Fibonacci order in the period-doubling cascade to chaos
International Nuclear Information System (INIS)
Linage, G.; Montoya, Fernando; Sarmiento, A.; Showalter, K.; Parmananda, P.
2006-01-01
In this contribution, we describe how the Fibonacci sequence appears within the Feigenbaum scaling of the period-doubling cascade to chaos. An important consequence of this discovery is that the ratio of successive Fibonacci numbers converges to the golden mean in every period-doubling sequence and therefore the convergence to φ, the most irrational number, occurs in concert with the onset of deterministic chaos
Fibonacci order in the period-doubling cascade to chaos
Energy Technology Data Exchange (ETDEWEB)
Linage, G. [Facultad de Ciencias UAEM, Avenida Universidad 1001, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Montoya, Fernando [Facultad de Ciencias UAEM, Avenida Universidad 1001, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Sarmiento, A. [Instituto de Matematicas, UNAM, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Showalter, K. [Department of Chemistry, West Virginia University, Morgantown, WV 26506-6045 (United States); Parmananda, P. [Facultad de Ciencias UAEM, Avenida Universidad 1001, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico)]. E-mail: punit@servm.fc.uaem.mx
2006-12-11
In this contribution, we describe how the Fibonacci sequence appears within the Feigenbaum scaling of the period-doubling cascade to chaos. An important consequence of this discovery is that the ratio of successive Fibonacci numbers converges to the golden mean in every period-doubling sequence and therefore the convergence to {phi}, the most irrational number, occurs in concert with the onset of deterministic chaos.
A period-doubling cascade precedes chaos for planar maps.
Sander, Evelyn; Yorke, James A
2013-09-01
A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter families of) maps for which as the parameter is varied, the map transitions from one without chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a cascade for many maps with phase space dimension 2. We use continuation methods to show the following: under certain general assumptions, if at one parameter there are only finitely many periodic orbits, and at another parameter value there is chaos, then between those two parameter values there must be a cascade. We investigate only families that are generic in the sense that all periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to show there must be infinitely many cascades. We discuss in detail two-dimensional families like those which arise as a time-2π maps for the Duffing equation and the forced damped pendulum equation.
International Nuclear Information System (INIS)
Cerrada, Lucia; San Martin, Jesus
2011-01-01
In this Letter, it is shown that from a two region partition of the phase space of a one-dimensional dynamical system, a p-region partition can be obtained for the CRL...LR...R orbits. That is, permutations associated with symbolic sequences are obtained. As a consequence, the trajectory in phase space is directly deduced from permutation. From this permutation other permutations associated with period-doubling and saddle-node bifurcation cascades are derived, as well as other composite permutations. - Research highlights: → Symbolic sequences are the usual topological approach to dynamical systems. → Permutations bear more physical information than symbolic sequences. → Period-doubling cascade permutations associated with original sequences are obtained. → Saddle-node cascade permutations associated with original sequences are obtained. → Composite permutations are derived.
Kügler, Philipp; Bulelzai, M A K; Erhardt, André H
2017-04-04
Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.
Period doubling phenomenon in a class of time delay equations
International Nuclear Information System (INIS)
Oliveira, C.R. de; Malta, C.P.
1985-01-01
The properties of the solution of a nonlinear time delayed differential equation (infinite dimension) as function of two parameters: the time delay tau and another parameter A (nonlinearity) are investigated. After a Hopf bifurcation period doubling may occur and is characterized by Feigenbaum's delta. A strange atractor is obtained after the period doubling cascade and the largest Lyapunov exponent is calculated indicating that the attractor has low dimension. The behaviour of this Liapunov exponent as function of tau is different from its behaviour as function of A. (Author) [pt
Analytical Structuring of Periodic and Regular Cascading Solutions in Self-Pulsing Lasers
Directory of Open Access Journals (Sweden)
Belkacem Meziane
2008-01-01
Full Text Available A newly proposed strong harmonic-expansion method is applied to the laser-Lorenz equations to analytically construct a few typical solutions, including the first few expansions of the well-known period-doubling cascade that characterizes the system in its self-pulsing regime of operation. These solutions are shown to evolve in accordance with the driving frequency of the permanent solution that we recently reported to illustrate the system. The procedure amounts to analytically construct the signal Fourier transform by applying an iterative algorithm that reconstitutes the first few terms of its development.
On periodic orbits in discrete-time cascade systems
Directory of Open Access Journals (Sweden)
Huimin Li
2006-01-01
Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.
How periodic are terahertz quantum cascade lasers?
International Nuclear Information System (INIS)
Kubis, T; Vogl, P
2009-01-01
We apply a novel non-equilibrium Green's function method for open quantum devices to analyze quantum cascade lasers. We find the carrier distribution in typical resonant phonon THz-QCLs to develop a periodicity that differs from the geometric periodicity of the QCL. We propose a design improvement that thermalizes electrons at threshold bias and thereby pins the electron density to the QCL periodicity.
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie
2015-01-01
Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.
Atom localization with double-cascade configuration
International Nuclear Information System (INIS)
Gordeev, Maksim Yu; Rozhdestvensky, Yuri V; Efremova, Ekaterina A
2016-01-01
We investigate the one-dimensional (1D) and two-dimensional (2D) atom localization of a four-level system in a double-cascade configuration. We demonstrate the possibility of 1D localization in the field of a standing wave, 2D localization in the field of two standing waves and 2D localization only in the field of running waves by using different configurations of driven waves on transitions. In addition, for each configuration we reached a high-precision atom localization in one of the states at scales much smaller than the wavelength of the incident optical radiation. (paper)
How periodic are terahertz quantum cascade lasers?
Energy Technology Data Exchange (ETDEWEB)
Kubis, T; Vogl, P, E-mail: tillmann.kubis@wsi.tum.d [Walter Schottky Institute, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)
2009-11-15
We apply a novel non-equilibrium Green's function method for open quantum devices to analyze quantum cascade lasers. We find the carrier distribution in typical resonant phonon THz-QCLs to develop a periodicity that differs from the geometric periodicity of the QCL. We propose a design improvement that thermalizes electrons at threshold bias and thereby pins the electron density to the QCL periodicity.
Topological imprint for periodic orbits
International Nuclear Information System (INIS)
Martín, Jesús San; Moscoso, Ma José; Gómez, A González
2012-01-01
The more self-crossing points an orbit has the more complex it is. We introduce the topological imprint to characterize crossing points and focus on the period-doubling cascade. The period-doubling cascade topological imprint determines the topological imprint for orbits in chaotic bands. In addition, there is a closer link between this concept and the braids studied by Lettelier et al (2000 J. Phys. A: Math. Gen. 33 1809–25). (paper)
Three-beam double stimulated Raman scatterings: Cascading configuration
Rao, B. Jayachander; Cho, Minhaeng
2018-03-01
Two-beam stimulated Raman scattering (SRS) has been used in diverse label-free spectroscopy and imaging applications of live cells, biological tissues, and functional materials. Recently, we developed a theoretical framework for the three-beam double SRS processes that involve pump, Stokes, and depletion beams, where the pump-Stokes and pump-depletion SRS processes compete with each other. It was shown that the net Stokes gain signal can be suppressed by increasing the depletion beam intensity. The theoretical prediction has been experimentally confirmed recently. In the previous scheme for a selective suppression of one SRS by making it compete with another SRS, the two SRS processes occur in a parallel manner. However, there is another possibility of three-beam double SRS scheme that can be of use to suppress either Raman gain of the Stokes beam or Raman loss of the pump beam by depleting the Stokes photons with yet another SRS process induced by the pair of Stokes and another (second) Stokes beam. This three-beam double SRS process resembles a cascading energy transfer process from the pump beam to the first Stokes beam (SRS-1) and subsequently from the first Stokes beam to the second Stokes beam (SRS-2). Here, the two stimulated Raman gain-loss processes are associated with two different Raman-active vibrational modes of solute molecule. In the present theory, both the radiation and the molecules are treated quantum mechanically. We then show that the cascading-type three-beam double SRS can be described by coupled differential equations for the photon numbers of the pump and Stokes beams. From the approximate solutions as well as exact numerical calculation results for the coupled differential equations, a possibility of efficiently suppressing the stimulated Raman loss of the pump beam by increasing the second Stokes beam intensity is shown and discussed. To further prove a potential use of this scheme for developing a super-resolution SRS microscopy, we
Period-doubling cascades and strange attractors in the triple-well Φ6-Van der Pol oscillator
International Nuclear Information System (INIS)
Yu Jun; Zhang Rongbo; Pan Weizhen; Schimansky-Geier, L
2008-01-01
Duffing-Van der Pol equation with the fifth nonlinear-restoring force is investigated. The bifurcation structure and chaotic motion under the periodic perturbation are obtained by numerical simulations. Numerical simulations, including bifurcation diagrams, Lyapunov exponents, phase portraits and Poincare maps, exhibit some new complex dynamical behaviors of the system. Different routes to chaos, such as period doubling and quasi-periodic routes, and various kinds of strange attractors are also demonstrated
Gupta, R. P.; Banerjee, Malay; Chandra, Peeyush
2014-07-01
The present study investigates a prey predator type model for conservation of ecological resources through taxation with nonlinear harvesting. The model uses the harvesting function as proposed by Agnew (1979) [1] which accounts for the handling time of the catch and also the competition between standard vessels being utilized for harvesting of resources. In this paper we consider a three dimensional dynamic effort prey-predator model with Holling type-II functional response. The conditions for uniform persistence of the model have been derived. The existence and stability of bifurcating periodic solution through Hopf bifurcation have been examined for a particular set of parameter value. Using numerical examples it is shown that the system admits periodic, quasi-periodic and chaotic solutions. It is observed that the system exhibits periodic doubling route to chaos with respect to tax. Many forms of complexities such as chaotic bands (including periodic windows, period-doubling bifurcations, period-halving bifurcations and attractor crisis) and chaotic attractors have been observed. Sensitivity analysis is carried out and it is observed that the solutions are highly dependent to the initial conditions. Pontryagin's Maximum Principle has been used to obtain optimal tax policy to maximize the monetary social benefit as well as conservation of the ecosystem.
Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi
2016-01-01
In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...
Viral infection model with periodic lytic immune response
International Nuclear Information System (INIS)
Wang Kaifa; Wang Wendi; Liu Xianning
2006-01-01
Dynamical behavior and bifurcation structure of a viral infection model are studied under the assumption that the lytic immune response is periodic in time. The infection-free equilibrium is globally asymptotically stable when the basic reproductive ratio of virus is less than or equal to one. There is a non-constant periodic solution if the basic reproductive ratio of the virus is greater than one. It is found that period doubling bifurcations occur as the amplitude of lytic component is increased. For intermediate birth rates, the period triplication occurs and then period doubling cascades proceed gradually toward chaotic cycles. For large birth rate, the period doubling cascade proceeds gradually toward chaotic cycles without the period triplication, and the inverse period doubling can be observed. These results can be used to explain the oscillation behaviors of virus population, which was observed in chronic HBV or HCV carriers
Energy Technology Data Exchange (ETDEWEB)
Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)
2016-04-01
We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
DEFF Research Database (Denmark)
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...
Period adding cascades: experiment and modeling in air bubbling.
Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos
2012-03-01
Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.
von Kameke, A; Huhn, F; Fernández-García, G; Muñuzuri, A P; Pérez-Muñuzuri, V
2011-08-12
We report the experimental observation of Richardson dispersion and a double cascade in a thin horizontal fluid flow induced by Faraday waves. The energy spectra and the mean spectral energy flux obtained from particle image velocimetry data suggest an inverse energy cascade with Kolmogorov type scaling E(k) ∝ k(γ), γ ≈ -5/3 and an E(k) ∝ k(γ), γ ≈ -3 enstrophy cascade. Particle transport is studied analyzing absolute and relative dispersion as well as the finite size Lyapunov exponent (FSLE) via the direct tracking of real particles and numerical advection of virtual particles. Richardson dispersion with ∝ t(3) is observed and is also reflected in the slopes of the FSLE (Λ ∝ ΔR(-2/3)) for virtual and real particles.
Multiple bifurcations and periodic 'bubbling' in a delay population model
International Nuclear Information System (INIS)
Peng Mingshu
2005-01-01
In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum's cascade of periodic doublings is also observed. Secondly, we explored the Neimark-Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2017-11-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2018-05-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
Application of Recurrence Analysis to the period doubling cascade of a confined buoyant flow
International Nuclear Information System (INIS)
Angeli, D; Corticelli, M A; Fichera, A; Pagano, A
2017-01-01
Recurrence Analysis (RA) is a promising and flexible tool to identify the behaviour of nonlinear dynamical systems. The potentialities of such a technique are explored in the present work, for the study of transitions to chaos of buoyant flow in enclosures. The case of a hot cylindrical source centred in a square enclosure, is considered here, for which an extensive database of results has been collected in recent years. For a specific value of the system aspect ratio, a sequence of period doublings has been identified, leading to the onset of chaos. RA is applied here to analyse the different flow regimes along the route to chaos. The qualitative visual identification of patterns and the statistics given by the quantitative analysis suggest that this kind of tool is well suited to the study of transitional flows in thermo-fluid dynamics. (paper)
International Nuclear Information System (INIS)
Yong-Jun, Wang; Xiang-Jun, Xin; Xiao-Lei, Zhang; Chong-Qing, Wu; Kuang-Lu, Yu
2010-01-01
Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (DLOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1–9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks. (classical areas of phenomenology)
Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi
2016-10-18
In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM) value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.
Directory of Open Access Journals (Sweden)
Xiangao Zhang
2016-10-01
Full Text Available In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.
Digital Repository Service at National Institute of Oceanography (India)
Patre, R.E.; Shet, J.B.; Parameswaran, P.S.; Tilve, S.G.
A cascade Wittig reaction-double Claisen and Cope rearrangements has been employed for a one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8-diprenylumbelliferone from a common precursor 2,4-diprenyloxybenzaldehyde...
Suppression of period-doubling and nonlinear parametric effects in periodically perturbed systems
International Nuclear Information System (INIS)
Bryant, P.; Wiesenfeld, K.
1986-01-01
We consider the effect on a generic period-doubling bifurcation of a periodic perturbation, whose frequency ω 1 is near the period-doubled frequency ω 0 /2. The perturbation is shown to always suppress the bifurcation, shifting the bifurcation point and stabilizing the behavior at the original bifurcation point. We derive an equation characterizing the response of the system to the perturbation, analysis of which reveals many interesting features of the perturbed bifurcation, including (1) the scaling law relating the shift of the bifurcation point and the amplitude of the perturbation, (2) the characteristics of the system's response as a function of bifurcation parameter, (3) parametric amplification of the perturbation signal including nonlinear effects such as gain saturation and a discontinuity in the response at a critical perturbation amplitude, (4) the effect of the detuning (ω 1 -ω 0 /2) on the bifurcation, and (5) the emergence of a closely spaced set of peaks in the response spectrum. An important application is the use of period-doubling systems as small-signal amplifiers, e.g., the superconducting Josephson parametric amplifier
Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations
International Nuclear Information System (INIS)
Zhang Shuwen; Tan Dejun; Chen Lansun
2006-01-01
The effect of periodic forcing and impulsive perturbations on predator-prey model with Holling type IV functional response is investigated. The periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. The impulsive perturbations are affected by introducing periodic constant impulsive immigration of predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can easily give rise to complex dynamics, including (1) quasi-periodic oscillating, (2) period doubling cascade, (3) chaos, (4) period halfing cascade
Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations
International Nuclear Information System (INIS)
Zhang Shuwen; Tan Dejun; Chen Lansun
2006-01-01
The effect of periodic forcing and impulsive perturbations on predator-prey model with Holling type II functional response is investigated. The periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of prey. The impulsive perturbation is affected by introducing periodic constant impulsive immigration of predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can very easily give rise to complex dynamics, including (1) quasi-periodic oscillating, (2) period doubling cascade, (3) chaos, (4) period halfing cascade, (5) non-unique dynamics
How universal is the period doubling phenomenon in equations with quadratic nonlinearity
International Nuclear Information System (INIS)
Malta, C.P.; Oliveira, C.R. de.
1983-09-01
Varying one parameter, the solution of nonlinear 1 sup(st) order differential equation with time delay tau is Fourier analysed. After the Hopf bifurcation, period-doubling phenomenon always occurs when tau is one of the fixed parameters (both for small and large tau). Varying tau, there are values of the fixed parameters for which no period-doubling occurs. 'Chaos' follows the period-doubling sequence and the rate at which 'chaos' is approached is very close to the universal delta = 4.6692016... characterising the period-doubling sequence to chaos in nonlinear difference equations. (Author) [pt
International Nuclear Information System (INIS)
Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen
2013-01-01
Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage
Energy Technology Data Exchange (ETDEWEB)
Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2013-06-15
Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.
C-type period-doubling transition in nephron autoregulation
DEFF Research Database (Denmark)
Laugesen, Jakob Lund; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik
2011-01-01
The functional units of the kidney, called nephrons, utilize mechanisms that allow the individual nephron to regulate the incoming blood flow in response to fluctuations in the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscillations, period-doubling bif......The functional units of the kidney, called nephrons, utilize mechanisms that allow the individual nephron to regulate the incoming blood flow in response to fluctuations in the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscillations, period......-doubling bifurcations, mode-locking and other nonlinear dynamic phenomena in the tubular pressures and flows. Using a simplified nephron model, the paper examines how the regulatory mechanisms react to an external periodic variation in arterial pressure near a region of resonance with one of the internally generated...
International Nuclear Information System (INIS)
Tian, Y; Zhao, J Q; Wang, W; Wang, Y Z; Gao, W
2010-01-01
Narrow line-width 793 nm laser diode cladding pumped Tm 3+ doped double cladding silica fiber laser with in-line four concatenated tapers filter was reported for the first time to our knowledge. These cascade tapers located 3.6 cm from the output end of the fiber laser was fabricated by heating and stretching method. The taper's transmitted power response as a function of wavelength was described by using local mode coupling theory and successive tapers filter model. The wavelength filter function of the in-line cascade tapers in a linear cavity fiber laser was demonstrated, and the experimental result agreed with these theories. The maximum output laser power was 736 mW, corresponding to single peak of laser spectrum with narrow line-width of ∼ 60 pm
International Nuclear Information System (INIS)
Pitts, J.H.
1985-01-01
Cascade is a concept for an ultrasafe, highly efficient, easily built reactor to convert inertial-confinement fusion energy into electrical power. The Cascade design includes a rotating double-cone-shaped chamber in which a moving, 1-m-thick ceramic granular blanket is held against the reactor wall by centrifugal action. The granular material absorbs energy from the fusion reactions. Accomplishments this year associated with Cascade included improvements to simplify chamber design and lower activation. The authors switched from a steel chamber wall to one made from silicon-carbide (SiC) panels held in compression by SiC-fiber/Al-composite tendons that gird the chamber both circumferentially and axially. The authors studies a number of heat-exchanger designs and selected a gravity-flow cascade design with a vacuum on the primary side. This design allows granules leaving the chamber to be transported to the heat exchangers using their own peripheral speed. The granules transfer their thermal energy and return to the chamber gravitationally: no vacuum locks or conveyors are needed
On periodic and chaotic regions in the Mandelbrot set
International Nuclear Information System (INIS)
Pastor, G.; Romera, M.; Alvarez, G.; Arroyo, D.; Montoya, F.
2007-01-01
We show here in a graphic and simple way the relation between the periodic and chaotic regions in the Mandelbrot set. Since the relation between the periodic and chaotic regions in a one-dimensional (1D) quadratic set is already well known, we shall base on it to extend the results to the Mandelbrot set. We shall see that in the same way as the hyperbolic components of the period-doubling cascade determines the chaotic bands structure in 1D quadratic sets, the periodic region determines the chaotic region in the Mandelbrot set
Renormalization of period doubling in symmetric four-dimensional volume-preserving maps
International Nuclear Information System (INIS)
Mao, J.; Greene, J.M.
1987-01-01
We have determined three maps (truncated at quadratic terms) that are fixed under the renormalization operator of pitchfork period doubling in symmetric four-dimensional volume-preserving maps. Each of these contains the previously known two-dimensional area-preserving map that is fixed under the period-doubling operator. One of these three fixed maps consists of two uncoupled two-dimensional (nonlinear) area-preserving fixed maps. The other two contain also the two-dimensional area-preserving fixed map coupled (in general) with a linear two-dimensional map. The renormalization calculation recovers all numerical results for the pitchfork period doubling in the symmetric four-dimensional volume-preserving maps, reported by Mao and Helleman [Phys. Rev. A 35, 1847 (1987)]. For a large class of nonsymmetric four-dimensional volume-preserving maps, we found that the fixed maps are the same as those for the symmetric maps
On period doubling bifurcations of cycles and the harmonic balance method
International Nuclear Information System (INIS)
Itovich, Griselda R.; Moiola, Jorge L.
2006-01-01
This works attempts to give quasi-analytical expressions for subharmonic solutions appearing in the vicinity of a Hopf bifurcation. Starting with well-known tools as the graphical Hopf method for recovering the periodic branch emerging from classical Hopf bifurcation, precise frequency and amplitude estimations of the limit cycle can be obtained. These results allow to attain approximations for period doubling orbits by means of harmonic balance techniques, whose accuracy is established by comparison of Floquet multipliers with continuation software packages. Setting up a few coefficients, the proposed methodology yields to approximate solutions that result from a second period doubling bifurcation of cycles and to extend the validity limits of the graphical Hopf method
Two-phase, reciprocal, double trapdoor collapse at Hannegan caldera, North Cascades, Washington, USA
Energy Technology Data Exchange (ETDEWEB)
Tucker, David S [Mount Baker Volcano Research Center Geology Department Western Washington University 516 High Street Bellingham, Washington 98225-9080 (United States)], E-mail: DaveTucker@mbvo.wwu.edu
2008-10-01
The intracaldera Hannegan volcanics were erupted during two collapse episodes of the Hannegan caldera in the North Cascade mountains of Washington State. The first eruption yielded a down-to-the-north trapdoor style collapse at 3.722 {+-} 0.020 Ma (40Ar/39Ar) that is bounded by a horseshoe-shaped ring fault. The second collapse, most probably also trapdoor style, followed a short period of sedimentation, and completed the elliptical ring fault around the southern margin of the caldera. Post caldera plutons, with U-Pb ages of 3.42 {+-} 0.10 and 3.36 {+-} 0.20 Ma, intruded the intracaldera ignimbrite.
Total output operation chart optimization of cascade reservoirs and its application
International Nuclear Information System (INIS)
Jiang, Zhiqiang; Ji, Changming; Sun, Ping; Wang, Liping; Zhang, Yanke
2014-01-01
Highlights: • We propose a new double nested model for cascade reservoirs operation optimization. • We use two methods to extract the output distribution ratio. • The adopted two methods perform better than the widely used methods at present. • Stepwise regression method performs better than mean value method on the whole. - Abstract: With the rapid development of cascade hydropower stations in recent decades, the cascade system composed of multiple reservoirs needs unified operation and management. However, the output distribution problem has not yet been solved reasonably when the total output of cascade system obtained, which makes the full utilization of hydropower resources in cascade reservoirs very difficult. Discriminant criterion method is a traditional and common method to solve the output distribution problem at present, but some shortcomings cannot be ignored in the practical application. In response to the above concern, this paper proposes a new total output operation chart optimization model and a new optimal output distribution model, the two models constitute to a double nested model with the goal of maximizing power generation. This paper takes the cascade reservoirs of Li Xianjiang River in China as an instance to obtain the optimal total output operation chart by the proposed double nested model and the 43 years historical runoff data, progressive searching method and progressive optimality algorithm are used in solving the model. In order to take the obtained total output operation chart into practical operation, mean value method and stepwise regression method are adopted to extract the output distribution ratios on the basis of the optimal simulation intermediate data. By comparing with discriminant criterion method and conventional method, the combined utilization of total output operation chart and output distribution ratios presents better performance in terms of power generation and assurance rate, which proves it is an effective
Incidence of double ovulation during the early postpartum period in lactating dairy cows.
Kusaka, Hiromi; Miura, Hiroshi; Kikuchi, Motohiro; Sakaguchi, Minoru
2017-03-15
In lactating cattle, the incidence of twin calving has many negative impacts on production and reproduction in dairy farming. In almost all cases, natural twinning in dairy cattle is the result of double ovulation. It has been suggested that the milk production level of cows influences the number of ovulatory follicles. The objective of the present study was to investigate the incidence of double ovulations during the early postpartum period in relation to the productive and reproductive performance of dairy cows. The ovaries of 43 Holstein cows (26 primiparous and 17 multiparous) were ultrasonographically scanned throughout the three postpartum ovulation sequences. The incidence of double ovulation in the unilateral ovaries was 66.7%, with a higher incidence in the right ovary than in the left, whereas that in bilateral ovaries was 33.3%. When double ovulations were counted dividing into each side ovary in which ovulations occurred, the total frequency of ovulations deviated from a 1:1 ratio (60.3% in the right side and 39.7% in the left side, P cows, double ovulation occurred more frequently than in primiparous cows (58.8% vs. 11.5% per cow and 30.0% vs. 3.8% per ovulation, respectively P cows, the double ovulators exhibited higher peak milk yield (P cows. Two multiparous cows that experienced double ovulation during the early postpartum period subsequently conceived twin fetuses. It can be speculated that the incidence of double ovulations during the early postpartum period partly contributes to the increased incidence of undesirable twin births in multiparous dairy cows. Copyright © 2016. Published by Elsevier Inc.
Increase of transient lower esophageal sphincter relaxation associated with cascade stomach
Kawada, Akiyo; Kusano, Motoyasu; Hosaka, Hiroko; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Kawamura, Osamu; Akiyama, Junichi; Yamada, Masanobu; Akuzawa, Masako
2017-01-01
We previously reported that cascade stomach was associated with reflux symptoms and esophagitis. Delayed gastric emptying has been believed to initiate transient lower esophageal sphincter relaxation (TLESR). We hypothesized that cascade stomach may be associated with frequent TLESR with delayed gastric emptying. Eleven subjects with cascade stomach and 11 subjects without cascade stomach were enrolled. Postprandial gastroesophageal manometry and gastric emptying using a continuous 13C breath system were measured simultaneously after a liquid test meal. TLESR events were counted in early period (0–60 min), late period (60–120 min), and total monitoring period. Three parameters of gastric emptying were calculated: the half emptying time, lag time, and gastric emptying coefficient. The median frequency of TLESR events in the cascade stomach and non-cascade stomach groups was 6.0 (median), 4.6 (interquartile range) vs 5.0, 3.0 in the early period, 5.0, 3.2 vs 3.0, 1.8 in the late period, and 10.0, 6.2 vs 8.0, 5.0 in the total monitoring period. TLESR events were significantly more frequent in the cascade stomach group during the late and total monitoring periods. In contrast, gastric emptying parameters showed no significant differences between the two groups. We concluded that TLESR events were significantly more frequent in persons with cascade stomach without delayed gastric emptying. PMID:28584403
Universality of the topology of period doubling dynamical systems
International Nuclear Information System (INIS)
Beiersdorfer, P.
1983-10-01
The evolution of the topology of the invariant manifolds of the attractors of 3-D autonomous dynamical systems during period doubling is shown to be universal. The overall topology of the nth attractor is shown to depend only on the topology of the first attractor at birth
Amplitude calculation near a period-doubling bifurcation: An example
DEFF Research Database (Denmark)
Wiesenfeld, K.; Pedersen, Niels Falsig
1987-01-01
For the rf-driven Josephson junction, the dynamical behavior is studied near a period-doubling transition. The center-manifold theorem simplifies the problem and enables us to study only a first-order system, the parameters of which are expressed in terms of the Josephson-junction parameters....
Cascade multiplicity inside deuteron in Π d high energy collisions
International Nuclear Information System (INIS)
Kisielewska, D.
1983-01-01
Multiplicity distribution of double scattering events is analysed using the additive quark model including the cascading effect. The mean multiplicity of particles produced in the process of cascading estimated for Π d experiments at 100, 205 and 360 GeV/c is equal to 1.15 ± .31. This value does not depend on the momentum of the incident pion. Some indications are found that the probability of cascading depends on multiplicity of the collision with the first nucleon and is smaller for low multiplicities. (author)
Complex oscillatory behaviour in a delayed protein cross talk model with periodic forcing
International Nuclear Information System (INIS)
Nikolov, Svetoslav
2009-01-01
The purpose of this paper is to examine the effects of periodic forcing on the time delay protein cross talk model behaviour. We assume periodic variation for the plasma membrane permeability. The dynamic behaviour of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing can very easily give rise to complex dynamics, including a period-doubling cascade, chaos, quasi-periodic oscillating, and periodic windows. Finally, we calculate the maximal Lyapunov exponent in the regions of the parameter space where chaotic motion of delayed protein cross talk model with periodic forcing exists.
Multiplicity distributions in QCD cascades
International Nuclear Information System (INIS)
Gustafson, G.
1992-03-01
Multiplicity distributions for hadrons and for jets are studied in QCD parton cascades. The colour dipole formalism is used and earlier results in the double log approximation are generalized to include terms which are suppressed by colour factors or factors of ln s. The result is a set of coupled differential equations, together with appropriate boundary conditions
V 1343 aquilae (SS 433) as a double-periodic star
International Nuclear Information System (INIS)
Goranskij, V.P.
1983-01-01
The new computer method of double periodicity search earlier tested on the Blazhko effect in RR Lyrae type variable stars is applied to define more precise periods of brightness variability of the binary V 1343 Aql (SS 433). Computer program was used in the two-parameter search regime. The obtained periods are P 1 = 13sup(d).074+-0sup(d).008 and P 2 = 163sup(d).8+-1sup(d).2. The periodically repeating brithness curve deeps treated as primary minima (the accretion disc eclipsed by the star) vary their shape with the phase of period P 2 . The expected eclipse at 1979 October 16 did nor occur
International Nuclear Information System (INIS)
San Martin, Jesus; Rodriguez-Perez, Daniel
2009-01-01
Presented in this work are some results relative to sequences found in the logistic equation bifurcation diagram, which is the unimodal quadratic map prototype. All of the different saddle-node bifurcation cascades, associated with every last appearance p-periodic orbit (p=3,4,5,...), can also be generated from the very Feigenbaum cascade. In this way it is evidenced the relationship between both cascades. The orbits of every saddle-node bifurcation cascade, mentioned above, are located in different chaotic bands, and this determines a sequence of orbits converging to every band-merging Misiurewicz point. In turn, these accumulation points form a sequence whose accumulation point is the Myrberg-Feigenbaum point. It is also proven that the first appearance orbits in the n-chaotic band converge to the same point as the last appearance orbits of the (n + 1)-chaotic band. The symbolic sequences of band-merging Misiurewicz points are computed for any window.
Bifurcation analysis of the logistic map via two periodic impulsive forces
International Nuclear Information System (INIS)
Jiang Hai-Bo; Li Tao; Zeng Xiao-Liang; Zhang Li-Ping
2014-01-01
The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincaré map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map. (general)
Period doubling in a model of magnetoconvection with Ohmic heating
International Nuclear Information System (INIS)
Osman, M. B. H.
2000-01-01
In this work it has been studied an idealized model of rotating nonlinear magneto convection to investigate the effects of Ohmic heating. In the over stable region it was found that Ohmic heating can lead to a period-doubling sequence
Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T
1997-01-01
A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.
Cascade theory in isotopic separation processes; Theorie des cascades en separation isotopique
Energy Technology Data Exchange (ETDEWEB)
Agostini, J P
1994-06-01
Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs.
Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling
Energy Technology Data Exchange (ETDEWEB)
Saha, Sourabh K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-02-16
Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning the film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.
A double expansion method for the frequency response of finite-length beams with periodic parameters
Ying, Z. G.; Ni, Y. Q.
2017-03-01
A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response
Experimental observation of parametric effects near period doubling in a loss-modulated CO2 laser
Chizhevsky, V. N.
1996-01-01
A number of parametric effects, such as suppression of period doubling, shift of the bifurcation point, scaling law relating the shift and the perturbation amplitude, influence of the detuning on the suppression, reaching of the maximum gain between the original and shifted bifurcation points, and scaling law for idler power are experimentally observed near period doubling bifurcation in a loss-driven CO2 laser that is subjected to periodic loss perturbations at a frequency that is close to a...
A hybrid plasmonic waveguide terahertz quantum cascade laser
Energy Technology Data Exchange (ETDEWEB)
Degl' Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)
2015-02-23
We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.
Period doubling induced by thermal noise amplification in genetic circuits
Ruocco, G.
2014-11-18
Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.
Calculation of coupling factor for double-period accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2005-01-01
In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)
Investigation of cascade effect failure for tungsten armour
International Nuclear Information System (INIS)
Makhankov, A.; Barabash, V.; Berkhov, N.; Divavin, V.; Giniatullin, R.; Grigoriev, S.; Ibbott, C.; Komarov, V.; Labusov, A.; Mazul, I.; McDonald, J.; Tanchuk, V.; Youchison, D.
2001-01-01
The glancing angle of incident power on the target of a tokamak divertor results in doubled and highly peaked heat flux onto adjacent downstream tile in the case of lost of tile event (LOTE). As a result downstream tile has higher probability to fail resulting in triple loads to the next downstream tile and so on (cascade effect). This paper devoted to analytical and experimental investigation of the cascade effect failure for the flat tile option of tungsten armoured plasma facing components. Armour geometry resistant to the cascade effect failure was selected on the base of thermal and stress analyses. Experimental investigation of the LOTE has been performed also. Small size W/Cu mock-up withstood not only LOTE simulation load, but also survived afterwards for 1500 cycles at 26-28 MW/m 2 without damage in joint
Energy Technology Data Exchange (ETDEWEB)
Li, Yinggang [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); School of Transportation, Wuhan University of Technology, Wuhan 430070 (China); Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Li, Suobin [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China)
2015-11-01
In this paper, we present the theoretical investigation of Lamb wave propagation in one-dimensional radial phononic crystal (RPC) plates with periodic double-sided corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. Numerical results show that the proposed RPC plates with periodic double-sided corrugations can yield several band gaps with a variable bandwidth for Lamb waves. The formation mechanism of band gaps in the double-sided RPC plates is attributed to the coupling between the Lamb modes and the in-phase and out-phases resonant eigenmodes of the double-sided corrugations. We investigate the evolution of band gaps in the double-sided RPC plates with the corrugation heights on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Significantly, with the introduction of symmetric double-sided corrugations, the antisymmetric Lamb mode is suppressed by the in-phase resonant eigenmodes of the double-sided corrugations, resulting in the disappearance of the lowest band gap. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically.
Directory of Open Access Journals (Sweden)
Toichiro Asada
2008-01-01
Full Text Available We explore a discrete Kaldorian macrodynamic model of an open economy with flexible exchange rates, focusing on the effects of variation of the model parameters, the speed of adjustment of the goods market α, and the degree of capital mobility β. We determine by a numerical grid search method the stability region in parameter space and find that flexible rates cause enhanced stability of equilibrium with respect to variations of the parameters. We identify the Hopf-Neimark bifurcation curve and the flip bifurcation curve, and find that the period doubling cascades which leads to chaos is the dominant behavior of the system outside the stability region, persisting to large values of β. Cyclical behavior of noticeable presence is detected for some extreme values of a state parameter. Bifurcation and Lyapunov exponent diagrams are computed illustrating the complex dynamics involved. Examples of attractors and trajectories are presented. The effect of the speed of adaptation of the expected rate is also briefly discussed. Finally, we explore a special model variation incorporating the “wealth effect” which is found to behave similarly to the basic model, contrary to the model of fixed exchange rates in which incorporation of this effect causes an entirely different behavior.
Cascade theory in isotopic separation processes
International Nuclear Information System (INIS)
Agostini, J.P.
1994-06-01
Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs
Cascades for natural water enrichment in deuterium and oxygen-18 using membrane permeation
International Nuclear Information System (INIS)
Chmielewski, A.G.; Matuszak, A.; Zakrzewska-Trznadel, G.; Van Hook, A.
1991-01-01
The enrichment of water in heavy isotopes by permeation through a hydrophobic membrane is described. Simple counter - current cascades are of no practical interest because of their high energy demand. A better solution is to employ a double counter - current cascade re-utilizing part of the heat of condensation. Currently employed methods of natural water enrichment in heavy isotopes are compared to the proposed membrane process. (author). 18 refs, 14 tabs, 21 figs
Further results on periods and period doubling for iterates of the trapezoic function
International Nuclear Information System (INIS)
Beyer, W.A.; Stein, P.R.
1982-01-01
The trapezoidal function lambda f/sub e/(x), is defined for fixed e element of (0,1] and for lambda element of [1,2] by lambda f/sub e/ (x) = lambda for /x-1/< 1-e and lambda f/sub e/(x) = lambda(1-/x-1/)/(1-e) for 1 greater than or equal to /x-1/greater than or equal to 1-e. For a fixed e, this is a one parameter family of endomorphisms of the interval [0,2]. The structure of the periods (or cycles) of these mappings is studied. In addition, the metric properties of the corresponding bifurcation diagrams are considered; in particular, the rate of convergence of a sequence of bifurcation points in the (x,lambda) plane is studied. It is shown to be different from that found by Feigenbaum and others for mappings which are not flat at the top. The limiting case e = 1 is of special interest. For cycles and containing a point x element of[e,2-e], the period quadruplicates instead of doubling as it does in the usual case
International Nuclear Information System (INIS)
Hogan, W.J.; Pitts, J.H.
1986-01-01
The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO 2 . The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor
Linear theory period ratios for surface helium enhanced double-mode Cepheids
International Nuclear Information System (INIS)
Cox, A.N.; Hodson, S.W.; King, D.S.
1979-01-01
Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids
Scott, James F; Evans, Donald M; Katiyar, Ram S; McQuaid, Raymond G P; Gregg, J Marty
2017-08-02
Since the 1935 work of Landau-Lifshitz and of Kittel in 1946 all ferromagnetic, ferroelectric, and ferroelastic domains have been thought to be straight-sided with domain widths proportional to the square root of the sample thickness. We show in the present work that this is not true. We also discover period doubling domains predicted by Metaxas et al (2008 Phys. Rev. Lett. 99 217208) and modeled by Wang and Zhao (2015 Sci. Rep. 5 8887). We examine non-equilibrium ferroic domain structures in perovskite oxides with respect to folding, wrinkling, and relaxation and suggest that structures are kinetically limited and in the viscous flow regime predicted by Metaxas et al in 2008 but never observed experimentally. Comparisons are made with liquid crystals and hydrodynamic instabilities, including chevrons, and fractional power-law relaxation. As Shin et al (2016 Soft Matter 12 3502) recently emphasized: 'An understanding of how these folds initiate, propagate, and interact with each other is still lacking'. Inside each ferroelastic domain are ferroelectric 90° nano-domains with 10 nm widths and periodicity in agreement with the 10 nm theoretical minima predicted by Feigl et al (2014 Nat. Commun. 5 4677). Evidence is presented for domain-width period doubling, which is common in polymer films but unknown in ferroic domains. A discussion of the folding-to-period doubling phase transition model of Wang and Zhao is included.
Simulation of concentration spikes in cascades
International Nuclear Information System (INIS)
Wood, H.G.
2006-01-01
Research has been conducted to investigate the maximum possible enrichment that might be temporarily achieved in a facility that is producing enriched uranium for fuel for nuclear power reactors. The purpose is to provide information to evaluate if uranium enrichment facilities are producing 235 U enriched within declared limits appropriate for power reactors or if the facilities are actually producing more highly enriched uranium. The correlation between feed rate and separation factor in a gas centrifuge cascade shows that as flow decreases, the separation factor increases, thereby, creating small amounts of higher enriched uranium than would be found under optimum design operating conditions. The research uses a number of cascade enrichment programs to model the phenomenon and determine the maximum enrichment possible during the time transient of a gas centrifuge cascade. During cascade start-up, the flow through the centrifuges begins at lower than centrifuge design stage flow rates. Steady-state cascade models have been used to study the maximum 235 U concentrations that would be predicted in the cascade. These calculations should produce an upper bound of product concentrations expected during the transient phase of start-up. Due to the fact that there are different ways in which to start a cascade, several methods are used to determine the maximum enrichment during the time transient. Model cascades were created for gas centrifuges with several product to .feed assay separation factors. With this information, the models were defined and the equilibrium programs were used to determine the maximum enrichment level during the time transient. The calculations predict in a cascade with separation factor 1.254 designed to produce enriched uranium for the purpose of supplying reactor fuel, it would not be unreasonable to see some 235 U in the range of 12-15%. Higher assays produced during the start-up period might lead inspectors to believe the cascade is being
Directory of Open Access Journals (Sweden)
Y. Bouazzi
2012-10-01
Full Text Available The last decades have witnessed the growing interest in the use of photonic crystal as a new material that can be used to control electromagnetic wave. Actually, not only the periodic structures but also the quasi-periodic systems have become significant structures of photonic crystals. This work deals with optical properties of dielectric Thue-Morse multilayer and Period-Doubling multilayer. We use the so-called Transfer Matrix Method (TMM to determine the transmission spectra of the structures. Based on the representation of the transmittance spectra in the visible range a comparative analysis depending on the iteration number, number of layers and incidence angle is presented.
Zhang, Jianming; Pu, Shengli; Rao, Jie; Yao, Tianjun
2018-05-01
A kind of compact fibre-optic sensor based on no-core fibre (NCF) cascaded with a strong coupling long-period fibre grating (LPFG) is proposed and experimentally demonstrated. The sensing mechanism is based on the Mach-Zehnder-like interference between the core fundamental mode and cladding mode of the fibre structure. The NCF and LPFG are used as the mode exciter and combiner, respectively. Due to the particular properties of the strong coupling LPFG, the measurements of refractive index (RI) and temperature with high sensitivity are realized by monitoring the transmission spectrum with intensity and wavelength interrogation techniques, respectively. The achieved RI sensitivity reaches -580.269 dB/RIU in the range of 1.436-1.454 and the temperature sensitivity reaches 27.2 pm/°C.
Cascade plant control by timer method
International Nuclear Information System (INIS)
Kiguchi, Takashi; Inoue, Kotaro; Kawai, Toshio; Senoo, Makoto.
1970-01-01
The present invention relates to a method of controlling uranium flow rate through a cascaded centrifuge plant for the purpose of enriching uranium 235. Such a cascade includes multiple gas separation stage each of which consists of a plurality of centrifuges. The product gas usually includes a large amount of He gas, and a cold trap is used to eliminate the He from UF 6 . The cold trap is operated periodically in such a way that the mixed gas of He and UF 6 is cooled to solidify only UF 6 and then warmed to obtain UF 6 by gasification. In order to operate the plant continuously, parallel multiple cold traps are operated alternatively. The operating conditions in such a complex cascade system are difficult to alter by conventional control methods. The present invention provides a rapid method of controlling the system when a certain percentage of the centrifuges in one stage malfunction. The control system consists of timers which are provided one for each cold trap to control the operational period of the trap. For example, if 20% of the centrifuges in a particular stage malfunction, the timer period of the cold traps attached to the normally operating centrifuge within the stage is maintained, and the period of all the other centrifuges are changed to 10/8 times that of the initial value. In this way the flow volume through all centrifuges except that in the particular stage is reduced to 80% of the initial value and the operation of the system can be continued with reduced efficiency. (Masui, R.)
Period doubling on a non-neutral magnetized electron beam
International Nuclear Information System (INIS)
Boswell, R.W.
1984-01-01
Low frequency oscillations on a non-neutral magnetized electron beam of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large amplitude fundamental mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increasedthe waveform ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement
International Nuclear Information System (INIS)
Bley, P.; Hein, H.; Linder, G.
1984-03-01
The separation nozzle method developed by the Karlsruhe Nuclear Research Center is based on the centrifugal force in a curved jet consisting of uranium hexafluoride and a light auxiliary gas. To determine in experiments the operating and controlling behavior of separation nozzle cascades a 10-stage pilot plant was erected some year ago. This plant was transferred to the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) in Belo Horizonte as a donation made within the framework of the German-Brazilian Agreement on scientific cooperation in the field of uranium enrichment. The plant previously equipped with single deflection systems was modified to operate with the double deflection system envisaged for commercial plants. A controlling concept meanwhile developed and improved for separation nozzle cascades equipped with single and double deflection systems was verified experimentally and optimized at the pilot plant of the CDTN. A comparison of the experimental operating behavior with the operating behavior calculated by simulation programs has confirmed the faithfulness of simulation of the computer codes developed to apply to cascades with double deflection systems as well. (orig.) [de
Development of the cascade inertial-confinement-fusion reactor
International Nuclear Information System (INIS)
Pitts, J.H.
1985-01-01
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li 2 O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO 2 granules. Average blanket exit temperature is 1670 0 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis and experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation
Fully developed turbulence via Feigenbaum's period-doubling bifurcations
International Nuclear Information System (INIS)
Duong-van, M.
1987-08-01
Since its publication in 1978, Feigenbaum's predictions of the onset of turbulence via period-doubling bifurcations have been thoroughly borne out experimentally. In this paper, Feigenbaum's theory is extended into the regime in which we expect to see fully developed turbulence. We develop a method of averaging that imposes correlations in the fluctuating system generated by this map. With this averaging method, the field variable is obtained by coarse-graining, while microscopic fluctuations are preserved in all averaging scales. Fully developed turbulence will be shown to be a result of microscopic fluctuations with proper averaging. Furthermore, this model preserves Feigenbaum's results on the physics of bifurcations at the onset of turbulence while yielding additional physics both at the onset of turbulence and in the fully developed turbulence regime
Bursting behaviours in cascaded stimulated Brillouin scattering
International Nuclear Information System (INIS)
Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang
2012-01-01
Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)
Cascade: a review of heat transport and plant design issues
International Nuclear Information System (INIS)
Murray, K.A.; McDowell, M.W.
1984-01-01
A conceptual heat transfer loop for Cascade, a centrifugal-action solid-breeder reaction chamber, has been investigated and results are presented. The Cascade concept, a double-cone-shaped reaction chamber, rotates along its horizontal axis. Solid Li 2 O or other lithium-ceramic granules are injected tangentially through each end of the chamber. The granules cascade axially from the smaller radii at the ends to the larger radius at the center, where they are ejected into a stationary granule catcher. Heat and tritium are then removed from the granules and the granules are reinjected into the chamber. A 50% dense Li 2 O granule throughput of 2.8 m 3 /s is transferred from the reaction chamber to the steam generators via continuous bucket elevators. The granules then fall by gravity through 4 vertical steam generators. The entire transport system is maintained at the same vacuum conditions present inside the reaction chamber
Period-doubling bifurcation and chaos control in a discrete-time mosquito model
Directory of Open Access Journals (Sweden)
Qamar Din
2017-12-01
Full Text Available This article deals with the study of some qualitative properties of a discrete-time mosquito Model. It is shown that there exists period-doubling bifurcation for wide range of bifurcation parameter for the unique positive steady-state of given system. In order to control the bifurcation we introduced a feedback strategy. For further confirmation of complexity and chaotic behavior largest Lyapunov exponents are plotted.
Lee, Sang Soo; Ding, Yike; Karapetians, Natalie; Rivera-Perez, Crisalejandra; Noriega, Fernando Gabriel; Adams, Michael E
2017-09-25
Formation and expression of memories are critical for context-dependent decision making. In Drosophila, a courting male rejected by a mated female subsequently courts less avidly when paired with a virgin female, a behavioral modification attributed to "courtship memory." Here we show the critical role of hormonal state for maintenance of courtship memory. Ecdysis-triggering hormone (ETH) is essential for courtship memory through regulation of juvenile hormone (JH) levels in adult males. Reduction of JH levels via silencing of ETH signaling genes impairs short-term courtship memory, a phenotype rescuable by the JH analog methoprene. JH-deficit-induced memory impairment involves rapid decay rather than failure of memory acquisition. A critical period governs memory performance during the first 3 days of adulthood. Using sex-peptide-expressing "pseudo-mated" trainers, we find that robust courtship memory elicited in the absence of aversive chemical mating cues also is dependent on ETH-JH signaling. Finally, we find that JH acts through dopaminergic neurons and conclude that an ETH-JH-dopamine signaling cascade is required during a critical period for promotion of social-context-dependent memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate
Ren, Jingli; Yuan, Qigang
2017-08-01
A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.
Defect production in simulated cascades: Cascade quenching and short-term annealing
International Nuclear Information System (INIS)
Heinisch, H.L.
1983-01-01
Defect production in displacement cascades in copper has been modeled using the MARLOWE code to generate cascades and the stochastic annealing code ALSOME to simulate cascade quenching and short-term annealing of isolated cascades. Quenching is accomplished by using exaggerated values for defect mobilities and for critical reaction distances in ALSOME for a very short time. The quenched cascades are then short-term annealed with normal parameter values. The quenching parameter values were empirically determined by comparison with results of resistivity measurements. Throughout the collisional, quenching and short-term annealing phases of cascade development, the high energy cascades continue to behave as a collection of independent lower energy lobes. For recoils above about 30 keV the total number of defects and the numbers of free defects scale with the damage energy. As the energy decreases from 30 keV, defect production varies with the changing nature of the cascade configuration, resulting in more defects per unit damage energy. The simulated annealing of a low fluence of interacting cascades revealed an interstitial shielding effect on depleted zones during Stage I recovery. (orig.)
Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers
Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.
2018-01-01
Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.
A non-conventional isotope separation cascade without any mixing: net cascade
International Nuclear Information System (INIS)
Zeng Shi; Jiang Dongjun; Ying Zhengen
2012-01-01
A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)
Directory of Open Access Journals (Sweden)
Yanling Ji
2018-02-01
Full Text Available An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.
Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian
2018-02-01
An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.
Study of periodically excited bubbly jets by PIV and double optical sensors
International Nuclear Information System (INIS)
Milenkovic, Rade; Sigg, Beat; Yadigaroglu, George
2005-01-01
Interactions between large coherent structures and bubbles in two-phase flow can be systematically observed in a periodically excited bubbly jet. Controlled excitation at fixed frequency causes large eddy structures to develop at regular intervals. Thus, interactions between large vortices and bubbles can be studied with PIV and double optical sensors (DOS) using phase-averaging techniques. A number of results on the time and space dependence of velocities and void fractions are presented revealing physical interactions between the liquid flow field and bubble movement as well as feedbacks from bubble agglomeration on the development of flow structures. A clear indication of bubble trapping inside the vortex ring is the generation of a bubble ring that travels with the same velocity as the vortex ring. The DOS results indicate clustering of the bubbles in coherent vortex structures, with a periodic variation of void fraction during the excitation period
Study of periodically excited bubbly jets by PIV and double optical sensors
Energy Technology Data Exchange (ETDEWEB)
Milenkovic, Rade [Laboratorium fuer Thermalhydraulics PSI, Paul Scherrer Institut, OVGA 415, CH-5232 Villigen PSI (Switzerland)]. E-mail: rade.milenkovic@psi.ch; Sigg, Beat [Laboratorium fuer Kerntechnik, ETHZ, ETH Zentrum CLT, CH-8092 Zurich (Switzerland); Yadigaroglu, George [Laboratorium fuer Kerntechnik, ETHZ, ETH Zentrum CLT, CH-8092 Zurich (Switzerland)
2005-12-15
Interactions between large coherent structures and bubbles in two-phase flow can be systematically observed in a periodically excited bubbly jet. Controlled excitation at fixed frequency causes large eddy structures to develop at regular intervals. Thus, interactions between large vortices and bubbles can be studied with PIV and double optical sensors (DOS) using phase-averaging techniques. A number of results on the time and space dependence of velocities and void fractions are presented revealing physical interactions between the liquid flow field and bubble movement as well as feedbacks from bubble agglomeration on the development of flow structures. A clear indication of bubble trapping inside the vortex ring is the generation of a bubble ring that travels with the same velocity as the vortex ring. The DOS results indicate clustering of the bubbles in coherent vortex structures, with a periodic variation of void fraction during the excitation period.
Takasu, K
2001-12-01
Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.
Defect production in simulated cascades: cascade quenching and short-term annealing
International Nuclear Information System (INIS)
Heinisch, H.L.
1982-01-01
Defect production in high energy displacement cascades has been modeled using the computer code MARLOWE to generate the cascades and the stochastic computer code ALSOME to simulate the cascade quenching and short-term annealing of isolated cascades. The quenching is accomplished by using ALSOME with exaggerated values for defect mobilities and critical reaction distanes for recombination and clustering, which are in effect until the number of defect pairs is equal to the value determined from resistivity experiments at 4K. Then normal mobilities and reaction distances are used during short-term annealing to a point representative of Stage III recovery. Effects of cascade interactions at low fluences are also being investigated. The quenching parameter values were empirically determined for 30 keV cascades. The results agree well with experimental information throughout the range from 1 keV to 100 keV. Even after quenching and short-term annealing the high energy cascades behave as a collection of lower energy subcascades and lobes. Cascades generated in a crystal having thermal displacements were found to be in better agreement with experiments after quenching and annealing than those generated in a non-thermal crystal
Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.
Hayes, Robert P; Xiao, Yibei; Ding, Fran; van Erp, Paul B G; Rajashankar, Kanagalaghatta; Bailey, Scott; Wiedenheft, Blake; Ke, Ailong
2016-02-25
Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.
Energy Technology Data Exchange (ETDEWEB)
Buck, Christian [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)
2006-05-15
The goal of the Double Chooz reactor neutrino experiment is to search for the neutrino mixing parameter {theta}{sub 13}. Double Chooz will use two identical detectors at 150 m and 1.05 km distance from the reactor cores. The near detector is used to monitor the reactor {nu}-bar {sub e} flux while the second is dedicated to the search for a deviation from the expected (1/distance){sup 2} behavior. This two detector concept will allow a relative normalization systematic error of ca. 0.6 %. The expected sensitivity for sin{sup 2}2{theta}{sub 13} is then in the range 0.02 - 0.03 after three years of data taking. The antineutrinos will be detected in a liquid scintillator through the capture on protons followed by a gamma cascade, produced by the neutron capture on Gd.
International Nuclear Information System (INIS)
Jain, Vaibhav; Sachdeva, Gulshan; Kachhwaha, S.S.
2015-01-01
Highlights: • It addresses the size and cost estimation of cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • Second law analysis is carried out with modified Gouy-Stodola equation. • The total annual cost of plant operation is optimized in present work. - Abstract: This paper addresses the size and cost estimation of vapor compression–absorption cascaded refrigeration system (VCACRS) for water chilling application taking R410a and water–LiBr as refrigerants in compression and absorption section respectively which can help the design engineers in manufacturing and experimenting on such kind of systems. The main limitation in the practical implementation of VCACRS is its size and cost which are optimized in the present work by implementing Direct Search Method in non-linear programming (NLP) mathematical model of VCACRS. The main objective of optimization is to minimize the total annual cost of system which comprises of costs of exergy input and capital costs in monetary units. The appropriate set of decision variables (temperature of evaporator, condenser, generator, absorber, cascade condenser, degree of overlap and effectiveness of solution heat exchanger) minimizes the total annual cost of VCACRS by 11.9% with 22.4% reduction in investment cost at the base case whereas the same is reduced by 7.5% with 11.7% reduction in investment cost with reduced rate of interest and increased life span and period of operation. Optimization results show that the more investment cost in later case is well compensated through the performance and operational cost of the system. In the present analysis, optimum cascade condensing temperature is a strong function of period of operation and capital recovery factor. The cascading of compression and absorption systems becomes attractive for lower rate of interest and increase life span and operational period
International Nuclear Information System (INIS)
Yong Chen; Qi Wang
2005-01-01
In this paper, we extend the algebraic method proposed by Fan (Chaos, Solitons and Fractals 20 (2004) 609) and the improved extended tanh method by Yomba (Chaos, Solitons and Fractals 20 (2004) 1135) to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). Some new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation are obtained
Correlation Scales of the Turbulent Cascade at 1 au
Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.
2018-05-01
We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.
International Nuclear Information System (INIS)
Troughton, S.C.; Nominé, A.; Dean, J.; Clyne, T.W.
2016-01-01
Highlights: • High speed current/video monitoring of discharge cascades. • SEM and X-ray Computed Tomography of cascade sites. • Effects of supply frequency and process interruption. • Explanation of cascade localisation. - Abstract: Short duration (∼1 s) PEO treatments have been applied to aluminium alloy samples on which coatings of thickness ∼100 μm had previously been created. This was done using the small area electrical monitoring system previously developed in the Gordon Laboratory in Cambridge. Voltage supply frequencies of 50 Hz and 2.5 kHz were employed. Fairly high resolution SEM micrographs were taken, covering the whole surface of small area samples (ie over a circular area of diameter about 0.9 mm). This was done both before and after the 1 s PEO treatments. X-ray tomographic data were also obtained in the vicinity of a recently-completed set of discharges. The outcomes of these observations were correlated with synchronised high speed electrical monitoring and video photography, carried out during the PEO treatment periods. Localised cascades (comprising hundreds of individual discharges) were observed in all cases, persisting throughout the 1 s periods and also reappearing in the same location when a second 1 s PEO treatment was applied to the same sample. This repetition of discharges at the same location is apparently due to the deep pores associated with these sites, creating a pathway of low electrical resistance, even after appreciable oxidation has occurred in the vicinity. Observations were made of the way in which the surfaces were reconstructed locally as discharge cascades occurred. With the high frequency voltage supply, discharge lifetimes were limited to the half-cycle period (of 200 μs), but in other respects the cascades were similar to those with the lower frequency. However, some discharges occurred during cathodic half-cycles with the high frequency supply, at the same location as the anodic discharges in the cascade
Energy Technology Data Exchange (ETDEWEB)
Troughton, S.C. [Department of Materials Science & Metallurgy, Cambridge Universitym 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Nominé, A. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Dean, J. [Department of Materials Science & Metallurgy, Cambridge Universitym 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Clyne, T.W., E-mail: twc10@cam.ac.uk [Department of Materials Science & Metallurgy, Cambridge Universitym 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)
2016-12-15
Highlights: • High speed current/video monitoring of discharge cascades. • SEM and X-ray Computed Tomography of cascade sites. • Effects of supply frequency and process interruption. • Explanation of cascade localisation. - Abstract: Short duration (∼1 s) PEO treatments have been applied to aluminium alloy samples on which coatings of thickness ∼100 μm had previously been created. This was done using the small area electrical monitoring system previously developed in the Gordon Laboratory in Cambridge. Voltage supply frequencies of 50 Hz and 2.5 kHz were employed. Fairly high resolution SEM micrographs were taken, covering the whole surface of small area samples (ie over a circular area of diameter about 0.9 mm). This was done both before and after the 1 s PEO treatments. X-ray tomographic data were also obtained in the vicinity of a recently-completed set of discharges. The outcomes of these observations were correlated with synchronised high speed electrical monitoring and video photography, carried out during the PEO treatment periods. Localised cascades (comprising hundreds of individual discharges) were observed in all cases, persisting throughout the 1 s periods and also reappearing in the same location when a second 1 s PEO treatment was applied to the same sample. This repetition of discharges at the same location is apparently due to the deep pores associated with these sites, creating a pathway of low electrical resistance, even after appreciable oxidation has occurred in the vicinity. Observations were made of the way in which the surfaces were reconstructed locally as discharge cascades occurred. With the high frequency voltage supply, discharge lifetimes were limited to the half-cycle period (of 200 μs), but in other respects the cascades were similar to those with the lower frequency. However, some discharges occurred during cathodic half-cycles with the high frequency supply, at the same location as the anodic discharges in the cascade
International Nuclear Information System (INIS)
Zhang Jiao; Wang Yanhui; Wang Dezhen; Zhuang Juan
2014-01-01
As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on temporal behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is developed to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2…) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to another, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteristics of the discharge system are studied for further understanding of the radial structure. (low temperature plasma)
International Nuclear Information System (INIS)
Ryazanov, A.; Metelkin, E.V.; Semenov, E.A.
2007-01-01
Full text of publication follows: A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock atom (PKA) energies. Under 14 MeV neutron irradiation especially of light fusion structural materials such as Be, C, SiC materials PKA will have the energies up to 1 MeV. At such high energies it is very difficult to use the Monte Carlo or molecular dynamic simulations. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms into atomic cascades produced by a PKAs with the some kinetic energy obtained from fast neutrons. The Tomas-Fermy interaction potential is used for the describing of elastic collisions between moving atoms. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance between two consequent PKA collisions and size of sub-cascade produced by PKA. The analytical relations for the most important characteristics of cascades and sub-cascade are determined including the average number of sub-cascades per one PKA in the dependence on PKA energy, the distance between sub-cascades and the average cascade and sub-cascade sizes as a function of PKA energy. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for different fusion neutron energy spectra. Based on the developed model the numerical calculations for main characteristics of cascades and sub-cascades in different fusion structural materials are performed using the neutron flux and PKA energy spectra for fusion reactors: ITER and DEMO. The main characteristics for cascade and sub-cascade formation are calculated here for the
Atom-atom collision cascades localization
International Nuclear Information System (INIS)
Kirsanov, V.V.
1980-01-01
The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)
Spider foraging strategy affects trophic cascades under natural and drought conditions.
Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong
2015-07-23
Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.
Mechanism for boundary crises in quasiperiodically forced period-doubling systems
International Nuclear Information System (INIS)
Kim, Sang-Yoon; Lim, Woochang
2005-01-01
We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a representative model for quasiperiodically forced period-doubling systems. For small quasiperiodic forcing ε, a chaotic attractor disappears suddenly via a 'standard' boundary crisis when it collides with the smooth unstable torus. However, when passing a threshold value of ε, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from the interior of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is shown that a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abruptly through a new type of boundary crisis when it collides with an invariant 'ring-shaped' unstable set which has no counterpart in the unforced case
Mechanism for boundary crises in quasiperiodically forced period-doubling systems
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang-Yoon [Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701 (Korea, Republic of)]. E-mail: sykim@kangwon.ac.kr; Lim, Woochang [Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701 (Korea, Republic of)]. E-mail: wclim@kwnu.kangwon.ac.kr
2005-01-10
We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a representative model for quasiperiodically forced period-doubling systems. For small quasiperiodic forcing {epsilon}, a chaotic attractor disappears suddenly via a 'standard' boundary crisis when it collides with the smooth unstable torus. However, when passing a threshold value of {epsilon}, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from the interior of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is shown that a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abruptly through a new type of boundary crisis when it collides with an invariant 'ring-shaped' unstable set which has no counterpart in the unforced case.
Walsh, L. K.; Wallace, P. J.; Cashman, K. V.
2012-12-01
the Central Oregon Cascades are (averages from each cone): 700-1190 ppm S; 480-1115 ppm Cl; 120-280 ppm F; and for Northern California: 620-1100 ppm S; 305-445 ppm Cl; 130-240 ppm F. Maximum values for the two regions are 1610 ppm S, 1490 ppm Cl, and 440 ppm F. The majority of studies on health hazards from inhalation or ingestion of volcanic aerosols are centered on livestock; therefore not much is known of the effects on humans. This emphasizes the importance of such a study in a volcanically active region. Levels of volcanic aerosols are considered "hazardous" and to "pose a hazardous risk" to surrounding agricultural and residential communities if concentrations are elevated above World Health Organization (WHO) or Occupational Safety and Health Administration maximum exposure limits (OSHA) (SO2: 7 ppm for a 24-hr period; HCl: 5 ppm for a 24-hr period; HF: 3 ppm for a 10-hr period). By assessing volatile concentrations from past eruptions we can better constrain the probable volatile hazards future cinder cone eruptions pose to surrounding agricultural and residential communities near the Cascades.
Mechanisms of cascade collapse
International Nuclear Information System (INIS)
Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.
1988-12-01
The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab
Double gated-integrator for shaping nuclear radiation detector signals
International Nuclear Information System (INIS)
Gal, J.
2001-01-01
A new shaper, the double gated-integrator, for shaping nuclear radiation detector signals is investigated both theoretically and experimentally. The double gated-integrator consists of a pre-filter and two cascaded gated integrators. Two kinds of pre-filters were considered: a rectangular one and an exponential one. The results of the theoretical calculation show that the best figure of demerit for the double gated-integrator with exponential pre-filter is 1.016. This means that its noise to signal ratio is only 1.6% worse than that it is for infinite cusp shaping. The practical realization of the exponential pre-filter and that of the double gated integrator, both in analogue and in digital way, is very simple. Therefore, the double gated-integrator with exponential pre-filter could be a promising solution for shaping nuclear radiation detector signals
Period doubling of azimuthal oscillations on a non-neutral magnetized electron column
International Nuclear Information System (INIS)
Boswell, R.W.
1985-01-01
The low-frequency azimuthal oscillations on a non-neutral magnetized electron column of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large-amplitude fundamental-mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increased the wave form ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement. (author)
Regularization of the double period method for experimental data processing
Belov, A. A.; Kalitkin, N. N.
2017-11-01
In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.
The capacity of the cascaded fading channel in the low power regime
Benkhelifa, Fatma
2014-04-01
In this paper, we present a simple way to compute the ergodic capacity of cascaded channels with perfect channel state information at both the transmitter and the receiver. We apply our generic results to the Rayleigh-double fading channel, and to the free-space optical channel in the presence of pointing errors and we express their low signal-to-noise ratio capacities. We mainly focus on the low signal-to-noise ratio range.
Learning optimal embedded cascades.
Saberian, Mohammad Javad; Vasconcelos, Nuno
2012-10-01
The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.
Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei
2017-06-01
Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Evaluation of diffuse-illumination holographic cinematography in a flutter cascade
Decker, A. J.
1986-01-01
Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.
International Nuclear Information System (INIS)
Ryazanov, A.I.; Metelkin, E.V.; Semenov, E.V.
2009-01-01
A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock-on atom energies. Light fusion structural materials: such as Be, C and SiC under 14 MeV neutron irradiation in fusion reactor will have the primary knock-on atoms with the energies up to 1 MeV. It is very difficult to use at such high energies the Monte-Carlo or molecular dynamic simulations [H.L. Heinisch, B.N. Singh, Philos. Mag. A67 (1993) 407; H.L. Heinisch, B.N. Singh, J. Nucl. Mater. 251 (1997) 77]. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms produced by primary knock-on atoms with some kinetic energies obtained from fast neutrons and crystal lattice atoms. The Thomas-Fermi interaction potential is used here for the description of these elastic atomic collisions. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self-consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance of primary knock-on atoms between consequent collisions of them with the target atoms and a size of sub-cascade produced by moving secondary knock-on atoms produced in such collisions. The analytical relations for the most important characteristics of cascades and sub-cascades are determined including the average number of sub-cascades per one primary knock-on atom in the dependence on its energy, the distance between sub-cascades and the average cascade and sub-cascade sizes. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for the different fusion neutron energy spectra. On the basis of this developed model the numerical calculations for main characteristics of cascades and sub-cascades
F observable in double π{sup 0}-photoproduction
Energy Technology Data Exchange (ETDEWEB)
Garni, Stefanie [Department of Physics, University of Basel, CH-4056 Basel (Switzerland); Collaboration: A2-Collaboration
2014-07-01
The measurement of single and double polarization observables gives information about the different resonance contributions in the cross section and hence leads to a better understanding of the nucleon and its excited states. The double π{sup 0}-photoproduction is one of the most interesting reaction for the measurement of these observables. It allows to search for excited nucleon states which decay preferentially via cascades involving intermediate excited states. Furthermore, the background from non-resonant terms is small since the photon does not couple directly to neutral pions. Double π{sup 0}-photoproduction off a transversally polarized H-Butanol target has been measured using circularly polarized bremsstrahlung photons produced by MAMI-C with incident energies up to 1.5 GeV. The double π{sup 0} reaction was identified using a combined setup of the Crystal Ball colorimeter and a TAPS forward wall which results in an almost 4π acceptance. Preliminary results on the single polarization observable T and double polarization observable F are presented.
Cascade annealing: an overview
International Nuclear Information System (INIS)
Doran, D.G.; Schiffgens, J.O.
1976-04-01
Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Christensen, Mathias; Noordegraaf, Danny
2016-01-01
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates ...... of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.......Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.......9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use...
International Nuclear Information System (INIS)
Cloth, P.; Dragovitsch, P.; Filges, D.; Reul, C.
1989-08-01
The intranuclear-cascade evaporation model as implemented in the high energy radiation transport code HETC, subsystem of HERMES is used in the calculation of double differential cross sections of proton induced neutron production. The investigations were done on target elements C, Al, Ta, Ni, W, Pb, and U at 318 MeV incident proton energy and on C, Al, Pb, and U at 800 MeV, respectively. The predictions of the INCE model were compared with experimental data for double differential cross sections taken at 7.5 and 30 degrees scattering angles at the Los Alamos WNR facility utilizing the Time of Flight technique at LANL. The calculations performed here are part of a experimental-theoretical program within the LANL-KFA collaboration concerning medium energy cross section measurements mainly neutrons and state of the art computer code validations of these measurements. In general, the model predictions reproduce the correct neutron production for evaporation neutrons and are also in good agreement with the experimental data at high neutron energies. In the energy range dominated by preequilibrium processes an underestimation of experimental yields has to be remarked. (orig.)
Enhanced Light Narrow Transmission through Cascaded Metallic Structure with Periodic Aperture Arrays
International Nuclear Information System (INIS)
Yang Hong-Yan; Zhong Yan-Ru; Xiao Gong-Li; Zhang Zhen-Rong
2012-01-01
We present experimental and numerical studies on the enhanced light narrow transmission through cascaded Au/SiO x N y /Au aperture arrays by varying the refractive index and thickness of SiO x N y . It is found that the enhancement as well as narrowing of the optical transmission originates from the coupling role of surface plasmon polaritons. The results indicate that the transmission enhancement is highly dependent on the refractive index and thickness of SiO x N y . A higher transmission efficiency and narrower peak are obtained in Au/SiO 2.1 N 0.3 /Au structure with a small refractive index (1.6) and thin thickness (0.2 μm)
Molecular single photon double K-shell ionization
International Nuclear Information System (INIS)
Penent, F.; Nakano, M.; Tashiro, M.; Grozdanov, T.P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I.H.; Kouchi, N.; Ito, K.
2014-01-01
We have studied single photon double K-shell ionization of small molecules (N 2 , CO, C 2 H 2n (n = 1–3), …) and the Auger decay of the resulting double core hole (DCH) molecular ions thanks to multi-electron coincidence spectroscopy using a magnetic bottle time-of-flight spectrometer. The relative cross-sections for single-site (K −2 ) and two-site (K −1 K −1 ) double K-shell ionization with respect to single K-shell (K −1 ) ionization have been measured that gives important information on the mechanisms of single photon double ionization. The spectroscopy of two-site (K −1 K −1 ) DCH states in the C 2 H 2n (n = 1–3) series shows important chemical shifts due to a strong dependence on the C-C bond length. In addition, the complete cascade Auger decay following single site (K −2 ) ionization has been obtained
Spatial interaction creates period-doubling bifurcation and chaos of urbanization
International Nuclear Information System (INIS)
Chen Yanguang
2009-01-01
This paper provides a new way of looking at complicated dynamics of simple mathematical models. The complicated behavior of simple equations is one of the headstreams of chaos theory. However, a recent study based on dynamical equations of urbanization shows that there are still some undiscovered secrets behind the simple mathematical models such as logistic equation. The rural-urban interaction model can also display varied kinds of complicated dynamics, including period-doubling bifurcation and chaos. The two-dimension map of urbanization presents the same dynamics as that from the one-dimension logistic map. In theory, the logistic equation can be derived from the two-population interaction model. This seems to suggest that the complicated behavior of simple models results from interaction rather than pure intrinsic randomicity. In light of this idea, the classical predator-prey interaction model can be revised to explain the complex dynamics of logistic equation in physical and social sciences.
Integrated Broadband Quantum Cascade Laser
Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)
2016-01-01
A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.
Cascade Type-I Quantum Well GaSb-Based Diode Lasers
Directory of Open Access Journals (Sweden)
Leon Shterengas
2016-05-01
Full Text Available Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in a spectral region from 1.9 to 3.3 μm. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Coated devices with an ~100-μm-wide aperture and a 3-mm-long cavity demonstrated continuous wave (CW output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at 17–20 °C—a nearly or more than twofold increase compared to previous state-of-the-art diode lasers. The utilization of the different quantum wells in the cascade laser heterostructure was demonstrated to yield wide gain lasers, as often desired for tunable laser spectroscopy. Double-step etching was utilized to minimize both the internal optical loss and the lateral current spreading penalties in narrow-ridge lasers. Narrow-ridge cascade diode lasers operate in a CW regime with ~100 mW of output power near and above 3 μm and above 150 mW near 2 μm.
Rich dynamics of discrete delay ecological models
International Nuclear Information System (INIS)
Peng Mingshu
2005-01-01
We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles
van Laar, T.; Jansen, E.N.H.; Essink, A.W.G.; Neef, C.; Oosterloo, Sebe J.
1993-01-01
Five patients with idiopathic Parkinson's disease with severe response fluctuations were selected for a randomized double-blind placebo-controlled study, concerning the clinical effects of subcutaneous apomorphine and its assessment in `off¿-periods. The study was designed as five n = 1 studies, in
Directory of Open Access Journals (Sweden)
M. Callisto
Full Text Available In order to verify the cascade-system effect in benthic macroinvertebrate communities, and the implications for policy making and proposals for conservation and sustainable use of the lower portion of São Francisco river basin (Bahia State, Brazil, a three-reservoir cascade system including two stretches downstream were studied during dry (June, 1997 and rainy (March, 1998 periods. The dominant groups found were Mollusca (Melanoides tuberculata, Oligochaeta, and Chironomidae larvae. Low Shannon-Wiener and Pielou index values were found, but with no significant difference between the sampling periods. However, density and taxonomic richness were significantly different (t(0.05; 31 = -2.1945; p < 0.05; e t(0.05; 31 = -3.0600; p < 0.01 between the sampling periods, with a reduction in the number of taxaand macroinvertebrate abundance during the rainy period. An increasing gradient in benthic macroinvertebrate community structures was noted along the reservoir cascade from the first reservoir (Apolônio Sales, followed by a decrease downstream from the third reservoir of the system (Xingó. Despite the negative consequences of rapid proliferation of dams, which have caused widespread loss of freshwater habitats, the reservoir cascade system promoted an increase in benthic macroinvertebrate diversity, due to water-quality improvement along the system.
Resonance spiking by periodic loss in the double-sided liquid cooling disk oscillator
Nie, Rongzhi; She, Jiangbo; Li, Dongdong; Li, Fuli; Peng, Bo
2017-03-01
A double-sided liquid cooling Nd:YAG disk oscillator working at a pump repetition rate of 20 Hz is demonstrated. The output energy of 376 mJ is realized, corresponding to the optical-optical efficiency of 12.8% and the slope efficiency of 14%. The pump pulse width is 300 µs and the laser pulse width is 260 µs. Instead of being a damped signal, the output of laser comprises undamped spikes. A periodic intra-cavity loss was found by numerical analysis, which has a frequency component near the eigen frequency of the relaxation oscillation. Resonance effect will induce amplified spikes even though the loss fluctuates in a small range. The Shark-Hartmann sensor was used to investigate the wavefront aberration induced by turbulent flow and temperature gradient. According to the wavefront and fluid mechanics analysis, it is considered that the periodic intra-cavity loss can be attributed to turbulent flow and temperature gradient.
Cascading off the West Greenland Shelf: A numerical perspective
Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Petrie, Brian; Azetsu-Scott, Kumiko; Lee, Craig M.
2017-07-01
Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003-2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.
Search for tau-neutrino induced cascades in the IceCube detector
Energy Technology Data Exchange (ETDEWEB)
Usner, Marcel; Kowalski, Marek [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration
2016-07-01
The IceCube Neutrino Observatory at the South Pole is a Cherenkov detector built to measure high-energy neutrinos from cosmic sources. A total volume of about one cubic kilometer of the Antarctic ice is instrumented with 5160 optical modules. A tau lepton is created in the charged current interaction of a tau neutrino with an ice nucleus. The Double Bang signature links two subsequent cascades from the hadronic interaction and the tau decay within the detection volume. It can only be resolved at the highest energies around 1 PeV where the decay length of the tau is about 50 m. The work is focused on optimizing reconstruction methods of Double Bang events incorporating the latest ice model. The goal is to measure a flavor ratio that, for the first time, is sensitive to tau neutrinos.
Energy Technology Data Exchange (ETDEWEB)
Hayden, A. C.; Brown, T. D.
1979-03-15
Combining energy uses in a cascade can result in significant overall reductions in fuel requirements. The simplest applications for a cascade are in the recovery of waste heat from existing processes using special boilers or turbines. Specific applications of more-complex energy cascades for Canada are discussed. A combined-cycle plant at a chemical refinery in Ontario is world leader in energy efficiency. Total-energy systems for commercial buildings, such as one installed in a school in Western Canada, offer attractive energy and operating cost benefits. A cogeneration plant proposed for the National Capital Region, generating electricity as well as steam for district heating, allows the use of a low-grade fossil fuel (coal), greatly improves energy-transformation efficiency, and also utilizes an effectively renewable resource (municipal garbage). Despite the widespread availability of equipment and technology of energy cascades, the sale of steam and electricity across plant boundaries presents a barrier. More widespread use of cascades will require increased cooperation among industry, electric utilities and the various levels of government if Canada is to realize the high levels of energy efficiency potential available.
Kadowaki, Takashi; Kondo, Kazuoki; Sasaki, Noriyuki; Miyayama, Kyoko; Yokota, Shoko; Terata, Ryuji; Gouda, Maki
2017-09-01
To assess the efficacy and safety of teneligliptin as add-on to insulin monotherapy in patients with type 2 diabetes mellitus (T2DM). In a 16-week, double-blind period, 148 Japanese T2DM patients with inadequate glycemic control with insulin and diet/exercise therapies were randomized to placebo or teneligliptin 20 mg. In a subsequent 36-week, open-label period, all patients received teneligliptin once daily. The primary outcome measure was change in HbA1c at the end of the double-blind period. The difference between placebo and teneligliptin in change in HbA1c in the double-blind period (least squares mean ± SE) was -0.80% ± 0.11%; teneligliptin was superior (ANCOVA, P 1). The HbA1c-lowering effect of teneligliptin was maintained throughout the open-label period. The incidence of adverse events was 53.5% with placebo and 44.2% with teneligliptin in the double-blind period, 66.7% in the placebo/teneligliptin group in the open-label period, and 77.9% in the teneligliptin/teneligliptin group over both double-blind/open-label periods. The incidence of hypoglycemic symptoms was 11.1% in the placebo/teneligliptin group in the open-label period and 27.3% in the teneligliptin/teneligliptin group over both double-blind/open-label periods. Teneligliptin was effective and well tolerated in Japanese T2DM patients with inadequate glycemic control. NCT02081599.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP
Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang
2017-12-01
This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.
A molecular dynamics study of high-energy displacement cascades in α-zirconium
International Nuclear Information System (INIS)
Wooding, S.J.; Howe, L.M.; Gao, F.; Calder, A.F.; Bacon, D.J.
1998-01-01
The damage produced in α-zirconium at 100 K by displacement cascades with energy, E p , up to 20 keV has been investigated by molecular dynamics using a many-body interatomic potential. The results are compared with similar data for cascades of energy up to 10 keV in α-titanium. The production efficiency of Frenkel pairs falls to about 25% of the NRT value as E p rises above 10 keV in zirconium, and to about 30% at 10 keV in titanium. The power-law dependence of the number of Frenkel pairs, N F , on E p found previously is obeyed, i.e., N F = A(E p ) m . Interstitial and vacancy clusters with sizes of the same order are created in the cascade process, and clusters containing up to 25 interstitials and 30 vacancies were formed in zirconium by 20 keV cascades. Two thirds of the SIAs are produced in clusters in zirconium at high cascade energy. Most interstitial clusters have dislocation character with perfect Burgers vectors of the form 1/3(11 2 - 0), but a few metastable clusters are formed and are persistent over the timescale of MD simulations. Collapse of the 30-vacancy cluster to a faulted loop on the prism plane was found to occur over a period of more than 100 ps. Annealing over this timescale has a stronger effect on the number and clustering of defects in cascades that are dispersed over a large region of crystal than in cascades that form a compact region of damage. (author)
Lu, Ji-Yun; Liang, Da-Kai; Zhang, Xiao-Li; Zhu, Zhu
2009-12-01
Spectrum of fiber bragg grating (FBG) sensor modulated by double long period grating (LPFG) is proposed in the paper. Double LPFG consists of two LPFGS whose center wavelengths are the same and reflection spectrum of FBG sensor is located in linear range of double LPFG transmission spectrum. Based on spectral analysis of FBG and double LPFG, reflection spectrum of FBG modulated by double LPFG is obtained and studied by use of band-hider filter characteristics for double LPFG. An FBG sensor is attached on the surface of thin steel beam, which is strained by bending, and the center wavelength of FBG sensor will shift. The spectral peak of FBG sensor modulated by double LPFG is changed correspondingly, and the spectral change will lead to variation in exit light intensity from double LPFG. Experiment demonstrates that the relation of filtering light intensity from double LPFG monitored by optical power meter to center wavelength change of FBG sensor is linear and the minimum strain of material (steel beam) detected by the modulation and demodulation system is 1.05 microepsilon. This solution is used in impact monitoring of optical fibre smart structure, and FBG sensor is applied for impulse response signal monitoring induced by low-velocity impact, when impact pendulum is loaded to carbon fiber-reinforced plastics (CFP). The acquired impact response signal and fast Fourier transform of the signal detected by FBG sensor agree with the measurement results of eddy current displacement meter attached to the FBG sensor. From the results, the present method using FBG sensor is found to be effective for monitoring the impact. The research provides a practical reference in dynamic monitoring of optical fiber smart structure field.
Multilayered tori in a system of two coupled logistic maps
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai; Mosekilde, Erik
2009-01-01
of two coupled logistic maps through period-doubling or pitchfork bifurcations of the saddle cycle on an ordinary resonance torus. We hereafter present two different scenarios by which a multilayered torus can be destructed. One scenario involves a cascade of period-doubling bifurcations of both...
Directory of Open Access Journals (Sweden)
Toichiro Asada
2010-01-01
Full Text Available We present a discrete two-regional Kaldorian macrodynamic model with flexible exchange rates and explore numerically the stability of equilibrium and the possibility of generation of business cycles. We use a grid search method in two-dimensional parameter subspaces, and coefficient criteria for the flip and Hopf bifurcation curves, to determine the stability region and its boundary curves in several parameter ranges. The model is characterized by enhanced stability of equilibrium, while its predominant asymptotic behavior when equilibrium is unstable is period doubling. Cycles are scarce and short-lived in parameter space, occurring at large values of the degree of capital movement β. By contrast to the corresponding fixed exchange rates system, for cycles to occur sufficient amount of trade is required together with high levels of capital movement. Rapid changes in exchange rate expectations and decreased government expenditure are factors contributing to the creation of interregional cycles. Examples of bifurcation and Lyapunov exponent diagrams illustrating period doubling or cycles, and their development into chaotic attractors, are given. The paper illustrates the feasibility and effectiveness of the numerical approach for dynamical systems of moderately high dimensionality and several parameters.
Cascading costs: an economic nitrogen cycle.
Moomaw, William R; Birch, Melissa B L
2005-09-01
The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.
Contingency Analysis of Cascading Line Outage Events
Energy Technology Data Exchange (ETDEWEB)
Thomas L Baldwin; Magdy S Tawfik; Miles McQueen
2011-03-01
As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.
DEFF Research Database (Denmark)
Tiselius, Peter; Møller, Lene Friis
2017-01-01
Trophic cascades are a ubiquitous feature of many terrestrial and fresh-water food webs, but have been difficult to demonstrate in marine systems with multispecies trophic levels. Here we describe significant trophic cascades in an open coastal planktonic ecosystem exposed to an introduced top...... predator. The ctenophore Mnemiopsis leidyi was monitored for an 8-year period concurrent with measures of the food web structure of the plankton and strong trophic cascades were evident. In the 5 years when M. leidyi were found, their target prey (grazing copepods) were reduced 5-fold and the primary...
International Nuclear Information System (INIS)
Kin, Tadahiro; Nakano, Masahiro; Imamura, Minoru
2006-01-01
We have investigated the deuteron productions from 392 MeV proton induced reaction for target nuclei of 12 C, 27 Al, 93 Nb. Deuteron production double differential cross sections were determined over a broad energy range and scattered angles from 20 to 105 degrees in laboratory system. Those spectra were compared with two theoretical models; Quantum Molecular Dynamics model and Intranuclear Cascade model. We developed the code of Intra Nuclear Cascade model and we've got good results to reproduce the experimental data. (author)
Surface plasmon quantum cascade lasers as terahertz local oscillators.
Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E
2008-02-15
We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.
Energy Technology Data Exchange (ETDEWEB)
Fomenko, Tatiana N [M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow (Russian Federation)
2010-10-22
We find sufficient conditions on a searching multi-cascade for a modification of the set of limit points of the cascade that satisfy an assessing inequality for the distance from each of these points to the initial point to be small, provided that the modifications of the initial point and the initial set-valued functionals or maps used to construct the multi-cascade are small. Using this result, we prove the stability (in the above sense) of the cascade search for the set of common pre-images of a closed subspace under the action of n set-valued maps, n{>=}1 (in particular, for the set of common roots of these maps and for the set of their coincidences). For n=2 we obtain generalizations of some results of A. V. Arutyunov; the very statement of the problem comes from a recent paper of his devoted to the study of the stability of the subset of coincidences of a Lipschitz map and a covering map.
Genetic algorithm based separation cascade optimization
International Nuclear Information System (INIS)
Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.
2008-01-01
The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)
Connected word recognition using a cascaded neuro-computational model
Hoya, Tetsuya; van Leeuwen, Cees
2016-10-01
We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.
Ion-implantation dense cascade data
International Nuclear Information System (INIS)
Winterbon, K.B.
1983-04-01
A tabulation is given of data useful in estimating various aspects of ion-implantation cascades in the nuclear stopping regime, particularly with respect to nonlinearity of the cascade at high energy densities. The tabulation is restricted to self-ion implantation. Besides power-cross-section cascade dimensions, various material properties are included. Scaling of derived quantities with input data is noted, so one is not limited to the values assumed by the author
Directory of Open Access Journals (Sweden)
ahmet selim dalkilic
2017-03-01
Full Text Available Energy savings on cooling systems can be performed by using novel refrigeration cycles. For this aim, vapour compression-vapour absorption cascade refrigeration systems can be considered as substitute to single-stage vapour compression refrigeration systems. Renewable energy sources of geothermal and solar heat, waste heat of processes have been used by these cycles to provide cooling and they also require less electrical energy than vapour compression cycles having alternative refrigerants. In this study, a vapour compression (VC and vapour absorption (VA cascade systems are analysed with the second law analysis for varied cooling capacities. While lithium bromide-water and NH3/H2O are the working fluids in VA part, various refrigerants are used in VC section. The refrigerants of R134a and R600a, R410A and R407C are tested as drop in alternatives for R12 and R22, respectively. The effects of alteration in cooling capacity, superheating and sub cooling in VC part, temperature in the generator and absorber, and degree of overlap in cascade condenser in VA part on the coefficient of system performance are studied. Validation of the results have been performed by the values given in the literature. Improvement in COP of VC, VA and cascade system are obtained separately. According to the analyses, cascade systems’ COP values increase with increasing the temperatures of generator and evaporator and they also increase with decreasing the condenser and absorber temperatures. Moreover, the generator has the highest exergy destruction rates, second and third one were the condenser and absorber, respectively. Electricity consumption and payback period are also determined considering the various parameters of the study.
Hadron cascades produced by electromagnetic cascades
International Nuclear Information System (INIS)
Nelson, W.R.; Jenkins, T.M.; Ranft, J.
1986-12-01
A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps
Schlenker, Cody W.
2011-09-27
We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.
Schlenker, Cody W.; Barlier, Vincent S.; Chin, Stephanie W.; Whited, Matthew T.; McAnally, R. Eric; Forrest, Stephen R.; Thompson, Mark E.
2011-01-01
We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.
Cascaded Bragg scattering in fiber optics.
Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G
2013-01-15
We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.
Chen, Hongzhang; Shao, Meixue; Li, Hongqiang
2014-03-05
The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.
Cascade redox flow battery systems
Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak
2014-07-22
A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.
Development of the cascade inertial-confinement-fusion reactor
International Nuclear Information System (INIS)
Pitts, J.H.
1985-01-01
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li 2 O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO 2 granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis and experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation
Cascade of links in complex networks
Energy Technology Data Exchange (ETDEWEB)
Feng, Yeqian; Sun, Bihui [Department of Management Science, School of Government, Beijing Normal University, 100875 Beijing (China); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, 100875 Beijing (China)
2017-01-30
Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.
Cascade of links in complex networks
International Nuclear Information System (INIS)
Feng, Yeqian; Sun, Bihui; Zeng, An
2017-01-01
Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.
Double cascade erbium fiber laser at 1.7 µm, 2.7 µm, and 1.6 µm
Schneider, J.; Frerichs, Ch.; Carbonnier, C.; Unrau, U.B.; Pollnau, Markus; Lüthy, W.; Weber, H.P.
The output power of the erbium laser at 2.7 um (4I11/2 -> 4I13/2) is enhanced due to simultaneous laser action at 1.7 um (4S3/2 -> 4I9/2) and 1.6 um (4I13/2 -> 4I15/2) in an Er3+-doped fluorozirconate fiber. The laser cascade overwhelms the saturation effect for the transition at 2.7 um by
Wan, W J; Li, H; Cao, J C
2018-01-22
The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.
The comparison of extraction of energy in two-cascade and one-cascade targets
Energy Technology Data Exchange (ETDEWEB)
Dolgoleva, G. V., E-mail: dolgg@list.ru [National Research Tomsk State University, 36, Lenin Ave., 634050, Tomsk (Russian Federation); Ponomarev, I. V., E-mail: wingof17@mail.ru [Moscow State University, Department of Mechanics and Mathematics, 1, Vorobyovy Gory, Moscow,119961 (Russian Federation)
2016-01-15
The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy. The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.
The cascad spent fuel dry storage facility
International Nuclear Information System (INIS)
Guay, P.; Bonnet, C.
1991-01-01
France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies
Experimental study of flow through compressor Cascade
Directory of Open Access Journals (Sweden)
Satyam Panchal
2017-09-01
Full Text Available The objective of this research work is to study the behaviour of flow at the inlet, within the blade passage and at the exit of a compressor cascade. For this purpose, a cascade with six numbers of aerofoil blades was designed and constructed. The cascade was fitted on the cascade test tunnel. Out of six blades two were instrumented for measuring the pressure distribution on the pressure and suction surface. The blades had a parabolic camber line, with a maximum camber position at 40% of the chord from the leading edge of the blade. The profile of the blade was C4, height of the blade was 160 mm, chord length was 80 mm, camber angle was 45° and stagger angle was 30°. Similarly, the length of the cascade was 300 mm, span was 160 mm, pitch was 60 mm, the actual chord of the cascade was 80 mm, the axial chord of the cascade was 70 mm, the stagger angle of the cascade was 30° and the pitch-chord ratio was 0.75. The data was taken and analyzed at −500% of the axial chord before the cascade, −25% of the axial chord before the leading edge, 25%, 50%, 75% and 150% of the axial chord from the leading edge of the blade. The readings were taken from the cascade wall to the mid span position along the pitch wise direction. The angle of incidence was also changed during the experiment and varied from i=−50°, −30°, −10° to 5°.
A comparison of methods for cascade prediction
Guo, Ruocheng; Shakarian, Paulo
2016-01-01
Information cascades exist in a wide variety of platforms on Internet. A very important real-world problem is to identify which information cascades can go viral. A system addressing this problem can be used in a variety of applications including public health, marketing and counter-terrorism. As a cascade can be considered as compound of the social network and the time series. However, in related literature where methods for solving the cascade prediction problem were proposed, the experimen...
Computer simulation of displacement cascades in copper
International Nuclear Information System (INIS)
Heinisch, H.L.
1983-06-01
More than 500 displacement cascades in copper have been generated with the computer simulation code MARLOWE over an energy range pertinent to both fission and fusion neutron spectra. Three-dimensional graphical depictions of selected cascades, as well as quantitative analysis of cascade shapes and sizes and defect densities, illustrate cascade behavior as a function of energy. With increasing energy, the transition from production of single compact damage regions to widely spaced multiple damage regions is clearly demonstrated
Cascade Error Projection Learning Algorithm
Duong, T. A.; Stubberud, A. R.; Daud, T.
1995-01-01
A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.
Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang
2017-12-01
To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.
Ultrarelativistic cascades and strangeness production
International Nuclear Information System (INIS)
Kahana, D.E.; Kahana, S.H.
1998-02-01
A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy Ion-Ion collisions is applied to the production of strangeness at SPS energies. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS
Experimental Investigation of the Compressor Cascade under an Active Flow Control
Directory of Open Access Journals (Sweden)
Lukáč J.
2013-04-01
Full Text Available The paper is concerned with flow past compressor blade cascade (NACA 65 with thickened trailing edge at off-design regimes, which are characteristic by partial or complete flow separation on the suction surface of the blades. An attempt has been made to moderate the flow separation using continuous or periodic blowing from the sidewalls. The flow field was visualized using schlieren technique and surface paint visualization. The visualizations were complemented by measurement of the static pressure distribution on the suction surface of the blades. In agreement with the literature, the visualizations confirmed a complexity of the 3-dimensional flow separation, which was intensified by influence of the sidewall boundary layers developing from upstream parts of the test section. Furthermore, it was found out that the effect of both continuous and periodic blowing was rather minor. Finally, the results agree with the available literature showing that it is highly difficult to considerably control the complex 3-dimensional flow separation in the compressor cascade by control jets issuing (only from the sidewalls
Directory of Open Access Journals (Sweden)
Qing Shuang
2016-01-01
Full Text Available The stability of water service is a hot point in industrial production, public safety, and academic research. The paper establishes a service evaluation model for the water distribution network (WDN. The serviceability is measured in three aspects: (1 the functionality of structural components under disaster environment; (2 the recognition of cascading failure process; and (3 the calculation of system reliability. The node and edge failures in WDN are interrelated under seismic excitations. The cascading failure process is provided with the balance of water supply and demand. The matrix-based system reliability (MSR method is used to represent the system events and calculate the nonfailure probability. An example is used to illustrate the proposed method. The cascading failure processes with different node failures are simulated. The serviceability is analyzed. The critical node can be identified. The result shows that the aged network has a greater influence on the system service under seismic scenario. The maintenance could improve the antidisaster ability of WDN. Priority should be given to controlling the time between the initial failure and the first secondary failure, for taking postdisaster emergency measures within this time period can largely cut down the spread of cascade effect in the whole WDN.
Energy Technology Data Exchange (ETDEWEB)
Toshimitsu, K; Nanba, M [Kgushu University, Fukuoka (Japan). Faculty of Engineering; Iwai, S [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1993-11-25
In order to examine the aerodynamic characteristics of a supersonic axial flow turbofan realizing flight of Mach number of 2-5, the double linearization theory was applied to a three dimensional oscillation cascade accompanying a steady load in a supersonic axial flow condition and unsteady pneumatic force and aerodynamic unstability of oscillation were studied. Moreover, the values based on the strip theory and the three-dimensional theory were comparatively evaluated. Fundamental assumptions were such that the order of steady and unsteady perturbation satisfies the holding condition of the double linearization thory in a supersonic-and equi-entropy flow of non-viscous perfect gas. The numerical calculation assumed parabolic distributions of camber and thickness in the blade shape. As a result, the strip theory prediction agreed well with the value given by the three-dimensional theory in the steady blade-plane pressure difference and in the work of an unsteady pneumatic force, showing its validity. Among the steady load components of angle of attack, camber and thickness, the component of camber whose absolute value is large has the strongest effect on the total work. The distribution reduced in the angle of attack and camber from hub toward tip gives a large and stable flutter margin. 5 refs., 13 figs., 2 tabs.
Inferring network structure from cascades
Ghonge, Sushrut; Vural, Dervis Can
2017-07-01
Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.
Abnormal cascading failure spreading on complex networks
International Nuclear Information System (INIS)
Wang, Jianwei; Sun, Enhui; Xu, Bo; Li, Peng; Ni, Chengzhang
2016-01-01
Applying the mechanism of the preferential selection of the flow destination, we develop a new method to quantify the initial load on an edge, of which the flow is transported along the path with the shortest edge weight between two nodes. Considering the node weight, we propose a cascading model on the edge and investigate cascading dynamics induced by the removal of the edge with the largest load. We perform simulated attacks on four types of constructed networks and two actual networks and observe an interesting and counterintuitive phenomenon of the cascading spreading, i.e., gradually improving the capacity of nodes does not lead to the monotonous increase in the robustness of these networks against cascading failures. The non monotonous behavior of cascading dynamics is well explained by the analysis on a simple graph. We additionally study the effect of the parameter of the node weight on cascading dynamics and evaluate the network robustness by a new metric.
Gas separation performance of tapered cascade with membrane
International Nuclear Information System (INIS)
Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.
1978-01-01
Membrane gas separation cascades are analyzed at steady state. The method of calculating the flow rate and concentration profiles in the cascade are examined, using formulas expressing the various membrane separation cell characteristics. The method adopted is applicable to relatively high concentrations and separation factors. Considerations are further given on the steady state performance of four theoretical forms of cascade: (a) with common value of cut for all stages, (b) with symmetric separation cells, (c) with no mixing at the junction at each stage, and (d) ideal cascade. The analysis showed that, with membrane cells, the ideal cascade would have a pressure ratio varying from stage to stage. The symmetric separation cascade would provide a separation performance lower than the ideal cascade on account of the mixing at the junctions of streams possessing different concentrations, whereas the cut and separation factor of the no-mixing cascade requiring minimum membrane area exhibits zig-zag curves when plotted against stage number. Both these circumstances contribute to the lower separation performance obtained with these two forms as compared with the ideal cascade, and results in larger total membrane area; but these semi-ideal forms retain the advantage of easy practical treatment with their pressure ratio common to all stages. (auth.)
Ultrarelativistic cascades and strangeness production
Energy Technology Data Exchange (ETDEWEB)
Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.
1998-08-24
A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies {radical}(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.) 26 refs.
Ultrarelativistic cascades and strangeness production
International Nuclear Information System (INIS)
Kahana, D.E.; Kahana, S.H.
1998-01-01
A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies √(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.)
MAPK cascades in guard cell signal transduction
Directory of Open Access Journals (Sweden)
Yuree eLee
2016-02-01
Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.
A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer.
Energy Technology Data Exchange (ETDEWEB)
Klaassen, T. O. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Hajenius, M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Adam, A. J. L. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Klapwijk, T. M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Baryshev, A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Kumar, Sushil (Massachusetts Institute of Technology, Cambridge, MA); Baselmans, J. J. A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hu, Qing (Massachusetts Institute of Technology, Cambridge, MA); Yang, Z. Q. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hovenier, J. N. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Williams, Benjamin S. (Massachusetts Institute of Technology, Cambridge, MA); Gao, J. R. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Reno, John Louis
2005-03-01
We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.
Defect accumulation under cascade damage conditions
DEFF Research Database (Denmark)
Trinkaus, H.; Singh, B.N.; Woo, C.H.
1994-01-01
in terms of this reaction kinetics taking into account cluster production, dissociation, migration and annihilation at extended sinks. Microstructural features which are characteristic of cascade damage and cannot be explained in terms of the conventional single defect reaction kinetics are emphasized......There is now ample evidence from both experimental and computer simulation studies that in displacement cascades not only intense recombination takes place but also efficient clustering of both self-interstitial atoms (SIAs) and vacancies. The size distributions of the two types of defects produced...... reactions kinetics associated with the specific features of cascade damage is described, with emphasis on asymmetries between SIA and vacancy type defects concerning their production, stability, mobility and interactions with other defects. Defect accumulation under cascade damage conditions is discussed...
DEFF Research Database (Denmark)
Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André
2017-01-01
More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power...
Directory of Open Access Journals (Sweden)
Andrew H. Altieri
2017-02-01
Full Text Available Facilitation cascades generated by co-occurring foundation species can enhance the abundance and diversity of associated organisms. However, it remains poorly understood how differences among native and invasive species in their ability to exploit these positive interactions contribute to emergent patterns of community structure and biotic acceptance. On intertidal shorelines in New England, we examined the patterns of coexistence between the native mud crabs and the invasive Asian shore crab in and out of a facilitation cascade habitat generated by mid intertidal cordgrass and ribbed mussels. These crab species co-occurred in low intertidal cobbles adjacent to the cordgrass–mussel beds, despite experimental findings that the dominant mud crabs can kill and displace Asian shore crabs and thereby limit their successful recruitment to their shared habitat. A difference between the native and invasive species in their utilization of the facilitation cascade likely contributes to this pattern. Only the Asian shore crabs inhabit the cordgrass–mussel beds, despite experimental evidence that both species can similarly benefit from stress amelioration in the beds. Moreover, only Asian shore crabs settle in the beds, which function as a nursery habitat free of lethal mud crabs, and where their recruitment rates are particularly high (nearly an order of magnitude higher than outside beds. Persistence of invasive adult Asian shore crabs among the dominant native mud crabs in the low cobble zone is likely enhanced by a spillover effect of the facilitation cascade in which recruitment-limited Asian shore crabs settle in the mid intertidal cordgrass–mussel beds and subsidize their vulnerable populations in the adjacent low cobble zone. This would explain why the abundances of Asian shore crabs in cobbles are doubled when adjacent to facilitation cascade habitats. The propensity for this exotic species to utilize habitats created by facilitation cascades
Cascade Error Projection: An Efficient Hardware Learning Algorithm
Duong, T. A.
1995-01-01
A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.
Simulation of plasma double-layer structures
International Nuclear Information System (INIS)
Borovsky, J.E.; Joyce, G.
1982-01-01
Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric-field alignment of accelerated particles and strong magnetization results in their magnetic-field alignment. The numerial simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers
Noise propagation in two-step series MAPK cascade.
Directory of Open Access Journals (Sweden)
Venkata Dhananjaneyulu
Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.
International Nuclear Information System (INIS)
Abdullah, L; Jamaludin, Z; Rafan, N A; Jamaludin, J; Chiew, T H
2013-01-01
At present, positioning plants in machine tools are looking for high degree of accuracy and robustness attributes for the purpose of compensating various disturbance forces. The objective of this paper is to assess the tracking performance of Cascade P/PI, Nonlinear PID (NPID) and Nonlinear cascade (N-Cascade) controller with the existence of disturbance forces in the form of cutting forces. Cutting force characteristics at different cutting parameters; such as spindle speed rotations is analysed using Fast Fourier Transform. The tracking performance of a Nonlinear cascade controller in presence of these cutting forces is compared with NPID controller and Cascade P/PI controller. Robustness of these controllers in compensating different cutting characteristics is compared based on reduction in the amplitudes of cutting force harmonics using Fast Fourier Transform. It is found that the N-cascade controller performs better than both NPID controller and Cascade P/PI controller. The average percentage error reduction between N-cascade controller and Cascade P/PI controller is about 65% whereas the average percentage error reduction between cascade controller and NPID controller is about 82% at spindle speed of 3000 rpm spindle speed rotation. The finalized design of N-cascade controller could be utilized further for machining application such as milling process. The implementation of N-cascade in machine tools applications will increase the quality of the end product and the productivity in industry by saving the machining time. It is suggested that the range of the spindle speed could be made wider to accommodate the needs for high speed machining
International Nuclear Information System (INIS)
Yadoya, R.; Camara, A.S.; Consiglio, R.V.; Bley, P.; Hein, H.; Linder, G.
1986-01-01
A ten stage pilot plant to study experimentally dynamic behavior of a uranium enrichment plant based on separation nozzle process was developed and constructed at Karlsruhe Nuclear Research Center. This installation was transfered to the Development Center of Nuclear Technology (CDTN) of Nuclebras in Belo Horizonte, Brazil. The separation elements installed have a new design with higher efficiency, Known as double-deflections system. The power plant has been used to improve the control method and to prove the stability of separation nozzle cascade under pertubations produced artificially. The stabilization process of UF 6 quantity in cascade by UF 6 inventory regulation at bottom stage will have practication in the First Cascade, in Rezende, RJ, Brazil and may be uded i emonstration plant. The experimental results have shown to be comparable with those obtained by computer simulation. (Author) [pt
Chaotic Dynamics of the Partially Follower-Loaded Elastic Double Pendulum
DEFF Research Database (Denmark)
Thomsen, Jon Juel
1995-01-01
The non-linear dynamics of the elastically restrained double pendulum, with non-conservative follower-type loading and linear damping, is re-examined with specific reference to the occurrence of chaotic motion. A local non-linear perturbation analysis is performed, showing that in three distinct ...... by both linear and non-linear forces. Although heuristically based, this may be used as a practical and rather accurate predictive criterion for chaos to appear in the specific system. Copyright © 1995 Academic Press. All rights reserved....... regions of loading parameter space, small initial disturbances will result in, respectively, (1) static equilibrium solutions, (2) stable periodic motion, and (3) initially large changes in amplitude due to a destabilizing effect of both linear and non-linear forces. A global numerical analysis confirms...... the theoretical findings for regions (1) and (2), and shows that in region (3) almost all solutions are chaotic. It is suggested that chaos is triggered by a bifurcating cascade of large amplitude stable and unstable equilibrium points, which may be explored by orbits only when the zero-solution is destabilized...
Time structure of cascade showers
International Nuclear Information System (INIS)
Nakatsuka, Takao
1984-01-01
Interesting results have been reported on the time structure of the electromagnetic components of air showers which have been obtained by using recent fast electronic circuit technology. However, these analyses and explanations seem not very persuasive. One of the reasons is that there is not satisfactory theoretical calculation yet to explain the delay of electromagnetic components in cascade processes which are the object of direct observation. Therefore, Monte Carlo calculation was attempted for examining the relationship between the altitude at which high energy γ-ray is generated up in the air and the time structure of cascade showers at the level of observation. The investigation of a dominant factor over the delay of electromagnetic components indicated that the delay due to the multiple scattering of electrons was essential. The author used the analytical solution found by himself of C. N. Yang's equation for the study on the delay due to multiple scattering. The results were as follows: The average delay time and the spread of distribution of electromagnetic cascades were approximately in linear relationship with the mass of a material having passed in a thin uniform medium; the rise time of arrival time distribution for electromagnetic cascade showers was very steep under the condition that they were generated up in the air and observed on the ground; the subpeaks delayed by tens of ns in arrival time may sometimes appear due to the perturbation in electromagnetic cascade processes. (Wakatsuki, Y.)
Causes and solution of aperiodicity of supersonic flow field downstream of a profile cascade
Czech Academy of Sciences Publication Activity Database
Luxa, Martin; Synáč, J.; Šafařík, J.; Šimurda, David
2012-01-01
Roč. 14, 4a (2012), s. 23-28 ISSN 1335-4205 R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : turbine cascade * exit flow periodicity * transonic flow * porous tailboard * limit load Subject RIV: BK - Fluid Dynamics
Formalism of continual integrals for cascade processes with particle fusion
International Nuclear Information System (INIS)
Gedalin, Eh.V.
1987-01-01
Formalism of continuous integrals for description of cascade processes, in which besides cascade particle reproduction, their synthesis and coalescence take place, is used. Account of cascade particle coalescence leads to the fact that the development of some cascade branches cannot be independent and main equations of the cascade process become functional instead of integral. The method of continuous intagrals permits to construct in the closed form producing functionals for the cascade process and to obtain the rules of their calculation using diagrams. Analytical expressions in the form of continuous integrals for producing functionals describing cascade development are obtained
The Maui International Double Star Conference
Genet, Russell
2013-04-01
A three-day double star conference in February, 2013, covered double star observations from simple eyepiece astrometry of wide binaries, with orbital periods of centuries, to amplitude interferometry of binaries with periods measured in days or even hours. A wide range of participants, from students and amateurs to professionals shared their perspectives in panel discussions. This was the first conference of the newly-formed International Association of Double Star Observers (IADSO). PDFs of 22 of the talks and YouTube links to 23 of the talks and panels are available at www.IADSO.org.
International Nuclear Information System (INIS)
Blumkin, S.; Von Halle, E.
1978-01-01
An indirect method for estimating the inventory of a uranium enrichment cascade which presumably can be performed by the International Atomic Energy Agency within the Non-Proliferation Treaty limitations on its safeguards activities was devised and tested at the Oak Ridge Gaseous Diffusion Plant (ORGDP). This method involves the feeding of a cascade with uranium that is significantly richer in one component than the normal cascade feed for a short period of time, and the measurement of the subsequent transient concentrations of this component in the cascade withdrawal streams. The inventory estimate is then obtained from a comparison of the observed data with parallel data calculated for an appropriate but non-identical cascade model. The validity of the method is demonstrated numerically by parallel calculations made for two nearly ideal hypothetical cascade models. A test of this method conducted in the ORGDP cascade, utilizing U-236 as the spike component, yielded an estimate of the cascade inventory greater by 3.0% than that determined by the usual measurement method. The proposed method has been devised for use at enrichment plants that are subject to safeguarding by the IAEA and for which the proprietors will permit the inventories to be known. The method does not require knowledge or determination of any technology information that may be considered to be sensitive. For it to be applied, a plant proprietor must be willing to spike his cascade with a non-normal feed and do or permit the extensive sampling of its feed and withdrawal streams that is entailed. The numerical demonstration of the validity of the method rests on a single comparison of two nearly hypothetical cascades
Ion-irradiation studies of cascade damage in metals
International Nuclear Information System (INIS)
Averback, R.S.
1982-03-01
Ion-irradiation studies of the fundamental aspects of cascade damage in metals are reviewed. The emphasis of these studies has been the determination of the primary state of damage (i.e. the arrangement of atoms in the cascade region prior to thermal migration of defects). Progress has been made towards understanding the damage function (i.e. the number of Frenkel pairs produced as a function of primary recoil atom energy), the spatial configuration of vacancies and interstitials in the cascade and the cascade-induced mixing of atoms. It is concluded for these studies that the agitation of the lattice in the vicinity of energetic displacement cascades stimulates the defect motion and that such thermal spike motion induces recombination and clustering of Frenkel defects. 9 figures
Studying Operation Rules of Cascade Reservoirs Based on Multi-Dimensional Dynamics Programming
Directory of Open Access Journals (Sweden)
Zhiqiang Jiang
2017-12-01
Full Text Available Although many optimization models and methods are applied to the optimization of reservoir operation at present, the optimal operation decision that is made through these models and methods is just a retrospective review. Due to the limitation of hydrological prediction accuracy, it is practical and feasible to obtain the suboptimal or satisfactory solution by the established operation rules in the actual reservoir operation, especially for the mid- and long-term operation. In order to obtain the optimized sample data with global optimality; and make the extracted operation rules more reasonable and reliable, this paper presents the multi-dimensional dynamic programming model of the optimal joint operation of cascade reservoirs and provides the corresponding recursive equation and the specific solving steps. Taking Li Xianjiang cascade reservoirs as a case study, seven uncertain problems in the whole operation period of the cascade reservoirs are summarized after a detailed analysis to the obtained optimal sample data, and two sub-models are put forward to solve these uncertain problems. Finally, by dividing the whole operation period into four characteristic sections, this paper extracts the operation rules of each reservoir for each section respectively. When compared the simulation results of the extracted operation rules with the conventional joint operation method; the result indicates that the power generation of the obtained rules has a certain degree of improvement both in inspection years and typical years (i.e., wet year; normal year and dry year. So, the rationality and effectiveness of the extracted operation rules are verified by the comparative analysis.
Kim, Sun-Jong; Eom, Tae-Jung; Kim, Tae-Young; Lee, Byeong Ha; Park, Chang-Soo
2005-09-01
A two-user, 10-Gbits/s optical code-division multiple-access system implemented by using cascaded long-period fiber gratings formed in a dispersion-compensating fiber (DCF) is demonstrated. Our results show that the sensitivity of cladding modes to the refractive index change on the cladding surface is greatly reduced by utilizing the inner-cladding mode of the DCF. Two pairs of encoder/decoder are constructed and the performance is evaluated by measuring bit error rate (BER). With an interferer, a BER of 1.5×10-12 is measured at a received optical power of -6 dBm.
Cascading failure in the wireless sensor scale-free networks
Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li
2015-05-01
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).
Directory of Open Access Journals (Sweden)
Yu-Mi Lee
2016-06-01
Full Text Available Background: For the increasing development of type 2 diabetes dietary habits play an important role. In this regard, dietary supplements are of growing interest to influence the progression of this disease. Objective: The aim of this study was to investigate the effect of a cascade-fermented dietary supplement based on fruits, nuts, and vegetables fortified with chromium and zinc on metabolic control in patients with type 2 diabetes mellitus. Methods: This was a randomized, placebo-controlled, double-blind, intervention study under free-living conditions using a cross-over design. Thirty-six patients with type 2 diabetes mellitus were enrolled and randomized either to receive a cascade-fermented dietary supplement enriched with chromium (100 µg/d and zinc (15 mg/d or a placebo similar in taste but without supplements, over a period of 12 weeks. After a wash-out period of 12 weeks, the patients received the other test product. The main outcome variable was the levels of glycated hemoglobin (HbA1c. Other outcome variables were fasting blood glucose, fructosamine, and lipid parameters. Results: Thirty-one patients completed the study. HbA1c showed no relevant changes during both treatment periods, nor was there a relevant difference between the two treatments (HbA1c: p=0.48. The same results were found for fructosamine and fasting glucose (fructosamine: p=0.9; fasting glucose: p=0.31. In addition, there was no effect on lipid metabolism. Conclusion: This intervention study does not provide evidence that a cascade-fermented plant-based dietary supplement enriched with a combination of chromium and zinc improves glucose metabolism in patients with type 2 diabetes mellitus under free-living conditions.
Energy and carbon balances of wood cascade chains
Energy Technology Data Exchange (ETDEWEB)
Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)
2006-07-15
In this study we analyze the energy and carbon balances of various cascade chains for recovered wood lumber. Post-recovery options include reuse as lumber, reprocessing as particleboard, pulping to form paper products, and burning for energy recovery. We compare energy and carbon balances of chains of cascaded products to the balances of products obtained from virgin wood fiber or from non-wood material. We describe and quantify several mechanisms through which cascading can affect the energy and carbon balances: direct cascade effects due to different properties and logistics of virgin and recovered materials, substitution effects due to the reduced demand for non-wood materials when wood is cascaded, and land use effects due to alternative possible land uses when less timber harvest is needed because of wood cascading. In some analyses we assume the forest is a limiting resource, and in others we include a fixed amount of forest land from which biomass can be harvested for use as material or biofuel. Energy and carbon balances take into account manufacturing processes, recovery and transportation energy, material recovery losses, and forest processes. We find that land use effects have the greatest impact on energy and carbon balances, followed by substitution effects, while direct cascade effects are relatively minor. (author)
A molecular-dynamics simulation of displacement cascades in α-iron
International Nuclear Information System (INIS)
Kusunoki, Katsuyuki
2003-01-01
A molecular-dynamics code has been developed for simulating the early process of radiation-induced defects generation and aggregation during displacement cascades in α-iron. This code reproduces the dynamics of various types of defects such as vacancies, interstitials, and their clusters in a crystal composed of a million atoms. Main procedures and results of the present simulation are as follows. Interactions among atoms were described by a many-body EAM potential. Every simulation was performed under 3D periodical boundary conditions. Cascades were introduced into crystals by giving a kinetic energy to a knock-on atom once at a time toward a crystallographic direction along low index axes i.e. , and axes. The maximum number of Frenkel-type defects was generated for a case when the knock-on direction was along axis. Interstitial atoms surrounding residual vacancies were observed to form several clusters shortly after pair annihilation of the Frenkel-type defects. Fast massive migration of the interstitial clusters was also observed. (author)
Cascaded impedance networks for NPC inverter
DEFF Research Database (Denmark)
Li, Ding; Gao, Feng; Loh, Poh Chiang
2010-01-01
they are subject to the renewable sources. To date, three distinct types of impedance networks can be summarized for implementing a hybrid source impedance network, which can in principle be combined and cascaded before connected to a NPC inverter by proposed two ways. The resulting cascaded impedance network NPC...
International Nuclear Information System (INIS)
Jing, Xuye; Zheng, Danxing
2014-01-01
Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated
Covert, Michael
2015-01-01
This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.
Information cascade on networks
Hisakado, Masato; Mori, Shintaro
2016-05-01
In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.
Computation of inverse magnetic cascades
International Nuclear Information System (INIS)
Montgomery, D.
1981-10-01
Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed
Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene
2014-01-01
The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.
Directory of Open Access Journals (Sweden)
Veronica H Ryan
Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.
Non-spill control squared cascade
International Nuclear Information System (INIS)
Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Suemori, Nobuo.
1974-01-01
Object: To reduce a mixed loss thus enhancing separating efficiency by the provision of a simple arrangement wherein a reflux portion in a conventional spill control squared cascade is replaced by a special stage including centrifugal separators. Structure: Steps in the form of a square cascade, in which a plurality of centrifugal separators are connected by pipe lines, are accumulated in multistage fashion to form a squared cascade. Between the adjoining steps is disposed a special stage including a centrifugal separator which receives both lean flow from the upper step and rich flow from the lower step. The centrifugal separator in the special stage has its rich side connected to the upper step and its lean side connected to the lower step. Special stages are each disposed at the upper side of the uppermost step and at the lower side of the lowermost step. (Kamimura, M.)
Dynamics robustness of cascading systems.
Directory of Open Access Journals (Sweden)
Jonathan T Young
2017-03-01
Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it
Energy Technology Data Exchange (ETDEWEB)
Qian, Denghui, E-mail: qdhsd318@163.com; Shi, Zhiyu, E-mail: zyshi@nuaa.edu.cn
2016-10-07
Bandgap properties of the locally resonant phononic crystal double panel structure made of a two-dimensional periodic array of a spring–mass resonator surrounded by n springs (n equals to zero at the beginning of the study) connected between the upper and lower plates are investigated in this paper. The finite element method is applied to calculate the band structure, of which the accuracy is confirmed in comparison with the one calculated by the extended plane wave expansion (PWE) method and the transmission spectrum. Numerical results and further analysis demonstrate that two bands corresponding to the antisymmetric vibration mode open a wide band gap but is cut narrower by a band corresponding to the symmetric mode. One of the regulation rules shows that the lowest frequency on the symmetric mode band is proportional to the spring stiffness. Then, a new design idea of adding springs around the resonator in a unit cell (n is not equal to zero now) is proposed in the need of widening the bandwidth and lowering the starting frequency. Results show that the bandwidth of the band gap increases from 50 Hz to nearly 200 Hz. By introducing the quality factor, the regulation rules with the comprehensive consideration of the whole structure quality limitation, the wide band gap and the low starting frequency are also discussed. - Highlights: • The locally resonant double panel structure opens a band gap in the low frequency region. • The band gap is the coupling between the symmetric and antisymmetric vibration modes. • The band structure of the double panel is the evolution of that of the single plate. • By adding springs around the resonator in a unit cell, the bandwidth gets wider. • The band gap can be controlled by tuning the parameters.
Energy Technology Data Exchange (ETDEWEB)
Vascon, R
1997-12-31
Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a `cascade effect`: a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the `cascade effect`. (author). 286 refs.
Cascade fuzzy control for gas engine driven heat pump
International Nuclear Information System (INIS)
Li Shuze; Zhang Wugao; Zhang Rongrong; Lv Dexu; Huang Zhen
2005-01-01
In addition to absorption chillers, today's gas cooling technology includes gas engine driven heat pump systems (GEHP) in a range of capacities and temperature capacities suitable for most commercial air conditioning and refrigeration applications. Much is expected from GEHPs as a product that would help satisfy the air conditioning system demand from medium and small sized buildings, restrict electric power demand peaks in summer and save energy in general. This article describes a kind of control strategy for a GEHP, a cascade fuzzy control. GEHPs have large and varying time constants and their dynamic modeling cannot be easily achieved. A cascade control strategy is effective for systems that have large time constants and disturbances, and a fuzzy control strategy is fit for a system that lacks an accurate model. This cascade fuzzy control structure brings together the best merits of fuzzy control and cascade control structures. The performance of the cascade fuzzy control is compared to that of a cascade PI (proportional and integral) control strategy, and it is shown by example that the cascade fuzzy control strategy gives a better performance, reduced reaction time and smaller overshoot temperature
A cryogenic distillation column cascade for a fusion reactor
International Nuclear Information System (INIS)
Kinoshita, M.
1984-01-01
A cryogenic distillation column cascade composed of only two columns is proposed. Compared with the Tritium Systems Test Assembly (TSTA) cascade, the tritium inventory is about 1.5 times more and the packed height of the highest column increases by about 40%. However, the number of the columns is halved with the separation performance unchanged. The number of the instruments needed and the number of the process parameters to be monitored are also reduced. Unlike in the case of the TSTA cascade, the performance of the proposed cascade is not subject to the flow rate of the neutral beam injector recycle stream. The high performance can be maintained even if the protium percentage in the raw fuel input increases significantly (e.g., from 1 to 3%), just by adjusting the flow rates of the top, bottom, and side streams. Because of this great flexibility, it is worthwhile to build and study the proposed cascade as a possible alternative to the TSTA cascade
MOLECULAR DYNAMICS SIMULATIONS OF DISPLACEMENT CASCADES IN MOLYBDENUM
International Nuclear Information System (INIS)
Smith, Richard Whiting
2003-01-01
Molecular dynamics calculations have been employed to simulate displacement cascades in neutron irradiated Mo. A total of 90 simulations were conducted for PKA energies between 1 and 40 keV and temperatures from 298 to 923K. The results suggest very little effect of temperature on final defect count and configuration, but do display a temperature effect on peak defect generation prior to cascade collapse. Cascade efficiency, relative to the NRT model, is computed to lie between 1/4 and 1/3 in agreement with simulations performed on previous systems. There is a tendency for both interstitials and vacancies to cluster together following cascade collapse producing vacancy rich regions surrounded by interstitials. Although coming to rest in close proximity, the point defects comprising the clusters generally do not lie within the nearest neighbor positions of one another, except for the formation of dumbbell di-interstitials. Cascades produced at higher PKA energies (20 or 40 keV) exhibit the formation of subcascades
A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module
Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang
2018-01-01
We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...
Stochastic background of atmospheric cascades
International Nuclear Information System (INIS)
Wilk, G.; Wlodarczyk, Z.
1993-01-01
Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions
Volcano geodesy in the Cascade arc, USA
Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin
2017-01-01
Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic
Volcano geodesy in the Cascade arc, USA
Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben
2017-08-01
Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic
Geothermal segmentation of the Cascade Range in the USA
Guffanti, Marianne; Muffler, L.J.; Mariner, R.H.; Sherrod, D.R.; Smith, James G.; Blackwell, D.D.; Weaver, C.S.
1990-01-01
Characteristics of the crustal thermal regime of the Quaternary Cascades vary systematically along the range. Spatially congruent changes in volcanic vent distribution, volcanic extrusion rate, hydrothermal discharge rate, and regional conductive heat flow define 5 geothermal segments. These segments are, from north to south: (1) the Washington Cascades north of Mount Rainier, (2) the Cascades from Mount Rainier to Mount Hood, (3) the Oregon Cascades from south of Mount Hood to the California border, (4) northernmost California, including Mount Shasta and Medicine Lake volcano, and (5) the Lassen region of northern California. This segmentation indicates that geothermal resource potential is not uniform in the Cascade Range. Potential varies from high in parts of Oregon to low in Washington north of Mount Rainier.
Cascade processes in kaonic and muonic atoms
International Nuclear Information System (INIS)
Faifman, M.P.; Men'shikov, L.I.
2003-01-01
Cascade processes in exotic (kaonic and muonic) hydrogen/deuterium have been studied with the quantum-classical Monte Carlo code (QCMC) developed for 'ab initio' - calculations. It has been shown that the majority of kaonic hydrogen atoms during cascade are accelerated to high energies E ∼ 100 eV, which leads to a much lower value for the calculated yields Y of x-rays than predicted by the 'standard cascade model'. The modified QCMC scheme has been applied to the study of the cascade in μp and μd muonic atoms. A comparison of the calculated yields for K-series x-rays with experimental data directly indicates that the molecular structure of the hydrogen target and new types of non-radiative transitions are essential for the light muonic atoms, while they are negligible for heavy (kaonic) atoms. These processes have been considered and estimates of their probabilities are presented. (author)
Pascal (Yang Hui) triangles and power laws in the logistic map
International Nuclear Information System (INIS)
Velarde, Carlos; Robledo, Alberto
2015-01-01
We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and chaotic-band doubling of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests along periodic attractor supercycle positions and chaotic band splitting points. Consequently, the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos, displays both Gaussian and power-law distributions. Their combined existence implies both ordinary and exceptional statistical-mechanical descriptions of dynamical properties. (paper)
Rescuing Ecosystems from Extinction Cascades
Sahasrabudhe, Sagar; Motter, Adilson
2010-03-01
Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.
A simple model of global cascades on random networks
Watts, Duncan J.
2002-04-01
The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.
Basic characteristics of a low uranium enrichment cascade by centrifugation, (2)
International Nuclear Information System (INIS)
Kai, Tsunetoshi
1975-01-01
The theory for a cascade of centrifuges described in the preceding report of the same general title is further developed. First, equations describing the distributions of the flow and the mole concentration are derived from the material balance relations for a square cascade. Corresponding equations are next obtained to cover a squared-off cascade consisting of a series of square cascades. A computer program is outlined which makes it possible to obtain the shape of the most efficient squared-off cascade. The efficiency of the current form of squared-off centrifuge cascade with reflux pipes is found to be lower than obtainable with gaseous diffusion. The efficiency can be improved by the adoption of a tapered squared-off cascade with centrifuges provided with eccentric cuts to take the place of reflux pipes. The dynamic characteristics are also discussed. Analysis of the start-up behavior reveals that the equilibrium time of the centrifuge cascade is much shorter than for a coresponding gaseous diffusion cascade, and that the mole concentration of the product rapidly rises to attain steady state condition. It is also found that even when the feed flow rate fluctuates, the mole concentration of the product is relatively stable. The effect of a centrifuge failure in the cascade is examined. The optimum mole concentration for the waste effluent discarded from the cascade is calculated from the viewpoint of cost. (auth.)
Chaotic behavior of current-carrying plasmas in external periodic oscillations
Energy Technology Data Exchange (ETDEWEB)
Ohno, Noriyasu; Tanaka, Masayoshi; Komori, Akio; Kawai, Yoshinobu
1989-01-01
A set of cascading bifurcations and a chaotic state in the presence of an external periodic oscillation are experimentally investigated in a current-carrying plasma. The measured bifurcation sequence leading to chaos, which is controlled by changing plasma densities and the frequencies of external oscillations, is in qualitative agreement with a theory which describes anharmonic systems in periodic fields. (author).
Molecular dynamics studies of displacement cascades
International Nuclear Information System (INIS)
Averback, R.S.; Hsieh, Horngming; Diaz de la Rubia, T.
1990-02-01
Molecular-dynamics simulations of cascades in Cu and Ni with primary-knock-on energies up to 5 keV and lattice temperatures in the range 0 K--700 K are described. Interatomic forces were represented by either the Gibson II (Cu) or Johnson-Erginsoy (Ni) potentials in most of this work, although some simulations using ''Embedded Atom Method'' potentials, e.g., for threshold events in Ni 3 Al, are also presented. The results indicate that the primary state of damage produced by displacement cascades is controlled by two phenomena, replacement collision sequences during the collisional phase of the cascade and local melting during the thermal spike. As expected, the collisional phase is rather similar in Cu and Ni, however, the thermal spike is of longer duration and has a more pronounced influence in Cu than Ni. When the ambient temperature of the lattice is increased, the melt zones are observed to both increase in size and cool more slowly. This has the effect of reducing defect production and enhancing atomic mixing and disordering. The implications of these results for defect production, cascade collapse, atomic disordering will be discussed. 34 refs., 7 figs., 2 tabs
Forecasting Social Unrest Using Activity Cascades.
Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil
2015-01-01
Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.
Forecasting Social Unrest Using Activity Cascades.
Directory of Open Access Journals (Sweden)
Jose Cadena
Full Text Available Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011 to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.
Influence of time-periodic potentials on electronic transport in double-well structure
International Nuclear Information System (INIS)
Chun-Lei, Li; Yan, Xu
2010-01-01
Within the framework of the Floquet theorem, we have investigated single-electron photon-assisted tunneling in a double-well system using the transfer matrix technique. The transmission probability displays satellite peaks on both sides of the main resonance peaks and these satellite peaks originate from emission or absorption photons. The single-electron resonance tunneling can be controlled through changing the applied harmonically potential positions, such as driven potential in wells, in barriers, or in whole double-well systems. This advantage should be useful in the optimization of the parameters of a transmission device. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Optimizing optical nonlinearities in GaInAs/AlInAs quantum cascade lasers
Directory of Open Access Journals (Sweden)
Gajić Aleksandra D.
2014-01-01
Full Text Available Regardless of the huge advances made in the design and fabrication of mid-infrared and terahertz quantum cascade lasers, success in accessing the ~3-4 mm region of the electromagnetic spectrum has remained limited. This fact has brought about the need to exploit resonant intersubband transitions as powerful nonlinear oscillators, consequently enabling the occurrence of large nonlinear optical susceptibilities as a means of reaching desired wavelengths. In this work, we present a computational model developed for the optimization of second-order optical nonlinearities in In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser structures based on the implementation of the Genetic algorithm. The carrier transport and the power output of the structure were calculated by self-consistent solutions to the system of rate equations for carriers and photons. Both stimulated and simultaneous double-photon absorption processes occurring between the second harmonic generation-relevant levels are incorporated into rate equations and the material-dependent effective mass and band non-parabolicity are taken into account, as well. The developed method is quite general and can be applied to any higher order effect which requires the inclusion of the photon density equation. [Projekat Ministarstva nauke Republike Srbije, br. III 45010
Simulated annealing of displacement cascades in FCC metals. 1. Beeler cascades
International Nuclear Information System (INIS)
Doran, D.G.; Burnett, R.A.
1974-09-01
An important source of damage to structural materials in fast reactors is the displacement of atoms from normal lattice sites. A high energy neutron may impart sufficient energy to an atom to initiate a displacement cascade consisting of a localized high density of hundreds of interstitials and vacancies. These defects subsequently interact to form clusters and to reduce their density by mutual annihilation. This short term annealing of an isolated cascade has been simulated at high and low temperatures using a correlated random walk model. The cascade representations used were developed by Beeler and the point defect properties were based on the model of γ-iron by Johnson. Low temperature anneals, characterized by no vacancy migration and a 104 site annihilation region (AR), resulted in 49 defect pairs at 20 keV and 11 pairs at 5 keV. High temperature anneals, characterized by both interstitial and vacancy migration and a 32 site AR, resulted in 68 pairs at 20 keV and 18 pairs at 5 keV when no cluster dissociation was permitted; most of the vacancies were in immobile clusters. These high temperature values dropped to 40 and 14 upon dissolution of the vacancy clusters. Parameter studies showed that, at a given temperature, the large AR resulted in about one-half as many defects as the small AR. Cluster size distributions and examples of spatial configurations are included. (U.S.)
Log-periodic self-similarity: an emerging financial law?
S. Drozdz; F. Grummer; F. Ruf; J. Speth
2002-01-01
A hypothesis that the financial log-periodicity, cascading self-similarity through various time scales, carries signatures of a law is pursued. It is shown that the most significant historical financial events can be classified amazingly well using a single and unique value of the preferred scaling factor lambda=2, which indicates that its real value should be close to this number. This applies even to a declining decelerating log-periodic phase. Crucial in this connection is identification o...
Directory of Open Access Journals (Sweden)
A. Pusceddu
2013-04-01
Full Text Available Numerous submarine canyons around the world are preferential conduits for episodic dense shelf water cascading (DSWC, which quickly modifies physical and chemical ambient conditions while transporting large amounts of material towards the base of slope and basin. Observations conducted during the last 20 yr in the Lacaze-Duthiers and Cap de Creus canyons (Gulf of Lion, NW Mediterranean Sea report several intense DSWC events. The effects of DSWC on deep-sea ecosystems are almost unknown. To investigate the effects of these episodic events, we analysed changes in the meiofaunal biodiversity inside and outside the canyon. Sediment samples were collected at depths varying from ca. 1000 to > 2100 m in May 2004 (before a major event, April 2005 (during a major cascading event and in October 2005, August 2006, April 2008 and April 2009 (after a major event. We report here that the late winter–early spring 2005 cascading led to a reduction of the organic matter contents in canyon floor sediments down to 1800 m depth, whereas surface sediments at about 2200 m depth showed an increase. Our findings suggest that the nutritional material removed from the shallower continental shelf, canyon floor and flanks, and also the adjacent open slope was rapidly transported to the deep margin. During the cascading event the meiofaunal abundance and biodiversity in the studied deep-sea sediments were significantly lower than after the event. Benthic assemblages during the cascading were significantly different from those in all other sampling periods in both the canyon and deep margin. After only six months from the cessation of the cascading, benthic assemblages in the impacted sediments were again similar to those observed in other sampling periods, thus illustrating a quick recovery. Since the present climate change is expected to increase the intensity and frequency of these episodic events, we anticipate that they will increasingly affect benthic bathyal
Soft pair excitations and double-log divergences due to carrier interactions in graphene
Lewandowski, Cyprian; Levitov, L. S.
2018-03-01
Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.
Quantum Cascade Lasers Modulation and Applications
Luzhansky, Edward
The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is
Cascades on a stochastic pulse-coupled network
Wray, C. M.; Bishop, S. R.
2014-09-01
While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.
International Nuclear Information System (INIS)
Kazantzis, P.G.
1979-01-01
New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the 'vertical-critical' orbits (αsub(ν) = -1, csub(ν) = 0) of the 'basic' plane families i. g 1 g 2 h, a, m and I. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections. (orig.)
Framework for cascade size calculations on random networks
Burkholz, Rebekka; Schweitzer, Frank
2018-04-01
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.
Laun, Joachim; Vilela Oliveira, Daniel; Bredow, Thomas
2018-02-22
Consistent basis sets of double- and triple-zeta valence with polarization quality for the fifth period have been derived for periodic quantum-chemical solid-state calculations with the crystalline-orbital program CRYSTAL. They are an extension of the pob-TZVP basis sets, and are based on the full-relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2-SVP and def2-TZVP valence basis of the Ahlrichs group. We optimized orbital exponents and contraction coefficients to supply robust and stable self-consistent field (SCF) convergence for a wide range of different compounds. The computed crystal structures are compared to those obtained with standard basis sets available from the CRYSTAL basis set database. For the applied hybrid density functional PW1PW, the average deviations of calculated lattice constants from experimental references are smaller with pob-DZVP and pob-TZVP than with standard basis sets. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Periodically poled self-frequency-doubling green laser fabricated from Nd:Mg:LiNbO₃ single crystal.
Wang, Dong Zhou; Sun, De Hui; Kang, Xue Liang; Sang, Yuan Hua; Yan, Bo Xia; Liu, Hong; Bi, Yong
2015-07-13
Although a breakthrough in the fabrication of green laser diodes has occurred, the high costs associated with the difficulty of manufacture still present a great obstacle for its practical application. Another approach for producing a green laser, by combining a laser device and a nonlinear crystal, entails the fabrication of complex structures and exhibits unstable performance due to interface contact defects, thus limiting its application. In this work, we report the fabrication by domain engineering of high quality periodically poled LiNbO₃, co-doped with Nd³⁺ and Mg²⁺, which combines a laser medium and a high efficiency second harmonic conversion crystal into a single system that is designed to overcome the above problems. An 80 mW self-frequency doubling green laser was constructed for the first time from a periodically poled Nd:Mg:LiNbO₃ crystal of 16 mm in length. This crystal can be used for developing compact, stable, highly efficient mini-solid-state-lasers, which promise to have many applications in portable laser-based spectroscopy, photo-communications, terahertz wave generation, and laser displays.
Increasing sensitivity of MOS dosemeters in cascade connection
International Nuclear Information System (INIS)
Vychytil, F.; Cechak, T.; Gerndt, J.; Petr, I.
1978-01-01
The possibilities of increasing the sensitivity of MOS transistors in their cascade connection were studied theoretically and experimentally. The measurements confirmed the presumption that the instability of cascade-connected MOS transistors increased with the square of the number of transistors in the system. This allows systems to be formed with different sensitivity to ionizing radiation by encasing 10 to 10 4 transistors connected in cascade, which is technologically feasible. The procedure is also acceptable from the point of view of cost. (Z.M.)
International Nuclear Information System (INIS)
Shimazaki, Yoichi
2003-01-01
The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level
Whitchurch, Brandon; Kevrekidis, Panayotis G.; Koukouloyannis, Vassilis
2018-01-01
In this work we study the dynamical behavior of two interacting vortex pairs, each one of them consisting of two point vortices with opposite circulation in the two-dimensional plane. The vortices are considered as effective particles and their interaction can be described in classical mechanics terms. We first construct a Poincaré section, for a typical value of the energy, in order to acquire a picture of the structure of the phase space of the system. We divide the phase space in different regions which correspond to qualitatively distinct motions and we demonstrate its different temporal evolution in the "real" vortex space. Our main emphasis is on the leapfrogging periodic orbit, around which we identify a region that we term the "leapfrogging envelope" which involves mostly regular motions, such as higher order periodic and quasiperiodic solutions. We also identify the chaotic region of the phase plane surrounding the leapfrogging envelope as well as the so-called walkabout and braiding motions. Varying the energy as our control parameter, we construct a bifurcation tree of the main leapfrogging solution and its instabilities, as well as the instabilities of its daughter branches. We identify the symmetry-breaking instability of the leapfrogging solution (in line with earlier works), and also obtain the corresponding asymmetric branches of periodic solutions. We then characterize their own instabilities (including period doubling ones) and bifurcations in an effort to provide a more systematic perspective towards the types of motions available to this dynamical system.
On a New Route to Chaos in Railway Dynamics
DEFF Research Database (Denmark)
True, Hans; Jensen, Carsten Nordstroem
1997-01-01
a period-doubling cascade of the secondary period in an asymptotically stable quasiperiodic oscillation at decreasing speed. Several quasiperiodic windows were found in the chaotic motion. This route to chaos was first described by Franceschini [9], who discovered it in a seven-mode truncation of the plane...
Development of a New Cascade Voltage-Doubler for Voltage Multiplication
Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri
2014-01-01
For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.
A Novel Concept for Three-Phase Cascaded Multilevel Inverter Topologies
Directory of Open Access Journals (Sweden)
Md Mubashwar Hasan
2018-01-01
Full Text Available One of the key challenges in multilevel inverters (MLIs design is to reduce the number of components used in the implementation while maximising the number of output voltage levels. This paper proposes a new concept that facilitates a device count reduction technique of existing cascaded MLIs. Moreover, the proposed concept can be utilised to extend existing single phase cascaded MLI topologies to three-phase structure without tripling the number of semiconductor components and input dc-supplies as per the current practice. The new generalized concept involves two stages; namely, cascaded stage and phase generator stage. The phase generator stage is a combination of a conventional three-phase two level inverter and three bi-directional switches while the cascaded stage can employ any existing cascaded topology. A laboratory prototype model is built and extensive experimental analyses are conducted to validate the feasibility of the proposed cascaded MLI concept.
International Nuclear Information System (INIS)
Mekjian, A. Z.
2001-01-01
A change is made in a statistical framework by introducing a set of variables called ancestral or stochastic. This leads to an underlying dynamics based on branching laws, lines of descent in an hierarchical topology, period doublings, cascades, and clans. Above a certain branching probability, a percolative feature suddenly appears. Power laws emerge and cascade points arise and end at golden mean (5 -1)/2
Energy Technology Data Exchange (ETDEWEB)
Han, Jing; Zhuo, Ying, E-mail: yingzhuo@swu.edu.cn; Chai, Yaqin; Yu, Yanqing; Liao, Ni; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn
2013-08-06
Graphical abstract: -- Highlights: •A reusable electrochemical immunosensor is developed for thyroxine detection. •Cascade catalysis as signal amplified enhancer. •Multi-functionalized magnetic graphene sphere as signal tag. •The novel strategy has the advantages of high sensitivity, good selectivity and reproducibility. -- Abstract: This paper constructed a reusable electrochemical immunosensor for the detection of thyroxine at an ultralow concentration using cascade catalysis of cytochrome c (Cyt c) and glucose oxidase (GOx) as signal amplified enhancer. It is worth pointing out that numerous Cyt c and GOx were firstly carried onto the double-stranded DNA polymers based on hybridization chain reaction (HCR), and then the amplified responses could be achieved by cascade catalysis of Cyt c and GOx recycling with the help of glucose. Moreover, multi-functionalized magnetic graphene sphere was synthesized and used as signal tag, which not only exhibited good mechanical properties, large surface area and an excellent electron transfer rate of graphene, but also possessed excellent redox activity and desirable magnetic property. With a sandwich-type immunoreaction, the proposed cascade catalysis amplification strategy could greatly enhance the sensitivity for the detection of thyroxine. Under the optimal conditions, the immunosensor showed a wide linear ranged from 0.05 pg mL{sup −1} to 5 ng mL{sup −1} and a low detection limit down to 15 fg mL{sup −1}. Importantly, the proposed method offers promise for reproducible and cost-effective analysis of biological samples.
Molecular dynamics simulation of displacement cascades in iron-alpha
International Nuclear Information System (INIS)
Vascon, R.
1997-01-01
Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a 'cascade effect': a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the 'cascade effect'. (author)
Design concept of Hydro cascade control system
International Nuclear Information System (INIS)
Fustik, Vangel; Kiteva, Nevenka
2006-01-01
In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.
On calculating of squared-off cascades for multicomponent isotope separation
International Nuclear Information System (INIS)
Potapov, D.V.; Soulaberidze, G.A.; Chuzhinov, V.A.; Filipppov, I.G.
1996-01-01
Calculation on a cascade of specified configuration (specified number of stages and flows in the enriching and stripping sections of the cascade) is performed with two approaches. The first one, which is advisable to use for for calculation of so-called 'long' cascades (for example, squared-off cascades of distillation columns), is based on either analytical transitions enabling the problem to be reduced to to the algebraic transcendental equations, or based on the direct integration of the equations describing the cascade separation process, with the subsequent iteration on the boundary conditions and the balance equations. This approach also involves the orthogonal-collocation technique consisting in the approximation of the differential equations solution by an Lagrangian polynomial interpolation
Sample Selection for Training Cascade Detectors.
Vállez, Noelia; Deniz, Oscar; Bueno, Gloria
2015-01-01
Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.
The temporal development of collision cascades in the binary collision approximation
International Nuclear Information System (INIS)
Robinson, M.T.
1989-07-01
A modified binary collision approximation (BCA) was developed to allow explicit evaluation of the times at which projectiles in a collision cascade reach significant points in their trajectories, without altering the ''event-driven'' character of the model. The modified BCA was used to study the temporal development of cascades in copper and gold, initiated by primary atoms of up to 10 keV initial kinetic energy. Cascades generated with time-ordered collisions show fewer ''distant'' Frenkel pairs than do cascades generated with velocity-ordered collisions. In the former, the slower projectiles tend to move in less-damaged crystal than they do in the latter. The effect is larger in Au than in Cu and increases with primary energy. As an approach to cascade nonlinearities, cascades were generated in which stopped cascade atoms were allowed to be redisplaced in later encounters. There were many more redisplacements in time-ordered cascades than in velocity-ordered ones. Because of the additional stopping introduced by the redisplacement events, the cascades in which they were allowed had fewer defects than occurred otherwise. This effect also was larger in Au than in Cu and larger at high energies although most of the redisplacement encounters involved only low-energy particles. 13 refs., 5 figs., 4 tabs
All passive architecture for high efficiency cascaded Raman conversion
Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.
2018-02-01
Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.
Minimum Entropy-Based Cascade Control for Governing Hydroelectric Turbines
Directory of Open Access Journals (Sweden)
Mifeng Ren
2014-06-01
Full Text Available In this paper, an improved cascade control strategy is presented for hydroturbine speed governors. Different from traditional proportional-integral-derivative (PID control and model predictive control (MPC strategies, the performance index of the outer controller is constructed by integrating the entropy and mean value of the tracking error with the constraints on control energy. The inner controller is implemented by a proportional controller. Compared with the conventional PID-P and MPC-P cascade control methods, the proposed cascade control strategy can effectively decrease fluctuations of hydro-turbine speed under non-Gaussian disturbance conditions in practical hydropower plants. Simulation results show the advantages of the proposed cascade control method.
Space-time evolution of electron cascades in diamond
International Nuclear Information System (INIS)
Ziaja, Beata; Szoeke, Abraham; Spoel, David van der; Hajdu, Janos
2002-01-01
The impact of a primary electron initiates a cascade of secondary electrons in solids, and these cascades play a significant role in the dynamics of ionization. Here we describe model calculations to follow the spatiotemporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E∼250 eV. This energy is similar to the energy of an Auger electron from carbon. Two limiting cases were considered: the case in which electrons transmit energy to the lattice, and the case where no such energy transfer is permitted. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (∼5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud, and it increases exponentially with the radial size of the cascade. This means that the long-range Coulomb field is not shielded within this cloud, and the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E∼250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. At 10 fs the cascade has a maximal radius of ∼70 A, and is already dominated by low-energy electrons
Energy cascading in the beat-wave accelerator
International Nuclear Information System (INIS)
McKinstrie, C.J.; Batha, S.H.
1987-01-01
A review is given of energy cascading in the beat-wave accelerator. The properties of the electromagnetic cascade and the corresponding plasma-wave evolution are well understood within the framework of an approximate analytic model. Based on this model, idealized laser-plasma coupling efficiencies of the order of 10% do not seem unreasonable. 28 refs
Simulation of short-term annealing of displacement cascades in FCC metals
International Nuclear Information System (INIS)
Heinisch, H.L.; Doran, D.G.; Schwartz, D.M.
1980-01-01
Computer models have been developed for the simulation of high energy displacement cascades. The objective is the generation of defect production functions for use in correlation analysis of radiation effects in fusion reactor materials. In particular, the stochastic cascade annealing simulation code SCAS has been developed and used to model the short-term annealing behavior of simulated cascades in FCC metals. The code is fast enough to make annealing of high energy cascades practical. Sets of cascades from 5 keV to 100 keV in copper were generated by the binary collision code MARLOWE
Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph
2018-07-01
To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also
Optimization of the cascade with gas centrifuges for uranium enrichment
International Nuclear Information System (INIS)
Ozaki, N.; Harada, I.
1976-01-01
Computer programs to optimize the step and tapered-step cascades with gas centrifuges are developed. The 'Complex Method', one of the direct search method, is employed to find the optimum of the nonlinear function of several variables within a constrained region. The separation characteristics of the optimized step and tapered-step cascades are discussed in comparison with that of the ideal cascade. The local optima of the cascade profile, the convergence of the object function, and the stopping criterion for the optimization trial are also discussed. (author)
Centrifugal separator cascade connected in zigzag manner
International Nuclear Information System (INIS)
Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.
1974-01-01
Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)
Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.
Ma, Qian; Li, Ran; Feng, Jingjie; Lu, Jingying; Zhou, Qin
2018-03-01
Elevated levels of total dissolved gas (TDG) may occur downstream of dams during the spill process. These high levels would increase the incidence of gas bubble disease in fish and cause severe environmental impacts. With increasing numbers of cascade hydropower stations being built or planned, the cumulative effects of TDG supersaturation are becoming increasingly prominent. The TDG saturation distribution in the downstream reaches of the Jinsha River was studied to investigate the cumulative effects of TDG supersaturation resulting from the cascade hydropower stations. A comparison of the effects of the joint operation and the single operation of two hydropower stations (XLD and XJB) was performed to analyze the risk degree to fish posed by TDG supersaturation. The results showed that water with supersaturated TDG generated at the upstream cascade can be transported to the downstream power station, leading to cumulative TDG supersaturation effects. Compared with the single operation of XJB, the joint operation of both stations produced a much higher TDG saturation downstream of XJB, especially during the non-flood discharge period. Moreover, the duration of high TDG saturation and the lengths of the lethal and sub-lethal areas were much higher in the joint operation scenario, posing a greater threat to fish and severely damaging the environment. This work provides a scientific basis for strategies to reduce TDG supersaturation to the permissible level and minimize the potential risk of supersaturated TDG.
Energy Technology Data Exchange (ETDEWEB)
Inoue, K [National Aerospace Laboratory, Tokyo (Japan)
1992-05-01
For the purpose of developing a fan for an engine with ultra-high by-pass ratio, the design code of three-dimensional cascade of blades based on the Navier-Stokes equation has already been developed. This paper describes a method created by calculation grids which are part of this design code. This method is to generate boundary fitted grids to calculate the flow field across a cascade of blades placed radially in the axially symmetric space between hub and casing. In this method, one-period domain of the cascade of blades is mapped on a box in computational space by a series of combined streching transformation and conformal mapping. The grid in physical space is then obtained by successive inverse conformal mapping on the grid points in computational space. The grid obtained in this method is H-type and has a periodicity which includes the inclination of grid lines at the periodic boundary. As an example of the grid generated by this method, grids for primary and secondary models of the fan with ultra-high by-pass ratio are shown. 6 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Inoue, K [National Aerospace Laboratory, Tokyo (Japan)
1992-05-01
For the purpose of developing a fan for an engine with ultra-high by-pass ratio, the design code of three-dimensional cascade of blades based on the Navier-Stokes equation has already been developed. This paper describes a method created by calculation grids which are part of this design code. This method is to generate boundary fitted grids to calculate the flow field across a cascade of blades placed radially in the axially symmetric space between hub and casing. In this method, one-period domain of the cascade of blades is mapped on a box in computational space by a series of combined streching transformation and conformal mapping. The grid in physical space is then obtained by successive inverse conformal mapping on the grid points in computational space. The grid obtained in this method is H-type and has a periodicity which includes the inclination of grid lines at the periodic boundary. As an example of the grid generated by this method, grids for primary and secondary models of the fan with ultra-high by-pass ratio are shown. 6 refs., 12 figs.
Sample Selection for Training Cascade Detectors.
Directory of Open Access Journals (Sweden)
Noelia Vállez
Full Text Available Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.
Multilevel Inverter by Cascading Industrial VSI
DEFF Research Database (Denmark)
Teodorescu, Remus; Blaabjerg, Frede; Pedersen, John Kim
2002-01-01
In this paper the modularity concept applied to medium-voltage adjustable speed drives is addressed. First, the single-phase cascaded voltage-source inverter that uses series connection of IGBT H-bridge modules with isolated dc-buses is presented. Next, a novel three-phase cascaded voltage......-source inverter that uses three IGBT triphase inverter modules along with an output transformer to obtain a 3 p.u. multilevel output voltage is introduced. The system yields in high-quality multistep voltage with up to 4 levels and low dv/dt, balanced operation of the inverter modules, each supplying a third...... of the motor rated kVA. The concept of using cascaded inverters is further extended to a new modular motor-modular inverter system where the motor winding connections are reconnected into several three-phase groups, either six-lead or 12-lead connection according to the voltage level, each powered...
Particle fluxes in atomic collision cascades
International Nuclear Information System (INIS)
Sckerl, B.W.; Sigmund, P.; Vicanek, M.
1996-01-01
The flux of recoil atoms in atomic collision cascades induced by an ion beam or another source of energetic particles in a material is known to approach isotropy at kinetic energies far below the beam energy. A variety of irradiation effects can be explained satisfactorily on the basis of an isotropic particle flux, but significant deviations from this simple behavior are known to exist. While numerous examples have been studied by numerical simulation of cascade processes, the systematics is, by and large, unknown. The present study aims at general scaling properties and estimates of the magnitude of moderate deviations from isotropy and their spatial dependence for a wide range of beam and material parameters. Anisotropies introduced by crystal structure are ignored. Although it is well established that cascade anisotropy is related to the momentum of beam particles, previous attempts to quantify this relation have failed. We have found that there are two leading correction terms to the isotropic particle flux, a well-known term centered around the beam direction as a symmetry axis and a new term proportional to the gradient of the deposited-energy density. As a general rule the two contributions are either both significant or both negligible. Specific situations in which the gradient term dominates are, however, of considerable interest in applications. The parameters which characterize the anisotropy of collision cascades also determine the deposition of momentum, but the connection is less straightforward than asserted hitherto. General principles are first illustrated on the specific case of elastic-collision cascades under self-bombardment which contains the essentials. Thereafter several generalizations are made, including atomic binding forces and inelasticity as well as allowance for multicomponent materials. Application areas in mixing and sputtering are outlined. (au) 58 refs
Cascading Generative Adversarial Networks for Targeted
Hamdi, Abdullah
2018-01-01
Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.
Cascading Generative Adversarial Networks for Targeted
Hamdi, Abdullah
2018-04-09
Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.
Establishment and evaluation of operation function model for cascade hydropower station
Chang-ming Ji; Ting Zhou; Hai-tao Huang
2010-01-01
Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade operation, and proposes a monthly operation function algorithm for the actual operation of cascade hydropower stations through the identification, processing, and screening of available information during long-term optimal operation. Applying the operation function to the cascade hy...
Energy Technology Data Exchange (ETDEWEB)
Nandipati, Giridhar, E-mail: giridhar.nandipati@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Setyawan, Wahyu; Heinisch, Howard L. [Pacific Northwest National Laboratory, Richland, WA (United States); Roche, Kenneth J. [Pacific Northwest National Laboratory, Richland, WA (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States)
2015-07-15
The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.
Energy Technology Data Exchange (ETDEWEB)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2015-07-01
The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.
Sign epistasis caused by hierarchy within signalling cascades.
Nghe, Philippe; Kogenaru, Manjunatha; Tans, Sander J
2018-04-13
Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to predict. Here we use the notion of parameterised optima to explain epistasis within a signalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis arises from the benefit of tuning phenotypic parameters of cascade genes with respect to each other, rather than from their complex and incompletely known genetic bases. Specifically, sign epistasis requires only that the optimal phenotypic parameters of one gene depend on the phenotypic parameters of another, independent of other details, such as activating or repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational effects change sign more readily in downstream genes, indicating that optimising downstream genes is more constrained. The findings show that sign epistasis results from the inherent upstream-downstream hierarchy between signalling cascade genes, and can be addressed without exhaustive genotypic mapping.
A thermal modelling of displacement cascades in uranium dioxide
Energy Technology Data Exchange (ETDEWEB)
Martin, G., E-mail: guillaume.martin@cea.fr [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Garcia, P.; Sabathier, C. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Devynck, F.; Krack, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Maillard, S. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France)
2014-05-01
The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO{sub 2}. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO{sub 2}. This definition of the cascade volume could also make sense in other materials, like iron.
Dry storage developments in France build on CASCAD experience
International Nuclear Information System (INIS)
Bonnet, C.; Giraud, C.
1992-01-01
The CASCAD dry store, located at CEA's research centre at Cadarache, stores spent fuel from the EL4 heavy water reactor and the Osiris research reactor. The design was based on the following criteria: Storage period. Interim storage is provided for 50 years. Containment. The fuel is contained by a multiple barrier system consisting of: the fuel canister (primary barrier); the sealed stainless steel storage well; and the storage building which includes a ventilation system to provide dynamic containment during handling operations. The fuel is loaded into canisters at the reactor site to avoid contamination in the storage building. The integrity of the primary barrier is periodically monitored by sampling of air from the storage well. Cooling. The storage wells are cooled by a natural convection system that maintains the temperature of the fuel below its stated limit and the temperature of the concrete below 80 o C. Criticality. Criticality incidents are prevented by static design measures such as maintaining a minimum pitch between storage wells and providing sufficient storage well diameter. Radiation protection. Radiation shielding limits the maximum equivalent dose rate for operating personnel to less than 25μSv/h at the handling cell floor and the wall adjoining the control room, and to less than 7.5μSv/h at the outside walls of the storage building. Cannister design. The canister must resist corrosion caused by condensation as well as pressure due to radiolytic gases. The canister must also withstand a drop of up to 10m without losing its integrity. The design has now been adapted to accommodate light reactor fuels and is known as CASCAD+. (Author)
Criticality safety study of shutdown diffusion cascade coolers
International Nuclear Information System (INIS)
Paschal, L.S.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.
1996-01-01
Gaseous diffusion plants use cascade coolers in the production of highly enriched uranium (HEU) to remove heat from the enriched stream of UF 6 . The cascade coolers operate like shell and tube heat exchangers with the UF 6 on the shell side and Freon on the tube side. Recirculating cooling water (RCW) in condensers is used to cool the Freon. A criticality safety analysis was previously performed for cascade coolers during normal operation. The purpose of this paper is to evaluate several different hypothetical accidents regarding RCW ingress into the cooler to determine whether criticality safety concerns exist
Positional information generated by spatially distributed signaling cascades.
Directory of Open Access Journals (Sweden)
Javier Muñoz-García
2009-03-01
Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.
The flow analysis of supercavitating cascade by linear theory
Energy Technology Data Exchange (ETDEWEB)
Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)
1996-06-01
In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.
The transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...
Computer simulation of high energy displacement cascades
International Nuclear Information System (INIS)
Heinisch, H.L.
1990-01-01
A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)
Influence of non-binary effects on intranuclear cascade method
International Nuclear Information System (INIS)
Gomes, E.H.C.
1985-01-01
The importance of non binary process effects in the intranuclear cascade method is analysed. It is shown that, in the higher density steps, the non binary collisions lead to baryon density distribution and rapidity differents from the one obtained using the usual intranuclear cascade method (limited to purely binary collisions). The validity of the applications of binary intranuclear cascade method to the simulation of the thermal equilibrium, nuclear transparency and particle production, is discussed. (M.C.K.) [pt
Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades.
A. Jefferson; G. Grant; T. Rose
2006-01-01
Spring systems on the west slope of the Oregon High Cascades exhibit complex relationships among modern topography, lava flow geometries, and groundwater flow patterns. Seven cold springs were continuously monitored for discharge and temperature in the 2004 water year, and they were periodically sampled for ?18O, ?D, tritium, and dissolved noble gases. Anomalously high...
A virtual component method in numerical computation of cascades for isotope separation
International Nuclear Information System (INIS)
Zeng Shi; Cheng Lu
2014-01-01
The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)
Tunable signal processing in synthetic MAP kinase cascades.
O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A
2011-01-07
The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright Â© 2011 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Junhong Zhang
2017-01-01
Full Text Available With the rapid development of hydropower exploitation in China, changes in runoff and sediment transport have become a significant issue that cannot be neglected. In this study, the Han River was selected as a study case, where the runoff variation and changes in sediment load at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations were analyzed in different time periods. The results indicate that impact of cascade hydropower exploitation on runoff and sediment transport is significantly different even during the same time periods. After reservoir regulation, the decreasing of sediment load is faster than that of runoff. Strong positive correlation between runoff and sediment load exists during different time periods, while reservoir operation leads to different turning points at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations in the middle and lower Han River. As a key driving factor, runoff variation contributed to sediment transport with different impact index CR. The impact index CR before and after the first change point at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations is 43.35%, −3.68%, 11.17%, and 30.12%, respectively. This study helps us understand and evaluate the hydrological changes under cascade hydropower exploitation in the middle and lower Han River.
Design of transonic cascades by conformal transformation of the complex characteristics
International Nuclear Information System (INIS)
McIntyre, E.A. Jr.
1976-11-01
A procedure for the numerical design of transonic turbine and compressor blade profiles in two dimensions is considered. In mathematical terms the problem reduces to finding analytic solutions to a system of partial differential equations for flow about a body. The periodicity of the solution results in a cascade. The procedure might be used to design more efficient axial flow compressors for use in the production of enriched uranium at gaseous diffusion plants, as well as in the construction of lighter, more efficient airplane engines for better fuel consumption. 21 figures
A cascading failure model for analyzing railway accident causation
Liu, Jin-Tao; Li, Ke-Ping
2018-01-01
In this paper, a new cascading failure model is proposed for quantitatively analyzing the railway accident causation. In the model, the loads of nodes are redistributed according to the strength of the causal relationships between the nodes. By analyzing the actual situation of the existing prevention measures, a critical threshold of the load parameter in the model is obtained. To verify the effectiveness of the proposed cascading model, simulation experiments of a train collision accident are performed. The results show that the cascading failure model can describe the cascading process of the railway accident more accurately than the previous models, and can quantitatively analyze the sensitivities and the influence of the causes. In conclusion, this model can assist us to reveal the latent rules of accident causation to reduce the occurrence of railway accidents.
Cascade Structure of Digital Predistorter for Power Amplifier Linearization
Directory of Open Access Journals (Sweden)
E. B. Solovyeva
2015-12-01
Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.
On peculiarities of the cascade γ decay of heavy nuclei
International Nuclear Information System (INIS)
Boneva, S.T.; Khitrov, V.A.; Popov, Yu.P.; Sukhovoj, A.M.; Vasil'eva, E.V.; Yazvitskij, Yu.S.
1987-01-01
Comparison of measured and calculated by statistical theory sums of two-quanta cascade intensities in compound-nuclei 163 ≤ A ≤ 183 points to the dependence of cascade intensity on the structure of initial and intermediate levels. The dependence of two-quanta cascade intensity sum on reduced neutron widths of compound states of even-even nuclei-targets of rare earth regions is detected. In 175 Yb and 179 Hf nuclei a considerable increase in the intensity of two-quanta cascades at the energy of their intermediate level in the range of the calculated position of one-quasiparticle states of the Saxon-Woods deformed potential is observed
Designing the Cascade inertial confinement fusion reactor
International Nuclear Information System (INIS)
Pitts, J.H.
1987-01-01
The primary goal in designing inertial confinement fusion (ICF) reactors is to produce electrical power as inexpensively as possible, with minimum activation and without compromising safety. This paper discusses a method for designing the Cascade rotating ceramic-granule-blanket reactor (Pitts, 1985) and its associated power plant (Pitts and Maya, 1985). Although focus is on the cascade reactor, the design method and issues presented are applicable to most other ICF reactors
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.
1977-01-01
The analytical treatment of hadronic decay cascades within the framework of the statistical bootstrap model is demonstrated on the basis of a simple variant. Selected problems for a more comprehensive formulation of the model such as angular momentum conservation, quantum statistical effects, and the immediate applicability to particle production processes at high energies are discussed in detail
INCAS: an analytical model to describe displacement cascades
Energy Technology Data Exchange (ETDEWEB)
Jumel, Stephanie E-mail: stephanie.jumel@edf.fr; Claude Van-Duysen, Jean E-mail: jean-claude.van-duysen@edf.fr
2004-07-01
REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.
INCAS: an analytical model to describe displacement cascades
Jumel, Stéphanie; Claude Van-Duysen, Jean
2004-07-01
REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.
INCAS: an analytical model to describe displacement cascades
International Nuclear Information System (INIS)
Jumel, Stephanie; Claude Van-Duysen, Jean
2004-01-01
REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
Directory of Open Access Journals (Sweden)
Gregory L. Eyink
2018-02-01
Full Text Available We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or “coarse-grained” solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy by pressure work and a cascade of negentropy to small scales. We derive “4/5th-law”-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the “Big Power Law in the Sky” observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
Eyink, Gregory L.; Drivas, Theodore D.
2018-02-01
We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
Gradients in Catostomid assemblages along a reservoir cascade
Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.
2017-01-01
Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions
Cascade reactor: granule fabrication processes
International Nuclear Information System (INIS)
Erlandson, O.D.; Winkler, E.O.; Maya, I.; Pitts, J.H.
1985-01-01
A key feature of Cascade is the granular blanket. Of the many blanket material options open to Cascade, fabrication of Li 2 O granules was felt to offer the greatest challenge. The authors explored available methods for initial Li 2 O granule fabrication. They identified three cost-effective processes for fabricating Li 2 O granules: the VSM drop-melt furnace process, which is based on melting and spheroidizing irregularly shaped Li 2 O feed granules; the LiOH process, which spheroidizes liquefied LiOH and uses GA Technologies' sphere-forming procedures; and the Li 2 CO 3 sol-gel process, used for making spherical fuel particles for the high-temperature gas-cooled reactor (HTGR). Each process is described below
Evolution of volcaniclastic apron during initiation of Cascade volcanism in southern Oregon
Energy Technology Data Exchange (ETDEWEB)
Bestland, E.A.
1986-05-01
The Oligocene Colestin Formation consists of volcaniclastic apron sequence that records the initiation of Cascade volcanism in the western Cascade Range of southern Oregon. The formation in the type area is largely confined to an east-west-trending graben approximately 8 km wide. This graben and other smaller grabens within it developed to the west of and perpendicular to the axis of the Oligocene Cascade arc. The apron, which fills and locally overflows the graben, consists of coalesced lobes of volcaniclastic and pyroclastic deposits and lesser amounts of lava flows. Abrupt lateral facies changes on a scale of tens to hundreds of meters were produced by the lobe style of deposition and contemporaneous basin faulting. Interstratified with the discontinuous apron sediments are marker units that consist of pyroclastic flows, paleosols, and lava-flow sequences. In the upper half of the formation, the apron can be subdivided into informal members (lobes and sequences of lobes), which can be mapped according to their composition and stratigraphic position. Each member formed during a distinct interval of volcanism. An epiclastic lobe in the upper part of the formation, containing debris-flow and hyperconcentrated flood-flow deposits, represents a period of effusive or mildly explosive andesitic and basaltic volcanism. This epiclastic lobe pinches out to the south under a member that consists of tuffaceous sandstones and interbedded welded and nonwelded pyroclastic flows. The pulselike style of apron growth was produced by the episodic shifting of volcanism along the arc.
A simple method for potential flow simulation of cascades
Indian Academy of Sciences (India)
vortex panel method to simulate potential flow in cascades is presented. The cascade ... The fluid loading on the blades, such as the normal force and pitching moment, may ... of such discrete infinite array singularities along the blade surface.
Directory of Open Access Journals (Sweden)
Ewa Jachniak
2014-10-01
Full Text Available In this thesis the subject of water self-purification in cascade systems of water reservoirs was engaged. The results of hydrobiological research of three dam reservoirs (Tresna, Porąbka and Czaniec, creating the Soła river dam cascade were presented. The trophic status of these reservoirs was defined on the grounds of the concentration of chlorophyll a, biomass of phytoplankton and occurrence of indicating species of planktonic algae. The results of research indicated on decreasing of water trophy in the layout from the highest into the lowest reservoir of the cascade. The average concentrations of chlorophyll a amounted appropriately 19,99 μg·dm-3, 8,74 μg·dm-3 and 4,29 μg·dm-3, instead the average biomass of phytoplankton amounted appropriately 4,1 mg·dm-3, 3,4 mg·dm-3 and 0,1 mg·dm-3. The observed species of algae confirmed occurrence of differences between reservoirs. In Tresna reservoir more species of phytoplankton indicating for eutrophy were thrived, instead in Porąbka and Czaniec reservoirs the species occurring in oligomesotrophic water thrived. Water self-purification in the Soła river dam cascade expressed decreasing of their fertility is important for water management of the region, because the Czaniec reservoir fulfill a function of water-supply reservoir.
Cascades for hydrogen isotope separation using metal hydrides
International Nuclear Information System (INIS)
Hill, F.B.; Grzetic, V.
1982-01-01
Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes
Cascades for hydrogen isotope separation using metal hydrides
Energy Technology Data Exchange (ETDEWEB)
Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)
1983-02-01
Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.
A cascaded online uninterruptible power supply using reduced semiconductor
DEFF Research Database (Denmark)
Zhang, Lei; Loh, Poh Chiang; Gao, Feng
2011-01-01
A cascaded online uninterruptible power supply (UPS) is proposed here that uses 25% lesser semiconductor, as compared to its traditional H-bridge cascaded precedence. Unlike other component-saving configurations where compromises are unavoidable, almost no performance degradations and constraints...
Time allocated to mathematics in post-primary schools in Ireland: are we in double trouble?
O'Meara, Niamh; Prendergast, Mark
2018-05-01
Mathematics educators and legislators worldwide have begun placing a greater emphasis on teaching mathematics for understanding and through the use of real-life applications. Revised curricula have led to the time allocated to mathematics in effected countries being scrutinised. This has resulted in policy-makers and educationalists worldwide calling for the inclusion of double class periods on the mathematics timetable. Research from the United States suggests that the introduction of double or block periods allow for the objectives of revised curricula to be realized. The aim of this study, which is set in the school context, is first to ascertain if schools in Ireland are scheduling double periods for mathematics at both lower post-primary level (Junior Cycle) and upper post-primary level (Senior Cycle). It also seeks to determine if there is a link between teachers' levels of satisfaction with the time allocated to mathematics and the provision of double periods and to get insights from teachers in relation to their opinions on what can be achieved through the introduction of such classes. Questionnaires were sent to 400 post-primary schools (approximately 1600 teachers) which were selected using stratified sampling techniques. It was found that 8.7% of mathematics teachers reported the provision of double periods at Junior Cycle while 55% reported that double periods were included on their timetable at Senior Cycle. The study also identified a link between teachers' levels of satisfaction with the time allocated to mathematics and the provision of double periods. Finally, teachers felt that double periods allowed for new teaching methodologies, which were promoted by the revised curricula, to be implemented and teaching for understanding was also more feasible. In essence, it was found that double periods have an influence on the mathematical experience of post-primary students as well as the teaching approaches employed.
Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade
Directory of Open Access Journals (Sweden)
J. Lepicovsky
2004-01-01
velocity.To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the by-product of an endwall restricted linear cascade.
Collision cascades in HTSC [high temperature superconductors] as possible pinning centres
International Nuclear Information System (INIS)
Kirsanov, V.V.; Musin, N.N.; Roskin, D.G.; Shamarina, E.I.
1993-01-01
Computer simulation was used to study the development of collision cascades in monocrystals of YBa 2 Cu 3 O 7 , YBa 2 Cu 3 O 6.5 and YBa 2 Cu 3 O 6 which were produced by primary knock-on atoms (PKAs) during fast particle irradiation. Oxygen deficit was found to have an effect on the development of cascades in these phases, with a lowering of oxygen deficit decreasing cascade sizes. The type of PKA was observed to influence the geometry of a cascade. When heavy PKAs form a cascade, the oxygen sublattice is practically undisturbed, with very little disorder; while with oxygen ions as the PKA, the main displacements fall within the oxygen subsystem. In addition, the angular dependences of the displacement threshold energy for yttrium and barium ions are given. (Author)
Interband cascade light emitting devices based on type-II quantum wells
International Nuclear Information System (INIS)
Yang, Rui Q.; Lin, C.H.; Murry, S.J.
1997-01-01
The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 μm)
Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities.
Mocellin, Simone; Bronte, Vincenzo; Nitti, Donato
2007-05-01
Nitric oxide (NO) is a pleiotropic molecule critical to a number of physiological and pathological processes. The last decade has witnessed major advances in dissecting NO biology and its role in cancer pathogenesis. However, the complexity of the interactions between different levels of NO and several aspects of tumor development/progression has led to apparently conflicting findings. Furthermore, both anti-NO and NO-based anticancer strategies appear effective in several preclinical models. This paradoxical dichotomy is leaving investigators with a double challenge: to determine the net impact of NO on cancer behavior and to define the therapeutic role of NO-centered anticancer strategies. Only a comprehensive and dynamic view of the cascade of molecular and cellular events underlying tumor biology and affected by NO will allow investigators to exploit the potential antitumor properties of drugs interfering with NO metabolism. Available data suggest that NO should be considered neither a universal target nor a magic bullet, but rather a signal transducer to be modulated according to the molecular makeup of each individual cancer and the interplay with conventional antineoplastic agents. (c) 2006 Wiley Periodicals, Inc.
Cascade Processes in Muonic Hydrogen Atoms
International Nuclear Information System (INIS)
Faifman, M. P.; Men'Shikov, L. I.
2001-01-01
The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated.Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated.
Numerical routine for magnetic heat pump cascading
DEFF Research Database (Denmark)
Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt
Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...... and 3 K. Changing the number of MHPs, we optimized input parameters to achieve maximum heating powers. We have found that both maximum heating power and COP decrease together with number of heat pumps, but the TGs and the temperature span can be largely increased. References [1] M. Tahavori et al., “A...... be necessary, which is hardly achievable with a single MHP and such techniques as cascading are required. Series and parallel cascading increase the AMR span and heating power, respectively, but do not change TG. Therefore, the intermediate type of cascading was proposed with individual MHPs separately...
Cascade enzymatic reactions for efficient carbon sequestration.
Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping
2015-04-01
Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid Modulation Scheme for Cascaded H-Bridge Inverter Cells ...
African Journals Online (AJOL)
This work proposes a switching technique for cascaded H-Bridge (CHB) cells. Single carrier Sinusoidal PWM (SCSPWM) scheme is employed in the generation of the gating signals. A sequential switching and base PWM circulation schemes are presented for this fundamental cascaded multilevel inverter topology.
Cascade in muonic and pionic atoms with Z = 1
International Nuclear Information System (INIS)
Markushin, V.E.
1999-01-01
Recent theoretical and experimental studies of the exotic atoms with Z = 1 are reviewed. An interplay between the atomic internal and external degrees of freedom is essential for a good description of the atomic cascade. The perspective of ab initio cascade calculations is outlined
Climate Change and Baleen Whale Trophic Cascades in Greenland
2009-09-30
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
A multivariate approach to heavy flavour tagging with cascade training
International Nuclear Information System (INIS)
Bastos, J; Liu, Y
2007-01-01
This paper compares the performance of artificial neural networks and boosted decision trees, with and without cascade training, for tagging b-jets in a collider experiment. It is shown, using a Monte Carlo simulation of WH→lνq q-bar events, that for a b-tagging efficiency of 50%, the light jet rejection power given by boosted decision trees without cascade training is about 55% higher than that given by artificial neural networks. The cascade training technique can improve the performance of boosted decision trees and artificial neural networks at this b-tagging efficiency level by about 35% and 80% respectively. We conclude that the cascade trained boosted decision trees method is the most promising technique for tagging heavy flavours at collider experiments
Study on computer-aided simulation procedure for multicomponent separating cascade
International Nuclear Information System (INIS)
Kinoshita, Masahiro
1982-11-01
The present report reviews the author's study on the computer-aided simulation procedure for a multicomponent separating cascade. As a conclusion, two very powerful simulation procedures have been developed for cascades composed of separating elements whose separation factors are very large. They are applicable in cases where interstage flow rates are input variables for the calculation and stage separation factors are given either as constants or as functions of compositions of the up and down streams. As an application of the new procedure, a computer-aided simulation study has been performed for hydrogen isotope separating cascades by porous membrane method. A cascade system configuration is developed and pertinent design specifications are determined in an example case of the feed conditions and separation requirements. (author)
Annealing simulation of cascade damage using MARLOWE-DAIQUIRI codes
International Nuclear Information System (INIS)
Muroga, Takeo
1984-01-01
The localization effect of the defects generated by the cascade damage on the properties of solids was studied by using a computer code. The code is based on the two-body collision approximation method and the Monte Carlo method. The MARLOWE and DAIQUIRI codes were partly improved to fit the present calculation of the annealing of cascade damage. The purpose of this study is to investigate the behavior of defects under the simulated reactive and irradiation condition. Calculation was made for alpha iron (BCC), and the threshold energy was set at 40 eV. The temperature dependence of annealing and the growth of a cluster were studied. The overlapping effect of cascade was studied. At first, the extreme case of overlapping was studied, then the practical cases were estimated by interpolation. The state of overlapping of cascade corresponded to the irradiation speed. The interaction between cascade and dislocations was studied, and the calculation of the annealing of primary knock-out atoms (PKA) in alpha iron was performed. At low temperature, the effect of dislocations was large, but the growth of vacancy was not seen. At high temperature, the effect of dislocations was small. The evaluation of the simulation of various ion irradiation and the growth efficiency of defects were performed. (Kato, T.)
Substrate-driven chemotactic assembly in an enzyme cascade
Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman
2018-03-01
Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.
Cascade self-seeding scheme with wake monochromator for narrow-bandwidth X-ray FELs
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-06-15
Three different approaches have been proposed so far for production of highly monochromatic X-rays from a baseline XFEL undulator: (i) single-bunch selfseeding scheme with a four crystal monochromator in Bragg reflection geometry; (ii) double-bunch self-seeding scheme with a four-crystal monochromator in Bragg reflection geometry; (iii) single-bunch self-seeding scheme with a wake monochromator. A unique element of the X-ray optical design of the last scheme is the monochromatization of X-rays using a single crystal in Bragg-transmission geometry. A great advantage of this method is that the monochromator introduces no path delay of X-rays. This fact eliminates the need for a long electron beam bypass, or for the creation of two precisely separated, identical electron bunches, as required in the other two self-seeding schemes. In its simplest configuration, the self-seeded XFEL consists of an input undulator and an output undulator separated by a monochromator. In some experimental situations this simplest two-undulator configuration is not optimal. The obvious and technically possible extension is to use a setup with three or more undulators separated by monochromators. This amplification-monochromatization cascade scheme is distinguished, in performance, by a small heat-loading of crystals and a high spectral purity of the output radiation. This paper describes such cascade self-seeding scheme with wake monochromators.We present feasibility study and exemplifications for the SASE2 line of the European XFEL. (orig.)
The relationship between collisional phase defect distribution and cascade collapse efficiency
International Nuclear Information System (INIS)
Morishita, K.; Heinisch, H.L.; Ishino, S.; Sekimura, N.
1994-01-01
Defect distributions after the collisional phase of cascade damage processes were calculated using the computer simulation code MARLOWE, which is based on the binary collision approximation. The densities of vacant sites were evaluated in defect-dense regions at the end of the collisional phase in simulated ion irradiations of several pure metals (Au, Ag, Cu, Ni, Fe, Mo and W). The vacancy density distributions were compared to the measured cascade collapse efficiencies obtained from low-dose ion irradiations of thin foils reported in the literature to identify the minimum or ''critical'' values of the vacancy densities during the collisional phase corresponding to cascade collapse. The critical densities are generally independent of the cascade energy in the same metal. The relationships between physical properties of the target elements and the critical densities are discussed within the framework of the cascade thermal spike model. ((orig.))
DEFF Research Database (Denmark)
Paoloni, Claudio; Di Carlo, Aldo; Bouamrane, Fayçal
2013-01-01
The design and fabrication challenges in the first ever attempt to realize a 1-THz vacuum tube amplifier are described. Implementation of innovative solutions including a slow-wave structure in the form of a double corrugated waveguide, lateral tapered input and output couplers, deep X-ray LIGA f...
Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels
DEFF Research Database (Denmark)
Feliu, Elisenda; Knudsen, Michael; Wiuf, Carsten Henrik
2012-01-01
We study signaling cascades with an arbitrary number of layers of one-site phosphorylation cycles. Such cascades are abundant in nature and integrated parts of many pathways. Based on the Michaelis-Menten model of enzyme kinetics and the law of mass-action, we derive explicit analytic expressions...
A Gemini snapshot survey for double degenerates
Kilic, Mukremin; Brown, Warren R.; Gianninas, A.; Curd, Brandon; Bell, Keaton J.; Allende Prieto, Carlos
2017-11-01
We present the results from a Gemini snapshot radial-velocity survey of 44 low-mass white-dwarf candidates selected from the Sloan Digital Sky Survey (SDSS) spectroscopy. To find sub-hour orbital period binary systems, our time-series spectroscopy had cadences of 2-8 min over a period of 20-30 min. Through follow-up observations at Gemini and the MMT, we identify four double-degenerate binary systems with periods ranging from 53 min to 7 h. The shortest period system, SDSS J123549.88+154319.3, was recently identified as a sub-hour period detached binary by Breedt and collaborators. Here, we refine the orbital and physical parameters of this system. High-speed and time-domain survey photometry observations do not reveal eclipses or other photometric effects in any of our targets. We compare the period distribution of these four systems with the orbital period distribution of known double white dwarfs; the median period decreases from 0.64 to 0.24 d for M = 0.3-0.5 M⊙ to M < 0.3 M⊙ white dwarfs. However, we do not find a statistically significant correlation between the orbital period and white-dwarf mass.
The Tuberculosis Cascade of Care in India’s Public Sector: A Systematic Review and Meta-analysis
Satyanarayana, Srinath; Pai, Madhukar; Thomas, Beena E.; Chadha, Vineet K.; Swaminathan, Soumya; Mayer, Kenneth H.
2016-01-01
,083,243), or 39%, of 2,700,000 TB patients achieved the optimal outcome of 1-y recurrence-free survival. The separate cascades for different forms of TB highlight different patterns of patient attrition. Pretreatment loss to follow-up of diagnosed patients and post-treatment TB recurrence were major points of attrition in the new smear-positive TB cascade. In the new smear-negative and MDR TB cascades, a substantial proportion of patients who were evaluated at RNTCP diagnostic facilities were not successfully diagnosed. Retreatment smear-positive and MDR TB patients had poorer treatment outcomes than the general TB population. Limitations of our analysis include the lack of available data on the cascade of care in the private sector and substantial uncertainty regarding the 1-y period prevalence of TB in India. Conclusions Increasing case detection is critical to improving outcomes in India’s TB cascade of care, especially for smear-negative and MDR TB patients. For new smear-positive patients, pretreatment loss to follow-up and post-treatment TB recurrence are considerable points of attrition that may contribute to ongoing TB transmission. Future multisite studies providing more accurate information on key steps in the public sector TB cascade and extension of this analysis to private sector patients may help to better target interventions and resources for TB control in India. PMID:27780217
DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN UP TO 200 KEV OF DAMAGE ENERGY AT 300, 1025, AND 2050 K
Energy Technology Data Exchange (ETDEWEB)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2015-09-22
We generated molecular dynamics database of primary defects that adequately covers the range of tungsten recoil energy imparted by 14-MeV neutrons. During this semi annual period, cascades at 150 and 200 keV at 300 and 1025 K were simulated. Overall, we included damage energy up to 200 keV at 300 and 1025 K, and up to 100 keV at 2050 K. We report the number of surviving Frenkel pairs (NF) and the size distribution of defect clusters. The slope of the NF curve versus cascade damage energy (EMD), on a log-log scale, changes at a transition energy (μ). For EMD > μ, the cascade forms interconnected damage regions that facilitate the formation of large clusters of defects. At 300 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 266 and 335, respectively. Similarly, at 1025 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 296 and 338, respectively. At 2050 K, large interstitial clusters also routinely form, but practically no large vacancy clusters do
High energy evolution of soft gluon cascades
International Nuclear Information System (INIS)
Shuvaev, A.; Wallon, S.
2006-01-01
In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)
High energy evolution of soft gluon cascades
Energy Technology Data Exchange (ETDEWEB)
Shuvaev, A. [St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg district (Russian Federation); Wallon, S. [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2006-04-15
In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)
Modeling techniques for quantum cascade lasers
Energy Technology Data Exchange (ETDEWEB)
Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)
2014-03-15
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Modeling techniques for quantum cascade lasers
Jirauschek, Christian; Kubis, Tillmann
2014-03-01
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Bearing-Only Formation Control for Cascade Multirobots
Directory of Open Access Journals (Sweden)
Qing Han
2016-01-01
Full Text Available A new formation control method is proposed, which is used to queue multirobots in a single-direction cascade structure. In the cascade formation, each robot is a follower for the previous robot and a leader for the next robot, and the robots in the middle act as both leader and follower. The follower robot can only observe the bearing information of the leader robot. The observability of the cascade leader-follower formation is studied, which shows that the bearing-only observation meets the observability conditions required for the nonlinear system. Based on the bearing-only observations, the unscented Kalman filter (UKF is employed for the state estimation of the leader and the follower robots at all levels, which enables the real-time movement control of the follower robots via the input-output feedback control. Simulation results demonstrate that the proposed approach can efficiently control the formation of multirobots as desired.
Cascade laser applications: trends and challenges
d'Humières, B.; Margoto, Éric; Fazilleau, Yves
2016-03-01
When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.
Noise properties and cascadability of SOA-EA regenerators
DEFF Research Database (Denmark)
Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne
2002-01-01
We suggest and analyse a new device containing concatenated pairs of semiconductor optical amplifiers (SOAs) and electroabsorption modulators (EAs). The device has regenerative properties and improves the cascadability of optical fibre links.......We suggest and analyse a new device containing concatenated pairs of semiconductor optical amplifiers (SOAs) and electroabsorption modulators (EAs). The device has regenerative properties and improves the cascadability of optical fibre links....
Tehranchi, Amirhossein; Kashyap, Raman
2009-10-12
A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.
Computer codes for simulating atomic-displacement cascades in solids subject to irradiation
International Nuclear Information System (INIS)
Asaoka, Takumi; Taji, Yukichi; Tsutsui, Tsuneo; Nakagawa, Masayuki; Nishida, Takahiko
1979-03-01
In order to study atomic displacement cascades originating from primary knock-on atoms in solids subject to incident radiation, the simulation code CASCADE/CLUSTER is adapted for use on FACOM/230-75 computer system. In addition, the code is modified so as to plot the defect patterns in crystalline solids. As other simulation code of the cascade process, MARLOWE is also available for use on the FACOM system. To deal with the thermal annealing of point defects produced in the cascade process, the code DAIQUIRI developed originally for body-centered cubic crystals is modified to be applicable also for face-centered cubic lattices. By combining CASCADE/CLUSTER and DAIQUIRI, we then prepared a computer code system CASCSRB to deal with heavy irradiation or saturation damage state of solids at normal temperature. Furthermore, a code system for the simulation of heavy irradiations CASCMARL is available, in which MARLOWE code is substituted for CASCADE in the CASCSRB system. (author)
LIMIT SOLUTIONS OF EQUATIONS OF A DC HIGH-VOLTAGE CASCADE GENERATOR
Directory of Open Access Journals (Sweden)
V. O. Brzhezitsky
2015-04-01
Full Text Available In the paper the issue of calculating the high voltage cascade mode oscillator with a nonlinear load using the analytical method under different conditions of selection values of its components is presented. The peculiarity of the method of the study is that during multivariate calculations output parameters load generator remain unchanged. For high-voltage cascade direct current power found conditions under which can be significantly reduced high capacity capacitors cascade generator. The calculations show that acceptable for practical applications of high-voltage characteristics of cascade generators can be achieved with substantial reduction of the volume of their constituents, and thus substantial decline in their value.
Interferometric modulation of quantum cascade interactions
Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio
2018-05-01
We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.
Jenkins, Kurt; Beirne, Katherine; Happe, Patricia; Hoffman, Roger; Rice, Cliff; Schaberl, Jim
2011-01-01
mountain goat surveys in Mount Rainier National Park, whereas generally greater than 80 and greater than 60 percent of locations were within sampling units delineated in North Cascades and Olympic National Parks, respectively. Presence of GPS-collared mountain goats within the sampling frame of Olympic National Park varied by diurnal period (midday versus crepuscular), survey season (July versus September), and the interaction of diurnal period and survey season. Aerial surveys conducted in developing a sightability model for mountain goat aerial surveys indicated mean detection probabilities of 0.69, 0.76, and 0.87 in North Cascades, Olympic, and Mount Rainier National Parks, respectively. Higher detection probabilities in Mount Rainier likely reflected larger group sizes and more open habitat conditions than in North Cascades and Olympic National Parks. Use of sightability models will reduce biases of population estimates in each park, but resulting population estimates must still be considered minimum population estimates in Olympic and North Cascades National Parks because the current sampling frames do not encompass those populations completely. Because mountain goats were reliably present within the sampling frame in Mount Rainier National Park, we found no compelling need to adjust mountain goat survey boundaries in that park. Expanding survey coverage in North Cascades and Olympic National Parks to more reliably encompass the altitudinal distribution of mountain goats during summer would enhance population estimation accuracy in the future. Lowering the altitude boundary of mountain goat survey units by as little as 100 meters to 1,425 meters in Olympic National Park would increase mountain goat presence within the survey and reduce variation in counts related to movements of mountain goats outside the survey boundaries.
Is cascade reinforcement likely when sympatric and allopatric populations exchange migrants?
Yukilevich, Roman; Aoki, Fumio
2016-04-01
When partially reproductively isolated species come back into secondary contact, these taxa may diverge in mating preferences and sexual cues to avoid maladaptive hybridization, a process known as reinforcement. This phenomenon often leads to reproductive character displacement (RCD) between sympatric and allopatric populations of reinforcing species that differ in their exposure to hybridization. Recent discussions have reinvigorated the idea that RCD may give rise to additional speciation between conspecific sympatric and allopatric populations, dubbing the concept "cascade reinforcement." Despite some empirical studies supporting cascade reinforcement, we still know very little about the conditions for its evolution. In the present article, we address this question by developing an individual-based population genetic model that explicitly simulates cascade reinforcement when one of the hybridizing species is split into sympatric and allopatric populations. Our results show that when sympatric and allopatric populations reside in the same environment and only differ in their exposure to maladaptive hybridization, migration between them generally inhibits the evolution of cascade by spreading the reinforcement alleles from sympatry into allopatry and erasing RCD. Under these conditions, cascade reinforcement only evolved when migration rate between sympatric and allopatric populations was very low. This indicates that stabilizing sexual selection in allopatry is generally ineffective in preventing the spread of reinforcement alleles. Only when sympatric and allopatric populations experienced divergent ecological selection did cascade reinforcement evolve in the presence of substantial migration. These predictions clarify the conditions for cascade reinforcement and facilitate our understanding of existing cases in nature.
Effect of collision cascades on dislocations in tungsten: A molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Fu, B.Q., E-mail: bqfu@scu.edu.cn [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Fitzgerald, S.P. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hou, Q.; Wang, J.; Li, M. [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China)
2017-02-15
Highlights: • A cascde near a dislocation promotes climb motion. • Kinks induced by cascade facilitate the dipoles motion toward the cascade. • Shearing of dipole is dependent on PKA energy, position, direction, and dipole width. - Abstract: Tungsten (W) is the prime candidate material for the divertor and other plasma-facing components in DEMO. The point defects (i.e. vacancies and self-interstitials) produced in collision cascades caused by incident neutrons aggregate into dislocation loops (and voids), which strongly affect the mechanical properties. The point defects also interact with existing microstructural features, and understanding these processes is crucial for modelling the long term microstructural evolution of the material under fusion conditions. In this work, we performed molecular dynamics simulations of cascades interacting with initially straight edge dislocation dipoles. It was found that the residual vacancy number usually exceeds the residual interstitial number for cascades interacting with vacancy type dipoles, but for interstitial type dipoles these are close. We observed that a cascade near a dislocation promotes climb, i.e. it facilitates the movement of point defects along the climb direction. We also observed that the dislocations move easily along the glide direction, and that kinks are formed near the centre of the cascade, which then facilitate the movement of the dipoles. Some dipoles are sheared off by the cascade, and this is dependent on PKA energy, position, direction, and the width of dipole.
Gimbel, Sarah; Voss, Joachim; Mercer, Mary Anne; Zierler, Brenda; Gloyd, Stephen; Coutinho, Maria de Joana; Floriano, Florencia; Cuembelo, Maria de Fatima; Einberg, Jennifer; Sherr, Kenneth
2014-10-21
The objective of the prevention of Mother-to-Child Transmission (pMTCT) cascade analysis tool is to provide frontline health managers at the facility level with the means to rapidly, independently and quantitatively track patient flows through the pMTCT cascade, and readily identify priority areas for clinic-level improvement interventions. Over a period of six months, five experienced maternal-child health managers and researchers iteratively adapted and tested this systems analysis tool for pMTCT services. They prioritized components of the pMTCT cascade for inclusion, disseminated multiple versions to 27 health managers and piloted it in five facilities. Process mapping techniques were used to chart PMTCT cascade steps in these five facilities, to document antenatal care attendance, HIV testing and counseling, provision of prophylactic anti-retrovirals, safe delivery, safe infant feeding, infant follow-up including HIV testing, and family planning, in order to obtain site-specific knowledge of service delivery. Seven pMTCT cascade steps were included in the Excel-based final tool. Prevalence calculations were incorporated as sub-headings under relevant steps. Cells not requiring data inputs were locked, wording was simplified and stepwise drop-offs and maximization functions were included at key steps along the cascade. While the drop off function allows health workers to rapidly assess how many patients were lost at each step, the maximization function details the additional people served if only one step improves to 100% capacity while others stay constant. Our experience suggests that adaptation of a cascade analysis tool for facility-level pMTCT services is feasible and appropriate as a starting point for discussions of where to implement improvement strategies. The resulting tool facilitates the engagement of frontline health workers and managers who fill out, interpret, apply the tool, and then follow up with quality improvement activities. Research on
Parton-hadron cascade approach at SPS and RHIC
Energy Technology Data Exchange (ETDEWEB)
Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-07-01
A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)
Efficient collective influence maximization in cascading processes with first-order transitions
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-01-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988
Cascading Dynamics of Heterogenous Scale-Free Networks with Recovery Mechanism
Directory of Open Access Journals (Sweden)
Shudong Li
2013-01-01
Full Text Available In network security, how to use efficient response methods against cascading failures of complex networks is very important. In this paper, concerned with the highest-load attack (HL and random attack (RA on one edge, we define five kinds of weighting strategies to assign the external resources for recovering the edges from cascading failures in heterogeneous scale-free (SF networks. The influence of external resources, the tolerance parameter, and the different weighting strategies on SF networks against cascading failures is investigated carefully. We find that, under HL attack, the fourth kind of weighting method can more effectively improve the integral robustness of SF networks, simultaneously control the spreading velocity, and control the outburst of cascading failures in SF networks than other methods. Moreover, the third method is optimal if we only knew the local structure of SF networks and the uniform assignment is the worst. The simulations of the real-world autonomous system in, Internet have also supported our findings. The results are useful for using efficient response strategy against the emergent accidents and controlling the cascading failures in the real-world networks.
Critical assessment and ramifications of a purported marine trophic cascade
Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.
2016-01-01
When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.
A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.
Catozzi, S; Sepulchre, J-A
2017-08-01
In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.
Miniaturized high-temperature superconducting multiplexer with cascaded quadruplet structure
Xu, Zhang; Jingping, Liu; Shaolin, Yan; Lan, Fang; Bo, Zhang; Xinjie, Zhao
2015-06-01
In this paper, compact high temperature superconducting (HTS) multiplexers are presented for satellite communication applications. The first multiplexer consists of an input coupling node and three high-order bandpass filters, which is named triplexer. The node is realized by a loop microstrip line instead of conventional T-junction to eliminate the redundant susceptance due to combination of three filters. There are two eight-pole band-pass filters and one ten-pole band-pass filter with cascaded quadruplet structure for realizing high isolation. Moreover, the triplexer is extended to a multiplexer with six channels so as to verify the expansibility of the suggested approach. The triplexer is fabricated using double-sided YBa2Cu3O7 thin films on a 38 × 25 mm2 LaAlO3 substrate. The experimental results, when compared with those ones from the T-junction multiplexer, show that our multiplexer has lower insertion loss, smaller sizes and higher isolation between any two channels. Also, good agreement has been achieved between simulations and measurements, which illustrate the effectiveness of our methods for the design of high performance HTS multiplexers.
Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying
2017-09-01
As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.
Bifurcation and chaos in a Tessiet type food chain chemostat with pulsed input and washout
International Nuclear Information System (INIS)
Wang Fengyan; Hao Chunping; Chen Lansun
2007-01-01
In this paper, we introduce and study a model of a Tessiet type food chain chemostat with pulsed input and washout. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Simple cycles may give way to chaos in a cascade of period-doubling bifurcations. Furthermore, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the impulsive system shows two kinds of bifurcations, whose are period doubling and period halving
Node vulnerability of water distribution networks under cascading failures
International Nuclear Information System (INIS)
Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo
2014-01-01
Water distribution networks (WDNs) are important in modern lifeline system. Its stability and reliability are critical for guaranteeing high living quality and continuous operation of urban functions. The aim of this paper is to evaluate the nodal vulnerability of WDNs under cascading failures. Vulnerability is defined to analyze the effects of the consequent failures. A cascading failure is a step-by-step process which is quantitatively investigated by numerical simulation with intentional attack. Monitored pressures in different nodes and flows in different pipes have been used to estimate the network topological structure and the consequences of nodal failure. Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. A load variation function is established to record the nodal failure reason and describe the relative differences between the load and the capacity. The proposed method is validated by an illustrative example. The results revealed that the network vulnerability should be evaluated with the consideration of hydraulic analysis and network topology. In the case study, 70.59% of the node failures trigger the cascading failures with different failure processes. It is shown that the cascading failures result in severe consequences in WDNs. - Highlights: • The aim of this paper is to evaluate the nodal vulnerability of water distribution networks under cascading failures. • Monitored pressures and flows have been used to estimate the network topological structure and the consequences of nodal failure. • Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. • A load variation function is established to record the failure reason and describe the relative differences between load and capacity. • The results show that 70.59% of the node failures trigger the cascading failures with different failure processes
Placement of Synchronized Measurements for Power System Observability during Cascaded Outages
Thirugnanasambandam, Venkatesh; Jain, Trapti
2017-11-01
Cascaded outages often result in power system islanding followed by a blackout and therefore considered as a severe disturbance. Maintaining the observability of each island may help in taking proper control actions to preserve the stability of individual islands thus, averting system collapse. With this intent, a strategy for placement of synchronized measurements, which can be obtained from phasor measurement units (PMU), has been proposed in this paper to keep the system observable during cascaded outages also. Since, all the cascaded failures may not lead to islanding situations, therefore, failures leading to islanding as well as non-islanding situations have been considered. A topology based algorithm has been developed to identify the islanding/non-islanding condition created by a particular cascaded event. Additional contingencies such as single line loss and single PMU failure have also been considered after the occurrence of cascaded events. The proposed method is further extended to incorporate the measurement redundancy, which is desirable for a reliable state estimation. The proposed scheme is tested on IEEE 14-bus, IEEE 30-bus and a practical Indian 246-bus networks. The numerical results ensure the observability of the power system under system intact as well as during cascaded islanding and non-islanding disturbances.
Atomistic simulations of displacement cascades in Y2O3 single crystal
International Nuclear Information System (INIS)
Dholakia, Manan; Chandra, Sharat; Valsakumar, M.C.; Mathi Jaya, S.
2014-01-01
Graphical abstract: (a) The averaged distortion index and the Y–O bond length of the Y 2 O 3 octahedra as a function of the simulation time for 5 keV PKA. (b) Shows the nearest neighbourhood of one of the Y ions as a function of simulation time, showing the destruction and the recovery of the YO 6 octahedron during the cascade corresponding to 5 keV Y PKA. - Highlights: • Qualitative difference in displacement cascades exists for Y and O PKA. • Nearest neighbour correlation between Y and O ions exists even at cascade peak. • Cascade core in Y 2 O 3 does not undergo melting. • Topological connectivity of YO 6 polyhedra plays important role in stability of Y 2 O 3 . - Abstract: We study the characteristics of displacement cascades in single crystal Y 2 O 3 using classical molecular dynamics. There are two possible ways to generate the cascades in yttria, using either the Y or the O atoms as the primary knock-on (PKA) atom. It is shown that there is a qualitative difference in the characteristics of the cascades obtained in these two cases. Even though the crystal is seen to be in a highly disordered state in the cascade volume, as seen from the plots of radial distribution function, the correlation between the Y and O atoms is not completely lost. This facilitates a quick recovery of the system during the annealing phase. Topological connectivity of the YO 6 polyhedral units plays an important role in imparting stability to the Y 2 O 3 crystal. These characteristics of the cascades can help explain the stability of the yttria nanoparticles when they are dispersed in oxide dispersion strengthened steels
Cascade Chaotic System With Applications.
Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip
2015-09-01
Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.
Bankruptcy cascades in interbank markets.
Directory of Open Access Journals (Sweden)
Gabriele Tedeschi
Full Text Available We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.
Process Evaluation Tools for Enzymatic Cascades Welcome Message
DEFF Research Database (Denmark)
Abu, Rohana
improvement and implementation. Hence, the goal of this thesis is to evaluate the process concepts in enzymatic cascades in a systematic manner, using tools such as thermodynamic and kinetic analysis. Three relevant case studies have been used to exemplify the approach. In the first case study, thermodynamic......Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis......, the kinetics can be controlled in a highly efficient way to achieve a sufficiently favourable conversion to a given target product. This is exemplified in the second case study, in the kinetic modelling of the formation of 2-ketoglutarate from glucoronate, the second case study. This cascade consists of 4...
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Some characteristics of the development of high energy electromagnetic cascades in the atmosphere
International Nuclear Information System (INIS)
Jablonski, Z.; Tomaszewski, A.; Wrotniak, J.A.
1977-01-01
Results of the calculations of some characteristics of electromagnetic cascades induced by cosmic radiation are showed. The cascade parameters are influenced by effect of threshold energy of gamma quanta registration in emulsion chambers. Ratio of integral gamma quanta energies in cascade to initial particle energy and mean energy weighted radius as a function of primary interaction hight, as well as total energy and number of gamma quanta in the cascade are calculated. (S.B.)
Cascade Apartments: Deep Energy Multifamily Retrofit
Energy Technology Data Exchange (ETDEWEB)
Gordon, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mattheis, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kunkle, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Howard, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lubliner, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2014-02-01
In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.
Molecular dynamics simulation of cascade damage in gold
International Nuclear Information System (INIS)
Alonso, E.; Caturla, M.J.; Tang, M.; Huang, H.; Diaz de la Rubia, T.
1997-01-01
High-energy cascades have been simulated in gold using molecular dynamics with a modified embedded atom method potential. The results show that both vacancy and interstitial clusters form with high probability as a result of intracascade processes. The formation of clusters has been interpreted in terms of the high pressures generated in the core of the cascade during the early stages. The authors provide evidence that correlation between interstitial and vacancy clustering exists
Directory of Open Access Journals (Sweden)
Nuntawat Thitichaiworakorn
2016-01-01
Full Text Available Medium-scale photovoltaic (PV systems using cascaded H-bridge multilevel inverters have a capability to perform individual maximum power point tracking (MPPT for each PV panel or each small group of panels, resulting in minimization of both power losses from panel mismatch and effect of partial shading. They also provide high power quality, modularity, and possibility of eliminating dc-dc boost stage and line-frequency transformer. However, each PV panel in the system is subjected to a double-line-frequency voltage ripple at the dc-link which reduces the MPPT efficiency. This paper proposes a dc-link voltage ripple reduction by third-harmonic zero-sequence voltage injection for improving the MPPT efficiency. Moreover, a control method to achieve individual MPPT control of each inverter cell is also presented. The validity and effectiveness of the proposed methods were verified by computer simulation.
Participant intimacy: A cluster analysis of the intranuclear cascade
International Nuclear Information System (INIS)
Cugnon, J.; Knoll, J.; Randrup, J.
1981-01-01
The intranuclear cascade for relativistic nuclear collisions is analyzed in terms of clusters consisting of groups of nucleons which are dynamically linked to each other by violent interactions. The formation cross sections for the different cluster types as well as their intrinsic dynamics are studied and compared with the predictions of the linear cascade model ( rows-on-rows ). (orig.)
Double Layer Dynamics in a Collisionless Magnetoplasma
DEFF Research Database (Denmark)
Iizuka, S.; Michelsen, Poul; Juul Rasmussen, Jens
and propagation of a double layer. The period of the oscillations is determined by the propagation length of the double layer. The current is limited during the propagation of the double layer by a growing negative potential barrier formed on the low potential tail. Similar phenomena appear when a potential......An experimental investigation of the dynamics of double layers is presented. The experiments are performed in a Q-machine plasma and the double layers are generated by applying a positive step potential to a cold collector plate terminating the plasma column. The double layer is created...... at the grounded plasma source just after the pulse is applied and it propagates towards the collector with a speed around the ion acoustic speed. When the collector is biased positively, large oscillations are obserced in the plasma current. These oscillations are found to be related to a recurring formation...
Damped trophic cascades driven by fishing in model marine ecosystems
DEFF Research Database (Denmark)
Andersen, Ken Haste; Pedersen, Martin
2010-01-01
The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...
Cascaded FSO-VLC Communication System
Gupta, Akash; Sharma, Nikhil; Garg, Parul; Alouini, Mohamed-Slim
2017-01-01
The proposed cascaded free space optics (FSO)-visible light communication (VLC) system consists of multiple VLC access points which caters the end users connected via a decode and forward (DF) relay to the FSO backhaul link. The FSO link is assumed
da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.
2016-04-01
We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si
Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.
2018-05-01
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin
2015-01-01
, despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....
Motion in an Asymmetric Double Well
Brizard, Alain J.; Westland, Melissa C.
2016-01-01
The problem of the motion of a particle in an asymmetric double well is solved explicitly in terms of the Weierstrass and Jacobi elliptic functions. While the solution of the orbital motion is expressed simply in terms of the Weierstrass elliptic function, the period of oscillation is more directly expressed in terms of periods of the Jacobi elliptic functions.
Cascading reminiscence bumps in popular music.
Krumhansl, Carol Lynne; Zupnick, Justin Adam
2013-10-01
Autobiographical memories are disproportionately recalled for events in late adolescence and early adulthood, a phenomenon called the reminiscence bump. Previous studies on music have found autobiographical memories and life-long preferences for music from this period. In the present study, we probed young adults' personal memories associated with top hits over 5-and-a-half decades, as well as the context of their memories and their recognition of, preference for, quality judgments of, and emotional reactions to that music. All these measures showed the typical increase for music released during the two decades of their lives. Unexpectedly, we found that the same measures peaked for the music of participants' parents' generation. This finding points to the impact of music in childhood and suggests that these results reflect the prevalence of music in the home environment. An earlier peak occurred for 1960s music, which may be explained by its quality or by its transmission through two generations. We refer to this pattern of musical cultural transmission over generations as cascading reminiscence bumps.
An ant colony based resilience approach to cascading failures in cluster supply network
Wang, Yingcong; Xiao, Renbin
2016-11-01
Cluster supply chain network is a typical complex network and easily suffers cascading failures under disruption events, which is caused by the under-load of enterprises. Improving network resilience can increase the ability of recovery from cascading failures. Social resilience is found in ant colony and comes from ant's spatial fidelity zones (SFZ). Starting from the under-load failures, this paper proposes a resilience method to cascading failures in cluster supply chain network by leveraging on social resilience of ant colony. First, the mapping between ant colony SFZ and cluster supply chain network SFZ is presented. Second, a new cascading model for cluster supply chain network is constructed based on under-load failures. Then, the SFZ-based resilience method and index to cascading failures are developed according to ant colony's social resilience. Finally, a numerical simulation and a case study are used to verify the validity of the cascading model and the resilience method. Experimental results show that, the cluster supply chain network becomes resilient to cascading failures under the SFZ-based resilience method, and the cluster supply chain network resilience can be enhanced by improving the ability of enterprises to recover and adjust.
Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades
International Nuclear Information System (INIS)
Dyer, R.H.; Fowler, A.H.; Vanstrum, P.R.
1977-01-01
The invention relates to an improved method and system for making relatively large and rapid adjustments in the process gas inventory of an electrically powered gaseous diffusion cascade in order to accommodate scheduled changes in the electrical power available for cascade operation. In the preferred form of the invention, the cascade is readied for a decrease in electrical input by simultaneously withdrawing substreams of the cascade B stream into respective process-gas-freezing and storage zones while decreasing the datum-pressure inputs to the positioning systems for the cascade control valves in proportion to the weight of process gas so removed. Consequently, the control valve positions are substantially unchanged by the reduction in invention, and there is minimal disturbance of the cascade isotopic gradient. The cascade is readied for restoration of the power cut by simultaneously evaporating the solids in the freezing zones to regenerate the process gas substreams and introducing them to the cascade A stream while increasing the aforementioned datum pressure inputs in proportion to the weight of process gas so returned. In the preferred form of the system for accomplishing these operations, heat exchangers are provided for freezing, storing, and evaporating the various substreams. Preferably, the heat exchangers are connected to use existing cascade auxiliary systems as a heat sink. A common control is employed to adjust and coordinate the necessary process gas transfers and datum pressure adjustments
DNA binding properties of the small cascade subunit Csa5.
Directory of Open Access Journals (Sweden)
Michael Daume
Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.
Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.
2018-03-01
This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.
τ polarization in SUSY cascade decays
International Nuclear Information System (INIS)
Choi, S.Y.; Hagiwara, K.; Kim, Y.G.
2006-12-01
τ leptons emitted in cascade decays of supersymmetric particles are polarized. The polarization may be exploited to determine spin and mixing properties of the neutralinos and stau particles involved. (orig.)
Search for neutrino-induced cascade events in the icecube detector
Energy Technology Data Exchange (ETDEWEB)
Panknin, Sebastian
2011-09-15
This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72{+-}0.28{+-}{sup 1.54}{sub 0.49} events. For an assumed flavor ratio of {nu}{sub e}:{nu}{sub {mu}}:{nu}{sub {tau}}=1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2}.
Search for neutrino-induced cascade events in the icecube detector
International Nuclear Information System (INIS)
Panknin, Sebastian
2011-01-01
This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72±0.28± 1.54 0.49 events. For an assumed flavor ratio of ν e :ν μ :ν τ =1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10 -8 E -2 GeVs -1 sr -1 cm -2 .
Exciton management in organic photovoltaic multidonor energy cascades.
Griffith, Olga L; Forrest, Stephen R
2014-05-14
Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.
Energy Technology Data Exchange (ETDEWEB)
Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)
1997-04-01
The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.
International Nuclear Information System (INIS)
Heinisch, H.L.
1997-01-01
The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies
Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang
2017-08-01
This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.
DEFF Research Database (Denmark)
Marpani, Fauziah Binti; Pinelo, Manuel; Meyer, Anne S.
2017-01-01
A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation of formic acid (CHOOH......) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH to NAD+. This reaction is appealing because it represents a double gain: (1) reduction of CO2 and (2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the efficiency of different immobilized enzyme systems...
Energy Technology Data Exchange (ETDEWEB)
Simpson, D.J.W., E-mail: d.j.w.simpson@massey.ac.nz
2016-09-07
An attractor of a piecewise-smooth continuous system of differential equations can bifurcate from a stable equilibrium to a more complicated invariant set when it collides with a switching manifold under parameter variation. Here numerical evidence is provided to show that this invariant set can be chaotic. The transition occurs locally (in a neighbourhood of a point) and instantaneously (for a single critical parameter value). This phenomenon is illustrated for the normal form of a boundary equilibrium bifurcation in three dimensions using parameter values adapted from of a piecewise-linear model of a chaotic electrical circuit. The variation of a secondary parameter reveals a period-doubling cascade to chaos with windows of periodicity. The dynamics is well approximated by a one-dimensional unimodal map which explains the bifurcation structure. The robustness of the attractor is also investigated by studying the influence of nonlinear terms. - Highlights: • A boundary equilibrium bifurcation involving stable and saddle foci is considered. • A two-dimensional return map is constructed and approximated by a one-dimensional map. • A trapping region and Smale horseshoe are identified for a Rössler-like attractor. • Bifurcation diagrams reveal period-doubling cascades and windows of periodicity.
The 17/5 spectrum of the Kelvin-wave cascade
Kozik, Evgeny; Svistunov, Boris
2010-01-01
Direct numeric simulation of the Biot-Savart equation readily resolves the 17/5 spectrum of the Kelvin-wave cascade from the 11/3 spectrum of the non-local (in the wavenumber space) cascade scenario by L'vov and Nazarenko. This result is a clear-cut visualisation of the unphysical nature of the 11/3 solution, which was established earlier on the grounds of symmetry.
Design of ideal cascades of gas centrifuges with variable separation factors
International Nuclear Information System (INIS)
Olander, D.R.
1976-01-01
A method of designing ideal cascades in which the separation factor varies with stage number is presented and applied to centrifuges as separating units. The centrifuge is characterized by a performance function, which gives the separative power, optimized with respect to all internal variables, as a function of cut and throughput. For centrifuges with certain types of performance functions, variable-α ideal cascades can provide a product at a lower cost than the conventional ideal cascade in which the separation factor is independent of stage number
Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.
Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E
2005-07-25
Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.
Period doubling for trapezoid function iteration: metric theory
International Nuclear Information System (INIS)
Beyer, W.A.; Stein, P.R.
1982-01-01
Iterations of a one-parameter family F(lambda,x) = lambda f(x) of endomorphisms of [0,2] having the form of a trapezoid f(x) = x/e for x belongs to [0,e], f(x) = 1 for x belongs to (e,2 - e) and f(x) = (2 - x)/e for x belongs to [2 - e,2], are investigated. Here lambda belongs to [1,2] and e belongs to (0,1). Let lambda/sub n/ be the smallest value of lambda > 1 for which x = 1 is a periodic point of period 2/sup n/. It is proved that for e < 0.99, lambda/sub n/ - lambda/sub n-1/ approx. = k(lambda/sub infinity//e)/sup -2n/, where k is some constant and lambda/sub infinity/ = lim/sub n→infinity/lambda/sub n/. The same conclusion probably holds for any e < 1. This behavior is substantially different from that found by Feigenbaum and others for the case where f(x) assumes its maximum value for a unique x. Numerical investigations are reported for functions related to the trapezoid function
Modeling defect production in high energy collision cascades
International Nuclear Information System (INIS)
Heinisch, H.L.; Singh, B.N.
1993-01-01
A multi-model approach roach (MMA) to simulating defect production processes at the atomic scale is described that incorporates molecular dynamics (MD), binary collision approximation (BCA) calculations and stochastic annealing simulations. The central hypothesis of the MMA is that the simple, fast computer codes capable of simulating large numbers of high energy cascades (e.g., BCA codes) can be made to yield the correct defect configurations when their parameters are calibrated using the results of the more physically realistic MD simulations. The calibration procedure is investigated using results of MD simulations of 25 keV cascades in copper. The configurations of point defects are extracted from the MD cascade simulations at the end of the collisional phase, similar to the information obtained with a binary collision model. The MD collisional phase defect configurations are used as input to the ALSOME annealing simulation code, and values of the ALSOME quenching parameters are determined that yield the best fit to the post-quenching defect configurations of the MD simulations
Photoproduction of the Cascade Baryons at GlueX
Ernst, Ashley; GlueX Collaboration
2017-09-01
Multi-strange baryons play an important role in understanding the strong interaction and despite their importance, little is known about such hyperons. Almost all knowledge of the Cascades today stems from Kaon-nucleon interactions in bubble chamber experiments performed in the 1960s and 1970s, of which only the octet and decuplet ground states, Ξ (1320) and Ξ (1530) respectively, are well established. This research uses the GlueX experiment at Jefferson Laboratory to map out the spectrum of doubly-strange Cascade resonances, as well as to measure the spin-parity for each of the detected resonances. The first physics run for GlueX has recently been completed and a clear signature of the Ξ (1320) is observed. The systematics of the Cascade spectrum will be presented motivated by prior discoveries in the N* program. This work was supported by the U.S. Department of Energy Grant DE-FG02-92ER40735 and National Science Foundation Grant 1449440.
The genesis of period-adding bursting without bursting-chaos in the Chay model
International Nuclear Information System (INIS)
Yang Zhuoqin; Lu Qishao; Li Li
2006-01-01
According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to 7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence
International Nuclear Information System (INIS)
Li Weijie; Wu Zhongdi; Nong Guowei; Zeng Shi
2014-01-01
The hydraulic characteristic roots of a centrifuge cascade represent an important property of the cascade performance. Regulators and centrifuges are the key components that have a significant influence on the cascade hydraulic performance. The method used in diffusion cascades was adopted to obtain the static characteristic roots by solving the small disturbance equation for an adjustable centrifuge cascade in which all stages have the same fluid parameters. As the light stream flowrate of a centrifuge is irrelevant to the pressure at the outlet of the light flow, and the heavy stream flows at the speed of sound, there are only 2 static characteristic roots in the centrifuge cascade: the first root Z_1 is the main characteristic root and the second one Z_2 comes into play only when there exists a feed. The value of the main characteristic root is influenced by the amplification factor of the regulators, the fluid resistance in the main feed pipe and other factors. When Z_1 is smaller than 1, it increases with the fluid resistance. A large enough amplification factor has little impact on Z_1. The same distribution of the relative changes of the light fraction along the cascade is obtained by an analytical and a numerical method. (authors)
Optimization Control of Bidirectional Cascaded DC-AC Converter Systems
DEFF Research Database (Denmark)
Tian, Yanjun
in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc....... The connections of the renewable energy sources to the power system are mostly through the power electronic converters. Moreover, for high controllability and flexibility, power electronic devices are gradually acting as the interface between different networks in power systems, promoting conventional power...... the bidirectional power flow in the distribution level of power systems. Therefore direct contact of converters introduces significant uncertainties to power system, especially for the stability and reliability. This dissertation studies the optimization control of the two stages directly connected converters...
Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems
DEFF Research Database (Denmark)
Choux, Martin; Hovland, Geir; Blanke, Mogens
2012-01-01
Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt......Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants...... of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence...
Cascaded Photoenhancement: Implications for Photonic Chemical and Biological Sensors
Fuller, Kirk A.; Smith, David D.
2006-01-01
Our analysis shows that coupling of gold nanoparticles to microspheres will evoke a cascading effect from the respective photoenhancement mechanisms. We refer to this amplification process as cascaded photoenhancement, and the resulting cavity amplification of surface-enhanced Raman scattering (SERS) and fluorescence as CASERS and CAF, respectively. Calculations, based on modal analysis of scattering and absorption by compound spheres, presented herein indicate that the absorption cross sections of metal nanoparticles immobilized onto dielectric microspheres can be greatly enhanced by cavity resonances in the microspheres without significant degradation of the resonators. Gain factors associated with CSP of 10(exp 3) - 10(exp 4) are predicted for realistic experimental conditions using homogenous microspheres. Cascaded surface photoenhancement thus has the potential of dramatically increasing the sensitivities of fluorescence and vibrational spectroscopies.
Major disruptions, inverse cascades, and the Strauss equations
International Nuclear Information System (INIS)
Montgomery, D.
1982-01-01
Current-carrying plasmas in a strong dc magnetic field are subject to violent disruptions above certain thresholds. At present difficult to verify, explanations are typically sought in terms of tearing modes. An alternative explanation is in terms of inverse magnetic helicity cascades, generated from a variety of possible sources of small-scale MHD turbulence. Strongly anisotropic MHD plasmas may be described by the Strauss equations. Indications of turbulent inverse cascade behavior for the Strauss equations are sought, in parallel with earlier examples from MHD and fluid mechanics
Synthesis of Marine Polycyclic Polyethers via Endo-Selective Epoxide-Opening Cascades
Directory of Open Access Journals (Sweden)
Timothy F. Jamison
2010-03-01
Full Text Available The proposed biosynthetic pathways to ladder polyethers of polyketide origin and oxasqualenoids of terpenoid origin share a dramatic epoxide-opening cascade as a key step. Polycyclic structures generated in these biosynthetic pathways display biological effects ranging from potentially therapeutic properties to extreme lethality. Much of the structural complexity of ladder polyether and oxasqualenoid natural products can be traced to these hypothesized cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of ladder polyethers and oxasqualenoid natural products.
Universal resilience patterns in cascading load model: More capacity is not always better
Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo
We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.
Dirhodium(II Carbenes : The Chiral Product Cascade
Directory of Open Access Journals (Sweden)
Gregory H. P. Roos
2000-12-01
Full Text Available The last decade has witnessed enormous growth in the spectrum of highly efficient asymmetric synthetic transformations. One prominent example of this progress is the application of dirhodium (II carbenes generated from diazo- precursors. Innovative construction of ‘designer’ catalysts has played a integral role in extending the breadth of the synthetic cascade of non-racemic products now available through the range of cyclopropanation, C-X insertion, aromatic cycloaddition-rearrangement, and ylide-based reaction types. This review deals briefly with an overview of the important catalytic systems and maintains as its primary focus the cascade of diverse optically enriched products that flow from their applications.
Cascade: a high-efficiency ICF power reactor
International Nuclear Information System (INIS)
Pitts, J.H.
1985-01-01
Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d
Simulation analysis of cascade controller for DC-DC bank converter
International Nuclear Information System (INIS)
Mahar, M.A.; Abro, M.R.; Larik, A.S.
2009-01-01
Power electronic converters are periodic variable structure systems due to their switched operation. During the last few decades several new dc-dc converter topologies have emerged. Buck converter being simple in topology, has recently drawn attraction of many researchers. Basically, a buck converter is highly underdamped system. In order to overcome the developed oscillations in output of this converter, various control techniques have been proposed. However, these techniques are fraught with many drawbacks. This paper focus on a cascade controller based buck topology. Steady state analysis is given in this paper which shows output voltage and inductor current in detail. Dynamic analysis for line and load variation is also presented. The buck topology is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)
International Nuclear Information System (INIS)
Qin Yiqiang
2006-01-01
A dual-periodic structure for quasi-phase matching cascaded optical parametric interactions is proposed. Due to the coupling of reciprocal vectors between the original and imposed periodic sequence, the reciprocal vectors and the corresponding effective nonlinear coefficients is no longer the simple combination of two periodic structures. The new analytical expression of the effective nonlinear coefficients is deduced and given. The degeneracy phenomena and the novel extinction rule resulting from the coupling of reciprocal vectors are found and investigated. The corresponding physical nature is also discussed
Energy Technology Data Exchange (ETDEWEB)
Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)
2016-04-22
We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.
International Nuclear Information System (INIS)
Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.
2016-01-01
We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.
The genesis of period-adding bursting without bursting-chaos in the Chay model
International Nuclear Information System (INIS)
Yang Zhuoqin; Lu Qishao; Li Li
2006-01-01
According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to period-7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence
Evolution of the vertebrate phototransduction cascade activation steps.
Lamb, Trevor D; Hunt, David M
2017-11-01
We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.
On the optimity of separation cascade for a binary and a multi-component case
International Nuclear Information System (INIS)
Song, T.M.; Zeng, S.
2006-01-01
The optimity discussed in this article means minimum total interstage flow which is studied for two cases, a binary and a multi-component case, using direct numerical optimizations for countercurrent symmetric cascades with the concentrations of the target component specified in the .feed flow, the product and waste withdrawals In binary separation, the ideal cascade in which there are no mixing losses and whose stages are working under symmetric separation is the optimum cascade that has the minimum total flow However when the separation factor is large, there may not exist an ideal cascade for certain prescribed external parameters. Cascades are optimized numerically to minimize mixing losses and total flows, respectively The results are compared for the minimum mixing losses and the minimum total flow, and analyzed with theoretically derived formulas. For the multi-component case, satisfying the non-mixing condition is impossible. There is a counterpart of the binary ideal cascade named MARC which matches the abundance ratio at mixing points. An optimization example for a four-cornponent mixture separation cascade is analyzed with the first and the last components as the targets, respectively. The results show that MARC is not the optimum cascade for the separation of one certain isotope. The separation power of each stage in the optimized cascades is calculated using several different definitions, and the rationality of these definitions is discussed. The Q-iteration method is used to calculate the concentration distribution in both the binary and the multi-component cases. Ns-2 stage cuts out of the Ns stages of the cascade are the optimization variables in the optimization process and a combination of the simulated annealing and the Hooke-Jeeves method is applied as the optimization technique to find the minimum. (authors)
DEFF Research Database (Denmark)
Damgaard, Mads
2018-01-01
Through a content analysis of 8,800 news items and six months of front pages in three Brazilian newspapers, all dealing with corruption and political transgression, this article documents the remarkable skew of media attention to corruption scandals. The bias is examined as an information...... phenomenon, arising from systemic and commercial factors of Brazil’s news media: An information cascade of news on corruption formed, destabilizing the governing coalition and legitimizing the impeachment process of Dilma Rousseff. As this process gained momentum, questions of accountability were disregarded...
Efficient cascade multiple heterojunction organic solar cells with inverted structure
Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai
2018-05-01
In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.
ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS
Energy Technology Data Exchange (ETDEWEB)
Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2015-09-10
We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.
Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali
2012-12-01
The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.
Modeling cascading failures with the crisis of trust in social networks
Yi, Chengqi; Bao, Yuanyuan; Jiang, Jingchi; Xue, Yibo
2015-10-01
In social networks, some friends often post or disseminate malicious information, such as advertising messages, informal overseas purchasing messages, illegal messages, or rumors. Too much malicious information may cause a feeling of intense annoyance. When the feeling exceeds a certain threshold, it will lead social network users to distrust these friends, which we call the crisis of trust. The crisis of trust in social networks has already become a universal concern and an urgent unsolved problem. As a result of the crisis of trust, users will cut off their relationships with some of their untrustworthy friends. Once a few of these relationships are made unavailable, it is likely that other friends will decline trust, and a large portion of the social network will be influenced. The phenomenon in which the unavailability of a few relationships will trigger the failure of successive relationships is known as cascading failure dynamics. To our best knowledge, no one has formally proposed cascading failures dynamics with the crisis of trust in social networks. In this paper, we address this potential issue, quantify the trust between two users based on user similarity, and model the minimum tolerance with a nonlinear equation. Furthermore, we construct the processes of cascading failures dynamics by considering the unique features of social networks. Based on real social network datasets (Sina Weibo, Facebook and Twitter), we adopt two attack strategies (the highest trust attack (HT) and the lowest trust attack (LT)) to evaluate the proposed dynamics and to further analyze the changes of the topology, connectivity, cascading time and cascade effect under the above attacks. We numerically find that the sparse and inhomogeneous network structure in our cascading model can better improve the robustness of social networks than the dense and homogeneous structure. However, the network structure that seems like ripples is more vulnerable than the other two network
Energy Cascade Analysis: from Subscale Eddies to Mean Flow
Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James
2017-11-01
Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Experimental investigation on a high subsonic compressor cascade flow
Directory of Open Access Journals (Sweden)
Zhang Haideng
2015-08-01
Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.
Disaster Mythology and Availability Cascades
Directory of Open Access Journals (Sweden)
Lisa Grow Sun
2013-04-01
Full Text Available Sociological research conducted in the aftermath of natural disasters has uncovered a number of “disaster myths” – widely shared misconceptions about typical post-disaster human behavior. This paper discusses the possibility that perpetuation of disaster mythology reflects an “availability cascade,” defined in prior scholarship as a “self-reinforcing process of collective belief formation by which an expressed perception triggers a chain reaction that gives the perception increasing plausibility through its rising availability in public discourse.” (Kuran and Sunstein 1999. Framing the spread of disaster mythology as an availability cascade suggests that certain tools may be useful in halting the myths’ continued perpetuation. These tools include changing the legal and social incentives of so-called “availability entrepreneurs” – those principally responsible for beginning and perpetuating the cascade, as well as insulating decision-makers from political pressures generated by the availability cascade. This paper evaluates the potential effectiveness of these and other solutions for countering disaster mythology. Las investigaciones sociológicas realizadas tras los desastres naturales han hecho evidentes una serie de “mitos del desastre”, conceptos erróneos ampliamente compartidos sobre el comportamiento humano típico tras un desastre. Este artículo analiza la posibilidad de que la perpetuación de los mitos del desastre refleje una “cascada de disponibilidad”, definida en estudios anteriores como un “proceso de auto-refuerzo de la formación de una creencia colectiva, a través del que una percepción expresada produce una reacción en cadena que hace que la percepción sea cada vez más verosímil, a través de una mayor presencia en el discurso público” (Kuran y Sunstein 1999. Enmarcar la propagación de los mitos del desastre como una cascada de disponibilidad sugiere que ciertas herramientas pueden ser
Time development of cascades by the binary collision approximation code
International Nuclear Information System (INIS)
Fukumura, A.; Ishino, S.; Sekimura, N.
1991-01-01
To link a molecular dynamic calculation to binary collision approximation codes to explore high energy cascade damage, time between consecutive collisions is introduced into the binary collision MARLOWE code. Calculated results for gold by the modified code show formation of sub-cascades and their spatial and time overlapping, which can affect formation of defect clusters. (orig.)
Fabrication of a novel cascade high-pressure electro-osmotic pump.
Zhang, Feifang; Wang, Rong; Han, Tingting; Yang, Bingcheng; Liang, Xinmiao
2011-07-07
A novel cascade electro-osmotic pump (EOP) has been fabricated by alternately connecting a cation monolithic column and anion monolithic column in series. In this manner, the change of electric polarity between each stage of the cascade EOP is easily achieved and the pressure output of the EOP could be greatly enhanced without increase of the applied voltage.
Cascadability of Silicon Microring Resonators for40-Gbit/s OOK and DPSK Optical Signals
DEFF Research Database (Denmark)
Ozolins, Oskars; An, Yi; Lali-Dastjerdi, Zohreh
2012-01-01
The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators.......The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators....
Fermentation of solutions of glucose-protein concentrate in a cascade-multi-ray unit
Energy Technology Data Exchange (ETDEWEB)
Denshchikov, M T; Shashilova, V P
1964-01-01
Glucose-protein concentrate is a material obtained by the hydrolysis of corn, containing glucose 75 to 80, maltose, isomaltose, and other non-fermentable sugars 1.5 to 2, H/sub 2/O 15 to 17, mineral matter 1.9 to 1%, and N-containing materials 3.2 to 3.4 g/kg. In earlier fermentation trails with this material, after addition of H/sub 2/O, only 10 to 12% ethanol concentrations were obtained. With period addition of citric acid and replacement of the yeast at regular intervals, using a cascade-multitray unit, 12 to 13% concentrations of ethanol were obtained.
Numerical simulations on ion acoustic double layers
International Nuclear Information System (INIS)
Sato, T.; Okuda, H.
1980-07-01
A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length
Development of a novel cascading TPV and TE power generation system
International Nuclear Information System (INIS)
Qiu, K.; Hayden, A.C.S.
2012-01-01
Highlights: ► A novel cascading thermophotovoltaic (TPV) and thermoelectric (TE) power generation system is proposed and developed. ► The used heat stream is taken from the TPV and applied to the input of a TE converter in the system. ► A prototype was built and tested where GaSb TPV cells and PbSnTe-based TE converter were used. ► The TPV cells generate 123.5 We whereas the TE converter generates 306.2 We in the prototype. ► It is shown the cascading power generation is feasible in fuel-fired furnaces and can be applied to micro-CHP. -- Abstract: Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.
Linewidth and tuning characteristics of terahertz quantum cascade lasers.
Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A
2004-03-15
We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.
Chaos and bifurcations in periodic windows observed in plasmas
International Nuclear Information System (INIS)
Qin, J.; Wang, L.; Yuan, D.P.; Gao, P.; Zhang, B.Z.
1989-01-01
We report the experimental observations of deterministic chaos in a steady-state plasma which is not driven by any extra periodic forces. Two routes to chaos have been found, period-doubling and intermittent chaos. The fine structures in chaos such as periodic windows and bifurcations in windows have also been observed
Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade
Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.
1996-01-01
Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.
Effects of temperature in binary-collision simulations of high-energy displacement cascades
International Nuclear Information System (INIS)
Heinisch, H.L.
1981-10-01
Several hundred cascades ranging from 1 to 500 keV were generated using the binary collision code MARLOWE for primary knock-on atoms (PKAs) with randomly chosen directions in both a non-thermal copper lattice and one having atomic displacements representative of room temperature. To simulate the recombination occurring during localized quenching of the highly excited cascade region, an effective spontaneous recombination radius was applied to reduce the number of defect pairs to be consistent with values extracted from resistivity measurements at 4 0 K. At room temperature fewer widely separated pairs are produced, thus the recombination radius is smaller, however, the recombination radii were found to be independent of energy over the entire energy range investigated for both the cold and room temperature cases. The sizes and other features of the point defect distributions were determined as a function of energy. Differences between cold and room temperature cascade dimensions are small. The room temperature cascades tend to have a greater number of distinct damage regions per cascade, with about the same frequency of widely separated subcascades
Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach
Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard
2013-04-01
The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.
Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions
Energy Technology Data Exchange (ETDEWEB)
Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.; Samaan, Nader A.; Makarov, Yuri V.; Diao, Ruisheng; Huang, Qiuhua; Ke, Xinda
2017-10-19
Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis by developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.
Su, Shih-Heng; Krysan, Patrick J
2016-12-01
Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Cascade system using both trough system and dish system for power generation
International Nuclear Information System (INIS)
Zhang, Cheng; Zhang, Yanping; Arauzo, Inmaculada; Gao, Wei; Zou, Chongzhe
2017-01-01
Highlights: • A novel solar cascade system using both trough and dish collectors is proposed. • Heat rejected by the Stirling engines is collected by the condensed water. • The directions to increase the efficiency improvement has been pointed out • Influence of flow type of heating/cooling fluids of Stirling engines is considered. - Abstract: This paper represents a novel solar thermal cascade system using both trough and dish systems for power generation. An effective structure using the condensed fluid of Rankine cycle to cool the Stirling engines to use the heat released by Stirling engines was proposed. The cascade system model with different fluid circuits was developed. The models of some important components of the system, such as dish collector, trough collector and Stirling engine array, are presented with detail explanation in this paper. Corresponding stand-alone systems were also developed for comparison. Simulations were conducted with the models to find out efficiency difference between cascade system and corresponding stand-alone systems. The directions to increase the efficiency difference were also considered. Results show that the cascade system can achieve a higher efficiency with a high solar irradiance (>550 W/m"2). The flow type of fluids between heating and cooling Stirling engine array is also required to concern on designing a cascade system with Stirling engine array.
Cascade of circulations in fluid turbulence.
Eyink, Gregory L
2006-12-01
Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.
DEFF Research Database (Denmark)
Damgaard, Mads
2018-01-01
Through a content analysis of 8,800 news items and six months of front pages in three Brazilian newspapers, all dealing with corruption and political transgression, this article documents the remarkable skew of media attention to corruption scandals. The bias is examined as an information...... phenomenon, arising from systemic and commercial factors of Brazil’s news media: An information cascade of news on corruption formed, destabilizing the governing coalition and legitimizing the impeachment process of Dilma Rousseff. As this process gained momentum, questions of accountability were disregarded...... by the media, with harmful effects on democracy....
An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.
Directory of Open Access Journals (Sweden)
P Martin Sander
Full Text Available Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM. This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism". Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.
An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.
Sander, P Martin
2013-01-01
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.
Failure cascade in interdependent network with traffic loads
International Nuclear Information System (INIS)
Hong, Sheng; Wang, Baoqing; Wang, Jianghui; Zhao, Tingdi; Ma, Xiaomin
2015-01-01
Complex networks have been widely studied recent years, but most researches focus on the single, non-interacting networks. With the development of modern systems, many infrastructure networks are coupled together and therefore should be modeled as interdependent networks. For interdependent networks, failure of nodes in one network may lead to failure of dependent nodes in the other networks. This may happen recursively and lead to a failure cascade. In the real world, different networks carry different traffic loads. Overload and load redistribution may lead to more nodes’ failure. Considering the dependency between the interdependent networks and the traffic load, a small fraction of fault nodes may lead to complete fragmentation of a system. Based on the robust analysis of interdependent networks, we propose a costless defense strategy to suppress the failure cascade. Our findings highlight the need to consider the load and coupling preference when designing robust interdependent networks. And it is necessary to take actions in the early stage of the failure cascade to decrease the losses caused by the large-scale breakdown of infrastructure networks. (paper)
A cascaded three-phase symmetrical multistage voltage multiplier
International Nuclear Information System (INIS)
Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G
2006-01-01
A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM
Cascade-based attacks on complex networks
Motter, Adilson E.; Lai, Ying-Cheng
2002-12-01
We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.
Characterisation of the Rota Wewa tank cascade system in the vicinity of Anuradhapura, Sri Lanka
Directory of Open Access Journals (Sweden)
Schütt, Brigitta
2013-09-01
Full Text Available A complex and sustainable watershed management strategy was implemented in Sri Lanka during the ancient Anuradhapura period, from the 5th century BC to the 11th century AD. Like modern watershed management strategies, it focused on flood prevention, soil erosion control, water quality control and water storage for irrigation. Tank cascade systems were the key element of these ancient watershed management installations. The wewas investigated were constructed in valleys characterised by fluvial accumulation. Sedimentological analyses of these tank cascade systems show that a precise age determination and the reconstruction of sediment and water f luxes as triggered by human-environment interactions are difficult. This is caused by the shallow character of the wewas leading to the steady redeposition of the tank sediments by wave motions during the wet season and agricultural use of the desiccated wewas during the dry season. Beyond, the sediments analysed allow to distinguish between the weathered parent bedrock and the overlying sediments. A differentiation between wewa deposits and the underlying fluvial deposits remains challenging.
Directory of Open Access Journals (Sweden)
Edgar Altszyler
Full Text Available Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
International Nuclear Information System (INIS)
Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.
2009-01-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Effect of inelastic energy losses on development of atom-atom collision cascades
International Nuclear Information System (INIS)
Marinyuk, V.V.; Remizovich, V.S.
2001-01-01
The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru
Stability analysis of a high-step-Up DC grid-connected two-stage boost DC-DC converter
Directory of Open Access Journals (Sweden)
El Aroudi A.
2014-01-01
Full Text Available High conversion ratio switching converters are used whenever there is a need to step-up dc source voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. However these criteria may not be applicable for the complete cascaded system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subharmonic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two-different stages.
Gene regulation by MAP kinase cascades
DEFF Research Database (Denmark)
Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten
2009-01-01
Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...
Molecular dynamics studies on the structural effects of displacement cascades in UO2 matrix
International Nuclear Information System (INIS)
Brutzel, L. Van; Rarivomanantsoa, M.; Ghaleb, D.
2004-01-01
A set of molecular dynamics simulations have been carried out in order to study, at the atomic scale, the ballistic damages undergo by the UO 2 matrix. The morphologies of the displacement cascades simulations initiated by an uranium atoms with a Primary Knout on Atom (PKA) energy ranges from 1 keV to 20 keV are analysed. In agreement with all the experimental results no amorphization has been found even at small scales. For the cascade initiated with a PKA energy of 20 keV several sub-cascade branches appear in many directions from the cascade core. It seems that these sub-cascades arise from a quasi channeling of uranium atoms in specific direction over long distances. However, in average the atoms are displaced no more than 2 to 3 crystallographic sites. The evolution of the Frenkel pairs with the initial energy of the PKA exhibits a power law behavior with an exponent close to 0.9 showing a discrepancy with the linear NRT law. No significant clustering of local defects such as vacancies and interstitials have been found, nevertheless vacancies are preferentially created near the core of the cascade whereas the atoms in interstitial positions are mainly located at the periphery of the sub-cascade branches. (authors)
Two neutrino double-beta decay of 100Mo to the first excited 0+ state in 100Ru
International Nuclear Information System (INIS)
Barabash, A.S.; Avignone, F.T. III; Guerard, C.K.; Umatov, V.I.
1992-06-01
Double-beta decay from the ground state of 100 Mo to the O + excited state at 1,130.29 keV in 100 Ru has been observed. A sample of 956q of Mo metal powder isotopically enriched to 98.468% of 100 Mo was counted in a Marinelli geometry with a well shielded, ultralow-background germanium detector. The cascade gamma-rays at 539.53 and 590.76 keV were observed. The resulting decay half-life is 1.1 -0.2 +0.3 x 10 21 y at 68% CL
Directory of Open Access Journals (Sweden)
Fatih Kardas
2012-12-01
Full Text Available OBJECTIVE: The aim of our study is to discuss the efficacy of low-density lipoprotein-cholesterol (LDL-C apheresis procedure using the cascade filtration system for pediatric patients with homozygous familial hypercholesterolemia (FH, and to clarify the adverse effects and difficulties. METHODS: LDL apheresis using the cascade filtration system was performed in 3 pediatric patients with homozygous FH. In total, 120 apheresis sessions were performed for all patients. RESULTS: Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dl to 145 ± 43 mg/dl (p<0.05. We determined an acute mean reduction in the plasma levels of total cholesterol (57.9%, LDL cholesterol (70.8%, and high-density lipoprotein (HDL cholesterol (40.7%. Treatments were well tolerated. The most frequent clinical adverse effects were hypotension in 3 sessions (2.5%, chills/feeling cold (1.7% in 2 sessions, and nausea and vomiting in 3 sessions (2.5%. CONCLUSION: Our experience with three patients using the cascade filtration system were, good clinical outcomes, laboratory findings, safety of usage, minor adverse effects and technical problems.
Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS
Energy Technology Data Exchange (ETDEWEB)
Archambault, S.; Griffin, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Alonso, M. Fernández [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC 67—Suc. 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Fleischhack, H.; Hütten, M. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Fortson, L. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Furniss, A. [Department of Physics, California State University—East Bay, Hayward, CA 94542 (United States); Hervet, O.; Johnson, C. A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Holder, J. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Humensky, T. B., E-mail: elisa.pueschel@ucd.ie, E-mail: weisgarber@physics.wisc.edu [Physics Department, Columbia University, New York, NY 10027 (United States); and others
2017-02-01
We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10{sup −14} G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.
MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy
International Nuclear Information System (INIS)
Tikhonchev, M.; Svetukhin, V.; Kadochkin, A.; Gaganidze, E.
2009-01-01
Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is ∼0.2 NRT that is slightly higher than for pure α-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.
MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy
Energy Technology Data Exchange (ETDEWEB)
Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.r [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Joint Stock Company, ' State Scientific Center Research Institute of Atomic Reactors' , 433510 Dimitrovgrad-10 (Russian Federation); Svetukhin, V.; Kadochkin, A. [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Gaganidze, E. [Forschungszentrum Karlsruhe, IMF II, 3640, D-76021 Karlsruhe (Germany)
2009-12-15
Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is approx0.2 NRT that is slightly higher than for pure alpha-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.
2011-02-18
... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...
Effects of in-cascade defect clustering on near-term defect evolution
Energy Technology Data Exchange (ETDEWEB)
Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)
1997-08-01
The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.
An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests
Sander, P. Martin
2013-01-01
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size. PMID:24205267
Evaluation of Power Generation Efficiency of Cascade Hydropower Plants: A Case Study
Directory of Open Access Journals (Sweden)
Jiahua Wei
2013-02-01
Full Text Available Effective utilization of scarce water resources has presented a significant challenge to respond to the needs created by rapid economic growth in China. In this study, the efficiency of the joint operation of the Three Gorges and Gezhouba cascade hydropower plants in terms of power generation was evaluated on the basis of a precise simulation-optimization technique. The joint operation conditions of the Three Gorges and Gezhouba hydropower plants between 2004 and 2010 were utilized in this research in order to investigate the major factors that could affect power output of the cascade complex. The results showed that the current power output of the Three Gorges and Gezhouba cascade complex had already reached around 90% of the maximum theoretical value. Compared to other influencing factors evaluated in this study, the accuracy of hydrological forecasts and flood control levels can have significant impact on the power generating efficiency, whereas the navigation has a minor influence. This research provides a solid quantitative-based methodology to assess the operation efficiency of cascade hydropower plants, and more importantly, proposes potential methods that could improve the operation efficiency of cascade hydropower plants.
Neutron cross sections for defect production by high-energy displacement cascades in copper
International Nuclear Information System (INIS)
Heinisch, H.L.; Mann, F.M.
1983-08-01
Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after shortterm annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after shortterm annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects
Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System
Revana, Guruswamy; Kota, Venkata Reddy
2018-04-01
Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.
Neutron cross sections for defect production by high energy displacement cascades in copper
International Nuclear Information System (INIS)
Heinisch, H.L.; Mann, F.M.
1984-01-01
Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after short-term annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after short-term annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects. (orig.)
Impedance interactions in bidirectional cascaded converter
DEFF Research Database (Denmark)
Tian, Yanjun; Loh, Poh Chiang; Chen, Zhe
2016-01-01
A cascaded converter is built by connecting one elementary converter to another. Output impedance of one converter will therefore interact with input impedance of the other converter. This interaction will change when power flow reverses. To compare this difference, an investigation is performed...
2010-11-17
... Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of Receipt of a License Transfer... SNM-2011, for the American Centrifuge Lead Cascade Facility and the American Centrifuge Plant... USEC Inc., (the Licensee), for its American Centrifuge Lead Cascade Facility (LCF) and American...
Diode pumped cascade Er:Y2O3 laser
International Nuclear Information System (INIS)
Sanamyan, T
2015-01-01
A cascade, diode-pumped, continuous wave (CW), dual-wavelength operation in a 0.5% Er 3+ :Y 2 O 3 cryogenic ceramic laser is demonstrated for the first time. The laser operates on cascaded Er ( 4 I 11/2 → 4 I 13/2 → 4 I 15/2 ) transitions and can deliver 24 and 13 W at 1.6 and 2.7 μm, respectively. The overall efficiency with respect to the absorbed ∼980 nm power was 62%. This is, to our best knowledge, the first demonstration of an efficient, high power, cascade, erbium laser achieved in bulk solid-state lasers. The analysis of the output power, the laser’s wavelengths and slope efficiency for each individual laser transition are presented for pure CW operation mode. Also presented are the temporal behaviors of each laser line as a function of pump pulse duration in the quasi-CW regime. (letter)
Controle qualite de l'eau de baignade de la Cascade de Man en ...
African Journals Online (AJOL)
La cascade Ypou du mont Tonkoui appelée couramment « cascade de Man » est un joyau naturel qui attire de nombreux touristes. Elle est très fréquentée pour sa beauté mais aussi pour la baignade. En amont de cette cascade, le paysage se compose de champs de café et selon la période, de maïs et de manioc. Il nous ...
Sutherland, B. R.
2016-02-01
It is well established that two-dimensional internal plane waves and modes in uniformly stratified fluid efficiently transfer energy to smaller scale waves and ultimately turbulent mixing through parametric subharmonic instability (PSI). The numerical simulations of MacKinnon & Winters (GRL 2005) predicted PSI should act efficiently to disrupt the internal tide. However, while in situ observations showed the presence of PSI, it was not found to be appreciable. One reason for the discrepancy between simulations and observations is that the former examined an internal mode in uniformly stratified fluid whereas, in reality, the internal tide exists in non-uniform stratification and is manifest as sinusoidal oscillations of the thermocline. Through theory supported by numerical simulations, it is shown that internal modes in non-uniform stratification immediately excite superharmonics, not subharmonic disturbances. These have double the horizontal wavenumber and double the frequency of the parent mode and hence move with the same horizontal phase speed of the parent mode. As the disturbances grow in amplitude, however, they interact with the parent mode generating small-scale vertically propagating internal waves within the strongly stratified layer. The occurrence of PSI over very long times can occur, as in the simulations of Hazewinkel and Winters (JPO 2011). However, a comprehensive understanding of the energy cascade from the internal tide to small scales must consider the evolution of excited superharmonic disturbances.
Czech Academy of Sciences Publication Activity Database
Cantarella, L.; Gallifuoco, A.; Malandra, A.; Martínková, Ludmila; Spera, A.; Cantarella, M.
2011-01-01
Roč. 48, 4-5 (2011), 345-350 ISSN 0141-0229 R&D Projects: GA MŠk OC09046 Institutional research plan: CEZ:AV0Z50200510 Keywords : Nitrile hydratase-amidase cascade system * 3-Cyanopyridine bioconversion * Nicotinic acid Subject RIV: EE - Microbiology, Virology Impact factor: 2.367, year: 2011
Cascade Error Projection: A New Learning Algorithm
Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.
1995-01-01
A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.
Directory of Open Access Journals (Sweden)
Xiuwen Fu
2018-01-01
Full Text Available Previous research of wireless sensor networks (WSNs invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML. The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network under various attack schemes (i.e., random attack, max-degree attack, and max-status attack are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.
International Nuclear Information System (INIS)
Adler, A.; Fuchs, B.; Thielheim, K.O.
1977-01-01
The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)
Directory of Open Access Journals (Sweden)
H. Gunell
2015-10-01
Full Text Available The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam–plasma interaction. The double layer is disrupted when reaching altitudes of 1–2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.
Dynamic behavior and control of product enrichment in a centrifuge cascade
International Nuclear Information System (INIS)
Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Nishimura, Hideo.
1989-05-01
It was agreed as a conclusion of the HEXAPARTITE project that a limited frequency unannounced access (LFUA) inspection should be carried out in a centrifuge type enrichment plant as a basic safeguards approach. It might be adopted at a large scale, future commercial enrichment plant, too. Application of the LFUA approach to such a plant, however, should be fully investigated because the plant will have not only a larger capability of enriching uranium 235 but also a more sensitive information to be protected from the commercial and non-proliferation viewpoint. As a part of a design study on the safeguards approach for a model commercial plant, a study of process simulation of the plant has been carried out. This report describes a result of the study. When a commercial uranium enrichment plant is constructed, a nuisance problem arises; What kind of products should be produced from the plant in order to match a wide range of nuclear fuel enrichment requirements for light-water power reactors. In this report, a reasonable solution to such a problem is investigated. At first, a transient analysis of start-up for a model centrifuge cascade is made by using the dynamic equations, which were so developed as to be able to accurately compute interstage flow rates and enrichment in a transient state. Then it is investigated how wide in its acceptable range the product enrichment can be controlled by regulating cascade characteristic parameters such as cascade cut, recycle flow rate and cascade feed flow rate, and as a result an information about the optimal regulating mode is brought out. As a result of this study, it has become clear that the specific requirements of a customer are almost fulfilled with only one type of unit cascade system if 10 % loss of cascade efficiency is allowed in the plant operation. (author)
Method of fault diagnosis in nozzle cascades for U-235 enrichment
International Nuclear Information System (INIS)
Schuette, R.; Steinhaus, H.
1978-09-01
In a separation nozzle cascade for enrichment of the light uranium isotope U-235 some 450 stages are connected in series. For optimum separation performance of such a plant the design values of the nozzle inlet pressure, of the UF 6 concentration of the UF 6 -cut and the cut of the light additional gas must be matched in all separation stages. Also the feed stream, the product stream, and the tails stream have to be controlled according to the cascade design values. Since it is not possible to measure the cuts directly, these values are calculated on the basis of the material flow balances of the cascade using the pressure values and the UF 6 concentration measurements in each stage, these data being supplemented by concentration measurements in the light and heavy fractions of selected stages. This approach requires the use of a digital computer for processing some 1500 readings to calculate the 2500 plant parameters defining the plant state. This study describes a method of diagnosing the major faults to be expected in a separation nozzle cascade. It is based on the fact that the fault profiles are characterized sufficiently well by maximum values and values to identify the cause of a fault and localize the point where it occurs by means of simple relations between these six values and of their relative positions. The performance of the method has been tested in experiments in the ten-stage pilot plant. For use in commercial separation nozzle cascades the range of performance and the special mode of implementation can be derived from the characteristics of the plant components (separation nozzles, compressors, control valves). The methodological approach in this fault diagnosis also provides the basis for computer aided control procedures to raise a separation cascade from any steady plant condition to its set point operation. (orig./HP) 891 HP [de
Dynamic behavior and control of product enrichment in a centrifuge cascade
International Nuclear Information System (INIS)
Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Nishimura, Hideo.
1988-02-01
It was agreed as a conclusion of the HEXAPARTITE project that a limited frequency unannounced access (LFUA) inspection should be carried out in a centrifuge type enrichment plant as a basic safeguards approach. It might be adopted at a large scale, future commercial enrichment plant, too. Application of the LFUA approach to such a plant, however, should be fully investigated because the plant will have not only a larger capability of enriching uranium 235 but also a more sensitive information to be protected from the commercial and nonproliferation viewpoint. As a part of a design study on the safeguards approach for a model commercial plant, a study of process simulation of the plant has been carried out. This report describes a result of the study. When a commercial uranium enrichment plant is constructed, a nuisance problem arises; What kind of products should be produced from the plant in order to match a wide range of nuclear fuel enrichment requirements for light-water power reactors. In this report, a reasonable solution to such a problem is investigated. At first, a transient analysis of start-up for a model centrifuge cascade is made by using the dynamic equations, which were so developed as to be able to accurately compute interstage flow rates and enrichment in a transient state. Then it is investigated how wide in its acceptable range the product enrichment can be controlled by regulating cascade characteristic parameters such as cascade cut, recycle flow rate and cascade feed flow rate, and as a result an information about the optimal regulating mode is brought out. As a result of this study, it has become clear that the specific requirements of a customer are almost fulfilled with only one type of unit cascade system if 10 % loss of cascade efficiency is allowed in the plant operation. (author)
Novel High Power Type-I Quantum Well Cascade Diode Lasers
2017-08-30
Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved
Unified model of secondary electron cascades in diamond
International Nuclear Information System (INIS)
Ziaja, Beata; London, Richard A.; Hajdu, Janos
2005-01-01
In this article we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of x-ray photons. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1 and 10 keV. The present article expands our earlier work [B. Ziaja, D. van der Spoel, A. Szoeke, and J. Hajdu, Phys. Rev. B 64, 214104 (2001), Phys. Rev. B 66, 024116 (2002)] by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t≤1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs following the primary impact
Complex dynamics in three-well duffing system with two external forcings
International Nuclear Information System (INIS)
Jing Zhujun; Huang Jicai; Deng Jin
2007-01-01
Three-well duffing system with two external forcing terms is investigated. The criterion of existence of chaos under the periodic perturbation is given by using Melnikov's method. By using second-order averaging method and Melnikov's method we proved the criterion of existence of chaos in averaged systems under quasi-periodic perturbation for ω 2 = nω 1 + εν, n = 1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω 2 = nω 1 + εν, n = 2, 4, 6, 7, 8, 9, 10, 11, 12, where ν is not rational to ω 1 , but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, maximum Lyapunov exponents and Poincare map are given to illustrate the theoretical analysis, and to expose the more new complex dynamical behaviors. We show that cascades of period-doubling bifurcations from period-one to four orbits, cascades of interlocking period-doubling bifurcations from period-two orbits of two sets, from quasi-periodicity leading to chaos, onset of chaos which occurs more than one, interleaving occurrences of chaotic behavior and invariant torus, transient chaos with complex period windows and interior crisis, chaos converting to torus, different kind of chaotic attractors. Our results shows that the dynamical behaviors are different from the dynamics of duffing equation with two-well and two external forcings
Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid
Energy Technology Data Exchange (ETDEWEB)
Mao, Lianmin; Su, Delong; Wang, Zhaofang [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Pu, Shengli, E-mail: shlpu@usst.edu.cn [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zeng, Xianglong [The Key Lab of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072 (China); Lahoubi, Mahieddine [Laboratory L.P.S., Department of Physics, Faculty of Sciences, Badji-Mokhtar Annaba University, Annaba 23000 (Algeria)
2016-09-07
A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previously similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.
Directory of Open Access Journals (Sweden)
J. Li
2018-06-01
Full Text Available In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.
Digital redesign of anti-wind-up controller for cascaded analog system.
Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M
2003-01-01
The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.
[Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].
Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping
2011-05-01
Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.
Special Issue ;Sediment cascades in cold climate geosystems;
Morche, David; Krautblatter, Michael; Beylich, Achim A.
2017-06-01
This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.
High performance 5.6μm quantum cascade lasers
Suttinger, M.; Go, R.; Figueiredo, P.; Todi, A.; Shu, Hong; Lyakh, A.
2017-02-01
5.6 μm quantum cascade lasers based on Al 0.78 In 0.22 As/In 0.69 Ga 0.31 As active region composition with measured pulsed room temperature wall plug efficiency of 28.3% are reported. Injection efficiency for the upper laser level of 75% was measured for the new design by testing devices with variable cavity length. Threshold current density of 1.7kA/cm2 and slope efficiency of 4.9W/A were measured for uncoated 3.15mm × 9μm lasers. Threshold current density and slope efficiency dependence on temperature in the range from 288K to 348K for the new structure can be described by characteristic temperatures T0 140K and T1 710K, respectively. Experimental data for inverse slope efficiency dependence on cavity length for 15-stage quantum cascade lasers with the same design are also presented. When combined with the 40-stage device data, the new data allowed for separate evaluation of the losses originating from the active region and from the cladding layers of the laser structure. Specifically, the active region losses for the studied design were found to be 0.77 cm-1, while cladding region losses - 0.33 cm-1. The data demonstrate that active region losses in mid wave infrared quantum cascade lasers largely define total waveguide losses and that their reduction should be one of the main priorities in the quantum cascade laser design.
DEFF Research Database (Denmark)
Guo, Xiaoqiang; Jia, X.; Lu, Z.
2016-01-01
Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H4...... inverter fails to reduce the leakage current is clarified. In order to solve the problem, a new cascaded H5 inverter is proposed to solve the leakage current issue. Finally, the experimental results are presented to verify the effectiveness of the proposed topology with the leakage current reduction...... for the single-phase transformerless PV systems....
Invariant mass distributions in cascade decays
Miller, D J; Raklev, A R
2006-01-01
We derive analytical expressions for the shape of the invariant mass distributions of massless Standard Model endproducts in cascade decays involving massive New Physics (NP) particles, D -> Cc -> Bbc -> Aabc, where the final NP particle A in the cascade is unobserved and where two of the particles a, b, c may be indistinguishable. Knowledge of these expressions can improve the determination of NP parameters at the LHC. The shape formulas are composite, but contain nothing more complicated than logarithms of simple expressions. We study the effects of cuts, final state radiation and detector effects on the distributions through Monte Carlo simulations, using a supersymmetric model as an example. We also consider how one can deal with the width of NP particles and with combinatorics from the misidentification of final state particles. The possible mismeasurements of NP masses through `feet' in the distributions are discussed. Finally, we demonstrate how the effects of different spin configurations can be inclu...
Invariant mass distributions in cascade decays
International Nuclear Information System (INIS)
Miller, David J.; Osland, Per; Raklev, Are R.
2006-01-01
We derive analytical expressions for the shape of the invariant mass distributions of massless Standard Model endproducts in cascade decays involving massive New Physics (NP) particles, D→Cc→Bbc→Aabc, where the final NP particle A in the cascade is unobserved and where two of the particles a, b, c may be indistinguishable. Knowledge of these expressions can improve the determination of NP parameters at the LHC. The shape formulas are composite, but contain nothing more complicated than logarithms of simple expressions. We study the effects of cuts, final state radiation and detector effects on the distributions through Monte Carlo simulations, using a supersymmetric model as an example. We also consider how one can deal with the width of NP particles and with combinatorics from the misidentification of final state particles. The possible mismeasurements of NP masses through 'feet' in the distributions are discussed. Finally, we demonstrate how the effects of different spin configurations can be included in the distributions
Common and uncommon pathogenic cascades in lysosomal storage diseases.
Vitner, Einat B; Platt, Frances M; Futerman, Anthony H
2010-07-02
Lysosomal storage diseases (LSDs), of which about 50 are known, are caused by the defective activity of lysosomal proteins, resulting in accumulation of unmetabolized substrates. As a result, a variety of pathogenic cascades are activated such as altered calcium homeostasis, oxidative stress, inflammation, altered lipid trafficking, autophagy, endoplasmic reticulum stress, and autoimmune responses. Some of these pathways are common to many LSDs, whereas others are only altered in a subset of LSDs. We now review how these cascades impact upon LSD pathology and suggest how intervention in the pathways may lead to novel therapeutic approaches.
The CCFM Monte Carlo generator CASCADE Version 2.2.03
International Nuclear Information System (INIS)
Jung, H.; Baranov, S.; Deak, M.; Grebenyuk, A.; Hentschinski, M.; Knutsson, A.; Kraemer, M.; Hautmann, F.; Kutak, K.; Lipatov, A.; Zotov, N.
2010-01-01
Cascade is a full hadron level Monte Carlo event generator for ep, γp and p anti p and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off-shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and common block variables which completely specify the generated events. (orig.)
The CCFM Monte Carlo Generator CASCADE version 2.2.0
Energy Technology Data Exchange (ETDEWEB)
Jung, H. [DESY, Hamburg (Germany); Antwerp Univ. (Belgium); Baranov, S. [Lebedev Physics Inst. (Russian Federation); Deak, M. [Madrid Univ. (ES). Inst. de Fisica Teorica UAM/CSIC] (and others)
2010-08-15
CASCADE is a full hadron level Monte Carlo event generator for ep, {gamma}p and p anti p and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and common block variables which completely specify the generated events. (orig.)
Double Hopf bifurcation in delay differential equations
Directory of Open Access Journals (Sweden)
Redouane Qesmi
2014-07-01
Full Text Available The paper addresses the computation of elements of double Hopf bifurcation for retarded functional differential equations (FDEs with parameters. We present an efficient method for computing, simultaneously, the coefficients of center manifolds and normal forms, in terms of the original FDEs, associated with the double Hopf singularity up to an arbitrary order. Finally, we apply our results to a nonlinear model with periodic delay. This shows the applicability of the methodology in the study of delay models arising in either natural or technological problems.
Wakefield, Claire E; Sansom-Daly, Ursula M; McGill, Brittany C; Ellis, Sarah J; Doolan, Emma L; Robertson, Eden G; Mathur, Sanaa; Cohn, Richard J
2016-06-01
The aim of this study was to evaluate the feasibility and acceptability of "Cascade": an online, group-based, cognitive behavioral therapy intervention, delivered "live" by a psychologist, to assist parents of children who have completed cancer treatment. Forty-seven parents were randomized to Cascade (n = 25) or a 6-month waitlist (n = 22). Parents completed questionnaires at baseline, 1-2 weeks and 6 months post-intervention. Thirty parents completed full evaluations of the Cascade program (n = 21 randomized to Cascade, n = 9 completed Cascade post-waitlist). Ninety-six percent of Cascade participants completed the intervention (n = 24/25). Eighty percent of parents completed every questionnaire (mean completion time 25 min (SD = 12)). Cascade was described as at least "somewhat" helpful by all parents. None rated Cascade as "very/quite" burdensome. Parents reported that the "online format was easy to use" (n = 28, 93.3 %), "I learnt new skills" (n = 28, 93.3 %), and "I enjoyed talking to others" (n = 29, 96.7 %). Peer-to-peer benefits were highlighted by good group cohesion scores. Cascade is highly acceptable and feasible. Its online delivery mechanism may address inequities in post-treatment support for parents, a particularly acute concern for rural/remote families. Future research needs to establish the efficacy of the intervention. ACTRN12613000270718, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12613000270718.
International Nuclear Information System (INIS)
Diaz de la Rubia, T.; Guinan, M.W.
1991-01-01
We have performed molecular dynamics computer simulation studies of displacement cascades in Cu at low temperature. For 25 keV recoils we observe the splitting of a cascade into subcascades and show that cascades in Cu may lead to the formation of vacancy and interstitial dislocation loops. We discuss a new mechanism of defect production based on the observation of interstitial prismatic dislocation loop punching from cascades at 10 K. We also show that below the subcascade threshold, atomic mixing in the cascade is recoil-energy dependent and obtain a mixing efficiency that scales as the square root of the primary recoil energy. 44 refs., 12 figs
An investigation of collision propagation in energetic ion initiated cascades in copper
International Nuclear Information System (INIS)
Chakarov, I.R.; Webb, R.P.; Smith, R.; Beardmore, K.
1995-01-01
Using simple Binary Collision simulations of energetic ion initiated collision cascades, particles are considered to undergo a series of binary collisions with their surroundings. In Molecular Dynamics simulation it is difficult to even define what is meant by a collision as the interaction potentials are infinite in nature and consequently all particles are considered to interact with all other particles. By making a suitable definition of a collision for Molecular Dynamics we are able to compare the temporal behaviour of the number of collisions occurring during the propagation of a collision cascade between the two different calculation schemes. An investigation is made of the number of collisions as a function of time occurring in collision cascades. We compare these results to the time ordered version of MARLOWE. By making further definitions about what makes a many body collision, we further investigate the numbers of many body collisions occurring during a number of collision cascades. (orig.)
Real-Time Observation of Target Search by the CRISPR Surveillance Complex Cascade
Directory of Open Access Journals (Sweden)
Chaoyou Xue
2017-12-01
Full Text Available CRISPR-Cas systems defend bacteria and archaea against infection by bacteriophage and other threats. The central component of these systems are surveillance complexes that use guide RNAs to bind specific regions of foreign nucleic acids, marking them for destruction. Surveillance complexes must locate targets rapidly to ensure timely immune response, but the mechanism of this search process remains unclear. Here, we used single-molecule FRET to visualize how the type I-E surveillance complex Cascade searches DNA in real time. Cascade rapidly and randomly samples DNA through nonspecific electrostatic contacts, pausing at short PAM recognition sites that may be adjacent to the target. We identify Cascade motifs that are essential for either nonspecific sampling or positioning and readout of the PAM. Our findings provide a comprehensive structural and kinetic model for the Cascade target-search mechanism, revealing how CRISPR surveillance complexes can rapidly search large amounts of genetic material en route to target recognition.
Cascading effects of overfishing marine systems
Scheffer, M.; Carpenter, S.; Young, de B.
2005-01-01
Profound indirect ecosystem effects of overfishing have been shown for coastal systems such as coral reefs and kelp forests. A new study from the ecosystem off the Canadian east coast now reveals that the elimination of large predatory fish can also cause marked cascading effects on the pelagic food
Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows
Duncan, B. S.
1992-01-01
True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be
Double hard scattering without double counting
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2017-02-15
Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.
Double hard scattering without double counting
International Nuclear Information System (INIS)
Diehl, Markus; Gaunt, Jonathan R.
2017-02-01
Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.
Supersymmetry breaking at the end of a cascade of Seiberg dualities
International Nuclear Information System (INIS)
Bertolini, M.; Bigazzi, F.; Cotrone, A. L.
2005-01-01
We study the IR dynamics of the cascading nonconformal quiver theory on N regular and M fractional D3 branes at the tip of the complex cone over the first del Pezzo surface. The horizon of this cone is the irregular Sasaki-Einstein manifold Y 2,1 . Our analysis shows that at the end of the cascade supersymmetry is dynamically broken
A model of disordered zone formation in Cu3Au under cascade-producing irradiation
International Nuclear Information System (INIS)
Kapinos, V.G.; Bacon, D.J.
1995-01-01
A model to describe the disordering of ordered Cu 3 Au under irradiation is proposed. For the thermal spike phase of a displacement cascade, the processes of heat evolution and conduction in the cascade region are modelled by solving the thermal conduction equation by a discretization method for a medium that can melt and solidify under appropriate conditions. The model considers disordering to result from cascade core melting, with the final disordered zone corresponding to the largest molten zone achieved. The initial conditions for this treatment are obtained by simulation of cascades by the MARLOWE code. The contrast of disordered zones imaged in a superlattice dark-field reflection and projected on the plane parallel to the surface of a thin foil was calculated. The average size of images from hundreds of cascades created by incident Cu + ions were calculated for different ion energies and compared with experimental transmission electron microscopy data. The model is in reasonable quantitative agreement with the experimentally observed trends. (author)
Realization of a Tunable Dissipation Scale in a Turbulent Cascade using a Quantum Gas
Navon, Nir; Eigen, Christoph; Zhang, Jinyi; Lopes, Raphael; Smith, Robert; Hadzibabic, Zoran
2017-04-01
Many turbulent flows form so-called cascades, where excitations injected at large length scales, are transported to gradually smaller scales until they reach a dissipation scale. We initiate a turbulent cascade in a dilute Bose fluid by pumping energy at the container scale of an optical box trap using an oscillating magnetic force. In contrast to classical fluids where the dissipation scale is set by the viscosity of the fluid, the turbulent cascade of our quantum gas finishes when the particles kinetic energy exceeds the laser-trap depth. This mechanism thus allows us to effectively tune the dissipation scale where particles (and energy) are lost, and measure the particle flux in the cascade at the dissipation scale. We observe a unit power-law decay of the particle-dissipation rate with trap depth, which confirms the surprising prediction that in a wave-turbulent direct energy cascade, the particle flux vanishes in the ideal limit where the dissipation length scale tends to zero.
MAP kinase cascades in Arabidopsis innate immunity
DEFF Research Database (Denmark)
Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten
2012-01-01
Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...
Molecular-dynamics simulation of displacement cascades in Cu: analysis of replacement sequences
International Nuclear Information System (INIS)
King, W.E.; Benedek, R.
1981-01-01
Molecular-dynamics computer simulations of displacement cascades in copper have been performed for recoil energies up to 450 eV. Statistical analyses of the atomic replacements are presented. Linear replacement sequence lengths are extremely short on the average. The effect of the cooling phase of the cascade is discussed
The Cascade Drift Module: a GIS-based study on regional pesticide deposition
Holterman, H.J.; Zande, van de J.C.
2008-01-01
The Cascade Project describes the modelling of spray drift and pesticide fate for a network of interconnected water bodies in a rural area. The present study concerns the first part of the proj ect, the Cascade Drift Module, which models the spatial and temporal distribution of deposits of spray
Performance requirements for the double-shell tank system: Phase 1
International Nuclear Information System (INIS)
Claghorn, R.D.
1998-01-01
This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period
Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Liu, Xing
2014-01-01
An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....
Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.
Chen, Jinmiao; Chaudhari, Narendra
2007-01-01
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.