for the 4.5'', 6'', 9'', and 12'' modes of an image intensifier-TV (II-TV) system. Vessel sizes in the images were determined using a first-derivative technique, a second-derivative technique, a linear combination of these two measured sizes, a thresholding technique, a densitometric technique, and a model-based technique. For the same focal spot size, the shape of the focal spot distribution does not affect measured vessel sizes except at large magnifications. For vessels with diameters larger than the full-width-at-half-maximum (FWHM) of the LSF, accurate vessel sizes (errors ∼0.1 mm) could be obtained by using an average of sizes determined by the first and second derivatives. For vessels with diameters smaller than the FWHM of the LSF, the densitometric and model-based techniques can provide accurate vessel sizes when these techniques are properly calibrated

  18. Acoustic Measurement Of Periodic Motion Of Levitated Object

    Science.gov (United States)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  19. Techniques for measuring ammonia in fly ash, mortar, and concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, R.F. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Reseach; Majors, R.K. [Boral Material Technologies, Inc., San Antonio, TX (United States). Engineered Materials

    2003-12-01

    The presence of ammonia in fly ash that is to be used in mortar and concrete is of increasing concern in the U.S., mainly due to the installation of selective catalytic reduction (SCR) DeNOx systems. When the SCR catalyst is new, contamination of the fly ash with ammonia is generally not a concern. However, as the catalyst in the SCR ages and becomes less efficient, the ammonia slip increases and results in a greater amount of ammonium salt being precipitated on the fly ash. The increase in ammonia concentration is compounded by variability that can occur on a day-to-day basis. When marketing ammonia-laden fly ash for use in mortar and concrete it is imperative that the concentration of ammonia is known. However, there currently is no widely accepted or ''standard'' method for ammonia measurement in fly ash. This paper describes two methods that have been developed and used by the University of Kentucky Center for Applied Energy Research and Boral Material Technologies, Inc. One of the methods uses gas detection tubes and can provide an accurate determination within five to ten minutes. Thus it is suitable as a rapid field technique. The other method employs a gas-sensing electrode and requires a longer period of time to complete the measurement. However, this second method can also be used to determine the quantity of ammonia in fresh mortar and concrete. (orig.)

  20. Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits

    International Nuclear Information System (INIS)

    Smietana, M; Bock, W J; Mikulic, P; Chen, J

    2011-01-01

    This paper presents an investigation of the sensing properties of long-period gratings (LPGs) written with the electric-arc technique in commonly used standard germanium-doped Corning SMF28 and boron co-doped Fibercore PS1250/1500 fibers. In order to increase the sensitivity of the LPGs, we studied and established for each fiber the writing parameters allowing for the coupling of the highest possible order of cladding modes at a resonance wavelength around λ = 1550 nm. The sensitivity of the LPGs to refractive index, to temperature and to hydrostatic pressure was investigated. The experimental results were supported by extensive numerical simulations. Thanks to the well-established and precisely controlled arc-writing process, we were able to reduce the minimum period of the gratings down to 345 and 221 µm, respectively, for LPGs based on the SMF28 and PS1250/1500 fibers. To the best of our knowledge, these are the shortest periods ever achieved for these fibers using the arc-manufacturing technique. The pressure sensitivities of 13 and 220 pm bar −1 are the highest ever measured for LPGs written in the SMF28 and PS1250/1500 fibers, respectively. Moreover, a reduction in the diameters of the SMF28 fiber induced by the arc was found, which significantly affected the distribution of resonances generated by the coupled cladding modes

  1. Silt fences: An economical technique for measuring hillslope soil erosion

    Science.gov (United States)

    Peter R. Robichaud; Robert E. Brown

    2002-01-01

    Measuring hillslope erosion has historically been a costly, time-consuming practice. An easy to install low-cost technique using silt fences (geotextile fabric) and tipping bucket rain gauges to measure onsite hillslope erosion was developed and tested. Equipment requirements, installation procedures, statistical design, and analysis methods for measuring hillslope...

  2. Technique for measurements of plane waves of uniaxial strain

    International Nuclear Information System (INIS)

    Graham, R.A.

    1977-01-01

    The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed

  3. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  4. Measurement techniques for radiological characterization of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    1996-09-18

    Once the decision is taken to characterize a contaminated site, appropriate measurement techniques must be selected. The choice will depend on the available information, on the nature and extent of the contamination, as well as on available resources (staff and budget). Some techniques are described on the basis of examples of characterization projects (e.g. Olen area in Belgium).

  5. Development of Measurement Techniques For Strengthening Nuclear Safeguards

    International Nuclear Information System (INIS)

    Badawy, I.

    2007-01-01

    The strategy of nuclear safeguards is based on the accounting and control of nuclear materials, nuclear technologies and activities in a State in order to attain its ''Legal'' goals of the application of atomic energy. The present paper investigates the development in the measurement techniques used in the verification and control of NMs for the purpose of strengthening safeguards. Its focus is to review the recent nuclear measurement techniques used for the identification and verification of nuclear materials.The different levels of verification and the accuracy of these techniques are discussed. The implementation of stregthened safeguards; and nuclear materials verification and control in the world are mentioned. Also, the recently proposed measures to enhance the ability to detect undeclared nuclear materials, nuclear activities and facilities that would need advanced measurement techniques are indicated.

  6. Calibration technique for the neutron surface moisture measurement system

    International Nuclear Information System (INIS)

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined

  7. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  8. Effects of equipment and technique on peak flow measurements

    Directory of Open Access Journals (Sweden)

    O'Driscoll B Ronan

    2006-06-01

    Full Text Available Abstract Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min. All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique or a forced maximal expiration to residual volume (FVC technique. Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.

  9. Critical test of isotropic periodic sum techniques with group-based cut-off schemes.

    Science.gov (United States)

    Nozawa, Takuma; Yasuoka, Kenji; Takahashi, Kazuaki Z

    2018-03-08

    Truncation is still chosen for many long-range intermolecular interaction calculations to efficiently compute free-boundary systems, macromolecular systems and net-charge molecular systems, for example. Advanced truncation methods have been developed for long-range intermolecular interactions. Every truncation method can be implemented as one of two basic cut-off schemes, namely either an atom-based or a group-based cut-off scheme. The former computes interactions of "atoms" inside the cut-off radius, whereas the latter computes interactions of "molecules" inside the cut-off radius. In this work, the effect of group-based cut-off is investigated for isotropic periodic sum (IPS) techniques, which are promising cut-off treatments to attain advanced accuracy for many types of molecular system. The effect of group-based cut-off is clearly different from that of atom-based cut-off, and severe artefacts are observed in some cases. However, no severe discrepancy from the Ewald sum is observed with the extended IPS techniques.

  10. Development of a computational technique to measure cartilage contact area.

    Science.gov (United States)

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Measurement Techniques for Radon in Mines, Dwellings and the Environment

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1983-06-01

    Definitions and units appropriate for radon and radon daughters are given. The principle methods of detection are ionization chamber, scintillation technique, nuclear track detector, thermoluminescent discs and alpha spectrometry. The activity concentration is determined by grab sampling and subsequent measurement, frequent or continuous grab sampling and measurement and continuous sampling and long time integrated measurement. Sampling and measurement strategies for mines, dwellings and the environment are discussed. (author)

  12. Error reduction techniques for measuring long synchrotron mirrors

    International Nuclear Information System (INIS)

    Irick, S.

    1998-07-01

    Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP

  13. Blower-door techniques for measuring interzonal leakage

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  14. An intensity-monitoring technique for measuring ellipsometric transients

    NARCIS (Netherlands)

    Droog, J.M.M.; Bootsma, G.A.

    1979-01-01

    Intensity-monitoring techniques make possible the measurement of rapid changes in the ellipsometric parameters. Methods used hitherto have been suitable for measuring slight changes only and require prior knowledge of the Δ and Ψ values for the initial surface. It is shown that larger changes can

  15. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  16. Design techniques for large scale linear measurement systems

    International Nuclear Information System (INIS)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  17. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  18. Characteristics of long-period swells measured in the near shore regions of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Johnson, G.; SanilKumar, V.; Amrutha, M.M.; Singh, J.

    Measured wave data covering two years simultaneously at 3 locations along the eastern Arabian Sea reveals the presence of long-period (peak wave period > 18 s) low-amplitude waves (significant wave height < 1 m) and the characteristics...

  19. Exploration of deep S-wave velocity structure using microtremor array technique to estimate long-period ground motion

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Higashi, Sadanori; Sato, Kiyotaka

    2007-01-01

    In this study, microtremor array measurements were conducted at 9 sites in the Niigata plain to explore deep S-wave velocity structures for estimation of long-period earthquake ground motion. The 1D S-wave velocity profiles in the Niigata plain are characterized by 5 layers with S-wave velocities of 0.4, 0.8, 1.5, 2.1 and 3.0 km/s, respectively. The depth to the basement layer is deeper in the Niigata port area located at the Japan sea side of the Niigata plain. In this area, the basement depth is about 4.8 km around the Seirou town and about 4.1 km around the Niigata city, respectively. These features about the basement depth in the Niigata plain are consistent with the previous surveys. In order to verify the profiles derived from microtremor array exploration, we estimate the group velocities of Love wave for four propagation paths of long-period earthquake ground motion during Niigata-ken tyuetsu earthquake by multiple filter technique, which were compared with the theoretical ones calculated from the derived profiles. As a result, it was confirmed that the group velocities from the derived profiles were in good agreement with the ones from long-period earthquake ground motion records during Niigata-ken tyuetsu earthquake. Furthermore, we applied the estimation method of design basis earthquake input for seismically isolated nuclear power facilities by using normal mode solution to estimate long-period earthquake ground motion during Niigata-ken tyuetsu earthquake. As a result, it was demonstrated that the applicability of the above method for the estimation of long-period earthquake ground motion were improved by using the derived 1D S-wave velocity profile. (author)

  20. Concept, characteristics, and applications of important electrical measuring techniques

    International Nuclear Information System (INIS)

    Amberg, C.; Czaika, N.; Andreae, G.

    1978-01-01

    In the field of electrical measuring techniques the investigations were concentrated on the transducers. We investigated the time-temperature behaviour of the following transducers: The weldable, fully encapsulated high temperature strain gauges, inductance and transformer displacement transducers, and weldable capacitive strain transducers with distance sensor. A literatur-review showing the state of techniques reference the influence of nuclear radiation was put together. (orig./HP) [de

  1. Handbook of microwave component measurements with advanced VNA techniques

    CERN Document Server

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  2. Preliminary Studies Of A Phase Modulation Technique For Measuring Chromaticity

    International Nuclear Information System (INIS)

    Tan, C.-Y.

    2006-01-01

    The classical method for measuring chromaticity is to slowly modulate the RF frequency and then measure the betatron tune excursion. The technique that is discussed in this paper instead modulates the phase of the RF and then the chromaticity is obtained by phase demodulating the betatron tune. This technique requires knowledge of the betatron frequency in real time in order for the phase to be demodulated. Fortunately, the Tevatron has a tune tracker based on the phase locked loop principle which fits this requirement. A preliminary study with this technique has showed that it is a promising method for doing continuous chromaticity measurement and raises the possibility of doing successful chromaticity feedback with it

  3. Measurement of particle velocity using a mutual inductance technique

    International Nuclear Information System (INIS)

    Kerr, Stephen; Kirkpatrick, Douglas; Garden, Steven

    2004-01-01

    Preliminary work on the development of a novel method for the measurement of particle velocity is described. The technique relies on measurement of the mutual inductance between two coaxial coils, one stationary and the other perturbed by the shock wave. The moving coil is the gauge and is deposited on thin film. The method was developed to assist in the study of particle velocities in large samples of porous media surrounding an explosive charge. The technique does not require measurements to be taken in a region of uniform magnetic field and therefore dispenses with the need for Helmholtz coils, the size and cost of which can become prohibitive for large experiments. This has the added advantage of allowing measurements to be taken at points widely dispersed through a sample with relative ease. Measurements of particle velocity in porous media have been compared with those from co-located conventional electromagnetic particle velocity gauges with reasonable agreement

  4. Radiometric measurement techniques in metallurgy and foundry technology

    International Nuclear Information System (INIS)

    1990-01-01

    The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de

  5. Mississippi River streamflow measurement techniques at St. Louis, Missouri

    Science.gov (United States)

    Wastson, Chester C.; Holmes, Robert R.; Biedenham, David S.

    2013-01-01

    Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.

  6. Comparison of two techniques for natural dose measurements

    International Nuclear Information System (INIS)

    Ekdal, E.; Ege, A.; Goekce, M.; Karali, T.; Derin, Z.

    2006-01-01

    In the study of luminescence dating, age of an archaeological sample is calculated by the ratio of total exposed dose to annual dose resulted from the environmental radioactivity. Determination of the annual dose level of an archaeological area is one of the most important parameter in calculating the archaeological age of the sample using luminescence techniques. Therefore, the knowledge of the concentrations of the natural radionuclides is important since naturally occurring radioactivity provides major contribution to the annual dose. The natural radioactivity is originated from natural radionuclides consisting mainly of 2 38U, 2 32Th and 4 0K isotopes together with their daughters in soils. In this study, annual dose level of the archaeological site was determined with two different methods: an indirect method that is determining the concentrations of the naturally occurring radioactive elements using gamma spectroscopy and a direct method that uses thermoluminescence dosimeters. Soil samples were collected from the Yesilova Hoeyuek archaeological site located in Izmir City at the Aegean Region of Turkey. The concentrations of the natural radioactivity ( 2 38U, 2 32Th and 4 0K) in soil samples were determined using 3 x 3 N aI (Tl) γ-ray spectrometry system. In direct method, Al 2 O 3 :C thermoluminescence dosimeters (TLD's) were used. These dosimeters were chosen because of their sensitivity and usability in dating studies. They were buried in same archaeological site, 30 cm depth from the soil surface for 30 days period. The luminescence intensity of Al 2 O 3 :C dosimeters was measured by a TLD reader and the dose level was calculated by the luminescence signals emitted by the dosimeters. The results obtained from natural radionuclides and Al 2 O 3 :C thermoluminescence dosimeters were compared and the source of the differences between two methods were discussed

  7. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Rymantas Kazys

    2015-08-01

    Full Text Available An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%.

  8. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  9. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  10. A simple predistortion technique for suppression of nonlinear effects in periodic signals generated by nonlinear transducers

    Science.gov (United States)

    Novak, A.; Simon, L.; Lotton, P.

    2018-04-01

    Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.

  11. Photogrammetry: applications of a three-dimensional remote measurement technique

    International Nuclear Information System (INIS)

    Peak, K.

    1988-01-01

    Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)

  12. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    International Nuclear Information System (INIS)

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  13. Radioisotope Sample Measurement Techniques in Medicine and Biology. Proceedings of the Symposium on Radioisotope Sample Measurement Techniques

    International Nuclear Information System (INIS)

    1965-01-01

    The medical and biological applications of radioisotopes depend on two basically different types of measurements, those on living subjects in vivo and those on samples in vitro. The International Atomic Energy Agency has in the past held several meetings on in vivo measurement techniques, notably whole-body counting and radioisotope scanning. The present volume contains the Proceedings of the first Symposium the Agency has organized to discuss the various aspects of techniques for sample measurement in vitro. The range of these sample measurement techniques is very wide. The sample may weigh a few milligrams or several hundred grams, and may be in the gaseous, liquid or solid state. Its radioactive content may consist of a single, known radioisotope or several unknown ones. The concentration of radioactivity may be low, medium or high. The measurements may be made manually or automatically and any one of the many radiation detectors now available may be used. The 53 papers presented at the Symposium illustrate the great variety of methods now in use for radioactive- sample measurements. The first topic discussed is gamma-ray spectrometry, which finds an increasing number of applications in sample measurements. Other sections of the Proceedings deal with: the use of computers in gamma-ray spectrometry and multiple tracer techniques; recent developments in activation analysis where both gamma-ray spectrometry and computing techniques are applied; thin-layer and paper radio chromatographic techniques for use with low energy beta-ray emitters; various aspects of liquid scintillation counting techniques in the measurement of alpha- and beta-ray emitters, including chemical and colour quenching; autoradiographic techniques; calibration of equipment; and standardization of radioisotopes. Finally, some applications of solid-state detectors are presented; this section may be regarded as a preview of important future developments. The meeting was attended by 203 participants

  14. The measurement of oxygen in vivo using EPR techniques

    International Nuclear Information System (INIS)

    Swartz, Harold M.; Clarkson, Robert B.

    1998-01-01

    The measurement of pO 2 in vivo using EPR has some features which have already led to very useful applications and this approach is likely to have increasingly wide and effective use. It is based on the effect of oxygen on EPR spectra which provides a sensitive and accurate means to measure pO 2 quantitatively. The development of oxygen-sensitive paramagnetic materials which are very stable, combined with instrumental developments, has been crucial to the in vivo applications of this technique. The physical basis and biological applications of in vivo EPR oximetry are reviewed, with particular emphasis on the use of EPR spectroscopy at 1 GHz using particulate paramagnetic materials for the repetitive and non-invasive measurement of pO 2 in tissues. In vivo EPR has already produced some very useful results which have contributed significantly to solving important biological problems. The characteristics of EPR oximetry which appear to be especially useful are often complementary to existing techniques for measuring oxygen in tissues. These characteristics include the capability of making repeated measurements from the same site, high sensitivity to low levels of oxygen, and non-invasive options. The existing techniques are especially useful for studies in small animals, where the depth of measurements is not an overriding issue. In larger animals and potentially in human subjects, non-invasive techniques seem to be immediately applicable to study phenomena very near the surface (within 10 mm) while invasive techniques have some very promising uses. The clinical uses of EPR oximetry which seem especially promising and likely to be undertaken in the near future are long-term monitoring of the status and response to treatment of peripheral vascular disease and optimizing cancer therapy by enabling it to be modified on the basis of the pO 2 measured in the tumour. (author)

  15. Measurements of He II Thermal Counterflow Using PIV Technique

    International Nuclear Information System (INIS)

    Zhang, T.; Van Sciver, S.W.

    2004-01-01

    Our previous experiments on the measurements of He II thermal counterflow using Particle Image Velocimetry (PIV) have shown that there exists a substantial discrepancy between the measured and theoretical values of normal fluid velocity. It was assumed that this is due to the slip velocity between tracer particles and liquid helium. In the present work, tracer particles with a much smaller mean diameter and a more uniform size distribution were selected in order to reduce the effect of slip velocity, and an improved two phase fluidized bed technique was used to introduce the particles into liquid helium. The normal fluid velocity of thermal counterflow was then measured using the PIV technique at various heat fluxes and bath temperatures. The experimental results, however, still show the existence of discrepancy between PIV measured particle velocities and the theoretical normal fluid velocity. A preliminary explanation of these results is given based on an interaction of tracer particles with the superfluid component in the He II

  16. Wealth and the Accounting Period in the Measurement of Means. The Measure of Poverty, Technical Paper VI.

    Science.gov (United States)

    Steuerle, Eugene; McClung, Nelson

    This technical study is concerned with both the statistical and policy effects of alternative definitions of poverty which result when the definition of means is altered by varying the time period (accounting period) over which income is measured or by including in the measure of means not only realized income, but also unrealized income and…

  17. Fluvial sediment transport: Analytical techniques for measuring sediment load

    International Nuclear Information System (INIS)

    2005-07-01

    Sediment transport data are often used for the evaluation of land surface erosion, reservoir sedimentation, ecological habitat quality and coastal sediment budgets. Sediment transport by rivers is usually considered to occur in two major ways: (1) in the flow as a suspended load and (2) along the bed as a bed load. This publication provides guidance on selected techniques for the measurement of particles moving in both modes in the fluvial environment. The relative importance of the transport mode is variable and depends on the hydraulic and sedimentary conditions. The potential user is directed in the selection of an appropriate technique through the presentation of operating principles, application guidelines and estimated costs. Techniques which require laboratory analysis are grab sample, pump sample, depth sample, point integrated and radioactive tracers. Techniques which will continuously record data are optical backscattering, nuclear transmission, single frequency acoustic and laser diffraction

  18. Noncontact sheet resistance measurement technique for wafer inspection

    Science.gov (United States)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  19. A novel experimental technique of nuclear lifetime measurements

    International Nuclear Information System (INIS)

    Yuminov, O.A.; D'Arrigo, A.; Giardina, G.; Taccone, A.; Vannini, G.; Moroni, A.; Ricci, R.A.; Vannucci, L.

    1995-01-01

    In the present paper a new experimental method to measure nuclear reaction time in the 10 -15 -10 -10 s region is presented. Measurements of the lifetimes of low-lying and long-lived states of 19 F and 20 Ne decaying via α-channel were carried out with the aim of checking the feasibility of the method. The results obtained in this way are compared with the lifetimes known from different techniques. ((orig.))

  20. Remote measurement of atmospheric pollutants with laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Corio, W; Querzola, B; Zanzottera, E

    1979-03-01

    Laser techniques for the remote sensing of atmospheric pollutants are reviewed, with attention given to lidars based on Rayleigh and Mie scattering, the Raman effect, or fluorescent scattering. Emphasis is placed on differential absorption lidars, which rely on Rayleigh or Mie scattering for measurements made in the IR or in the visible-UV range, respectively. A comprehensive air pollution monitoring program based on differential absorption lidars, together with systems using fluorescent backscattering and absorption measurements with topographic backscattering, is described.

  1. Measuring caloric response: comparison of different analysis techniques.

    Science.gov (United States)

    Mallinson, A I; Longridge, N S; Pace-Asciak, P; Ngo, R

    2010-01-01

    Electronystagmography (ENG) testing has been supplanted by newer techniques of measuring eye movement with infrared cameras (VNG). Most techniques of quantifying caloric induced nystagmus measure the slow phase velocity in some manner. Although our analysis is carried out by very experienced assessors, some systems have computer algorithms that have been "taught" to locate and quantify maximum responses. We wondered what differences in measurement might show up when measuring calorics using different techniques and systems, the relevance of this being that if there was a change in slow phase velocity between ENG and VNG testing when measuring caloric response, then normative data would have to be changed. There are also some subjective but important aspects of ENG interpretation which comment on the nature of the response (e.g. responses which might be "sporadic" or "scant"). Our experiment compared caloric responses in 100 patients analyzed four different ways. Each caloric was analyzed by our old ENG system, our new VNG system, an inexperienced assessor and the computer algorithm, and data was compared. All four systems made similar measurements but our inexperienced assessor failed to recognize responses as sporadic or scant, and we feel this is a limitation to be kept in mind in the rural setting, as it is an important aspect of assessment in complex patients. Assessment of complex VNGs should be left to an experienced assessor.

  2. An efficient similarity measure technique for medical image registration

    Indian Academy of Sciences (India)

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  3. Exposure measuring techniques for wide band mobile radio-communications

    International Nuclear Information System (INIS)

    Trinchero, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.; Trinchero, D.

    2004-01-01

    The paper illustrates the limits and performances of different experimental monitoring techniques, which are applied to digitally modulated radiofrequency electromagnetic fields used for mobile telecommunications. Different experimental set-ups have been developed, verified and applied for the analysis and characterisation of wide band probes and narrow band measuring procedures. (authors)

  4. Developing and Implementing an Assessment Technique to Measure Linked Concepts

    Science.gov (United States)

    Ye, Li; Oueini, Razanne; Lewis, Scott E.

    2015-01-01

    The links students make among chemistry content is considered essential for a robust, enduring understanding in multiple learning theories. This article describes the development and implementation of an assessment technique, termed a Measure of Linked Concepts, designed to inform instructors on students' understanding of linking content…

  5. New Technique of Direct Intra-abdominal Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Elena Risin

    2006-10-01

    Conclusion: Direct measurement of intra-abdominal pressure using 14-Fr PVC round drain is a newly described technique that is simple, fast and credible. Future investigation will be needed to confirm the reliability of this method during postoperative follow-up of intra-abdominal pressures in selected patients.

  6. Optical Measurement Techniques Innovations for Industry and the Life Sciences

    CERN Document Server

    Peiponen, Kai-Erik; Priezzhev, Alexander V

    2009-01-01

    Devoted to novel optical measurement techniques that are applied both in industry and life sciences, this book contributes a fresh perspective on the development of modern optical sensors. These sensors are often essential in detecting and controlling parameters that are important for both industrial and biomedical applications. The book provides easy access for beginners wishing to gain familiarity with the innovations of modern optics.

  7. Evaluation of turbulence measurement techniques from a single Doppler lidar

    Directory of Open Access Journals (Sweden)

    T. A. Bonin

    2017-08-01

    Full Text Available Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL. Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity–azimuth display (VAD, six-beam scans, and range–height indicators (RHIs with a vertical stare.Measurements of turbulence kinetic energy (TKE, turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2  ≈  0.78, showing little bias in its observations (slope of  ≈  0. 95. Turbulence measurements from the velocity–azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 =  0.15–0.17. Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  8. A TECHNIQUE OF MEASURING OF RESISTANCE OF A GROUNDING DEVICE

    Directory of Open Access Journals (Sweden)

    I.V. Nizhevskyi

    2016-06-01

    Full Text Available Introduction. Measurement of resistance of the grounding device (GD by means of a three-electrode system. This requires not only the right choice of installation locations of measuring electrodes, but also the determination of the point of zero potential. Implementation of these requirements quite time-consuming, and in some cases impossible. Aim. Develop a new technique for measuring the electrical resistance of the GD. Task. The method of measuring the resistance of the GD with the help of a three-electrode setup is necessary to exclude the determination of the point of zero potential. Method. Mathematical modeling and calculation engine. Results. A three-electrode system for measuring the resistance of grounding devices (GD for various purposes is considered. On the basis of Maxwell equations a theoretical substantiation of a new technique for measuring the resistance of any GD of any construction in random soil structure has been proposed. An equation system of the sixth order has been obtained, its solution makes it possible to measure its own mutual resistance in the three-electrode installation with sufficiently high accuracy. Peculiarities of drawing up a calculation scheme of substitution of a three-electrode installation with lumped parameters: self and mutual impedance. Use of the principle of reciprocity eliminates the need of finding a point of zero potential which is a rather difficult task. The technique allows to minimize the spacing of measuring electrodes outside the GD, which substantially reduces the length of wiring of the measurement circuit and increases the «signal-to-interference» ratio and also removes the restrictions on the development of the territory outside the GD being tested. Conclusion. The procedure allows to evaluate the self and mutual impedance grounding all the electrodes in a three-electrode measuring installation of the grounding resistance of the device without finding the point of zero potential.

  9. Development of laser-based resonance ionization techniques for 81-Kr and 85-Kr measurements in the geosciences, II. December 1, 1994 through December 31, 2000 reporting period. Final technical report for Grant No. DE-FG05-95ER14497

    Energy Technology Data Exchange (ETDEWEB)

    Thonnard, Norbert; McKay, Larry D.; Labotka, Theodore C.

    2001-02-05

    A facility for measurement of rare Kr-81 and Kr-85 isotope concentration in hydrogeologic samples, and isotopic composition of minute quantities of krypton and xenon from extraterrestrial samples, was established, requiring refinement of an emerging mass spectrometric-based analytical technique and securing of laboratory space and equipment. The analytical process consists of (1) collecting a groundwater sample, (2) degassing the water, (3) separating Kr from the recovered gases, (4&5) two isotopic enrichments to reduce interfering isotopes by E9, and (6) detecting the rare krypton isotope in a unique time-of-flight mass spectrometer detecting as few as 100 Kr atoms. All equipment is installed and operating, with only some additional adjustment and testing of the last step (6, above) remaining to be completed. Collaborations have been established with a number of researchers and organizations world wide, and both groundwater and extraterrestrial samples have been collected. Completion of analyses awaits full operation of step 6.

  10. Development of a micro liquid-level sensor for harsh environments using a periodic heating technique

    International Nuclear Information System (INIS)

    Hong, Jonggan; Kim, Dongsik; Chang, Young Soo

    2010-01-01

    This paper describes the development and testing of a novel micro thermal sensor for point sensing of lubrication oil level in industrial compressors. The results reported in this work can be applied to various harsh environments that feature high temperature/pressure, limited space and flow/vibration. The sensor employs an ac (alternating current) thermal technique with a single heating/sensing element. As the sensing scheme is based on the so-called three-omega method, the sensing signal is noise-resistant and hardly affected by flow in the liquid being measured. Experiments with DI water, ethanol and ethylene glycol confirm that the sensor performance is satisfactory under atmospheric pressure. Also, to mimic harsh conditions as in an industrial compressor, tests are performed in a pressure vessel containing R410A gas and polyvinylether lubrication oil under high temperatures and pressures. The results indicate that the sensitivity and response time of the developed sensor are appropriate for practical usage in harsh environments. As the sensor can be easily mass-produced at low cost using photolithography, it has strong potential for industrial applications

  11. A survey on multiproperty measurement techniques of solid materials

    International Nuclear Information System (INIS)

    Matsumoto, Tsuyoshi

    1989-01-01

    The term 'multiproperty measurement' has not as yet been widely used. It is defined as the simultaneous (or continuous) measurement of several properties of material using one sample and one set of equipment. It is highly advantageous to measure several properties of a sample simultaneously. Various aspects of the nature of a substance can be clarified by evaluating its nature in terms of many properties. In particular, advanced techniques for measuring thermal properties of material are needed in the fields of atomic energy industry, aerospace industry, energy industry, electronics industry and academic community. Conventional thermal property measurement techniques which can be applied to multiproperty measurement or minute test sample measurement are outlined focusing on measurement of the thermal conductivity (axial flow method, radial flow method, plate method, unsteady state heating coil method, direct current heating method), specific heat (adiabatic method, drop calorimetry, differential scanning calorimetry, AC calorimetric method, pulse heating method, and laser heating method), thermal diffusivity (laser-flash method), and emissivity (separated black body method, incorporated black body method). (N,K.)

  12. [Cholinesterases in total blood measured with a semiquantitative technique, and plasma or erythrocyte cholinesterases measured with quantitative techniques].

    Science.gov (United States)

    Carmona-Fonseca, Jaime

    2007-06-01

    An equivalence model which allows comparison of blood cholinesterase values, measured by Lovibond (semiquantitative technique), and Michel, EQM, Monotest (erythrocyte and plasma cholinesterases) values measured by quantitative techniques is required. The performance of Lovibond (Edson tintometric and Limperos & Ranta techniques) were compared with quantitative techniques. The experimental design was descriptive, cross-sectional, and prospective. From a working population (18-59 years) in Valle de Aburrá and Near East of Antioquia. 827 representative samples were chosen for their lack of exposure to cholinesterase-inhibiting plaguicides and affiliated to the Social Security System. (1) 827 workers were classified by Lovibond in four categories: 821 values with 75% of cholinesterase activity or greater (categories 75, 87.5 and 100%) and 6 with cholinesterase activity smaller than 75%. (2) With each quantitative method, the mean values of erythrocyte and plasmatic cholinesterase corresponding to the four values obtained with Lovibond were statistically different to each other. (3) The mean values of each quantitative technique increased when increased the tintometric method value. (4) Lovibond classified the low enzymatic erythrocyte activity very poorly (61-73%), but the classification of the low enzymatic plasma activity was almost completely in error (94-96%). The values of erythrocyte or plasma cholinesterase were adequately estimated by both the quantitative techniques of Michel and EQM and by Lovibond, but only when the enzymatic activity is normal. Lovibond, however, had a poor capacity to designate as "low" the values that were low according to the quantitative tests.

  13. Comparison of non-invasive tear film stability measurement techniques.

    Science.gov (United States)

    Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P

    2018-01-01

    Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.

  14. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. (ed.)

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  15. Electropyroelectric technique for measurement of the thermal effusivity of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, R; Moreno, I; Araujo, C [Facultad de Fisica, Universidad Autonoma de Zacatecas, Calz. Solidaridad Esquina Paseo de la Bufa s/n, C. P. 98060, Zacatecas, Zac. (Mexico); Marin, E, E-mail: emarin63@yahoo.e, E-mail: emarinm@ipn.m [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada, Instituto Politecnico Nacional, LegarIa 694, Colonia Irrigacion, C. P. 11500, Mexico D. F. (Mexico)

    2010-06-09

    The photopyroelectric method has been recognized as a reliable and useful tool for the measurement of the thermal properties of condensed matter samples. Usually the photothermal signal is generated using intensity modulated light beams, whose amplitudes are difficult to maintain stable. In this paper we describe a variant of this technique that uses amplitude modulated electrical current as excitation source, via Joule heating of the metal contact on one side of the pyroelectric sensor. The possibilities of this method, called by us the electropyroelectric technique, for thermal effusivity measurements of liquid samples are shown using test samples of distilled water, ethanol and glycerine. The results obtained for this parameter agree well with the values reported in the literature. Our measurement uncertainties are about 3%, a fact that opens several possible applications.

  16. Electropyroelectric technique for measurement of the thermal effusivity of liquids

    International Nuclear Information System (INIS)

    Ivanov, R; Moreno, I; Araujo, C; Marin, E

    2010-01-01

    The photopyroelectric method has been recognized as a reliable and useful tool for the measurement of the thermal properties of condensed matter samples. Usually the photothermal signal is generated using intensity modulated light beams, whose amplitudes are difficult to maintain stable. In this paper we describe a variant of this technique that uses amplitude modulated electrical current as excitation source, via Joule heating of the metal contact on one side of the pyroelectric sensor. The possibilities of this method, called by us the electropyroelectric technique, for thermal effusivity measurements of liquid samples are shown using test samples of distilled water, ethanol and glycerine. The results obtained for this parameter agree well with the values reported in the literature. Our measurement uncertainties are about 3%, a fact that opens several possible applications.

  17. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  18. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  19. Application of stereo photogrammetric techniques for measuring African Elephants

    Directory of Open Access Journals (Sweden)

    A. J Hall-Martin

    1979-12-01

    Full Text Available Measurements of shoulder height and back length of African elephants were obtained by means of stereo photogrammetric techniques. A pair of Zeiss UMK 10/1318 cameras, mounted on a steel frame on the back of a vehicle, were used to photograph the elephants in the Addo Elephant National Park, Republic of South Africa. Several modifications of normal photogrammetry procedure applicable to the field situation (eg. control points and the computation of results (eg. relative orientation are briefly mentioned. Six elephants were immobilised after being photographed and the measurements obtained from them agreed within a range of 1 cm-10 cm with the photogrammetric measurements.

  20. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  1. Techniques, processes, and measures for software safety and reliability

    International Nuclear Information System (INIS)

    Sparkman, D.

    1992-01-01

    The purpose of this report is to provide a detailed survey of current recommended practices and measurement techniques for the development of reliable and safe software-based systems. This report is intended to assist the United States Nuclear Reaction Regulation (NRR) in determining the importance and maturity of the available techniques and in assessing the relevance of individual standards for application to instrumentation and control systems in nuclear power generating stations. Lawrence Livermore National Laboratory (LLNL) provides technical support for the Instrumentation and Control System Branch (ICSB) of NRRin advanced instrumentation and control systems, distributed digital systems, software reliability, and the application of verificafion and validafion for the development of software

  2. Higher order Cambell techniques for neutron flux measurement. Pt. 1

    International Nuclear Information System (INIS)

    Lux, I.; Baranyai, A.

    1982-01-01

    An exact mathematical description of arbitrary high order Campbell techniques for measuring particle fluxes is given. The nth order Campbell technique assumes the measurement of the moments of the outcoming voltage up to the nth one. A simple relation is derived among the various moments of the total measured voltage and of the detector signal caused by one incident particle. It is proven that in the monoparticle case combination of the measured moments up to the order n provides an expression proportional to the particle flux and to the nth moment of the detector signal. Generalization to several different particles is given and it is shown that if the flux of the particle causing the largest detector signal is measured with a relative error epsilon in the dc method and the error is due to the signals of other particles, then in the nth order campbelling the error will be of order epsilonsup(n). The effect of a random background on the measured voltage is also investigated and it is established that the nth order campbelling supresses the noise according to the nth power of the relative amplitude of the noise to the signal. The results concerning constant fluxes are generalized to time dependent particle fluxes and a method assuming a Fourier transform of the measured quantities is proposed for their determination. (orig.)

  3. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  4. Unit vent airflow measurements using a tracer gas technique

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.G. [Union Electric Company, Fulton, MO (United States); Lagus, P.L. [Lagus Applied Technology, Inc., San Diego, CA (United States); Fleming, K.M. [NCS Corp., Columbus, OH (United States)

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  5. Measurement of epithermal neutrons by a coherent demodulation technique

    CERN Document Server

    Horiuchi, N; Takahashi, H; Kobayashi, H; Harasawa, S

    2000-01-01

    Epithermal neutrons have been measured using a neutron dosimeter via a coherent demodulation technique. This dosimeter consists of CsI(Tl)-photodiode scintillation detectors, four of which are coupled to neutron-gamma converting foils of various sizes. Neutron-gamma converting foils of In, Au and Co materials were used, each of which has a large capture cross section which peaks in the epithermal neutron energy region. The type of foil was selected according to the material properties that best correspond to the energy of the epithermal neutrons to be measured. In addition, the proposed technique was applied using Au-foils in order to measure the Cd ratio. The validity of the proposed technique was examined using an sup 2 sup 4 sup 1 Am-Be source placed in a testing stack of polyethylene blocks, and the results were compared with the theoretical values calculated by the Monte Carlo calculation. Finally, the dosimeter was applied for measuring epithermal neutrons and the Cd ratio in an experimental beam-tube o...

  6. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  7. Internal flow measurement in transonic compressor by PIV technique

    Science.gov (United States)

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  8. Objective techniques for psychological assessment, phase 2. [techniques for measuring human performance during space flight stress

    Science.gov (United States)

    Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.

    1974-01-01

    Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.

  9. Gamma ray densitometry techniques for measuring of volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  10. Gamma ray densitometry techniques for measuring of volume fractions

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques

    2015-01-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  11. Signal Morphing techniques and possible application to Higgs properties measurements

    CERN Document Server

    Ecker, Katharina Maria; The ATLAS collaboration

    2016-01-01

    One way of describing deviations from the Standard Model is via Effective Field Theories or pseudo-observables, where higher order operators modify the couplings and the kinematics of the interaction of the Standard Model particles. Generating Monte Carlo events for every testable set of parameters for such a theory would require computing resources beyond the ones currently available in ATLAS. Up to now, Matrix-Element based reweighting techniques have been often used to model Beyond Standard Model process starting from Standard Model simulated events. In this talk, we review the advantages and the limitations of morphing techniques to construct continuous probability model for signal parameters, interpolating between a finite number of distributions obtained from the simulation chain. The technique will be exemplified by searching for deviations from the Standard Model predictions in Higgs properties measurements.

  12. A photoacoustic technique to measure the properties of single cells

    Science.gov (United States)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  13. 3D interferometric shape measurement technique using coherent fiber bundles

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  14. Comparison of safety measures with a multicriteria decision aiding technique

    International Nuclear Information System (INIS)

    Lombard, J.

    1985-01-01

    Attributes such as political, social and psychological factors have to be taken into account for the decision-making process. Multiattribute decision-aiding techniques are used to cope with this multidimensionality of the risk management process. A simple example will be given to illustrate how such method can be helpful for the selection of proper safety measures in a rational way. (orig./HP) [de

  15. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  16. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  17. Analytical techniques for measurement of 99Tc in environmental samples

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Three new methods have been developed for measuring 99 Tc in environmental samples. The most sensitive method is isotope dilution mass spectrometry, which allows measurement of about 1 x 10 -12 grams of 99 Tc. Results on analysis of five samples by this method compare very well with values obtained by a second independent method, which involves counting of beta particles from 99 Tc and internal conversion electrons from /sup 97m/Tc. A third method involving electrothermal atomic absorption has also been developed. Although this method is not as sensitive as the first two techniques, the cost per analysis is expected to be considerably less for certain types of samples

  18. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    International Nuclear Information System (INIS)

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  19. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  20. Activities at Forschungszentrum Juelich in Safeguards Analytical Techniques and Measurements

    International Nuclear Information System (INIS)

    Duerr, M.; Knott, A.; Middendorp, R.; Niemeyer, I.; Kueppers, S.; Zoriy, M.; Froning, M.; Bosbach, D.

    2015-01-01

    The application of safeguards by the IAEA involves analytical measurements of samples taken during inspections. The development and advancement of analytical techniques with support from the Member States contributes to strengthened and more efficient verification of compliance with non-proliferation obligations. Since recently, a cooperation agreement has been established between Forschungszentrum Juelich and the IAEA in the field of analytical services. The current working areas of Forschungszentrum Juelich are: (i) Production of synthetic micro-particles as calibration standard and reference material for particle analysis, (ii) qualification of the Forschungszentrum Juelich as a member of the IAEA network of analytical laboratories for safeguards (NWAL), and (iii) analysis of impurities in nuclear material samples. With respect to the synthesis of particles, a dedicated setup for the production of uranium particles is being developed, which addresses the urgent need for material tailored for its use in quality assurance and quality control measures for particle analysis of environmental swipe samples. Furthermore, Forschungszentrum Juelich has been nominated as a candidate laboratory for membership in the NWAL network. To this end, analytical capabilities at Forschungszentrum Juelich have been joined to form an analytical service within a dedicated quality management system. Another activity is the establishment of analytical techniques for impurity analysis of uranium-oxide, mainly focusing on inductively coupled mass spectrometry. This contribution will present the activities at Forschungszentrum Juelich in the area of analytical measurements and techniques for nuclear verification. (author)

  1. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    Science.gov (United States)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  2. Natural stream flow-rates measurements by tracer techniques

    International Nuclear Information System (INIS)

    Cuellar Mansilla, J.

    1982-01-01

    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  3. Application of neutron backscatter techniques to level measurement problems

    International Nuclear Information System (INIS)

    Leonardi-Cattolica, A.M.; McMillan, D.H.; Telfer, A.; Griffin, L.H.; Hunt, R.H.

    1982-01-01

    We have designed and built portable level detectors and fixed level monitors based on neutron scattering and detection principles. The main components of these devices, which we call neutron backscatter gauges, are a neutron emitting radioisotope, a neutron detector, and a ratemeter. The gauge is a good detector for hydrogen but is much less sensitive to most other materials. This allows level measurements of hydrogen bearing materials, such as hydrocarbons, to be made through the walls of metal vessels. Measurements can be made conveniently through steel walls which are a few inches thick. We have used neutron backscatter gauges in a wide variety of level measurement applications encountered in the petrochemical industry. In a number of cases, the neutron techniques have proven to be superior to conventional level measurement methods, including gamma ray methods

  4. High precision speed measurement by using interferometric techniques

    International Nuclear Information System (INIS)

    Ávila, M A Rodríguez; Valiente, R Ochoa; Trujillo, L A García

    2015-01-01

    In this work we present the experimental realization of speed measurement by the use of a two wave interferometer and digital signal processing techniques. We built an automated Michelson interferometer and using an He-Ne laser and with the use of the Fast Fourier Transform (FFT) and computer algorithms we derived a method for finding the speed of displacement. We report uncertainties in the order of 2-3 μm/s. with the use of this procedure. This brings the potential of another physical variable measurement like distance or pressure by this indirect measurement method. This approach is compared with an ultrasonic Logger Pro ® speed measurement system, and the results are compared between systems

  5. A confirmatory measurement technique for highly enriched uranium

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.

    1987-07-01

    This report describes a confirmatory measurement technique for measuring uranium items in their shipping containers. The measurement consists of a weight verification and the detection of three gamma rays. The weight can be determined very precisely, thus it severely constrains the options of the diverter who might want to imitate the gamma signal with a bogus item. The 185.7-keV gamma ray originates from 235 U, the 1001 keV originates from a daughter of 238 U, and the 2614 keV originates from a daughter of 232 U. These three gamma rays exhibit widely different attenuation properties, they correlate with enrichment and total uranium mass, and they rigorously discriminate against a likely diversion scenario (low-enriched uranium substitution). These four measured quantities, when combined, provide a signature that is very difficult to counterfeit

  6. Dimensional measuring techniques in the automotive and aircraft industry

    Science.gov (United States)

    Muench, K. H.; Baertlein, Hugh

    1994-03-01

    Optical tooling methods used in industry are rapidly being replaced by new electronic sensor techniques. The impact of new measuring technologies on the production process has caused major changes on the industrial shop floor as well as within industrial measurement systems. The paper deals with one particular industrial measuring system, the manual theodolite measuring system (TMS), within the aircraft and automobile industry. With TMS, setup, data capture, and data analysis are flexible enough to suit industry's demands regarding speed, accuracy, and mobility. Examples show the efficiency and the wide range of TMS applications. In cooperation with industry, the Video Theodolite System was developed. Its origin, functions, capabilities, and future plans are briefly described. With the VTS a major step has been realized in direction to vision systems for industrial applications.

  7. Combating dephasing decoherence by periodically performing tracking control and projective measurement

    International Nuclear Information System (INIS)

    Zhang Ming; Dai Hongyi; Xi Zairong; Xie Hongwei; Hu Dewen

    2007-01-01

    We propose a scheme to overcome phase damping decoherence by periodically performing open loop tracking control and projective measurement. Although it is impossible to stabilize a qubit subject to Markovian dynamics only by open loop coherent control, one can attain a 'softened' control goal with the help of periodical projective measurement. The 'softened' control objective in our scheme is to keep the state of the controlled qubit to stay near a reference pure state with a high probability for a sufficiently long time. Two suboptimal control problems are given in the sense of trace distance and fidelity, respectively, and they are eventually reduced to the design of a period T. In our scheme, one can choose the period T as long as possible if the 'softened' control goal is attained. This is in contrast to the observation that quantum Zeno effect takes place only if measurements are performed in a very frequent manner, i.e., the period T must be extremely small

  8. Measurements of diversity gain and radiation efficiency of the eleven antenna by using different measurement techniques

    DEFF Research Database (Denmark)

    Yang, Jian; Pivnenko, Sergey; Laitinen, Tommi

    2010-01-01

    This paper presents measurement results of diversity gain and radiation efficiency by using three different measurement techniques: reverberation chamber, spherical near-field anechoic chamber, and multi-probe anechoic chamber. The results are measured over a large 2–8 GHz bandwidth which...

  9. Improved Tandem Measurement Techniques for Aerosol Particle Analysis

    Science.gov (United States)

    Rawat, Vivek Kumar

    Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.

  10. Entrance surface dose measurements in mammography using thermoluminescence technique

    International Nuclear Information System (INIS)

    Rivera, T.; Vega C, H.R.; Manzanares A, E; Azorin, J.; Gonzalez, P.R.

    2007-01-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO 2 +PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO 2 pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO 2 were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO 2 TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  11. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  12. Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography

    KAUST Repository

    Yang, Yung-Lang

    2010-03-01

    This study presents the wetting properties, including hydrophilicity, hydrophobicity and anisotropic behavior, of water droplets on the silicon wafer surface with periodical nanopatterns and hierarchical structures. This study fabricates one- and two-dimensional periodical nanopatterns using laser interference lithography (LIL). The fabrication of hierarchical structures was effectively achieved by combining photolithography and LIL techniques. Unlike conventional fabrication methods, the LIL technique is mainly used to control the large-area design of periodical nanopatterns in this study. The minimum feature size for each nanopattern is 100 nm. This study shows that the wetting behavior of one-dimensional, two-dimensional, and hierarchical patterns can be obtained, benefiting the development of surface engineering for microfluidic systems. © 2010 Elsevier B.V. All rights reserved.

  13. Time-delayed feedback technique for suppressing instabilities in time-periodic flow

    Science.gov (United States)

    Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz

    2017-11-01

    A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.

  14. Top-quark mass measurements: Alternative techniques (LHC + Tevatron)

    CERN Document Server

    Adomeit, Stefanie; The ATLAS collaboration

    2014-01-01

    Measurements of the top-quark mass employing alternative techniques are presented, performed by the D0 and CDF collaborations at the Tevatron as well as the ATLAS and CMS experiments at the LHC. The alternative methods presented include measurements using the lifetime of $B$-hadrons, the transverse momentum of charged leptons and the endpoints of kinematic distributions in top quark anti-quark pair ($t\\bar{t}$) final states. The extraction of the top-quark pole mass from the $t\\bar{t}$ production cross-section and the normalized differential $t\\bar{t}$ + 1-jet cross-section are discussed as well as the top-quark mass extraction using fixed-order QCD predictions at detector level. Finally, a measurement of the top-quark mass using events enhanced in single top t-channel production is presented.

  15. Highlights in radiation measuring technique's - Serial Micro Channel SMC 2100

    International Nuclear Information System (INIS)

    Kandler, M.; Hoffmann, Ch.

    2002-01-01

    The Serial Micro Channel SMC 2100 offers an ''intelligent stand alone'' electronics for the radiation measuring technique's. First it is designed of being connected to a serial interface RS232 of a PC. With a RS485 serial interface on a PC, a network structure can be generated. It has all functional modules which are necessary for the measurement of detector signals. Hence it is possible to directly connect any detector for radiation measurement to a PC, laptop, or notebook. All variations can be operated without PC support too. It has a modular structure and consists of two blocks, the functional modules and the basic modules. The Serial Micro Channel SMC 2100 may be directly coupled to a detector, which therefore makes the realisation of an ''intelligent radiation detector'' with serial link RS232 or RS485. (orig.)

  16. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  17. Automatic ultrasound technique to measure angle of progression during labor.

    Science.gov (United States)

    Conversano, F; Peccarisi, M; Pisani, P; Di Paola, M; De Marco, T; Franchini, R; Greco, A; D'Ambrogio, G; Casciaro, S

    2017-12-01

    To evaluate the accuracy and reliability of an automatic ultrasound technique for assessment of the angle of progression (AoP) during labor. Thirty-nine pregnant women in the second stage of labor, with fetus in cephalic presentation, underwent conventional labor management with additional translabial sonographic examination. AoP was measured in a total of 95 acquisition sessions, both automatically by an innovative algorithm and manually by an experienced sonographer, who was blinded to the algorithm outcome. The results obtained from the manual measurement were used as the reference against which the performance of the algorithm was assessed. In order to overcome the common difficulties encountered when visualizing by sonography the pubic symphysis, the AoP was measured by considering as the symphysis landmark its centroid rather than its distal point, thereby assuring high measurement reliability and reproducibility, while maintaining objectivity and accuracy in the evaluation of progression of labor. There was a strong and statistically significant correlation between AoP values measured by the algorithm and the reference values (r = 0.99, P < 0.001). The high accuracy provided by the automatic method was also highlighted by the corresponding high values of the coefficient of determination (r 2  = 0.98) and the low residual errors (root mean square error = 2°27' (2.1%)). The global agreement between the two methods, assessed through Bland-Altman analysis, resulted in a negligible mean difference of 1°1' (limits of agreement, 4°29'). The proposed automatic algorithm is a reliable technique for measurement of the AoP. Its (relative) operator-independence has the potential to reduce human errors and speed up ultrasound acquisition time, which should facilitate management of women during labor. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  18. Malmquist Index, an Alternative Technique for Measuring Credit Institutions Productivity

    Directory of Open Access Journals (Sweden)

    Nicolae Dardac

    2008-03-01

    Full Text Available The present study tackles the banking system’s productivity in a more complex manner, that integrates multiple input, multiple output variables, abdicating from the reductionist perspective of clasical methods, which imposed limits in the number of variables, in the process of productivity measurement and interpretation. The advantage of Malmquist productivity indexes consists both in a quantitative evaluation of the global productivity of a credit institution over a specified period of time, and in the decomposition of productivity, in order to underline how much of its change is due to the catch-up effect, and, respectively, to the implementation of new technologies. The results obtained revealed that credit institutions placed on the first three places in the banking system, according to assets value, maintained constant their productivity level during the analysed period, meanwhile the other institutions in our sample registered a slowly improvement in productivity, determined, mainly, by technological changes.

  19. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    International Nuclear Information System (INIS)

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  20. Comparison of current tonometry techniques in measurement of intraocular pressure.

    Science.gov (United States)

    Kouchaki, Behrooz; Hashemi, Hassan; Yekta, Abbasali; Khabazkhoob, Mehdi

    2017-06-01

    To compare four tonometry techniques: Goldmann applanation tonometer (GAT), Dynamic contour tonometer (DCT), Non-contact tonometer (NCT), and Ocular Response Analyzer (ORA) in the measurement of intraocular pressure (IOP) and the impact of some corneal biomechanical factors on their performance. In this cross-sectional study, volunteers with normal ophthalmic examination and no history of eye surgery (except for uncomplicated cataract surgery) or trauma were selected. Twenty-five subjects were male, and 21 were female. The mean age was 48 ± 19.2 years. Anterior segment parameters were measured with Scheimpflug imaging. IOP was measured with GAT, DCT, NCT, and ORA in random order. A 95% limit of agreement of IOPs was analyzed. The impact of different parameters on the measured IOP with each device was evaluated by regression analysis. The average IOP measured with GAT, DCT, NCT, and ORA was 16.4 ± 3.5, 18.1 ± 3.4, 16.2 ± 3.9, and 17.3 ± 3.4 mmHg, respectively. The difference of IOP measured with NCT and GAT was not significant ( P  = 0.382). Intraocular pressure was significantly different between GAT with DCT and IOP CC ( P  tonometers.

  1. Proton current measurements using the prompt gamma ray diagnostic technique

    International Nuclear Information System (INIS)

    Leeper, R.J.; Burns, E.J.T.; Johnson, D.J.; McMurtry, W.M.

    1981-01-01

    Prompt gamma ray signals from the nuclear reaction 7 Li(p,γ) 8 Be have been used to make time resolved proton current measurements. In these measurements, the proton beam was allowed to strike cylindrical thick lithium metal targets. The time integrated proton current was measured using gamma activation of copper via the reaction 63 Cu(γ,n) 62 Cu(β+). The positron activity of the copper sample was easily measured using coincidence counting techniques. The number of 62 Cu atoms produced per proton incident on a thick Li metal target was determined with separate calibration runs performed on the Sandia 2.5 MeV Van de Graaff accelerator. The time history of the prompt gamma production was measured using six EGG NPM-54 scintillator photomultiplier combinations shielded by 96.5 cm of concrete and 5.1 cm of Pb. The use of six scintillator photomultiplier combinations was necessary to increase the statistical precision of the data. The normalization of the prompt gamma time history data with the total time integrated proton-current measurement yielded the absolute time resolved proton current on target. Data from runs performed on the Sandia Proto I accelerator will be presented

  2. Comparisons between different techniques for measuring mass segregation

    Science.gov (United States)

    Parker, Richard J.; Goodwin, Simon P.

    2015-06-01

    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.

  3. Protocol of measurement techniques - Project colored solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2004-08-15

    This illustrated annual report for the Swiss Federal Office of Energy (SFOE) takes a look at work done at the Swiss Federal Institute of Technology in Lausanne, Switzerland, on multi-layer, thin-film interference coatings for solar collector glazing. The correct combinations of refractive indices and film thickness are discussed. The authors state that corresponding multi-layered thin film stacks will have to be realised experimentally in a controlled and reproducible way. New thin film materials are to be tailored to exhibit optimised optical and ageing properties. The development of these coatings is to be based on various measurement techniques, such as spectro-photometry, measurements of total power throughput by means of a solar simulator, spectroscopic ellipsometry, scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The paper provides many examples of typical data and explains which film properties can be inferred from each method and thus describes both the function and purpose of the different measurement techniques.

  4. Experimental comparison of particle interaction measurement techniques using optical traps

    International Nuclear Information System (INIS)

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  5. Simulation error propagation for a dynamic rod worth measurement technique

    International Nuclear Information System (INIS)

    Kastanya, D.F.; Turinsky, P.J.

    1996-01-01

    KRSKO nuclear station, subsequently adapted by Westinghouse, introduced the dynamic rod worth measurement (DRWM) technique for measuring pressurized water reactor rod worths. This technique has the potential for reduced test time and primary loop waste water versus alternatives. The measurement is performed starting from a slightly supercritical state with all rods out (ARO), driving a bank in at the maximum stepping rate, and recording the ex-core detectors responses and bank position as a function of time. The static bank worth is obtained by (1) using the ex-core detectors' responses to obtain the core average flux (2) using the core average flux in the inverse point-kinetics equations to obtain the dynamic bank worth (3) converting the dynamic bank worth to the static bank worth. In this data interpretation process, various calculated quantities obtained from a core simulator are utilized. This paper presents an analysis of the sensitivity to the impact of core simulator errors on the deduced static bank worth

  6. Slow neutron mapping technique for level interface measurement

    Science.gov (United States)

    Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.

    2017-01-01

    Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.

  7. Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Jiongqi; XIONG Kai; ZHOU Haiyin

    2012-01-01

    The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.

  8. A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.; Desch, Steven J.; Anbar, Ariel D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Adibekyan, Vardan; Mena, Elisa Delgado; Sousa, Sergio G.; Santos, Nuno C. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Blanco-Cuaresma, Sergi [Observatoire de Genève, Université de Genève, CH-1290 Versoix (Switzerland); Carlberg, Joleen K. [NASA Goddard Space Flight Center, Code 667, Greenbelt MD 20771 (United States); Liu, Fan [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Nordlander, Thomas; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike [Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden); Jofré, Paula [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Soubiran, Caroline, E-mail: natalie.hinkel@gmail.com [CNRS/Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France)

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.

  9. Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements

    Science.gov (United States)

    Deeg, H. J.

    2015-06-01

    Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.

  10. Verification of long-term load measurement technique

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe

    storage and 3) data analysis technique to verify design load assumptions. The work is carried out under Contract no 019945 (SES6) "UPWIND" within the European Commission The interaction between the mechanical and electrical generator subsystems is described rudimentarily, based primarily on HAWC2...... simulations below stall of the mechanical system with simple generator and gearbox systems. The electrical system simulations were not carried out as intended in DOW[2], but indications of the conditions for establishing the interaction have been described by measurements and by argument, that this might have...

  11. A Computer Based Moire Technique To Measure Very Small Displacements

    Science.gov (United States)

    Sciammarella, Cesar A.; Amadshahi, Mansour A.; Subbaraman, B.

    1987-02-01

    The accuracy that can be achieved in the measurement of very small displacements in techniques such as moire, holography and speckle is limited by the noise inherent to the utilized optical devices. To reduce the noise to signal ratio, the moire method can be utilized. Two system of carrier fringes are introduced, an initial system before the load is applied and a final system when the load is applied. The moire pattern of these two systems contains the sought displacement information and the noise common to the two patterns is eliminated. The whole process is performed by a computer on digitized versions of the patterns. Examples of application are given.

  12. Physical and measuring principles of nuclear well logging techniques

    International Nuclear Information System (INIS)

    Loetzsch, U.; Winkler, R.

    1981-01-01

    Proceeding from the general task of nuclear geophysics as a special discipline of applied geophyscis, the essential physical problems of nuclear well logging techniques are considered. Particularly, the quantitative relationship between measured values and interesting geologic parameters to be determined are discussed taking into account internal and external perturbation parameters. Resulting from this study, the technological requirements for radiation sources and their shielding, for detectors, electronic circuits in logging tools, signal transmission by cable and recording equipment are derived, and explained on the basis of examples of gamma-gamma and neutron-neutron logging. (author)

  13. Static telescope aberration measurement using lucky imaging techniques

    Science.gov (United States)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  14. International Conference Automation : Challenges in Automation, Robotics and Measurement Techniques

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2016-01-01

    This book presents the set of papers accepted for presentation at the International Conference Automation, held in Warsaw, 2-4 March of 2016. It presents the research results presented by top experts in the fields of industrial automation, control, robotics and measurement techniques. Each chapter presents a thorough analysis of a specific technical problem which is usually followed by numerical analysis, simulation, and description of results of implementation of the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be valuable for both researchers working in the area of engineering sciences and for practitioners solving industrial problems. .

  15. Physical quantities, their role and treatment in gasflow measurement techniques

    International Nuclear Information System (INIS)

    Narjes, L.

    1977-06-01

    We begin by taking a closer look at the concepts physical quantity, dimension and unit of measurement. Then a survey is given of the physical quantities applied in gasflow measurement techniques. Here the volume-, as well as the mass-flow rate, as derived quantities are of particular interest. The application of these quantities in relation to the legal units of measurement is specifically described. In addition the quantity equation and further the quantity equation adapted to the use of suitable units and their modes of application are compared. In the appendix four examples clarify these modes. Special attention is paid to the quantity equation adapted to practically oriented units. The applications of this type of equation in VDI regulations, standards and other technical guidelines for measurement of flow are mentioned. Moreover, the meaning of the standard state for the comparison of flows of gaseous fluids is illustrated. The difficulties concerning an international agreement on uniform standard temperature are explained. Starting from there, the advantages of the fundamental quantity 'amount of substance' applied to the measurement of flow are described. The use of this quantity for the thermodynamic state of ideal and real gases, respectively gas mixtures, is demonstrated in the appendix by an example. (orig.) [de

  16. Tritium measurement technique using ''in-bed'' calorimetry

    International Nuclear Information System (INIS)

    Klein, J.E.; Mallory, M.K.; Nobile, A. Jr.

    1991-01-01

    One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium ''heels'' from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and ''in-bed'' tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to 3 He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of ±1.6% of a tritium filled hydride storage bed

  17. Incremental first pass technique to measure left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kocak, R.; Gulliford, P.; Hoggard, C.; Critchley, M.

    1980-01-01

    An incremental first pass technique was devised to assess the acute effects of any drug on left ventricular ejection fraction (LVEF) with or without a physiological stress. In particular, the effects of the vasodilater isosorbide dinitrate on LVEF before and after exercise were studied in 11 patients who had suffered cardiac failure. This was achieved by recording the passage of sup(99m)Tc pertechnetate through the heart at each stage of the study using a gamma camera computer system. Consistent values for four consecutive first pass values without exercise or drug in normal subjects illustrated the reproducibility of the technique. There was no significant difference between LVEF values obtained at rest and exercise before or after oral isosorbide dinitrate with the exception of one patient with gross mitral regurgitation. The advantages of the incremental first pass technique are that the patient need not be in sinus rhythm, the effects of physiological intervention may be studied and tests may also be repeated at various intervals during long term follow-up of patients. A disadvantage of the method is the limitation in the number of sequential measurements which can be carried out due to the amount of radioactivity injected. (U.K.)

  18. Auto-correlation based intelligent technique for complex waveform presentation and measurement

    International Nuclear Information System (INIS)

    Rana, K P S; Singh, R; Sayann, K S

    2009-01-01

    Waveform acquisition and presentation forms the heart of many measurement systems. Particularly, data acquisition and presentation of repeating complex signals like sine sweep and frequency-modulated signals introduces the challenge of waveform time period estimation and live waveform presentation. This paper presents an intelligent technique, for waveform period estimation of both the complex and simple waveforms, based on the normalized auto-correlation method. The proposed technique is demonstrated using LabVIEW based intensive simulations on several simple and complex waveforms. Implementation of the technique is successfully demonstrated using LabVIEW based virtual instrumentation. Sine sweep vibration waveforms are successfully presented and measured for electrodynamic shaker system generated vibrations. The proposed method is also suitable for digital storage oscilloscope (DSO) triggering, for complex signals acquisition and presentation. This intelligence can be embodied into the DSO, making it an intelligent measurement system, catering wide varieties of the waveforms. The proposed technique, simulation results, robustness study and implementation results are presented in this paper.

  19. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    2002-01-01

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO 2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  20. Study on coal dust wettability measurement using cold briquetting technique

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Xu, H.; Shu, X. [North China Institute of Science and Technology, Beijing (China). Department of Resource and Environmental Engineering

    2008-12-15

    Quantitative measuring of coal dust wettability is essential for the research and development of chemical coal dust suppressants in the field of dust control with wetting-agent-added water. The causes of low repeat rate and poor consistency in present lab testing of coal dust wettability are discussed. The influence of different briquetting pressure (from 0 to 6.5108 Pa) on the wet behavior of coal dust is investigated as a new way to quantitatively evaluate coal dust wettability. The study shows that there is a fairly high coincidence between the coal dust wettability data measured by the briquetting technique and the results gained from the lab dust suppression tests using an MCYZ apparatus designed by the authors. 9 refs., 8 figs., 2 tabs.

  1. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  2. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  3. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    Science.gov (United States)

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  4. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  5. Fast sorting measurement technique to determine decontamination priority

    International Nuclear Information System (INIS)

    Distenfeld, C.H.; Brosey, B.; Igarashi, H.

    1986-01-01

    The method used to select decontamination priorities for the Three Mile Island Unit 2 (TMI-2) reactor building (RB) is systematic, but costs in personnel exposure and time must be borne. One way of minimizing exposure is to define and treat the one or two surface sources that are important contributors to the collective dose of the recovery personnel. Surface characteristics can then be determined and decontamination techniques developed to match the removal requirements. At TMI-2, a fast sorting technique was developed and used to prioritize surfaces for exposure reduction. A second quick sort can then be used to determine the next generation of surface characterization, decontamination method selection, and performance. The quick-sort method that was developed is based on the Eberline HP 220A probes directional survey system. The angular response of the HP 220A probes approaches 2 pi steradians and allows toward-away type measurements. Sources distributed over 4 pi steradians are hard to define with this system. Angular differentiation was improved to about pi/2 steradians by redesigning the probe shield. The change allows unambiguous six-direction measurements, such as up, down, front, rear, right, and left with practically no angular overlap or exclusion. A simple, light-weight stand was used to establish an angular reference for the rectangular packaged probe. The six surface planes of the rectangle work with the angular reference to establish the six viewing angles

  6. A Balloon Sounding Technique for Measuring SO2 Plumes

    Science.gov (United States)

    Morris, Gary A.; Komhyr, Walter D.; Hirokawa, Jun; Lefer, Barry; Krotkov, Nicholay; Ngan, Fong

    2010-01-01

    This paper reports on the development of a new technique for inexpensive measurements of SO2 profiles using a modified dual-ozonesonde instrument payload. The presence of SO2 interferes with the standard electrochemical cell (ECC) ozonesonde measurement, resulting in -1 molecule of O3 reported for each molecule of SO2 present (provided [O3] > [SO2]). In laboratory tests, an SO2 filter made with Cr03 placed on the inlet side of the sonde removes nearly 100% of the SO2 present for concentrations up to 60 ppbv and remained effective after exposure to 2.8 X 10(exp 16) molecules of SO2 [equivalent to a column approximately 150 DU (1 DU = 2.69 X 10(exp 20) molecules m(exp -2))]. Flying two ECC instruments on the same payload with one filtered and the other unfiltered yields SO2 profiles, inferred by subtraction. Laboratory tests and field experience suggest an SO2 detection limit of approximately 3 pbb with profiles valid from the surface to the ozonopause [i.e., approximately (8-10 km)]. Two example profiles demonstrate the success of this technique for both volcanic and industrial plumes.

  7. Periodic solutions of the Hamilton-Jacobi equation by the shooting method: A technique for beam dynamics

    International Nuclear Information System (INIS)

    Gabella, W.E.; Ruth, R.D.; Warnock, R.L.

    1988-05-01

    Periodic solutions of the Hamilton-Jacobi equation determine invariant tori in phase space. The Fourier spectrum of a torus with respect to angular coordinates gives useful information about nonlinear resonances and their potential for causing instabilities. We describe a method to solve the Hamilton-Jacobi equation for an arbitrary accelerator lattice. The method works with Fourier modes of the generating functions, and imposes periodicity in the machine azimuth by a shooting method. We give examples leading to three-dimensional plots in a surface of section. It is expected that the technique will be useful in lattice optimization. 14 refs., 6 figs., 1 tab

  8. An attenuation measurement technique for rotating planar detector positron tomographs

    International Nuclear Information System (INIS)

    McNeil, P.A.; Julyan, P.J.; Parker, D.J.

    1997-01-01

    This paper presents a new attenuation measurement technique suitable for rotating planar detector positron tomographs. Transmission measurements are made using two unshielded positron-emitting line sources, one attached to the front face of each detector. Many of the scattered and accidental coincidences are rejected by including only those coincidences that form a vector passing within a predetermined distance of either line source. Some scattered and accidental coincidences are still included, which reduces the measured linear attenuation; in principle their contribution can be accurately estimated and subtracted, but in practice, when limited statistics are available (as is the case with the multi-wire Birmingham positron camera), this background subtraction unacceptably increases the noise. Instead an attenuation image having the correct features can be reconstructed from the measured projections. For objects containing only a few discrete linear attenuation coefficients, segmentation of this attenuation image reduces noise and allows the correct linear attenuation coefficients to be restored by renormalization. Reprojection through the segmented image may then provide quantitatively correct attenuation correction factors of sufficient statistical quality to correct for attenuation in PET emission images. (author)

  9. Red blood cell-deformability measurement: review of techniques.

    Science.gov (United States)

    Musielak, M

    2009-01-01

    Cell-deformability characterization involves general measurement of highly complex relationships between cell biology and physical forces to which the cell is subjected. The review takes account of the modern technical solutions simulating the action of the force applied to the red blood cell in macro- and microcirculation. Diffraction ektacytometers and rheoscopes measure the mean deformability value for the total red blood cell population investigated and the deformation distribution index of individual cells, respectively. Deformation assays of a whole single cell are possible by means of optical tweezers. The single cell-measuring setups for micropipette aspiration and atomic force microscopy allow conducting a selective investigation of deformation parameters (e.g., cytoplasm viscosity, viscoelastic membrane properties). The distinction between instrument sensitivity to various RBC-rheological features as well as the influence of temperature on measurement are discussed. The reports quoted confront fascinating possibilities of the techniques with their medical applications since the RBC-deformability has the key position in the etiology of a wide range of conditions.

  10. Control technique of spontaneous combustion in fully mechan ized stope during period of end caving under complex mining influence

    Science.gov (United States)

    Yuan, Benqing

    2018-01-01

    In view of the phenomenon of spontaneous combustion of coal seam occurring during the period of end caving under complex mining conditions, taking the 1116 (3) stope of Guqiao mine as the object of study, the causes of spontaneous combustion during the period of end caving are analyzed, according to the specific geological conditions of the stope to develop corresponding fire prevention measures, including the reduction of air supply and air leakage in goaf, reduce the amount of coal left, reasonable drainage, nitrogen injection for spontaneous combustion prevention, grouting for spontaneous combustion prevention and permanent closure, fundamentally eliminates the potential for spontaneous combustion during the period of 1116(3) stope end caving. The engineering practice shows that this kind of measure has reference value for the prevention and control of spontaneous combustion during the period of stope end caving.

  11. Measuring viability of pacs during reform period in Maharashtra: A case study

    OpenAIRE

    Shah, Deepak

    2007-01-01

    The study showed a reduction in the operational efficiency of the selected PACS during the post-economic reform period as against the pre-economic reform period. The operational efficiency was measured in respect of various liquidity ratio, profitability ratios and financial leverage ratios. Not only the selected societies showed a decline in their current ratio, rate of return on assets, return on owner’s equity and Marginal Efficiency of Capital (MEC) but also showed higher dependency on le...

  12. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  13. Studies of Genetic Differences between KDML 105 and its Photo period-insensitive Mutants using DNA techniques

    International Nuclear Information System (INIS)

    Boonsirichai, Kanokporn; Klakhaeng, Kanchana; Phadvibulya, Valailak

    2007-08-01

    Full text: Photo period-insensitive mutants of KDML 105 could be planted for grains during and outside the regular cropping season. From genetic studies, the mutant characteristics appeared recessive. A DNA-fingerprinting technique was used to compare gene expression profiles in the leaves of mutants and KDML 105. Differences in the level of expression were found for several loci. Examination of the essential part of the gene for fragrance showed no differences between the mutants and the parental KDML 105

  14. Measurement of moisture depth distribution in composite materials using positron lifetime technique

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.; Mock, W. Jr.; Mall, G.H.

    1980-01-01

    Fiber-reinforced resin matrix composites reportedly suffer significant degradation in their mechanical properties when exposed to hot, moist, environments for extended periods. Moisture weakens the fiber matrix bond as well as the matrix shear strength. An important factor in determining the extent of degradation is the depth distribution of moisture in the resin matrix. Despite the importance of measuring moisture distribution and its effects on composite material properties, not enough data are available on suitable nondestructive techniques for detecting and measuring moisture diffusion in organic composite materials. This paper addresses itself to the problem of measuring the moisture content of such materials, with special emphasis on its depth distribution, using positron lifetime technique

  15. Nuclear measurements, techniques and instrumentation, industrial applications, plasma physics and nuclear fusion 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques, and Instrumentation, Industrial Applications, Plasma Physics and Nuclear Fusion, issued during the period 1986-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. Contents cover the three main areas of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactor and Particle Accelerator Applications, and Nuclear Data), (ii) Industrial Applications (Radiation Processing, Radiometry, and Tracers), and (iii) Plasma Physics and Controlled Thermonuclear Fusion

  16. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  17. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  18. Application of the can technique and radon gas analyzer for radon exhalation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I.; Musazay, M.S.; Abu-Jarad, F

    2003-12-01

    A passive 'can technique' and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bq m{sup -2} h{sup -1} with an average of 1.35{+-}1.40 Bq m{sup -2} h{sup -1}. The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  19. A neutral network based technique for short-term forecasting of anomalous load periods

    Energy Technology Data Exchange (ETDEWEB)

    Sforna, M [ENEL, s.p.a, Italian Power Company (Italy); Lamedica, R; Prudenzi, A [Rome Univ. ` La Sapienza` , Rome (Italy); Caciotta, M; Orsolini Cencelli, V [Rome Univ. III, Rome (Italy)

    1995-01-01

    The paper illustrates a part of the research activity conducted by authors in the field of electric Short Term Load Forecasting (STLF) based on Artificial Neural Network (ANN) architectures. Previous experiences with basic ANN architectures have shown that, even though these architecture provide results comparable with those obtained by human operators for most normal days, they evidence some accuracy deficiencies when applied to `anomalous` load conditions occurring during holidays and long weekends. For these periods a specific procedure based upon a combined (unsupervised/supervised) approach has been proposed. The unsupervised stage provides a preventive classification of the historical load data by means of a Kohonen`s Self Organizing Map (SOM). The supervised stage, performing the proper forecasting activity, is obtained by using a multi-layer percept ron with a back propagation learning algorithm similar to the ones above mentioned. The unconventional use of information deriving from the classification stage permits the proposed procedure to obtain a relevant enhancement of the forecast accuracy for anomalous load situations.

  20. ON MEASURING AMPLITUDES AND PERIODS OF PHYSICAL PENDULUM MICRO-SWINGS WITH ROLLING-CONTACT BEARING

    Directory of Open Access Journals (Sweden)

    N. N. Riznookaya

    2011-01-01

    Full Text Available The paper considers a method and an instrument for measuring amplitudes and  periods of physical pendulum oscillations with rolling-contact bearing in the regime of micro-swings when the oscillation amplitude is significantly less of an elastic contact angle. It has been established that the main factors limiting a measuring accuracy are noises of the measuring circuit, base vibration and analog-digital conversion. A new measuring methodology based on original algorithms of data processing and application of the well-known methods for statistic processing of a measuring signal is  proposed in the paper. The paper contains error estimations for measuring oscillation amplitudes justified by discreteness of a signal conversion in a photoelectric receptor and also by the influence of measuring circuit noise. The paper reveals that the applied methodologies make it possible to ensure measuring of amplitudes with an error of 0.2 second of arc and measuring of a period with an error of 10–4 s. The original measuring instrument including mechanical and optical devices and also an electric circuit of optical-to-electrical measuring signal conversion is described in the paper. 

  1. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    Science.gov (United States)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  2. Localized damage in soft rock: experiments with field measurement techniques

    International Nuclear Information System (INIS)

    Nguyen, T.L.

    2011-01-01

    The research presented in this thesis concerns, firstly, an experimental study on the process of fracture in uniaxial compression of rock samples containing narrow, rectilinear notches inclined with respect to the axis of loading. Secondly, we study the evolution of shear strain localisation towards fracturing and failure in specimens of the same materials with a particular geometry, involving two rounded notches. This geometry, inspired by the work of Meuwissen et al. (1998) for tension tests on metals, promotes the localisation of shear strain in simple compression before fracture. Two different materials were studied: a natural rock of volcanic origin (Neapolitan Tuff) and an artificial 'roc' (CPIR09). In the studies presented, three full-field measurement techniques have been employed in combination: (i) the Digital Image Correlation (DIC), for measurement of kinematic fields at a sample's surface; (ii)acoustic Emission measurements (AE) and AE source location, to follow the evolution of damage in samples during loading; (iii) X-ray tomography (pre-and post-mortem studies), to characterise preexisting defects and discontinuities in the specimens and to better understand the fracturing in 3D. (author)

  3. A computational technique to measure fracture callus in radiographs.

    Science.gov (United States)

    Lujan, Trevor J; Madey, Steven M; Fitzpatrick, Dan C; Byrd, Gregory D; Sanderson, Jason M; Bottlang, Michael

    2010-03-03

    Callus formation occurs in the presence of secondary bone healing and has relevance to the fracture's mechanical environment. An objective image processing algorithm was developed to standardize the quantitative measurement of periosteal callus area in plain radiographs of long bone fractures. Algorithm accuracy and sensitivity were evaluated using surrogate models. For algorithm validation, callus formation on clinical radiographs was measured manually by orthopaedic surgeons and compared to non-clinicians using the algorithm. The algorithm measured the projected area of surrogate calluses with less than 5% error. However, error will increase when analyzing very small areas of callus and when using radiographs with low image resolution (i.e. 100 pixels per inch). The callus size extracted by the algorithm correlated well to the callus size outlined by the surgeons (R2=0.94, p<0.001). Furthermore, compared to clinician results, the algorithm yielded results with five times less inter-observer variance. This computational technique provides a reliable and efficient method to quantify secondary bone healing response. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Techniques for intense-proton-beam profile measurements

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1998-01-01

    In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H + cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H - , pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA

  5. In vivo measurements of nitrogen using a neutron activation technique

    International Nuclear Information System (INIS)

    Larsson, L.; Alpsten, M.; Toelli, J.; Drugge, N.; Mattsson, S.

    1986-01-01

    Knowledge of body composition is essential for understanding of many diseases such as obesity, anorexia, cancer, kidney and heart diseases. For many years, total body potassium (TBK) has been used as an estimate of the intracellular protein. In some diseases intracellular- and extracellular protein may vary significantly. Together with TBK, total body nitrogen (TBN) should in these cases be measured to estimate the total protein content. The nitrogen content can be measured by in vivo neutron activation. In this work the authors have used the prompt gamma technique: Thermalized neutrons from a Cf-252-source are captured in (n, δ)-reactions. Prompt 10.8 MeV photons are emitted and can be detected during irradiation. The source is contained in a polyethylene block which forms a collimator surrounded by a phi 1.40 m x 0.80 m water tank. The patient is irradiated from below by a 15 cm x 50 cm neutron field. It is possible to scan the whole patient or to measure a part of the body. A phi 15 cm x 15 cm NaI(T1)-detector is used for detection of the 10.8 MeV photons. The detector is mounted above the patient outside the neutron field

  6. Trace elements in lake sediments measured by the PIXE technique

    International Nuclear Information System (INIS)

    Gatti, Luciana V.; Mozeto, Antonio A.; Artaxo, Paulo

    1999-01-01

    Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernao Lake, that is an oxbow lake of the Moji-Guacu River basin, in the state of Sao Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy

  7. The application of microwave techniques to temperature measurement in biotelemetry

    International Nuclear Information System (INIS)

    Glajchen, M.

    1984-01-01

    The use of a microwave dielectric resonator for temperature measurement in Biotelemetry offers the advantage that a passive temperature telemeter can be used. The telemeter is powered by a source remote from the host creature, thus permitting greater miniaturisation of the implant than is possible with conventional techniques. This is essential, especially for application to small animals where the telemeter size and weight become critical. The design of the telemeter which is based upon a novel microwave technique, and the associated practical considerations are discussed. Included in this work is a criticism of initially promising ideas which after an in-depth investigation had to be disregarded. Although the transponder could not be built in its final form due to the unavailability of certain key materials, the transponder operation was tested and found to be successful. A specification of the transponder and transmitter requirements for a working system are included. A theoretical and experimental appraisal of dielectric resonators as miniature microwave filters, also forms a large part of this work. Dielectric resonators offer a significant volume reduction compared to air-filled metallic cavities, and simple coupling to microstrip combined with ease of tuning permits incorporation into Microwave Integrated Circuits. A computer program which can form the basis for a dielectric resonator filter design is provided, and some unusual results of tests on dielectric resonators are presented. It is believed that this will help to popularise and increase understanding of the dielectric resonator - which is an exciting, yet still emerging technology

  8. Airflow measurement techniques applied to radon mitigation problems

    International Nuclear Information System (INIS)

    Harrje, D.T.; Gadsby, K.J.

    1989-01-01

    During the past decade a multitude of diagnostic procedures associated with the evaluation of air infiltration and air leakage sites have been developed. The spirit of international cooperation and exchange of ideas within the AIC-AIVC conferences has greatly facilitated the adoption and use of these measurement techniques in the countries participating in Annex V. But wide application of such diagnostic methods are not limited to air infiltration alone. The subject of this paper concerns the ways to evaluate and improve radon reduction in buildings using diagnostic methods directly related to developments familiar to the AIVC. Radon problems are certainly not unique to the United States, and the methods described here have to a degree been applied by researchers of other countries faced with similar problems. The radon problem involves more than a harmful pollutant of the living spaces of our buildings -- it also involves energy to operate radon removal equipment and the loss of interior conditioned air as a direct result. The techniques used for air infiltration evaluation will be shown to be very useful in dealing with the radon mitigation challenge. 10 refs., 7 figs., 1 tab

  9. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  10. Microrheometric upconversion-based techniques for intracellular viscosity measurements

    Science.gov (United States)

    Rodríguez-Sevilla, Paloma; Zhang, Yuhai; de Sousa, Nuno; Marqués, Manuel I.; Sanz-Rodríguez, Francisco; Jaque, Daniel; Liu, Xiaogang; Haro-González, Patricia

    2017-08-01

    Rheological parameters (viscosity, creep compliance and elasticity) play an important role in cell function and viability. For this reason different strategies have been developed for their study. In this work, two new microrheometric techniques are presented. Both methods take advantage of the analysis of the polarized emission of an upconverting particle to determine its orientation inside the optical trap. Upconverting particles are optical materials that are able to convert infrared radiation into visible light. Their usefulness has been further boosted by the recent demonstration of their three-dimensional control and tracking by single beam infrared optical traps. In this work it is demonstrated that optical torques are responsible of the stable orientation of the upconverting particle inside the trap. Moreover, numerical calculations and experimental data allowed to use the rotation dynamics of the optically trapped upconverting particle for environmental sensing. In particular, the cytoplasm viscosity could be measured by using the rotation time and thermal fluctuations of an intracellular optically trapped upconverting particle, by means of the two previously mentioned microrheometric techniques.

  11. Isotopic techniques for measuring the biological activity in plant rhizosphere

    International Nuclear Information System (INIS)

    Warembourg, F.R.

    1975-01-01

    The use of 14 C made it possible to separate root respired CO 2 and microbial CO 2 resulting from exudates utilisation by the rhizosphere microflora. Measurements were done after wheat plants grown under axenic and non axenic conditions were placed during short period of time in an atmosphere contaning 14 CO 2 . Under axenic conditions evolution of 14 CO 2 follows a bell shaped curve due to the brief appearance of labelled compounds translocated from the aerial part of the plants to the roots. In the presence of microorganisms, the maximum of activity due to root respiration is identical but immediately followed by a second peak of 14 CO 2 evolution that was attributed to the decomposition of labelled exudates by the microflora. The same observations resulted from the labelling of a grassland vegetation sampled with its soil and placed in the laboratory. Preliminary results obtained using this method of short term labelling of plants are presented here [fr

  12. A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles

    Science.gov (United States)

    Wiley, E. O.

    2013-04-01

    Pixel correlation uses the same reduction techniques as speckle imaging but relies on autocorrelation among captured pixel hits rather than true speckles. A video camera operating at speeds (8-66 milliseconds) similar to lucky imaging to capture 400-1,000 video frames. The AVI files are converted to bitmap images and analyzed using the interferometric algorithms in REDUC using all frames. This results in a series of corellograms from which theta and rho can be measured. Results using a 20 cm (8") Dall-Kirkham working at f22.5 are presented for doubles with separations between 1" to 5.7" under average seeing conditions. I conclude that this form of visualizing and analyzing visual double stars is a viable alternative to lucky imaging that can be employed by telescopes that are too small in aperture to capture a sufficient number of speckles for true speckle interferometry.

  13. Alignment measurements uncertainties for large assemblies using probabilistic analysis techniques

    CERN Document Server

    AUTHOR|(CDS)2090816; Almond, Heather

    Big science and ambitious industrial projects continually push forward with technical requirements beyond the grasp of conventional engineering techniques. Example of those are ultra-high precision requirements in the field of celestial telescopes, particle accelerators and aerospace industry. Such extreme requirements are limited largely by the capability of the metrology used, namely, it’s uncertainty in relation to the alignment tolerance required. The current work was initiated as part of Maria Curie European research project held at CERN, Geneva aiming to answer those challenges as related to future accelerators requiring alignment of 2 m large assemblies to tolerances in the 10 µm range. The thesis has found several gaps in current knowledge limiting such capability. Among those was the lack of application of state of the art uncertainty propagation methods in alignment measurements metrology. Another major limiting factor found was the lack of uncertainty statements in the thermal errors compensatio...

  14. Development of remote vibration measurement technique through turbulent media

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Sung Hoon; Chung, Chin Man; Kim, Min Suk; Park, Seung Kyu; Chung, Heung Jone

    2002-12-01

    The effect of wavefront distortion of laser beam of a LDV(Laser Doppler Vibrometer) in the turbulence media was investigated for application of adaptive optics to LDV. The high-speed tip/tilt adaptive optics system and closed-loop steering algorithm were developed for real-time correction of the direction fluctuation of the laser beam of LDV. The measuring performance of the LDV was improved when the steering system was applied to LDV at the vibration frequency range of 10 Hz - 30 Hz. The high-speed Shack-Hartmann wavefront sensor(400 Hz) was developed to measure the performance of the LDV due to wavefront distortion. The wavefront distortion due to the turbulence media induced low visibility and degraded the performance of the vibrometer. From the experiments, when the wavefront distortion is above 2 wavelengths in the cross section of the laser beam(dia. 20 mm), the vibration signal from laser vibrometer was severely degraded. When the wavefront distortion is smaller than one wave, the vibration signal was good. From the this research, high-speed closed-loop tip/tilt control technique of the laser beam was developed and applied to the laser metrology area. In the future, the adaptive optics system for wavefront correction will be applied to other research area.

  15. Trace element measurement in Saliva by NAA and PIXE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hamidian, M.R.; Vahid Golpayegani, M.; Shojai, S. (Shahid Beheshti Medical Science Univ., Shemiran, Tehran (Iran, Islamic Republic of))

    1993-01-01

    The activity of salivary glands and the chemical and physical properties of saliva, especially in some illnesses in which the activity of salivary glands and the chemical and physical properties alter, sometimes have severe effects on sedimentation and tooth decay. Long-standing investigations have shown the relationship between salivary gland activity and saliva composition in dental carries. Many modern techniques have been employed to measure important elements in saliva. The major elements in saliva include sodium, potassium, calcium, magnesium, chlorine, phosphorus, iodine, and fluorine. It should be pointed out that the amount of minerals changes when the diet changes. The major constituent of saliva is water with a density of 1.007 g/cm[sup 3] in which 0.6% is solid, 0.3% organic material and 0.3% inorganic material. In addition to other effects, the acidity (pH) of saliva has a strong effect on tooth sedimentation. Type of work, degree of stress, and mental condition affect salivary gland activity. When the acidity of salivary fluid in the mouth and consequently over the teeth drops, sedimentation increases. In this paper, the results of trace element measurement in saliva are presented.

  16. Rainfall measurement using cell phone links: classification of wet and dry periods using geostationary satellites

    NARCIS (Netherlands)

    van Delden, A.J.; van het Schip, T.I.; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; Meirink, J.F.

    2017-01-01

    Commercial cellular telecommunication networks can be used for rainfall estimation by measur- ing the attenuation of electromagnetic signals transmitted between antennas from microwave links. However, as the received link signal may also decrease during dry periods, a method to separate wet and dry

  17. Measuring the cortical silent period can increase diagnostic confidence for amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Schelhaas, H.J.; Arts, I.M.P.; Overeem, S.; Houtman, C.J.; Janssen, H.; Kleine, B.U.; Munneke, M.; Zwarts, M.J.

    2007-01-01

    We evaluated a modified measurement of the cortical silent period (CSP) as a simple procedure to add further confidence in the diagnostic work-up for ALS. Thirty-seven consecutive patients with a suspicion of having ALS were included together with 25 healthy volunteers, and followed until a final

  18. Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy.

    Science.gov (United States)

    Passeri, D; Dong, C; Angeloni, L; Pantanella, F; Natalizi, T; Berlutti, F; Marianecci, C; Ciccarello, F; Rossi, M

    2014-01-01

    The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers. © 2013 Elsevier B.V. All rights reserved.

  19. Image tuning techniques for enhancing the performance of pure permanent magnet undulators with small gap/period ratios

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    The on-axis field of a small-gap undulator constricted out of pure permanent magnet (PM) blocks arranged in an alternating-dipole (i.e., 2 dipoles/period) array can be substantially varied by positioning monolithic permeable plates above and below the undulator jaws. This simple technique, which can be used to control the 1st harmonic energy in conventional synchrotron radiation (SR) or Free Electron Laser (FEL) applications requiring sub-octave tuning, can also be shown to suppress magnetic inhomogeneities that can contribute to the undulator`s on-axis field errors. If a standard 4 block/period Halbach undulator, composed of PM blocks with square cross sections, is rearranged into an alternating-dipole array with the same period, the peak field that can be generated with superimposed image plates can substantially exceed that of the pure-PM Halbach array. This design technique, which can be viewed as intermediate between the {open_quotes}pure-PM{close_quotes} and standard {open_quotes}hybrid/PM{close_quotes} configurations, provides a potentially cost-effective method of enhancing the performance of small-gap, pure-PM insertion devices. In this paper we report on the analysis and recent characterization of pure-PM undulator structures with superimposed image plates, and discuss possible applications to FEL research.

  20. Momentum--"Evaluating Your Marketing Program: Measuring and Tracking Techniques."

    Science.gov (United States)

    Meservey, Lynne D.

    1990-01-01

    Suggests 10 tracking techniques for evaluating marketing performance. Techniques involve utilization rate, inquiry and source of inquiry tracking, appointment and interview tracking, enrollment conversion, cost per inquiry and per enrollment, retention rate, survey results, and "mystery shopper." (RJC)

  1. A review of hemorheology: Measuring techniques and recent advances

    Science.gov (United States)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  2. Adaptability of laser diffraction measurement technique in soil physics methodology

    Science.gov (United States)

    Barna, Gyöngyi; Szabó, József; Rajkai, Kálmán; Bakacsi, Zsófia; Koós, Sándor; László, Péter; Hauk, Gabriella; Makó, András

    2016-04-01

    There are intentions all around the world to harmonize soils' particle size distribution (PSD) data by the laser diffractometer measurements (LDM) to that of the sedimentation techniques (pipette or hydrometer methods). Unfortunately, up to the applied methodology (e. g. type of pre-treatments, kind of dispersant etc.), PSDs of the sedimentation methods (due to different standards) are dissimilar and could be hardly harmonized with each other, as well. A need was arisen therefore to build up a database, containing PSD values measured by the pipette method according to the Hungarian standard (MSZ-08. 0205: 1978) and the LDM according to a widespread and widely used procedure. In our current publication the first results of statistical analysis of the new and growing PSD database are presented: 204 soil samples measured with pipette method and LDM (Malvern Mastersizer 2000, HydroG dispersion unit) were compared. Applying usual size limits at the LDM, clay fraction was highly under- and silt fraction was overestimated compared to the pipette method. Subsequently soil texture classes determined from the LDM measurements significantly differ from results of the pipette method. According to previous surveys and relating to each other the two dataset to optimizing, the clay/silt boundary at LDM was changed. Comparing the results of PSDs by pipette method to that of the LDM, in case of clay and silt fractions the modified size limits gave higher similarities. Extension of upper size limit of clay fraction from 0.002 to 0.0066 mm, and so change the lower size limit of silt fractions causes more easy comparability of pipette method and LDM. Higher correlations were found between clay content and water vapor adsorption, specific surface area in case of modified limit, as well. Texture classes were also found less dissimilar. The difference between the results of the two kind of PSD measurement methods could be further reduced knowing other routinely analyzed soil parameters

  3. The Periodic Measurement of the Airborne Radioactivity In Controlled Area of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Park, Sung-Kyun; Min, Yi-Sub; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Multipurpose Accelerator Complex (KOMAC) to start the performance operation in the second half of 2013, is currently operated in each beamline 20-MeV and 100-MeV. The accelerator operation period is simply divided by three operation cycles which are the maintenance checks period for accelerator device, the performance test period before driving accelerator and the operation period. During this operation period, beam is irradiated to target. At this time, the proton beams collide with the target material and a high dose of radiations such as gamma ray and neutron occurred. Radiation controlled area at the accelerator facility is divided into accelerator tunnel and beam utilization zone. As a result of measuring the airborne radioactivity in the controlled area in accordance with the operating cycle of the proton accelerator KOMAC, It was confirmed that the value of the airborne radioactivity does not significantly differ according to each accelerator operating cycles. And alpha and beta values measured inside the area that workers primarily work is very low indoor radon level than the value of the recommendations in multiple facilities.

  4. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  5. The Information Content of Corridor Volatility Measures During Calm and Turmoil Periods

    Directory of Open Access Journals (Sweden)

    Elyas Elyasiani

    2017-12-01

    Full Text Available Measurement of volatility is of paramount importance in finance because of the effects on risk measurement and risk management. Corridor implied volatility measures allow us to disentangle the volatility of positive returns from that of negative returns, providing investors with additional information beyond standard market volatility. The aim of the paper is twofold. First, to propose different types of corridor implied volatility and some combinations of them as risk indicators, in order to provide useful information about investors’ sentiment and future market returns. Second, to investigate their usefulness in prediction of market returns under different market conditions (with a particular focus on the subprime crisis and the European debt crisis. The data set consists of daily index options traded on the Italian market and covers the 2005–2014 period. We find that upside corridor implied volatility measure embeds the highest information content about contemporaneous market returns, claiming the superiority of call options in measuring current sentiment in the market. Moreover, both upside and downside volatilities can be considered as barometers of investors’ fear. The volatility measures proposed have forecasting power on future returns only during high volatility periods and in particular during the European debt crisis. The explanatory power on future market returns improves when two of the proposed volatility measures are combined together in the same model.

  6. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  7. Calibration and measurement of 210Pb using two independent techniques

    International Nuclear Information System (INIS)

    Villa, M.; Hurtado, S.; Manjon, G.; Garcia-Tenorio, R.

    2007-01-01

    An experimental procedure has been developed for a rapid and accurate determination of the activity concentration of 210 Pb in sediments by liquid scintillation counting (LSC). Additionally, an alternative technique using γ-spectrometry and Monte Carlo simulation has been developed. A radiochemical procedure, based on radium and barium sulphates co-precipitation have been applied to isolate the Pb-isotopes. 210 Pb activity measurements were done in a low background scintillation spectrometer Quantulus 1220. A calibration of the liquid scintillation spectrometer, including its α/β discrimination system, has been made, in order to minimize background and, additionally, some improvements are suggested for the calculation of the 210 Pb activity concentration, taking into account that 210 Pb counting efficiency cannot be accurately determined. Therefore, the use of an effective radiochemical yield, which can be empirically evaluated, is proposed. 210 Pb activity concentration in riverbed sediments from an area affected by NORM wastes has been determined using both the proposed method. Results using γ-spectrometry and LSC are compared to the results obtained following indirect α-spectrometry ( 210 Po) method

  8. Salinity measurement in water environment with a long period grating based interferometer

    International Nuclear Information System (INIS)

    Possetti, G R C; Kamikawachi, R C; Muller, M; Fabris, J L; Prevedello, C L

    2009-01-01

    In this work, a comparative study of the behaviour of an in-fibre Mach–Zehnder interferometer for salinity measurement in a water solution is presented. The fibre transducer is composed of two nearly identical long period gratings forming an in-series 7.38 cm long device written in the same fibre optic. Two inorganic and one organic salts (NaCl, KCl, NaCOOH) were characterized within the concentration range from 0 to 150 g L −1 . For the long period grating interferometer, the average obtained sensitivities were −6.61, −5.58 and −3.83 pm/(g L −1 ) for the above salts, respectively, or equivalently −40.8, −46.5 and −39.1 nm RIU −1 . Salinity measured by means of fibre refractometry is compared with measurements obtained using an Abbe refractometer as well as via electrical conductivity. For the long period grating refractometer, the best resolutions attained were 1.30, 1.54 and 2.03 g of salt per litre for NaCl, KCl and NaCOOH, respectively, about two times better than the resolutions obtained by the Abbe refractometer. An average thermal sensitivity of 53 pm °C −1 was measured for the grating transducer immersed in water, indicating the need for the thermal correction of the sensor. Resolutions for the same ionic constituent in different salts are also analysed

  9. A0535+26: Refined position measurement and new pulse period data

    International Nuclear Information System (INIS)

    Li, F.; Rappaport, S.; Clark, G.W.; Jernigan, J.G.

    1979-01-01

    The hard, pulsing, transient X-ray source A0535+26 has been observed with SAS 3 on three occasions during 1977--1978. These observations have yielded a precise position measurement (20'' error radius) which renders the identification of A0535+26 with the Be star HDE 245770 virtually certain. The pulse phase was tracked for approx.9 days in 1978 April and clearly showed both first and second derivatives in the pulse period. An analysis of these new timing data, combined with data from previous observations, leads to the following conclusions: (1) a significant fraction of the observed changes in pulse period is probably intrinsic to the compact X-ray stae (e.g., accretion torques on a neutron star), and (2) conservative limits on binary orbital parameters tend to further confirm a long orbital period

  10. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  11. Floods in Serbia in the 1999-2009 period: Hydrological analysis and flood protection measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2010-01-01

    Full Text Available The review on greatest floods recorded in Vojvodina and central Serbia within the period from 1999 to 2009 is given in this paper. For 13 hydrological stations, that recorded the greatest floods for the present period, probability of occurrence of these floods has been accomplished. Based on analysis of time series of discharge and water level maximum, performed by applying probability theory and mathematical statistics, and calculated theoretical probability distribution function of floods, probability of occurrence of flood has been obtained. Most often the best agreement with the empirical distribution function had a Log-Pearson III, Pearson III distribution. These results can be used for dimensioning of hydro-technical objects for flood protection. The most significant causes for floods recorded in this period were melting of snow and intensive rainfall. In this paper the current situation of flood protection and future development of flood protection measures were also presented. .

  12. Diagnostic performance of MRI measurements to assess hindfoot malalignment. An assessment of four measurement techniques

    International Nuclear Information System (INIS)

    Buck, Florian M.; Hoffmann, Adrienne; Mamisch-Saupe, Nadja; Hodler, Juerg; Farshad, Mazda; Espinosa, Norman; Resnick, Donald

    2013-01-01

    To investigate the ability of coronal non-weight-bearing MR images to discriminate between normal and abnormal hindfoot alignment. Three different measurement techniques (calcaneal axis, medial/lateral calcaneal contour) based on weight-bearing hindfoot alignment radiographs were applied in 49 patients (mean, 48 years; range 21-76 years). Three groups of subjects were enrolled: (1) normal hindfoot alignment (0 -10 valgus); (2) abnormal valgus (>10 ); (3) any degree of varus hindfoot alignment. Hindfoot alignment was then measured on coronal MR images using four different measurement techniques (calcaneal axis, medial/lateral calcaneal contour, sustentaculum tangent). ROC analysis was performed to find the MR measurement with the greatest sensitivity and specificity for discrimination between normal and abnormal hindfoot alignment. The most accurate measurement on MR images to detect abnormal hindfoot valgus was the one using the medial calcaneal contour, reaching a sensitivity/specificity of 86 %/75 % using a cutoff value of >11 valgus. The most accurate measurement on MR images to detect abnormal hindfoot varus was the sustentaculum tangent, reaching a sensitivity/specificity of 91 %/71 % using a cutoff value of <12 valgus. It is possible to suspect abnormal hindfoot alignment on coronal non-weight-bearing MR images. (orig.)

  13. Diagnostic performance of MRI measurements to assess hindfoot malalignment. An assessment of four measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Florian M.; Hoffmann, Adrienne; Mamisch-Saupe, Nadja; Hodler, Juerg [University Hospital Balgrist and University of Zurich, Radiology, Zuerich (Switzerland); Farshad, Mazda; Espinosa, Norman [University Hospital Balgrist and University of Zurich, Department of Orthopaedic Surgery, Zuerich (Switzerland); Resnick, Donald [University of California San Diego, Department of Radiology, San Diego, CA (United States)

    2013-09-15

    To investigate the ability of coronal non-weight-bearing MR images to discriminate between normal and abnormal hindfoot alignment. Three different measurement techniques (calcaneal axis, medial/lateral calcaneal contour) based on weight-bearing hindfoot alignment radiographs were applied in 49 patients (mean, 48 years; range 21-76 years). Three groups of subjects were enrolled: (1) normal hindfoot alignment (0 -10 valgus); (2) abnormal valgus (>10 ); (3) any degree of varus hindfoot alignment. Hindfoot alignment was then measured on coronal MR images using four different measurement techniques (calcaneal axis, medial/lateral calcaneal contour, sustentaculum tangent). ROC analysis was performed to find the MR measurement with the greatest sensitivity and specificity for discrimination between normal and abnormal hindfoot alignment. The most accurate measurement on MR images to detect abnormal hindfoot valgus was the one using the medial calcaneal contour, reaching a sensitivity/specificity of 86 %/75 % using a cutoff value of >11 valgus. The most accurate measurement on MR images to detect abnormal hindfoot varus was the sustentaculum tangent, reaching a sensitivity/specificity of 91 %/71 % using a cutoff value of <12 valgus. It is possible to suspect abnormal hindfoot alignment on coronal non-weight-bearing MR images. (orig.)

  14. Effect of length of measurement period on accuracy of predicted annual heating energy consumption of buildings

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Kim, Won-Tae; Tae, Choon-Soeb; Zaheeruddin, M.

    2004-01-01

    This study examined the temperature dependent regression models of energy consumption as a function of the length of the measurement period. The methodology applied was to construct linear regression models of daily energy consumption from 1 day to 3 months data sets and compare the annual heating energy consumption predicted by these models with actual annual heating energy consumption. A commercial building in Daejon was selected, and the energy consumption was measured over a heating season. The results from the investigation show that the predicted energy consumption based on 1 day of measurements to build the regression model could lead to errors of 100% or more. The prediction error decreased to 30% when 1 week of data was used to build the regression model. Likewise, the regression model based on 3 months of measured data predicted the annual energy consumption within 6% of the measured energy consumption. These analyses show that the length of the measurement period has a significant impact on the accuracy of the predicted annual energy consumption of buildings

  15. Techniques for measuring vitamin A activity from β-carotene.

    Science.gov (United States)

    Tang, Guangwen

    2012-11-01

    Dietary β-carotene is the most important precursor of vitamin A. However, the determination of the efficiency of in vivo conversion of β-carotene to vitamin A requires sensitive and safe techniques. It presents the following challenges: 1) circulating β-carotene concentration cannot be altered by eating a meal containing ≤6 mg β-carotene; 2) because retinol concentrations are homeostatically controlled, the conversion of β-carotene into vitamin A cannot be estimated accurately in well-nourished humans by assessing changes in serum retinol after supplementation with β-carotene. In the past half-century, techniques using radioisotopes of β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene supplements, measurement of postprandial chylomicron fractions after consumption of a β-carotene dose, and finally, stable isotopes as tracers to follow the absorption and conversion of β-carotene in humans have been developed. The reported values for β-carotene to vitamin A conversion showed a wide variation from 2 μg β-carotene to 1 μg retinol (for synthetic pure β-carotene in oil) and 28 μg β-carotene to 1 μg retinol (for β-carotene from vegetables). In recent years, a stable isotope reference method (IRM) was developed that used labeled synthetic β-carotene. The IRM method provided evidence that the conversion of β-carotene to vitamin A is likely dose dependent. With the development of intrinsically labeled plant foods harvested from a hydroponic system with heavy water, vitamin A activity of stable isotope-labeled biosynthetic β-carotene from various foods consumed by humans was studied. The efficacy of plant foods rich in β-carotene, such as natural (spinach, carrots, spirulina), hybrid (high-β-carotene yellow maize), and bioengineered (Golden Rice) foods, to provide vitamin A has shown promising results. The results from these studies will be of practical importance in recommendations for the use of pure β-carotene and foods

  16. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    Science.gov (United States)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  17. Development of in vivo impedance spectroscopy techniques for measurement of micropore formation following microneedle insertion.

    Science.gov (United States)

    Brogden, Nicole K; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J; Stinchcomb, Audra L

    2013-06-01

    Microneedles (MNs) provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of the current work was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 MN insertions per site following an overnight prehydration period. Repeated measurements were made pre- and post-MN treatment using dry and gel Ag/AgCl electrodes applied with light verses direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-MN application at all sites (p micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %relative standard deviation), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor the formation of new micropores that will allow for drug delivery through the impermeable skin layers. Copyright © 2013 Wiley Periodicals, Inc.

  18. Computer aided periodical and regulated service tests on radiation measuring systems

    International Nuclear Information System (INIS)

    Sandner, W.; Lin, R.; Rothhaupt, W.

    1994-01-01

    Measuring systems for radioactive radiation, which must be registered by official order, have to be tested periodically according to laid down rules (WKP). A strategy for a test-device was drawn up for a flexible adaption of the procedure to individual requests, but also for a standardization of the logical interface to the measuring system. Especially the interaction of testing and normal measuring procedures is clearly defined and transparent; the original functional parts of the measuring run are used during the test as far as possible. Adapation to individual requirements is controlled by ASCII-Files, so that the program code remains unchanged. The functional possibilities are extensive also for the inspections by customers and authorities. Due to the nearly automatical run of the procedure, including printout of the results, the tests are always comparable. The standard was checked by some actual projects, basede on SYSTEM 7000 (Thermo Instrument Systems GmbH) and PC runing under DOS. (orig.) [de

  19. A new bridge technique for neutron tomography and diffraction measurements

    International Nuclear Information System (INIS)

    Burca, G.; James, J.A.; Kockelmann, W.; Fitzpatrick, M.E.; Zhang, S.Y.; Hovind, J.; Langh, R. van

    2011-01-01

    An attractive feature of neutron techniques is the ability to identify hidden materials and structures inside engineering components and objects of art and archaeology. Bearing this in mind we are investigating a new technique, 'Tomography Driven Diffraction' (TDD), that exploits tomography data to guide diffraction experiments on samples with complex structures and shapes. The technique can be used utilising combinations of individual tomography and diffraction instruments, such as NEUTRA (PSI, CH) and ENGIN-X (ISIS, UK), but is also suitable for new combined imaging and diffraction instruments such as the JEEP synchrotron engineering instrument (DIAMOND, UK) and the proposed IMAT neutron imaging and diffraction instrument (ISIS, UK).

  20. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    Science.gov (United States)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  1. Multiple and Periodic Measurement of RBC Aggregation and ESR in Parallel Microfluidic Channels under On-Off Blood Flow Control

    Directory of Open Access Journals (Sweden)

    Yang Jun Kang

    2018-06-01

    Full Text Available Red blood cell (RBC aggregation causes to alter hemodynamic behaviors at low flow-rate regions of post-capillary venules. Additionally, it is significantly elevated in inflammatory or pathophysiological conditions. In this study, multiple and periodic measurements of RBC aggregation and erythrocyte sedimentation rate (ESR are suggested by sucking blood from a pipette tip into parallel microfluidic channels, and quantifying image intensity, especially through single experiment. Here, a microfluidic device was prepared from a master mold using the xurography technique rather than micro-electro-mechanical-system fabrication techniques. In order to consider variations of RBC aggregation in microfluidic channels due to continuous ESR in the conical pipette tip, two indices (aggregation index (AI and erythrocyte-sedimentation-rate aggregation index (EAI are evaluated by using temporal variations of microscopic, image-based intensity. The proposed method is employed to evaluate the effect of hematocrit and dextran solution on RBC aggregation under continuous ESR in the conical pipette tip. As a result, EAI displays a significantly linear relationship with modified conventional ESR measurement obtained by quantifying time constants. In addition, EAI varies linearly within a specific concentration of dextran solution. In conclusion, the proposed method is able to measure RBC aggregation under continuous ESR in the conical pipette tip. Furthermore, the method provides multiple data of RBC aggregation and ESR through a single experiment. A future study will involve employing the proposed method to evaluate biophysical properties of blood samples collected from cardiovascular diseases.

  2. Blood flow rate measurements with indicator techniques revisited

    DEFF Research Database (Denmark)

    Sejrsen, Per; Bülow, Jens

    2009-01-01

    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions......, necessary precautions for the application of these experimental techniques are emphasized. Special attention has been carried out to elucidate the consequence of a choice of indicators having a large distribution volume in the tissues....

  3. The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Scott A [Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalfamo, Simone [Univ. of Stuttgart (Germany); Brake, Matthew R. W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice Univ., Houston, TX (United States); Schwingshackl, Christoph W. [Imperial College, London (United Kingdom); Reusb, Pascal [Daimler AG, Stuttgart (Germany)

    2017-01-01

    In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratio variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.

  4. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  5. Driver drowsiness detection using behavioral measures and machine learning techniques: A review of state-of-art techniques

    CSIR Research Space (South Africa)

    Ngxande, Mkhuseli

    2017-11-01

    Full Text Available This paper presents a literature review of driver drowsiness detection based on behavioral measures using machine learning techniques. Faces contain information that can be used to interpret levels of drowsiness. There are many facial features...

  6. Measurement of the Dielectric Constant of Seawater at L-Band: Techniques and Measurements

    Science.gov (United States)

    Lang, R.; Utku, C.; Tarkocin, Y.; LeVine, D.

    2009-01-01

    Satellite instruments, that will monitor salinity from space in the near future, require an accurate relationship between salinity/temperature and seawater dielectric constant. This paper will review measurements that were made of the dielectric constant of seawater during the past several years. The objective of the measurements is to determine the dependence of the dielectric constant of seawater on salinity and on temperature, more accurately than in the past. by taking advantage of modem instrumentation. The measurements of seawater permittivity have been performed as a function of salinity and temperature using a transmission resonant cavity technique. The measurements have been made in the salinity range of 10 to 38 psu and in the temperature range of IOU C to 35 C. These results will be useful in algorithm development for sensor systems such as SMOS and Aquarius. The measurement system consists of a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The diameter of the tube has been made very small so that the amount of seawater introduced in the cavity is small - thus maintaining the sensitivity of the measurements and allowing the use of perturbation theory predicting the seawater permittivity. The change in resonant frequency and the change in cavity Q can be used to determine the real and imaginary pare of the dielectric constant of seawater introduced into the slender tube. The microwave measurements are made by an HPS722D network analyzer. The cavity has been immersed in a uateriethylene-glycol bath which is connected to a Lauda circulator. The circulator keeps the brass cavity at a temperature constant to within 0.01 degrees. The system is automated using a Visual Basic program to control the analyzer and to collect the data. The results of the dielectric constant measurements of seawater will be presented. The measurement results will be

  7. Using Computer Techniques To Predict OPEC Oil Prices For Period 2000 To 2015 By Time-Series Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Esmail Ahmad

    2015-08-01

    Full Text Available The instability in the world and OPEC oil process results from many factors through a long time. The problems can be summarized as that the oil exports dont constitute a large share of N.I. only but it also makes up most of the saving of the oil states. The oil prices affect their market through the interaction of supply and demand forces of oil. The research hypothesis states that the movement of oil prices caused shocks crises and economic problems. These shocks happen due to changes in oil prices need to make a prediction within the framework of economic planning in a short run period in order to avoid shocks through using computer techniques by time series models.

  8. A technique to detect periodic and non-periodic ultra-rapid flux time variations with standard radio-astronomical data

    Science.gov (United States)

    Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric

    2018-06-01

    We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.

  9. Prompt-period measurement of the Annular Core Research Reactor prompt neutron generation time

    International Nuclear Information System (INIS)

    Coats, R.L.; Talley, D.G.; Trowbridge, F.R.

    1994-07-01

    The prompt neutron generation time for the Annular Core Research Reactor was experimentally determined using a prompt-period technique. The resultant value of 25.5 μs agreed well with the analytically determined value of 24 μs. The three different methods of reactivity insertion determination yielded ±5% agreement in the experimental values of the prompt neutron generation time. Discrepancies observed in reactivity insertion values determined by the three methods used (transient rod position, relative delayed critical control rod positions, and relative transient rod and control rod positions) were investigated to a limited extent. Rod-shadowing and low power fuel/coolant heat-up were addressed as possible causes of the discrepancies

  10. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  11. Comparison of porosity measurement techniques for porous titanium scaffolds evaluation

    International Nuclear Information System (INIS)

    Oliveira, M.V.; Ribeiro, A.A.; Moreira, A.C.; Moraes, A.M.C.; Appoloni, C.R.; Pereira, L.C.

    2009-01-01

    Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds. (author)

  12. Cerebral blood flow measurement techniques in infants and children

    International Nuclear Information System (INIS)

    Kirsch, J.R.; Traystman, R.J.; Rogers, M.C.

    1985-01-01

    The tremendous growth of interest in neurologic intensive care and in the pathophysiology of the cerebral circulation in the past few years has resulted in increasing numbers of studies that document alterations in cerebral flow during the course of various diseases or as a response to treatment of them. Before pediatricians come to conclusions based on these studies, it is important to have an understanding of the techniques involved. The techniques are complex and difficult but are based on understandable principles. They also have limitations and are subject to misinterpretations. Pediatricians should become knowledgeable about some of these techniques and their limitations because it is likely that they will be applied with increasing frequency in the next several years. We are on the threshold of exciting discoveries in abnormalities of cerebral blood flow and cerebral metabolism not only in critically ill children but also in children with congenital and learning disorders

  13. Direct measurements of 3d structure, chemistry and mass density during the induction period of C3s hydration

    International Nuclear Information System (INIS)

    Hu, Qinang; Aboustait, Mohammed; Kim, Taehwan; Ley, M. Tyler; Bullard, Jeffrey W.; Scherer, George; Hanan, Jay C.; Rose, Volker; Winarski, Robert; Gelb, Jeffrey

    2016-01-01

    The reasons for the start and end of the induction period of cement hydration remain a topic of controversy. One long-standing hypothesis is that a thin metastable hydrate forming on the surface of cement grains significantly reduces the particle dissolution rate; the eventual disappearance of this layer re-establishes higher dissolution rates at the beginning of the acceleration period. However, the importance, or even the existence, of this metastable layer has been questioned because it cannot be directly detected in most experiments. In this work, a combined analysis using nano-tomography and nano-X-ray fluorescence makes the direct imaging of early hydration products possible. These novel X-ray imaging techniques provide quantitative measurements of 3D structure, chemical composition, and mass density of the hydration products during the induction period. This work does not observe a low density product on the surface of the particle, but does provide insights into the formation of etch pits and the subsequent hydration products that fill them.

  14. Contralateral breast doses measured by film dosimetry: tangential techniques and an optimized IMRT technique

    International Nuclear Information System (INIS)

    Saur, S; Frengen, J; Fjellsboe, L M B; Lindmo, T

    2009-01-01

    The contralateral breast (CLB) doses for three tangential techniques were characterized by using a female thorax phantom and GafChromic EBT film. Dose calculations by the pencil beam and collapsed cone algorithms were included for comparison. The film dosimetry reveals a highly inhomogeneous dose distribution within the CLB, and skin doses due to the medial fields that are several times higher than the interior dose. These phenomena are not correctly reproduced by the calculation algorithms. All tangential techniques were found to give a mean CLB dose of approximately 0.5 Gy. All wedged fields resulted in higher CLB doses than the corresponding open fields, and the lateral open fields resulted in higher CLB doses than the medial open fields. More than a twofold increase in the mean CLB dose from the medial open field was observed for a 90 deg. change of the collimator orientation. Replacing the physical wedge with a virtual wedge reduced the mean dose to the CLB by 35% and 16% for the medial and lateral fields, respectively. Lead shielding reduced the skin dose for a tangential technique by approximately 50%, but the mean CLB dose was only reduced by approximately 11%. Finally, a technique based on open medial fields in combination with several IMRT fields is proposed as a technique for minimizing the CLB dose. With and without lead shielding, the mean CLB dose using this technique was found to be 0.20 and 0.27 Gy, respectively.

  15. The immediate effect of individual manipulation techniques on pulmonary function measures in persons with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J

    2009-10-08

    The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to

  16. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  17. Measurement of central corneal thickness by different techniques

    Directory of Open Access Journals (Sweden)

    Reem Hassan Ibrahim Azzam

    2017-01-01

    Conclusion CCT measurements obtained by UBM tend to be thicker than those obtained by pentacam and noncontact specular microscopy, but the measurements of all three are strongly positively correlated with each other. So, any of these devices can be easily substituted by the other for the measurement of CCT.

  18. Detection of solar radio brightness oscillations with 160.01-min period from direct measurements

    International Nuclear Information System (INIS)

    Efanov, V.A.; Moiseev, I.G.; Nesterov, N.S.

    1983-01-01

    It is shown that direct measurements of the quiet Sun brightness at 8.2 and 13.5 mm wavelengths corrected for extinction in the Earth atmosphere by means of the Bouguer law reveal the 160.01-min periodic component. The relative amplitudes of variations are of approximately 6x10 -4 at the shorter wavelength and of 10 -3 at the longer one. The brightness maximum coincides with the phase of the maximal radius of the photosphere as derived from the optical data

  19. Measuring efficiency in health care: analytic techniques and health policy

    National Research Council Canada - National Science Library

    Smith, Peter C; Street, Andrew; Jacobs, Rowena

    2006-01-01

    ... the efficiency of systems and organisations, including data envelopment analysis and stochastic frontier analysis, and also presents some promising new methodological approaches. Such techniques offer the prospect of many new and fruitful insights into health care performance. Nevertheless, they also pose many practical and methodological c...

  20. Measurement accuracy of a stressed contact lens during its relaxation period

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  1. Microwave measurements of energy lost to longitudinal modes by single electron bunches traversing periodic structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Loew, G.A.; Weaver, J.N.; Wilson, P.B.

    1981-10-01

    In the design of future linear colliders, it will be important to minimize the loss of beam energy due to the excitation of higher-order modes in the accelerator structure by single bunches of electrons or positrons. This loss is not only detrimental in itself but also gives rise to energy spectrum widening and transverse emittance growth. Microwave measurements made on disk-loaded and alternating-spoke structures to determine the loss to the longitudinal modes are described. In these measurements the Gaussian bunch is simulated by a current pulse of the same shape transmitted through the structure on an axial center conductor. Results to date are presented for the total longitudinal loss parameter per period K in volts per picocoulomb

  2. Evaluation of domain randomness in periodically poled lithium niobate by diffraction noise measurement.

    Science.gov (United States)

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2013-12-16

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett.36, 864-866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.

  3. Measurement of tonal-noise characteristics and periodic flow structure around NACA0018 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T.; Fujisawa, N. [Niigata University, Department Mechanical Engineering, Niigata (Japan); Lee, S. [Inha University, Department Mechanical Engineering, Incheon (Korea)

    2006-03-15

    The characteristics of tonal noise and the variations of flow structure around NACA0018 airfoil in a uniform flow are studied by means of simultaneous measurement of noise and velocity field by particle-image velocimetry to understand the generation mechanism of tonal noise. Measurements are made on the noise characteristics, the phase-averaged velocity field with respect to the noise signal, and the cross-correlation contour of velocity fluctuations and noise signal. These experimental results indicate that the tonal noise is generated from the periodic vortex structure on the pressure surface of the airfoil near the trailing edge of the airfoil. It is found that the vortex structure is highly correlated with the noise signal, which indicates the presence of noise-source distribution on the pressure surface. The vorticity distribution on the pressure surface breaks down near the trailing edge of the airfoil and forms a staggered vortex street in the wake of the airfoil. (orig.)

  4. A confirmatory measurement technique for HEU [highly enriched uranium

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Goldman, A.; Russo, P.A.; Stovall, L.; Brumfield, T.L.; Gunn, C.S.; Watson, D.R.; Beedgen, R.

    1987-01-01

    Precise measurements of the special nuclear material (SNM) in an item can be used to confirm that the item has not been tampered with. These measurements do not require a highly accurate calibration, but they should be based on an attribute that is unique to the SNM. We describe an instrument that performs gamma-ray measurements at three energies: 185.7 keV, 1001 keV, and 2614 keV. This instrument collects data for 200 s from shipping containers (208-l barrels). These measurements help to distinguish the issue of material control - Has any material been diverted? - from the issue of measurement control - Is there a measurement bias?

  5. A new lowry's technique for quantitative measurement of protein

    International Nuclear Information System (INIS)

    Chen Ge; Zou Wenquan; Sun Jianzhong; Zhang Yanggang; Shu Bohua; Liu Shenpei; Gong Xiaoliang

    1990-01-01

    According to the queneching principle in beta ray measurement, liquid scintillation counters are used for quantitative measurement of protein. The results show linear relationship between the colored protein samples with different concentrations and the counting rate of LSC. It is proved that LSC method is less erroneous and has larger measurement range than the traditional photoelectric colorimetry, and the analysis is easy to be automatized

  6. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2006-01-01

    of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... measurements by the same order of magnitude as the autogenous strain itself. By performing the measurements in a paraffin oil bath instead of a water bath, this artefact was eliminated. Furthermore, volumetric measurements performed in paraffin oil gave almost identical results as linear measurements performed...

  7. Free-Space Measurements of Dielectrics and Three-Dimensional Periodic Metamaterials

    Science.gov (United States)

    Kintner, Clifford E.

    This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001" thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12" x 12" x 1" in total. We use a free-space broadband system comprised of a pair of dielectric-lens horn antennas with bandwidth from 5.8 GHz to 110 GHz, which are connected to a HP PNA series network analyzer. The dielectric lenses focus the incident beam to a footprint measuring 1 wavelength by 1 wavelength. The sample holder is positioned at the focal point between the two antennas. In this work, the coefficients of transmission and reflection (the S-parameters S21 and S11) are measured at frequencies from 12.4 GHz up to 30 GHz. Simulations are used to validate the measurements, using the Ansys HFSS commercial software package on the Arkansas High Performance Computing Center cluster. The simulation results successfully validate the S-parameters measurements, in particular the amplitudes. An algorithm based on the Nicolson-Ross-Weir (NRW) method is implemented to extract the permittivity and permeability values of the metamaterial under test. The results show epsilon-negative, mu-negative and double-negative parameters within the measured frequency range.

  8. Sprint Running Performance and Technique Changes in Athletes During Periodized Training: An Elite Training Group Case Study.

    Science.gov (United States)

    Bezodis, Ian N; Kerwin, David G; Cooper, Stephen-Mark; Salo, Aki I T

    2017-11-15

    To understand how training periodization influences sprint performance and key step characteristics over an extended training period in an elite sprint training group. Four sprinters were studied during five months of training. Step velocities, step lengths and step frequencies were measured from video of the maximum velocity phase of training sprints. Bootstrapped mean values were calculated for each athlete for each session and 139 within-athlete, between-session comparisons were made with a repeated measures ANOVA. As training progressed, a link in the changes in velocity and step frequency was maintained. There were 71 between-session comparisons with a change in step velocity yielding at least a large effect size (>1.2), of which 73% had a correspondingly large change in step frequency in the same direction. Within-athlete mean session step length remained relatively constant throughout. Reductions in step velocity and frequency occurred during training phases of high volume lifting and running, with subsequent increases in step velocity and frequency happening during phases of low volume lifting and high intensity sprint work. The importance of step frequency over step length to the changes in performance within a training year was clearly evident for the sprinters studied. Understanding the magnitudes and timings of these changes in relation to the training program is important for coaches and athletes. The underpinning neuro-muscular mechanisms require further investigation, but are likely explained by an increase in force producing capability followed by an increase in the ability to produce that force rapidly.

  9. Time response measurements of pressure sensors using pink noise technique

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Santos, Roberto Carlos dos

    2009-01-01

    This work presents an experimental setup for Pink Noise method application on pressure transmitters' response times. The Pink Noise method consists on injecting artificial pressure noise into the pressure transmitter. The artificial pressure noise is generated using a current-to-pressure (I-to-P) converter, which is driven by a random noise signal generator. The output pressure transmitter noise is then analyzed using conventional Noise Analysis Technique. Noise signals may be interpreted using spectral techniques or empirical time series models. The frequency domain method consists of evaluating the Power Spectral Density (PSD) function. The information needed for time constant estimation can be obtained by fitting an all-pole transfer function to this power spectral density. (author)

  10. SOI Transistor measurement techniques using body contacted transistors

    International Nuclear Information System (INIS)

    Worley, E.R.; Williams, R.

    1989-01-01

    Measurements of body contacted SOI transistors are used to isolate parameters of the back channel and island edge transistor. Properties of the edge and back channel transistor have been measured before and after X-ray irradiation (ARACOR). The unique properties of the edge transistor are shown to be a result of edge geometry as confirmed by a two dimensional transistor simulator

  11. Plutonium calorimetry and SNM holdup measurements. Progress report for the period March 1976--August 1976

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Finkbeiner, A.M.; Lewis, R.N.; Perry, R.B.

    1977-02-01

    The calorimetric instrumentation developed at Argonne National Laboratory (ANL) for making nondestructive measurements of the plutonium content of fuel rods is discussed. Measurements with these instruments are relatively fast (i.e., 15 to 20 minutes) when compared to the several hours usually required with more conventional calorimeters and for this reason are called ''fast-response.'' Most of the discussion concerns the One-Meter and the Four-Meter Fuel-Rod Calorimeters and the Analytical Small-Sample Calorimeter. However, to provide some background and continuity where needed, a small amount of discussion is devoted to the three earlier calorimeters which have been described previously in the literature. Then a brief review is presented of the literature on plutonium holdup measurements. The use of gamma-ray techniques for holdup measurements is discussed and results are given for the determination of sample thickness using the ratio of intensities of high- and low-energy gamma rays. The measurements cover the plutonium metal thickness range from 0.001 to 0.120 inches. The design of a gamma-ray collimator with 37 parallel holes is also discussed. Neutron-counting experiments using BF 3 proportional counters embedded in two polyethylene slabs are described. This detector configuration is characterized for its sensitivity to sample and background plutonium, counting both coincidence (fission) and total neutrons. In addition, the use of infrared imaging devices to measure small temperature differences is considered for locating large amounts of plutonium holdup and also for performing fast attribute checks for fabricated fuel elements

  12. Free-flight measurement technique in the free-piston high-enthalpy shock tunnel

    Science.gov (United States)

    Tanno, H.; Komuro, T.; Sato, K.; Fujita, K.; Laurence, S. J.

    2014-04-01

    A novel multi-component force-measurement technique has been developed and implemented at the impulse facility JAXA-HIEST, in which the test model is completely unrestrained during the test and thus experiences free-flight conditions for a period on the order of milliseconds. Advantages over conventional free-flight techniques include the complete absence of aerodynamic interference from a model support system and less variation in model position and attitude during the test itself. A miniature on-board data recorder, which was a key technology for this technique, was also developed in order to acquire and store the measured data. The technique was demonstrated in a HIEST wind-tunnel test campaign in which three-component aerodynamic force measurement was performed on a blunted cone of length 316 mm, total mass 19.75 kg, and moment of inertia 0.152 kgm2. During the test campaign, axial force, normal forces, and pitching moment coefficients were obtained at angles of attack from 14° to 32° under two conditions: H0 = 4 MJ/kg, P0 = 14 MPa; and H0 = 16 MJ/kg, P0 = 16 MPa. For the first, low-enthalpy condition, the test flow was considered a perfect gas; measurements were thus directly compared with those obtained in a conventional blow-down wind tunnel (JAXA-HWT2) to evaluate the accuracy of the technique. The second test condition was a high-enthalpy condition in which 85% of the oxygen molecules were expected to be dissociated; high-temperature real-gas effects were therefore evaluated by comparison with results obtained in perfect-gas conditions. The precision of the present measurements was evaluated through an uncertainty analysis, which showed the aerodynamic coefficients in the HIEST low enthalpy test agreeing well with those of JAXA-HWT2. The pitching-moment coefficient, however, showed significant differences between low- and high-enthalpy tests. These differences are thought to result from high-temperature real-gas effects.

  13. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  14. Recent developments and trends in radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Maushart, R.

    1993-01-01

    Measuring instruments used in radiation protection have undergone dramatic changes over the past decade. But also the attitude of users vis-a-vis this equipment is changing. This is reflected in changes in equipment concepts, the trend being towards 'considerate equipment' which does not absorb the user's attention, but reserves it for the real proposes of radiation protection. Just measuring is no longer enough. Measured data acquisition and evaluation must be integrated more closely, and more specifically, into an overall process of optimized in-plant radiation protection. A key role in this scheme is played by the application-oriented user interface, while measurement and testing routines become more and more automated. The technology now available for storing programs and data, interconnecting and displaying them in many ways, offers almost unlimited possibilities

  15. Advances in bioanalytical techniques to measure steroid hormones in serum.

    Science.gov (United States)

    French, Deborah

    2016-06-01

    Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC-MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC-MS/MS has now become a popular alternative owing to simplified sample preparation than for GC-MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum.

  16. A new technique for radiographic measurement of acetabular cup orientation.

    Science.gov (United States)

    Derbyshire, Brian; Diggle, Peter J; Ingham, Christopher J; Macnair, Rory; Wimhurst, James; Jones, Henry Wynn

    2014-02-01

    Accurate radiographic measurement of acetabular cup orientation is required in order to assess susceptibility to impingement, dislocation, and edge loading wear. In this study, the accuracy and precision of a new radiographic cup orientation measurement system were assessed and compared to those of two commercially available systems. Two types of resurfacing hip prostheses and an uncemented prosthesis were assessed. Radiographic images of each prosthesis were created with the cup set at different, known angles of version and inclination in a measurement jig. The new system was the most accurate and precise and could repeatedly measure version and inclination to within a fraction of a degree. In addition it has a facility to distinguish cup retroversion from anteversion on anteroposterior radiographs. © 2013.

  17. Nuclear techniques for measuring moisture content in soil profiles

    International Nuclear Information System (INIS)

    Barrada, Y.

    1983-01-01

    The prevailing severe shortage of animal feed in most of the developing countries could, to a considerable extent, be overcome through improved range management, which includes introduction of high yielding drought-resistant forage crops, development of adequate water conservation measures, and as far as possible growing annual forage crops on part of the vast areas of arable land currently left fallow each year. Year round measurements are essential for a good understanding of soil water and nutrients dynamics, which allow for adequate evaluation of pasture management alternatives. The methods most commonly used for moisture measurements in soil profiles are discussed because such measurements are likely to form an essential part of any investigation aimed at increasing animal feed production through the development of adequate pasture management practices. (author)

  18. Apt strain measurement technique for impulsive loading applications

    International Nuclear Information System (INIS)

    Nanda, Soumya Ranjan; Kulkarni, Vinayak; Sahoo, Niranjan

    2017-01-01

    The necessity of precise measurement of strain time history for impulsive loading applications has been addressed in the present investigation. Finite element modeling is initially carried out for a hemispherical test model and stress bar assembly to arrive at an appropriate location for strain measurement. In dynamic calibration experiments, strain measurements are performed using two wire and three wire quarter bride arrangements along with half bridge circuit. Usefulness of these arrangements has been verified by analyzing strain signals in time and frequency domains. Comparison of recovered force time histories proved that the half bridge circuit is the most suitable for such applications. Actual shock tube testing of the instrumented hemispherical test model confirmed the applicability of half bridge circuit for short duration strain measurements. (technical note)

  19. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    1975-10-01

    'Risk of damage' and 'exposure risk' are considered as components of the radiation risk. The influence of the 'exposure risk' on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Basing upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high 'exposure risk'. As a consequence the following recommendations are given for discussion: (a) occupationally exposed persons with small 'exposure risk' should be monitored using only a long-term dosimeter (for instance a thermoluminescence dosimeter), (b) in the case of internal exposure the surface and, if necessary, air contamination should be controlled so strictly that routine measurements of internal contamination need not be performed. (author)

  20. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  1. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    International Nuclear Information System (INIS)

    Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references

  2. Aerosol measurement techniques and accuracy in the CSTF

    International Nuclear Information System (INIS)

    McCormack, J.D.; Hilliard, R. K.

    1979-11-01

    The Containment Systems Test Facility (CSTF) provides the capability of performing large-scale aerosol behavior experiments at a scale factor of approximately 0.5 in height for a typical reactor containment building. The containment height is 20.3 m, the volume is 850 m 3 , the design pressure is 5 bar, and quantities of sodium up to 1250 kg can be sprayed or spilled for sodium combustion product aerosol sources. Instrumentation is provided for characterization of the aerosol and the containment atmosphere. This paper describes the aerosol sampling techniques and instruments used in the CSTF and discusses their accuracy and reproducibility

  3. Antimicrobial compounds in polyethylene films - characterization and content measurement techniques

    International Nuclear Information System (INIS)

    Pires, Marcia; Santos, Ramon V.; Perao, Leandro; Ellwangler, Manoela W.; Nonemacher, Regina F.; Moraes, Lilian T. de; Gorski, Sandro; Staub, Simone; Petzhold, Cesar L.

    2009-01-01

    Developments have been done in the packaging market to attend the continuous changes in consumer demands and also to keep safety and shelf life of products during transportation and storage. Active packaging is the most innovative concepts in the market. It has been defined as a packaging that changes its conditions to extend shelf life. The objective of this work is the production and characterization of active polyethylene films with antimicrobial compounds. The initial results show that analytical techniques as RX fluorescence and FTIR can be used to characterize and quantify these compounds in polyethylene films. (author)

  4. Measuring the band structures of periodic beams using the wave superposition method

    Science.gov (United States)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in

  5. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  6. High repetition Thomson scattering profile measurements using a nonimaging technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1983-01-01

    The Thomson scattering technique is one of the most useful diagnostics for the study of magnetically confined plasmas. In this work, a simple multi-space and time Thomson scattering technique has been proposed. The spatial resolution is obtained by conversion of the scattered laser light collected from different plasma points into a time sequence. This can be done by focusing the image of the laser beam through a wideangle lens onto an array of fiber optic light pipes. Since the laser emits relatively short pulses (1020 nsec), scattered light pulses from each of the light pipes can be delayed relative to one another without overlapping. Such delays can be achieved by using an array of fiber optics of differing lengths (2-4 meters). The light is transmitted then into a spectrometer and detected by fast detectros (few nsec rise and fall time). Reconstruction from the time sequence to the spatial structure is obtained by using existing fast gate circuits. The data then is A/D converted and handled by using a data acquisition system

  7. Studies on measurement of chloride ion concentration in concrete structures with long-period grating sensors

    Science.gov (United States)

    Tang, Jaw-Luen; Chiang, Tsung-Yu; Chang, Hsiang-Ping; Wang, Jian-Neng

    2006-03-01

    We report the development and demonstration of a simple and low-cost long-period grating (LPG) sensor for chloride ion concentration measurement in concrete structures. The LPG sensor is extremely sensitive to the refractive index of the medium surrounding the cladding surface of the sensing grating, thus allowing it to be used as an ambient index sensor or chemical concentration indicator with high stability and reliability. We have measured chloride ion levels in a concrete sample immersed in salt water solution with different weight concentration ranging from 0 % to 20 %, and results showed that the LPG sensor exhibited a linear decrease in the transmission loss and resonance wavelength shift when the concentration increased. The measurement accuracy for concentration of salt in water solution is estimated to be 0.6 % and the limit of detection for chloride ion is about 0.04 %. To further enhance its sensitivity for chloride concentrations, we have coated gold nanoparticles on the grating surface of the LPG sensor. The sensing mechanism is based on the sensitivity of localized surface plasmon resonance of self-assembled Au colloids on the grating portion of the LPG. With this method, a factor of two increases in sensitivity of detecting chemical solution concentrations was obtained. The advantage of this type of the sensor is relatively simple of construction and ease of use. Moreover, the sensor has the potential capability for on-site, in vivo, and remote sensing, and has the potential use for disposable sensors.

  8. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  9. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1994-01-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  10. Combined techniques for network measurements at accelerator facilities

    International Nuclear Information System (INIS)

    Pschorn, I.

    1999-01-01

    Usually network measurements at GSi (Gesellschaft fur Schwerionen forschung) are carried out by employing the Leica tachymeter TC2002K etc. Due to time constraints and the fact that GSi possesses only one of these selected, high precision total-stations, it was suddenly necessary to think about employing a Laser tracker as the major instrument for a reference network measurement. The idea was to compare the different instruments and to proof if it is possible at all to carry out a precise network measurement using a laser tracker. In the end the SMX Tracker4500 combined with Leica NA3000 for network measurements at GSi, Darmstadt and at BESSY Il, Berlin (both located in Germany) was applied. A few results are shown in the following chapters. A new technology in 3D metrology came up. Some ideas of applying these new tools in the field of accelerator measurements are given. Finally aspects of calibration and checking the performance of the employed high precision instrument are pointed out in this paper. (author)

  11. Development of automatic high-concentration boron measurement technique; Konodo hoso jido sokutei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T.; Honda, S.; Ito, A. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-03-01

    The technology that can automatically measure the boron concentration in boric acid water was developed. A high-concentration boric acid solution must be held at a high temperature to prevent the deposition. Skill and precision ({plus_minus}0.2 to 0.3% for 10 to 2500 ppm as boron concentration, and {plus_minus}2 to 3% for 2500 to 25,000 ppm) are required to analyze the boric acid solution manually. In theory, the boron concentration in a wide range can be measured, and boron has a constant-temperature function. A density hydrometer method that facilitates the treatment and calibration in high precision and at low cost was chosen. The vibration period generated when vibration is given to the solution specimen put in a U-tube is higher as the density is lower. On the basis of this theory, the density of a specimen can be obtained according to the relation with the same data of the known-concentration boric acid water. The high-concentration boric acid water that cannot be measured by the existing boron densitometer can be measured directly. It can also be measured in a low-concentration area. The technique can be used in a laboratory as the simplified method that is replaced by the current manual analysis. The reduction effect of analytical chemical`s waste liquid can also be expected. In the electric power industry, automated equipment is required for high efficiency and labor saving. 13 figs., 3 tabs.

  12. Review of geochemical measurement techniques for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Knauss, K.G.; Steinborn, T.L.

    1980-01-01

    A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed

  13. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  14. Impedance technique for measuring dielectrophoretic collection of microbiological particles

    CERN Document Server

    Allsopp, D W E; Brown, A P; Betts, W B

    1999-01-01

    Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)

  15. Remarks on a technique of measuring CP phase α

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Oh, S.; He, X.G.

    1996-02-01

    We present a method to measure the CKM phase α and the tree and penguin (strong and electroweak) amplitudes in B→ π π decays, based on isospin consideration and the weak assumption that all tree amplitudes have a common strong phase and all penguin amplitudes have a different common phase. The method needs only the time-independent measurements of the relevant decay rates in B→ π π. We also propose a method to experimentally examine the validity of the assumption that all penguin amplitudes have the same strong phases, and to extract detailed information about the hadronic matrix elements. (authors). 14 refs., 1 fig

  16. The Interpretation of Wavelengths and Periods as Measured from Atmospheric Balloons.

    Science.gov (United States)

    de La Torre, Alejandro; Alexander, Pedro

    1995-12-01

    Transformations that take into account the characteristics of balloon motion and wave propagation to infer the `real' wavelengths and frequencies from the `apparent' ones measured during sounding are derived. To estimate the differences that may arise in the observations of internal gravity waves, a statistical relation between their wavelength and period recently found from theory and experiment is applied. It is shown that it may not be possible to determine from each apparent datum a unique real value, because up to four different transformations may be applicable for each experimental datum of wavelength or frequency. However, under certain conditions this ambiguity can be removed. The omission of the appropriate transformation may lead one to seriously misinterpret the data.

  17. Applied measuring techniques for the investigation of time-dependent flow phenomena in centrifugal compressors

    International Nuclear Information System (INIS)

    Hass, U.; Haupt, U.; Jansen, M.; Kassens, K.; Knapp, P.; Rautenberg, M.

    1978-01-01

    During the past 10 years new measuring techniques have been developed for the experimental investigation of highly loaded centrifugal compressors. These measuring techniques take into account the time dependency of the fluctuating physical quantities such as pressure, temperature, and velocity. Some key points of these experimental techniques are shown and explained in this paper. An important basis for such measurements is the accurate dynamic calibration of the measuring apparatus. In addition, some problems involved analyzing measured signals are dealt with and pressure measurements and their interpretation are shown. Finally optical, acoustical and vibrational measuring procedures are described which are additionally used for the investigation of non-stationary flow phenomena. (orig.) [de

  18. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  19. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    International Nuclear Information System (INIS)

    Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip

    2012-01-01

    Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  20. Measurement of graphite and aluminium absorption cross sections via reactor period by danger coefficient method; Merenje apsorpcionih preseka grafita i aluminijuma preko periode reaktora metodom koeficijenta opasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Velickovic, Lj [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1963-07-01

    Full text: This activity is a logical continuation of the experiment at the RA reactor during 1962 which was based on compensating the effect by means of control rod. Since results are given with significant errors, new method for measuring the absorption cross sections via reactor period. Experiment was done at the RB reactor which was particularly prepared for this type of experiments. Reactor power was from 50 mW to 2 W. Absorption cross sections were measured for two types of material: domestic graphite No.3 and French graphite 'Pachiney', and two types of aluminium. Total errors in applying this method are {+-} 5%, where the source of major part of error comes from uncertainty of the standard absorption power (previous method gave {+-} 10 do 55% ). Comparison of French graphite absorption cross section obtained via reactor period and via control rod showed approximate agreement with discrepancy of 5.4% which is considered within the precision of this method. Considering the accuracy of measurement results and reactor economy it is concluded that measuring absorption cross sections of samples via period of RB reactor is more favourable than measurements by control rod at the RA reactor. Pun tekst: Ovaj rad predstavlja logican nastavak eksperimenta na reaktoru RA u toku 1962. godine, koji je bazirao na kompenzaciji efekta pomocu kontrolne sipke. Kako su rezultati dati sa velikim greskama, to se prislo novom nacinu merenja apsorpsionih preseka preko periode reaktora. Eksperiment je radjen na reaktoru RB koji je specijalno pripremljen za ovu vrstu eksperimenta. Snaga reaktora se kretala od 50 mW do 2 W. Preko periode reaktora RB odredjeni su apsorpcioni preseci za dve vrste materijala i to: domaci grafit No.3 i francuski 'Pachiney', i dve vrste aluminijuma. Ukupne greske pri ovom nacimu merenja iznose oko {+-} 5%, gde glavni deo greske nosi neodredjenost apsorpcione moci standarda (ranija metoda je dala {+-} 10 do 55% ). Poredjenjem vrednosti apsorpcionih preseka

  1. Use of nuclear techniques for measuring thin wears

    International Nuclear Information System (INIS)

    Jeanneau, B.

    1989-01-01

    Wear measurements with apparatus of classical metrology like profilography or tridimensional analysis, need a certain number of conditions, in particular, dismantling of the machine into parts, which give less of time and money. Radioactive methods permit to avoid such a dismantling, isn't sensitive to the temperature of the part... and according to their sensitivity, reduce the test duration

  2. Cerebral blood oxygenation measurements in neonates with optoacoustic technique

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Richardson, C. Joan; Fonseca, Rafael A.; Prough, Donald S.; Esenaliev, Rinat O.

    2017-03-01

    Cerebral hypoxia is a major contributor to neonatal/infant mortality and morbidity including severe neurological complications such as mental retardation, cerebral palsy, motor impairment, and epilepsy. Currently, no technology is capable of accurate monitoring of neonatal cerebral oxygenation. We proposed to use optoacoustics for this application by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, optical parametric oscillator (OPO) and laser diode optoacoustic systems for measurement of SSS blood oxygenation in the reflection mode through open anterior or posterior fontanelles and in the transmission mode through the skull in the occipital area. In this paper we present results of initial tests of the laser diode system for neonatal cerebral oxygenation measurements. First, the system was tested in phantoms simulating neonatal SSS. Then, using the data obtained in the phantoms, we optimized the system's hardware and software and tested it in neonates admitted in the Neonatal Intensive Care Unit. The laser diode system was capable of detecting SSS signals in the reflection mode through the open anterior and posterior fontanelles as well as in the transmission mode through the skull with high signal-to-noise ratio. Using the signals measured at different wavelengths and algorithms developed for oxygenation measurements, the laser diode system provided real-time, continuous oxygenation monitoring with high precision at all these locations.

  3. Optical techniques for sensing and measurement in hostile environments

    International Nuclear Information System (INIS)

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    These proceedings collect papers on optical sensing and measurement in hostile environments. Topic include: nuclear waste storage facility monitoring, monitoring of nuclear and chemical explosions, exhaust gas monitoring, fiber-optic monitoring, temperature and radiation effects on optical fibers, and interferometers

  4. Corruption in Higher Education: Conceptual Approaches and Measurement Techniques

    Science.gov (United States)

    Osipian, Ararat L.

    2007-01-01

    Corruption is a complex and multifaceted phenomenon. Forms of corruption are multiple. Measuring corruption is necessary not only for getting ideas about the scale and scope of the problem, but for making simple comparisons between the countries and conducting comparative analysis of corruption. While the total impact of corruption is indeed…

  5. Techniques for the measurement of the contamination of air

    International Nuclear Information System (INIS)

    Labeyrie, J.

    1960-01-01

    This lecture has been given at the International Symposium of Riso 1959. Methods for measuring radioactive content of the atmosphere are described, and main results found at Saclay are given, for the following contaminants: Rn, Tn and their daughter, H-3, C-14, A-41, Kr-85, I-131, and fission products as a whole. (author) [fr

  6. Dew point measurement technique utilizing fiber cut reflection

    Science.gov (United States)

    Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.

    2009-05-01

    The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.

  7. Absolute rate measurement by light modulation - ESR technique

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K Y; Gaspar, P P

    1977-01-01

    A rate constant is deduced for the reaction of tert-butoxy radicals and trimethylsilane from the measurement of the phase shift between the modulated light source and the ESR signal of trimethylsilyl radical. The rate constant was found to be 3 x 10/sup -2/M/sup -1/. sec/sup -1/ at -50/sup 0/C.

  8. A numerical technique to design blast noise mitigation measures

    NARCIS (Netherlands)

    Berg, F. van den; Eerden, F.J.M. van der

    2007-01-01

    Large weapons, such as armor, artillery or demolitions, create a high-energy blast wave. It has a low frequency content, typically between 15 and 125 Hz, and can propagate over large distances. As a result it is a relative important cause for annoyance. Mitigation measures need to be close to the

  9. Measuring the Readability of Elementary Algebra Using the Cloze Technique.

    Science.gov (United States)

    Kulm, Gerald

    The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…

  10. Comparison of current tonometry techniques in measurement of intraocular pressure

    Directory of Open Access Journals (Sweden)

    Behrooz Kouchaki

    2017-06-01

    Conclusion: Although the mean difference of measured IOP by NCT, DCT, and ORA with GAT was less than 2 mmHg, the limit of agreement was relatively large. CCT and CRF were important influencing factors in the four types of tonometers.

  11. In-Vivo Techniques for Measuring Electrical Properties of Tissues.

    Science.gov (United States)

    1980-09-01

    probe Electromagnetic energy Dielectric properties Monopole antenna In-situ tissues , Antemortem/Pos tmortem studies Renal blood flow 10 ABSTRACT... mice or rats, which were positioned beneath a fixed measurement probe. Several alternative methods involving the use of semi-rigid or flexible coaxial

  12. Television filmless technique for fast-process coordinate measurement

    International Nuclear Information System (INIS)

    Petrakov, A.V.

    1977-01-01

    Achievements in the application of television filmless method for recording transients have been analysed, as well as the causes limiting the quality of measuring lines: experimental equipment - TV system - computer. The perspectives are shown of developing the method by using new transmitting kinescopes and by stabilizing the size and location of their rasters in space

  13. Improving Quality Of Spectrum Measurement By Event - Event Coincidence Technique

    International Nuclear Information System (INIS)

    Pham Dinh Khang; Doan Trong Thu; Nguyen Duc Hoa; Nguyen An Son; Nguyen Xuan Hai; Ho Huu Thang

    2011-01-01

    To improve the quality of measurement data for the research levels density and gamma strength function in intermediate energy region below the neutron binding energy (B n ), a new method was developed at the Dalat Nuclear Research Institute. This method improve the ratio of the count of peak per compton background more times. This results are evaluated, compared with other methods. (author)

  14. Development of sea water pipe thickness measurement technique

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Wakayama, Seiichi; Takeuchi, Iwao; Masamori, Sigero; Yamasita, Takesi.

    1995-01-01

    In nuclear and thermal power plants, wall wear of sea water pipes is reported to occur in the inner surface due to corrosion and erosion. From the viewpoint of improving the equipments reliability, it is desirable that wall thickness should be measured from the outer surface of the pipe during operation. In the conventional method, paint on the outer surface of the pipe was locally removed at each point of a 20 by 50 mm grid, and inspection was carried out at these spots. However, this method had some problems, such as (1) it was necessary to replace the paint, and (2) it was difficult to obtain the precise distribution of wall thickness. Therefore, we have developed a wall thickness measuring system which has the following features. (1) It is possible to perform inspection from the outer surface without removing paint during operation. (2) It is possible to measure the distribution of wall thickness and display it as color contour map simultaneously. (3) The work of inspectors can be alleviated by the automatic recording of measured data. (author)

  15. Field technique for the measurement of uranium in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, J C [Scintrex Ltd., Concord, Ontario

    1978-05-01

    An analytical method suitable for field determination of trace levels of uranium in natural waters is described. Laser UV radiation causes persistent fluorescence of a uranyl complex. Electronic gating substantially rejects detection of short-lived natural organic matter fluorescence. Further work is required on effects of interferences in samples with complex matrices and interpretative aids such as concurrent conductivity and organic content measurements.

  16. Double phi-Step theta-Scanning Technique for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi

    2008-01-01

    Probe-corrected spherical near-field antenna measurements with an arbitrary probe set certain requirements on an applicable scanning technique. The computational complexity of the general high-order probe correction technique for an arbitrary probe, that is based on the Phi scanning, is O(N4...... a specific double Phi-step thetas scanning technique for spherical near-field antenna measurements. This technique not only constitutes an alternative spherical scanning technique, but it also enables formulating an associated probe correction technique for arbitrary probes with the computational complexity...

  17. Measurement techniques and safety culture in radiation protection -reflections after 37 years of occupation with measuring instruments

    International Nuclear Information System (INIS)

    Maushart, R.

    1994-01-01

    Safety Culture in radiation use and radiation protection implies primarily knowledge and competence of the decision makers. As the measuring techniques are basic for practical radiation protection, only such person can be called competent who has sufficient expertise on measuring techniques, and is able to evaluate its application and results. Safety Culture also implies the readiness to expose errors, and to learn from them. ''Believing in infallibility'' excludes Safety Culture. Therefore, correctly applied measuring technique contributes to recognize weak points early. How far it is used consciously and actively to prevent undesirable developments and exceeding of limits, can be considered outright as a yardstick for a high-ranking safety culture. Safety Culture as a whole, however, needs more than more measuring techniques. It requires its own and adequate Measurement Culture, presupposing also motivation and determination to measure. Therefore, education, training, knowledge and consciousness of safety of the people who are responsible for measurements are decisive for successful radiation protection. (orig.) [de

  18. Standardisation of 125I using seven techniques for radioactivity measurement

    International Nuclear Information System (INIS)

    Pomme, S.; Altzitzoglou, T.; Van Ammel, R.; Sibbens, G.

    2005-01-01

    Seven methods of radioactivity measurement were used to standardise an 125 I solution within the frame of an international key comparison organised by BIPM: photon-photon coincidence counting with two NaI detectors, photon sum-peak counting in a NaI well detector and in a 4π CsI(Tl) sandwich spectrometer, total emission counting in a windowless 4π CsI(Tl) sandwich spectrometer, electron-X,γ coincidence counting and electron-X,γ sum counting in a pressurised proportional counter inside a NaI well detector and liquid scintillation counting with the CIEMAT/NIST method. The solid sources were prepared by quantitative drop deposition with addition of AgNO 3 . The measurement methods, the results and the applied corrections are described and discussed

  19. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  20. Radon measurements technique in air using a track plastic detector

    International Nuclear Information System (INIS)

    Pereira, J.F.A.; Silva Estrada, J.J. da; Binns, D.A.C.; Urban, M.

    1983-01-01

    A difusion chamber is used to measure the radon concentration in air through alpha particles tracks in Makrofol E, 300μm thick. This system was developed by Karlsruhe Nuclear Research Centre, Germany, and is already used by the Occupational Radiological Protection Department of IRD/CNEN, for premilimar measurements in Pocos de Caldas and Rio de Janeiro. In the chamber, the plastic detector is set at the lower end and a filter is placed at the upper end. In this way, a known volume is defined in the detector system. To amplify the tracks produced by the alpha particles due to radon and short-lived dadon-daughter products, an electrochemical system is employed. Some theoretical questions about the treeing produced by the electrochemical etching, the detector characteristics, as well as the adapted statistics model are also discussed. (Author) [pt

  1. Automatic measurement for monitoring crack growth with electric potential technique

    International Nuclear Information System (INIS)

    Nakajima, Nobuya; Kikuchi, Masaaki; Shima, Seishi

    1981-10-01

    In the study of fracture mechanics, it is one of the most important problems to monitor the crack growth phenomena. Recently, many experimental methods have been developed. In this report, the Direct Current (DC) potential method is employed for measuring the crack growth length in the pressuried high temperature water. The objective of the current investigation is to develop an experimental method to quantify the sensitivity of this method in the air environment using the Compact Tension (CT) specimen. The main results obtained are as follows: 1) It is ignored that the electrical potential changes with plastic deformation at the crack tip of the specimen. 2) Using the Reversible Direct Current (RDC) Method, the measurement system gives no effect on the electrical stability for a long time. 3) For the fatigue and statical crack growth length, good relation is observed between the crack length-to-specimen width ratio (a/W) and potential ratio (Va/Vo). (author)

  2. PCPV instrumentation and measurement techniques at elevated temperatures

    International Nuclear Information System (INIS)

    Zemann, H.

    1978-11-01

    Strain measurement within the structural concrete of the prototype Prestressed Concrete Pressure Vessel have been performed during a one year operation at elevated temperatures up to 120 0 C. Laboratory investigations on the properties of the gauges and the concrete mix are applied to separate the different contributions to the strain data. A decrease of creep and loss of prestress and the arise of stable conditions is observed. (author)

  3. Complex permittivity measurements of ferroelectric employing composite dielectric resonator technique

    Czech Academy of Sciences Publication Activity Database

    Krupka, J.; Zychowicz, T.; Bovtun, Viktor; Veljko, Sergiy

    2006-01-01

    Roč. 53, č. 10 (2006), s. 1883-1888 ISSN 0885-3010 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric resonator * ferroelectrics * microwave measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.729, year: 2006

  4. Measurement techniques for the verification of excess weapons materials

    International Nuclear Information System (INIS)

    Tape, J.W.; Eccleston, G.W.; Yates, M.A.

    1998-01-01

    The end of the superpower arms race has resulted in an unprecedented reduction in stockpiles of deployed nuclear weapons. Numerous proposals have been put forward and actions have been taken to ensure the irreversibility of nuclear arms reductions, including unilateral initiatives such as those made by President Clinton in September 1993 to place fissile materials no longer needed for a deterrent under international inspection, and bilateral and multilateral measures currently being negotiated. For the technologist, there is a unique opportunity to develop the technical means to monitor nuclear materials that have been declared excess to nuclear weapons programs, to provide confidence that reductions are taking place and that the released materials are not being used again for nuclear explosive programs. However, because of the sensitive nature of these materials, a fundamental conflict exists between the desire to know that the bulk materials or weapon components in fact represent evidence of warhead reductions, and treaty commitments and national laws that require the protection of weapons design information. This conflict presents a unique challenge to technologists. The flow of excess weapons materials, from deployed warheads through storage, disassembly, component storage, conversion to bulk forms, and disposition, will be described in general terms. Measurement approaches based on the detection of passive or induced radiation will be discussed along with the requirement to protect sensitive information from release to unauthorized parties. Possible uses of measurement methods to assist in the verification of arms reductions will be described. The concept of measuring attributes of items rather than quantitative mass-based inventory verification will be discussed along with associated information-barrier concepts required to protect sensitive information

  5. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    Science.gov (United States)

    2010-04-01

    whose acoustic resistance is identical to that of the piezoelement material. To attenuate the effect of vibrations of the casing 4 and model walls...mercury thermometers, resistance thermometers, thermocouples, optical pyrometers , and a number of spectroscopic methods have gained widespread...known method of optical pyrometers , which allows temperature measurements above 1600°С. As it is well known this method is based on using the laws of

  6. Simple technique for measuring relative renal blood flow

    International Nuclear Information System (INIS)

    Shames, D.M.; Korobkin, M.

    1976-01-01

    To determine whether externally monitored early renal uptake of 131 I-hippurate is proportional to renal blood flow, the renal uptake of 131 -hippurate at 1 to 2 min after injection was compared with the renal accumulation of radioactive carbonized microspheres in dogs. A renal artery catheter equipped with a balloon was used to decrease renal blood flow unilaterally. One minute after the intravenous injection of 100 μCi of 131 I-hippurate, about 1 μCi of either 85 Sr- or 95 Nb-labeled carbon microspheres was injected into the left ventricle. Radioactivity was measured over both kidneys. The total radioactivity within each kidney region of interest was corrected for background and integrated over the 1 to 2 min interval after injection. Thirteen measurements of relative renal blood flow were made for seven dogs. The dogs were then killed and both kidneys were excised and counted for the radioactivity of the microspheres. The 1 to 2-min relative renal uptake of 131 I-hippurate correlated well with relative microsphere uptake, suggesting that relative renal blood flow can be simply determined from the external measurements of renal uptake of 131 I-hippurate

  7. A novel holographic technique for strain and deformation measurement

    International Nuclear Information System (INIS)

    Ettemeyer, A.

    1988-01-01

    A complete holographic system is presented after a description of the holographic measurement principle and of the fundamentals of three-dimensional deformation and dilatation analysis. The new holographic system permits quasi-simultaneous measurements from three extremely divergent directions. For this purpose, the object is illuminated and observed from each of three perspectives. To avoid perturbing interferences and Moire effects, the laser beam is split up into three beams which are no longer coherent with each other. In this way, three holograms are produced in various sections of a single holographic plate. The holograms for the three measurement directions are evaluated with the help of a computer (Phase-shift method). A picture rectification is effected to compensate for the distortion of the object's perspectives due to diverging directions of observation. The three-dimensional shifting components of the displacement vector are calculated for each point of the object's surface. The expansion of the object's surface is derived from these calculations, by means of differentiation. (orig./HP) [de

  8. Optical technique to measure distortion on heat treated parts

    Science.gov (United States)

    Sciammarella, Federico Mariano

    The use of aluminum for structural applications grows with the continual improvement of their physical properties. Through the various amounts of heat treatments that are available, aluminum can vary in properties for all different types of applications. The automotive industry has benefited the most from the use of aluminum and they continue to seek more uses. The heat treatments of these parts are very vital in providing the properties needed for their particular applications. Moreover understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is a pre and post measurement after part has experienced its treatment. In this study, we carry out in-situ measurements of the distortions that a heat-treated part undergoes when subjected to temperatures near melting followed by a slow cooling. In order to confirm the experimental measurements we used HOTPOINT to simulate the experiment and compare results. This study will provide much needed insight to the complex occurrences that aluminum parts undergo during heat treatment.

  9. TLD array for precise dose measurements in stereotactic radiation techniques

    International Nuclear Information System (INIS)

    Ertl, A.; Kitz, K.; Griffitt, W.; Hartl, R.F.E.; Zehetmayer, M.

    1996-01-01

    We developed a new TLD array for precise dose measurement and verification of the spatial dose distribution in small radiation targets. It consists of a hemicylindrical, tissue-equivalent rod made of polystyrene with 17 parallel moulds for an exact positioning of each TLD. The spatial resolution of the TLD array was evaluated using the Leskell spherical phantom. Dose planning was performed with KULA 4.4 under stereotactic conditions on axial CT images. In the Leksell gamma unit the TLD array was irradiated with a maximal dose of 10 Gy with an unplugged 14 mm collimator. The doses delivered to the TLDs were rechecked by diode detector and film dosimetry and compared to the computer-generated dose profile. We found excellent agreement of our measured values, even at the critical penumbra decline. For the 14 mm and 18 mm collimator and for the 11 mm collimator combination we compared the measured and calculated data at full width at half maximum. This TLD array may be useful for phantom or tissue model studies on the spatial dose distribution in confined radiation targets as used in stereotactic radiotherapy. (author)

  10. Visualization and measurement of fluid phenomena using neutron radiography techniques

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji; Nishihara, Hideaki; Tsuruno, Akira; Matsubayashi, Masahito; Sobajima, Makoto; Ohtomo, Shoichi.

    1993-01-01

    This paper presents some of the results from recent work performed on the application of neutron radiography to visualization and measurement of fluid phenomena at the Research Reactor Institute of Kyoto University. Experiments have been performed on the following subjects with use of the NR systems at the Japan Research Reactor 3 and the Nuclear Safety Research Reactor of the Japan Atomic Energy Research Institute as well as the Kyoto University Research Reactor: air-water flow in rectangular ducts with 1.0 and 2.4 mm gaps, air-water flow and steam-water flow in a round tube with 4.0 mm inner diameter. The void fraction was measured by processing the images taken by the neutron radiography. The effect of several corrections in image processing was also discussed previously. It was shown that the proposed method could be useful in observing the flow regimes and measuring the void fraction of gas-liquid two-phase flow in narrow channels. (author)

  11. Phase Velocity Estimation of a Microstrip Line in a Stoichiometric Periodically Domain-Inverted LiTaO3 Modulator Using Electro-Optic Sampling Technique

    Directory of Open Access Journals (Sweden)

    Shintaro Hisatake

    2008-01-01

    Full Text Available We estimate the phase velocity of a modulation microwave in a quasi-velocity-matched (QVM electro-optic (EO phase modulator (QVM-EOM using EO sampling which is accurate and the most reliable technique for measuring voltage waveforms at an electrode. The substrate of the measured QVM-EOM is a stoichiometric periodically domain-inverted LiTaO3 crystal. The electric field of a standing wave in a resonant microstrip line (width: 0.5 mm, height: 0.5 mm is measured by employing a CdTe crystal as an EO sensor. The wavelength of the traveling microwave at 16.0801 GHz is determined as 3.33 mm by fitting the theoretical curve to the measured electric field distribution. The phase velocity is estimated as vm=5.35×107 m/s, though there exists about 5% systematic error due to the perturbation by the EO sensor. Relative dielectric constant of εr=41.5 is led as the maximum likelihood value that derives the estimated phase velocity.

  12. Measurement of pharyngeal sensory cortical processing: technique and physiologic implications

    Directory of Open Access Journals (Sweden)

    Ringelstein E Bernd

    2009-07-01

    Full Text Available Abstract Background Dysphagia is a major complication of different diseases affecting both the central and peripheral nervous system. Pharyngeal sensory impairment is one of the main features of neurogenic dysphagia. Therefore an objective technique to examine the cortical processing of pharyngeal sensory input would be a helpful diagnostic tool in this context. We developed a simple paradigm to perform pneumatic stimulation to both sides of the pharyngeal wall. Whole-head MEG was employed to study changes in cortical activation during this pharyngeal stimulation in nine healthy subjects. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Our results revealed bilateral activation of the caudolateral primary somatosensory cortex following sensory pharyngeal stimulation with a slight lateralization to the side of stimulation. Conclusion The method introduced here is simple and easy to perform and might be applicable in the clinical setting. The results are in keeping with previous findings showing bihemispheric involvement in the complex task of sensory pharyngeal processing. They might also explain changes in deglutition after hemispheric strokes. The ipsilaterally lateralized processing is surprising and needs further investigation.

  13. Dose measurement of ion implanted silicon by RBS technique

    International Nuclear Information System (INIS)

    Kamawanna, Teerasak; Intarasiri, Saweat; Prapunsri, Chowunchun; Thongleurm, Chome; Maleepatra, Saenee; Singkarat, Somsorn

    2003-10-01

    Surface modification can be achieved by ion implantation. This study used a 1 mm thick silicon wafer as a target which was implanted with Ar+ at 80 keV. The degree of the modification depends on both the ion energy and the implanted dose. The distribution of argon in the silicon substrate and the absolute implanted dose can be measured by using Rutherford Backscattering Spectrometry (RBS). These investigations utilized a 1.7 MV Tandetron accelerator system at Chiang Mai University. The dose determination by a direct calculation is in agreement with the simulation by the SIMNRA code

  14. A measurement of the mass of the top quark using the ideogram technique

    Energy Technology Data Exchange (ETDEWEB)

    Houben, Pieter Willem Huib [Univ. of Amsterdam (Netherlands)

    2009-06-03

    This thesis describes a measurement of the mass of the top quark on data collected with the D0 detector at the Tevatron collider in the period from 2002 until 2006. The first chapter describes the Standard Model and the prominent role of the top quark mass. The second chapter gives a description of the D0 detector which is used for this measurement. After the p$\\bar{p}$ collisions have been recorded, reconstruction of physics objects is required, which is described in Chapter 3. Chapter 4 describes how the interesting collisions in which top quarks are produced are separated from the `uninteresting' ones with a set of selection criteria. The method to extract the top quark mass from the sample of selected collisions (also called events), which is based on the ideogram technique, is explained in Chapter 5, followed in Chapter 6 by the description of the calibration of the method using simulation of our most precise knowledge of nature. Chapter 7 shows the result of the measurement together with some cross checks and an estimation of the uncertainty on this measurement. This thesis concludes with a constraint on the Higgs boson mass.

  15. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From the measure...... the measurements we derive the small-signal alpha-parameter and the time-dependent chirp for different operation conditions.......In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  16. New technique for measurement of electron attachment to molecules

    International Nuclear Information System (INIS)

    Harding, T.W.

    1984-01-01

    One of the goals of this dissertation was to develop a faster method of measuring the attachment properties of molecules. An apparatus was successfully developed that employs a pair of coaxial cylindrical electrodes with the inner one serving also as a pulsed photoelectron source. An electron swarm is driven radially outward through a mixture of an attaching gas and a buffer gas. Both the electrons and resulting negative ions are detected as time-resolved currents by a cylindrical detector contained within the outer electrode as a Faraday cage. Data collection and analysis are handled by a minicomputer based data acquisition system with two independent digitizers. Data were obtained for oxygen in helium or nitrogen as a buffer gas and for sulfur dioxide in helium. Attaching gas percentage were generally below 1%. The electric field to number density ratio was in the range of 1.7 x 10 -19 to 3.8 X 10 -18 V cm 2 . Attachment coefficients were obtained firstly by treating the negative ion currents as a measure of electron attenuation through a gas mixture and secondly by reconstructing the spatial distribution of negative ions at the time of electron passage from the time-resolved currents

  17. Development of in-core measuring method using optical techniques

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Shikama, Tatsuo; Narui, Minoru; Sagawa, Tsutomu.

    1994-01-01

    Since applying to more severe radiation environments in nuclear plants, e.g., in-core measuring systems, diagnostics for fusion reactors, radiation related subjects should be considered by more severe radiation and environmental conditions. Owing to this, preliminary studies of heavy neutron irradiation effects on optical fibers are conducted in the core region of fission reactor. Two kinds of SiO 2 core optical fibers, highly pure SiO 2 with OH content core and SiO 2 with fluorine doped core, were irradiated in the core region of Japan Material Testing Reactor (JMTR). Both fibers were irradiated with fast neutron (E>1.0 MeV) fluence of about 1.6x10 19 n/cm 2 and gamma-ray doses of 3.3x10 9 Gy. The optical absorption and the light-emission spectrum were measured in-situ along the irradiation. This paper mainly outlines the fundamental effects of neutron irradiation and discuss the possibility of neutron detection in the core region of reactor. (J.P.N.)

  18. Measurement of chloride-ion concentration with long-period grating technology

    Science.gov (United States)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2007-06-01

    A simple and low-cost long-period fiber grating (LPG) sensor suited for chloride-ion concentration measurement is presented. The LPG sensor is found to be sensitive to the refractive index of the medium around the cladding surface of the sensing grating, thus offering the prospect of development of practical sensors such as an ambient index sensor or a chemical concentration indicator with high stability and reliability. We measured chloride ions in a typical concrete sample immersed in salt water solutions with different weight concentrations ranging from 0% to 25%. Results show that the LPG sensor exhibited a linear decrease in the transmission loss and resonance wavelength shift when the concentration increased. The measurement accuracy for the concentration of salt in water solution is estimated to be 0.6% and the limit of detection for chloride ions is about 0.04%. To further enhance its sensitivity for chloride concentrations, we coated a monolayer of colloidal gold nanoparticles as the active material on the grating surface of the LPG sensor. The operating principle of sensing is based on the sensitivity of localized surface plasmon resonance of self-assembled gold colloids on the grating section of the LPG. With this method, a factor of two increase in the sensitivity of detecting chemical solution concentrations was obtained. The advantages of this type of fiber-optic sensor are that it is compact, relatively simple to construct and easy to use. Moreover, the sensor has the potential capability for on-site, in vivo and remote sensing, and it has potential use as a disposable sensor.

  19. Review of geotechnical measurement techniques for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    1979-12-01

    This report presents a description of geotechnical measurement techniques that can provide the data necessary for safe development - i.e., location, design, construction, operation, decommissioning and abandonment - of a radioactive waste repository in bedded salt. Geotechnical data obtained by a diversity of measurement techniques are required during all phases of respository evolution. The techniques discussed in this report are grouped in the following categories: geologic, geophysical and geodetic; rock mechanics; hydrologic, hydrogeologic and water quality; and thermal. The major contribution of the report is the presentation of extensive tables that provide a review of available measurement techniques for each of these categories. The techniques are also discussed in the text to the extent necessary to describe the measurements and associated instruments, and to evaluate the applicability or limitations of the method. More detailed discussions of thermal phenomena, creep laws and geophysical methods are contained in the appendices; references to detailed explanations of measurement techniques and instrumentation are inluded throughout the report

  20. Review of geotechnical measurement techniques for a nuclear waste repository in bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report presents a description of geotechnical measurement techniques that can provide the data necessary for safe development - i.e., location, design, construction, operation, decommissioning and abandonment - of a radioactive waste repository in bedded salt. Geotechnical data obtained by a diversity of measurement techniques are required during all phases of respository evolution. The techniques discussed in this report are grouped in the following categories: geologic, geophysical and geodetic; rock mechanics; hydrologic, hydrogeologic and water quality; and thermal. The major contribution of the report is the presentation of extensive tables that provide a review of available measurement techniques for each of these categories. The techniques are also discussed in the text to the extent necessary to describe the measurements and associated instruments, and to evaluate the applicability or limitations of the method. More detailed discussions of thermal phenomena, creep laws and geophysical methods are contained in the appendices; references to detailed explanations of measurement techniques and instrumentation are inluded throughout the report.

  1. Techniques for blade tip clearance measurements with capacitive probes

    Science.gov (United States)

    Steiner, Alexander

    2000-07-01

    This article presents a proven but advantageous concept for blade tip clearance evaluation in turbomachinery. The system is based on heavy duty probes and a high frequency (HF) and amplifying electronic unit followed by a signal processing unit. Measurements are taken under high temperature and other severe conditions such as ionization. Every single blade can be observed. The signals are digitally filtered and linearized in real time. The electronic set-up is highly integrated. Miniaturized versions of the electronic units exist. The small and robust units can be used in turbo engines in flight. With several probes at different angles in one radial plane further information is available. Shaft eccentricity or blade oscillations can be calculated.

  2. Techniques for measuring red cell, platelet, and WBC survival

    International Nuclear Information System (INIS)

    Mayer, K.; Freeman, J.E.

    1986-01-01

    Blood cell survival studies yield valuable information concerning production and destruction of cells circulating in the bloodstream. Methodologies for the measurement of red cell survival include nonisotopic methods such as differential agglutination and hemolysis. The isotopic label may be radioactive or, if not, will require availability of a mass spectrograph. These methods fall into two categories, one where red cells of all ages are labeled ( 51 Cr, DFP32, etc.) and those employing a cohort label of newly formed cells ( 14 C glycine, 75 Se methionine, etc.). Interpretation of results for methodology employed and mechanism of destruction, random or by senescence, are discussed. A similar approach is presented for platelet and leukocyte survival studies. The inherent difficulties and complications of sequestration, storage, and margination of these cells are emphasized and discussed. 38 references

  3. Advanced measurements and techniques in high magnetic fields

    International Nuclear Information System (INIS)

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film

  4. Comparison of ventilation measurement techniques in real conditions

    International Nuclear Information System (INIS)

    Jilek, K.; Tomasek, L.

    2001-01-01

    Ventilation and radon entry rate are the only two quantities that influence on indoor radon behaviour. In order to investigate the effect of ventilation and radon entry rate on indoor radon behaviour separately , the Institute was equipped with continuous monitor of carbon monoxide (CO). Carbon monoxide serves as a tracer gas for the determination of air exchange rate. The use of a continuous radon monitor and the continuous monitor of CO gas at the same time enables to measure the radon entry rate and the air exchange rate separately. In the lecture are summarized results of comparison of the following three basic methods performed in real living conditions: - constant decay method; - constant tracer method; and steady rate of tracer injection to determine the air exchange rate for 222 Rn and CO gas, which were used as tracer gases. (authors)

  5. Measuring impact revisited - an update on infrastructure, methods and techniques

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Impact is generally defined as any change or outcome resulting from an activity. In case of scientific research publications are the quantifiable outcome of the research process. The presentation will therefore focus on electronic publication impact as a limited but rather well defined sub-field of research impact. Publication impact can be measured by author or reader generated indicators. Author generated indicators would be citations. Reader generated indicators would be usage. Usage data can be collected through webserver or linkresolver logs. It has to be normalized in order to be shared and analyzed meaningfully. There are some initiatives to provide a suitable infrastructure including publisher data (COUNTER/SUSHI) and data collected through open access repositories. Citation as well as usage data can be analyzed quantitatively or structurally. These analyses can be combined or complemented to create new metrics to add to the ISI impact factor (IF). View Frank Scholze's biography

  6. Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall

    International Nuclear Information System (INIS)

    Tongmin Liou; Jennjiang Hwang; Shihhui Chen

    1993-01-01

    This paper performs a numerical and experimental analysis to investigate the heat transfer and fluid flow behaviour in a rectangular channel flow with streamwise-periodic ribs mounted on one of the principal walls. The k --A PDM turbulence model together with a smoothed hybrid central/skew upstream difference scheme (SCSUDS) and the PISO pressure-velocity coupling algorithm was applied to solving the accelerated, separated and recirculating flows. The real-time holographic interferometry technique was adopted to measure the time-dependent temperature field in the ribbed duct. The predicted fluid flow and temperature field were tested by previous laser-Doppler velocimetry measurements and present holographic interferometry data, and reasonable agreement was achieved. By the examination of the local wall temperature distribution for the uniform wall heat flux (UHF) boundary condition the regions susceptible to the hot spots are identified. Moreover, the study provided the numerical solution to investigate the effect of geometry and flow parameters on the local as well as average heat transfer coefficients. The compact correlation of the average heat transfer coefficient was further developed and accounted for the rib height, rib spacing, and Reynolds number. (Author)

  7. Measurement and Simulation Techniques For Piezoresistive Microcantilever Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Aan Febriansyah

    2012-12-01

    Full Text Available Applications of microcantilevers as biosensors have been explored by many researchers for the applications in medicine, biological, chemistry, and environmental monitoring. This research discusses a design of measurement method and simuations for piezoresistive microcantilever as a biosensor, which consist of designing Wheatstone bridge circuit as object detector, simulation of resonance frequency shift based on Euler Bernoulli Beam equation, and microcantilever vibration simulation using COMSOL Multiphysics 3.5. The piezoresistive microcantilever used here is Seiko Instrument Technology (Japan product with length of 110 ?m, width of 50 ?m, and thickness of 1 ?m. Microcantilever mass is 12.815 ng, including the mass receptor. The sample object in this research is bacteria EColi. One bacteria mass is assumed to 0.3 pg. Simulation results show that the mass of one bacterium will cause the deflection of 0,03053 nm and resonance frequency value of 118,90 kHz. Moreover, four bacterium will cause the deflection of 0,03054 nm and resonance frequency value of 118,68 kHz. These datas indicate that the increasing of the bacteria mass increases the deflection value and reduces the value of resonance frequency.

  8. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  9. Two period measures for comparing the fertility of marriage and cohabitation

    Directory of Open Access Journals (Sweden)

    Benoît Laplante

    2015-02-01

    Full Text Available Background: The diffusion of cohabitation and, presumably, of childbearing within cohabitation, inspires interest in measuring the respective contribution of childbearing within marriage and within cohabitation to overall fertility. However, there is no consensus on a proper way to do so. Objective: Contribute to the development of tools for assessing the relative importance of marriage and cohabitation to overall fertility by developing period measures closely related to age-specific fertility rates and the total fertility rate. Methods: We introduce two measures: 1 the contribution of the conjugal state (living alone, living in a cohabiting union, being married to age-specific fertility rates (CASFR and 2 the contribution of the conjugal state to the TFR (CTFR. These measures are similar in construction to the marital (legitimate fertility rates and marital (legitimate TFR, but they are weighted by the proportion of women living alone, cohabiting, or being married at each age, so that their sum is the overall TFR. Taken together, they represent the fertility of the average woman of a synthetic cohort who moves across the various conjugal states (living alone, cohabiting, being married over her life course. They provide "realistic" estimates of completed fertility within each conjugal state. Conclusions: CASFRs provide a description of the fertility, over her life course, of a synthetic woman who would have spent her reproductive years living alone, cohabiting, and being married as the average woman of the synthetic cohort. CTFR provides a decomposition of the cumulative fertility of this synthetic woman. Over her life course, she would have had exactly the number of children computed using the overall TFR, but CTFR details the proportion of these children she would have had while living alone, while cohabiting, and while being married. Comments: Despite being defined as a conditional ASR weighted by the age-specific proportion of women living

  10. Digital instantaneous frequency measurement technique utilising high-speed ADC’s and FPGA’s

    CSIR Research Space (South Africa)

    Herselman, PL

    2006-02-27

    Full Text Available This paper presents the Digital Instantaneous Frequency Measurement (DIFM) technique, which can measure the carrier frequency of a received waveform within a fraction of a microsecond. The resulting frequency range, resolution and accuracy...

  11. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  12. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    Science.gov (United States)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force

  13. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials

    International Nuclear Information System (INIS)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-01-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs

  14. Measurement of large asymptotic reactor periods from about 103 to 4.104 sec) to determine reactivity effects of small samples

    International Nuclear Information System (INIS)

    Grinevich, F.A.; Evchuk, A.I.; Klimentov, V.B.; Tyzh, A.V.; Churkin, Yu.I.; Yaroshevich, O.I.

    1977-01-01

    All investigation programs on fast reactor physics include measurements of low reactivity values (1-0.01)x10 -5 ΔK/K. An application of the pile oscillator technique for the purpose requires a special critical assembly for an installation of the oscillator. Thus it is of interest to develop relatively simple methods. In particular, one of such methods is the asymptotic period method which is widely used for low reactivity measurements. The description of the method and equipment developed for low reactivity measurements according to the measurements of the steady-state reactor period is presented. The equipment has been tested on the BTS-2 fast-thermal critical assembly. Measurement results on the reactivity effects of small samples in the fast zone centre are given. It is shown that the application of the method of measuring long steady-state periods and developed and tested equipment enables the reactivity of (1+-0.02)x10 -5 ΔK/K to be determined at the critical assembly power of 5 to 10 Wt. The disadvantage of the method presented is the time lost on reaching the steady-state period which results in greater sensitivity of the method to reactivity drifts

  15. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  16. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  17. A New Technique for SET Pulse Width Measurement in Chains of Inverters Using Pulsed Laser Irradiation

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Fel, N.; Gaillardin, M.; Baggio, J.; Girard, S.; Flament, O.; Paillet, P.; McMorrow, D.; Melinger, J. S.; Kobayashi, D.; Hirose, K.; Saito, H.; Pouget, V.; Essely, F.; Schwank, J. R.; Flores, R. S.; Dodd, P. E.; Shaneyfelt, M. R.

    2009-01-01

    A new technique is developed to measure precisely and accurately the width of propagating voltage transients induced by irradiation of inverter chains. The technique is based on measurement of the supply current in a detection inverter, and permits a direct determination of the transient width with a 50 GHz bandwidth. (authors)

  18. Evaluation of a radioisotope labelling technique for measuring bacterial adherence on fabrics

    International Nuclear Information System (INIS)

    Youlo Hsieh; Timm, Debra; Merry, Joanne

    1986-01-01

    A technique utilizing tritiated thymidine labelled bacteria to quantify bacteria on fabrics has been evaluated. Quenching or self-absorption of isotope solution and labelled bacteria suspension by some of the fabrics has been observed. The extents of self-absorption of both isotope and labelled bacteria solutions on various fabrics was found to be dependent upon the fiber contents, i.e. the chemical compositions, of the substrata. This observation confirms that reduction of scintillation efficiency or self-absorption does occur when radio-labelled substances in suspensions were measured with the presence of some fabrics. Cautions should be taken when radio-labelling techniques are applied to detect isotope-labelled micro-organisms or other substances which are in contact with fabrics in the form of solutions. However, when there is no excess and nonattached labelled bacteria in the aqueous surrounding of the fabric, scintillation counting efficiency of the labelled bacteria on all fabrics studied remained constant over a period of 8 h. This indicates that the application of the described isotope labelling procedure is appropriate for quantifying adherent bacteria on fibrous substrate. (author)

  19. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    Science.gov (United States)

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  20. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period

  1. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  2. A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2011-09-01

    Full Text Available Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975 was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5–2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0

  3. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  4. Radioactivity measurements of soil samples in the Republic of Serbia for the period 1999-2001

    International Nuclear Information System (INIS)

    Eremic Savkovic, M.; Pantelic, G.; Javorina, L.; Tanaskovic, I.; Vuletic, V.

    2002-01-01

    The soil is the basic environment of migration of radionuclides into plants, from which they reach the people and animals through food. The type of soil affects the distribution of radionuclides in the soil itself and their transfer into plants, respectively. Systemic testing of radioactivity of soils is performed on specific locations in the Federal Republic of Yugoslavia, in particular time periods according to methods defined by regulations. As result of NATO aggression and use of ammunition with depleted uranium in 1999, the existing radioactivity monitoring program of Yugoslavia was modified. Besides measurement of activity of artificial radionuclides, that were present in living environment after Chernobyl accident in 1986, the testing of activity of natural radionuclides, especially of uranium, was carried out as well. Uranium in Serbia derives from natural sources, considering the geological composition of rocks and geochemical composition of soil, and their concentrations as well as the concentrations of its descendants represent the significant component of natural sources of ionizing irradiation. In Serbia, the major uranium sources are igneous, carbonic and sedimentary rocks, and granite. According to perennial geological investigation of uranium in our country, several geological regions have been found to have uranium in higher or lower concentration. The uranium concentration in these regions ranged from 0.003g/t for ultra basic rocks to 3.5g/t for igneous, sedimentary rocks and granite. One of considerable uranium sources is specific technological procedure in industry such as production and combustion of coal in thermal plants, production of phosphate mineral fertilizers, production of phosphoric acid, phosphoric plaster, etc

  5. Blood lactate recovery measurements, training, and performance during a 23-week period of competitive swimming.

    Science.gov (United States)

    Pelayo, P; Mujika, I; Sidney, M; Chatard, J C

    1996-01-01

    The purpose of this study was to relate measurements of blood lactate concentration, performance during a maximal anaerobic lactic test (MANLT) and training loads during a 23-week swimming season. Six elite 200-m freestyle male swimmers [mean age 19.5 (SD 1.6) years, height 184 (SD 5) cm and body mass 77.7 (SD 9.0) kg], participated in the study. The MANLT consisted of four all-out 50-m swims interspersed with 10-s recovery periods. Blood lactate concentrations were determined at 3 and 12-min post-exercise and were performed on weeks 2,6,10,14,18 and 21. Swimmers participated in 200-m freestyle competitions on weeks 1,7,13 and 23 (national championships). During weeks 1-10, training mostly involved aerobic exercise, while during weeks, 11-23, it involved anaerobic exercise. At 3-min and 12-min post-MANLT lactate concentrations varied throughout the season [range from 14.9 (SD 1.2) to 18.7 (SD 1.0) mmol.l-1] but demonstrated non-systematic variations. In contrast, the percentage of mean blood lactate decrease (% [La-]recovery) between min 3 and min 12 of the passive recovery post-MANLT increased from week 2 to 10 with aerobic training and decreased from week 10 to 21 with anaerobic training. The MANLT performance improved continuously throughout the season, while competition performance improved during the first three competitions but declined in the final championships, coinciding with the lowest % [La-]recovery and signs of overtraining, such as bad temper and increased sleeping heart rate. The results of this study indicated that % [La-]recovery could be an efficient marker for monitoring the impact of aerobic and anaerobic training and avoiding overtraining in elite 200-m swimmers.

  6. An improved technique for quasi-static C-V measurements

    International Nuclear Information System (INIS)

    Turan, R.; Finstad, T.G.

    1990-10-01

    A new automated quasi-static C-V measurement technique for MOS capacitors has been developed. This techniques uses an integrating electrometer to measure the charge accumulated on a MOS capacitor in response of a small voltage step. Making use of the internal data storage system of a commercial electrometer and a personal computer, the charge Q on the MOS capacitor is measured as a function of time t and stored. The capacitance is then obtained by analyzing this Q-t data set. A Si MOS sample is measured and analyzed in terms of interface charges as an example. Advantages over a commercial quasi-static meter which uses similar measurement technique are presented. It is also shown that this technique is potentially capable of measuring both high and low frequency C-V curves simultaneously. 9 refs. 5 figs

  7. Demonstration of relatively new electron dosimetry measurement techniques on the Mevatron 80

    International Nuclear Information System (INIS)

    Meyer, J.A.; Palta, J.R.; Hogstrom, K.R.

    1984-01-01

    A comprehensive set of electron dosimetry measurements at 7, 10, 12, 15, and 18 MeV was made on a Mevatron 80. Dosimetry measurements presented include percentage depth dose, dose in the buildup region, field size dependence of output, output at extended distances, lead transmission measurements, and isodose curves. These beam measurements are presented to document the electron beam characteristics of this linear accelerator. Three relatively new dosimetry techniques, which have not been standardly used in the past, are illustrated. One technique determines the depth dose of fields too small to measure. A second technique accurately converts depth dose measured in polystyrene to depth dose in water. A third technique calculates the output at extended distances

  8. Techniques for asynchronous and periodically-synchronous coupling of atmosphere and ocean models. Pt. 1. General strategy and application to the cyclo-stationary case

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Voss, R [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1995-07-01

    Asynchronous and periodically-synchronous schemes for coupling atmosphere and ocean models are presented. The performance of the schemes is tested by simulating the climatic response to a step function forcing and to a gradually increasing forcing with a simple zero-dimensional non-linear energy balance model. Both the initial transient response and the asymptotic approach of the equilibrium state are studied. If no annual cycle is allowed the asynchronous coupling technique proves to be a suitable tool. However, if the annual cycle is retained, the periodically-synchronous coupling technique reproduces the results of the synchronously coupled runs with smaller bias. In this case it is important that the total length of one synchronous period and one ocean only period is not a multiple of 6 months. (orig.)

  9. Kalman filtering techniques for reducing variance of digital speckle displacement measurement noise

    Institute of Scientific and Technical Information of China (English)

    Donghui Li; Li Guo

    2006-01-01

    @@ Target dynamics are assumed to be known in measuring digital speckle displacement. Use is made of a simple measurement equation, where measurement noise represents the effect of disturbances introduced in measurement process. From these assumptions, Kalman filter can be designed to reduce variance of measurement noise. An optical and analysis system was set up, by which object motion with constant displacement and constant velocity is experimented with to verify validity of Kalman filtering techniques for reduction of measurement noise variance.

  10. ACCENT-BIAFLUX workshop 2005, trace gas and aerosol flux measurement and techniques. Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Soerensen, L.L. (eds.)

    2005-04-01

    The woorkshop trace gas and aerosol flux measurement techniques in the second meeting within the Biosphere Atmosphere Exchange of Pollutions (BIAFLUX) group in the EU-network project Atmospheric Composition Change (ACCENT). The goal of the workshop is to obtain an overview of techniques for measurements of gas and aerosol fluxes and to gather the knowledge of uncertainties in flux measurements and calculations. The workshop is funded by ACCENT. The abstract book presents abstracts of 21 oral presentations and 26 poster presentations. (LN)

  11. Validation of a technique of measurement in vivo of 131I in thyroids

    International Nuclear Information System (INIS)

    Villella, A.M.; Puerta Yepes, N.; Gossio, S.; Papadopulos, S.

    2010-01-01

    The Total Body Counter (TBC) Laboratory of the Nuclear Regulatory Authority, following the institutional initiative of quality assurance in its measurement techniques, has been involved in an accreditation process based on the ISO/IEC 17205:2005 norm. In vivo measurement of 131 I in thyroid has been selected as the first technique in this process, and it is described in this paper. The TBC Laboratory uses for this technique a gamma spectrometry system with a NaI(Tl) detector, calibrated with a neck simulator of the IRD and a certified plane source of 131 I with thyroid form. It has been carried out a validation plan that has permitted the characterization of the 131 I measurement technique, and its uncertainty evaluation. Measurement parameters that affect the uncertainty are discussed and recommendations for the technique optimization are proposed. (authors) [es

  12. Measurement techniques for low emittance tuning and beam dynamics at CESR

    Science.gov (United States)

    Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.

    2018-03-01

    After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.

  13. Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography

    KAUST Repository

    Yang, Yung-Lang; Hsu, Chin-Chi; Chang, Tien-Li; Kuo, Long-Sheng; Chen, Ping-Hei

    2010-01-01

    This study presents the wetting properties, including hydrophilicity, hydrophobicity and anisotropic behavior, of water droplets on the silicon wafer surface with periodical nanopatterns and hierarchical structures. This study fabricates one

  14. Measurement of hepatic venous pressure gradient revisited: Catheter wedge vs balloon wedge techniques

    Directory of Open Access Journals (Sweden)

    S Timothy Chelliah

    2011-01-01

    Full Text Available Aims: To evaluate the accuracy of measurement of hepatic venous pressure gradient by catheter wedge as compared to balloon wedge (the gold standard. Materials and Methods: Forty-five patients having a clinical diagnosis of intrahepatic portal hypertension were subjected to the two different types of pressure measurements (catheter wedge and balloon wedge during transjugular liver biopsy under fluoroscopic guidance. Statistical Analysis: Spearman′s rank correlation coefficient, Bland-Altman plot for agreement, and single measure intraclass correlation were used for analysis of data. Results: There was a close correlation between the results obtained by both the techniques, with highly significant concordance (P < 0.0001. Hepatic venous pressure gradients as measured by the catheter wedge technique were either equal to or less than those obtained by the balloon wedge technique. Conclusions: The difference in hepatic venous pressure gradients measured by the two techniques is insignificant.

  15. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    Science.gov (United States)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  16. Wholefield displacement measurements using speckle image processing techniques for crash tests

    Science.gov (United States)

    Sriram, P.; Hanagud, S.; Ranson, W. F.

    The digital correlation scheme of Peters et al. (1983) was extended to measure out-of-plane deformations, using a white light projection speckle technique. A simple ray optic theory and the digital correlation scheme are outlined. The technique was applied successfully to measure out-of-plane displacements of initially flat rotorcraft structures (an acrylic circular plate and a steel cantilever beam), using a low cost video camera and a desktop computer. The technique can be extended to measurements of three-dimensional deformations and dynamic deformations.

  17. Measurement of the amplitude and phase transfer functions of an optical modulator using a heterodyne technique

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2001-01-01

    We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....

  18. Reducing the sampling periods required in protocols for establishing ammonia emissions from pig fattening buildings using measurements and modelling

    NARCIS (Netherlands)

    Mosquera Losada, J.; Ogink, N.W.M.

    2011-01-01

    Ammonia (NH(3)) emission factors for animal housing systems in the Netherlands are based on measurements using standardised measurement protocols. Both the original Green Label (GL) protocol and the newly developed multi-site sampling protocol are based on year-round sampling periods. The objective

  19. Measuring the corrosion rate of steel in concrete – effect of measurement technique, polarisation time and current

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica

    2012-01-01

    , are in some studies considered the main reasons for the variations. This paper presents an experimental study on the quantitative effect of polarisation time and current on the measured polarisation resistance – and thus the corrosion current density – of passively and actively corroding steel. Two...... electrochemical techniques often used in instruments for on-site corrosion rate measurements are investigated. On passively corroding reinforcement the measured polarisation resistance was for both techniques found to be highly affected by the polarisation time and current and no plateaus at either short or long...... rate for actively corroding steel. For both techniques guidelines for polarisation times and currents are given for (on-site) non-destructive corrosion rate measurements on reinforcement steel in concrete....

  20. Development of self-calibration techniques for on-wafer and fixtured measurements: a novel approach

    OpenAIRE

    Pradell i Cara, Lluís; Purroy Martín, Francesc; Cáceres, M.

    1992-01-01

    Network Analyzer self-calibration techniques - TRL, LMR, TAR- are developed, implemented and compared in several transmission media. A novel LMR (Line-Match-Reflect) technique based on known LINE and REFLECT Standards, is proposed and compared to conventional LMR (based on known LINE and MATCH Standards) and other techniques (TRL, TAR). They are applied to on-wafer S-parameter measurement as well as to coaxial, waveguide and microstrip media. Experimental results up to 40 GHz are presented. ...

  1. Measurements of uranium enrichment by four techniques of gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Tojo, Takao

    1983-12-01

    Measurements of uranium enrichment with the uses of the LMRI (France) UO 2 standards have been made by four techniques of gamma-ray spectrometry, in order to examine measurement characteristics of each technique. The following results were obtained by the three techniques based on the direct determination of the peak area of the 186-keV gamma-rays from 235 U, when the standard sample of 6.297 a/o was used for measuring enrichments ranging from 1.4 a/o to 9.6 a/o ; (i) In a LEPS HP Ge gamma-ray spectrometry, standard deviation of the measured enrichments from the certified ones was 1.4 %, (ii) in a Ge(Li) gamma-ray spectrometry, the standard deviation was 2.0 %, (iii) in a NaI(Tl) gamma-ray spectrometry, the standard deviation was 1.2 %. In the fourth technique, the method of multiple single-channel analyzers, enrichments of 1.4 - 9.6 a/o were measured in the standard deviation of 0.51 %, when the most suitable pairs of standard samples were used for each sample. A part of sources of systematic errors which were caused by each technique adopted was revealed throughout the measurements. And also, it was recognized that the LMRI's values of enrichment were certified precisely, and the UO 2 standards were very useful for enrichment measurements in the four techniques of gamma-ray spectrometry used here. (author)

  2. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  3. The verification tests of residual radioactivity measurement and assessment techniques for buildings and soils

    International Nuclear Information System (INIS)

    Onozawa, T.; Ishikura, T.; Yoshimura, Yukio; Nakazawa, M.; Makino, S.; Urayama, K.; Kawasaki, S.

    1996-01-01

    According to the standard procedure for decommissioning a commercial nuclear power plant (CNPP) in Japan, controlled areas will be released for unrestricted use before the dismantling of a reactor building. If manual survey and sampling techniques were applied to measurement for unrestricted release on and in the extensive surface of the building, much time and much specialized labor would be required to assess the appropriateness of the releasing. Therefore the authors selected the following three techniques for demonstrating reliability and applicability of the techniques for CNPPs: (1) technique of assessing radioactive concentration distribution on the surface of buildings (ADB); (2) technique of assessing radioactive permeation distribution in the concrete structure of buildings (APB); (3) technique of assessing radioactive concentration distribution in soil (ADS). These tests include the techniques of measuring and assessing very low radioactive concentration distribution on the extensive surfaces of buildings and the soil surrounding of a plant with automatic devices. Technical investigation and preliminary study of the verification tests were started in 1990. In the study, preconditions were clarified for each technique and the performance requirements were set up. Moreover, simulation models have been constructed for several feasible measurement method to assess their performance in terms of both measurement test and simulation analysis. Fundamental tests have been under way using small-scale apparatuses since 1994

  4. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique

    NARCIS (Netherlands)

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO(2)) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO(2) in vivo exists. Here we

  5. Implant Monitoring Measurements On Ultra Shallow Implants Before And After Anneal Using Photomodulated Reflection And Junction Photovoltage Measurement Techniques

    Science.gov (United States)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    Ultra shallow junctions are becoming widely used in the micro- and nanoelectronic devices, and novel measurement methods are needed to monitor the manufacturing processes. Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are non-contact, nondestructive techniques suitable for characterizing both the implantation and the annealing process. Tests verify that these methods are consistent with each other and by using them together, defects originating in the implantation and anneal steps can be separated.

  6. Non-invasive measurement of calcium and phosphorus in human body by NAA technique

    International Nuclear Information System (INIS)

    Wang Haiying; Luo Xianqing; Huang Hanqiao

    1995-01-01

    A system of measuring calcium and phosphorus in human legs has been developed by the use of partial-body neutron activation analysis and partial-body counting technique. The results are compared for the normals and osteoporotic patients

  7. Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training.

    NARCIS (Netherlands)

    Weerdesteijn, V.G.M.; Groen, B.E.; Swigchem, R. van; Duysens, J.E.J.

    2008-01-01

    Hip fractures are among the most serious consequences of falls in the elderly. Martial arts (MA) fall techniques may reduce hip fracture risk, as they are known to reduce hip impact forces by approximately 30% in experienced fallers. The purpose of this study was to investigate whether hip impact

  8. Current measurement system utilizing cryogenic techniques for the absolute measurement of the magnetic flux quantum

    International Nuclear Information System (INIS)

    Endo, T.; Murayama, Y.; Sakamoto, Y.; Sakuraba, T.; Shiota, F.

    1989-01-01

    A series of systems composed of cryogenic devices such as a Josephson potentiometer and a cryogenic current comparator has been proposed and developed to precisely measure a current with any value up to 1 A. These systems will be used to measure the injected electrical energy with an uncertainty of the order of 0.01 ppm or less in the absolute measurement of the magnetic flux quantum by superconducting magnetic levitation. Some preliminary experiments are described

  9. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ravelo Arias, S. I.; Ramírez Muñoz, D. [Department of Electronic Engineering, University of Valencia, Avda. de la Universitat, s/n, 46100-Burjassot (Spain); Cardoso, S. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); Ferreira, R. [INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal); Freitas, P. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal)

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  10. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    International Nuclear Information System (INIS)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-01-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others

  11. The choice of label and measurement technique in tracer studies of body protein metabolism in man

    International Nuclear Information System (INIS)

    James, W.P.T.; Sender, P.M.; Garlick, P.J.; Waterlow, J.C.

    1975-01-01

    The turnover of non-serum proteins in man has had limited study despite the physiological importance of maintaining the balance between synthesis and breakdown of body proteins. Body protein is usually considered as a single pool and breakdown rates are often measured by monitoring excreted label at intervals after pulse labelling with radioactive or 15 N amino acids. No label has yet been used for measuring tissue protein breakdown in man which is free from the major problem of label re-utilization. All measurements of breakdown rates, eg. with 75 Se-selenomethionine, 15 N- or 14 C-glycine, give rate constants which are too low. The heterogeneity of body proteins also means that an estimate of the weighted average breakdown rate can only be obtained after following the excretion of isotope for a long period, perhaps of the order of 3-4 half-lives which, for man, would be 100 days after labelling. We therefore use infusions with either 14 C- or 15 N-labelled amino acids to measure breakdown and synthesis rates: these values are less affected by problems of protein heterogeneity. Single injection techniques are subject to more error than constant infusions of label because of the difficulty of defining the precursor activity. 15 N labelling need not be confined to essential amino acids if total protein rather than amino acid turnover is studied: the latter involves measurements of the labelled amino acid itself which is difficult with 15 N because of the small amounts of free amino acid nitrogen available. Carbon labelling of non-essential amino acids is unsuitable for studies of protein turnover and the choice of the position of the label on the molecule is important when labelled essential amino acids are employed. Short-term changes in protein metabolism are evaluated better with amino acids with a small pool size; the equilibration time in the excretory bicarbonate pool is also shorter than in the urea pool so that 15 N is less useful than carbon labelling. We

  12. Measurement techniques for AGR circulators in a full-density rig

    International Nuclear Information System (INIS)

    Watson, I.; Wilson, R.R.

    1977-01-01

    Safety and reliability are the most important factors of a nuclear power plant. This applies in particular to the circulators used to drive the high-density CO 2 around the reactor core and boiler circuits. Under operating conditions, very high sound-pressure levels are generated which could excite components and cause possible fatigue failures. Failures of this type were experienced on the original axial blowers for the Hinkley 'A' Magnox reactor and, following this, a stringent test plan was specified for the AGR circulators. The present paper describes some of the techniques used to measure strain, sound and vibration on circulators in a full-density rig. This rig reproduces the actual reactor working conditions of 300 0 C and 4.1 MN m -2 with gas velocities up to 120 m s -1 . Under these conditions sound-pressure levels of up to 172 dB are generated. This programme of circulator testing has continued for the past 10 years. During this period many obstacles and difficulties were encountered. Some of these problems, together with the solutions found, are discussed. (author)

  13. Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.

    Science.gov (United States)

    Muller-Chrétien, Emilie

    2014-01-01

    The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.

  14. Measurement of void fractions by nuclear techniques; Medicion de fracciones de vacio por tecnicas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  15. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  16. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, D.P.; Richardson, C.F. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  17. The stream flow rate measurement using tracer techniques at the Kemubu Agricultural Development Authority (KADA), Kelantan

    International Nuclear Information System (INIS)

    Daud Mohammad; Abd Razak Hamzah; Wan Abd Aziz Wan Mohamad; Juhari Yusoff; Wan Zakaria Wan Mohd Tahir

    1985-01-01

    Measuring the flow rate of a water course is one of the basic operations in hydrology, being of general relevance to water problems and of particular importance in the planning of water control schemes. The techniques commonly used in streamflow gauging are either by a current meter of tracer dilution method. This paper describes the latter technique in which radioisotope Tc-99m was used as a tracer in streamflow measurements performed in 1983 in a few selected irrigation canals and pump house under the Kemubu Agriculture Development Authority (KADA), Kelantan. Total count technique and peak-to-peak method were adopted in this study. (author)

  18. A long-period analog integrator for magnetic measurements in Tore Supra

    International Nuclear Information System (INIS)

    Prou, M.; Barth, E.; Couturier, P.; Ouvrier-Buffet, P.

    1998-01-01

    A new analog integrator, called 'Integrateur 2000', has been developed for precise integration over long periods for the magnetic signals of Tore Supra with the aim of 1000 s discharges for the CIEL project. This new integrator is already in routine use for the present pulse lengths of up to 200 s in T-S, and tests have been carried out up to 1000 s with less than 2 mV of drift. (author)

  19. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Zahradníček, Pavel; Pisoft, P.; Štěpánek, Petr; Bělinová, M.; Dobrovolný, Petr

    2012-01-01

    Roč. 110, 1-2 (2012), s. 17-34 ISSN 0177-798X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : secular station * instrumental period * homogenization * air temperature * precipitation * fluctuation * cyclicity * wavelet analysis * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.759, year: 2012

  20. Measurement of gluconeogenesis by deuterated water: the effect of equilibration time and fasting period

    NARCIS (Netherlands)

    Allick, Gideon; van der Crabben, Saskia N.; Ackermans, Mariette T.; Endert, Erik; Sauerwein, Hans P.

    2006-01-01

    Fasting gluconeogenesis (GNG) is often quantified using the 2H2O technique, which is based on plasma 2H2O enrichment and ensuing enrichment of plasma glucose at the C5 and C2 positions. Fractional (fr)GNG can be calculated using the ratio of C5 to C2 enrichment or the ratio of C5 to plasma 2H2O

  1. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques

    NARCIS (Netherlands)

    Jager, D. H. J.; Vieira, A. M.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  2. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques.

    NARCIS (Netherlands)

    Jager, D.H.; Vieira, A.M.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  3. Large-scale nanofabrication of periodic nanostructures using nanosphere-related techniques for green technology applications (Conference Presentation)

    Science.gov (United States)

    Yen, Chen-Chung; Wu, Jyun-De; Chien, Yi-Hsin; Wang, Chang-Han; Liu, Chi-Ching; Ku, Chen-Ta; Chen, Yen-Jon; Chou, Meng-Cheng; Chang, Yun-Chorng

    2016-09-01

    Nanotechnology has been developed for decades and many interesting optical properties have been demonstrated. However, the major hurdle for the further development of nanotechnology depends on finding economic ways to fabricate such nanostructures in large-scale. Here, we demonstrate how to achieve low-cost fabrication using nanosphere-related techniques, such as Nanosphere Lithography (NSL) and Nanospherical-Lens Lithography (NLL). NSL is a low-cost nano-fabrication technique that has the ability to fabricate nano-triangle arrays that cover a very large area. NLL is a very similar technique that uses polystyrene nanospheres to focus the incoming ultraviolet light and exposure the underlying photoresist (PR) layer. PR hole arrays form after developing. Metal nanodisk arrays can be fabricated following metal evaporation and lifting-off processes. Nanodisk or nano-ellipse arrays with various sizes and aspect ratios are routinely fabricated in our research group. We also demonstrate we can fabricate more complicated nanostructures, such as nanodisk oligomers, by combining several other key technologies such as angled exposure and deposition, we can modify these methods to obtain various metallic nanostructures. The metallic structures are of high fidelity and in large scale. The metallic nanostructures can be transformed into semiconductor nanostructures and be used in several green technology applications.

  4. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  5. Thickness measurement for the different metals by using Cs-137 gamma source with gamma transmission technique

    International Nuclear Information System (INIS)

    Bueyuek, B.; Tugrul, B.

    2009-01-01

    The purpose of this study is an experimental analysis of thickness measurement for various metals with the gamma transmission technique using Cs-137 as the radioisotope source. Lead, steel, brass, and aluminum, which are frequently used metals in industry, were chosen for the experiments. As the radioisotope source Cs-137 was preferred for the study since it has long half-life, it is mono energetic, and it penetrates the metals that were studied. Experiments were observed in the constant experimental geometry. Calibration curves for the four metal samples were plotted using the obtained results. To test the plotted calibration curves, counts for determining thickness measurement were collected for each sample and the obtained relative count values were used in conjunction with the plotted calibration curves for each sample to determine its thickness. The thicknesses of the samples have been measured with a micrometer and the results were comparatively analyzed with the measurement results obtained by the gamma transmission technique. The results of the analyses revealed that the thickness measurement values obtained with the gamma transmission technique and the thickness measurement values obtained with the conventional technique significantly converge to each other and the difference between the two values is at an acceptable level. Therefore the reliability of thickness measurements with the gamma transmission technique and the resulting calibration curves have been demonstrated.

  6. Trial on MR portal blood flow measurement with phase contrast technique

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Togami, Izumi

    1991-01-01

    Portal blood flow measurement is considered to be important for the analysis of hemodynamics in various liver diseases. The Doppler ultrasound method has been used extensively during the past several years for measuring portal blood flow, as a non-invasive method. However, the Doppler ultrasound technique do not allow the portal blood flow to be measured in cases of obesity, with much intestinal gas, and so on. In this study, we attempted to measure the blood flow in the main trunk of portal vein as an application of MR phase contrast technique to the abdominal region. In the flow phantom study, the flow volumes and the velocities measured by phase contrast technique showed a close correlation with those measured by electromagnetic flowmeter. In the clinical study with 10 healthy volunteers, various values of portal blood flow were obtained. Mean portal blood flow could be measured within the measuring time (about 8 minutes) under natural breathing conditions. Phase contrast technique is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  7. An improved visualization-based force-measurement technique for short-duration hypersonic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Stuart J.; Karl, Sebastian [Institute of Aerodynamics and Flow Technology, Spacecraft Section, German Aerospace Center (DLR), Goettingen (Germany)

    2010-06-15

    This article is concerned with describing and exploring the limitations of an improved version of a recently proposed visualization-based technique for the measurement of forces and moments in short-duration hypersonic wind tunnels. The technique is based on tracking the motion of a free-flying body over a sequence of high-speed visualizations; while this idea is not new in itself, the use of high-speed digital cinematography combined with a highly accurate least-squares tracking algorithm allows improved results over what have been previously possible with such techniques. The technique precision is estimated through the analysis of artificially constructed and experimental test images, and the resulting error in acceleration measurements is characterized. For wind-tunnel scale models, position measurements to within a few microns are shown to be readily attainable. Image data from two previous experimental studies in the T5 hypervelocity shock tunnel are then reanalyzed with the improved technique: the uncertainty in the mean drag acceleration is shown to be reduced to the order of the flow unsteadiness, 2-3%, and time-resolved acceleration measurements are also shown to be possible. The response time of the technique for the configurations studied is estimated to be {proportional_to}0.5 ms. Comparisons with computations using the DLR TAU code also yield agreement to within the overall experimental uncertainty. Measurement of the pitching moment for blunt geometries still appears challenging, however. (orig.)

  8. Measuring small time periods in earth sciences by uranium series disequilibrium

    International Nuclear Information System (INIS)

    Choudhary, A.K.

    2008-01-01

    During the last three decades mass spectrometry in India has seen its application in almost every field of science. In particular, TIMS has revolutionized geological sciences by taking it from a mainly descriptive to modern quantitative Earth Sciences. It has largely contributed in measurement of precise time scales of geological processes. During the last decade, focus has primarily been on measurement of time scales of these fundamental processes. Some of the radiometric methods initially developed for measuring shorter time-scales have their own problems. The intermediate nuclides in the uranium and thorium decay series having much shorter half lives compared to their parents, provide a useful tool to measure intermediate time scales. These isotopes had earlier been ignored due to analytical difficulties associated with their measurement. The development of new generation mass spectrometers with very high abundance sensitivity has now made it possible to measure these isotopic ratios. Consequently U-series isotopic measurements have put unique and at times the only quantitative constraints on the processes taking place in the interior of the Earth. Since such mass spectrometers have recently been installed in some of the laboratories in India, scientific investigation may now be taken up in some of the unexplored areas of Earth Sciences in our country

  9. Neutron beam applications; development of texture measuring technique using 1-dimensional PSD

    Energy Technology Data Exchange (ETDEWEB)

    Park, No Jin; Lee, Moon Kyu; Joung, Tae Won; Lee, In Sung [Kumoh National University of Technology, Kumi (Korea)

    2002-03-01

    The new developed materials have often a low crystal symmetry or/and multi-phase state. Because the diffraction patterns of those materials are very complex and some peaks are overlapped, the measured pole figures with a conventional detector (0-dimensional detector) are not sufficient to use for the texture analysis. And also the widely broaden diffraction patterns caused by sever deformation, can only measured with lots of measuring errors using 0-dimensional detector. In this study the 1-dimensional and 2-dimensional position sensitive detector(PSD) is used such pattern to analyse. With PSD the more accurate pole figures can be measured, and the texture analysis, the estimation of the properties are determined more precisely. The measurement using PSD needs special technique for the analysis of the measured pattern. In this study the measuring and analysing technique is developed and compared with the conventional detector. 11 refs., 92 figs., 21 tabs. (Author)

  10. Measurement of mesothelioma on thoracic CT scans: A comparison of manual and computer-assisted techniques

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Oxnard, Geoffrey R.; MacMahon, Heber; Vogelzang, Nicholas J.; Kindler, Hedy L.; Kocherginsky, Masha; Starkey, Adam

    2004-01-01

    Our purpose in this study was to evaluate the variability of manual mesothelioma tumor thickness measurements in computed tomography (CT) scans and to assess the relative performance of six computerized measurement algorithms. The CT scans of 22 patients with malignant pleural mesothelioma were collected. In each scan, an initial observer identified up to three sites in each of three CT sections at which tumor thickness measurements were to be made. At each site, five observers manually measured tumor thickness through a computer interface. Three observers repeated these measurements during three separate sessions. Inter- and intra-observer variability in the manual measurement of tumor thickness was assessed. Six automated measurement algorithms were developed based on the geometric relationship between a specified measurement site and the automatically extracted lung regions. Computer-generated measurements were compared with manual measurements. The tumor thickness measurements of different observers were highly correlated (r≥0.99); however, the 95% limits of agreement for relative inter-observer difference spanned a range of 30%. Tumor thickness measurements generated by the computer algorithms also correlated highly with the average of observer measurements (r≥0.93). We have developed computerized techniques for the measurement of mesothelioma tumor thickness in CT scans. These techniques achieved varying levels of agreement with measurements made by human observers

  11. Under-Sodium-Viewing as one technique for periodic inspections in sodium-cooled fast reactors-- possibilities and limits

    International Nuclear Information System (INIS)

    Weiss, H.

    1979-07-01

    Periodic inspections are gaining increasingly technical importance for fast sodium cooled reactors. Among others the reactor tank and its internals have to be inspected, whereby licensing experts partly are requesting the standards of Light Water Reactors. This leads to difficulties in sodium cooled reactors because of the non-transparent coolant sodium and their compact structure. In order to avoid the complete dumping of the sodium, the under sodium viewing shall be applied besides other inspection methods. Since this is a new method, which is still in its development phase, this report presents and discusses the technical and physical basis and outlines possibilities and limits [de

  12. Measuring modulated luminescence using non-modulated stimulation: Ramping the sample period

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Andersen, C.E.

    2003-01-01

    . Directly analogous results to LM-OSL can, however, be achieved with non-modulated excitation sources, by ramping the sample period (RSP) of luminescence detection. RSP-OSL has the distinct advantage over LM-OSL in that, since the excitation remains at full power, data accumulation times (that can...... be considerable) can be reduced by typically 50%. RSP methods are universally applicable and can be employed, for example, where the excitation source is constant heat, rather than light: here, iso-thermal decay of phosphorescence becomes recorded as a sequence of peaks, corresponding to de-trapping of charge...

  13. Decay heat measurement of 235U in the time period from 10 to 1000 seconds

    International Nuclear Information System (INIS)

    Baumung, K.

    1978-01-01

    During the report period, the experimental facility was installed at the FR2 reactor. A delay was caused by the fact, that the supplying with water for the cooling loop of the pneumatic transfer system as well as discharge of exhaust gas into the halogeneventilation system of the reactor could not be performed as planned before. Therefore a cooling system was provided and tested and the efficiency of special halogene filters belonging to the experimental facility was verified. Now the apparatus is assembled and first cold tests have been performed. (orig.) [de

  14. Alternative tense and agreement morpheme measures for assessing grammatical deficits during the preschool period.

    Science.gov (United States)

    Gladfelter, Allison; Leonard, Laurence B

    2013-04-01

    P. A. Hadley and H. Short (2005) developed a set of measures designed to assess the emerging diversity and productivity of tense and agreement (T/A) morpheme use by 2-year-olds. The authors extended 2 of these measures to the preschool years to evaluate their utility in distinguishing children with specific language impairment (SLI) from their typically developing (TD) peers. Spontaneous speech samples from 55 children (25 with SLI, 30 TD) at 2 different age levels (4;0-4;6 [years;months] and 5;0-5;6) were analyzed, using a traditional T/A morphology composite that assessed accuracy, and the Hadley and Short measures of Tense Marker Total (assessing diversity of T/A morpheme use) and Productivity Score (assessing productivity of major T/A categories). All 3 measures showed acceptable levels of sensitivity and specificity. In addition, similar differences in levels of productivity across T/A categories were seen in the TD and SLI groups. The Tense Marker Total and Productivity Score measures seem to have considerable utility for preschool-age children, in that they provide information about specific T/A morphemes and major T/A categories that are not distinguished using the traditional composite measure. The findings are discussed within the framework of the gradual morphosyntactic learning account.

  15. A simple technique for the measurement of 222Rn in soil gas using LLRDS

    International Nuclear Information System (INIS)

    Karunakara, N.

    2010-01-01

    The details of the technique of soil gas measurement using LLRDS and results obtained for field measurements at different locations of Mangalore and the results of comparative study with the AlphaGuard along with the possible scope for the improvisation are presented and discussed in this paper

  16. Adjustments of microwave-based measurements on coal moisture using natural radioactivity techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prieto-Fernandez, I.; Luengo-Garcia, J.C.; Alonso-Hidalgo, M.; Folgueras-Diaz, B. [University of Oviedo, Gijon (Spain)

    2006-01-07

    The use of nonconventional on-line measurements of moisture and ash content in coal is presented. The background research is briefly reviewed. The possibilities of adjusting microwave-based moisture measurements using natural radioactive techniques, and vice versa, are proposed. The results obtained from the simultaneous analysis of moisture and ash content as well as the correlation improvements are shown.

  17. Intercomparison of rod-worth measurement techniques in a LEU-HTR assembly

    International Nuclear Information System (INIS)

    Williams, T.; Chawla, R.

    1994-01-01

    The measurement of absorber-rod worths in the radial reflector of a LEU-HTR pebble bed system is described. Particular emphasis is placed on the choice of complementary measurement techniques to ensure that sensitivities to systematic errors in the calculated parameters used in the analysis are minimised. (author) 3 figs., 3 tabs., 8 refs

  18. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.

    Science.gov (United States)

    Ha, Hojin; Nam, Kweon-Ho; Lee, Sang Joon

    2012-11-01

    The micro-particle tracking velocimetry (μ-PTV) technique is used to obtain the velocity fields of blood flow in the microvasculature under in vivo conditions because it can provide the blood velocity distribution in microvessels with high spatial resolution. The in vivo μ-PTV technique usually requires a few to tens of seconds to obtain a whole velocity profile across the vessel diameter because of the limited number density of tracer particles under in vivo conditions. Thus, the μ-PTV technique alone is limited in measuring unsteady blood flows that fluctuate irregularly due to the heart beating and muscle movement in surrounding tissues. In this study, a new hybrid PIV-PTV technique was established by combining PTV and particle image velocimetry (PIV) techniques to resolve the drawbacks of the μ-PTV method in measuring blood flow in microvessels under in vivo conditions. Images of red blood cells (RBCs) and fluorescent particles in rat mesenteric vessels were obtained simultaneously. Temporal variations of the centerline blood velocity were monitored using a fast Fourier transform-based cross-correlation PIV method. The fluorescence particle images were analyzed using the μ-PTV technique to extract the spatial distribution of the velocity vectors. Data from the μ-PTV and PIV methods were combined to obtain a better estimate of the velocity profile in actual blood flow. This technique will be useful in investigating hemodynamics in microcirculation by measuring unsteady irregular blood flows more accurately. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Measurement of detector neutron energy response using time-of-flight techniques

    International Nuclear Information System (INIS)

    Janee, H.S.

    1973-09-01

    The feasibility of using time-of-flight techniques at the EG and G/AEC linear accelerator for measuring the neutron response of relatively sensitive detectors over the energy range 0.5 to 14 MeV has been demonstrated. The measurement technique is described in detail as are the results of neutron spectrum measurements from beryllium and uranium photoneutron targets. The sensitivity of a fluor photomultiplier LASL detector with a 2- by 1-inch NE-111 scintillator was determined with the two targets, and agreement in the region of overlap was very good. (U.S.)

  20. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    International Nuclear Information System (INIS)

    Unak, T.; Avcibasi, U.; Yildirim, Y.; Cetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 mg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131 I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131 I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  1. A cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    are represented in terms of spherical wave expansions (SWEs), and the propagation is accounted for by a transmission formula. In this paper the measurement results by the proposed technique will be presented for several AUTs, including a standard gain horn antenna, a monopole antenna, and an electrically small......Impedance and gain measurements for electrically small antennas represent a great challenge due to influences of the feeding cable. The leaking current along the cable and scattering effects are two main issues caused by the feed line. In this paper, a novel cable-free antenna impedance and gain...... measurement technique for electrically small antennas is proposed. The antenna properties are extracted by measuring the signal scattered by the antenna under test (AUT), when it is loaded with three known loads. The technique is based on a rigorous electromagnetic model where the probe and AUT...

  2. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Science.gov (United States)

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  3. Stopped-flow technique for transit time measurement in a gas jet

    International Nuclear Information System (INIS)

    Rengan, K.; Lin, J.; Lim, T.; Meyer, R.A.; Harrell, J.

    1985-01-01

    A 'stopped-flow' technique for the measurement of transit time of reaction products in a gas jet is described. The method involved establishing the gas flow through the jet system when the reactor is operating steadily and allowing the pressure to reach equilibrium values. The gas flow is stopped by means of electrically operated valves. The transit-time measurement is achieved by opening the valves and initiating the multiscanning of total activity simultaneously. The value obtained agrees well with the transit time measured by pulsing the reactor. The 'stopped-flow' technique allows on-line measurement of transit time in any gas jet system where the physical transportation time is the major component of the transit time. This technique is especially useful for systems installed in reactors which do not have pulsing capability. (orig.)

  4. Development of Uncertainty Quantification Method for MIR-PIV Measurement using BOS Technique

    International Nuclear Information System (INIS)

    Seong, Jee Hyun; Song, Min Seop; Kim, Eung Soo

    2014-01-01

    Matching Index of Refraction (MIR) is frequently used for obtaining high quality PIV measurement data. ven small distortion by unmatched refraction index of test section can result in uncertainty problems. In this context, it is desirable to construct new concept for checking errors of MIR and following uncertainty of PIV measurement. This paper proposes a couple of experimental concept and relative results. This study developed an MIR uncertainty quantification method for PIV measurement using SBOS technique. From the reference data of the BOS, the reliable SBOS experiment procedure was constructed. Then with the combination of SBOS technique with MIR-PIV technique, velocity vector and refraction displacement vector field was measured simultaneously. MIR errors are calculated through mathematical equation, in which PIV and SBOS data are put. These errors are also verified by another BOS experiment. Finally, with the applying of calculated MIR-PIV uncertainty, correct velocity vector field can be obtained regardless of MIR errors

  5. Capability of simultaneous Rayleigh LiDAR and O2 airglow measurements in exploring the short period wave characteristics

    Science.gov (United States)

    Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan

    We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.

  6. Variability of vascular CT measurement techniques used in the assessment abdominal aortic aneurysms

    International Nuclear Information System (INIS)

    England, Andrew; Niker, Amanda; Redmond, Claire

    2010-01-01

    Purpose: The aim of this project is to assess the variability of six CT measurement techniques for sizing abdominal aortic aneurysms (AAAs). Method: 37 CT scans with known AAAs were loaded on to a departmental picture archiving and communication system (PACS). A team of three observers, with experience in aortic CT measurements and the PACS performed a series of 2D and 3D measurements on the abdominal aorta. Each observer was asked to measure 3 quantities; anterior-posterior AAA diameter, maximum oblique AAA diameter, maximum aneurysm area using both 2D and 3D techniques. In order to test intra-observer variability each observer was asked to repeat their measurements. All measurements were taken using electronic callipers, under standardised viewing conditions using previously calibrated equipment. 3D measurements were conducted using a computer generated central luminal line (CLL). All measurements for this group were taken perpendicular to the CLL. Results: A total of 972 independent measurements were recorded by three observers. Mean intra-observer variability was lower for 2D diameter measurements (AP 1.3 ± 1.6 mm; 2D Oblique 1.2 ± 1.3 mm) and 2D areas (0.7 ± 1.3 cm 2 ) when compared to inter-observer variability (AP 1.7 ± 1.9 mm; Oblique 1.6 ± 1.7 mm; area 1.1 ± 1.5 cm 2 ). When comparing 2D with 3D measurements, differences were comparable except for 3D AP diameter and area which had lower inter-observer variability than their 2D counterparts (AP 2D 1.7 ± 1.9 mm, 3D 1.3 ± 1.3 mm; area 2D 1.1 ± 1.5 cm 2 , 3D 0.7 ± 0.7 cm 2 ). 3D area measurement was the only technique which had equal variability for intra- and inter-observer measurements. Overall observer variability for the study was good with 94-100% of all paired measurements within 5.00 mm/cm 2 or less. Using Pitman's test it can be confirmed that area measurements in the 3D plane have the least variability (r = 0.031) and 3D oblique measurements have the highest variability (r = 0

  7. Cost-effective ERT technique for oil-in-water measurement for offshore hydrocyclone installations

    DEFF Research Database (Denmark)

    Durdevic, Petar; Hansen, Leif; Mai, Christian

    2015-01-01

    The goal of this paper is to introduce and design a cost-effective Oil-in-Water (OiW) measuring instrument, which will be investigated for its value in increasing the efficiency of a deoiling hydrocyclone. The technique investigated is based on Electrical Resistivity Tomography (ERT), which basic...... principle is to measure the resistivity of substances from multiple electrodes and from these measurements create a 2-D image of the oil and gas component in the water. This technique requires the measured components to have different electrical resistances, such as seawater which has a lower electrical...... resistance than hydrocarbon oil and gas. This work involves construction of a pilot plant, for testing the feasibility of ERT for OiW measurements, and further exploring if this measured signal can be applied as a reliable feedback signal in optimization of the hydrocyclone's efficiency. Different algorithms...

  8. Cost-Effective ERT Technique for Oil-in-Water Measurement for Offshore Hydrocyclone Installations

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Hansen, Leif; Mai, Christian

    2015-01-01

    The goal of this paper is to introduce and design a cost-effective Oil-in-Water (OiW) measuring instrument, which will be investigated for its value in increasing the efficiency of a deoiling hydrocyclone. The technique investigated is based on Electrical Resistivity Tomography (ERT), which basic...... principle is to measure the resistivity of substances from multiple electrodes and from these measurements create a 2-D image of the oil and gas component in the water. This technique requires the measured components to have different electrical resistances, such as seawater which has a lower electrical...... resistance than hydrocarbon oil and gas. This work involves construction of a pilot plant, for testing the feasibility of ERT for OiW measurements, and further exploring if this measured signal can be applied as a reliable feedback signal in optimization of the hydrocyclone's efficiency. Different algorithms...

  9. Oscillation experiments on Cesar and Marius - Experimental devices and measurement techniques

    International Nuclear Information System (INIS)

    Brunet, Max; Guerange, Jacques; Morier, Francis; Tonolli, Jacky

    1969-02-01

    An original method of measurement of effective cross sections of fissile materials has been developed by the CEA: a central fuel element of a critical experimental reactor is replaced by a sample containing the material to be studied. The replacement technique is based on oscillating the fuel load of the central channel. Signals are measured which are proportional to reactivity variation and to neutron density disturbance at the vicinity of the central channel, these variation and disturbance being produced by the sample oscillation. Measurements have been performed on experimental reactors (Minerve in Fontenay-aux-Roses, and Cesar and Marius in Cadarache). The authors herein describe the experimental devices and measurement techniques implemented in Marius and Cesar. In a first part, they describe the experimental devices which have been used during the three measurement campaigns (between 1965 and 1967). They report the study of measurement accuracies, and of some problems related to the use of the local detector [fr

  10. Combining snow depth and innovative skier flow measurements in order to improve snow grooming techniques

    Science.gov (United States)

    Carmagnola, Carlo Maria; Albrecht, Stéphane; Hargoaa, Olivier

    2017-04-01

    In the last decades, ski resort managers have massively improved their snow management practices, in order to adapt their strategies to the inter-annual variability in snow conditions and to the effects of climate change. New real-time informations, such as snow depth measurements carried out on the ski slopes by grooming machines during their daily operations, have become available, allowing high saving, efficiency and optimization gains (reducing for instance the groomer fuel consumption and operation time and the need for machine-made snow production). In order to take a step forward in improving the grooming techniques, it would be necessary to keep into account also the snow erosion by skiers, which depends mostly on the snow surface properties and on the skier attendance. Today, however, most ski resort managers have only a vague idea of the evolution of the skier flows on each slope during the winter season. In this context, we have developed a new sensor (named Skiflux) able to measure the skier attendance using an infrared beam crossing the slopes. Ten Skiflux sensors have been deployed during the 2016/17 winter season at Val Thorens ski area (French Alps), covering a whole sector of the resort. A dedicated software showing the number of skier passages in real time as been developed as well. Combining this new Skiflux dataset with the snow depth measurements from grooming machines (Snowsat System) and the snow and meteorological conditions measured in-situ (Liberty System from Technoalpin), we were able to create a "real-time skiability index" accounting for the quality of the surface snow and its evolution during the day. Moreover, this new framework allowed us to improve the preparation of ski slopes, suggesting new strategies for adapting the grooming working schedule to the snow quality and the skier attendance. In the near future, this work will benefit from the advances made within the H2020 PROSNOW project ("Provision of a prediction system allowing

  11. 3D shape measurement of automotive glass by using a fringe reflection technique

    Science.gov (United States)

    Skydan, O. A.; Lalor, M. J.; Burton, D. R.

    2007-01-01

    In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.

  12. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field.

    Science.gov (United States)

    Herler, Jürgen; Dirnwöber, Markus

    2011-10-31

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements.

  13. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    Science.gov (United States)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  14. Prospective Comparative Analysis of 4 Different Intraocular Pressure Measurement Techniques and Their Effects on Pressure Readings.

    Science.gov (United States)

    Berk, Thomas A; Yang, Patrick T; Chan, Clara C

    2016-10-01

    To compare intraocular pressure (IOP) measurement using the Goldmann applanation tonometry (GAT) without fluorescein, with fluorescein strips, with fluorescein droplets, and IOP measurement with Tono-Pen Avia (TPA). This was a prospective comparative clinical analysis. It was performed in clinical practice. The study population consisted of 40 volunteer patients, 1 eye per patient. All patients who were 18 years and older having routine ophthalmological examination were eligible to participate. Active corneal abrasions and/or ulcers, previous glaucoma surgery, or prostheses interfering with GAT measurement were excluded. GAT IOP was measured first without fluorescein, then with fluorescein strip, then with fluorescein droplet, and finally with the TPA device. The main outcome measure was central corneal IOP. Mean±SD IOP measurements for GAT without fluorescein, with fluorescein strip, with fluorescein droplet, and for TPA groups were 12.65±3.01, 14.70±2.82, 15.78±2.64, and 16.33±3.08 mm Hg, respectively. Repeated-measures analysis of variance corrected with the Greenhouse-Geisser estimate ([Latin Small Letter Open E]=0.732) showed that measuring technique had a significant effect on IOP measurements (F2.20,85.59=34.66, P<0.001). The pairwise post hoc testing showed statistically significant mean differences (P≤0.001) between all techniques except when GAT with fluorescein droplet was compared with TPA (P=0.222). The Bland-Altman analyses showed 95% limits of agreement maximum potential discrepancies in measurement ranging from 5.89 mm Hg in the GAT with fluorescein strip versus droplet compared with 11.83 mm Hg in the GAT with fluorescein strip versus TPA comparison. IOP measurement technique significantly impacted the values obtained. The ophthalmologist should ensure consistent measurement technique to minimize variability when following patients.

  15. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  16. Computer Aided Measurement Laser (CAML): technique to quantify post-mastectomy lymphoedema

    International Nuclear Information System (INIS)

    Trombetta, Chiara; Abundo, Paolo; Felici, Antonella; Ljoka, Concetta; Foti, Calogero; Cori, Sandro Di; Rosato, Nicola

    2012-01-01

    Lymphoedema can be a side effect of cancer treatment. Eventhough several methods for assessing lymphoedema are used in clinical practice, an objective quantification of lymphoedema has been problematic. The aim of the study was to determine the objectivity, reliability and repeatability of the computer aided measurement laser (CAML) technique. CAML technique is based on computer aided design (CAD) methods and requires an infrared laser scanner. Measurements are scanned and the information describing size and shape of the limb allows to design the model by using the CAD software. The objectivity and repeatability was established in the beginning using a phantom. Consequently a group of subjects presenting post-breast cancer lymphoedema was evaluated using as a control the contralateral limb. Results confirmed that in clinical settings CAML technique is easy to perform, rapid and provides meaningful data for assessing lymphoedema. Future research will include a comparison of upper limb CAML technique between healthy subjects and patients with known lymphoedema.

  17. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  18. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-01-01

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases. PMID:25744850

  19. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    OpenAIRE

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  20. Efficiency of the technique of the training process of highly skilled bodybuilders of the mesomorphic type of constitution in the competitive period

    Directory of Open Access Journals (Sweden)

    Olexandr Tyhorskіy

    2016-10-01

    Full Text Available Purpose: foundation of efficiency of the technique of the training process of highly skilled bodybuilders in the competitive period. Material & Methods: 16 highly skilled bodybuilders of 22–30 years old participated in the research, the average body weight of sportsmen makes 872 – 1022 kg, which are included in the structure of the national team of Ukraine on bodybuilding. Methods: method of the theoretical analysis and generalization of literature, pedagogical observation, pedagogical experiment, method of mathematical statistics. Results: the comparative characteristic of the most often used techniques of the training process in bodybuilding is provided. The effective technique for highly skilled bodybuilders of the mesomorphic type of constitution, depending on the initial uniform of a sportsman at the beginning of the competitive period of training is developed and proved. Dependence of change of body weight of a bodybuilder on the training process is directed. Conclusions: on the effective training method, depending on microcycle of trainings in the competitive period precompetitive and competitive mesocycles (selection and main competitions, is offered the basis of the conducted research.